WO2007048868A1 - Machine for the controlled reproduction of the pressure, temperature and irradiation conditions of planetary atmospheres or terrestrial environments and method of using said machine - Google Patents
Machine for the controlled reproduction of the pressure, temperature and irradiation conditions of planetary atmospheres or terrestrial environments and method of using said machine Download PDFInfo
- Publication number
- WO2007048868A1 WO2007048868A1 PCT/ES2006/070161 ES2006070161W WO2007048868A1 WO 2007048868 A1 WO2007048868 A1 WO 2007048868A1 ES 2006070161 W ES2006070161 W ES 2006070161W WO 2007048868 A1 WO2007048868 A1 WO 2007048868A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- machine
- pressure
- main chamber
- temperature
- sample
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 33
- 239000000463 material Substances 0.000 claims abstract description 18
- 238000009434 installation Methods 0.000 claims abstract description 16
- 230000007613 environmental effect Effects 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 12
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 62
- 239000000523 sample Substances 0.000 claims description 61
- 230000005855 radiation Effects 0.000 claims description 35
- 238000005086 pumping Methods 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 22
- 238000002474 experimental method Methods 0.000 claims description 16
- 238000004458 analytical method Methods 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 13
- 238000012360 testing method Methods 0.000 claims description 11
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 9
- 229910052805 deuterium Inorganic materials 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 7
- 238000004868 gas analysis Methods 0.000 claims description 5
- 238000004566 IR spectroscopy Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 238000012795 verification Methods 0.000 claims description 4
- 239000012620 biological material Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000000870 ultraviolet spectroscopy Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000003993 interaction Effects 0.000 claims description 2
- 239000012472 biological sample Substances 0.000 claims 1
- 238000007705 chemical test Methods 0.000 claims 1
- 238000011109 contamination Methods 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 238000010200 validation analysis Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 13
- 238000005842 biochemical reaction Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 22
- 238000004088 simulation Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 15
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 9
- 239000001307 helium Substances 0.000 description 8
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000011707 mineral Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000004075 alteration Effects 0.000 description 5
- 239000000926 atmospheric chemistry Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000009529 body temperature measurement Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000011435 rock Substances 0.000 description 3
- 230000001932 seasonal effect Effects 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 239000005433 ionosphere Substances 0.000 description 2
- 239000005435 mesosphere Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005173 quadrupole mass spectroscopy Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 241000372033 Andromeda Species 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 241001424392 Lucia limbaria Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- XMQFTWRPUQYINF-UHFFFAOYSA-N bensulfuron-methyl Chemical compound COC(=O)C1=CC=CC=C1CS(=O)(=O)NC(=O)NC1=NC(OC)=CC(OC)=N1 XMQFTWRPUQYINF-UHFFFAOYSA-N 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000011905 homologation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000010249 in-situ analysis Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000013406 prebiotics Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- -1 sands Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/022—Environment of the test
- G01N2203/0244—Tests performed "in situ" or after "in situ" use
- G01N2203/0246—Special simulation of "in situ" conditions, scale models or dummies
Definitions
- This invention concerns, in a first aspect, a machine, inside which selected environmental conditions are reproduced (partial pressure of each gaseous component and temperature) very well controlled and verifiable, where to irradiate a particular sample under study and thus repeat in a laboratory the various chemical and / or biochemical reactions that take place in outer space, in the atmospheres of the different planets of the Solar System or in other environments, whether real or fictitious.
- This invention aims, for its conceptual versatility and, above all, for being constituted by current technologies and equipment, to simulate very different environments; so much, it could be, that of planet Earth like some other of a radically different atmospheric chemical composition and also, finally, the conditions existing in the interplanetary environment.
- the intended sectors of this invention are: aeronautical, geological, astrobiological, environmental and materials science. Likewise, this patent also has direct application as a measurement and control facility in laboratories or catalyst manufacturing companies with environmental implications.
- Kyoto is the first global approach to limit the emission of gases responsible for climate change, gases that are produced by industrial and human (anthropogenic) activities. Following this current of opinion, the most important companies in the industrial sector linked to the production of electric energy and, above all, to the manufacturers of fuels used in surface transport and aviation, have begun research projects that cover a syllabus very extensive which goes from the work to try to find catalysts with which to eliminate, reduce or, at least, not increase, the uncontrolled production of pollutant gases and so-called "greenhouse effect", as to studies of reactions between compounds in the gas phase (atmospheric chemistry). Let us mention at this point the work that has been done to eliminate sulfuric ion from the final products of combustion, responsible for the so-called "acid rain”.
- the planetary atmosphere simulation machine that we present has been designed to allow operators in a flexible and versatile way: (a) reproduce the pressure and temperature conditions of planetary atmospheres, (b) submit the sample under study to different types of irradiation, and (c) characterize by infrared (IR) and Ultraviolet (UV) spectroscopy the different chemical changes that arise as a result of the atmosphere, irradiation and temperature. It presents certain characteristics sought taking into account the scientific objectives (catalytic reactions, biological observations) and atmospheres that are to be simulated. As a fundamental contribution, it has a sample holder that can house a simple biological culture (bacteria) or a solid sample such as a zeolite.
- the pressure range achieved in the chamber covers values between 10 "9 mbar (simulation of planetary atmospheres) at 1 atmosphere (terrestrial environmental chemistry). This extensive pressure range is 12 orders of magnitude, is achieved by making small changes, provided in the design that we will describe below (joint joints and observation windows), maintaining the general layout of the machine.
- the atmospheric composition desired by the experimenter is produced by the mixture of gases chosen in each particular experiment: The temperature In the sample it is chosen, a priori, for each reaction in treatment and can be set in the range between 4-325 K.
- various sources of radiation that include UV, electrons and ions (of noble gases).
- a mass spectrometer For the due control of environmental-environmental constants a mass spectrometer, a silicon diode and pressure gauges are available, as well as for the measurement of parameters defined in the chemical analysis, infrared spectroscopy (IR) techniques will be available. ) and of Ultraviolet (UV) or any other that the measurement technology can provide us in the future.
- IR infrared spectroscopy
- UV Ultraviolet
- the machine is controlled by the experimenter, at all times, in a precise and computerized manner, both in the partial pressures of each component gas of the atmosphere under study, as well as the temperature of the sample we are studying. It will also allow us to flexibly irradiate the sample under study with ultraviolet radiation or an ion or electron beam, up to 5 KeV, as well as perform in-situ analysis, in order to follow the chemical and structural changes produced on the sample under study. in these conditions.
- the partial pressure of each gas in the atmosphere can be controlled independently from 1000 to 5x10 "9 mbar, that is, in 12 orders of magnitude.
- the temperature can range between 4 and 325 K.
- the gaseous composition is monitored by a residual gas analyzer that allows an approximate accuracy of ppm (parts per million).
- the sample has a removable sample holder at will that accepts samples from 5 to 35 millimeters in diameter and 10 millimeters thick. In the case of a powder sample, the grain size must be greater than 3 ⁇ m.
- the sample is characterized and controlled, in situ, by IR and UV spectroscopy. It is well understood that in the experiments carried out under conditions, let's call them “terrestrial”, ('high' atmospheric pressure, 'high' temperature) it will only be possible to use the source of ultraviolet radiation by means of a deuterium lamp, rendering the others useless.
- the prototype machine presented in this invention is composed of the following elements or differentiated parts: a) Vacuum chamber for carrying out processes (atmospheric or main chamber) b) Generation system, low pressure (vacuum), according to application and measurement of this parameter. c) Sample introduction unit (manipulator or transfer) and cryostat. d) Discharge sources, for irradiation of samples. e) Source of deuterium. f) Gas analysis system. g) Gas inlet system.
- Vacuum chamber for realization of processes or main chamber. It is made of stainless steel, completely clean and degassed, to reach a pressure ⁇ 5x10 "9 millibar. It has in its outline the corresponding heating shirts for prior degassing of the interior enclosure. The dimensions are: 50 centimeters long and 40 centimeters in diameter ( see figures 1, 2, 3 and 4).
- Vacuum generation system according to the application and measurement of this parameter. In order to achieve the required ultra-high vacuum conditions ( ⁇ 10 ⁇ 8 millibar) and considering the volume of the chamber, it is necessary to use a turbomolecular-drag pumping group of high pumping capacity.
- the empty low pressure generation system (see figure 5) consists of:
- the vacuum measurement in the chamber is performed with a combined Pirani- Penning sensor, with a measuring range from 1000-5x10 "9 mbar.
- the method to simulate a particular atmosphere is as follows: the desired gases are mixed in a steel tube (manifold) up to the required proportion, controlled by individual flow meters for each gas.
- the gaseous composition (partial gas pressure) is constantly monitored by a residual gas analyzer spectrometer, which sets the desired partial pressure of each gas using the corresponding flowmeter.
- the sample temperature is regulated with a liquid helium cooling system that is connected to the sample holder holder.
- Different sources of irradiation can be used at typical pressures in the range of Mars (range of a few mbar) for this it is necessary to use a differential pumping system, which ensures the correct operating conditions of the source of irradiation.
- the partial pressure of water vapor can be calibrated and regulated. This small partial pressure of water vapor could be important for most biological processes.
- the partial pressure of each of the gases in the experimental system can be independently controlled and modified in a range of 9 orders of magnitude, ranging from 8 millibar to 5 x 10 ⁇ 9 millibar. Therefore, the percentage of each gas in the simulated atmosphere is continuously monitored to follow possible condensation or desorption processes.
- a step motorized valve controls the opening of the turbo-molecular pump of the main bell.
- liquid helium cryostat liquid helium cryostat
- manipulator manipulator
- sample holder sample holder with temperature sensor
- the liquid helium cryostat allows us to cool the sample holder to reach the temperatures of the different environments to be simulated, from 325K to 4K.
- the passage of introduction or transfer of liquid helium from the Dewar (figure 6) to the sample manipulator is carried out through a transfer bar that is thermally insulated to minimize evaporation of Helium.
- a resistance of 50 Ohms is placed inside the cryostat, which allows us to reach the programmed temperature through the temperature controller.
- the sample manipulator or transfer bar has two DN 40 CF flanges, on a support piece, and in the intermediate position coupled a flexible tube
- the sample holder built in copper with special treatment to guarantee maximum thermal conduction, has a silicon diode for temperature measurement (see figures 9 and 10).
- This sample holder is prepared with a special thread to ensure the best possible contact with the crucible, and thus avoid temperature gradients.
- Three kinds of crucibles have been prepared that allow working with different types of samples (crucible 1 with 38 mm diameter and 4 mm depth, crucible 2 with 8 millimeters in diameter and 2 millimeters in depth, crucible 3 dimensions similar to crucible 1 but with a hole in the center that allows measurements in transmittance mode).
- differential pumping is carried out with the turbo-molecular pump 2, with a pumping capacity of 60 liters / second and a double-stage rotary pump 2, with a suction capacity of 2.5 m 3 / hour .
- a vacuum is made with another turbo-molecular pump 3, with a pumping capacity of 210 liters / second and a double stage 3 rotary pump, with a capacity of 5 m 3 / h.
- the vacuum measurement is performed with a combined Pirani / Penning sensor.
- the differential vacuum between this second chamber and the previous one is achieved through a 2 mm hole, which can be interchangeable with a larger one (4 mm.) Or smaller diameter (0.5 mm.).
- the discharge sources coupled to the differential pumping chamber (or irradiation) are the following: electron gun, ion cannon and UV discharge source.
- One of the technical challenges solved in this invention is the use of irradiation sources in simulation of atmospheres at high pressures.
- the pressure In order to use irradiation sources that require the ignition of a filament to radiate, the pressure must be of the order of 10 ⁇ 6 millibar.
- the atmospheric chamber (or main bell) is separated from the compartment where the sources of irradiation are located through an exit hole of 2 millimeters in diameter.
- the design of the pumping system is shown in figures 11 and 12. Between the source compartment and the atmospheric chamber (main bell) there is a second pumping stage, where the variable opening of the hole controls the partial pressure in the compartment of irradiation.
- small diameter holes also reduce (minimize) the irradiated area.
- the entrance hole can be changed by unscrewing a small copper disk from the flange of the irradiation source compartment.
- discs with 3 different diameters for example: 0.5, 2 and 4 millimeters.
- We have estimated that the highest pressure (in the main chamber) that allows us to radiate is approximately 1 millibar.
- the irradiation sources are designed to obtain the focal length in the inlet (opening) hole, in this way most of the radiation can pass through the double outlet configuration (with two holes).
- the deuterium source has been adapted to the upper flange of the T-piece so that the beam of ultraviolet light rises vertically in the direction of the sample.
- a converging lens is placed at the exit of the lamp. This ensures that the concentrated beam of light will reach approximately 25 millimeters in diameter.
- a beam splitter In the center of the T-piece, a beam splitter is placed (see figure 13). Its function is to reflect part of the light at a 90 ° angle and allow the highest possible intensity to be transmitted to the sample. To measure the intensity of the reflected light, a spectrum meter is placed in the flange placed perpendicular to the emission source. Figure 14 shows the configuration of the system by UV irradiation, both for measurements in reflectance and in the case of transmittance. f) Gas analysis system.
- the quadrupole mass spectrometry gas analysis system consists of: mass spectrometer, analysis chamber, turbo-molecular pumping group, vacuum meter and isolation valve between process chamber and analysis chamber (see figure 15) .
- the analysis system will perform the following functions: "Monitoring of process gases.
- the valve will be open (with the bypass closed) when we have 10 "8 millibar pressure atmospheres and want to see the composition of residual gases in the main chamber or to detect leaks.
- the sample preparation system for entering gases into the process chamber is composed of:
- manifold-1 the gases and water vapor are mixed. There is the entry of the gas mixture through the lateral line connected to the mixing bottle with a metering valve in the intermediate position. The mass flow meter for water vapor is placed on the other side. The gases and water vapor will be mixed in the vaporizer placed in the vertical line and will go directly to the second manifold and then to the regulating valve (see figure 16).
- the gas chamber control unit in the main chamber consists of: "Electronic vacuum measurement unit and flow regulation control.
- Vacuum meter adapted in main chamber, which gives us the signal of the required pressure value in the process chamber.
- hood using ultra-high vacuum closures, which allows us to study planetary bodies with very low pressures like Europe.
- differential pumping system we have designed a differential pumping system in several stages, so that the total pressure in the area where the filament of the electron source is turned on or ions are of the order of
- Stable pressures in Martian conditions are achieved by a stepper motor that closes in a controlled manner a guillotine valve on a CF-500 pump.
- the closing of the valve makes it possible to regulate the total pressure accurately.
- the gases of the atmosphere that we want to reproduce are mixed and controlled by independent flow controllers.
- the temperature is regulated by a cryostat of He, specially adapted to be able to locate different types of samples (minerals, mono-crystals ).
- Figure 1 Image of the machine or installation composed of an environment simulation chamber or main chamber and the other elements or components of generation of the chosen environment and its control and measurement as described in the specification of this invention patent .
- Figure 2. Diagram of the vacuum or main chamber of the one shown in figure 1 and detail of the differential pumping system.
- Figure 3. General view of the vacuum or main chamber presented in the previous figures. The designed prototype can be described as a cylinder whose dimensions are: 500 mm. height and 400 mm. diameter.
- Figure 4. Images of both sides of the vacuum vacuum chamber or main chamber.
- Figure 5. Pump system of the main chamber. AA), molecular turbo pump,
- Figure 6. Dewar of helium to cool the sample.
- Figure 7. Image of the sample holder and the radiation shield.
- BA Sample protector.
- Figure 8. Image of the sample introduction bar or manipulator.
- CA Flexible.
- Figure 9 Image of a crucible (where the sample is located) placed on the transfer bar or manipulator
- Figure 10. Silicon diode for temperature measurement (temperature sensor).
- Figure 11 Plane of the lateral section of the differential pumping chamber (or irradiation) where the discharge sources (dimensions in millimeters) are coupled.
- Figure 12. Details of the manufacture of the chamber and differential pumping.
- Figure 13. Details of the manufacturing of the chamber and differential pumping.
- Figure 17. Graphs of the simulation of the conditions of Mars: a) Introduction of the gases, and, b) we cool the sample to 150 0 K.
- Figure 18. Graphs of the simulation of the conditions of Europe: a) we cool the sample at 50 0 K, and, b) introduction of the gases.
- Figure 19. Graph of the simulation of the conditions of the atmosphere of Tritón.
- This invention is applicable in all those technical and scientific disciplines that require a practical assembly or accessory where to carry out a precise control of certain, or chosen, atmospheric conditions and that there, within that chamber, can be checked or monitored various chemical or biological processes
- the initial motivation in the approach of the machine that constitutes this invention was related, in principle, with the study of the surface of planetary atmospheres, later, we have also found applications of interest in other fields, let us mention, for example, in that of biology (study of the resistance of extremity bacteria), in the resistance of materials in certain atmospheres and subjected to irradiation and in processes of terrestrial atmospheric chemistry related to the protection of the terrestrial environment.
- the steps to follow to reproduce a certain atmosphere in the main chamber are the following: after closing and pumping the main chamber of the machine, the chosen quantities of the valves are introduced through the valve located in manifold 2. gases, these are then cooled to the temperatures of liquid helium. Once this temperature has been reached by means of a heating resistor, located in the sample holder, the electrical control system stabilizes the temperature to the desired value. This feedback system also allows temperature cycles such as "night and day” or seasonal changes to be programmed.
- the samples are placed horizontally in the well (cuvette) seen in Figure 9, so that it is possible to study poorly cohesive materials. Crystals, sands, resins, rocks and minerals are among the possible samples that can be introduced into the system.
- the temperature of the sample can be controlled from 4 to 325 K by two photodiodes (silicon diode) placed on one side of the sample holder in contact with the solid sample, as shown in Figure 10.
- Example & Atmospheric chemistry. Earth mesosphere and chemosphere.
- One of the applications of this machine is the study of chemical reactions that take place in the upper layers of the Earth's atmosphere, these reactions may be due to both natural phenomena and reactions in which contaminants that are poured into the atmosphere are involved. The study allows the monitoring of possible reaction chemicals as a result of the effects of radiation.
- the main chamber is pumped following the experimental protocol described in previous lines up to an atmospheric pressure between 1 and 0.01 mbar in the case of the chemosphere and between 10 "2 and 10 " 9 mbar in the case of ionosphere.
- the sample temperature is taken to the study value 200 K.
- the sample is deposited in the sample well and is brought to the temperature under study.
- the sample is subjected to different atmospheric compositions.
- the mass spectrometer measures the composition of the gas in the absence of a catalytic sample and after it has been introduced.
- the catalytic surface is irradiated for example with ions using the ion cannon.
- the composition of the atmosphere inside the chamber would be composed mainly of CO 2 , CH 4 and H 2 gases.
- Example c Physical-chemical materials and geological processes in planetary bodies.
- the sample is cooled to 50 K. Stabilizing this temperature value in the sample takes about 20 minutes (see figure 18a). In this process many of the gases condense and the total atmospheric pressure of the chamber decreases to values of 10 "10 mbar.
- the Voyager 2 spacecraft has shown the normal activity of the Neptune satellite, Triton. Geological processes, such as cryovolcanism, occur in this environment of extremely low temperatures, in which even nitrogen is seasonally (periodically) solid. Interactions between the atmosphere and the surface have been described, as geysers expelling gases. Once in the atmosphere, some materials are photolytically destroyed (7).
- Triton conditions have been simulated in this machine also as a technically limited environment (technical challenge), due to the circumstances of low relative pressure (10 ⁇ 2 mbar, with 93% N 2 , 4% CO and 3% CH 4 ) and very low temperatures. Although Triton does not have significant evidence of astrobiological interest, it deserves attention from the geological point of view. To reproduce, the Triton atmosphere, we first program the desired gaseous composition, which stabilizes in about 5 minutes. The partial pressure of each gas for Triton's atmosphere is represented in Figure 19 near the beginning. Starting from that point, we reduce the temperature to the value of 38K.
- this temperature is close to the critical point of the gases that make up the Triton atmosphere, therefore, a small variation in temperature causes CO, CH 4 , and N 2 to condense (from the time of 500 to 100Os see in figure 19). As a consequence, extreme control of the surface temperature must be achieved to achieve stable atmospheric conditions for Triton. We were able to reach stable Triton conditions after 15 minutes.
- This invention constitutes a unique platform for the realization of sensor calibration tests, as well as the functional verification of scientific instrumentation (tests), destined to the study in reproducible atmospheric conditions for how the conditions in the interplanetary space can be, (planets, satellites artificial), or at the Earth's poles. Pressure, temperature, gas concentration, ultraviolet radiation, electrons and ions, can be simulated over a wide range of energies.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
The invention relates to a machine or closed environment in which selected closely-controlled and verifiable environmental conditions (partial pressure of each gaseous component and temperature) can be reproduced and in which a determined study sample can be irradiated. The inventive installation can be used to reproduce different chemical and/or biochemical reactions which take place on the earth's surface, in outer space, in the atmospheres of the different planets of the solar system or in other real or virtual environments. The invention relates to the current interest in obtaining a deeper knowledge of our gaseous environment and conserving same. The invention is suitable for use in the following sectors: aeronautics, astronautics, geology, environment, materials science and catalysis.
Description
TÍTULOTITLE
MÁQUINA, Y MÉTODO DE UTILIZACIÓN, PARA REPRODUCIR DE FORMA CONTROLADA LAS CONDICIONES DE PRESIÓN, TEMPERATURA E IRRADIACIÓN DE AMBIENTES SUPERFICIALES O ATMÓSFERAS PLANETARIAS.MACHINE, AND METHOD OF USE, TO REPRODUCE THE CONDITIONS OF PRESSURE, TEMPERATURE AND IRRADIATION OF SURFACE ENVIRONMENTS OR PLANETARY ATMOSPHERES.
SECTOR DE LA INVENCIÓNSECTOR OF THE INVENTION
Esta invención concierne, en un primer aspecto, a una máquina, en cuyo interior se reproducen condiciones ambientales escogidas (presión parcial de cada componente gaseoso y temperatura) muy bien controladas y verificables, donde irradiar una determinada muestra en estudio y así repetir en un laboratorio las diversas reacciones químicas y/o bio -químicas que tienen lugar en el espacio externo, en las atmósferas de los distintos planetas del Sistema Solar o en otros entornos ya sean reales o ficticios. Esta invención pretende, por su versatilidad conceptual y, sobre todo, por estar constituida por tecnologías y equipamiento actual, simular ambientes muy distintos; tanto, podría ser, el del planeta Tierra como algún otro de una composición química atmosférica radicalmente diferente y también, finalmente, las condiciones existentes en el medio interplanetario. Los previstos sectores de esta invención son: aeronáutico, geológico, astrobiológico, medio ambiental y de la ciencia de los materiales. Igualmente, esta patente también tiene aplicación directa como instalación de medida y control en laboratorios o empresas de fabricación de catalizadores con implicaciones medioambientales.This invention concerns, in a first aspect, a machine, inside which selected environmental conditions are reproduced (partial pressure of each gaseous component and temperature) very well controlled and verifiable, where to irradiate a particular sample under study and thus repeat in a laboratory the various chemical and / or biochemical reactions that take place in outer space, in the atmospheres of the different planets of the Solar System or in other environments, whether real or fictitious. This invention aims, for its conceptual versatility and, above all, for being constituted by current technologies and equipment, to simulate very different environments; so much, it could be, that of planet Earth like some other of a radically different atmospheric chemical composition and also, finally, the conditions existing in the interplanetary environment. The intended sectors of this invention are: aeronautical, geological, astrobiological, environmental and materials science. Likewise, this patent also has direct application as a measurement and control facility in laboratories or catalyst manufacturing companies with environmental implications.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El interés de nuestra Sociedad por la conservación y protección de la capa gaseosa que envuelve nuestro planeta ha sido, por fortuna, una realidad desde hace ya muchos años. Recientemente, las Naciones Unidas han plasmado este interés en el Protocolo deOur Society's interest in the conservation and protection of the gas layer that surrounds our planet has, fortunately, been a reality for many years now. Recently, the United Nations has expressed this interest in the Protocol of
Kyoto que es el primer planteamiento mundial para poner un límite a la emisión de los gases responsables del cambio climático, gases que son producidos por actividades industriales y humanas (antropogénicas). Siguiendo esta corriente de opinión, las más importantes compañías del sector industrial ligado a la producción de energía eléctrica y, sobre todo, a las compañías fabricantes de combustibles utilizados en el transporte de superficie y la aviación, han comenzado proyectos de investigación que abarcan un temario muy extenso el cuál va desde las labores para tratar de encontrar catalizadores
con los que eliminar, reducir o, al menos, no aumentar, la producción incontrolada de los gases contaminantes y de los denominados de "efecto invernadero", como a estudios de reacciones entre compuestos en la fase gaseosa (química atmosférica). Citemos en este punto los trabajos que se han venido haciendo para eliminar de los productos finales de la combustión, el ion sulfúrico, responsables de la denominada "lluvia acida".Kyoto is the first global approach to limit the emission of gases responsible for climate change, gases that are produced by industrial and human (anthropogenic) activities. Following this current of opinion, the most important companies in the industrial sector linked to the production of electric energy and, above all, to the manufacturers of fuels used in surface transport and aviation, have begun research projects that cover a syllabus very extensive which goes from the work to try to find catalysts with which to eliminate, reduce or, at least, not increase, the uncontrolled production of pollutant gases and so-called "greenhouse effect", as to studies of reactions between compounds in the gas phase (atmospheric chemistry). Let us mention at this point the work that has been done to eliminate sulfuric ion from the final products of combustion, responsible for the so-called "acid rain".
Citemos aquí también los trabajos de científicos e investigadores que con el objetivo de ampliar conocimientos básicos han fijado su atención en las atmósferas de cuerpos planetarios, (Marte, principalmente por su actualidad, Europa, y Tritón, satélites de Júpiter y Neptuno, respectivamente). Nos estamos refiriendo en concreto al fructífero, e interesante, campo de la planetología donde todo nuestro conocimiento actual se debe tan sólo a los datos recogidos durante las aproximaciones de sondas no tripuladas a Marte como: Mariner, Viking, Mars pathfinder, y al sistema solar exterior como: Voyager y Galileo. El aporte al conocimiento fundamental extraído de estos proyectos es verdaderamente ingente y espectacular, aunque, en este caso, la toma de datos por medio de ingenios automáticos tan solo permite a los investigadores tener una visión pasiva o de conjunto de la atmósfera en cuestión, dado que no les es posible realizar experimentos debidamente programados por ellos. Por esta razón, en el momento presente, se impone un cambio hacía una estrategia menos pasiva y, por ello, recientemente, diversas agencias oficiales (la NASA "Nacional Aeronautic Space Administration"y la ESA "European Space Agency"), han empezado a desarrollar proyectos de investigación en los cuales se empieza a percibir el empleo de cámaras o recintos controlados en donde simular atmósferas o ambientes para experimentar en química atmosférica y bioquímica, así como también, ensayar nuevos materiales sometidos a condiciones extremas de presión y temperatura.Let us also mention here the works of scientists and researchers who, with the objective of expanding basic knowledge, have focused their attention on the atmospheres of planetary bodies, (Mars, mainly for its present time, Europe, and Triton, satellites of Jupiter and Neptune, respectively). We are referring specifically to the fruitful, and interesting, field of the planetology where all our current knowledge is due only to the data collected during the approaches of unmanned probes to Mars such as: Mariner, Viking, Mars pathfinder, and the solar system Outside as: Voyager and Galileo. The contribution to the fundamental knowledge extracted from these projects is truly huge and spectacular, although, in this case, the collection of data through automatic devices only allows researchers to have a passive or overall view of the atmosphere in question, given that it is not possible for them to carry out experiments properly programmed by them. For this reason, at the present time, a change is imposed towards a less passive strategy and, therefore, recently, several official agencies (NASA "National Aeronautic Space Administration" and ESA "European Space Agency"), have begun to develop research projects in which the use of cameras or controlled enclosures begins to be perceived in which to simulate atmospheres or environments to experiment in atmospheric chemistry and biochemistry, as well as to test new materials subjected to extreme pressure and temperature conditions.
A pesar de todo lo que venimos diciendo, no existen, a fecha de hoy, en las base de datos o bibliotecas, patentes que describan cámaras o recintos donde simular ambientes planetarios. Todo lo más, algunas Universidades y centros oficiales de investigación han puesto en marcha proyectos con sencillas cámaras de simulación que por lo general están pensadas, y realizadas, para un muy determinado ambiente planetario. Casi todas están concebidas, en general, para el estudio o tratamiento de aspectos muy determinados y parciales de la química atmosférica en condiciones de presión y temperatura limitados.
Tan sólo merecería citarse aquí el proyecto ANDROMEDA de la universidad de Arkansas (USA) en el cual se está comenzando a hacer algunos experimentos de astrobiología simulando la atmósfera marciana.In spite of everything we have been saying, there are no patents describing cameras or enclosures to simulate planetary environments, in today's databases or libraries. All the more, some universities and official research centers have launched projects with simple simulation cameras that are usually designed, and carried out, for a very specific planetary environment. Almost all of them are conceived, in general, for the study or treatment of very specific and partial aspects of atmospheric chemistry under conditions of limited pressure and temperature. Only the ANDROMEDA project of the University of Arkansas (USA) in which some astrobiology experiments are simulating the Martian atmosphere are beginning to be cited here.
Presentamos esta patente de invención con los dos objetivos antes descritos, a) experimentación en el laboratorio de reacciones químicas en la interfase superficie sólida- gas bajo las condiciones de presión, temperatura e irradiación similares a las que encontramos en un cuerpo planetario o en el espacio, y, b) estudio o recreación de las condiciones de composición, presión y temperatura e irradiación en que se encuentran las actuales atmósferas planetarias.We present this invention patent with the two objectives described above, a) laboratory experimentation of chemical reactions at the solid surface-gas interface under the conditions of pressure, temperature and irradiation similar to those found in a planetary body or space , and, b) study or recreation of the conditions of composition, pressure and temperature and irradiation in which the current planetary atmospheres are found.
DESCRIPCIÓN DE LA INVENCIÓN BREVE DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE BRIEF INVENTION DESCRIPTION OF THE INVENTION
La máquina de simulación de atmósferas planetarias que presentamos ha sido concebida para permitir a los operadores de manera flexible y versátil: (a) reproducir las condiciones de presión y temperatura de atmósferas planetarias, (b) someter a la muestra en estudio a diferentes tipos de irradiaciones, y (c) caracterizar mediante espectroscopia de Infrarrojo (IR) y Ultravioleta (UV) los diferentes cambios químicos que se originen como consecuencia de la atmósfera, irradiación y de la temperatura. Presenta ciertas características buscadas teniendo en cuenta los objetivos científicos (reacciones catalíticas, observaciones biológicas) y atmósferas que se quieren simular. Como aportación fundamental tiene un porta-muestras que puede albergar un cultivo biológico sencillo (bacterias) o una muestra sólida como una zeolita. El rango de presión conseguido en la cámara abarca valores comprendidos entre 10"9 mbar (simulación de las atmósferas planetarias) a 1 atmósfera (química ambiental terrestre). Este extenso rango de presión, son 12 órdenes de magnitud, se logra haciendo pequeños cambios, previstos en el diseño que a continuación describiremos (juntas de unión y ventanas de observación), manteniendo la disposición general de la máquina. La composición atmosférica deseada por el experimentador es producida por la mezcla de gases que se elija en cada experimento particular: La temperatura en la muestra es escogida, a priori, para cada reacción en tratamiento y puede fijarse en el rango entre 4-325 K. Para el estudio en condiciones lo más reales que nos sea posible, hemos incorporado en la instalación diversas fuentes de radiaciones que incluyen UV, electrones e iones (de gases nobles).
Para el debido control de constantes medio -ambientales se dispone de un espectrómetro de masas, un diodo de silicio y manómetros de presión, así como para la medida de parámetros definidos en el análisis químico se contará con las técnicas in situ de espectroscopia infrarroja (IR) y de Ultravioleta (UV) o otras cualquiera que la tecnología de medida nos pueda proporcionar en el futuro.The planetary atmosphere simulation machine that we present has been designed to allow operators in a flexible and versatile way: (a) reproduce the pressure and temperature conditions of planetary atmospheres, (b) submit the sample under study to different types of irradiation, and (c) characterize by infrared (IR) and Ultraviolet (UV) spectroscopy the different chemical changes that arise as a result of the atmosphere, irradiation and temperature. It presents certain characteristics sought taking into account the scientific objectives (catalytic reactions, biological observations) and atmospheres that are to be simulated. As a fundamental contribution, it has a sample holder that can house a simple biological culture (bacteria) or a solid sample such as a zeolite. The pressure range achieved in the chamber covers values between 10 "9 mbar (simulation of planetary atmospheres) at 1 atmosphere (terrestrial environmental chemistry). This extensive pressure range is 12 orders of magnitude, is achieved by making small changes, provided in the design that we will describe below (joint joints and observation windows), maintaining the general layout of the machine.The atmospheric composition desired by the experimenter is produced by the mixture of gases chosen in each particular experiment: The temperature In the sample it is chosen, a priori, for each reaction in treatment and can be set in the range between 4-325 K. For the study in conditions as real as possible, we have incorporated in the installation various sources of radiation that include UV, electrons and ions (of noble gases). For the due control of environmental-environmental constants a mass spectrometer, a silicon diode and pressure gauges are available, as well as for the measurement of parameters defined in the chemical analysis, infrared spectroscopy (IR) techniques will be available. ) and of Ultraviolet (UV) or any other that the measurement technology can provide us in the future.
Así, la máquina se controla por el experimentador, en todo momento, de manera precisa y computerizada, tanto en las presiones parciales de cada gas componente de la atmósfera en estudio, como la temperatura de la muestra que estemos estudiando. Además nos permitirá de forma flexible irradiar la muestra en estudio con radiación ultravioleta o un haz de iones o electrones, de hasta 5 KeV, así como realizar análisis in-situ, de manera a seguir los cambios químicos y estructurales producidos sobre la muestra en estudio en estas condiciones.Thus, the machine is controlled by the experimenter, at all times, in a precise and computerized manner, both in the partial pressures of each component gas of the atmosphere under study, as well as the temperature of the sample we are studying. It will also allow us to flexibly irradiate the sample under study with ultraviolet radiation or an ion or electron beam, up to 5 KeV, as well as perform in-situ analysis, in order to follow the chemical and structural changes produced on the sample under study. in these conditions.
Dicho de modo esquemático, las especificaciones técnicas que hacen de esta máquina una herramienta única en el mercado, son las siguientes:Stated schematically, the technical specifications that make this machine a unique tool in the market are the following:
- La presión parcial de cada gas en la atmósfera puede controlarse de manera independiente desde 1000 a 5x10"9 mbar, es decir, en 12 ordenes de magnitud.- The partial pressure of each gas in the atmosphere can be controlled independently from 1000 to 5x10 "9 mbar, that is, in 12 orders of magnitude.
- La temperatura puede oscilar entre 4 y 325 K. - La composición gaseosa esta monitorizada mediante un analizador de gas residual que permite una precisión aproximada de ppm (partes por millón).- The temperature can range between 4 and 325 K. - The gaseous composition is monitored by a residual gas analyzer that allows an approximate accuracy of ppm (parts per million).
- Tiene un porta muestras extraíble a voluntad que admite muestras desde 5 a 35 milímetros de diámetro y 10 milímetros de espesor. En caso de muestra en polvo, el tamaño de grano debe ser superior a 3 μm. - Una vez que la muestra está en las condiciones de presión y temperatura prefijadas puede irradiarse con distintas fuentes. Como ejemplo hemos diseñado fuentes de iones y electrones de hasta de 5 KV, radiación ultravioleta de lámpara de Deuterio (200-400 nanometros) y de iones (longitud de onda fija- =20 nanometros) de diferentes gases nobles. - La muestra se caracteriza y controla, in-situ, mediante espectroscopia IR y de UV.
Bien entendido que en los experimentos realizados bajo condiciones llamémoslas "terrestres", ('alta' presión atmosférica, 'alta' temperatura) sólo nos será posible utilizar la fuente de radiación ultravioleta mediante lámpara de deuterio, inutilizando las demás.- It has a removable sample holder at will that accepts samples from 5 to 35 millimeters in diameter and 10 millimeters thick. In the case of a powder sample, the grain size must be greater than 3 μm. - Once the sample is in the preset pressure and temperature conditions it can be irradiated with different sources. As an example, we have designed sources of ions and electrons of up to 5 KV, ultraviolet radiation from Deuterium lamp (200-400 nanometers) and ions (fixed wavelength- = 20 nanometers) of different noble gases. - The sample is characterized and controlled, in situ, by IR and UV spectroscopy. It is well understood that in the experiments carried out under conditions, let's call them "terrestrial", ('high' atmospheric pressure, 'high' temperature) it will only be possible to use the source of ultraviolet radiation by means of a deuterium lamp, rendering the others useless.
Mediante esta instalación podemos llevar a cabo experimentos en diversos campos de la química, geología y de la biología, como son:Through this installation we can carry out experiments in various fields of chemistry, geology and biology, such as:
1) Cambios de composición atmosférica bajo condiciones controladas.1) Changes in atmospheric composition under controlled conditions.
2) Cambios de fase cristalina y resistencia de materiales y minerales.2) Changes of crystalline phase and resistance of materials and minerals.
3) Crecimientos o disminución de colonias bacterianas sometidas a radiación y/o condiciones medio ambientales diversas.3) Growth or decrease of bacterial colonies subjected to radiation and / or various environmental conditions.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La máquina prototipo presentada en esta invención está compuesta por los siguientes elementos o partes diferenciadas: a) Cámara de vacío para realización de procesos (cámara atmosférica o principal) b) Sistema de generación, de baja presión (vacío), según aplicación y medida de este parámetro. c) Unidad de introducción de muestras (manipulador o traslador) y criostato. d) Fuentes de descarga, para irradiación de muestras. e) Fuente de deuterio. f) Sistema de análisis de gases. g) Sistema de entrada de gases.The prototype machine presented in this invention is composed of the following elements or differentiated parts: a) Vacuum chamber for carrying out processes (atmospheric or main chamber) b) Generation system, low pressure (vacuum), according to application and measurement of this parameter. c) Sample introduction unit (manipulator or transfer) and cryostat. d) Discharge sources, for irradiation of samples. e) Source of deuterium. f) Gas analysis system. g) Gas inlet system.
a) Cámara de vacío para realización de procesos o cámara principal. Está fabricada en acero inoxidable, totalmente limpia y desgasificada, para alcanzar una presión < 5x10"9 milibar. Posee en su contorno las correspondientes camisas calefactoras para desgasificación previa del recinto interior. Las dimensiones son: 50 centímetros de largo y 40 centímetros de diámetro (véase las figuras 1, 2, 3 y 4).
b) Sistema generación de vacío, según aplicación y medida de este parámetro. Para poder conseguir las condiciones de ultra alto vacío requeridas (<10~8 milibar) y considerando el volumen de la cámara, es necesario emplear un grupo de bombeo turbomolecular-drag de alta capacidad de bombeo.a) Vacuum chamber for realization of processes or main chamber. It is made of stainless steel, completely clean and degassed, to reach a pressure <5x10 "9 millibar. It has in its outline the corresponding heating shirts for prior degassing of the interior enclosure. The dimensions are: 50 centimeters long and 40 centimeters in diameter ( see figures 1, 2, 3 and 4). b) Vacuum generation system, according to the application and measurement of this parameter. In order to achieve the required ultra-high vacuum conditions (<10 ~ 8 millibar) and considering the volume of the chamber, it is necessary to use a turbomolecular-drag pumping group of high pumping capacity.
El sistema de generación de baja presión vacío (véase figura 5) se compone de:The empty low pressure generation system (see figure 5) consists of:
• Bomba turbo-molecular, con una capacidad de bombeo de 920 1/s• Turbo-molecular pump, with a pumping capacity of 920 1 / s
• Unidad de control de la bomba turbo-molecular, con posibilidad de regulación de la velocidad de giro. " Bomba rotativa de doble etapa, con una capacidad de bombeo de 35 m3/h.• Turbo-molecular pump control unit, with the possibility of speed regulation. "Double stage rotary pump, with a pumping capacity of 35 m 3 / h.
• Válvula de guillotina motorizada, con regulación de conductancia, que permite estrangular la válvula para trabajar a 10"2 mbar.• Motorized guillotine valve, with conductance regulation, which allows throttling the valve to work at 10 "2 mbar.
• La medición de vacío en la cámara se realiza con un sensor combinado Pirani- Penning, con rango de medida desde 1000-5x10"9 mbar.• The vacuum measurement in the chamber is performed with a combined Pirani- Penning sensor, with a measuring range from 1000-5x10 "9 mbar.
Según los objetivos apuntados en líneas precedentes, se ha tenido que superar ciertas dificultades técnicas. El más importante obstáculo, es conseguir una instalación capaz de operar, con los necesarios cambios mínimos, a presiones variables en un rango de 12 ordenes de magnitud, permitiendo el estudio de la atmósfera de satélites que casi no la poseen (Europa), el de planetas con atmósfera de baja densidad (Marte) y llegar hasta el caso terrestre.According to the objectives outlined in the preceding lines, certain technical difficulties have been overcome. The most important obstacle is to achieve an installation capable of operating, with the necessary minimum changes, at varying pressures in a range of 12 orders of magnitude, allowing the study of the atmosphere of satellites that almost do not possess it (Europe), that of planets with a low density atmosphere (Mars) and reach the terrestrial case.
Algunas bridas se han dejado vacías (sin instrumentación, ciegas) para futuros desarrollos. El método para simular una atmósfera en particular es el siguiente: los gases deseados se mezclan en un tubo de acero (manifold) hasta la proporción requerida, controlado mediante flujometros individuales para cada gas. La composición gaseosa (presión parcial de gas) es monitorizada constantemente mediante un espectrómetro analizador de gas residual, el cual fija la presión parcial deseada de cada gas utilizando el correspondiente flujometro. La temperatura de la muestra es regulada con un sistema de enfriamiento mediante helio líquido que está conectado al soporte del portamuestras. Diferentes fuentes de irradiación pueden ser usadas en presiones típicas en el rango de Marte (rango de unos pocos mbar) para ello es necesario utilizar un sistema de bombeo diferencial, el cual asegura las condiciones correctas de funcionamiento de la fuente de
irradiación. La presión parcial de vapor de agua puede ser calibrada y regulada. Esta pequeña presión parcial de vapor de agua podría ser importante para la mayoría de los procesos biológicos. La presión parcial de cada uno de los gases en el sistema experimental puede ser independientemente controlada y modificada en un rango de 9 ordenes de magnitud, rango desde 8 milibar hasta 5 x 10~9 milibar. Por consiguiente, el porcentaje de cada gas en la atmósfera simulada es continuamente monitorizado para seguir posibles procesos de condensación o desorción. Para alcanzar condiciones de altas presiones una válvula motorizada por pasos, controla la apertura de la bomba turbo- molecular de la campana principal.Some flanges have been left empty (without instrumentation, blind) for future developments. The method to simulate a particular atmosphere is as follows: the desired gases are mixed in a steel tube (manifold) up to the required proportion, controlled by individual flow meters for each gas. The gaseous composition (partial gas pressure) is constantly monitored by a residual gas analyzer spectrometer, which sets the desired partial pressure of each gas using the corresponding flowmeter. The sample temperature is regulated with a liquid helium cooling system that is connected to the sample holder holder. Different sources of irradiation can be used at typical pressures in the range of Mars (range of a few mbar) for this it is necessary to use a differential pumping system, which ensures the correct operating conditions of the source of irradiation. The partial pressure of water vapor can be calibrated and regulated. This small partial pressure of water vapor could be important for most biological processes. The partial pressure of each of the gases in the experimental system can be independently controlled and modified in a range of 9 orders of magnitude, ranging from 8 millibar to 5 x 10 ~ 9 millibar. Therefore, the percentage of each gas in the simulated atmosphere is continuously monitored to follow possible condensation or desorption processes. To reach high pressure conditions a step motorized valve controls the opening of the turbo-molecular pump of the main bell.
c) Unidad de introducción de muestras (manipulador o traslador) y criostato.c) Sample introduction unit (manipulator or transfer) and cryostat.
Se consideran en este apartado tres partes bien diferenciadas: criostato de helio líquido, manipulador y porta-muestras con sensor de temperatura.Three distinct parts are considered in this section: liquid helium cryostat, manipulator and sample holder with temperature sensor.
El criostato de Helio líquido, nos permite enfriar el porta-muestras para llegar a las temperaturas de los diferentes ambientes a simular, desde 325K a 4K. El paso de introducción o trasvase del helio líquido desde el Dewar (figura 6) al manipulador de muestras, se realiza a través de una barra de transferencia que está aislada térmicamente para reducir al máximo la evaporación del Helio. Dentro del criostato se coloca una resistencia de 50 Ohmios, que a través del controlador de temperatura nos permite alcanzar la temperatura programada. Para la medida de temperatura en el circuito del Helio líquido, hay un diodo de silicio, que se toma cómo referencia para realizar los ajustes necesarios que permitan alcanzar la temperatura requerida en el porta-muestras.The liquid helium cryostat allows us to cool the sample holder to reach the temperatures of the different environments to be simulated, from 325K to 4K. The passage of introduction or transfer of liquid helium from the Dewar (figure 6) to the sample manipulator is carried out through a transfer bar that is thermally insulated to minimize evaporation of Helium. A resistance of 50 Ohms is placed inside the cryostat, which allows us to reach the programmed temperature through the temperature controller. For the temperature measurement in the liquid Helium circuit, there is a silicon diode, which is taken as a reference to make the necessary adjustments that allow reaching the required temperature in the sample holder.
En las condiciones de presión de 0,01 milibar existen fenómenos de conducción y radiación térmica. Para amortiguar estos efectos se coloca en las proximidades del porta- muestras un protector de radiación (radiation shield) como se muestra en la figura 7.Under the conditions of pressure of 0.01 millibar there are conduction phenomena and thermal radiation. To dampen these effects, a radiation shield is placed in the vicinity of the sample holder as shown in Figure 7.
El manipulador de muestras o barra de transferencia tiene adaptadas dos bridas DN 40 CF, sobre una pieza soporte, y en la posición intermedia acoplado un tubo flexibleThe sample manipulator or transfer bar has two DN 40 CF flanges, on a support piece, and in the intermediate position coupled a flexible tube
(ver figura 8). El comprimir/expandir este flexible hace que el porta-muestras se pueda desplazar en el interior de la cámara una distancia de 150 milímetros en dirección
horizontal. Esto nos permite colocar la muestra para ser irradiada en el eje de la fuente de deuterio o en el orificio de las fuentes de descarga.(see figure 8). Compressing / expanding this flexible means that the sample holder can move inside the chamber a distance of 150 millimeters in the direction horizontal. This allows us to place the sample to be irradiated on the axis of the deuterium source or in the orifice of the discharge sources.
El porta-muestras, construido en cobre con tratamiento especial para garantizar máxima conducción térmica, tiene acoplado un diodo de silicio para la medida de la temperatura (ver figura 9 y 10). Este porta-muestras viene preparado con una rosca especial para garantizar el mejor contacto posible con el crisol, y evitar de esta forma gradientes de temperatura. Se han preparado tres clases de crisoles que permiten trabajar con distintos tipos de muestras (crisol 1 con 38 mm diámetro y 4 mm profundidad, crisol 2 con 8 milímetros de diámetro y 2 milímetros de profundidad, crisol 3 dimensiones similares a crisol 1 pero con un orificio en el centro que permite hacer medidas en modo de transmitancia).The sample holder, built in copper with special treatment to guarantee maximum thermal conduction, has a silicon diode for temperature measurement (see figures 9 and 10). This sample holder is prepared with a special thread to ensure the best possible contact with the crucible, and thus avoid temperature gradients. Three kinds of crucibles have been prepared that allow working with different types of samples (crucible 1 with 38 mm diameter and 4 mm depth, crucible 2 with 8 millimeters in diameter and 2 millimeters in depth, crucible 3 dimensions similar to crucible 1 but with a hole in the center that allows measurements in transmittance mode).
d) Fuentes de descarga, para irradiación de muestras La fuente de descarga ultravioleta y los cañones de iones y electrones requieren una presión < 5x10"6 milibar para poder funcionar. En el caso de presiones iguales a 0,01 milibar, ha sido necesario preparar un sistema con doble bombeo diferencial que nos permita alcanzar, en la cámara donde adaptamos estas fuentes, presiones entre 5x10"6- 10" 8 milibar. Un esquema de la cámara de bombeo diferencial se muestra en la figura 11.d) discharge sources for irradiating ultraviolet source samples discharge and ion guns and electrons require pressure <5x10 "6 millibar to function. In the case of equal pressures to 0.01 millibar, has been necessary to prepare a system with double differential pumping that allows us to reach, in the chamber where we adapt these sources, pressures between 5x10 "6 - 10 " 8 millibar. A scheme of the differential pumping chamber is shown in Figure 11.
En la primera cámara, el bombeo diferencial se realiza con la bomba turbo- molecular 2, con una capacidad de bombeo de 60 litros/segundo y una bomba rotativa 2 de doble etapa, con una capacidad de aspiración de 2,5 m3/hora.In the first chamber, differential pumping is carried out with the turbo-molecular pump 2, with a pumping capacity of 60 liters / second and a double-stage rotary pump 2, with a suction capacity of 2.5 m 3 / hour .
En la segunda cámara, donde se adaptan las fuentes de descarga, se hace vacío con otra bomba turbo-molecular 3, con una capacidad de bombeo de 210 litros/segundo y una bomba rotativa de doble etapa 3, con una capacidad de 5 m3/h. La medida de vacío se realiza con un sensor combinado Pirani/Penning.In the second chamber, where the discharge sources are adapted, a vacuum is made with another turbo-molecular pump 3, with a pumping capacity of 210 liters / second and a double stage 3 rotary pump, with a capacity of 5 m 3 / h. The vacuum measurement is performed with a combined Pirani / Penning sensor.
El vacío diferencial entre esta segunda cámara y la anterior se consigue a través de un orificio de 2 milímetros, que puede ser intercambiable por otro de mayor (4 mm.) o menor diámetro (0.5 mm.).
Las fuentes de descarga acopladas a la cámara de bombeo diferencial (o irradiación) son las siguientes: cañón de electrones, cañón de iones y fuente Ultravioleta de descarga.The differential vacuum between this second chamber and the previous one is achieved through a 2 mm hole, which can be interchangeable with a larger one (4 mm.) Or smaller diameter (0.5 mm.). The discharge sources coupled to the differential pumping chamber (or irradiation) are the following: electron gun, ion cannon and UV discharge source.
Uno de los retos técnicos resueltos en esta invención es el uso de fuentes de irradiación en simulación de atmósferas a presiones elevadas. Para poder usar fuentes de irradiación que requieren el encendido de un filamento para irradiar, la presión debe ser del orden de 10~6 milibar. Para planetas con una presión total del orden de 10~2 milibar, como Tritón, en principio es imposible estudiar los cambios en la superficie debidos a la irradiación usando este tipo de instrumentación. En principio, a esta presión ni el cañón de electrones ni el de iones podrían ser encendidos. Este problema ha sido solucionado en este sistema de trabajo mediante el diseño de un sistema de bombeo diferencial en dos etapas. Primero, la cámara atmosférica (o campana principal) esta separada del compartimiento donde se ubican las fuentes de irradiación mediante un orificio de salida de 2 milímetros de diámetro. El diseño del sistema de bombeo es mostrado en las figuras 11 y 12. Entre el compartimiento de la fuente y la cámara atmosférica (campana principal) existe una segunda etapa de bombeo, donde la apertura variable del orificio controla la presión parcial en el compartimiento de irradiación. Cuanto menor sea el diámetro del orificio de entrada, mejor será la presión en la cámara de irradiación, haciendo posible el estudio del fenómeno de irradiación en planetas con alta presión (en la cámara principal o atmosférica). Además, orificios de diámetro pequeño también reducen (minimizan) el área irradiada. El orificio de entrada puede ser cambiado, desatornillando un pequeño disco de cobre de la brida del compartimiento de las fuentes de irradiación. Nosotros hemos usado discos con 3 diámetros diferentes por ejemplo: 0.5, 2 y 4 milímetros. Hemos estimado, y experimentalmente confirmado, que a una presión de 10"2 milibar en la cámara atmosférica, usando un orificio de entrada de 2 mm. obtenemos una presión total de 10"6 milibar en el compartimiento de las fuentes. Hemos estimado que la presión más alta (en cámara principal) que nos permite irradiar es aproximadamente de 1 milibar. Las fuentes de irradiación están diseñadas para obtener la distancia focal en el orificio (apertura) de entrada, de esta manera la mayoría de la radiación puede pasar a través de la configuración de doble salida (con dos orificios). Para irradiar la muestra mediante alguna de estas técnicas, movemos (trasladamos) la muestra mediante una traslación linear, colocándola en el orificio de salida. Una limitación es que el área irradiada es algo mayor que los 2 mm. de diámetro del orificio. Para irradiar
planetas con presiones totales menores que 10~6 milibar, no es necesario el uso del disco de cobre en el orificio de entrada, y por tanto el disco de cobre puede ser desatornillado y quitado para ganar eficiencia.One of the technical challenges solved in this invention is the use of irradiation sources in simulation of atmospheres at high pressures. In order to use irradiation sources that require the ignition of a filament to radiate, the pressure must be of the order of 10 ~ 6 millibar. For planets with a total pressure of the order of 10 ~ 2 millibar, such as Triton, in principle it is impossible to study the surface changes due to irradiation using this type of instrumentation. In principle, at this pressure neither the electron gun nor the ion gun could be ignited. This problem has been solved in this work system by designing a two-stage differential pumping system. First, the atmospheric chamber (or main bell) is separated from the compartment where the sources of irradiation are located through an exit hole of 2 millimeters in diameter. The design of the pumping system is shown in figures 11 and 12. Between the source compartment and the atmospheric chamber (main bell) there is a second pumping stage, where the variable opening of the hole controls the partial pressure in the compartment of irradiation. The smaller the diameter of the inlet hole, the better the pressure in the irradiation chamber, making it possible to study the phenomenon of irradiation on planets with high pressure (in the main or atmospheric chamber). In addition, small diameter holes also reduce (minimize) the irradiated area. The entrance hole can be changed by unscrewing a small copper disk from the flange of the irradiation source compartment. We have used discs with 3 different diameters for example: 0.5, 2 and 4 millimeters. We have estimated, and experimentally confirmed, that at a pressure of 10 "2 millibar in the atmospheric chamber, using a 2 mm inlet hole. We obtain a total pressure of 10 " 6 millibar in the source compartment. We have estimated that the highest pressure (in the main chamber) that allows us to radiate is approximately 1 millibar. The irradiation sources are designed to obtain the focal length in the inlet (opening) hole, in this way most of the radiation can pass through the double outlet configuration (with two holes). To irradiate the sample by any of these techniques, we move (move) the sample through a linear translation, placing it in the exit hole. A limitation is that the irradiated area is somewhat larger than 2 mm. of hole diameter. To radiate planets with total pressures less than 10 ~ 6 millibar, it is not necessary to use the copper disk in the inlet hole, and therefore the copper disk can be unscrewed and removed to gain efficiency.
e) Fuente de Deuterio (radiación ultravioleta).e) Source of Deuterium (ultraviolet radiation).
A la brida superior de la pieza en T, se ha adaptado la fuente de deuterio, para que verticalmente salga el haz de luz ultravioleta en dirección a la muestra. Para concentrar el haz de luz, a la salida de la lámpara se coloca una lente convergente. De esta manera se garantiza que llegará el haz de luz concentrado en un diámetro aproximado de unos 25 milímetros.The deuterium source has been adapted to the upper flange of the T-piece so that the beam of ultraviolet light rises vertically in the direction of the sample. To concentrate the light beam, a converging lens is placed at the exit of the lamp. This ensures that the concentrated beam of light will reach approximately 25 millimeters in diameter.
En el centro de la pieza en T, hay colocado un divisor de haz (véase figura 13). Su función es reflejar parte de la luz en un ángulo de 90° y permitir transmitir la mayor intensidad posible a la muestra. Para medir la intensidad de la luz reflejada se sitúa un espectro-radiómetro en la brida colocada perpendicular a la fuente de emisión. En la figura 14 se muestra la configuración del sistema mediante irradiación UV, tanto para medidas en reflectancia como en el caso de transmitancia. f) Sistema de análisis de gases.In the center of the T-piece, a beam splitter is placed (see figure 13). Its function is to reflect part of the light at a 90 ° angle and allow the highest possible intensity to be transmitted to the sample. To measure the intensity of the reflected light, a spectrum meter is placed in the flange placed perpendicular to the emission source. Figure 14 shows the configuration of the system by UV irradiation, both for measurements in reflectance and in the case of transmittance. f) Gas analysis system.
El sistema de análisis de gases por espectrometría de masas cuadrupolar se compone de: espectrómetro de masas, cámara de análisis, grupo de bombeo turbo- molecular, medidor de vacío y válvula de aislamiento entre cámara de proceso y cámara de análisis (véase figura 15).The quadrupole mass spectrometry gas analysis system consists of: mass spectrometer, analysis chamber, turbo-molecular pumping group, vacuum meter and isolation valve between process chamber and analysis chamber (see figure 15) .
El sistema de análisis realizará las siguientes funciones: " Monitorización de los gases de proceso.The analysis system will perform the following functions: "Monitoring of process gases.
• Análisis de gases residuales en cámara principal.• Analysis of residual gases in the main chamber.
• Verificación y detección de fugas.• Verification and leak detection.
• Determinación de muestras gaseosas producidas durante el proceso de descarga.• Determination of gaseous samples produced during the discharge process.
Debido a que en el sistema de análisis se requiere trabajar a presiones <\0A milibar, se requiere una válvula que tiene las siguientes adaptaciones especiales:
" Bypass-1 con orificio de mínima conductancia para trabajar en condiciones de presión 7mbar.Because the analysis system requires working at pressures <\ 0 A millibar, a valve is required that has the following special adaptations: "Bypass-1 with minimum conductance hole to work in 7mbar pressure conditions.
• Bypass-2 con orificio de conductancia media para trabajar en condiciones de presión de 0.01 mbar. En las dos situaciones anteriores, la válvula de guillotina o de aislamiento estará en posición cerrada.• Bypass-2 with medium conductance hole to work under pressure conditions of 0.01 mbar. In the two previous situations, the guillotine or isolation valve will be in the closed position.
• La válvula estará abierta (con los bypass cerrados) cuando tengamos atmósferas de presión 10"8 milibar y queramos ver la composición de gases residuales en la cámara principal o hacer detección de fugas.• The valve will be open (with the bypass closed) when we have 10 "8 millibar pressure atmospheres and want to see the composition of residual gases in the main chamber or to detect leaks.
h) Sistema de entrada de gases.h) Gas inlet system.
El sistema de preparación de muestra para entrada de gases en cámara de proceso, se compone:The sample preparation system for entering gases into the process chamber is composed of:
• Manifold-1 de mezcla de gases y vapor de agua.• Manifold-1 mixture of gases and water vapor.
• Manifold-2 de mezcla de gases. " Válvula de regulación de entrada de gases a cámara de proceso.• Manifold-2 gas mixture. "Valve regulating the entry of gases into the process chamber.
En el manifold-1 se mezclan los gases y el vapor de agua. Existe la entrada de la mezcla de gases a través de línea lateral conectada a la botella de mezcla con una válvula dosificadora en posición intermedia. Por el otro lateral está colocado el medidor de flujo másico para vapor de agua. Los gases y el vapor de agua se mezclarán en el vaporizador colocado en la línea vertical e irán directamente al segundo manifold y, posteriormente, a la válvula de regulación (véase figura 16).In manifold-1 the gases and water vapor are mixed. There is the entry of the gas mixture through the lateral line connected to the mixing bottle with a metering valve in the intermediate position. The mass flow meter for water vapor is placed on the other side. The gases and water vapor will be mixed in the vaporizer placed in the vertical line and will go directly to the second manifold and then to the regulating valve (see figure 16).
En el manifold-2 usado solamente para la mezcla de gases, tenemos las válvulas que separan la línea de entrada de las botellas de mezcla de gases. Para aislar el primero y segundo manifold hay una válvula de bola. Este segundo manifold conecta directamente con la válvula de regulación, como se muestra en la figura 16.In the manifold-2 used only for gas mixing, we have the valves that separate the inlet line from the gas mixing bottles. To isolate the first and second manifold there is a ball valve. This second manifold connects directly to the regulating valve, as shown in Figure 16.
La unidad de control de entrada de gases en cámara principal se compone de: " Unidad electrónica de medida de vacío y control de regulación de flujo.The gas chamber control unit in the main chamber consists of: "Electronic vacuum measurement unit and flow regulation control.
• Válvula dosificadora de gas con regulación automática de flujo.• Gas dosing valve with automatic flow regulation.
• Medidor de vacío, adaptado en cámara principal, que nos da la señal del valor de presión requerida en cámara de proceso.
Para conseguir las características técnicas de este equipo, hemos tenido que resolver varios problemas tecnológicos. Primeramente hemos diseñado la campana utilizando cierres de ultra-alto vacío, lo que nos permite poder estudiar cuerpos planetarios con presiones muy bajas como Europa. En segundo lugar y para poder irradiar en condiciones como las de Tritón con radiaciones de electrones e iones, hemos diseñado un sistema de bombeo diferencial en varias etapas, de manera que la presión total en la zona donde se enciende el filamento de la fuente de electrones o iones sea del orden de• Vacuum meter, adapted in main chamber, which gives us the signal of the required pressure value in the process chamber. To achieve the technical characteristics of this equipment, we have had to solve several technological problems. First we designed the hood using ultra-high vacuum closures, which allows us to study planetary bodies with very low pressures like Europe. Secondly, and to be able to radiate in conditions such as Triton with electron and ion radiation, we have designed a differential pumping system in several stages, so that the total pressure in the area where the filament of the electron source is turned on or ions are of the order of
10~6 mbar. Esto se consigue mediante el uso de un orificio, por donde sale la radiación y que hace de 'cuello' para la difusión de los gases desde la cámara principal hasta la zona donde están las fuentes de irradiación.10 ~ 6 mbar This is achieved through the use of a hole, where the radiation comes out and which acts as a 'neck' for the diffusion of gases from the main chamber to the area where the sources of irradiation are.
Presiones estables en condiciones marcianas se consiguen mediante un motor paso a paso que cierra de manera controlada una válvula de guillotina sobre una bomba CF- 500. El cierre de la válvula posibilita regular la presión total con precisión.Stable pressures in Martian conditions are achieved by a stepper motor that closes in a controlled manner a guillotine valve on a CF-500 pump. The closing of the valve makes it possible to regulate the total pressure accurately.
Los gases de la atmósfera que queramos reproducir son mezclados y controlados mediante controladores de flujo independientes. La temperatura es regulada por un criostato de He, especialmente adaptado para poder ubicar diferentes tipos de muestras (minerales, mono-cristales...)The gases of the atmosphere that we want to reproduce are mixed and controlled by independent flow controllers. The temperature is regulated by a cryostat of He, specially adapted to be able to locate different types of samples (minerals, mono-crystals ...)
Existen otras instalaciones en el mundo de cámaras ambientales, la mayoría concebidas únicamente para simular el planeta Marte, pero en ellas no existe un control preciso sobre las presiones parciales individuales de cada gas, ni sobre la temperatura, ni consiguen condiciones estables de funcionamiento, y sobre todo no permiten irradiar y analizar in-situ.There are other facilities in the world of environmental chambers, most designed solely to simulate the planet Mars, but in them there is no precise control over the individual partial pressures of each gas, nor over temperature, nor do they achieve stable operating conditions, and Above all, they do not allow irradiation and analysis in situ.
DESCRIPCIÓN DE LAS FÍGURAS.DESCRIPTION OF THE FIGURES.
Figura 1.- Imagen de la máquina o instalación compuesta por una cámara de simulación de ambientes o cámara principal y los demás elementos o componentes de generación del medio ambiente elegido y su control y medida según se ha descrito en la memoria de esta patente de invención.Figure 1.- Image of the machine or installation composed of an environment simulation chamber or main chamber and the other elements or components of generation of the chosen environment and its control and measurement as described in the specification of this invention patent .
Figura 2.- Esquema de la cámara de vacío o principal de la mostrada en la figura 1 y detalle del sistema de bombeo diferencial.
Figura 3.- Vista general de la cámara de vacío o principal presentada en las figuras anteriores. El prototipo diseñado se puede describir como un cilindro cuyas dimensiones son: 500 mm. de altura y 400 mm. de diámetro.Figure 2.- Diagram of the vacuum or main chamber of the one shown in figure 1 and detail of the differential pumping system. Figure 3.- General view of the vacuum or main chamber presented in the previous figures. The designed prototype can be described as a cylinder whose dimensions are: 500 mm. height and 400 mm. diameter.
Figura 4.- Imágenes de ambos lados de la cámara de vacío de vacío o cámara principal. Figura 5.- Sistema de bombeo de la cámara principal. AA), bomba turbo molecular,Figure 4.- Images of both sides of the vacuum vacuum chamber or main chamber. Figure 5.- Pump system of the main chamber. AA), molecular turbo pump,
AB) válvula de guillotina,AB) guillotine valve,
AC) bomba rotatoria.AC) rotary pump.
Figura 6.- Dewar de helio para refrigerar la muestra. Figura 7.- Imagen del porta-muestras y el protector de radiación. BA) Protector de la muestra.Figure 6.- Dewar of helium to cool the sample. Figure 7.- Image of the sample holder and the radiation shield. BA) Sample protector.
Figura 8.- Imagen de la barra de introducción de muestras o manipulador. CA) Flexible.Figure 8.- Image of the sample introduction bar or manipulator. CA) Flexible.
Figura 9.- Imagen de un crisol (donde se ubica la muestra) colocado sobre la barra de transferencia o manipuladorFigure 9.- Image of a crucible (where the sample is located) placed on the transfer bar or manipulator
Figura 10.- Diodo de silicio para la medida de la temperatura (sensor de temperatura).Figure 10.- Silicon diode for temperature measurement (temperature sensor).
Figura 11.- Plano de la sección lateral de la cámara de bombeo diferencial (o irradiación) donde se acoplan las fuentes de descarga (cotas en milímetros).Figure 11.- Plane of the lateral section of the differential pumping chamber (or irradiation) where the discharge sources (dimensions in millimeters) are coupled.
Figura 12.- Detalles de la fabricación de la cámara y del bombeo diferencial. Figura 13.- Detalles de la fabricación de la cámara y del bombeo diferencial.Figure 12.- Details of the manufacture of the chamber and differential pumping. Figure 13.- Details of the manufacturing of the chamber and differential pumping.
Figura 14.- Esquema de medidas de UV en configuración de reflectancia y en modo transmitancia.Figure 14.- Scheme of UV measurements in reflectance configuration and in transmittance mode.
Figura 15.- Imagen del sistema de análisis de gases mediante espectrometría de masas cuadrupolar. DA) Grupo de bombeo,Figure 15.- Image of the gas analysis system using quadrupole mass spectrometry. DA) Pumping group,
DB) Válvula de aislamiento,DB) Isolation valve,
DC) Cámara de análisis,DC) Analysis chamber,
DD) medidor de vacío,DD) vacuum meter,
DE) Espectrómetro de masas, PRISMA. Figura 16.- Sistema de entrada de gases donde se mezclan los gases y/o el vapor de agua.DE) Mass spectrometer, PRISMA. Figure 16.- Gas inlet system where gases and / or water vapor are mixed.
EA) Cámara de mezcla H2O+ gases,EA) Mixing chamber H 2 O + gases,
EB) valva de bola, EC) manifold-l,
ED) manifold-2,EB) ball valve, EC) manifold-l, ED) manifold-2,
EE) recipiente de H2O,EE) H 2 O container,
EF) medidor de flujo másico.EF) mass flow meter.
Figura 17.- Gráficas de la simulación de las condiciones de Marte: a) Introducción de los gases, y, b) enfriamos la muestra a 150 0K. Figura 18.- Gráficas de la simulación de las condiciones de Europa: a) enfriamos la muestra a 50 0K, y, b) introducción de los gases. Figura 19.- Gráfica de la simulación de las condiciones de la atmósfera de Tritón.Figure 17.- Graphs of the simulation of the conditions of Mars: a) Introduction of the gases, and, b) we cool the sample to 150 0 K. Figure 18.- Graphs of the simulation of the conditions of Europe: a) we cool the sample at 50 0 K, and, b) introduction of the gases. Figure 19.- Graph of the simulation of the conditions of the atmosphere of Tritón.
EJEMPLOS DE APLICACIONES DE ESTA INVENCIÓNEXAMPLES OF APPLICATIONS OF THIS INVENTION
Esta invención es aplicable en todas aquellas disciplinas técnicas y científicas que requieran un montaje o accesorio práctico donde llevar a cabo un control preciso de unas determinadas, o bien escogidas, condiciones atmosféricas y que ahí, dentro de esa cámara, se puedan comprobar o monitorizar diversos procesos químicos o biológicos. Si bien la motivación inicial en el planteamiento de la máquina que constituye esta invención estuvo relacionada, en principio, con el estudio de superficie de atmósferas planetarias, posteriormente, también se le han encontrado aplicaciones de interés en otros campos, citemos, por ejemplo, en el de la biología (estudio de la resistencia de bacterias extremofilas), en la resistencia de materiales en determinadas atmósferas y sometidos a irradiación y en procesos de química atmosférica terrestre relacionada con la protección del medio ambiente terrestre.This invention is applicable in all those technical and scientific disciplines that require a practical assembly or accessory where to carry out a precise control of certain, or chosen, atmospheric conditions and that there, within that chamber, can be checked or monitored various chemical or biological processes Although the initial motivation in the approach of the machine that constitutes this invention was related, in principle, with the study of the surface of planetary atmospheres, later, we have also found applications of interest in other fields, let us mention, for example, in that of biology (study of the resistance of extremity bacteria), in the resistance of materials in certain atmospheres and subjected to irradiation and in processes of terrestrial atmospheric chemistry related to the protection of the terrestrial environment.
De modo esquemático, los pasos a seguir para reproducir una determinada atmósfera en la cámara principal son los siguientes: después de cerrar y bombear la cámara principal de la máquina se introduce a través de la válvula situada en el manifold 2, las cantidades escogidas de los gases, acto seguido se enfrían estos hasta la temperaturas de helio liquido. Alcanzada esta temperatura mediante una resistencia calefactora, localizada en el porta-muestras, el sistema de control eléctrico estabiliza la temperatura hasta el valor deseado. Este sistema de retroalimentación también permite que se programen ciclos de temperatura como "el noche y día" o cambios estacionales.
Las muestras se colocan en posición horizontal en el pocilio (cubeta) que se ve en la Figura 9 , de manera que es posible estudiar materiales poco cohesivos. Cristales, arenas, resinas, rocas y minerales están entre las posibles muestras que pueden ser introducidas en el sistema. La temperatura de la muestra puede ser controlada desde 4 a 325 K mediante dos fotodiodos (diodo de silicio) colocados en un lateral del porta- muestras en contacto con la muestra sólida, como se muestra en la figura 10.Schematically, the steps to follow to reproduce a certain atmosphere in the main chamber are the following: after closing and pumping the main chamber of the machine, the chosen quantities of the valves are introduced through the valve located in manifold 2. gases, these are then cooled to the temperatures of liquid helium. Once this temperature has been reached by means of a heating resistor, located in the sample holder, the electrical control system stabilizes the temperature to the desired value. This feedback system also allows temperature cycles such as "night and day" or seasonal changes to be programmed. The samples are placed horizontally in the well (cuvette) seen in Figure 9, so that it is possible to study poorly cohesive materials. Crystals, sands, resins, rocks and minerals are among the possible samples that can be introduced into the system. The temperature of the sample can be controlled from 4 to 325 K by two photodiodes (silicon diode) placed on one side of the sample holder in contact with the solid sample, as shown in Figure 10.
A continuación vamos a describir posibles ejemplos de aplicaciones de esta patente de invención. Se trata de reproducir las condiciones ambientales de varios entornos planetarios con el fin de una aplicación práctica. Los temas seleccionados a modo de ejemplo presentan un amplio rango de presiones atmosféricas y de temperatura así como situaciones de irradiación (dosis y elemento irradiante) diferentes.We will now describe possible examples of applications of this invention patent. It is about reproducing the environmental conditions of various planetary environments for the purpose of a practical application. The subjects selected by way of example have a wide range of atmospheric and temperature pressures as well as different irradiation situations (dose and irradiating element).
Ejemplo &) Química atmosférica. Mesosfera y quimiosfera terrestres. Una de las aplicaciones de esta máquina es el estudio de reacciones químicas que tienen lugar en las capas altas de la atmósfera terrestre, estas reacciones pueden ser debidas tanto a fenómenos naturales como reacciones en las que se ven implicados contaminantes que se vierten en la atmósfera. El estudio permite la monitorización de los posibles productos químicos de reacción como consecuencia de los efectos de la radiación.Example &) Atmospheric chemistry. Earth mesosphere and chemosphere. One of the applications of this machine is the study of chemical reactions that take place in the upper layers of the Earth's atmosphere, these reactions may be due to both natural phenomena and reactions in which contaminants that are poured into the atmosphere are involved. The study allows the monitoring of possible reaction chemicals as a result of the effects of radiation.
Relacionado con el estudio de las diferentes capas de la atmósfera, es interesante la simulación de la Mesosfera, ya que su estudio se ha visto dificultado por el hecho de que es demasiado alta para globos sonda pero demasiado baja para los satélites artificiales (se emplean cohetes) por tanto simulaciones de esta capa atmosférica (200 K y 80 Km de altura) pueden aportar nueva información a fenómenos que tengan lugar en dichas condiciones. También sería interesante la simulación de las capas atmosféricas llamadas quimiosfera e ionosfera es una región de poca densidad donde se absorben las radiaciones de alta energía, del UV lejano, estas radiaciones dan lugar a reacciones químicas diferentes, como reacciones de fotodisociación y de ionización plausibles de estudio.
Para realizar trabajos en estos temas, se bombea la cámara principal siguiendo el protocolo experimental descrito en líneas anteriores hasta una presión atmosférica entre 1 y 0.01 mbar en el caso de la quimiosfera y entre 10"2 y 10"9 mbar en el caso de la ionosfera. La temperatura de la muestra se lleva al valor de estudio 200 K.Related to the study of the different layers of the atmosphere, the simulation of the Mesosphere is interesting, since its study has been hampered by the fact that it is too high for probe balloons but too low for artificial satellites (rockets are used ) Therefore simulations of this atmospheric layer (200 K and 80 km high) can provide new information to phenomena that take place in these conditions. It would also be interesting to simulate the atmospheric layers called chemosphere and ionosphere is a low density region where high-energy, far-UV radiation is absorbed, these radiations give rise to different chemical reactions, such as plausible photodissociation and ionization reactions of study. To perform work on these issues, the main chamber is pumped following the experimental protocol described in previous lines up to an atmospheric pressure between 1 and 0.01 mbar in the case of the chemosphere and between 10 "2 and 10 " 9 mbar in the case of ionosphere. The sample temperature is taken to the study value 200 K.
Para estudios de reacciones en la interfase sólido -gas (catálisis) la muestra se deposita en el pocilio porta-muestras se lleva hasta la temperatura en estudio. La muestra se somete a diferentes composiciones atmosféricas. El espectrómetro de masas hace una medida de la composición del gas en ausencia de muestra catalítica y después de haber sido introducida esta. La superficie catalítica es irradiada por ejemplo con iones utilizando el cañón de iones.For studies of reactions in the solid -gas interface (catalysis) the sample is deposited in the sample well and is brought to the temperature under study. The sample is subjected to different atmospheric compositions. The mass spectrometer measures the composition of the gas in the absence of a catalytic sample and after it has been introduced. The catalytic surface is irradiated for example with ions using the ion cannon.
Desde el punto de vista medioambiental se pueden simular estudios de cambios químicos producidos mediante irradiación UV en una atmósfera de ozono y vapor de agua. También se puede aplicar a la formación de ozono; el ozono estratosférico se produce cuando la energía del sol rompe moléculas de gas de O2 en átomos de O. Después, estos átomos de O se unen con otras moléculas de O2 para formar la molécula de O3, ozono.From the environmental point of view, studies of chemical changes produced by UV irradiation in an atmosphere of ozone and water vapor can be simulated. It can also be applied to ozone formation; Stratospheric ozone is produced when the sun's energy breaks up O 2 gas molecules into O atoms. Then, these O atoms join with other O 2 molecules to form the O 3 molecule, ozone.
Cabe mencionar también una de las principales aplicaciones de la instalación como simulador de la composición de la atmósfera terrestre primigenia o prebiótica y estudio de los posibles productos de reacción. En este caso particular la composición de la atmósfera dentro de la cámara estaría compuesta por los gases CO2, CH4 y H2, principalmente.It is also worth mentioning one of the main applications of the installation as a simulator of the composition of the primitive or prebiotic terrestrial atmosphere and study of possible reaction products. In this particular case, the composition of the atmosphere inside the chamber would be composed mainly of CO 2 , CH 4 and H 2 gases.
Ejemplo b) Radiación espacialExample b) Spatial radiation
En este ejemplo englobamos procesos de simulación como: radiación de partículas en el medio interestelar (polvo interplanetario) para ver su posible alteración, irradiación de hielos de cometas. Un caso concreto es la simulación de irradiación de hielos interestelares mediante radiación ultravioleta en las siguientes condiciones 10"9 mbar y 10 K, en estas condiciones se puede estudiar el efecto de la radiación UV, analizando la posible formación de radicales y compuestos orgánicos.
Para irradiar la muestra en estudio con radiación UV se dispone de la fuente de Deuterio situada a una distancia de 45 cm sobre la muestra (ver figura 13 y 14). La determinación de la dosis o tiempo de irradiación se mide mediante el espectro - radiómetro. La presión parcial de los gases se monitoriza mediante el espectrómetro de masas situado en una compartimiento acoplado a la cámara atmosférica (ver figura 15). La presión total a la que se realiza el experimento es de 10~9 mbar y se mide con un manómetro situado en la campana atmosférica. La temperatura de la muestra es de 10K y se mide mediante diodo de silicio colocado en el portamuestras, como se ve en la figura 10.In this example we include simulation processes such as: particle radiation in the interstellar medium (interplanetary dust) to see its possible alteration, irradiation of comet ice. A specific case is the simulation of irradiation of interstellar ice by ultraviolet radiation under the following conditions 10 "9 mbar and 10 K, under these conditions you can study the effect of UV radiation, analyzing the possible formation of radicals and organic compounds. To irradiate the sample under study with UV radiation, the Deuterium source is located at a distance of 45 cm above the sample (see figures 13 and 14). The determination of the dose or irradiation time is measured by the spectrum - radiometer. The partial pressure of the gases is monitored by the mass spectrometer located in a compartment attached to the atmospheric chamber (see figure 15). The total pressure at which the experiment is performed is 10 ~ 9 mbar and is measured with a pressure gauge located in the atmospheric hood. The temperature of the sample is 10K and is measured by silicon diode placed in the sample holder, as shown in Figure 10.
En este campo del estudio de materiales especiales con aplicaciones en la tecnología espacial, esta máquina también presenta la posibilidad de comprobar o verificar sensores o materiales que vayan a ser utilizados en condiciones de radiación espacial (misiones espaciales, satélites, sondas automáticas). Un ejemplo concreto sería la simulación de las condiciones a las que esta sometida la estación espacial internacional (ISI) a 400 Km. en órbita de la Tierra (presión de vacío y temperaturas desde 116 K hasta 152 K).In this field of the study of special materials with applications in space technology, this machine also presents the possibility of checking or verifying sensors or materials that will be used in conditions of space radiation (space missions, satellites, automatic probes). A concrete example would be the simulation of the conditions to which the international space station (ISI) is subjected to 400 km in Earth's orbit (vacuum pressure and temperatures from 116 K to 152 K).
Ejemplo c) Físico-química de materiales y de procesos geológicos en cuerpos planetarios.Example c) Physical-chemical materials and geological processes in planetary bodies.
En esta maquina presentada en esta Memoria de Patente de Invención se simulan o reproducen los diferentes procesos geológicos que afectan a la renovación de la superficie y la dinámica interna de un objeto planetario en la actualidad o en otros periodos geológicos y sus implicaciones astrobiológicas. Además de planetas y meteoritos rocosos, se pretende el estudio de la geología de otros objetos con superficie sólida químicamente diferente como los satélites del sistema solar exterior. Los materiales geológicos se pueden generar, en ocasiones, en el interior de la cámara de simulación, como por ejemplo clatratos de gas a partir de fase de vapor. Otras veces el experimento se llevará a cabo en un sustrato geológico previo. Mediante técnicas analíticas como espectrometría de masas, espectroscopia de IR y UV, disponibles en la maquina, se puede controlar cómo ocurren las reacciones químicas y cómo afectan los resultados a los procesos geológicos y qué implicaciones sobre la astrobiología conllevan. Mediante el uso de espectroscopia
infrarroja se puede realizar la comparación de las señales interesantes con los datos provenientes tanto de los sensores espaciales como de observatorios terrestres.In this machine presented in this Invention Patent Report, the different geological processes that affect the surface renewal and internal dynamics of a planetary object are simulated or reproduced at present or in other geological periods and their astrobiological implications. In addition to rocky planets and meteorites, the study of the geology of other objects with a chemically different solid surface such as the satellites of the outer solar system is intended. Geological materials can sometimes be generated inside the simulation chamber, such as gas clathrates from the vapor phase. Other times the experiment will be carried out on a previous geological substrate. Through analytical techniques such as mass spectrometry, IR and UV spectroscopy, available in the machine, you can control how chemical reactions occur and how the results affect geological processes and what implications on astrobiology entail. Through the use of spectroscopy Infrared can compare interesting signals with data from both space sensors and terrestrial observatories.
La formación de minerales y rocas en condiciones extraterrestres se pueden lograr en la máquina objeto de esta Patente. Ejemplos concretos de minerales de alto interés para los geólogos, son los siguientes:The formation of minerals and rocks under extraterrestrial conditions can be achieved in the machine object of this Patent. Concrete examples of minerals of high interest to geologists are the following:
- Clatratos de gas a partir de sustratos con propiedades físico-químicas diferentes.- Gas clathrates from substrates with different physicochemical properties.
- Evaporitas y carbonates en Marte y en condritas carbonaceas. Evaluación de la hipótesis de formación de estos minerales con presencia de fases del agua no líquida.- Evaporites and carbonates on Mars and in carbonaceous chondrites. Evaluation of the hypothesis of formation of these minerals with the presence of non-liquid water phases.
- Moléculas orgánicas en el sistema solar. Estabilidad en superficies planetarias.- Organic molecules in the solar system. Stability on planetary surfaces.
Una ampliación de este estudio lo constituye la simulación de la generación de estructuras geológicas planetarias de particular interés:An extension of this study is the simulation of the generation of planetary geological structures of particular interest:
- Evolución de estructuras relacionadas con la congelación/descongelación de hielos en Marte.- Evolution of structures related to the freezing / thawing of ice on Mars.
- Terrenos caóticos en superficies con hielos en el sistema solar. Estudio de la destrucción catastrófica de capas de hielos de clatratos y análisis de las morfologías resultantes.- Chaotic land on surfaces with ice in the solar system. Study of the catastrophic destruction of ice layers of clathrates and analysis of the resulting morphologies.
Otros estudios posibles son la evaluación de procesos de alteración exógena de materiales planetarios.Other possible studies are the evaluation of processes of exogenous alteration of planetary materials.
- Fotoquímica. Estudio de la alteración de materiales de las superficies planetarias por exposición a diferentes tipos de radiación: UV, partículas cargadas, radiación cósmica. Cálculos de tasas de alteración para establecer cronología de materiales afectados por estos procesos. - Alteración de materiales por variación de parámetros físicos (ej. despresurización). Permanencia de los materiales metastables en las nuevas condiciones extremas.
Ejemplo d.) Experimentos biológicos. Astrobiología- Photochemistry. Study of the alteration of planetary surface materials by exposure to different types of radiation: UV, charged particles, cosmic radiation. Calculation of alteration rates to establish chronology of materials affected by these processes. - Alteration of materials by variation of physical parameters (eg depressurization). Permanence of metastable materials in the new extreme conditions. Example d.) Biological experiments. Astrobiology
Los experimentos que implican la exposición de organismos a la superficie de los planetas de nuestro sistema solar se ven restringidos, en ocasiones, por las condiciones de baja humedad en el ambiente, por las condiciones de baja presión o incluso de alto vacío. En este equipo se pueden realizar diferentes experimentos para estudiar la respuesta de organismos previamente escogidos y ocasionalmente modificados, a las nuevas condiciones de alta radiación, composición atmosférica diferente, además de temperatura y presión extremas.Experiments involving the exposure of organisms to the surface of the planets of our solar system are sometimes restricted by conditions of low humidity in the environment, by conditions of low pressure or even high vacuum. In this equipment different experiments can be carried out to study the response of previously chosen and occasionally modified organisms, to the new conditions of high radiation, different atmospheric composition, in addition to extreme temperature and pressure.
Se han realizado primeros ensayos para detectar el posible metabolismo de algunos microorganismos en el ambiente de la superficie de Marte. Las preparaciones biológicas están compuestas por microorganismos en estado vegetativo aunque también se podría realizar con formas de resistencia (esporas). En el caso de las bacterias podrían ser de condiciones de crecimiento variables: extremófilos o modelos de ensayo de condiciones de vida no extremas. Preparación de muestras con inclusión de material biológico ya sea en estado vegetativo como en formas de resistencia, cultivos crecidos y desecados o bien rocas o minerales determinados donde se ha introducido material biológico de estudio para el ensayo de resistencia a condiciones de baja presión y alta radiación. Análisis de los mecanismos de protección que se puedan desarrollar en el organismo contra las adversas condiciones. Estudio del efecto de pigmentos para la supervivencia, respuesta metabólica a nivel molecular, detección de posibles nuevas actividades enzimáticas que permitan la colonización de este medio extremo. Una segunda aplicación englobada en este campo es el análisis de posibles biomarcadores que aparezcan por el metabolismo de los microorganismos en condiciones extremas.First tests have been carried out to detect the possible metabolism of some microorganisms in the environment of the surface of Mars. Biological preparations are composed of microorganisms in a vegetative state although it could also be done with resistance forms (spores). In the case of bacteria they could be of variable growth conditions: extremophiles or test models of non-extreme living conditions. Preparation of samples including biological material either in a vegetative state or in forms of resistance, grown and dried crops or rocks or minerals determined where biological material has been introduced for the test of resistance to low pressure and high radiation conditions . Analysis of the protection mechanisms that can be developed in the body against adverse conditions. Study of the effect of pigments for survival, metabolic response at the molecular level, detection of possible new enzymatic activities that allow the colonization of this extreme environment. A second application included in this field is the analysis of possible biomarkers that appear due to the metabolism of microorganisms in extreme conditions.
Ejemplo e) Simulación de atmósferas planetarias. PlanetologíaExample e) Simulation of planetary atmospheres. Planetology
A continuación vamos a describir como reproducimos las condiciones ambientales de tres cuerpos distintos del sistema solar en la máquina motivo de esta invención. Los tres objetos seleccionados varían en un amplio rango de presiones atmosféricas, así como diferentes temperaturas en cada superficie. En nuestro sistema de vacío (véase figura 1) simulamos las condiciones de presión, temperatura, composición gaseosa y radiaciones existentes en Marte, Tritón y Europa.
We will now describe how we reproduce the environmental conditions of three different bodies of the solar system in the machine that is the subject of this invention. The three selected objects vary in a wide range of atmospheric pressures, as well as different temperatures on each surface. In our vacuum system (see figure 1) we simulate the conditions of pressure, temperature, gaseous composition and radiation existing on Mars, Triton and Europe.
Planeta MartePlanet Mars
Desde la década de los años 70, la exploración en Marte ha revelado algunas de las propiedades atmosféricas y de superficie de este planeta (1,2), por ejemplo sus constituyentes mayoritarios y el ambiente de radiación ultravioleta (3), los cuales son importantes restricciones para la vida. Valores de presión de 7 mbar son normalmente utilizados como valores medios de presión atmosférica del planeta, la temperatura presenta ciclos de rango desde 150 a 280 K debido a procesos estacionales en la actualidad. Tanto los valores de presión como las variaciones de temperatura pueden ser programados en nuestro sistema, lo que puede tener un particular interés para la simulación de procesos estacionales. Para alcanzar estos valores, primero programamos las presiones parciales de cada gas de manera que en la cámara tenemos 95% CO2, 2.7% N2, 1.6% Ar y 0.6% de H2O con una presión total de 7 mbars. Para obtener esta presión, tenemos que cerrar la válvula de la bomba turbo de la cámara principal hasta un 90% (o del todo, al cerrar del todo la guillotina bombeamos la cámara principal mediante la bomba de membrana), y parar las bombas turbomoleculares del bombeo diferencial en el compartimento de las fuentes de irradiación. Esto impide la utilización de fuentes de irradiación en condiciones de la atmósfera de Marte. Las fuentes de irradiación se pueden utilizar en caso de simulaciones de Marte si trabajamos a una presión total de 1 mbar. En cualquier caso, es bien conocido que iones y electrones que provienen de los rayos cósmicos tiene una acción pequeña en la superficie de Marte. El proceso de programar (obtener) la atmósfera deseada para las condiciones de Marte dura alrededor de 5 minutos, como se muestra en la figura 17a. Una vez que la presión parcial de todos los
gases esta estabilizada, podemos enfriar la superficie a 15OK. Hemos conseguido estabilizar la temperatura en 15 minutos, como se muestra en la figura 17 b. La variación u oscilación en las presiones parciales de los gases es debido al paso (proceso) de calentamiento, el cual induce adsorción y desorción de las moléculas.Since the 1970s, exploration on Mars has revealed some of the atmospheric and surface properties of this planet (1,2), for example its major constituents and the ultraviolet radiation environment (3), which are important Restrictions for life. Pressure values of 7 mbar are normally used as average values of atmospheric pressure of the planet, the temperature has cycles ranging from 150 to 280 K due to seasonal processes today. Both pressure values and temperature variations can be programmed in our system, which may have a particular interest for the simulation of seasonal processes. To achieve these values, we first program the partial pressures of each gas so that in the chamber we have 95% CO 2 , 2.7% N 2 , 1.6% Ar and 0.6% H 2 O with a total pressure of 7 mbars. To obtain this pressure, we have to close the main chamber turbo pump valve up to 90% (or at all, when the guillotine is completely closed, we pump the main chamber through the diaphragm pump), and stop the turbomolecular pumps of the differential pumping in the compartment of irradiation sources. This prevents the use of irradiation sources under conditions of the atmosphere of Mars. Irradiation sources can be used in case of Mars simulations if we work at a total pressure of 1 mbar. In any case, it is well known that ions and electrons that come from cosmic rays have a small action on the surface of Mars. The process of programming (obtaining) the desired atmosphere for Mars conditions takes about 5 minutes, as shown in Figure 17a. Once the partial pressure of all gases is stabilized, we can cool the surface to 15OK. We have managed to stabilize the temperature in 15 minutes, as shown in Figure 17 b. The variation or oscillation in the partial pressures of the gases is due to the heating step (process), which induces adsorption and desorption of the molecules.
Satélite EuropaEurope satellite
El satélite de Júpiter, Europa es un objeto planetario interesante desde el punto de vista geológico y astrobiológico. Su característica más atractiva es la posible presencia de un océano alojado en su interior. Las misiones espaciales de Voyager y Galileo han obtenido alguna información a cerca de la física, química y geología de este planeta, incluyendo la distribución de la temperatura (4) y el ambiente (condiciones) de radiación en la superficie (5). Además, observaciones efectuadas desde la Tierra han determinado la existencia de atmósfera (6). Para estudios sobre la superficie del satélite Europa, la presión base de la cámara debería ser reducida lo mas posible. Como hemos usado CF standard para las bridas de vacío, estas presiones bajas (de ultra alto vacio) pueden ser alcanzadas después del horneo de toda la maquina, dicho procedimiento es bien conocido en el campo de física de superficie en sistemas de ultra alto vacío (mediante calentamiento se produce la desorción de vapor de agua adsorbida en las paredes de la campana). La presión residual esta en el rango de valores bajos de 10"9 mbar, y la composición principal son moléculas de agua e hidrógeno. El protocolo experimental consiste en:Jupiter's satellite, Europe is an interesting planetary object from the geological and astrobiological point of view. Its most attractive feature is the possible presence of an ocean housed inside. The space missions of Voyager and Galileo have obtained some information about the physics, chemistry and geology of this planet, including the distribution of temperature (4) and the environment (conditions) of surface radiation (5). In addition, observations made from Earth have determined the existence of atmosphere (6). For studies on the surface of the Europa satellite, the base chamber pressure should be reduced as much as possible. As we have used CF standard for vacuum flanges, these low pressures (ultra high vacuum) can be achieved after the whole machine is baked, this procedure is well known in the field of surface physics in ultra high vacuum systems ( heating causes desorption of adsorbed water vapor on the bell walls). The residual pressure is in the range of low values of 10 "9 mbar, and the main composition is water and hydrogen molecules. The experimental protocol consists of:
1. Se enfría la muestra a 50 K. Estabilizar este valor de temperatura en la muestra nos lleva unos 20 minutos (ver figura 18a). En este proceso muchos de los gases condensan y la presión atmosférica total de la cámara disminuye hasta valores de 10"10 mbar.1. The sample is cooled to 50 K. Stabilizing this temperature value in the sample takes about 20 minutes (see figure 18a). In this process many of the gases condense and the total atmospheric pressure of the chamber decreases to values of 10 "10 mbar.
2. Entonces introducimos oxígeno a través de la válvula que se encuentra en manifold 2, hasta monitorizar en el espectrómetro de masas la presión requerida (ver figuralδb).
Satélite Tritón2. Then we introduce oxygen through the valve found in manifold 2, until the required pressure is monitored in the mass spectrometer (see figuralδb). Triton Satellite
La nave espacial Voyager 2 ha mostrado la actividad normal del satélite de Neptuno, Tritón. Procesos geológicos, como criovolcanismo ocurren en este ambiente de temperaturas extremadamente bajas, en el cual incluso el nitrógeno es estacionalmente (periódicamente) sólido. Interacciones entre la atmósfera y la superficie han sido descritas, como geysers expulsando gases. Una vez en la atmósfera, algunos materiales son fotolíticamente destruidos (7).The Voyager 2 spacecraft has shown the normal activity of the Neptune satellite, Triton. Geological processes, such as cryovolcanism, occur in this environment of extremely low temperatures, in which even nitrogen is seasonally (periodically) solid. Interactions between the atmosphere and the surface have been described, as geysers expelling gases. Once in the atmosphere, some materials are photolytically destroyed (7).
Las condiciones de Tritón han sido simuladas en esta máquina también como un ambiente limite técnicamente (desafío técnico), debido a las circunstancias de baja presión relativa (10~2 mbar, con 93% N2, 4% CO y 3% CH4) y temperaturas muy bajas. Aunque Tritón, no tiene significativa evidencia de interés astrobiológico, merece la atención desde el punto de vista geológico. Para reproducir, la atmósfera de Tritón, programamos primero la composición gaseosa deseada, la cual se estabiliza en unos 5 minutos. La presión parcial de cada gas para la atmósfera de Tritón esta representada en la figura 19 cerca del comienzo. Partiendo de ese punto, nosotros disminuimos la temperatura hasta el valor de 38K. Cabe mencionar que esta temperatura esta cercana al punto critico de los gases que componen la atmósfera de Tritón, por consiguiente, una pequeña variación en la temperatura provoca que el CO, CH4, y el N2 condensen (desde el tiempo de 500 a 100Os ver en la figura 19). Como consecuencia, un extremado control en la temperatura de la superficie debe ser conseguido para lograr unas condiciones atmosféricas estables para Tritón. Hemos sido capaces de alcanzar condiciones estables de Tritón después de 15 minutos.Triton conditions have been simulated in this machine also as a technically limited environment (technical challenge), due to the circumstances of low relative pressure (10 ~ 2 mbar, with 93% N 2 , 4% CO and 3% CH 4 ) and very low temperatures. Although Triton does not have significant evidence of astrobiological interest, it deserves attention from the geological point of view. To reproduce, the Triton atmosphere, we first program the desired gaseous composition, which stabilizes in about 5 minutes. The partial pressure of each gas for Triton's atmosphere is represented in Figure 19 near the beginning. Starting from that point, we reduce the temperature to the value of 38K. It is worth mentioning that this temperature is close to the critical point of the gases that make up the Triton atmosphere, therefore, a small variation in temperature causes CO, CH 4 , and N 2 to condense (from the time of 500 to 100Os see in figure 19). As a consequence, extreme control of the surface temperature must be achieved to achieve stable atmospheric conditions for Triton. We were able to reach stable Triton conditions after 15 minutes.
Por el momento hemos comprobado que podemos reproducir de manera estable las condiciones de:At the moment we have verified that we can stably reproduce the conditions of:
Marte (7 mbars de presión total, con 95%CO2, 2,7% N2, 1.6% Ar y 0.6% H2O, y temperaturas entre 150 to 280K)Mars (7 mbars of total pressure, with 95% CO 2 , 2.7% N 2 , 1.6% Ar and 0.6% H 2 O, and temperatures between 150 to 280K)
Europa (10~8 mbar de O2 y temperaturas entre 86 y 146 K)Europe (10 ~ 8 mbar of O 2 and temperatures between 86 and 146 K)
Tritón (10~2 mbar, con 93% N2, 4%CO y 3% CH4 y temperatura de 38K)Triton (10 ~ 2 mbar, with 93% N 2 , 4% CO and 3% CH 4 and 38K temperature)
Sin embargo la versatilidad de la máquina inventada hace que se puedan reproducir las condiciones de cualquier planeta, con la única condición de que la presión sea mas baja o igual que la atmosférica.
Ejemplo J) Calibrado y homologación de sensores y materiales funcionales a diferentes atmósferasHowever, the versatility of the invented machine means that the conditions of any planet can be reproduced, with the only condition that the pressure be lower or equal to the atmospheric. Example J) Calibration and homologation of sensors and functional materials to different atmospheres
Esta invención constituye una plataforma única para la realización de pruebas de calibración de sensores, así como la comprobación funcional de instrumentación científica (ensayos), destinada al estudio en condiciones atmosféricas reproducibles por cómo pueden ser las condiciones en el espacio interplanetario, (planetas, satélites artificiales), o en los polos terrestres. Presión, temperatura, concentración de gases, radiación ultravioleta, de electrones e iones, se pueden simular en un amplio rango de energías.This invention constitutes a unique platform for the realization of sensor calibration tests, as well as the functional verification of scientific instrumentation (tests), destined to the study in reproducible atmospheric conditions for how the conditions in the interplanetary space can be, (planets, satellites artificial), or at the Earth's poles. Pressure, temperature, gas concentration, ultraviolet radiation, electrons and ions, can be simulated over a wide range of energies.
Debido a su especial configuración (control de flujos en distintas cámaras (turbulento, laminar y molecular)), es posible combinar presión, temperatura y concentración de gases, con radiación ultravioleta (lámpara de deuterio), o bien con iones (Ar, H, He), electrones, o radiación ultravioleta (lámpara de descarga de He).Due to its special configuration (flow control in different chambers (turbulent, laminar and molecular)), it is possible to combine pressure, temperature and concentration of gases, with ultraviolet radiation (deuterium lamp), or with ions (Ar, H, He), electrons, or ultraviolet radiation (He discharge lamp).
Esto nos permite caracterizar sensores en sus rangos mínimo - máximo, y la realización de pruebas paramétricas funcionales (ensayos), como combinación de todas las variables. Nuestra instalación admite, mediante la utilización de bridas adaptadas con pasamuros de ultra alto vacío, que la instrumentación de la que sea objeto de estudio (ensayo), pueda ser probada in-situ, analizando los efectos de la radiación, sobre medidas de presión o temperatura, o bien sobre ciertas dosis de radiación, comprobar los efectos que podrían causar cambios en la presión o en la temperatura.
This allows us to characterize sensors in their minimum - maximum ranges, and the performance of functional parametric tests (tests), as a combination of all variables. Our installation admits, by means of the use of flanges adapted with ultra-high vacuum passages, that the instrumentation of which is the object of study (test), can be tested in situ, analyzing the effects of radiation, on pressure measurements or temperature, or on certain doses of radiation, check the effects that could cause changes in pressure or temperature.
ReferenciasReferences
(1) Owen, T. C. (1992). The composition and early history of the atmosphere of Mars. In: Mars. Kieffer, H. H. et al. (Eds.),818-835. University of Arizona Press.(1) Owen, T. C. (1992). The composition and early history of the atmosphere of Mars. In: Mars. Kieffer, H. H. et al. (Eds.), 818-835. University of Arizona Press.
(2) Zurek, R. W. et al. (1992). Dynamics of the atmosphere of Mars. In: Mars. Kieffer, H. H. et al. (Eds.),835-934. University of Arizona Press.(2) Zurek, R. W. et al. (1992). Dynamics of the atmosphere of Mars. In: Mars. Kieffer, H. H. et al. (Eds.), 835-934. University of Arizona Press.
(3) Cockell, C. S., et al. (2000). The UV environment of Mars: Biological implications. Past, present and future. Icarus 146, 343-349.(3) Cockell, C. S., et al. (2000). The UV environment of Mars: Biological implications. Past, present and future. Icarus 146, 343-349.
(4) Spencer, J. R., et al. (1999). Temperatures on Europa from PPR: Night time thermal anomalies. Science 284, 1514-1516. (5) Cooper, J. F., et al. (2001).Energetic Ion and Electron Irradiation of the ley Galilean Satellites Icarus, Volume 149, Issue 1, 133-159.(4) Spencer, J. R., et al. (1999). Temperatures on Europa from PPR: Night time thermal anomalies. Science 284, 1514-1516. (5) Cooper, J. F., et al. (2001) .Energetic Ion and Electron Irradiation of the Law Galilean Satellites Icarus, Volume 149, Issue 1, 133-159.
(6) Hall, D. T., et al. (1995). Detection of an oxygen atmosphere on Jupiter's moon, Europa. Nature 373, 677-679.(6) Hall, D. T., et al. (nineteen ninety five). Detection of an oxygen atmosphere on Jupiter's moon, Europe. Nature 373, 677-679.
(7) Yelle, R. V. et al. (1995). Lower atmospheric structure and surface atmosphere interaction on Tritón. In: Neptune and Tritón. Cruikshank, D. P. (Ed.), 1031 -(7) Yelle, R. V. et al. (nineteen ninety five). Lower atmospheric structure and surface atmosphere interaction on Tritón. In: Neptune and Triton. Cruikshank, D. P. (Ed.), 1031 -
1107. University of Arizona Press.
1107. University of Arizona Press.
Claims
REIVINDICACIONES
1) Una máquina o instalación constituida por las partes siguientes y con los objetivos operativos de cada parte, referidos: a) Cámara atmosférica, de vacío o principal donde realizar los trabajos proyectados. La composición de los gases en ella introducidos y presión parcial (tanto para trabajos en alto vacío como aquellos otros a presión atmosférica) es controlable en todo momento por medio de b): b) Sistemas de bombeo y de medida y control de la presión de cada componente gaseoso introducido en la cámara principal. Unidos debidamente a la cámara principal existen, c) Unidad porta-muestra y sistema (manipulador o traslador) que permite la introducción de esta en la cámara principal de una forma que se evita cualquier contaminación posible, previa y/o posterior. d) Criostato en contacto con el porta-muestras que permite a la muestra introducida en la cámara principal mantener una temperatura fija y controlada. e) Fuentes de descarga para irradiación de la muestra colocada en la cámara principal, f) Fuente de deuterio.1) A machine or installation consisting of the following parts and with the operational objectives of each part, referred to: a) Atmospheric, vacuum or main chamber where to perform the projected works. The composition of the gases introduced therein and partial pressure (both for work in high vacuum and those at atmospheric pressure) is controllable at all times by means of b): b) Pumping and measuring systems and pressure control of each gaseous component introduced into the main chamber. Attached properly to the main chamber there are, c) Sample unit and system (manipulator or transfer) that allows the introduction of this into the main chamber in a way that avoids any possible, previous and / or subsequent contamination. d) Cryostat in contact with the sample holder that allows the sample introduced into the main chamber to maintain a fixed and controlled temperature. e) Discharge sources for irradiation of the sample placed in the main chamber, f) Source of deuterium.
La cámara atmosférica o principal contiene, además, las partes siguientes como elementos de análisis y/o comprobación del medio gaseoso: g) Sistema de análisis de los gases, y, h) Sistema de entrada controlada de los gases.The atmospheric or main chamber also contains the following parts as elements of analysis and / or verification of the gaseous medium: g) Gas analysis system, and, h) Controlled gas entry system.
La cámara atmosférica o principal contiene, además, las partes siguientes como elementos de medida y análisis de materiales o medios biológicos: i) Espectroscopia de infrarrojos, y, j) Espectroscopia de UltravioletaThe atmospheric or main chamber also contains the following parts as measuring elements and analysis of biological materials or media: i) Infrared spectroscopy, and, j) Ultraviolet spectroscopy
La posición relativa de todos estos componente de la máquina o instalación entera está descrita en las figuras 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 y 11.
2) La máquina o instalación reivindicada en 1), que permite reproducir y simular de forma mantenida y controlada en todo momento las condiciones ambientales (composición química, temperatura, presión atmosférica, dosis y naturaleza de radiaciones) de medios gaseosos, planetas o del espacio libre para examen y validación de materiales, compuestos químicos y bioquímicos o muestras biológicas en instalaciones industriales y centros de experimentación científica.The relative position of all these components of the entire machine or installation is described in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. 2) The machine or installation claimed in 1), which allows to reproduce and simulate in a maintained and controlled manner at all times the environmental conditions (chemical composition, temperature, atmospheric pressure, dose and radiation nature) of gaseous media, planets or space Free for examination and validation of materials, chemical and biochemical compounds or biological samples in industrial facilities and scientific experimentation centers.
3) La máquina o instalación reivindicada en 1) y 2), en donde realizar ensayos y/o experimentos de ciencia de materiales, astrobiología, bioquímica, planetología, geoquímica, bioingeniería y catálisis, de forma mantenida y controlada en todo momento.3) The machine or installation claimed in 1) and 2), where to carry out tests and / or experiments in materials science, astrobiology, biochemistry, planetology, geochemistry, bioengineering and catalysis, in a maintained and controlled manner at all times.
4) Una máquina descrita en las reivindicaciones 1), 2), y 3), que sirve para reproducir o simular cualquier atmósfera o medio gaseoso en un amplio rango de presiones de interés técnico, especialmente entre 10~9 milibar y 1000 milibar.4) A machine described in claims 1), 2), and 3), which serves to reproduce or simulate any atmosphere or gaseous medium in a wide range of pressures of technical interest, especially between 10 ~ 9 millibar and 1000 millibar.
5) Una máquina descrita en las reivindicaciones 1), 2), 3) y 4), que sirve para reproducir o simular cualquier atmósfera o medio gaseoso en un amplio rango de temperaturas de interés técnico, especialmente entre 4 °Kelvin y 325 °Kelvin.5) A machine described in claims 1), 2), 3) and 4), which serves to reproduce or simulate any atmosphere or gaseous medium in a wide range of temperatures of technical interest, especially between 4 ° Kelvin and 325 ° Kelvin .
6) Una máquina o instalación en la cual se pueden llevar a cabo nuevos ensayos, controles, verificaciones y experimentos demandados por el avance técnico y científico, en especial, con una especial aplicación en los rangos de presión y temperatura reivindicados en 4) y en 5).6) A machine or installation in which new tests, controls, verifications and experiments demanded by the technical and scientific progress can be carried out, especially with a special application in the pressure and temperature ranges claimed in 4) and in 5).
7) Una máquina o instalación en cuya cámara principal se pueden realizar, de forma controlada, todo tipo de ensayos, análisis o experimentos químicos en la fase gaseosa o bien de interacción entre superficie sólida y atmósfera gaseosa.7) A machine or installation in whose main chamber all kinds of chemical tests, analyzes or experiments in the gas phase or interaction between solid surface and gas atmosphere can be carried out in a controlled manner.
8) Una máquina o instalación en cuya cámara principal se puede irradiar bajo condiciones ambientales rigurosas cualquier muestra sólida o un cultivo biológico con dosis medidas de radiación de distinta naturaleza.
9) Un procedimiento capaz de permitir irradiar, en la máquina o instalación objeto de la presente patente de invención, muestras a presiones cercanas a la atmosférica basado en un procedimiento basado en el de bombeo diferencial.8) A machine or installation in whose main chamber any solid sample or a biological culture with measured doses of radiation of different nature can be irradiated under stringent environmental conditions. 9) A procedure capable of irradiating, at the machine or installation object of the present invention patent, samples at near atmospheric pressures based on a procedure based on differential pumping.
10) Cualquier modificación tanto de las dimensiones geométricas de la máquina o instalación (en inglés, scaling) reivindicada en todos los puntos anteriores, como otras que se puedan introducir por métodos y técnicas experimentales que las tecnologías del futuro hagan realidad.10) Any modification of both the geometric dimensions of the machine or installation (in English, scaling) claimed in all the previous points, and others that can be introduced by experimental methods and techniques that the technologies of the future make reality.
11) Cualquier ampliación o extensión de los instrumentos de medida, análisis y control expresado en las reivindicación 1) introducidos por nuevas técnicas y/o métodos instrumentales.
11) Any extension or extension of the measurement, analysis and control instruments expressed in claims 1) introduced by new techniques and / or instrumental methods.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200502620 | 2005-10-27 | ||
ES200502620A ES2294902B1 (en) | 2005-10-27 | 2005-10-27 | MACHINE, AND METHOD OF USE, TO REPRODUCE THE CONDITIONS OF PRESSURE, TEMPERATURE AND IRRADIATION OF SURFACE ENVIRONMENTS OR PLANETARY ATMOSPHERES. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007048868A1 true WO2007048868A1 (en) | 2007-05-03 |
Family
ID=37967433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2006/070161 WO2007048868A1 (en) | 2005-10-27 | 2006-10-27 | Machine for the controlled reproduction of the pressure, temperature and irradiation conditions of planetary atmospheres or terrestrial environments and method of using said machine |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2294902B1 (en) |
WO (1) | WO2007048868A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2199080A1 (en) * | 2002-07-16 | 2004-02-01 | Univ Valencia Politecnica | Rotary support and apparatus used for the multiple spectroscopic characterisation of samples of solid materials |
-
2005
- 2005-10-27 ES ES200502620A patent/ES2294902B1/en not_active Expired - Fee Related
-
2006
- 2006-10-27 WO PCT/ES2006/070161 patent/WO2007048868A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2199080A1 (en) * | 2002-07-16 | 2004-02-01 | Univ Valencia Politecnica | Rotary support and apparatus used for the multiple spectroscopic characterisation of samples of solid materials |
Non-Patent Citations (2)
Title |
---|
MARTIN-GAGO JA ET AL: "A new simulation chamber for studying planetary environments", 36TH ANNUAL LUNAR AND PLANETARY SCIENCE CONFERENCE, LEAGUE CITY, TEXAS, 14 March 2005 (2005-03-14) - 18 March 2005 (2005-03-18), pages ABSTRACT NR 1625, XP003009693, Retrieved from the Internet <URL:http://www.lpi.usra.edu/meetings/lpsc2005/pdf/1625.pdf> * |
SMITHSONIAN/NASA ADS ABSTRACT SERVICE, BIBLIOGRAPHIC CODE 2005.LPI....36.1625M, XP003009694, Retrieved from the Internet <URL:http://adsabs.harvard.edu/cgi-bin/bib_query?2005LPI....36.1625M> * |
Also Published As
Publication number | Publication date |
---|---|
ES2294902A1 (en) | 2008-04-01 |
ES2294902B1 (en) | 2009-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation | |
Fahey et al. | The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques | |
ES2266454T3 (en) | METHOD AND APPLIANCE FOR CALIBRATING INSTRUMENTS THAT CONTROL THE CONCENTRATION OF A STERILANT IN A SYSTEM. | |
BRPI0608799A2 (en) | system for making standard primary gas mixtures and apparatus for producing standard primary gas mixtures | |
Garry et al. | Analysis and survival of amino acids in martian regolith analogs | |
Jensen et al. | A facility for long-term Mars simulation experiments: the Mars Environmental Simulation Chamber (MESCH) | |
Mateo-Martí et al. | A chamber for studying planetary environments and its applications to astrobiology | |
Forget | On the probability of habitable planets | |
ES2294902B1 (en) | MACHINE, AND METHOD OF USE, TO REPRODUCE THE CONDITIONS OF PRESSURE, TEMPERATURE AND IRRADIATION OF SURFACE ENVIRONMENTS OR PLANETARY ATMOSPHERES. | |
Sterpenich et al. | NO solubility in water and brine up to 60 MPa and 373 K by combining Raman spectroscopy and molecular simulation | |
Wipf et al. | Mars simulation facilities: a review of recent developments, capabilities and applications | |
Wong et al. | Multiple probe measurements at Uranus motivated by spatial variability | |
ten Kate et al. | Celestial bodies | |
Smith | The sources and significance of stratospheric water vapor: Mechanistic studies from equator to pole | |
Cottin et al. | Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities | |
Kirk | Development of clumped isotope techniques and their application to palaeoclimate studies | |
ES2655203T3 (en) | Enhanced vapor phase spectroscopy | |
Duval et al. | Biosignature preparation for ocean worlds (BioPOW) instrument prototype | |
Alpert et al. | Application of Simulation Chambers to Investigate Interfacial Processes | |
Galletta et al. | LISA: Mars and the limits of life | |
Friisnæs et al. | Measurements of δ15N and δ40Ar of NEEM air with oxygen removal from a perovskite membrane | |
Lukac et al. | Non‐intrusive monitoring of atmospheric CO2 in analogue models of terrestrial carbon cycle | |
Becx | Icy moon plume simulator chamber | |
Fernandez Garcia | Investigating the efficacy of using carbon dioxide-water equilibration to make 17O-CO2 reference gases | |
Khawaja et al. | Organic compounds from Enceladus’ sub-surface ocean as seen by CDA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06820034 Country of ref document: EP Kind code of ref document: A1 |