WO2007046239A1 - Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell - Google Patents

Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell Download PDF

Info

Publication number
WO2007046239A1
WO2007046239A1 PCT/JP2006/319889 JP2006319889W WO2007046239A1 WO 2007046239 A1 WO2007046239 A1 WO 2007046239A1 JP 2006319889 W JP2006319889 W JP 2006319889W WO 2007046239 A1 WO2007046239 A1 WO 2007046239A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
fuel cell
electrolyte composition
membrane
electrolyte
Prior art date
Application number
PCT/JP2006/319889
Other languages
French (fr)
Japanese (ja)
Inventor
Norie Taguchi
Ryotaro Tsuji
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007540915A priority Critical patent/JPWO2007046239A1/en
Publication of WO2007046239A1 publication Critical patent/WO2007046239A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Electrolyte composition for fuel cell membrane-electrode assembly for fuel cell using the same, and fuel cell
  • the present invention relates to an electrolyte composition for fuel cells, a membrane-electrode assembly for fuel cells using the same, and a fuel cell.
  • a fuel cell has a structure in which an electrolyte membrane having proton conductivity is sandwiched between electrolytes containing a catalytic metal.
  • a polymer electrolyte fuel cell (PEFC) that uses a polymer compound as an electrolyte membrane has the advantages of being able to operate at low temperatures and being compact and lightweight. For automobiles, homes, small portable devices, etc. Wide range of uses has been made.
  • a direct methanol fuel cell (DMFC) that uses methanol as the fuel can be simplified in size compared to a type that uses hydrogen gas as fuel, and can be miniaturized because of its high power density.
  • the present inventors have reduced the size of the three-phase interface when a general hydrocarbon electrolyte is used as a binder, compared to the case where a conventional fluorine-based resin is used as a binder.
  • the inventors have found that it is difficult to obtain sufficient power generation performance and have devised the present invention.
  • it is important to improve durability against methanol, which has been one of the issues to be solved.
  • Patent Document 4 describes a technique for chemically bonding a molecule having a proton conductive functional group to the surface of a catalyst particle in order to extend the battery life.
  • the catalyst particles and the proton-conducting functional group-containing compound are combined, the proton-conducting functional group itself is modified by the action of the catalyst, resulting in a decrease in proton conductivity or adsorption of the proton-conducting functional group onto the catalyst.
  • Patent Document 1 Japanese Patent Publication No. 11-515040
  • Patent Document 2 JP 2002-110174 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-87288
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-172098
  • the problem to be solved by the present invention is that it has excellent adhesion to an electrolyte membrane and an electrode, can hold a catalytic metal uniformly, and prevents a decrease in proton conductivity that is highly resistant to methanol. It is possible to provide an electrolyte composition for a fuel cell and a fuel cell at low cost that are capable of being environmentally compatible and durable.
  • the fuel cell electrolyte composition of the present invention is a fuel cell electrolyte composition containing the following compound (A) and compound (B) as essential components.
  • (A) a compound having a functional group capable of binding to a catalyst metal and having a number average molecular weight of 500 to 100,000
  • (B) A compound having a proton conductive functional group and a number average molecular weight of 50 to L000000.
  • Such an electrolyte composition for a fuel cell of the present invention has an adhesive property to an electrolyte membrane or an electrode material. Therefore, the membrane-electrode assembly can be adjusted without impairing proton conductivity.
  • the catalyst metal can be highly dispersed and the activity of the catalyst can be sufficiently extracted, the fuel cell including the catalyst metal can be a high output and high durability battery.
  • the electrolyte composition for a fuel cell of the present invention is not limited to the electrolytes even if the compounds (A) and (B) are hydrocarbon-based resins that are not fluorine-based resins.
  • the ease of each movement can be secured, so that sufficient power generation performance can be obtained, and the durability against methanol can be improved.
  • non-fluorinated resin has a low environmental impact.
  • the number of functional groups capable of binding to the catalyst metal is preferably 2 or less per molecule, it is possible to sufficiently bring out the activity of the catalyst metal. A high output battery can be obtained.
  • the functional group capable of binding to the catalyst metal is preferably a mercapto group, and can form a covalent bond with the metal catalyst, and thus can be firmly bonded.
  • the mercapto group is present at the molecular end of the compound (A) because it efficiently binds to the catalyst and does not cover the surface of the catalyst more than necessary.
  • the compound (A) is preferably a polymer polymerized by reversible addition / elimination chain transfer polymerization and further treated with a treating agent, which has a mercapto group at the molecular end.
  • the polymer compound to be prepared can be conveniently performed while sufficiently controlling the amount of mercapto group introduced.
  • the treating agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent, and a thiocarbothio group is preferably converted to a mercapto group. Can be converted to
  • the compound (A) and the compound (B) are the same compound.
  • the fuel cell containing it can be considered as a high-power, high-durability battery. can do.
  • the proton conductive functional group is preferably a sulfonic acid group, resulting in a highly proton conductive electrolyte composition.
  • An electrolyte composition having excellent properties and durability.
  • a fuel cell catalyst composition having excellent characteristics can be obtained by further including, in such an electrolyte composition for a fuel cell of the present invention, carbon (C) carrying a catalyst metal. It can be done.
  • a membrane-electrode assembly comprising such an electrolyte composition of the present invention as a component of an electrode layer, wherein a membrane-electrode assembly in which an electrolyte membrane having proton conductivity is sandwiched between electrode layers is a fuel cell.
  • the membrane electrode assembly is preferable because it stably exhibits excellent properties.
  • a non-fluorine-based hydrocarbon resin when used as the proton-conductive electrolyte membrane, it is not a fluorine-based resin among the electrolyte compositions of the present invention as an electrode binder.
  • hydrocarbon-based resin since the composition of the binder and the electrolyte membrane can be made similar, the adhesion between them can be strengthened.
  • the membrane electrode assembly is one or more types of fuel cells selected from the group consisting of a solid polymer type, a direct liquid type, and a direct methanol type, particularly a direct methanol type fuel cell because of its high resistance to methanol. It can be suitably used for.
  • the electrolyte composition for a fuel cell of the present invention is excellent in adhesiveness with an electrolyte membrane or an electrode material, so that it can be adhered to a catalytic metal without impairing proton conductivity, and the catalytic metal has sufficient activity. Since it can be pulled out, the fuel cell containing it can be a high-power, high-durability battery.
  • FIG. 1 is a schematic view of a membrane-electrode assembly.
  • FIG. 2 is a cross-sectional view of a main part of a direct methanol fuel cell.
  • the electrolyte composition for a fuel cell of the present invention comprises (A) a compound having a number average molecular weight of 500 to LOOOOO having a functional group capable of binding to a catalytic metal, and (B) having a proton conductive functional group.
  • Number Average molecular weight 50 ⁇ Contains LOOOOOO compound as an essential component. Each compound is described below.
  • the functional group capable of binding to the catalyst metal is not particularly limited, and examples thereof include a mercapto group, a hydroxyl group, a carboxyl group, an amino group, an amide group, and a disulfide group.
  • the bond to be formed is not limited to a covalent bond, an ionic bond, or a coordination bond, but a covalent bond is preferable because the bond is strong.
  • a mercapto group is most preferable because a covalent bond can be formed. If the number average molecular weight of the compound (A) is less than 500, the resistance to methanol is low, and if it exceeds 100000, the catalyst coverage becomes too high and the catalytic activity becomes low.
  • the number average molecular weight of the compound (A) is more preferably 1000 to 50000.
  • the number average molecular weight of the polymer compound is a value determined by gel permeation chromatography (GPC) analysis.
  • the number of functional groups capable of binding to the catalytic metal is not particularly limited, but if it is too large, the catalytic metal surface is covered with a polymer, resulting in low catalytic activity.
  • the number is preferably 2 or less per, and more preferably 1 per molecule.
  • the position of the functional group in the compound (A) is more efficient at binding to the catalyst than at the molecular chain, and it does not cover the surface of the catalyst more than necessary. U, because, preferred.
  • a method for producing a polymer compound having a mercapto group at the molecular end as the compound (A) is not particularly limited, but a reversible addition / desorption chain can be introduced in a quantitative and simple manner.
  • a method of treating a polymer obtained by transfer (RAFT) polymerization with a treating agent is preferred.
  • RAFT polymerization is a method of controlled radical polymerization of vinyl monomers using thiocarbothioi compounds as chain transfer agents.
  • thiocarbothioi compounds as chain transfer agents.
  • the polymerization mode is not particularly limited, but bulk polymerization or solution polymerization is preferable in that the treatment with the treating agent after polymerization is simple.
  • the thiocarbothio compound is not particularly limited! However, a compound represented by the following general formula 1 is preferable in view of availability and reactivity.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Ph represents a phenyl group
  • Ac represents a acetyl group
  • r is an integer of 1 or more
  • the monomer used for polymerization is not particularly limited, and a vinyl monomer capable of radical polymerization can be used.
  • a vinyl monomer capable of radical polymerization can be used.
  • (meth) acrylic acid ester, (Meth) acrylic acid, styrene, (meth) acrylonitrile, (meth) acrylamide, and salt vinyl are preferred (meth) acrylic acid esters are more preferred!
  • the thiothio group can be converted into a mercapto group to give a polymer compound having a mercapto group at the molecular end.
  • the treatment agent is not particularly limited, but is selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent in terms of high conversion efficiency to a mercapto group.
  • One or more compounds are preferred.
  • the hydrogen-nitrogen bond-containing compound is not particularly limited, but ammonia, hydrazine, primary amine, secondary amine, amido compound, ammine hydrochloride, hydrogen-nitrogen Examples thereof include a bond-containing polymer and a hindered amine light stabilizer (HALS).
  • HALS hindered amine light stabilizer
  • Examples of the primary amines include methylamine, ethylamine, isopropylamine, n-propylamine, n-butylamine, t-butylamine, 2-ethylhexylamine, 2-aminoethanolamine, ethylenediamine, diethylenetriamine, 1, 2 -Diaminopropane, 1,4-diaminobutane, cyclohexylamine, aline, phenethylamine and the like.
  • Examples of secondary amines include dimethylamine, jetylamine, diisobutylamine, di-2-ethylhexylamine, iminodiacetic acid, bis (hydroxyethyl) amine, di- ⁇ -butylamine, di-butylamine, diphenyl- Examples include lumine, N-methylaline, imidazole, and piperidine.
  • Examples of the amide compound include adipic acid hydrazide, N-isopropylacrylamide, oleamide, thioacetamide, formamide, acetate, phthalimide, and succinimide.
  • Examples of the amine hydrochloride include acetamidine hydrochloride, monomethylamine hydrochloride, dimethylamine hydrochloride, monoethylamine hydrochloride, jetylamine hydrochloride, and guanidine hydrochloride.
  • Examples of the hydrogen-nitrogen bond-containing polymer include polyethyleneimine, polyallylamine, polybulamine and the like.
  • Examples of the above HALS include ADK STAB LA-77 (Asahi Denka Kogyo Co., Ltd.), Tinuvin 144 (Ciba 'Specialty Chemicals Co., Ltd.), ADK STAB LA-67 (Asahi Denka Kogyo Co., Ltd.), etc. Can do.
  • examples of basic compounds are not particularly limited, but include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium methoxide, sodium ethoxy. And magnesium methoxide, sodium carbonate, potassium carbonate, sodium sulfate, sodium sulfate.
  • examples of the reducing agent are not particularly limited, but examples thereof include sodium hydride, lithium hydride, calcium hydride, LiAlH, NaBH, LiBEt H, and hydrogen.
  • the above treatment agents may be used alone or in combination! N- in terms of reactivity
  • Primary amines such as butyramine, sodium hydroxide, potassium hydroxide, sodium hydroxide, sodium sulfide, LiAlH, NaBH, and LiBEt H are preferred.
  • the amount of the above treatment agent is special
  • reaction conditions such as temperature, presence or absence of solvent, and mixing conditions are not particularly limited. However, a reaction method in which a treatment agent is directly added to the solution after polymerization is preferable because the operation is simple. A range of C to 150 ° C is preferred.
  • the proton conductive functional group is not particularly limited, and examples thereof include a sulfonic acid group, a sulfino group, a phosphor group, and a phosphier group. Of these, sulfonic acid groups are preferred because of their high proton conductivity.
  • the sulfonic acid group may be an alkali metal salt as it is. If the number average molecular weight of the compound (B) is less than 50, the adhesive strength with the electrolyte membrane or electrode material is insufficient, and if it exceeds 1000000, mixing with other components becomes difficult. In view of such adhesive strength and ease of handling, the number average molecular weight of the compound) is more preferably 100 to 800,000.
  • the main chain structure of compound (B) is not particularly limited, it is polyethersulfone (PES), polyetheretherketone (PEE K), polyphenylene in terms of excellent heat resistance, methanol resistance, and acid resistance. Sulfide, polyphenylene ether, polysulfone, polyether ketone, and styrene thermoplastic elastomer are preferred.
  • the weight ratio of the compound (A) to the compound (B) is not particularly limited.
  • the electrolyte composition for a fuel cell of the present invention has an excellent characteristic by further containing (C) carbon carrying a catalyst metal as a component other than the compounds (A) and (B). It can be a catalyst composition. (Catalyst metal-supported carbon c)
  • the catalyst metal in the catalyst metal-supported carbon (c) is not particularly limited, and examples thereof include platinum, gold, palladium, ruthenium, nickel, rhodium, connort, iridium, osmium, iron, and alloys containing these metals. Of these, platinum and platinum-containing alloys are preferred because of their high catalytic activity.
  • the shape of the catalyst metal is not particularly limited, but it is preferably a particle having a number average particle size of lOOnm or less, which is preferably particulate in terms of high catalytic activity, and a number average particle size of 50 nm or less is more preferable. More preferably, it is a particle.
  • Carbon in catalytic metal-supported carbon (C) is not particularly limited, but high conductivity is preferred. Specifically, high surface area such as carbon black such as ketjen black and acetylene black, activated carbon, carbon nanohorn and carbon nanotube Are preferred.
  • the basis weight in the catalyst layer is preferably in the range of about 0.1 to 5 mgZcm 2 .
  • the fuel cell of the present invention has a membrane electrode assembly shown in FIG. 1 in which an electrolyte membrane having proton conductivity is sandwiched between layers containing the electrolyte composition.
  • the electrolyte membrane having proton conductivity is not particularly limited.
  • Syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone and polyphenylene sulfide, and their derivative power group power is at least one selected It is preferable.
  • the diffusion layers may or may not be joined to the catalyst with the same or different binder.
  • porous conductive materials such as carbon paper and carbon cloth are used.
  • the diffusion layer is supplied with water or water generated by an electrochemical reaction, and prevents the pores from being blocked. Which fluorine compound should be water repellent treated?
  • the catalyst layer 2 is mainly composed of an electrolyte composition which is a polymer compound having a binding action and the catalyst metal-supporting carbon.
  • the electrolyte composition is used in a state dissolved or dispersed in a solvent, and the electrolyte composition is preferably 0.1% by weight to 30% by weight with respect to the solvent to form a uniform catalyst layer.
  • a slurry or mixed solution is obtained by mixing a resin in which a resin is dissolved or dispersed (hereinafter referred to as a binder) and the above catalyst metal-supported carbon.
  • the resin component of the binder is preferably in a weight ratio of 0.05 to L 5 with respect to the carbon supported on the catalyst metal. If it is larger than this range, the catalytic metal may be covered with the polymer electrolyte and not be used effectively. On the other hand, if it is smaller than this range, sufficient binding action may not be obtained, and the catalyst layer may not be maintained.
  • water is added to this mixed solution so that the viscosity becomes appropriate for forming the catalyst layer. It may be included.
  • This mixed solution is deposited on a release film such as a polytetrafluoroethylene (PTFE) film by a doctor knife, roll coater, screen printing, spraying, etc., and dried to remove the solvent and water. In order to prevent cracking of the catalyst layer, the coating and solvent removal operations can be repeated several times.
  • PTFE polytetrafluoroethylene
  • the release film coated with the catalyst is placed on both sides of the proton conducting polymer membrane and hot-pressed using a press such as a hot press or roll press.
  • the hot press conditions need to be set according to the type of polymer electrolyte contained in the electrolyte membrane and binder used.
  • the set temperature is generally 80 ° C to 200 ° C, which is the temperature above the glass transition point or softening point of the proton conductive polymer membrane or polymer electrolyte used, and further the polymer electrolyte.
  • the temperature is preferably higher than the glass transition point and softening point of the membrane and the polymer electrolyte. If it is larger than this range, the terminal group in the polymer electrolyte may be detached and not used effectively.
  • the interface resistance may increase.
  • the thermal degradation or thermal decomposition temperature or less of the resin component contained in the electrolyte membrane or binder used is preferable. If the maximum pressure is 0. IMPa or more and 20 MPa or less, the polymer electrolyte membrane and the catalyst layer will adhere sufficiently. In addition, when there is no particularly large deformation of the material, it is preferable because the characteristic does not deteriorate. When larger than this range, there exists a possibility that a catalyst layer may collapse
  • the membrane-electrode assembly can be obtained by removing the release film from the bonded body force obtained by pressing.
  • Another example of the method for producing the membrane-electrode assembly precursor is described below.
  • the mixed solution is applied onto the diffusion layer by a doctor blade, a roll coater, screen printing, or spraying by spraying, and then dried to remove the solvent to obtain a catalyst-supporting gas diffusion layer.
  • a membrane-one electrode assembly can be obtained by placing catalyst-supporting gas diffusion layers on both sides of a hydrocarbon polymer electrolyte membrane and hot pressing using a press such as a hot press or roll press. .
  • the hot press conditions need to be set according to the type of proton conducting electrolyte membrane or polymer electrolyte used.
  • the catalyst, the polymer electrolyte, and the diffusion layer may be commercially available or may be integrated.
  • Figure 2 is a cross-sectional view of the main part of a direct methanol fuel cell.
  • the membrane-electrode assembly obtained by the method as described above is inserted between a pair of separators 4 and the like in which a flow path 5 for feeding fuel and an oxidant is formed.
  • a direct methanol fuel cell with a high physical strength can be obtained.
  • the diffusion layer 3 may or may not be adhered to the outside of the catalyst layer 2 with a polymer electrolyte having a binding action. If it is not bonded with a polymer electrolyte, it can be in sufficient contact by tightening the separator with screws.
  • the catalyst layer By separately supplying a liquid mainly composed of methanol as a fuel and a gas containing oxygen (oxygen or air) as an oxidant to the flow path 5 of the separator 4, the catalyst layer passes through the diffusion layer 3.
  • the direct methanol fuel cell generates electricity.
  • a force bone graphite or a stainless steel conductive material can be used.
  • metal materials such as stainless steel, it is preferable to apply a corrosion-resistant treatment!
  • peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm- 1 in the infrared spectrum.
  • the ion exchange capacity (IEC) was calculated to be 2. 17 meq / g.
  • a solution prepared from 2.14 g of this resin and 26.4 g of DM F2 was placed in a petri dish having an inner diameter of 60 mm and dried in a vacuum oven at 110 ° C. for 3 hours under 1 Torr. The resulting dried film was swollen with water to peel off the force and petri dish force, and dried for 5 hours at lTorr, 110 ° C.
  • a blended resin composition film having a thickness of 30 m was obtained. Its proton conductivity: sigma was 7. 5 ⁇ 10- 2 SZcm.
  • reaction solution was poured into 3 liters of pure water to precipitate a polymer and then filtered, and washed with 3 liters of water 20 times until the filtrate became neutral.
  • the resulting reaction product was dried at 90 ° C. for 10 hours under lTorr vacuum to obtain 16. Og of white solid.
  • peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm 1 in the infrared spectrum.
  • the ion exchange capacity is 1.39meqZg, and a 30m thick resin film prepared in the same manner as in Synthesis Example 1 is used. Ton conductivity, 4. was 2 X 10- 2 SZcm.
  • reaction solution is poured into 1 liter of methanol to precipitate a polymer, filtered, washed 3 times with methanol, and then twice with 1 liter of water until the filtrate is neutral. Washed.
  • the obtained reaction product was dried at 90 ° C. for 10 hours under vacuum of lTorr to obtain 6. Og of a brown solid. In the obtained solid, peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm 1 in the infrared spectrum.
  • the ion exchange capacity was 1.22 meqZg, and the proton conductivity of a 30 m thick resin membrane prepared in the same manner as in Synthesis Example 1 was 1.1 ⁇ 10 ⁇ Zcm.
  • Septon SEPS2007 was prepared in the same manner as Synthesis Example 3 except that SEBS G1650 (Kraton, molecular weight of about 70,000) was added to 5.0 g. As a result, 6.0 g of a reaction product was obtained. In the obtained solid, 1450, 1445, 1390 cm- 1, and the corresponding peak were observed in the infrared spectroscopic spectrum.
  • PMMA—SH (5 g) obtained in Synthesis Example 6 was placed in a 300 mL reaction vessel. Add acetic acid (14. OmL) to this, soak 30% hydrogen peroxide (11.2 mL) gradually, then heat to 70 ° C and heat for 20 minutes at 70 ° C. Maintained. This was washed with running water at 60 ° C for 2 hours. In this way, the SH group of PMMA—SH is partially oxidized and converted to SO H group.
  • a poly-lens sulfide film (manufactured by Toray Industries, Inc., trade name: Torelina, thickness: 25 m) was immersed in a mixed solution of chlorosulfonic acid and 1-chlorobutane. At this time, chlorosulfonic acid is 6 times in molar ratio with respect to the polyphenylene sulfide film, and the mixed solution is 1.5% by weight of black sulfonic acid with respect to 1 chlorobutane. After immersion, leave at room temperature for 20 hours Polyphenylene sulfide film was recovered and washed with ion exchange water until neutral.
  • the washed polysulfide sulfide film is allowed to stand at 23 ° C for 30 minutes to dry the film, and as a proton conductive polymer membrane, a polyphenylene sulfide membrane into which a sulfonic acid group has been introduced (hereinafter referred to as a proton-conductive polymer membrane)
  • a proton-conductive polymer membrane a polyphenylene sulfide membrane into which a sulfonic acid group has been introduced (hereinafter referred to as a proton-conductive polymer membrane)
  • a sulfonated polyphenylene sulfide membrane 80 mm ⁇ 80 mm, thickness: 50 m was obtained.
  • Toray TGP-H-60 carbon paper is washed with acetone, and then a Teflon (registered trademark) dispersion (Daikin Industries POLYFLON PTFE D—1E) is applied and baked at 360 ° C for 1 hour for water repellent treatment. A diffusion layer subjected to was obtained.
  • Teflon (registered trademark) dispersion (Daikin Industries POLYFLON PTFE D—1E) is applied and baked at 360 ° C for 1 hour for water repellent treatment. A diffusion layer subjected to was obtained.
  • the platinum 50% by weight of supported ketjen black EC is used as the anode catalyst.
  • platinum 30 wt% ruthenium 23 wt% ketjen black EC was mixed in a ratio of 83.3 wt%.
  • the sulfonated poly (phenylene sulfide) membrane was cut to 20 mm ⁇ 20 mm, and a 12 ⁇ electrode was hot-pressed at a pressure of 100 kgZcm 2 and a set temperature of 150 ° C. for 5 minutes to obtain a precursor of a membrane-electrode assembly.
  • the proton-conducting polymer compound of the hydrocarbon binder was sulfonated PES obtained in Synthesis Example 2 in Example 2, sulfonated SEPS obtained in Synthesis Example 3 in Example 3, and in Example 4, respectively.
  • Example 1 except that the sulfonated SEBS obtained in Synthesis Example 4 and the sulfonated PMMA-SH obtained in Synthesis Example 7 were used in Example 5 and the sulfonated SIBS Example 6 obtained in Synthesis Example 5. Evaluation was performed in the same manner. The results are shown in Table 1.
  • Examples 7 to 12 Evaluation was carried out in the same manner as in Examples 1 to 6 except that naphthion (registered trademark) 117 (manufactured by DuPont), which is a fluorine-based polymer electrolyte membrane, was used instead of the sulfone polyphenylene sulfide membrane. The results are shown in Table 1.

Abstract

Disclosed is a low-cost electrolyte composition for fuel cells which is excellent in adhesion to the electrolyte membrane and electrode, capable of uniformly holding a catalyst metal, and has high environmental suitability and durability. This electrolyte composition for fuel cells has high resistance to methanol, and the proton conductivity of the electrolyte does not deteriorate in this composition. Also disclosed are a low-cost membrane-electrode assembly using such an electrolyte composition for fuel cells and a low-cost fuel cell. The electrolyte composition for fuel cells contains, as indispensable components, (A) a compound having a number average molecular weight of 500-100,000 while having a functional group which can be bonded with a catalyst metal, and (B) a compound having a number average molecular weight of 50-1,000,000 while having a proton conductive functional group. The electrolyte composition may further contain (C) a carbon loaded with a catalyst metal for fuel cells to form a catalyst composition, and an electrode layer for fuel cells can be suitably formed from such a catalyst composition. The membrane-electrode assembly has a structure wherein a proton conductive electrolyte membrane is sandwiched between layers containing the electrolyte composition.

Description

燃料電池用電解質組成物、及びにそれを用レヽた燃料電池用膜一電極接 合体、並びに燃料電池  Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using the same, and fuel cell
技術分野  Technical field
[0001] 本発明は燃料電池用電解質組成物、及びそれを用いた燃料電池用膜—電極接合 体、並びに燃料電池に関する。  TECHNICAL FIELD [0001] The present invention relates to an electrolyte composition for fuel cells, a membrane-electrode assembly for fuel cells using the same, and a fuel cell.
背景技術  Background art
[0002] 一般的に燃料電池は、プロトン伝導性を有する電解質膜を触媒金属を含有する電 解質で挟んだ構造を有する。電解質膜として高分子化合物を利用する固体高分子 形燃料電池 (PEFC)は、低温作動が可能,小型軽量ィ匕が可能などの利点を有し、自 動車用 ·家庭用 ·小型携帯機器用など幅広い用途展開がなされている。特に燃料と してメタノールを使用する直接メタノール形燃料電池 (DMFC)は水素ガスを燃料と するタイプと比較して構造を簡素化でき、高い出力密度が得られるために小型化が 可能である。  [0002] Generally, a fuel cell has a structure in which an electrolyte membrane having proton conductivity is sandwiched between electrolytes containing a catalytic metal. A polymer electrolyte fuel cell (PEFC) that uses a polymer compound as an electrolyte membrane has the advantages of being able to operate at low temperatures and being compact and lightweight. For automobiles, homes, small portable devices, etc. Wide range of uses has been made. In particular, a direct methanol fuel cell (DMFC) that uses methanol as the fuel can be simplified in size compared to a type that uses hydrogen gas as fuel, and can be miniaturized because of its high power density.
[0003] 従来このような DMFCとして、電解質膜と結着剤として用いる電解質の双方にスル ホン酸基含有フッ素系榭脂を使用する技術が一般的であった。しかしこのようなフッ 素系電解質膜の使用は、メタノール透過性が高 ヽため燃料極で消費し切れなカゝつた メタノールが酸化剤極に達し酸化剤極上で反応して逆起電力を生じるクロスオーバ 一現象の原因となり、充分な発電特性を得られないという問題があった。またフッ素 系榭脂は高価なうえリサイクルが困難であり、廃棄物処理にもコストがかかるという問 題があった。  [0003] Conventionally, as such DMFC, a technique of using a fluoric resin containing a sulfonic acid group for both an electrolyte membrane and an electrolyte used as a binder has been common. However, the use of such a fluorine-based electrolyte membrane is a cross-over in which methanol permeability is high and the methanol that cannot be consumed at the fuel electrode reaches the oxidant electrode and reacts on the oxidant electrode to generate back electromotive force. There was a problem that sufficient power generation characteristics could not be obtained due to the over phenomenon. In addition, fluorine-based resin is expensive and difficult to recycle, and there is a problem that waste disposal is also expensive.
[0004] このようなフッ素系榭脂特有の問題を解決する手段として、種々の炭化水素系電解 質膜の開発が進められている (特許文献 1〜3)。しかし、これらの炭化水素系電解質 膜は、従来の触媒層の結着剤として用いられているフッ素系電解質との接着性が悪 いため、電解質膜と組成の類似した炭化水素系電解質を触媒層の結着剤として用い る検討が必要と考えられる。ところで、この電極内の触媒層では、反応物'生成物の 拡散、電子移動、水素イオンの移動が起こるため、反応点である燃料、電子、水素ィ オンのそれぞれの移動経路となる三相界面の大きさが重要視される。本発明者らは 、一般の炭化水素系電解質を結着剤として用いた場合、従来のフッ素系榭脂を結着 剤として用いた場合に比べて、三相界面の大きさが縮小されるために充分な発電性 能を得ることが困難であることを見出し本発明の考案に至った。また、この三相界面 の問題と同様にメタノールに対する耐久性の向上も重要であり、解決すべき課題の ひとつとなっていた。 [0004] Development of various hydrocarbon-based electrolyte membranes has been promoted as means for solving such problems peculiar to fluorocarbon resins (Patent Documents 1 to 3). However, these hydrocarbon-based electrolyte membranes have poor adhesion to the fluorine-based electrolytes used as binders for conventional catalyst layers, and therefore hydrocarbon-based electrolytes with similar compositions to the electrolyte membranes can be used as catalyst layers. Consideration of use as a binder is considered necessary. By the way, in the catalyst layer in this electrode, the diffusion of reactants' products, electron transfer, and hydrogen ion transfer occur, so the fuel, electrons, Emphasis is placed on the size of the three-phase interface that is the on-movement path of each. Since the present inventors have reduced the size of the three-phase interface when a general hydrocarbon electrolyte is used as a binder, compared to the case where a conventional fluorine-based resin is used as a binder. The inventors have found that it is difficult to obtain sufficient power generation performance and have devised the present invention. In addition, as with this three-phase interface problem, it is important to improve durability against methanol, which has been one of the issues to be solved.
[0005] 特許文献 4には、電池高寿命化のため触媒粒子表面にプロトン伝導性官能基を有 する分子を化学結合させる技術が記載されて!ヽる。しかし触媒粒子とプロトン伝導性 官能基含有化合物を結合させると、プロトン伝導性官能基自身が触媒の作用により 変性されてしまいプロトン伝導性が低下したり、プロトン伝導性官能基が触媒に吸着 して触媒性能を低下させたりする問題があった。  [0005] Patent Document 4 describes a technique for chemically bonding a molecule having a proton conductive functional group to the surface of a catalyst particle in order to extend the battery life. However, when the catalyst particles and the proton-conducting functional group-containing compound are combined, the proton-conducting functional group itself is modified by the action of the catalyst, resulting in a decrease in proton conductivity or adsorption of the proton-conducting functional group onto the catalyst. There has been a problem of deteriorating catalyst performance.
特許文献 1:特表平 11— 515040号公報  Patent Document 1: Japanese Patent Publication No. 11-515040
特許文献 2:特開 2002— 110174号公報  Patent Document 2: JP 2002-110174 A
特許文献 3 :特開 2004— 87288号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-87288
特許文献 4:特開 2004— 172098号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-172098
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明が解決しょうとする課題は、電解質膜や電極との接着力に優れ、触媒金属 を均一に保持することが可能であり、メタノールに対する耐性が高ぐプロトン伝導性 の低下も防ぐことができ、かつ環境適合性および耐久性の高 ヽ燃料電池用電解質組 成物および燃料電池を安価に提供することである。 [0006] The problem to be solved by the present invention is that it has excellent adhesion to an electrolyte membrane and an electrode, can hold a catalytic metal uniformly, and prevents a decrease in proton conductivity that is highly resistant to methanol. It is possible to provide an electrolyte composition for a fuel cell and a fuel cell at low cost that are capable of being environmentally compatible and durable.
課題を解決するための手段  Means for solving the problem
[0007] 本発明の燃料電池用電解質組成物は、以下の化合物 (A)、化合物 (B)を必須成 分として含有する燃料電池用電解質組成物である。 [0007] The fuel cell electrolyte composition of the present invention is a fuel cell electrolyte composition containing the following compound (A) and compound (B) as essential components.
(A)触媒金属と結合可能な官能基を有する数平均分子量 500〜 100000の化合物  (A) a compound having a functional group capable of binding to a catalyst metal and having a number average molecular weight of 500 to 100,000
(B)プロトン伝導性官能基を有する数平均分子量 50〜: L000000の化合物。 (B) A compound having a proton conductive functional group and a number average molecular weight of 50 to L000000.
[0008] このような本発明の燃料電池用電解質組成物は、電解質膜や電極材料との接着性 に優れるのでプロトン伝導性を損なうことなく膜—電極接合体を調整できる。また、触 媒金属を高分散でき、触媒の活性を充分引き出すことが可能なので、それを含む燃 料電池は、高出力 ·高耐久性の電池とすることができる。 [0008] Such an electrolyte composition for a fuel cell of the present invention has an adhesive property to an electrolyte membrane or an electrode material. Therefore, the membrane-electrode assembly can be adjusted without impairing proton conductivity. In addition, since the catalyst metal can be highly dispersed and the activity of the catalyst can be sufficiently extracted, the fuel cell including the catalyst metal can be a high output and high durability battery.
[0009] 特に、燃料電池の電極にお 、ては、反応物 ·生成物の拡散、電子移動、水素ィォ ンの移動が起こるため、反応点である燃料、電子、水素イオンのそれぞれの移動のし 易さが重要であるが、本発明の燃料電池用電解質組成物は、前記化合物 (A)、及 び (B)がフッ素系榭脂でない炭化水素系榭脂であっても、この電解質を電極の結着 剤として用いた場合、前記各移動のし易さが確保できるので、充分な発電性能を得 ることができ、また、メタノールに対する耐久性の向上も図ることができる。さらに非フ ッ素系榭脂であれば環境負荷が小さ ヽ。  [0009] In particular, since the diffusion of reactants / products, electron transfer, and hydrogen ion occurs at the electrode of the fuel cell, each of the fuel, electrons, and hydrogen ions that are the reaction points moves. Ease of handling is important, but the electrolyte composition for a fuel cell of the present invention is not limited to the electrolytes even if the compounds (A) and (B) are hydrocarbon-based resins that are not fluorine-based resins. When is used as a binder for the electrode, the ease of each movement can be secured, so that sufficient power generation performance can be obtained, and the durability against methanol can be improved. In addition, non-fluorinated resin has a low environmental impact.
[0010] 前記触媒金属と結合可能な官能基の数は、 1分子あたり 2個以下であることが好ま しぐ触媒金属の活性を充分引き出すことが可能なので、それを含む燃料電池は、特 に高出力の電池とすることができる。  [0010] Since the number of functional groups capable of binding to the catalyst metal is preferably 2 or less per molecule, it is possible to sufficiently bring out the activity of the catalyst metal. A high output battery can be obtained.
[0011] 前記触媒金属と結合可能な官能基としては、メルカプト基であることが好ましぐ前 記金属触媒と共有結合を形成できるので、強固に結合できる。  [0011] The functional group capable of binding to the catalyst metal is preferably a mercapto group, and can form a covalent bond with the metal catalyst, and thus can be firmly bonded.
[0012] 前記メルカプト基は、触媒との結合が効率的であり、かつ、触媒表面を必要以上に 被覆することがな 、ので、前記化合物 (A)の分子末端に存在することが好ま 、。  [0012] It is preferable that the mercapto group is present at the molecular end of the compound (A) because it efficiently binds to the catalyst and does not cover the surface of the catalyst more than necessary.
[0013] また、前記化合物 (A)としては、可逆的付加脱離連鎖移動重合により重合され、さ らに処理剤で処理された重合体であることが好ましぐ分子末端にメルカプト基を有 する高分子化合物を、そのメルカプト基の導入量を十分に制御しながら、簡便に行う ことができる。  [0013] The compound (A) is preferably a polymer polymerized by reversible addition / elimination chain transfer polymerization and further treated with a treating agent, which has a mercapto group at the molecular end. The polymer compound to be prepared can be conveniently performed while sufficiently controlling the amount of mercapto group introduced.
[0014] 前記処理剤としては、水素 窒素結合含有化合物、塩基性化合物、及び還元剤か らなる群より選ばれる 1以上の化合物であることが好ましぐ効率良くチォカルボ-ル チォ基をメルカプト基に変換することができる。  [0014] Preferably, the treating agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent, and a thiocarbothio group is preferably converted to a mercapto group. Can be converted to
[0015] さらに、前記化合物 (A)と前記化合物 (B)とが同一の化合物であることが好ましぐ  [0015] Further, it is preferable that the compound (A) and the compound (B) are the same compound.
(A)と (B)との相溶性を考慮することなぐ触媒金属を高分散でき、触媒活性を十分 に引き出すことが可能なので、それを含む燃料電池は、高出力'高耐久性の電池と することができる。 [0016] 一方、前記プロトン伝導性官能基としては、スルホン酸基であることが好ましぐ高い プロトン伝導性の電解質組成物となる。 Since the catalytic metal can be highly dispersed without considering the compatibility of (A) and (B), and the catalytic activity can be fully exploited, the fuel cell containing it can be considered as a high-power, high-durability battery. can do. [0016] On the other hand, the proton conductive functional group is preferably a sulfonic acid group, resulting in a highly proton conductive electrolyte composition.
[0017] 前記化合物 (A)と前記化合物(B)との重量比としては、 (A): (B) = 1: 99〜99: 1 の範囲であることが好ましく、触媒活性 ·プロトン伝導性 ·耐久性を併せ持つ優れた特 性を有する電解質組成物となる。 [0017] The weight ratio of the compound (A) to the compound (B) is preferably in the range of (A): (B) = 1: 99 to 99: 1, and has catalytic activity and proton conductivity. · An electrolyte composition having excellent properties and durability.
[0018] このような本発明の燃料電池用電解質組成物に、さら〖こ、触媒金属を担持したカー ボン (C)をさらに含有させることで、優れた特性を有する燃料電池用触媒組成物とす ることがでさる。 [0018] A fuel cell catalyst composition having excellent characteristics can be obtained by further including, in such an electrolyte composition for a fuel cell of the present invention, carbon (C) carrying a catalyst metal. It can be done.
[0019] 前記触媒金属担持カーボン (C)の重量と、前記化合物 (A)、及び前記化合物 (B) の合計重量との重量比としては、(C): ( (A) + (B) ) = l : 9〜9: 1の範囲であることこ とが好ましく、触媒活性 ·プロトン伝導性 ·耐久性を併せ持つ優れた特性を有する燃 料電池用触媒組成物となる。  [0019] The weight ratio of the weight of the catalyst metal-supported carbon (C) to the total weight of the compound (A) and the compound (B) is (C): ((A) + (B)) = l: It is preferably in the range of 9 to 9: 1, and it becomes a fuel cell catalyst composition having excellent characteristics having both catalytic activity, proton conductivity and durability.
[0020] このような本発明の電解質組成物を電極層の成分として含む膜—電極接合体であ つて、プロトン伝導性を有する電解質膜を電極層で挟んだ膜—電極接合体は、燃料 電池用膜 電極接合体として優れた特性を安定的に示すので好ましい。  [0020] A membrane-electrode assembly comprising such an electrolyte composition of the present invention as a component of an electrode layer, wherein a membrane-electrode assembly in which an electrolyte membrane having proton conductivity is sandwiched between electrode layers is a fuel cell. The membrane electrode assembly is preferable because it stably exhibits excellent properties.
[0021] 特に、前記プロトン伝導性を有する電解質膜としてフッ素系榭脂でない炭化水素系 榭脂を用いた場合に、電極の結着剤として本発明の電解質組成物のうちフッ素系榭 脂でな 、炭化水素系榭脂を用いた場合、結着剤と電解質膜との組成を類似したもの とできるのでこれらの間の接着性を強くできる。  [0021] In particular, when a non-fluorine-based hydrocarbon resin is used as the proton-conductive electrolyte membrane, it is not a fluorine-based resin among the electrolyte compositions of the present invention as an electrode binder. In the case of using hydrocarbon-based resin, since the composition of the binder and the electrolyte membrane can be made similar, the adhesion between them can be strengthened.
[0022] 前記膜 電極接合体は、固体高分子形、直接液体形、及び直接メタノール形から なる群より選ばれる 1以上の形式の燃料電池、特にメタノールに対する耐性が高いた め直接メタノール形燃料電池に好適に用 、ることができる。  [0022] The membrane electrode assembly is one or more types of fuel cells selected from the group consisting of a solid polymer type, a direct liquid type, and a direct methanol type, particularly a direct methanol type fuel cell because of its high resistance to methanol. It can be suitably used for.
[0023] 特に、このような本発明の膜一電極接合体を、直接メタノール型燃料電池に使用し た場合に、その膜 電極接合体を構成する前記プロトン伝導性を有する電解質膜と して炭化水素系榭脂を用いることにより、燃料であるメタノールへの耐久性が確保で き、さらに、電極層の結着剤として本発明の電解質組成物のうち炭化水素系榭脂を 用いることにより、全体としてフッ素系榭脂を使用しないので環境負荷がさらに小さく できる。 発明の効果 [0023] In particular, when such a membrane-electrode assembly of the present invention is used directly in a methanol fuel cell, carbonization is performed as the proton-conducting electrolyte membrane constituting the membrane-electrode assembly. By using a hydrogen-based resin, durability to methanol as a fuel can be ensured. Further, by using a hydrocarbon-based resin among the electrolyte compositions of the present invention as a binder for an electrode layer, As fluorinated resin is not used, the environmental impact can be further reduced. The invention's effect
[0024] 本発明の燃料電池用電解質組成物は、電解質膜や電極材料との接着性に優れる のでプロトン伝導性を損なうことなく触媒金属に接着することができ、また、触媒金属 の活性を充分引き出すことが可能なので、それを含む燃料電池は、高出力'高耐久 性の電池とすることができる。  [0024] The electrolyte composition for a fuel cell of the present invention is excellent in adhesiveness with an electrolyte membrane or an electrode material, so that it can be adhered to a catalytic metal without impairing proton conductivity, and the catalytic metal has sufficient activity. Since it can be pulled out, the fuel cell containing it can be a high-power, high-durability battery.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]膜—電極接合体の模式図である。 FIG. 1 is a schematic view of a membrane-electrode assembly.
[図 2]直接メタノール形燃料電池の要部断面図である。  FIG. 2 is a cross-sectional view of a main part of a direct methanol fuel cell.
符号の説明  Explanation of symbols
[0026] 1 プロトン伝導性高分子膜 [0026] 1 Proton conducting polymer membrane
2 触媒層  2 Catalyst layer
3 拡散層  3 Diffusion layer
4 セノ レ1 ~~タ1 ~~ 4 Senore 1 ~~ Ta 1 ~~
5 流路  5 flow path
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 本発明の燃料電池用電解質組成物は、 (A)触媒金属と結合可能な官能基を有す る数平均分子量 500〜: LOOOOOの化合物と、 (B)プロトン伝導性官能基を有する数 平均分子量 50〜: LOOOOOOの化合物とを必須成分として含有する。以下それぞれの 化合物について説明する。 [0027] The electrolyte composition for a fuel cell of the present invention comprises (A) a compound having a number average molecular weight of 500 to LOOOOO having a functional group capable of binding to a catalytic metal, and (B) having a proton conductive functional group. Number Average molecular weight 50 ~: Contains LOOOOOO compound as an essential component. Each compound is described below.
(化合物 A)  (Compound A)
化合物 (A)において、触媒金属と結合可能な官能基としては特に限定されないが 、メルカプト基、ヒドロキシル基、カルボキシル基、アミノ基、アミド基、ジスルフイド基な どを挙げることができる。形成される結合としては共有結合、イオン結合、配位結合な ど限定されないが、結合が強固である点で共有結合が好ましい。共有結合を形成で きる点で、上記官能基のうちメルカプト基が最も好ましい。化合物 (A)の数平均分子 量が 500未満であるとメタノールに対する耐性が低くなり、 100000を超えると触媒被 覆率が高くなりすぎて触媒活性が低くなつてしまう。このような耐久性および触媒活性 の点で、化合物(A)の数平均分子量は 1000〜50000がより好ましい。なお、本発 明にお 、て高分子化合物の数平均分子量はゲル ·パーミエーシヨン'クロマトグラフィ 一 (GPC)分析により決定される値である。化合物 (A)において、触媒金属と結合可 能な官能基の数は特に限定されないが、多すぎると触媒金属表面が高分子で覆わ れてしまうため触媒活性が低くなるという問題があり、 1分子あたり 2個以下が好ましく 、 1分子あたり 1個であることがより好ましい。また該官能基の化合物 (A)中の存在位 置としては分子鎖中よりも分子末端にあったほうが触媒との結合が効率的であり、か つ触媒表面を必要以上に被覆することがな 、ため好ま U、。 In compound (A), the functional group capable of binding to the catalyst metal is not particularly limited, and examples thereof include a mercapto group, a hydroxyl group, a carboxyl group, an amino group, an amide group, and a disulfide group. The bond to be formed is not limited to a covalent bond, an ionic bond, or a coordination bond, but a covalent bond is preferable because the bond is strong. Of these functional groups, a mercapto group is most preferable because a covalent bond can be formed. If the number average molecular weight of the compound (A) is less than 500, the resistance to methanol is low, and if it exceeds 100000, the catalyst coverage becomes too high and the catalytic activity becomes low. Such durability and catalytic activity In this respect, the number average molecular weight of the compound (A) is more preferably 1000 to 50000. In the present invention, the number average molecular weight of the polymer compound is a value determined by gel permeation chromatography (GPC) analysis. In compound (A), the number of functional groups capable of binding to the catalytic metal is not particularly limited, but if it is too large, the catalytic metal surface is covered with a polymer, resulting in low catalytic activity. The number is preferably 2 or less per, and more preferably 1 per molecule. Further, the position of the functional group in the compound (A) is more efficient at binding to the catalyst than at the molecular chain, and it does not cover the surface of the catalyst more than necessary. U, because, preferred.
[0028] 化合物 (A)として、分子末端にメルカプト基を有する高分子化合物を製造する方法 としては特に限定されないが、メルカプト基の導入が定量的かつ簡便に行える点で、 可逆的付加脱離連鎖移動 (RAFT)重合により得られる重合体を処理剤で処理する 方法が好ましい。 [0028] A method for producing a polymer compound having a mercapto group at the molecular end as the compound (A) is not particularly limited, but a reversible addition / desorption chain can be introduced in a quantitative and simple manner. A method of treating a polymer obtained by transfer (RAFT) polymerization with a treating agent is preferred.
[0029] RAFT重合とはチォカルボ-ルチオィ匕合物を連鎖移動剤としてビニル系単量体を 制御ラジカル重合する方法であり、例えば" HANDBOOK OF RADICAL PO LYMERIZATION" , K. Matyjaszewski and T. P. Davis Ed. , Wiley, 200 2, 661ページ記載の方法、同書参考文献記載の方法、あるいは特表 2000— 5151 81号公報記載の方法などを適用可能である。重合形式は特に限定されないが、重 合後の処理剤による処理が簡便である点で塊状重合または溶液重合が好ましい。  [0029] RAFT polymerization is a method of controlled radical polymerization of vinyl monomers using thiocarbothioi compounds as chain transfer agents. For example, "HANDBOOK OF RADICAL PO LYMERIZATION", K. Matyjaszewski and TP Davis Ed. The method described in Wiley, 2002, page 661, the method described in the reference of the book, or the method described in JP 2000-515181 A can be applied. The polymerization mode is not particularly limited, but bulk polymerization or solution polymerization is preferable in that the treatment with the treating agent after polymerization is simple.
[0030] 上記チォカルボ-ルチオィ匕合物としては特に限定されな!、が、入手性、反応性の 点で以下の一般式 1で表される化合物が好ま 、。  [0030] The thiocarbothio compound is not particularly limited! However, a compound represented by the following general formula 1 is preferable in view of availability and reactivity.
[0031] [化 1] [0031] [Chemical 1]
Ph -
Figure imgf000009_0001
Ph-
Figure imgf000009_0001
S Me S Me  S Me S Me
Ph-C-H S-CPh Ph-C-S-CHOAc  Ph-C-H S-CPh Ph-C-S-CHOAc
S e  S e
S Me  S Me
Ph-C-S-CCN Ph-C-S-CCH2CH2COOH Ph-CS-CCN Ph-CS-CCH 2 CH 2 COOH
e Me n
Figure imgf000009_0002
e Me n
Figure imgf000009_0002
Me  Me
PhO-C-S-CCN EtO-C-S-CH2CN PhO-CS-CCN EtO-CS-CH 2 CN
e  e
PhCH2-S-C-S-CH2 PhCH 2 -SCS-CH 2
Me Me Me S Me Me Me Me S Me
PhCH-S-C-S-CHPh PhC-S-C-S-CPh  PhCH-S-C-S-CHPh PhC-S-C-S-CPh
一般式  General formula
Me Me  Me Me
[0032] (式中、 Meはメチル基、 Etはェチル基、 Phはフエ-ル基、 Acはァセチル基を表し、 r は 1以上の整数である)。 [In the formula, Me represents a methyl group, Et represents an ethyl group, Ph represents a phenyl group, Ac represents a acetyl group, and r is an integer of 1 or more].
[0033] 重合に供する単量体としては特に限定されず、ラジカル重合可能なビニル系単量 体を使用可能であるが、電解質としての耐熱性に優れる点で (メタ)アクリル酸エステ ル、(メタ)アクリル酸、スチレン、(メタ)アクリロニトリル、(メタ)アクリルアミド、塩ィ匕ビ- ルが好ましぐ(メタ)アクリル酸エステルがより好まし!/、。  [0033] The monomer used for polymerization is not particularly limited, and a vinyl monomer capable of radical polymerization can be used. However, (meth) acrylic acid ester, ( (Meth) acrylic acid, styrene, (meth) acrylonitrile, (meth) acrylamide, and salt vinyl are preferred (meth) acrylic acid esters are more preferred!
[0034] RAFT重合で得られた重合体を処理剤で処理することにより、チォカルボ-ルチオ 基をメルカプト基に変換し、分子末端にメルカプト基を有する高分子化合物とすること ができる。該処理剤としては特に限定されないが、メルカプト基への変換効率が高い 点で、水素 窒素結合含有化合物、塩基性化合物、還元剤からなる群より選ばれる 1以上の化合物が好ましい。 [0034] By treating the polymer obtained by RAFT polymerization with a treating agent, the thiothio group can be converted into a mercapto group to give a polymer compound having a mercapto group at the molecular end. The treatment agent is not particularly limited, but is selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent in terms of high conversion efficiency to a mercapto group. One or more compounds are preferred.
[0035] 上記処理剤のうち、水素—窒素結合含有ィ匕合物としては特に限定されないが、ァ ンモユア、ヒドラジン、 1級ァミン、 2級ァミン、アミドィ匕合物、ァミン塩酸塩、水素-窒素 結合含有高分子、ヒンダードアミン系光安定剤 (HALS)などを挙げることができる。 上記 1級ァミンの例としては、メチルァミン、ェチルァミン、イソプロピルァミン、 n-プロ ピルァミン、 n-ブチルァミン、 t-ブチルァミン、 2-ェチルへキシルァミン、 2-アミノエタ ノーノレ、エチレンジァミン、ジエチレントリァミン、 1, 2-ジァミノプロパン、 1, 4-ジァミノ ブタン、シクロへキシルァミン、ァ-リン、フエネチルァミンなどを挙げることができる。 上記 2級ァミンの例としては、ジメチルァミン、ジェチルァミン、ジイソブチルァミン、ジ -2-ェチルへキシルァミン、イミノジ酢酸、ビス(ヒドロキシェチル)ァミン、ジ -η-ブチル ァミン、ジ- -ブチルァミン、ジフエ-ルァミン、 N-メチルァ-リン、イミダゾール、ピペリ ジンなどを挙げることができる。上記アミド化合物の例としては、アジピン酸ヒドラジド、 N-イソプロピルアクリルアミド、ォレアミド、チオアセトアミド、ホルムアミド、ァセトァ-リ ド、フタルイミド、コハク酸イミドなどを挙げることができる。上記アミン塩酸塩の例とし ては、ァセトアミジン塩酸塩、モノメチルァミン塩酸塩、ジメチルァミン塩酸塩、モノエ チルァミン塩酸塩、ジェチルァミン塩酸塩、塩酸グァ-ジンなどを挙げることができる 。上記水素-窒素結合含有高分子の例としては、ポリエチレンィミン、ポリアリルアミン 、ポリビュルァミンなどを挙げることができる。上記 HALSの例としては、アデカスタブ LA-77 (旭電化工業 (株)製)、チヌビン 144 (チバ 'スペシャルティ ·ケミカルズ社製) 、アデカスタブ LA-67 (旭電化工業 (株)製)などを挙げることができる。  [0035] Among the above treating agents, the hydrogen-nitrogen bond-containing compound is not particularly limited, but ammonia, hydrazine, primary amine, secondary amine, amido compound, ammine hydrochloride, hydrogen-nitrogen Examples thereof include a bond-containing polymer and a hindered amine light stabilizer (HALS). Examples of the primary amines include methylamine, ethylamine, isopropylamine, n-propylamine, n-butylamine, t-butylamine, 2-ethylhexylamine, 2-aminoethanolamine, ethylenediamine, diethylenetriamine, 1, 2 -Diaminopropane, 1,4-diaminobutane, cyclohexylamine, aline, phenethylamine and the like. Examples of secondary amines include dimethylamine, jetylamine, diisobutylamine, di-2-ethylhexylamine, iminodiacetic acid, bis (hydroxyethyl) amine, di-η-butylamine, di-butylamine, diphenyl- Examples include lumine, N-methylaline, imidazole, and piperidine. Examples of the amide compound include adipic acid hydrazide, N-isopropylacrylamide, oleamide, thioacetamide, formamide, acetate, phthalimide, and succinimide. Examples of the amine hydrochloride include acetamidine hydrochloride, monomethylamine hydrochloride, dimethylamine hydrochloride, monoethylamine hydrochloride, jetylamine hydrochloride, and guanidine hydrochloride. Examples of the hydrogen-nitrogen bond-containing polymer include polyethyleneimine, polyallylamine, polybulamine and the like. Examples of the above HALS include ADK STAB LA-77 (Asahi Denka Kogyo Co., Ltd.), Tinuvin 144 (Ciba 'Specialty Chemicals Co., Ltd.), ADK STAB LA-67 (Asahi Denka Kogyo Co., Ltd.), etc. Can do.
[0036] 上記処理剤のうち塩基性ィ匕合物の例としては特に限定されないが、水酸化ナトリウ ム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、 ナトリウムメトキシド、ナトリウムエトキシド、マグネシウムメトキシド、炭酸ナトリウム、炭 酸カリウム、水硫ィ匕ナトリウム、硫ィ匕ナトリウムなどを挙げることができる。  [0036] Among the above treatment agents, examples of basic compounds are not particularly limited, but include sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, sodium methoxide, sodium ethoxy. And magnesium methoxide, sodium carbonate, potassium carbonate, sodium sulfate, sodium sulfate.
[0037] 上記処理剤のうち還元剤の例としては特に限定されないが、水素化ナトリウム、水 素化リチウム、水素化カルシウム、 LiAlH、 NaBH、 LiBEt H、水素などを挙げるこ  [0037] Among the above-mentioned treatment agents, examples of the reducing agent are not particularly limited, but examples thereof include sodium hydride, lithium hydride, calcium hydride, LiAlH, NaBH, LiBEt H, and hydrogen.
4 4 3  4 4 3
とがでさる。  Togashi.
[0038] 上記処理剤は単独で用いてもよぐ組み合わせて用いてもよ!、。反応性の点で n- ブチルァミンなどの 1級ァミン、水酸化ナトリウム、水酸ィ匕カリウム、水硫ィ匕ナトリウム、 硫化ナトリウム、 LiAlH、 NaBH、 LiBEt Hが好ましい。上記処理剤の使用量は特 [0038] The above treatment agents may be used alone or in combination! N- in terms of reactivity Primary amines such as butyramine, sodium hydroxide, potassium hydroxide, sodium hydroxide, sodium sulfide, LiAlH, NaBH, and LiBEt H are preferred. The amount of the above treatment agent is special
4 4 3  4 4 3
に限定されないが、反応性と経済性の点で、高分子 100重量部に対して 0. 01〜: LO 0重量部が好ましぐ 0. 1〜50重量部がより好ましい。温度や溶媒の有無、混合条件 などの反応条件は特に限定されないが、操作が簡便である点で重合後の溶液に処 理剤を直接添加して処理する方法が好ましぐ反応温度は 0°C〜150°Cの範囲が好 ましい。  Although not limited thereto, in terms of reactivity and economy, 0.01 to: 0 part by weight of LO is preferable with respect to 100 parts by weight of the polymer, and 0.1 to 50 parts by weight is more preferable. Reaction conditions such as temperature, presence or absence of solvent, and mixing conditions are not particularly limited. However, a reaction method in which a treatment agent is directly added to the solution after polymerization is preferable because the operation is simple. A range of C to 150 ° C is preferred.
(化合物 B)  (Compound B)
本発明の化合物 (B)においてプロトン伝導性官能基としては特に限定されず、例え ばスルホン酸基、スルフィノ基、ホスホ-ル基、ホスフィエル基などを挙げることができ る。これらのうちプロトン伝導性が高い点でスルホン酸基が好ましい。スルホン酸基は そのままの状態でも良ぐアルカリ金属塩であってもよい。化合物(B)の数平均分子 量が 50未満であると電解質膜や電極材料との接着力が不充分であり、 1000000を 超えると他成分との混合が困難となるなど取扱いに《なる。このような接着力 '取り扱 いやすさの点から、化合物 )の数平均分子量は 100〜800000であることがより好 ましい。  In the compound (B) of the present invention, the proton conductive functional group is not particularly limited, and examples thereof include a sulfonic acid group, a sulfino group, a phosphor group, and a phosphier group. Of these, sulfonic acid groups are preferred because of their high proton conductivity. The sulfonic acid group may be an alkali metal salt as it is. If the number average molecular weight of the compound (B) is less than 50, the adhesive strength with the electrolyte membrane or electrode material is insufficient, and if it exceeds 1000000, mixing with other components becomes difficult. In view of such adhesive strength and ease of handling, the number average molecular weight of the compound) is more preferably 100 to 800,000.
[0039] 化合物(B)の主鎖構造としては特に限定されないが、耐熱性'耐メタノール性'耐 酸性に優れる点でポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEE K)、ポリフエ-レンサルファイド、ポリフエ-レンエーテル、ポリスルホン、ポリエーテル ケトン、スチレン系熱可塑性エラストマ一が好ましい。  [0039] Although the main chain structure of compound (B) is not particularly limited, it is polyethersulfone (PES), polyetheretherketone (PEE K), polyphenylene in terms of excellent heat resistance, methanol resistance, and acid resistance. Sulfide, polyphenylene ether, polysulfone, polyether ketone, and styrene thermoplastic elastomer are preferred.
(A、 B比率)  (A, B ratio)
本発明の燃料電池用電解質組成物にお!ヽて、化合物 (A)と化合物 (B)との重量比 については特に限定されないが、触媒活性 'プロトン伝導性 ·耐久性の点で (A): (B ) = 1 : 99〜99 : 1の範囲にあることが好ましぐ (A): (B) = 2 : 98〜98 : 2の範囲にあ ることがより好まし!/、。  In the fuel cell electrolyte composition of the present invention, the weight ratio of the compound (A) to the compound (B) is not particularly limited. However, the catalyst activity (proton conductivity / durability) (A) : (B) = 1: 99 to 99: 1 is preferable (A): (B) = 2: 98 to 98: 2 is more preferable!
[0040] 本発明の燃料電池用電解質組成物は、上記化合物 (A)、 (B)以外の成分として ( C)触媒金属を担持したカーボンをさらに含有させることで優れた特性を有する燃料 電池用触媒組成物とすることができる。 (触媒金属担持カーボン c) [0040] The electrolyte composition for a fuel cell of the present invention has an excellent characteristic by further containing (C) carbon carrying a catalyst metal as a component other than the compounds (A) and (B). It can be a catalyst composition. (Catalyst metal-supported carbon c)
触媒金属担持カーボン (c)における触媒金属としては特に限定されず、白金、金、 パラジウム、ルテニウム、ニッケル、ロジウム、コノルト、イリジウム、オスミウム、鉄、お よびこれらの金属を含む合金を挙げることができる。これらのうち触媒活性が高い点 で白金および白金を含有する合金が好ましい。触媒金属の形状は特に限定されな いが、触媒活性が高い点で粒子状であることが好ましぐ数平均粒子径 lOOnm以下 の粒子であることがより好ましぐ数平均粒子径 50nm以下の粒子であることがさらに 好ましい。触媒金属担持カーボン (C)におけるカーボンとしては特に限定されないが 電導性が高いものが好ましぐ具体的にはケッチェンブラックやアセチレンブラックな どのカーボンブラック、活性炭、カーボンナノホーン、カーボンナノチューブなどの高 表面積のものが好ましい。  The catalyst metal in the catalyst metal-supported carbon (c) is not particularly limited, and examples thereof include platinum, gold, palladium, ruthenium, nickel, rhodium, connort, iridium, osmium, iron, and alloys containing these metals. Of these, platinum and platinum-containing alloys are preferred because of their high catalytic activity. The shape of the catalyst metal is not particularly limited, but it is preferably a particle having a number average particle size of lOOnm or less, which is preferably particulate in terms of high catalytic activity, and a number average particle size of 50 nm or less is more preferable. More preferably, it is a particle. Carbon in catalytic metal-supported carbon (C) is not particularly limited, but high conductivity is preferred. Specifically, high surface area such as carbon black such as ketjen black and acetylene black, activated carbon, carbon nanohorn and carbon nanotube Are preferred.
前記触媒金属を担持したカーボンの組成比は、触媒金属:カーボン (重量比) = 5: 95〜95 : 5の範囲、また、触媒金属の量は所望の特性が発現する範囲で少ないほど 好ましぐ触媒層中の目付量として、概ね 0. l〜5mgZcm2の範囲であることが好ま しい。 The composition ratio of the carbon carrying the catalyst metal is preferably in the range of catalyst metal: carbon (weight ratio) = 5: 95 to 95: 5, and the amount of the catalyst metal is preferably as small as possible within the range where desired characteristics are manifested. The basis weight in the catalyst layer is preferably in the range of about 0.1 to 5 mgZcm 2 .
(A+B、 C比率)  (A + B, C ratio)
本発明の燃料電池用電解質組成物にお!ヽて、化合物 (A)と化合物 (B)と触媒金 属担持カーボン (C)との重量比については特に限定されないが、触媒活性'プロトン 伝導性,耐久性の点で、触媒金属担持カーボン (C)の重量と、化合物 (A)、及びィ匕 合物(B)を足し合わせた重量との重量比が(C): ( (A) + (B) ) = l : 9〜9: 1の範囲 にあることが好ましぐ (C): ( (A) + (B) ) = 2 : 8〜8: 2の範囲にあることがより好まし い。  In the fuel cell electrolyte composition of the present invention, the weight ratio of the compound (A), the compound (B) and the catalytic metal-supported carbon (C) is not particularly limited, but the catalytic activity 'proton conductivity In terms of durability, the weight ratio of the weight of catalyst metal-supported carbon (C) to the combined weight of compound (A) and compound (B) is (C): ((A) + (B)) = l: It is preferable to be in the range of 9 to 9: 1 (C): ((A) + (B)) = 2: It is more preferable to be in the range of 8 to 8: 2. Good.
(膜—電極接合体)  (Membrane-electrode assembly)
本発明の燃料電池は、プロトン伝導性を有する電解質膜を上記電解質組成物を含 む層で挟んだ図 1に示す膜 電極接合体を有する。  The fuel cell of the present invention has a membrane electrode assembly shown in FIG. 1 in which an electrolyte membrane having proton conductivity is sandwiched between layers containing the electrolyte composition.
(電解質膜) (Electrolyte membrane)
プロトン伝導性を有する電解質膜としては特に限定されないが、例えばポリアクリル アミド、ポリアクリロニトリル、ポリアリールエーテルスルホン、ポリ(ァリルフエ-ルエー テル)、ポリエチレンォキシド、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポ リエーテルケトンケトン、ポリ塩化ビニル、ポリ(ジフエ-ルシロキサン)、ポリ(ジフエ- ルフォスファゼン)、ポリスルホン、ポリパラフエ-レン、ポリビュルアルコール、ポリ(フ ェ -ルグリシジルエーテル)、ポリ(フエ-ルメチルシロキサン)、ポリ(フエ-ルメチルフ ォスファゼン)、ポリフエ-レンォキシド、ポリフエ-レンスルホキシド、ポリフエ-レンス ルフイドスルホン、ポリフエ-レンスルホン、ポリべンズイミダゾール、ポリべンゾォキサ ゾール、ポリべンゾチアゾール、ポリ( a—メチルスチレン)、ポリスチレン、スチレン一 (エチレンーブチレン)スチレン共重合体、スチレン (エチレン プロピレン)ースチ レン共重合体、スチレン (ポリイソブチレン) スチレン共重合体、ポリ 1, 4ービフエ 二レンエーテルエーテルスルホン、ポリアリーレンエーテルスルホン、ポリエーテルイミ ド、シアン酸エステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリアセタール、ポリ ブチレンテレフタレート、ポリエチレンテレフタレート、シンジオタクチックポリスチレン、 ポリフエ-レンサルファイド、ポリエーテルエーテルケトン、ポリエーテル-トリルなどの 炭化水素系高分子化合物を主たる構成成分とし、スルホン酸基、リン酸基、カルボン 酸基、フエノール性水酸基などのプロトン伝導性置換基を含有するものであり、これら の榭脂を多孔質膜に充填した細孔フィリング膜や、無機プロトン伝導度体 (例えば、 酸化タングステン水和物(WO ·ηΗ 0)、酸化モリブデン水和物(ΜοΟ ·ηΗ 0)、タ The electrolyte membrane having proton conductivity is not particularly limited. For example, polyacrylamide, polyacrylonitrile, polyarylethersulfone, poly (arylphenol) Tellurium), polyethyleneoxide, polyetherethersulfone, polyetherketone, polyetherketoneketone, polyvinylchloride, poly (diphenylsiloxane), poly (diphenylphosphazene), polysulfone, polyparaphenylene, polybulualcohol , Poly (phenylglycidyl ether), poly (phenylmethylsiloxane), poly (phenylmethylphosphazene), polyphenoloxide, polyphenylenesulfoxide, polyphenylenesulfonesulfone, polyphenylenesulfone, poly Benzimidazole, polybenzoxazole, polybenzothiazole, poly (a-methylstyrene), polystyrene, styrene- (ethylene-butylene) styrene copolymer, styrene (ethylene-propylene) styrene copolymer, Len (Polyisobutylene) Styrene copolymer, poly 1,4-biphenyl diethylene ether ether sulfone, polyarylene ether sulfone, polyether imide, cyanate ester, polyethylene, polypropylene, polyamide, polyacetal, polybutylene terephthalate, polyethylene terephthalate, The main constituents are hydrocarbon polymer compounds such as syndiotactic polystyrene, polyphenylene sulfide, polyetheretherketone, polyether-tolyl, etc., and sulfonic acid groups, phosphoric acid groups, carboxylic acid groups, phenolic hydroxyl groups, etc. It contains proton-conducting substituents, such as pore filling membranes filled with porous resins filled with these resins, inorganic proton conductors (eg tungsten oxide hydrate (WO · η 水 和 0), oxidation Morib Down hydrate (ΜοΟ · ηΗ 0), data
3 2 3 2 ングストリン酸、モリブドリン酸など)を炭化水素とケィ素力もなる高分子ネットワークに 保持した有機—無機複合膜やなども挙げることができる。これらのうち高分子電解質 のプロトン伝導性やメタノール遮断性、化学的'熱的安定性などの点で、ポリスチレン 3 2 3 2 Organic organic-inorganic composite films in which Ngstric acid, molybdophosphoric acid, etc.) are held in a polymer network that also has a key force with hydrocarbons. Of these, polystyrene is important in terms of proton conductivity, methanol blocking properties, and chemical and thermal stability of polymer electrolytes.
、シンジオタクチックポリスチレン、ポリフエ二レンエーテル、変性ポリフエ二レンエーテ ル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトンおよびポリフエ 二レンサルファイド、並びに、それらの誘導体力 なる群力 選択される少なくとも 1種 であることが好ましい。 , Syndiotactic polystyrene, polyphenylene ether, modified polyphenylene ether, polysulfone, polyether sulfone, polyether ether ketone and polyphenylene sulfide, and their derivative power group power is at least one selected It is preferable.
拡散層は、同一または異なっていてもよぐ結着剤で触媒と接合されていても、され ていなくてもよい。一般に、カーボンペーパーやカーボンクロスなどの多孔質の導電 性材料が使用される。拡散層は供給される水分や電気化学反応によって生成した水 で、気孔が塞がれるのを抑制するため、必要に応じて、ポリテトラフルォロエチレンな どのフッ素系化合物で撥水処理を施したほうがよ 、。 The diffusion layers may or may not be joined to the catalyst with the same or different binder. In general, porous conductive materials such as carbon paper and carbon cloth are used. The diffusion layer is supplied with water or water generated by an electrochemical reaction, and prevents the pores from being blocked. Which fluorine compound should be water repellent treated?
(膜 電極接合体の製造方法) (Production method of membrane electrode assembly)
次に膜 電極接合体の製造方法について説明する。製造方法は種々の方法が選 択可能であり、膜 電極接合体の製造方法の一例を以下に記述する。触媒層 2は、 前記結着作用のある高分子化合物である電解質組成物と前記触媒金属担持カーボ ンで主に構成される。電解質組成物は溶媒に溶解あるいは分散した状態で使用し、 電解質組成物は溶媒に対し、 0. 1重量%〜30重量%であると均一な触媒層を形成 しゃすく好ましい。榭脂を溶媒に溶解あるいは分散したもの (以下、結着剤)と、上記 触媒金属担持カーボンを混合し、スラリーまたは混合溶液を得る。結着剤の榭脂成 分は触媒金属担持カーボンに対し、重量比 0. 05〜: L 5が好ましい。この範囲より大 きい場合、触媒金属が高分子電解質に覆われ、有効に活用されない恐れがある。一 方、この範囲より小さい場合、十分な結着作用が得られず、触媒層を維持できない恐 れがあるさらに、この混合溶液には触媒層を形成するのに適度な粘度になるよう水が 含まれていてもかまわない。この混合溶液をドクターナイフやロールコーター、スクリ ーン印刷、スプレーなどでポリテトラフルォロエチレン(PTFE)フィルム等の剥離フィ ルム上に堆積させ、乾燥して溶媒と水を除去する。触媒層のひび割れを防ぐため、 塗布、溶媒の除去作業は数回に繰り返して行うことも可能である。  Next, a method for producing a membrane / electrode assembly will be described. Various manufacturing methods can be selected, and an example of a manufacturing method of a membrane electrode assembly is described below. The catalyst layer 2 is mainly composed of an electrolyte composition which is a polymer compound having a binding action and the catalyst metal-supporting carbon. The electrolyte composition is used in a state dissolved or dispersed in a solvent, and the electrolyte composition is preferably 0.1% by weight to 30% by weight with respect to the solvent to form a uniform catalyst layer. A slurry or mixed solution is obtained by mixing a resin in which a resin is dissolved or dispersed (hereinafter referred to as a binder) and the above catalyst metal-supported carbon. The resin component of the binder is preferably in a weight ratio of 0.05 to L 5 with respect to the carbon supported on the catalyst metal. If it is larger than this range, the catalytic metal may be covered with the polymer electrolyte and not be used effectively. On the other hand, if it is smaller than this range, sufficient binding action may not be obtained, and the catalyst layer may not be maintained.In addition, water is added to this mixed solution so that the viscosity becomes appropriate for forming the catalyst layer. It may be included. This mixed solution is deposited on a release film such as a polytetrafluoroethylene (PTFE) film by a doctor knife, roll coater, screen printing, spraying, etc., and dried to remove the solvent and water. In order to prevent cracking of the catalyst layer, the coating and solvent removal operations can be repeated several times.
触媒が塗布された剥離フィルムをプロトン伝導性高分子膜の両面に配置し、ホット プレス機やロールプレス機などのプレス機を使用してホットプレスする。上記ホットプ レスの条件は使用する電解質膜や結着剤に含まれる高分子電解質の種類によって 設定する必要がある。設定温度は、一般的には 80°C〜200°Cであり、使用するプロ トン伝導性高分子膜あるいは高分子電解質のガラス転移点や軟化点以上の温度で あって、さらには高分子電解質膜と高分子電解質のガラス転移点や軟化点以上の温 度であることが好ましい。この範囲より大きい場合、高分子電解質中の末端基が離脱 し、有効に活用されない恐れがある。一方、この範囲より小さい場合、十分な接着力 がえられず、界面抵抗が増加する恐れがある。また、使用する電解質膜や結着剤に 含まれる榭脂成分の熱劣化や熱分解温度以下が好ましい。設定圧力は、最高圧力 が 0. IMPa以上 20MPa以下であると、高分子電解質膜と触媒層が十分に接着する とともに、材料の特に大きな変形が無い場合、特性低下が起こらないため、好ましい 。この範囲より大きい場合、触媒層が崩壊し、有効に活用されない恐れがある。一方 、この範囲より小さい場合、十分な接着力がえられず、界面抵抗が増加する恐れがあ る。上記条件のもと、プレスで得られた接合体力も剥離フィルムを取り外すことで、膜 —電極接合体を得ることができる。また、膜-電極接合体前駆体の製造方法の別例 を以下に記述する。前記拡散層上に前記混合溶液をドクターブレードやロールコー ター、スクリーン印刷、スプレーによる吹き付けで塗工した後、乾燥し溶媒を除去する ことで、触媒担持ガス拡散層を得る。触媒担持ガス拡散層を炭化水素系高分子電解 質膜の両面に配置し、ホットプレス機やロールプレス機などのプレス機を使用してホッ トプレスすることで膜一電極接合体を得ることができる。上記例同様、ホットプレスの 条件は使用するプロトン伝導性電解質膜や高分子電解質の種類によって設定する 必要がある。この他、触媒、高分子電解質、拡散層はそれぞれ市販のものを用いても よぐ一体ィ匕されているものを使用してもよい。 The release film coated with the catalyst is placed on both sides of the proton conducting polymer membrane and hot-pressed using a press such as a hot press or roll press. The hot press conditions need to be set according to the type of polymer electrolyte contained in the electrolyte membrane and binder used. The set temperature is generally 80 ° C to 200 ° C, which is the temperature above the glass transition point or softening point of the proton conductive polymer membrane or polymer electrolyte used, and further the polymer electrolyte. The temperature is preferably higher than the glass transition point and softening point of the membrane and the polymer electrolyte. If it is larger than this range, the terminal group in the polymer electrolyte may be detached and not used effectively. On the other hand, if it is smaller than this range, sufficient adhesion cannot be obtained, and the interface resistance may increase. Further, the thermal degradation or thermal decomposition temperature or less of the resin component contained in the electrolyte membrane or binder used is preferable. If the maximum pressure is 0. IMPa or more and 20 MPa or less, the polymer electrolyte membrane and the catalyst layer will adhere sufficiently. In addition, when there is no particularly large deformation of the material, it is preferable because the characteristic does not deteriorate. When larger than this range, there exists a possibility that a catalyst layer may collapse | crumble and it may not be utilized effectively. On the other hand, if it is smaller than this range, sufficient adhesion cannot be obtained, and the interface resistance may increase. Under the above conditions, the membrane-electrode assembly can be obtained by removing the release film from the bonded body force obtained by pressing. Another example of the method for producing the membrane-electrode assembly precursor is described below. The mixed solution is applied onto the diffusion layer by a doctor blade, a roll coater, screen printing, or spraying by spraying, and then dried to remove the solvent to obtain a catalyst-supporting gas diffusion layer. A membrane-one electrode assembly can be obtained by placing catalyst-supporting gas diffusion layers on both sides of a hydrocarbon polymer electrolyte membrane and hot pressing using a press such as a hot press or roll press. . As in the above example, the hot press conditions need to be set according to the type of proton conducting electrolyte membrane or polymer electrolyte used. In addition, the catalyst, the polymer electrolyte, and the diffusion layer may be commercially available or may be integrated.
(燃料電池) (Fuel cell)
次に本発明の燃料電池を説明する。図 2は直接メタノール形燃料電池の要部断面 図である。上記のような方法で得られた膜—電極接合体を、燃料、並びに酸化剤を 送り込む流路 5が形成された一対のセパレーター 4などの間に挿入することにより、本 発明の膜—電極接合体力ゝらなる直接メタノール形燃料電池が得られる。拡散層 3は 触媒層 2の外側に結着作用のある高分子電解質で接着されていてもされていなくて もよい。高分子電解質で接着されていない場合、ネジ等でセパレーターを締め付け ることで十分接触している状態する。セパレーター 4の流路 5に燃料として、メタノール を主たる成分とする液体を、酸化剤として、酸素を含むガス (酸素あるいは空気)を、 それぞれ別個供給することにより、拡散層 3を経由して触媒層 2へと送られ、直接メタ ノール形燃料電池は発電する。  Next, the fuel cell of the present invention will be described. Figure 2 is a cross-sectional view of the main part of a direct methanol fuel cell. The membrane-electrode assembly obtained by the method as described above is inserted between a pair of separators 4 and the like in which a flow path 5 for feeding fuel and an oxidant is formed. A direct methanol fuel cell with a high physical strength can be obtained. The diffusion layer 3 may or may not be adhered to the outside of the catalyst layer 2 with a polymer electrolyte having a binding action. If it is not bonded with a polymer electrolyte, it can be in sufficient contact by tightening the separator with screws. By separately supplying a liquid mainly composed of methanol as a fuel and a gas containing oxygen (oxygen or air) as an oxidant to the flow path 5 of the separator 4, the catalyst layer passes through the diffusion layer 3. The direct methanol fuel cell generates electricity.
前記セパレーター 4としては力ボーングラフアイトやステンレス鋼の導電性材料のも のが使用できる。特にステンレス鋼などの金属製材料を使用する場合は、耐腐食性 の処理を施して 、ることが好まし!/、。  As the separator 4, a force bone graphite or a stainless steel conductive material can be used. Especially when using metal materials such as stainless steel, it is preferable to apply a corrosion-resistant treatment!
実施例 [0045] 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例 によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜変更 可能である。 Example Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples, and can be appropriately changed without departing from the scope of the present invention.
[0046] (合成例 1)  [Synthesis Example 1]
(芳香族炭化水素系プロトン伝導性高分子化合物:スルホン化 PEEKの合成) メカ-カルスターラーと窒素導入管、滴下ロートを取りつけた反応容器に PEEK 4 50P (ビタトレックス'ェムシ一社製、分子量約 10万)を 3. 7g入れた。反応器中に、滴 下ロートから濃硫酸を 92g加え、室温で 3日間撹拌した。反応終了後、反応液を、 3リ ットルの純水中に注いでポリマーを析出させた後ろ過し、ろ液が中性になるまで 10回 、 3リットルの水で洗浄した。得られた反応生成物を、 lTorrの真空下、 90°Cで 10時 間乾燥し、黄色固体を 4. 5gを得た。得られた固体は、赤外分光スペクトルにおいて 、 1450、 1445、 1390cm— 1にスルホン酸基に対応するピークが観測された。イオン 交換容量(:IEC)を算出したところ、 2. 17meq/gであった。この榭脂 2. 14gと DM F26. 4gから調整した溶液を内径 60mmのシャーレに入れ、真空オーブンで、 lTor r下、 3時間、 110°Cで乾燥させた。出来た乾燥膜を水で膨潤させて力もシャーレ力も 剥がし、 lTorr、 110°C、 5時間乾燥した。膜厚 30 mのブレンド榭脂組成物膜を得 た。そのプロトン伝導度: σは 7. 5 Χ 10— 2SZcmであった。 (Aromatic hydrocarbon proton conductive polymer: Synthesis of sulfonated PEEK) PEEK 4 50P (Made by Vitatrex Emshi Co., Ltd., with molecular weight of approx. 100,000) was added. In the reactor, 92 g of concentrated sulfuric acid was added from a dropping funnel and stirred at room temperature for 3 days. After completion of the reaction, the reaction solution was poured into 3 liters of pure water to precipitate a polymer and then filtered, and washed with 3 liters of water 10 times until the filtrate became neutral. The obtained reaction product was dried at 90 ° C. for 10 hours under a vacuum of lTorr to obtain 4.5 g of a yellow solid. In the obtained solid, peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm- 1 in the infrared spectrum. The ion exchange capacity (IEC) was calculated to be 2. 17 meq / g. A solution prepared from 2.14 g of this resin and 26.4 g of DM F2 was placed in a petri dish having an inner diameter of 60 mm and dried in a vacuum oven at 110 ° C. for 3 hours under 1 Torr. The resulting dried film was swollen with water to peel off the force and petri dish force, and dried for 5 hours at lTorr, 110 ° C. A blended resin composition film having a thickness of 30 m was obtained. Its proton conductivity: sigma was 7. 5 Χ 10- 2 SZcm.
[0047] (合成例 2)  [0047] (Synthesis Example 2)
(芳香族炭化水素系プロトン伝導性高分子化合物:スルホン化 PESの合成) メカ-カルスターラーと窒素導入管、滴下ロートを取りつけた反応容器に PES 76 OOP (住友ィ匕学社製、分子量約 15万)を 15. Og入れた。反応器中に、滴下ロートか ら濃硫酸を 138g加え、室温で 1日間撹拌した。この反応液に窒素下でクロロスルホ ン酸を 50. 5g滴下し、室温で 3時間撹拌した。反応終了後、反応液を 3リットルの純 水中に注いでポリマーを析出させた後ろ過し、ろ液が中性になるまで 20回 3リットル の水で洗浄した。得られた反応生成物は、 lTorrの真空下、 90°Cで 10時間乾燥し、 白色固体を 16. Ogを得た。得られた固体は、赤外分光スペクトルにおいて、 1450、 1445、 1390cm 1にスルホン酸基に対応するピークが観測された。イオン交換容量 は 1. 39meqZgであり、合成例 1と同様にして調整した膜厚 30 mの榭脂膜のプロ トン伝導度は、 4. 2 X 10— 2SZcmであった。 (Aromatic hydrocarbon proton conductive polymer: Synthesis of sulfonated PES) PES 76 OOP (Made by Sumitomo Chemical Co., Ltd., molecular weight of about 15) in a reaction vessel equipped with a mechano-car stirrer, nitrogen inlet tube and dropping funnel 10,000 Og was added. In the reactor, 138 g of concentrated sulfuric acid was added from a dropping funnel and stirred at room temperature for 1 day. To this reaction solution, 50.5 g of chlorosulfonic acid was added dropwise under nitrogen, followed by stirring at room temperature for 3 hours. After completion of the reaction, the reaction solution was poured into 3 liters of pure water to precipitate a polymer and then filtered, and washed with 3 liters of water 20 times until the filtrate became neutral. The resulting reaction product was dried at 90 ° C. for 10 hours under lTorr vacuum to obtain 16. Og of white solid. In the obtained solid, peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm 1 in the infrared spectrum. The ion exchange capacity is 1.39meqZg, and a 30m thick resin film prepared in the same manner as in Synthesis Example 1 is used. Ton conductivity, 4. was 2 X 10- 2 SZcm.
[0048] (合成例 3) [Synthesis Example 3]
(プロトン伝導性を有するスチレン系エラストマ一:スルホン化 SEPSの合成例) メカ-カルスターラーと窒素導入管、滴下ロートを取りつけた反応容器にセプトン S EPS 2007 (クラレネ土製、分子量約 8万) 5. Ogと、 1, 2—ジク口口エタン 15. Ogと、シ クロへキサン 25. Ogと、を入れて室温で 3時間撹拌した。反応器中に、滴下ロートか らジクロロェタン 10gに溶解させたクロロスルホン酸を 0. 66gカロえ、室温で 2時間撹拌 した。反応終了後、反応液を、 1リットルのメタノール中に注いでポリマーを析出させ た後ろ過し、メタノールで 3回洗浄した後、ろ液が中性になるまで、 2回、 1リットルの水 で洗浄した。得られた反応生成物は、 lTorrの真空下、 90°Cで 10時間乾燥し、茶色 固体を 6. Ogを得た。得られた固体は、赤外分光スペクトルにおいて、 1450、 1445、 1390cm 1にスルホン酸基に対応するピークが観測された。 (Proton-conducting styrene elastomer: Synthesis example of sulfonated SEPS) Septon S EPS 2007 (Made in Kurerene, molecular weight of about 80,000) in a reaction vessel equipped with a mechano-car stirrer, nitrogen inlet tube, and dropping funnel 5. Og, 1,2-diethyl ethane 15. Og, and cyclohexane 25. Og were added and stirred at room temperature for 3 hours. In the reactor, 0.66 g of chlorosulfonic acid dissolved in 10 g of dichloroethane was added from a dropping funnel and stirred at room temperature for 2 hours. After completion of the reaction, the reaction solution is poured into 1 liter of methanol to precipitate a polymer, filtered, washed 3 times with methanol, and then twice with 1 liter of water until the filtrate is neutral. Washed. The obtained reaction product was dried at 90 ° C. for 10 hours under vacuum of lTorr to obtain 6. Og of a brown solid. In the obtained solid, peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm 1 in the infrared spectrum.
イオン交換容量は、 1. 22meqZgであり、合成例 1と同様にして調整した膜厚 30 mの榭脂膜のプロトン伝導度は、 1. 1 X 10— Zcmであった。  The ion exchange capacity was 1.22 meqZg, and the proton conductivity of a 30 m thick resin membrane prepared in the same manner as in Synthesis Example 1 was 1.1 × 10−Zcm.
[0049] (合成例 4) [0049] (Synthesis Example 4)
(プロトン伝導性を有するスチレン系エラストマ一:スルホン化 SEBSの合成例) セプトン SEPS2007を、 SEBS G1650 (Kraton社製、分子量約 7万) 5. 0gに力 えた以外は合成例 3と同様に実施して、 6. 0gの反応生成物を得た。得られた固体は 、赤外分光スぺク卜ノレ【こお ヽて、 1450、 1445、 1390cm— 1【こスノレホン酸基【こ対応す るピークが観測された。イオン交換容量は、 1. 34meq/gであり、合成例 1と同様に して調整した膜厚 30 mの榭脂膜のプロトン伝導度は、 3. 1 X 10— 2SZcmであった (Proton-conducting styrene-based elastomer: sulfonated SEBS synthesis example) Septon SEPS2007 was prepared in the same manner as Synthesis Example 3 except that SEBS G1650 (Kraton, molecular weight of about 70,000) was added to 5.0 g. As a result, 6.0 g of a reaction product was obtained. In the obtained solid, 1450, 1445, 1390 cm- 1, and the corresponding peak were observed in the infrared spectroscopic spectrum. The ion exchange capacity, 1. a 34meq / g, the proton conductivity of the榭脂film having a thickness of 30 m was prepared in the same manner as in Synthesis Example 1, 3. a 1 X 10- 2 SZcm
[0050] (合成例 5) [0050] (Synthesis Example 5)
(プロトン伝導性を有するスチレン系エラストマ一:スルホン化 SIBSの合成例) セプトン SEPS2007を、 SIBS シブスター 103T022 ( (株)カネ力製、分子量約 5 万) 5. 0gにかえた以外は合成例 3と同様に実施して、 6. 0gの反応生成物を得た。 得られた固体 ίま、赤外分光スぺクトノレ【こお ヽて、 1450、 1445、 1390cm— 1【こスノレホ ン酸基に対応するピークが観測された。イオン交換容量は、 1. 32 meqZgであり、 合成例 1と同様にして調整した膜厚 30 mの榭脂膜のプロトン伝導度は、 2. 7 X 10" 2S/ cmであった。 (Proton-conducting styrene elastomer: Synthesis example of sulfonated SIBS) Septon SEPS2007 was changed to SIBS Sibustar 103T022 (manufactured by Kane force Co., Ltd., molecular weight of about 50,000). The same operation was performed to obtain 6.0 g of a reaction product. From the obtained solid product, peaks corresponding to 1450, 1445, 1390 cm- 1 [sulphonate groups] were observed. The ion exchange capacity is 1.32 meqZg, The proton conductivity of the 30 m thick resin membrane prepared in the same manner as in Synthesis Example 1 was 2.7 × 10 ”2 S / cm.
[0051] (合成例 6) [0051] (Synthesis Example 6)
(末端にメルカプト基を有するポリメタクリル酸メチル (PMMA—SH)の合成) 1L3口フラスコにメタクリル酸メチル(501g)、トルエン(260g)、 2— (2 フエ-ルプ 口ピル)ジチォベンゾエート(8. Og)、ァゾビスイソブチ口-トリル(1. lg)を入れ、反 応器内を窒素置換した。溶液を攪拌しながら 90°Cで 3時間加熱することにより、反応 率 42%で PMMAを得た。次に n—ブチルァミン(25g)を添カ卩し、 80°Cで 3時間攪拌 することにより、末端をメルカプト基に変性した。この溶液をロータリーエバポレーター で 400mlまで濃縮し、メタノール(2L)に注ぐことによって PMMA— SHを析出させ、 ろ過により単離した。得られた PMMA— SHの分子量および分子量分布は、 Mw= 14000、 Mn= 11900、 Mw/Mn= l. 17であった。  (Synthesis of polymethyl methacrylate (PMMA—SH) having a mercapto group at the end) 1-L 3-neck flask was charged with methyl methacrylate (501 g), toluene (260 g), 2— (2 ferrule neck pill) dithiobenzoate Og) and azobisisobuty-tolyl (1. lg) were added, and the inside of the reactor was purged with nitrogen. The solution was heated at 90 ° C. for 3 hours with stirring to obtain PMMA with a reaction rate of 42%. Next, n-butylamine (25 g) was added, and the terminal was modified to a mercapto group by stirring at 80 ° C. for 3 hours. This solution was concentrated to 400 ml with a rotary evaporator and poured into methanol (2 L) to precipitate PMMA-SH, which was isolated by filtration. The molecular weight and molecular weight distribution of the obtained PMMA—SH were Mw = 14000, Mn = 11900, and Mw / Mn = 1.17.
[0052] (合成例 7) [0052] (Synthesis Example 7)
(スルホン化 PMMA— SHの合成)  (Synthesis of sulfonated PMMA—SH)
300mLの反応容器に合成例 6で得られた PMMA— SH (5g)を入れた。ここに酢 酸(14. OmL)をいれて浸漬し、 30%過酸化水素水(11. 2mL)を徐々に添カ卩し、そ の後 70°Cまで加熱し、 20分間 70°Cで維持した。これを 2時間、 60°Cの流水で洗浄し た。このようにして、 PMMA— SHの SH基が一部酸化され SO H基に変換されてな  PMMA—SH (5 g) obtained in Synthesis Example 6 was placed in a 300 mL reaction vessel. Add acetic acid (14. OmL) to this, soak 30% hydrogen peroxide (11.2 mL) gradually, then heat to 70 ° C and heat for 20 minutes at 70 ° C. Maintained. This was washed with running water at 60 ° C for 2 hours. In this way, the SH group of PMMA—SH is partially oxidized and converted to SO H group.
3  Three
るスルホン力 PMMA— SHを得た。この材料の赤外可視吸収スペクトルを測定したと ころ、 1450、 1445、 1390cm— 1にスルホン酸基に対応するピークが観測された。また 、このイオン交換容量を測定したところ、 0. 76meqZgであり、合成例 1と同様にして 調整した膜厚 30 mの榭脂膜のプロトン伝導度は、 1. 0 X 10— 2S/cmであった。 Sulfonating power PMMA—SH was obtained. When the infrared visible absorption spectrum of this material was measured, peaks corresponding to sulfonic acid groups were observed at 1450, 1445, and 1390 cm- 1 . The measured ion exchange capacity is 0. 76MeqZg, proton conductivity榭脂film having a thickness of 30 m was prepared in the same manner as in Synthesis Example 1, 1. 0 X 10- 2 S / cm Met.
[0053] (実施例 1) [0053] (Example 1)
<プロトン伝導性高分子膜の調製 >  <Preparation of proton conducting polymer membrane>
ポリフエ-レンサルファイドフィルム (東レ株式会社製、商品名:トレリナ、厚み: 25 m)をクロロスルホン酸と 1—クロロブタンとの混合液に浸漬した。このとき、ポリフエ- レンサルファイドフィルムに対し、クロロスルホン酸はモル比 6倍で、混合液は、クロ口 スルホン酸が 1 クロロブタンに対し 1. 5重量%である。浸漬後、室温で 20時間放置 し、ポリフエ-レンサルファイドフィルムを回収し、イオン交換水で中性になるまで洗浄 した。 A poly-lens sulfide film (manufactured by Toray Industries, Inc., trade name: Torelina, thickness: 25 m) was immersed in a mixed solution of chlorosulfonic acid and 1-chlorobutane. At this time, chlorosulfonic acid is 6 times in molar ratio with respect to the polyphenylene sulfide film, and the mixed solution is 1.5% by weight of black sulfonic acid with respect to 1 chlorobutane. After immersion, leave at room temperature for 20 hours Polyphenylene sulfide film was recovered and washed with ion exchange water until neutral.
[0054] 洗浄後のポリフエ-レンサルファイドフィルムを 23°Cで、 30分間放置してフィルムを 乾燥し、プロトン伝導性高分子膜として、スルホン酸基が導入されたポリフエ-レンサ ルファイド膜(以下、スルホン化ポリフエ-レンサルファイド膜)(80mmX 80mm、厚 み:50 m)を得た。  [0054] The washed polysulfide sulfide film is allowed to stand at 23 ° C for 30 minutes to dry the film, and as a proton conductive polymer membrane, a polyphenylene sulfide membrane into which a sulfonic acid group has been introduced (hereinafter referred to as a proton-conductive polymer membrane) A sulfonated polyphenylene sulfide membrane (80 mm × 80 mm, thickness: 50 m) was obtained.
[0055] く膜—電極接合体の作製 >  [0055] Fabrication of membrane-electrode assembly>
東レ製 TGP—H— 60カーボンペーパーをアセトンで洗浄し、さらにテフロン (登録 商標)分散溶液 (ダイキン工業製 POLYFLON PTFE D— 1E)を塗布し 360°Cで 1時間焼成することで、撥水処理を施した拡散層を得た。  Toray TGP-H-60 carbon paper is washed with acetone, and then a Teflon (registered trademark) dispersion (Daikin Industries POLYFLON PTFE D—1E) is applied and baked at 360 ° C for 1 hour for water repellent treatment. A diffusion layer subjected to was obtained.
[0056] 力ソード触媒に白金 50重量%担持ケッチェンブラック ECを、アノード触媒に白金 3 0重量0 /0ルテニウム 23重量0 /0担持ケッチェンブラック ECを用いた。メルカプト基含有 炭化水素系結着剤として、合成例 1で得られたスルホン化 PEEKをメタノール (MeO H)に加熱溶解させたものと、合成例 6で得られた PMMA— SHを N—メチルー 2— ピロリドン (NMP)に加熱溶解させたものと、の混合溶液(重量比:スルホン化 PEEK ZPMMA— SH= lZ5)を用いた。乳鉢内で、重量濃度 5%の前記結着剤溶液を 1 6. 7重量%、触媒金属担持カーボン (C)として力ソード触媒用としては前記白金 50 重量%担持ケッチェンブラック ECを、アノード触媒用としては白金 30重量%ルテ-ゥ ム 23重量%担持ケッチェンブラック ECを、各々 83. 3重量%の割合で混合した。前 述した厚さ 0. 37mmの撥水処理済カーボンペーパー上に、力ソード、アノード各々 白金量 lmgZcm2となるようドクターナイフの等速移動装置で塗工し、 60°Cで 2時間 乾燥することで触媒付電極を得た。スルホン化ポリフエ-レンサルファイド膜を 20mm X 20mmに裁断し、 12 φの電極とを圧力 100kgZcm2、設定温度 150°C、 5分間で ホットプレスし、膜—電極接合体の前駆体を得た。 [0056] The force Sword platinum catalyzed 50 wt% on Ketjen black EC, produced using platinum 3 0 wt 0/0 ruthenium 23 weight 0/0 supported Ketjen Black EC to the anode catalyst. Mercapto group-containing hydrocarbon binders, the sulfonated PEEK obtained in Synthesis Example 1 heated and dissolved in methanol (MeO H), and the PMMA-SH obtained in Synthesis Example 6 were mixed with N-methyl-2 — A mixed solution (weight ratio: sulfonated PEEK ZPMMA—SH = lZ5) of pyrrolidone (NMP) dissolved in heat was used. In a mortar, 16.7% by weight of the binder solution having a weight concentration of 5%, and as a catalyst metal-supported carbon (C) for the power sword catalyst, the platinum 50% by weight of supported ketjen black EC is used as the anode catalyst. For use, platinum 30 wt% ruthenium 23 wt% ketjen black EC was mixed in a ratio of 83.3 wt%. Apply to the water repellent treated carbon paper with a thickness of 0.37mm as described above using a constant knife moving device with a doctor knife so that the amount of platinum in the power sword and anode is lmgZcm 2 respectively, and dry at 60 ° C for 2 hours. Thus, an electrode with catalyst was obtained. The sulfonated poly (phenylene sulfide) membrane was cut to 20 mm × 20 mm, and a 12φ electrode was hot-pressed at a pressure of 100 kgZcm 2 and a set temperature of 150 ° C. for 5 minutes to obtain a precursor of a membrane-electrode assembly.
[0057] <セルの作製 >  [0057] <Cell fabrication>
厚さ 180 /ζ πι、 80mm角のテフロン(登録商標)シートの中心を 5x5cm角に切り抜 きガスケットとした。膜—電極接合体をガスケットで挟持し、電極面積 25cm2の燃料電 池用セル (JARI製 EX— 1)に装着した。 [0058] <液体燃料電池の発電特性評価 > The center of a Teflon (registered trademark) sheet having a thickness of 180 / ζ πι and 80 mm square was cut into a 5 × 5 cm square to form a gasket. Membrane - electrode assembly was sandwiched between the gasket and attached to the fuel cells for cell electrode area 25 cm 2 (JARI manufactured EX- 1). [0058] <Evaluation of power generation characteristics of liquid fuel cell>
評価装置としては東陽テク-力製 GFT— MWを用いた。 ImolZlのメタノール水溶 液をアノード極側に流量 2. 5ml/min.で供給し、酸化剤として空気を力ソード極側 に流量 800mlZmin.供給した。セル温度を 60°Cとして、直接メタノール形燃料電 池の発電特性を評価した。最大出力密度は、 45. 5WZcm2であった。結果を表 1に 示す。 As an evaluation device, GFT-MW manufactured by Toyo Tech-Power was used. ImolZl aqueous methanol solution was supplied to the anode electrode side at a flow rate of 2.5 ml / min., And air was supplied as an oxidant to the power sword electrode side at a flow rate of 800 mlZmin. The power generation characteristics of a direct methanol fuel cell were evaluated at a cell temperature of 60 ° C. Maximum power density was 45. 5WZcm 2. The results are shown in Table 1.
[0059] [表 1]  [0059] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
[0060] (実施例 2〜6) [0060] (Examples 2 to 6)
炭化水素系結着剤のプロトン伝導性高分子化合物をそれぞれ、実施例 2では合成 例 2で得られたスルホン化 PES、実施例 3では合成例 3で得られたスルホン化 SEPS 、実施例 4では合成例 4で得られたスルホン化 SEBS、実施例 5では合成例 5で得ら れたスルホン化 SIBS実施例 6では合成例 7で得られたスルホン化 PMMA— SHとし た以外は実施例 1と同様に評価を行った。結果を表 1に示す。  The proton-conducting polymer compound of the hydrocarbon binder was sulfonated PES obtained in Synthesis Example 2 in Example 2, sulfonated SEPS obtained in Synthesis Example 3 in Example 3, and in Example 4, respectively. Example 1 except that the sulfonated SEBS obtained in Synthesis Example 4 and the sulfonated PMMA-SH obtained in Synthesis Example 7 were used in Example 5 and the sulfonated SIBS Example 6 obtained in Synthesis Example 5. Evaluation was performed in the same manner. The results are shown in Table 1.
[0061] (実施例 7〜12) スルホンィ匕ポリフエ-レンサルファイド膜の代わりに、フッ素系高分子電解質膜である ナフイオン (登録商標) 117 (デュポン社製)を使用した以外は、実施例 1〜6と同様に 評価を行った。その結果を表 1に示す。 [0061] (Examples 7 to 12) Evaluation was carried out in the same manner as in Examples 1 to 6 except that naphthion (registered trademark) 117 (manufactured by DuPont), which is a fluorine-based polymer electrolyte membrane, was used instead of the sulfone polyphenylene sulfide membrane. The results are shown in Table 1.
(比較例 1)  (Comparative Example 1)
炭化水素系結着剤として合成例 1で得られたスルホン化 PEEKをメタノール (Me OH)に加熱溶解させたもののみを使用した以外は実施例 1と同様に評価を行った。 結果を表 1に示す。  Evaluation was performed in the same manner as in Example 1 except that only the sulfonated PEEK obtained in Synthesis Example 1 was dissolved by heating in methanol (MeOH) as the hydrocarbon binder. The results are shown in Table 1.

Claims

請求の範囲 The scope of the claims
[I] 以下の化合物 (A)、化合物 (B)を必須成分として含有する燃料電池用電解質組成 物。  [I] An electrolyte composition for fuel cells containing the following compound (A) and compound (B) as essential components.
(A)触媒金属と結合可能な官能基を有する数平均分子量 500〜 100000の化合物  (A) a compound having a functional group capable of binding to a catalyst metal and having a number average molecular weight of 500 to 100,000
(B)プロトン伝導性官能基を有する数平均分子量 50〜: L000000の化合物。 (B) A compound having a proton conductive functional group and a number average molecular weight of 50 to L000000.
[2] 前記触媒金属と結合可能な官能基の数が、 1分子あたり 2個以下であることを特徴 とする請求項 1に記載の燃料電池用電解質組成物。  [2] The fuel cell electrolyte composition according to [1], wherein the number of functional groups capable of binding to the catalyst metal is 2 or less per molecule.
[3] 前記触媒金属と結合可能な官能基が、メルカプト基であることを特徴とする請求項[3] The functional group capable of binding to the catalytic metal is a mercapto group.
1または 2のいずれか〖こ記載の燃料電池用電解質組成物。 1. The fuel cell electrolyte composition according to any one of 1 and 2.
[4] 前記メルカプト基が、前記化合物 (A)の分子末端に存在することを特徴とする請求 項 3に記載の燃料電池用電解質組成物。 4. The fuel cell electrolyte composition according to claim 3, wherein the mercapto group is present at the molecular end of the compound (A).
[5] 前記化合物 (A)が、可逆的付加脱離連鎖移動重合により重合され、さらに処理剤 で処理された重合体であることを特徴とする請求項 3または 4のいずれかに記載の燃 料電池用電解質組成物。 [5] The fuel according to claim 3 or 4, wherein the compound (A) is a polymer polymerized by reversible addition / elimination chain transfer polymerization and further treated with a treating agent. Battery electrolyte composition.
[6] 前記処理剤が、水素 窒素結合含有化合物、塩基性化合物、及び還元剤からな る群より選ばれる 1以上の化合物であることを特徴とする請求項 5に記載の燃料電池 用電解質組成物。 6. The fuel cell electrolyte composition according to claim 5, wherein the treating agent is one or more compounds selected from the group consisting of a hydrogen-nitrogen bond-containing compound, a basic compound, and a reducing agent. object.
[7] 前記化合物 (A)と前記化合物 (B)とが同一の化合物であることを特徴とする請求項 [7] The compound (A) and the compound (B) are the same compound.
1〜6の 、ずれかに記載の燃料電池用電解質組成物。 The electrolyte composition for fuel cells according to any one of 1 to 6.
[8] 前記プロトン伝導性官能基が、スルホン酸基であることを特徴とする請求項 1〜7の8. The proton conductive functional group according to claim 1, wherein the proton conductive functional group is a sulfonic acid group.
V、ずれかに記載の燃料電池用電解質組成物。 V, electrolyte composition for fuel cells according to any one of the above.
[9] 前記化合物 (A)と、前記化合物(B)と、の重量比が、(A): (B) = 1: 99-99: 1の 範囲であることを特徴とする請求項 1〜8のいずれかに記載の燃料電池用電解質組 成物。  [9] The weight ratio of the compound (A) to the compound (B) is in the range of (A): (B) = 1: 99-99: 1. 9. The fuel cell electrolyte composition according to any one of 8 above.
[10] 触媒金属を担持したカーボン (C)をさらに含有することを特徴とする請求項 1〜9の [10] The method according to any one of [1] to [9], further comprising carbon (C) supporting a catalytic metal.
V、ずれかに記載の燃料電池用電解質組成物。 V, electrolyte composition for fuel cells according to any one of the above.
[II] 前記触媒金属担持カーボン (C)の重量と、前記化合物 (Α)、及び前記化合物 (Β) の合計重量との重量比力 (C): ( (A) + (B) ) = l : 9〜9: 1の範囲であることを特徴 とする請求項 1〜10のいずれか〖こ記載の燃料電池用電解質組成物。 [II] The weight of the catalyst metal-supported carbon (C), the compound (Α), and the compound (Β) The specific weight with respect to the total weight of (C): ((A) + (B)) = l: 9 to 9: 1 Range of any one of claims 1 to 10 An electrolyte composition for a fuel cell.
[12] プロトン伝導性を有する電解質膜を電極層で挟んだ燃料電池用膜—電極接合体 であって、該電極層が請求項 1〜11のいずれかに記載の燃料電池用電解質組成物 を含むことを特徴とする燃料電池用膜 電極接合体。 [12] A fuel cell membrane-electrode assembly in which an electrolyte membrane having proton conductivity is sandwiched between electrode layers, wherein the electrode layer comprises the fuel cell electrolyte composition according to any one of claims 1 to 11. A membrane / electrode assembly for a fuel cell, comprising:
[13] 請求項 12に記載の膜 電極接合体を含むことを特徴とする、固体高分子形、直接 液体形、及び直接メタノール形力 なる群より選ばれる 1以上の形式である燃料電池 [13] A fuel cell having one or more types selected from the group consisting of a solid polymer type, a direct liquid type, and a direct methanol type force, comprising the membrane electrode assembly according to claim 12.
PCT/JP2006/319889 2005-10-17 2006-10-04 Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell WO2007046239A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540915A JPWO2007046239A1 (en) 2005-10-17 2006-10-04 Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using the same, and fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-302214 2005-10-17
JP2005-302213 2005-10-17
JP2005302213 2005-10-17
JP2005302214 2005-10-17

Publications (1)

Publication Number Publication Date
WO2007046239A1 true WO2007046239A1 (en) 2007-04-26

Family

ID=37962335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319889 WO2007046239A1 (en) 2005-10-17 2006-10-04 Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell

Country Status (2)

Country Link
JP (1) JPWO2007046239A1 (en)
WO (1) WO2007046239A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114741A (en) * 1984-11-07 1986-06-02 ヘキスト・アクチエンゲゼルシヤフト Supported catalyst for producing monocarboxylic anhydrate
JP2002289222A (en) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc Ion-conductive polymer, and polymer film and fuel cell using it
JP2003096150A (en) * 2001-07-16 2003-04-03 Kanegafuchi Chem Ind Co Ltd Block copolymer
JP2003100316A (en) * 2001-09-21 2003-04-04 Sekisui Chem Co Ltd Proton conductive membrane and its manufacturing method
JP2003282078A (en) * 2002-03-27 2003-10-03 Sony Corp Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2005015607A (en) * 2003-06-25 2005-01-20 Toyobo Co Ltd Sulfonated polymer, composition containing the sulfonated polymer, molding, proton exchange membrane for fuel cell, and method for producing the sulfonated polymer
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2006032258A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Polymer electrolyte and polymer electrolyte membrane including the same, and polymer electrolyte fuel cell
JP2006114382A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell equipped with anode electrode and the electrode
WO2006059485A1 (en) * 2004-12-01 2006-06-08 Konica Minolta Holdings, Inc. Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell
JP2006164535A (en) * 2004-12-02 2006-06-22 Konica Minolta Holdings Inc Polyelectrolyte fuel cell

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114741A (en) * 1984-11-07 1986-06-02 ヘキスト・アクチエンゲゼルシヤフト Supported catalyst for producing monocarboxylic anhydrate
JP2002289222A (en) * 2001-03-26 2002-10-04 Mitsui Chemicals Inc Ion-conductive polymer, and polymer film and fuel cell using it
JP2003096150A (en) * 2001-07-16 2003-04-03 Kanegafuchi Chem Ind Co Ltd Block copolymer
JP2003100316A (en) * 2001-09-21 2003-04-04 Sekisui Chem Co Ltd Proton conductive membrane and its manufacturing method
JP2003282078A (en) * 2002-03-27 2003-10-03 Sony Corp Catalyst particle and manufacturing method of the same, gaseous-diffusion property electrode body, and electrochemical device
JP2004006306A (en) * 2002-04-17 2004-01-08 Nec Corp Fuel cell, electrode for fuel cell and manufacturing method of these
JP2005015607A (en) * 2003-06-25 2005-01-20 Toyobo Co Ltd Sulfonated polymer, composition containing the sulfonated polymer, molding, proton exchange membrane for fuel cell, and method for producing the sulfonated polymer
JP2005087989A (en) * 2003-08-08 2005-04-07 Hitachi Ltd Catalyst material, method for manufacturing the same, and fuel cell using the method
JP2006032258A (en) * 2004-07-21 2006-02-02 Toyota Motor Corp Polymer electrolyte and polymer electrolyte membrane including the same, and polymer electrolyte fuel cell
JP2006114382A (en) * 2004-10-15 2006-04-27 Toyota Motor Corp Fuel cell equipped with anode electrode and the electrode
WO2006059485A1 (en) * 2004-12-01 2006-06-08 Konica Minolta Holdings, Inc. Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell
JP2006164535A (en) * 2004-12-02 2006-06-22 Konica Minolta Holdings Inc Polyelectrolyte fuel cell

Also Published As

Publication number Publication date
JPWO2007046239A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4845609B2 (en) Polymer electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4808123B2 (en) Membrane-electrode assembly for fuel cell and manufacturing method thereof
JP5702093B2 (en) Polymer membrane composition for fuel cell, polymer membrane produced using the same, membrane-electrode assembly containing the same, and fuel cell
WO2003062493A1 (en) Acid-base proton conducting polymer blend membrane
JP2006019271A (en) Binder composition for fuel cell, film-electrode assembly, and manufacturing method of the film-electrode assembly
WO2006003943A1 (en) Direct alcohol fuel cell and method for producing same
US20100209813A1 (en) Block copolymer, and polymer electrolyte, polymer electrolyte membrane, membrane electrode assembly and fuel cell using same
WO2007007767A1 (en) Electrolyte membrane for use in solid polymer-type fuel cell, process for production of the membrane and membrane electrode assembly for use in solid polymer-type fuel cell
WO2004075322A1 (en) Electrode for fuel cell, fuel cell and methods for manufacturing these
JP2009187848A (en) Fuel cell
US20090081487A1 (en) Acid-Doped Polyelectrolyte Modified Carbon Nanotubes and their Use in High Temperature PEM Fuel Cell Electrodes
JP2019508853A (en) Nanostructured electrode for polymer electrolyte fuel cell and method of manufacturing the same
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
JP4921136B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly, and polymer electrolyte fuel cell
JP5091890B2 (en) Adhesive for fuel cell and membrane electrode structure produced using the same
JP4682629B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and membrane / electrode assembly for polymer electrolyte fuel cell
EP2071655A1 (en) Membrane electrode assembly and method for producing the same
EP2202830A1 (en) Membrane electrode assembly and fuel cell
JP2008501221A (en) New membrane electrode assembly
JP2007053034A (en) Membrane-electrode assembly, method of manufacturing membrane-electrode assembly, and solid polymer fuel cell using it
JP5129778B2 (en) Solid polymer electrolyte, membrane thereof, membrane / electrode assembly using the same, and fuel cell
WO2007046239A1 (en) Electrolyte composition for fuel cell, membrane-electrode assembly for fuel cell using same, and fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2008153175A (en) Manufacturing method of membrane-electrode assembly for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540915

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811228

Country of ref document: EP

Kind code of ref document: A1