WO2007043370A1 - Supported hydrogen separation membrane and fuel cell comprising same - Google Patents
Supported hydrogen separation membrane and fuel cell comprising same Download PDFInfo
- Publication number
- WO2007043370A1 WO2007043370A1 PCT/JP2006/319649 JP2006319649W WO2007043370A1 WO 2007043370 A1 WO2007043370 A1 WO 2007043370A1 JP 2006319649 W JP2006319649 W JP 2006319649W WO 2007043370 A1 WO2007043370 A1 WO 2007043370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separation membrane
- hydrogen separation
- hydrogen
- support
- diffusion
- Prior art date
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 191
- 239000001257 hydrogen Substances 0.000 title claims abstract description 191
- 239000012528 membrane Substances 0.000 title claims abstract description 123
- 238000000926 separation method Methods 0.000 title claims abstract description 117
- 239000000446 fuel Substances 0.000 title claims description 24
- 125000004435 hydrogen atom Chemical class [H]* 0.000 title description 2
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 126
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000009792 diffusion process Methods 0.000 claims abstract description 51
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 230000006866 deterioration Effects 0.000 claims abstract description 20
- 230000003014 reinforcing effect Effects 0.000 claims abstract 2
- 230000001629 suppression Effects 0.000 claims description 33
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 24
- 229910052763 palladium Inorganic materials 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 5
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 5
- 230000035699 permeability Effects 0.000 abstract description 7
- 229910001252 Pd alloy Inorganic materials 0.000 description 25
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002737 fuel gas Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/94—Non-porous diffusion electrodes, e.g. palladium membranes, ion exchange membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
- B01D71/0221—Group 4 or 5 metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
- B01D71/0223—Group 8, 9 or 10 metals
- B01D71/02231—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
- B01D71/0223—Group 8, 9 or 10 metals
- B01D71/02232—Nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
- C01B3/503—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a support-equipped hydrogen separation membrane and a fuel cell including the same.
- a fuel cell is a device that generally obtains electric energy using hydrogen and oxygen as fuel. This fuel cell has been widely developed as a future energy supply system because it is environmentally friendly and can achieve high energy efficiency.
- Examples of fuel cells using solid electrolytes include polymer electrolyte fuel cells, solid oxide fuel cells, and hydrogen separation membrane cells.
- the hydrogen separation membrane battery is a fuel cell provided with a dense hydrogen separation membrane.
- a dense hydrogen separation membrane is a layer formed of a metal having hydrogen permeability, and also functions as an anode.
- the hydrogen separation membrane battery has a structure in which an electrolyte having proton conductivity is laminated on the hydrogen separation membrane. Hydrogen supplied to the hydrogen separation membrane is converted into protons, moves through the proton conductive electrolyte, and combines with oxygen in the cathode to generate electricity.
- a noble metal such as palladium is used for the hydrogen separation membrane used in this hydrogen separation membrane battery. Therefore, it is necessary to make the hydrogen separation membrane as thin as possible for cost reduction. In this case, it is necessary to reinforce the hydrogen separation membrane using a support. In order to reinforce the hydrogen separation membrane with the support, it is preferable that the support and the hydrogen separation membrane be joined together.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2 0 0 3-9 5 6 1 7
- Patent Document 1 metal diffusion occurs between the flow path plate and the hydrogen separation membrane substrate. Thereby, there late are mosquitoes s hydrogen permeability of the hydrogen permeable membrane deteriorates.
- An object of the present invention is to provide a hydrogen separation membrane with a support capable of suppressing deterioration of hydrogen permeation performance of a hydrogen separation membrane substrate and a fuel cell including the same.
- a hydrogen separation membrane with a support according to the present invention is provided between a hydrogen separation membrane, a support that reinforces the hydrogen separation membrane, and between the hydrogen separation membrane and the support, and between the hydrogen separation membrane and the support. And a diffusion suppression layer that suppresses metal diffusion.
- metal diffusion between the hydrogen separation membrane and the support is suppressed by the diffusion suppression layer. In this case, deterioration of the hydrogen permeation performance of the hydrogen separation membrane can be suppressed.
- the deterioration of the hydrogen permeation performance of the alloy of the metal constituting the hydrogen separation membrane and the metal constituting the diffusion suppression layer is due to the deterioration of the hydrogen permeation performance of the alloy of the metal constituting the hydrogen separation membrane and the metal constituting the support. May be small. In this case, deterioration of hydrogen permeability of the hydrogen separation membrane can be suppressed.
- At least a part of the surface of the hydrogen separation membrane on the diffusion suppression layer side is made of palladium, and the diffusion suppression layer may be made of silver, yttrium, or gadolinium.
- the hydrogen permeation performance of the hydrogen separation membrane is improved even if metal diffusion occurs between the hydrogen separation membrane and the diffusion suppression layer.
- the hydrogen of the hydrogen separation membrane is compared with the case where metal diffusion occurs between the hydrogen separation membrane and the support. Transmission performance is less degraded. From the above, it is possible to suppress the deterioration of the hydrogen permeation performance of the hydrogen separation membrane.
- a fuel cell according to the present invention includes a hydrogen separation membrane with a support according to any one of claims 1 to 3, a proton conductive electrolyte membrane formed on the hydrogen separation membrane with a support, and a proton conductive electrolyte. And a force sword formed on the membrane.
- the present invention In such a fuel cell, metal diffusion between the hydrogen separation membrane and the support is suppressed by the diffusion suppression layer. Therefore, even if heat is generated by the power generation reaction, deterioration of the hydrogen permeability of the hydrogen separation membrane can be suppressed.
- FIG. 1 is a schematic cross-sectional view of a hydrogen separation membrane with a support according to a first embodiment of the present invention.
- FIG. 2 is a graph showing the relationship between the alloy ratio of palladium alloy and the hydrogen permeation performance of palladium alloy.
- FIG. 3 is a graph showing the relationship between the alloy ratio of a palladium alloy and the hydrogen permeation performance of the palladium alloy.
- FIG. 4 is a production flow diagram for explaining a method for producing a support-attached hydrogen separation membrane.
- FIG. 5 is a view for explaining a fuel cell according to a second embodiment of the present invention.
- FIG. 6 is a diagram for explaining a hydrogen separator according to a third embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view of a hydrogen separation membrane with a support 100 according to a first embodiment of the present invention.
- the support-equipped hydrogen separation membrane 100 has a structure in which a diffusion suppression layer 20 and a hydrogen separation membrane 30 are formed in this order on a support 10.
- the support 10 is made of a metal such as stainless steel, for example.
- the film thickness of the support 10 is, for example, about 200.
- the diffusion suppression layer 20 is made of, for example, silver.
- the film thickness of the diffusion suppression layer 20 is, for example, about 1 nm.
- the support 10 and the diffusion suppression layer 20 are A plurality of through holes 11 for supplying hydrogen to the hydrogen separation membrane 30 are formed.
- the hydrogen separation membrane 30 is made of palladium, for example.
- the film thickness of the hydrogen separation membrane 30 is, for example, about 5 ⁇ .
- the diffusion suppression layer 20 is formed between the support 10 and the hydrogen separation membrane 30, metal diffusion between the support 10 and the hydrogen separation membrane 30 is not caused. Suppressed.
- the diffusion suppression layer 20 is made of silver, even if metal diffusion occurs between the diffusion suppression layer 20 and the hydrogen separation membrane 30, the hydrogen permeation performance of the hydrogen separation membrane 30 is deteriorated. Is suppressed.
- the hydrogen permeation performance of the hydrogen separation membrane 30 when palladium is used as the metal constituting the hydrogen separation membrane 30 will be described in detail.
- Fig. 2 shows the relationship between the alloy ratio of palladium alloys and the hydrogen permeation performance of palladium alloys.
- the vertical axis in Fig. 2 shows the hydrogen permeation performance of the palladium alloy
- the horizontal axis in Fig. 2 shows the alloy ratio of the palladium alloy.
- the hydrogen permeation performance of the palladium alloy deteriorates significantly as the iron ratio in the palladium alloy increases.
- the hydrogen permeation performance of the palladium alloy improves as the silver ratio in the palladium alloy increases and deteriorates at the predetermined silver ratio.
- the hydrogen separation membrane 30 when palladium is used as the hydrogen separation membrane 30 and silver is used as the diffusion suppression layer 20, even if metal diffusion occurs between the hydrogen separation membrane 30 and the diffusion suppression layer 20, the hydrogen separation membrane The hydrogen permeation performance of 30 is improved. Further, even if the silver ratio in the palladium alloy is further increased and the hydrogen permeation performance of the hydrogen separation membrane 30 is reduced, metal diffusion occurs between the hydrogen separation membrane 30 and the support 10. Compared to the above, the hydrogen permeation performance of the hydrogen separation membrane 30 is less deteriorated. From the above, by providing the diffusion suppression layer 20 between the support 10 and the hydrogen separation membrane 30, it is possible to suppress the deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30.
- the metal constituting the diffusion suppression layer 20 is cerium, gadolinium, or yttrium
- the hydrogen permeation performance of the hydrogen separation membrane 30 changes as shown in FIG. Therefore, cerium, gadolinium, or yttrium may be used as the diffusion suppression layer 20.
- the hydrogen permeation performance of a palladium alloy relative to the hydrogen permeation performance of pure palladium Table 1 shows. As shown in Table 1, when cerium, gadolinium, or yttrium diffuses in palladium, hydrogen permeation performance is improved. Table 1 shows the ratio of the hydrogen permeation coefficient of the palladium alloy when the hydrogen permeation coefficient of pure palladium is 100.
- the hydrogen permeation is lower than the metal that constitutes the support 10.
- Any metal having a small deterioration in performance can be used as the diffusion suppressing layer 20.
- gold, copper, platinum, vanadium, nickel, rhodium, ruthenium, iridium, or the like can be used as the metal constituting the diffusion suppression layer 20.
- the hydrogen permeation performance of the hydrogen separation membrane 30 will be described in detail, assuming that the metal constituting the diffusion suppression layer 20 is copper.
- Figure 3 shows the relationship between the alloy ratio of the palladium alloy and the hydrogen permeation performance of the palladium alloy.
- the vertical axis in Fig. 3 shows the hydrogen permeation performance of the palladium alloy
- the horizontal axis in Fig. 3 shows the alloy ratio of the palladium alloy.
- the hydrogen permeation performance of the palladium alloy decreases as the copper ratio in the palladium alloy increases.
- the deterioration of hydrogen permeation performance of palladium-copper alloys is smaller than the deterioration of hydrogen permeation performance of palladium-iron alloys.
- Table 2 shows the ratio of the hydrogen permeability coefficient of the palladium alloy when the hydrogen permeability coefficient of pure palladium is 100.
- FIG. 4 is a production flow diagram for explaining a production method of the hydrogen separation membrane with support 100.
- a support 10 is prepared.
- a diffusion suppression layer 20 is formed on the support 10.
- the diffusion suppression layer 20 can be formed by sputtering, PVD method, CVD method or the like.
- the hydrogen separation membrane 30 is bonded on the diffusion suppression layer 20 by a cold bonding method such as a cladding method. In this way, since the hydrogen separation membrane 30 is joined using the cold joining method, thermal diffusion between the hydrogen separation membrane 30 and the diffusion suppression layer 20 can be suppressed.
- FIG. 5 is a diagram for explaining the fuel cell 200.
- FIG. 5 (a) is a schematic cross-sectional view of the fuel cell 200
- FIG. 5 (b) is a diagram for explaining a method of manufacturing the fuel cell 200.
- the components with the same reference numerals as those in the first embodiment are the same as the materials in the first embodiment. Consists of materials.
- a proton conductive electrolyte membrane 40 and a force sword 50 are sequentially formed on the hydrogen separation membrane 30 of the support-equipped hydrogen separation membrane 100 according to the first embodiment. Yes.
- a fuel cell 20 0 0 is manufactured by sequentially forming a proton conductive electrolyte membrane 40 and a force sword 50 on the hydrogen separation membrane 30 by sputtering or the like. be able to.
- a fuel gas containing hydrogen is supplied to the hydrogen separation membrane 30 through the support 10 and the plurality of through holes 11 of the diffusion suppression layer 20. Hydrogen in the fuel gas passes through the hydrogen separation membrane 30 and reaches the proton conductive electrolyte membrane 40. The hydrogen that has reached the proton conductive electrolyte membrane 40 is separated into protons and electrons. Proton conducts through the proton conductive electrolyte membrane 40 and reaches the force sword 50.
- an oxygen-containing oxidizing agent gas containing oxygen is supplied to the force sword 50.
- water is generated and electric power is generated from oxygen in the oxidant gas and protons reaching the force sword 50.
- the generated electric power is collected through a separator (not shown). With the above operation, power generation by the fuel cell 200 is performed.
- FIG. 6 is a diagram for explaining the hydrogen separator 300.
- FIG. 6 (a) is a schematic cross-sectional view of the hydrogen separator 300
- FIG. 6 (b) is a diagram for explaining a method for manufacturing the hydrogen separator 300.
- the constituent elements having the same reference numerals as those of the first embodiment are made of the same material as that of the first embodiment. [0 0 3 3]
- a flow path plate 60 is formed on the support 10 side of the support-equipped hydrogen separation membrane 100 according to the first embodiment, and the support-attached hydrogen separation membrane 100.
- a flow path plate 70 is formed on the hydrogen separation membrane 30 side.
- the flow path plate 60 is a plate in which a flow path for supplying a hydrogen-containing gas to the support-equipped hydrogen separation membrane 100 is formed.
- the flow path plate 70 is a plate in which a flow path for recovering hydrogen separated by the support-equipped hydrogen separation membrane 100 is formed.
- the flow path plate 60 is joined to the surface of the support 10 opposite to the hydrogen separation membrane 30, and the hydrogen separation S
- the hydrogen separator 300 can be manufactured by joining the flow path plate 70 to the surface.
- a fuel gas containing hydrogen is supplied from the flow path in the flow path plate 60 to the hydrogen separation membrane 30 via the support 10 and the plurality of through holes 11 of the diffusion suppression layer 20. Hydrogen in the fuel gas passes through the hydrogen separation membrane 30 and reaches the flow path plate 70. The hydrogen that has reached the flow path plate 70 is recovered from the flow path of the flow path plate 70. Through the above operation, hydrogen in the fuel gas can be separated.
- a diffusion suppression layer 20 is formed between the hydrogen separation membrane 30 and the support 10. Therefore, even if the hydrogen separation device 300 is used for a long time, deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30 is suppressed. As a result, a decrease in hydrogen permeation performance of the hydrogen separator 300 can be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Combustion & Propulsion (AREA)
- Electrochemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Disclosed is a supported hydrogen separation membrane (100) characterized by comprising a hydrogen separation membrane (30), a support (10) for reinforcing the hydrogen separation membrane (30), and a diffusion-preventing layer (20) arranged between the hydrogen separation membrane (30) and the support (10) for preventing metal diffusion between the hydrogen separation membrane (30) and the support (10). Consequently, metal diffusion between the hydrogen separation membrane (30) and the support (10) is suppressed by the diffusion-preventing layer (20), thereby suppressing deterioration of hydrogen permeability of the hydrogen separation membrane (30).
Description
明細書 Specification
支持体付水素分離膜およびそれを備えた燃料電池 Hydrogen separation membrane with support and fuel cell equipped with the same
【技術分野】 【Technical field】
【0 0 0 1】 [0 0 0 1]
本発明は、 支持体付水素分離膜およびそれを備えた燃料電池に関する。 The present invention relates to a support-equipped hydrogen separation membrane and a fuel cell including the same.
【背景技術】 [Background]
【0 0 0 2】 [0 0 0 2]
燃料電池は、 一般的には水素及び酸素を燃料として電気エネルギーを得る装置であ る。 この燃料電池は、 環境面において優れかつ高いエネルギー効率が実現できること から、 今後のエネルギー供給システムとして広く開発が進められてきている。 A fuel cell is a device that generally obtains electric energy using hydrogen and oxygen as fuel. This fuel cell has been widely developed as a future energy supply system because it is environmentally friendly and can achieve high energy efficiency.
【0 0 0 3】 [0 0 0 3]
燃料電池のうち固体の電解質を用いたものには、 固体高分子型燃料電池、 固体酸化 物型燃料電池、 水素分離膜電池等がある。 ここで、 水素分離膜電池とは、 緻密な水素 分離膜を備えた燃料電池である。 緻密な水素分離膜は水素透過性を有する金属によつ て形成される層であり、 アノードとしても機能する。 水素分離膜電池は、 この水素分 離膜上にプロトン導電性を有する電解質が積層された構造をとつている。 水素分離膜 に供給された水素はプロトンに変換され、 プロトン導電性の電解質中を移動し、 カソ 一ドにおいて酸素と結合して発電が行われる。 Examples of fuel cells using solid electrolytes include polymer electrolyte fuel cells, solid oxide fuel cells, and hydrogen separation membrane cells. Here, the hydrogen separation membrane battery is a fuel cell provided with a dense hydrogen separation membrane. A dense hydrogen separation membrane is a layer formed of a metal having hydrogen permeability, and also functions as an anode. The hydrogen separation membrane battery has a structure in which an electrolyte having proton conductivity is laminated on the hydrogen separation membrane. Hydrogen supplied to the hydrogen separation membrane is converted into protons, moves through the proton conductive electrolyte, and combines with oxygen in the cathode to generate electricity.
【0 0 0 4】 [0 0 0 4]
この水素分離膜電池に用いられる水素分離膜には、 パラジウム等の貴金属が用いら れる。そのため、コスト低減のためには水素分離膜をできるだけ薄くする必要がある。 この場合、 支持体を用いて水素分離膜を補強する必要がある。 支持体によって水素分 離膜を補強するためには、 支持体と水素分離膜とが接合されていることが好ましレ、。 A noble metal such as palladium is used for the hydrogen separation membrane used in this hydrogen separation membrane battery. Therefore, it is necessary to make the hydrogen separation membrane as thin as possible for cost reduction. In this case, it is necessary to reinforce the hydrogen separation membrane using a support. In order to reinforce the hydrogen separation membrane with the support, it is preferable that the support and the hydrogen separation membrane be joined together.
【0 0 0 5】 [0 0 0 5]
そこで、水素分離膜基材と流路プレートとを積層接合する技術が開示されている(例 えば、 特許文献 1参照)。 この技術によれば、 母材の溶融を伴わないため、 装置全体を 薄型化することができる。 Therefore, a technique for laminating and joining a hydrogen separation membrane substrate and a flow path plate is disclosed (for example, see Patent Document 1). According to this technique, since the base material is not melted, the entire apparatus can be thinned.
【0 0 0 6】 [0 0 0 6]
【特許文献 1】 特開 2 0 0 3— 9 5 6 1 7号公報 [Patent Document 1] Japanese Patent Application Laid-Open No. 2 0 0 3-9 5 6 1 7
【発明の開示】 DISCLOSURE OF THE INVENTION
【発明が解決しようとする課題】
【0 0 0 7】 [Problems to be solved by the invention] [0 0 0 7]
しかしながら、 特許文献 1の技術では、 流路プレートと水素分離膜基材との間で金 属拡散が起こる。 それにより、 水素分離膜基材の水素透過性能が劣化してしまうおそ れカ sある。 However, in the technique of Patent Document 1, metal diffusion occurs between the flow path plate and the hydrogen separation membrane substrate. Thereby, there late are mosquitoes s hydrogen permeability of the hydrogen permeable membrane deteriorates.
【0 0 0 8】 [0 0 0 8]
本発明は、 水素分離膜基材の水素透過性能の劣化を抑制することができる支持体付 水素分離膜およびそれを備える燃料電池を提供することを目的とする。 An object of the present invention is to provide a hydrogen separation membrane with a support capable of suppressing deterioration of hydrogen permeation performance of a hydrogen separation membrane substrate and a fuel cell including the same.
【課題を解決するための手段】 [Means for Solving the Problems]
【0 0 0 9】 [0 0 0 9]
本発明に係る支持体付水素分離膜は、 水素分離膜と、 水素分離膜を補強する支持体 と、 水素分離膜と支持体との間に設けられ、 水素分離膜と支持体との間の金属拡散を 抑制する拡散抑制層とを備えることを特徴とするものである。 本発明に係る支持体付 水素分離膜においては、 水素分離膜と支持体との間の金属拡散が拡散抑制層によって 抑制される。 この場合、 水素分離膜の水素透過性能の劣化を抑制することができる。 A hydrogen separation membrane with a support according to the present invention is provided between a hydrogen separation membrane, a support that reinforces the hydrogen separation membrane, and between the hydrogen separation membrane and the support, and between the hydrogen separation membrane and the support. And a diffusion suppression layer that suppresses metal diffusion. In the hydrogen separation membrane with a support according to the present invention, metal diffusion between the hydrogen separation membrane and the support is suppressed by the diffusion suppression layer. In this case, deterioration of the hydrogen permeation performance of the hydrogen separation membrane can be suppressed.
【0 0 1 0】 [0 0 1 0]
水素分離膜を構成する金属と拡散抑制層を構成する金属との合金の水素透過性能劣 化は、 水素分離膜を構成する金属と支持体を構成する金属との合金の水素透過性能劣 化よりも小さくてもよい。 この場合、 水素分離膜の水素透過性の劣化を抑制すること ができる。 The deterioration of the hydrogen permeation performance of the alloy of the metal constituting the hydrogen separation membrane and the metal constituting the diffusion suppression layer is due to the deterioration of the hydrogen permeation performance of the alloy of the metal constituting the hydrogen separation membrane and the metal constituting the support. May be small. In this case, deterioration of hydrogen permeability of the hydrogen separation membrane can be suppressed.
【0 0 1 1】 [0 0 1 1]
水素分離膜の拡散抑制層側の面の少なくとも一部はパラジウムから構成され、 拡散 抑制層は、 銀、 イットリウムまたはガドリニウムから構成されていてもよレ、。 この場 合、 水素分離膜と拡散抑制層との間における金属拡散が起こっても水素分離膜の水素 透過性能は向上する。 また、 パラジウム合金中の不純物率がさらに大きくなつて水素 分離膜の水素透過性能が低下しても、 水素分離膜と支持体との間における金属拡散が 起こる場合に比較して水素分離膜の水素透過性能の劣化が小さくなる。 以上のことか ら、 水素分離膜の水素透過性能の劣化を抑制することができる。 At least a part of the surface of the hydrogen separation membrane on the diffusion suppression layer side is made of palladium, and the diffusion suppression layer may be made of silver, yttrium, or gadolinium. In this case, the hydrogen permeation performance of the hydrogen separation membrane is improved even if metal diffusion occurs between the hydrogen separation membrane and the diffusion suppression layer. In addition, even if the percentage of impurities in the palladium alloy is further increased and the hydrogen permeation performance of the hydrogen separation membrane is reduced, the hydrogen of the hydrogen separation membrane is compared with the case where metal diffusion occurs between the hydrogen separation membrane and the support. Transmission performance is less degraded. From the above, it is possible to suppress the deterioration of the hydrogen permeation performance of the hydrogen separation membrane.
【0 0 1 2】 [0 0 1 2]
本発明に係る燃料電池は、 請求項 1〜 3のいずれかに記載の支持体付水素分離膜と 、 支持体付水素分離膜上に形成されたプロトン導電性電解質膜と、 プロトン導電性電 解質膜上に形成された力ソードとを備えることを特徴とするものである。 本発明に係
る燃料電池においては、 水素分離膜と支持体との間の金属拡散が拡散抑制層によって 抑制される。 したがって、 発電反応による熱が発生しても、 水素分離膜の水素透過性 能の劣化を抑制することができる。 A fuel cell according to the present invention includes a hydrogen separation membrane with a support according to any one of claims 1 to 3, a proton conductive electrolyte membrane formed on the hydrogen separation membrane with a support, and a proton conductive electrolyte. And a force sword formed on the membrane. The present invention In such a fuel cell, metal diffusion between the hydrogen separation membrane and the support is suppressed by the diffusion suppression layer. Therefore, even if heat is generated by the power generation reaction, deterioration of the hydrogen permeability of the hydrogen separation membrane can be suppressed.
【発明の効果】 【The invention's effect】
【0 0 1 3】 [0 0 1 3]
本発明によれば、 水素分離膜の水素透過性能の劣化を抑制することができる。 【図面の簡単な説明】 According to the present invention, deterioration of the hydrogen permeation performance of the hydrogen separation membrane can be suppressed. [Brief description of the drawings]
【0 0 1 4】 [0 0 1 4]
【図 1】 本発明の第 1実施例に係る支持体付水素分離膜の模式的断面図である 。 FIG. 1 is a schematic cross-sectional view of a hydrogen separation membrane with a support according to a first embodiment of the present invention.
【図 2】 パラジウム合金の合金比率とパラジウム合金の水素透過性能との関係 を示す図である。 FIG. 2 is a graph showing the relationship between the alloy ratio of palladium alloy and the hydrogen permeation performance of palladium alloy.
【図 3】 パラジゥム合金の合金比率とパラジゥム合金の水素透過性能との関係 を示す図である。 FIG. 3 is a graph showing the relationship between the alloy ratio of a palladium alloy and the hydrogen permeation performance of the palladium alloy.
【図 4】 支持体付水素分離膜の製造方法を説明するための製造フロー図である 【図 5】 本発明の第 2実施例に係る燃料電池について説明するための図である 【図 6】 本発明の第 3実施例に係る水素分離装置について説明するための図で ある。 FIG. 4 is a production flow diagram for explaining a method for producing a support-attached hydrogen separation membrane. FIG. 5 is a view for explaining a fuel cell according to a second embodiment of the present invention. FIG. 6 is a diagram for explaining a hydrogen separator according to a third embodiment of the present invention.
【発明を実施するための最良の形態】 BEST MODE FOR CARRYING OUT THE INVENTION
【0 0 1 5】 [0 0 1 5]
以下、 本発明を実施するための最良の形態を説明する。 Hereinafter, the best mode for carrying out the present invention will be described.
【実施例 1】 [Example 1]
【0 0 1 6】 [0 0 1 6]
図 1は、 本発明の第 1実施例に係る支持体付水素分離膜 1 0 0の模式的断面図であ る。 図 1に示すように、 支持体付水素分離膜 1 0 0は、 支持体 1 0上に拡散抑制層 2 0および水素分離膜 3 0が順に形成された構造を有する。 支持体 1 0は、 例えば、 ス テンレス等の金属から構成される。 支持体 1 0の膜厚は、 例えば、 2 0 0 程度で ある。 拡散抑制層 2 0は、 例えば、 銀から構成される。 拡散抑制層 2 0の膜厚は、 例 えば、 1 n m程度である。本実施例においては、支持体 1 0および拡散抑制層 2 0に、
水素分離膜 3 0に水素を供給するための複数の貫通孔 1 1が形成されている。 水素分 離膜 3 0は、例えば、パラジウムから構成される。水素分離膜 3 0の膜厚は、例えば、 5 μ πι程度である。 FIG. 1 is a schematic cross-sectional view of a hydrogen separation membrane with a support 100 according to a first embodiment of the present invention. As shown in FIG. 1, the support-equipped hydrogen separation membrane 100 has a structure in which a diffusion suppression layer 20 and a hydrogen separation membrane 30 are formed in this order on a support 10. The support 10 is made of a metal such as stainless steel, for example. The film thickness of the support 10 is, for example, about 200. The diffusion suppression layer 20 is made of, for example, silver. The film thickness of the diffusion suppression layer 20 is, for example, about 1 nm. In this example, the support 10 and the diffusion suppression layer 20 are A plurality of through holes 11 for supplying hydrogen to the hydrogen separation membrane 30 are formed. The hydrogen separation membrane 30 is made of palladium, for example. The film thickness of the hydrogen separation membrane 30 is, for example, about 5 μπι.
【0 0 1 7】 [0 0 1 7]
本実施例においては、 支持体 1 0と水素分離膜 3 0との間に拡散抑制層 2 0が形成 されていることから、 支持体 1 0と水素分離膜 3 0との間における金属拡散が抑制さ れる。 また、 拡散抑制層 2 0が銀から構成されていることから、 拡散抑制層 2 0と水 素分離膜 3 0との間における金属拡散が起こっても水素分離膜 3 0の水素透過性能の 劣化が抑制される。 以下、 水素分離膜 3 0を構成する金属としてパラジウムを用いる 場合における水素分離膜 3 0の水素透過性能について詳細を説明する。 In this embodiment, since the diffusion suppression layer 20 is formed between the support 10 and the hydrogen separation membrane 30, metal diffusion between the support 10 and the hydrogen separation membrane 30 is not caused. Suppressed. In addition, since the diffusion suppression layer 20 is made of silver, even if metal diffusion occurs between the diffusion suppression layer 20 and the hydrogen separation membrane 30, the hydrogen permeation performance of the hydrogen separation membrane 30 is deteriorated. Is suppressed. Hereinafter, the hydrogen permeation performance of the hydrogen separation membrane 30 when palladium is used as the metal constituting the hydrogen separation membrane 30 will be described in detail.
【0 0 1 8】 [0 0 1 8]
図 2は、 パラジウム合金の合金比率とパラジウム合金の水素透過性能との関係を示 す図である。 図 2の縦軸はパラジウム合金の水素透過性能を示し、 図 2の横軸はパラ ジゥム合金の合金比率を示す。 図 2の破線に示すように、 パラジウム合金の水素透過 性能は、 パラジウム合金中の鉄比率が増大するにつれて著しく劣化する。 一方、 図 2 の実線に示すように、 パラジウム合金の水素透過性能は、 パラジウム合金中の銀比率 が増大するにつれて向上し、 所定の銀比率を境界にして劣化する。 Fig. 2 shows the relationship between the alloy ratio of palladium alloys and the hydrogen permeation performance of palladium alloys. The vertical axis in Fig. 2 shows the hydrogen permeation performance of the palladium alloy, and the horizontal axis in Fig. 2 shows the alloy ratio of the palladium alloy. As shown by the broken line in FIG. 2, the hydrogen permeation performance of the palladium alloy deteriorates significantly as the iron ratio in the palladium alloy increases. On the other hand, as shown by the solid line in FIG. 2, the hydrogen permeation performance of the palladium alloy improves as the silver ratio in the palladium alloy increases and deteriorates at the predetermined silver ratio.
【0 0 1 9】 [0 0 1 9]
このように、 水素分離膜 3 0としてパラジウムを用いかつ拡散抑制層 2 0として銀 を用いた場合、 水素分離膜 3 0と拡散抑制層 2 0との間における金属拡散が起こって も水素分離膜 3 0の水素透過性能は向上する。 また、 パラジウム合金中の銀比率がさ らに大きくなって水素分離膜 3 0の水素透過性能が低下しても、 水素分離膜 3 0と支 持体 1 0との間における金属拡散が起こる場合に比較して水素分離膜 3 0の水素透過 性能の劣化が小さくなる。 以上のことから、 支持体 1 0と水素分離膜 3 0との間に拡 散抑制層 2 0を設けることによって、 水素分離膜 3 0の水素透過性能の劣化を抑制す ることができる。 Thus, when palladium is used as the hydrogen separation membrane 30 and silver is used as the diffusion suppression layer 20, even if metal diffusion occurs between the hydrogen separation membrane 30 and the diffusion suppression layer 20, the hydrogen separation membrane The hydrogen permeation performance of 30 is improved. Further, even if the silver ratio in the palladium alloy is further increased and the hydrogen permeation performance of the hydrogen separation membrane 30 is reduced, metal diffusion occurs between the hydrogen separation membrane 30 and the support 10. Compared to the above, the hydrogen permeation performance of the hydrogen separation membrane 30 is less deteriorated. From the above, by providing the diffusion suppression layer 20 between the support 10 and the hydrogen separation membrane 30, it is possible to suppress the deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30.
【0 0 2 0】 [0 0 2 0]
なお、 拡散抑制層 2 0を構成する金属がセリウム、 ガドリニゥムまたはィットリウ ムであっても、水素分離膜 3 0の水素透過性能は図 2のように変化する。したがって、 拡散抑制層 2 0としてセリウム、 ガドリニウムまたはイットリウムを用いてもよい。 一例として、 純パラジウムの水素透過性能に対するパラジウム合金の水素透過性能を
表 1に示す。 表 1に示すように、 パラジウム中にセリウム、 ガドリニウムまたはイツ トリウムが拡散した場合、 水素透過性能は向上している。 なお、 表 1においては、 純 パラジウムの水素透過係数を 1 0 0とした場合におけるパラジウム合金の水素透過係 数の比率を示している。 Even if the metal constituting the diffusion suppression layer 20 is cerium, gadolinium, or yttrium, the hydrogen permeation performance of the hydrogen separation membrane 30 changes as shown in FIG. Therefore, cerium, gadolinium, or yttrium may be used as the diffusion suppression layer 20. As an example, the hydrogen permeation performance of a palladium alloy relative to the hydrogen permeation performance of pure palladium Table 1 shows. As shown in Table 1, when cerium, gadolinium, or yttrium diffuses in palladium, hydrogen permeation performance is improved. Table 1 shows the ratio of the hydrogen permeation coefficient of the palladium alloy when the hydrogen permeation coefficient of pure palladium is 100.
【0 0 2 1】 [0 0 2 1]
【表 1】 【table 1】
【0 0 2 2】 [0 0 2 2]
また、 水素分離膜 3 0を構成する金属と合金化することによって水素分離膜 3 0の 水素透過性能を低下させる金属であっても、 支持体 1 0を構成する金属に比較して水 素透過性能の劣化が小さい金属であれば拡散抑制層 2 0として用いることができる。 例えば、 拡散抑制層 2 0を構成する金属として、 金、 銅、 白金、 バナジウム、 -ッケ ル、 ロジウム、 ルテニウム、 イリジウム等を用いることができる。 以下、 拡散抑制層 2 0を構成する金属が銅であると仮定して、 水素分離膜 3 0の水素透過性能について 詳細を説明する。 Further, even if the metal that lowers the hydrogen permeation performance of the hydrogen separation membrane 30 by alloying with the metal that constitutes the hydrogen separation membrane 30, the hydrogen permeation is lower than the metal that constitutes the support 10. Any metal having a small deterioration in performance can be used as the diffusion suppressing layer 20. For example, gold, copper, platinum, vanadium, nickel, rhodium, ruthenium, iridium, or the like can be used as the metal constituting the diffusion suppression layer 20. Hereinafter, the hydrogen permeation performance of the hydrogen separation membrane 30 will be described in detail, assuming that the metal constituting the diffusion suppression layer 20 is copper.
【0 0 2 3】 [0 0 2 3]
図 3は、 パラジゥム合金の合金比率とパラジゥム合金の水素透過性能との関係を示 す図である。 図 3の縦軸はパラジウム合金の水素透過性能を示し、 図 3の横軸はパラ ジゥム合金の合金比率を示す。 図 3の実線に示すように、 パラジウム合金の水素透過 性能は、 パラジウム合金中の銅比率が増大するにつれて低下する。 しかしながら、 パ ラジウム一銅合金の水素透過性能の劣化は、 パラジゥム一鉄合金の水素透過性能の劣 化に比較して小さくなつている。 Figure 3 shows the relationship between the alloy ratio of the palladium alloy and the hydrogen permeation performance of the palladium alloy. The vertical axis in Fig. 3 shows the hydrogen permeation performance of the palladium alloy, and the horizontal axis in Fig. 3 shows the alloy ratio of the palladium alloy. As shown by the solid line in FIG. 3, the hydrogen permeation performance of the palladium alloy decreases as the copper ratio in the palladium alloy increases. However, the deterioration of hydrogen permeation performance of palladium-copper alloys is smaller than the deterioration of hydrogen permeation performance of palladium-iron alloys.
【0 0 2 4】 [0 0 2 4]
以上のことから、 水素分離膜 3 0としてパラジウムを用いかつ拡散抑制層 2 0とし て銅を用いた場合、 水素分離膜 3 0と支持体 1 0との間における金属拡散が起こる場 合に比較して水素分離膜 3 0の水素透過性能の劣化が小さくなる。 拡散抑制層 2 0を
構成する金属が金、 銅、 白金、 バナジウム、 ニッケル、 ロジウム、 ルテニウム、 イリ ジゥム等であっても、 水素分離膜 3 0の水素透過性能は図 3のように変化する。 一例 として、 純パラジウムの水素透過性能に対するパラジウム合金の水素透過性能を表 2 に示す。 表 2に示すように、 パラジウム一鉄合金の水素透過性能の劣化に比較して、 上記金属とパラジウムとの合金の水素透過性能の劣化は小さくなつている。 なお、 表 2においては、 純パラジウムの水素透過係数を 1 0 0とした場合におけるパラジウム 合金の水素透過係数の比率を示している。 From the above, when palladium is used as the hydrogen separation membrane 30 and copper is used as the diffusion suppression layer 20, it is compared with the case where metal diffusion occurs between the hydrogen separation membrane 30 and the support 10. As a result, the deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30 is reduced. Diffusion suppression layer 20 Even if the constituent metal is gold, copper, platinum, vanadium, nickel, rhodium, ruthenium, iridium, etc., the hydrogen permeation performance of the hydrogen separation membrane 30 changes as shown in FIG. As an example, Table 2 shows the hydrogen permeation performance of a palladium alloy relative to that of pure palladium. As shown in Table 2, the deterioration of the hydrogen permeation performance of the metal-palladium alloy is smaller than the deterioration of the hydrogen permeation performance of the palladium-iron alloy. Table 2 shows the ratio of the hydrogen permeability coefficient of the palladium alloy when the hydrogen permeability coefficient of pure palladium is 100.
【0 0 2 5】 [0 0 2 5]
【表 2】 [Table 2]
【0 0 2 6】 [0 0 2 6]
続いて、 支持体付水素分離膜 1 0 0の製造方法について説明する。 図 4は、 支持体 付水素分離膜 1 0 0の製造方法を説明するための製造フロー図である。 図 4 ( a ) に 示すように、 まず、 支持体 1 0を準備する。 次に、 図 4 ( b ) に示すように、 支持体 1 0上に拡散抑制層 2 0を成膜する。 この場合、 スパッタリング、 P VD法、 C V D 法等により拡散抑制層 2 0を成膜することができる。 次いで、 図 4 ( c ) に示すよう に、拡散抑制層 2 0上に水素分離膜 3 0をクラッド法等の冷間接合法により接合する。 このように、 冷間接合法を用いて水素分離膜 3 0を接合することから、 水素分離膜 3 0と拡散抑制層 2 0との間の熱拡散を抑制することができる。 Next, a method for producing the support-attached hydrogen separation membrane 100 will be described. FIG. 4 is a production flow diagram for explaining a production method of the hydrogen separation membrane with support 100. First, as shown in FIG. 4 (a), a support 10 is prepared. Next, as shown in FIG. 4 (b), a diffusion suppression layer 20 is formed on the support 10. In this case, the diffusion suppression layer 20 can be formed by sputtering, PVD method, CVD method or the like. Next, as shown in FIG. 4 (c), the hydrogen separation membrane 30 is bonded on the diffusion suppression layer 20 by a cold bonding method such as a cladding method. In this way, since the hydrogen separation membrane 30 is joined using the cold joining method, thermal diffusion between the hydrogen separation membrane 30 and the diffusion suppression layer 20 can be suppressed.
【実施例 2】 [Example 2]
【0 0 2 7】 [0 0 2 7]
続いて、 本発明の第 2実施例に係る燃料電池 2 0 0について説明する。 図 5は、 燃 料電池 2 0 0について説明するための図である。 図 5 ( a ) は燃料電池 2 0 0の模式 的断面図であり、図 5 ( b )は燃料電池 2 0 0の製造方法を説明するための図である。 なお、 前述した第 1実施例と同一符号を付した構成要素は、 第 1実施例の材料と同様
の材料から構成される。 Subsequently, a fuel cell 200 according to a second embodiment of the present invention will be described. FIG. 5 is a diagram for explaining the fuel cell 200. FIG. 5 (a) is a schematic cross-sectional view of the fuel cell 200, and FIG. 5 (b) is a diagram for explaining a method of manufacturing the fuel cell 200. The components with the same reference numerals as those in the first embodiment are the same as the materials in the first embodiment. Consists of materials.
【0 0 2 8】 [0 0 2 8]
図 5 ( a ) に示すように、 第 1実施例に係る支持体付水素分離膜 1 0 0の水素分離 膜 3 0上にプロトン導電性電解質膜 4 0および力ソード 5 0が順に形成されている。 図 5 ( b ) に示すように、 水素分離膜 3 0上に、 スパッタリング等によりプロ トン導 電性電解質膜 4 0および力ソード 5 0を順に形成することによって、 燃料電池 2 0 0 を製造することができる。 As shown in FIG. 5 (a), a proton conductive electrolyte membrane 40 and a force sword 50 are sequentially formed on the hydrogen separation membrane 30 of the support-equipped hydrogen separation membrane 100 according to the first embodiment. Yes. As shown in FIG. 5 (b), a fuel cell 20 0 0 is manufactured by sequentially forming a proton conductive electrolyte membrane 40 and a force sword 50 on the hydrogen separation membrane 30 by sputtering or the like. be able to.
【0 0 2 9】 [0 0 2 9]
続いて、 燃料電池 2 0 0の動作について説明する。 まず、 水素を含有する燃料ガス が支持体 1 0および拡散抑制層 2 0の複数の貫通孔 1 1を介して水素分離膜 3 0に供 給される。 燃料ガス中の水素は、 水素分離膜 3 0を透過してプロ トン導電性電解質膜 4 0に到達する。 プロトン導電性電解質膜 4 0に到達した水素は、 プロトンと電子と に分離する。 プロ トンは、 プロトン導電性電解質膜 4 0を伝導し、 力ソード 5 0に到 達する。 Next, the operation of the fuel cell 200 will be described. First, a fuel gas containing hydrogen is supplied to the hydrogen separation membrane 30 through the support 10 and the plurality of through holes 11 of the diffusion suppression layer 20. Hydrogen in the fuel gas passes through the hydrogen separation membrane 30 and reaches the proton conductive electrolyte membrane 40. The hydrogen that has reached the proton conductive electrolyte membrane 40 is separated into protons and electrons. Proton conducts through the proton conductive electrolyte membrane 40 and reaches the force sword 50.
【0 0 3 0】 [0 0 3 0]
一方、 力ソード 5 0には酸素を含有する酸ィ匕剤ガスが供給される。 力ソード 5 0に おいては、 酸化剤ガス中の酸素と力ソード 5 0に到達したプロトンとから水が発生す るとともに電力が発生する。 発生した電力は、 図示しないセパレータを介して回収さ れる。 以上の動作により、 燃料電池 2 0 0による発電が行われる。 On the other hand, an oxygen-containing oxidizing agent gas containing oxygen is supplied to the force sword 50. In the force sword 50, water is generated and electric power is generated from oxygen in the oxidant gas and protons reaching the force sword 50. The generated electric power is collected through a separator (not shown). With the above operation, power generation by the fuel cell 200 is performed.
【0 0 3 1】 [0 0 3 1]
発電反応が起こる際には熱が発生する。 しかしながら、 水素分離膜 3 0と支持体 1 0との間には拡散抑制層 2 0が形成されている。 したがって、 燃料電池 2 0 0におい ては水素分離膜 3 0の水素透過性能の劣化が抑制される。 その結果、 燃料電池 2 0 0 の発電性能低下を抑制することができる。 Heat is generated when a power generation reaction takes place. However, a diffusion suppression layer 20 is formed between the hydrogen separation membrane 30 and the support 10. Therefore, in the fuel cell 20 0, deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30 is suppressed. As a result, a decrease in power generation performance of the fuel cell 20 0 can be suppressed.
【実施例 3】 [Example 3]
【0 0 3 2】 [0 0 3 2]
続いて、本発明の第 3実施例に係る水素分離装置 3 0 0について説明する。図 6は、 水素分離装置 3 0 0について説明するための図である。 図 6 ( a ) は水素分離装置 3 0 0の模式的断面図であり、 図 6 ( b ) は水素分離装置 3 0 0の製造方法を説明する ための図である。 なお、 前述した第 1実施例と同一符号を付した構成要素は、 第 1実 施例の材料と同様の材料から構成される。
【0 0 3 3】 Subsequently, a hydrogen separator 300 according to a third embodiment of the present invention will be described. FIG. 6 is a diagram for explaining the hydrogen separator 300. FIG. 6 (a) is a schematic cross-sectional view of the hydrogen separator 300, and FIG. 6 (b) is a diagram for explaining a method for manufacturing the hydrogen separator 300. The constituent elements having the same reference numerals as those of the first embodiment are made of the same material as that of the first embodiment. [0 0 3 3]
図 6 ( a ) に示すように、 第 1実施例に係る支持体付水素分離膜 1 0 0の支持体 1 0側に流路プレート 6 0が形成され、 支持体付水素分離膜 1 0 0の水素分離膜 3 0側 に流路プレート 7 0が形成されている。 流路プレート 6 0は、 支持体付水素分離膜 1 0 0に水素含有ガスを供給するための流路が形成されたプレートである。 流路プレー ト 7 0は、 支持体付水素分離膜 1 0 0によって分離された水素を回収するための流路 が形成されたプレートである。 図 6 ( b ) に示すように、 支持体 1 0の水素分離膜 3 0と反対側の面に流路プレート 6 0を接合し、 水素分離 S莫 3 0の支持体 1 0と反対側 の面に流路プレート 7 0を接合することによって水素分離装置 3 0 0を製造すること ができる。 As shown in FIG. 6 (a), a flow path plate 60 is formed on the support 10 side of the support-equipped hydrogen separation membrane 100 according to the first embodiment, and the support-attached hydrogen separation membrane 100. A flow path plate 70 is formed on the hydrogen separation membrane 30 side. The flow path plate 60 is a plate in which a flow path for supplying a hydrogen-containing gas to the support-equipped hydrogen separation membrane 100 is formed. The flow path plate 70 is a plate in which a flow path for recovering hydrogen separated by the support-equipped hydrogen separation membrane 100 is formed. As shown in FIG. 6 (b), the flow path plate 60 is joined to the surface of the support 10 opposite to the hydrogen separation membrane 30, and the hydrogen separation S The hydrogen separator 300 can be manufactured by joining the flow path plate 70 to the surface.
【0 0 3 4】 [0 0 3 4]
続いて、 水素分離装置 3 0 0の動作について説明する。 まず、 水素を含有する燃料 ガスが流路プレート 6 0内の流路から支持体 1 0および拡散抑制層 2 0の複数の貫通 孔 1 1を介して水素分離膜 3 0に供給される。 燃料ガス中の水素は、 水素分離膜 3 0 を透過して流路プレート 7 0に到達する。 流路プレート 7 0に到達した水素は、 流路 プレート 7 0の流路から回収される。 以上の動作により、 燃料ガス中の水素を分離す ることができる。 Subsequently, the operation of the hydrogen separator 300 will be described. First, a fuel gas containing hydrogen is supplied from the flow path in the flow path plate 60 to the hydrogen separation membrane 30 via the support 10 and the plurality of through holes 11 of the diffusion suppression layer 20. Hydrogen in the fuel gas passes through the hydrogen separation membrane 30 and reaches the flow path plate 70. The hydrogen that has reached the flow path plate 70 is recovered from the flow path of the flow path plate 70. Through the above operation, hydrogen in the fuel gas can be separated.
【0 0 3 5】 [0 0 3 5]
本実施例に係る水素分離装置 3◦ 0においては、 水素分離膜 3 0と支持体 1 0との 間には拡散抑制層 2 0が形成されている。 したがって、 水素分離装置 3 0 0を長時間 使用しても、 水素分離膜 3 0の水素透過性能の劣化が抑制される。 その結果、 水素分 離装置 3 0 0の水素透過性能低下を抑制することができる。
In the hydrogen separator 30 ° 0 according to the present embodiment, a diffusion suppression layer 20 is formed between the hydrogen separation membrane 30 and the support 10. Therefore, even if the hydrogen separation device 300 is used for a long time, deterioration of the hydrogen permeation performance of the hydrogen separation membrane 30 is suppressed. As a result, a decrease in hydrogen permeation performance of the hydrogen separator 300 can be suppressed.
Claims
【請求項 1】 水素分離膜と、 1. A hydrogen separation membrane;
前記水素分離膜を補強する支持体と、 A support for reinforcing the hydrogen separation membrane;
前記水素分離 S莫と前記支持体との間に設けられ、 前記水素分離膜と前記支持体との 間の金属拡散を抑制する拡散抑制層とを備えることを特徴とする支持体付水素分離月莫 A hydrogen separation month with a support provided between the hydrogen separation S and the support, and a diffusion suppression layer for suppressing metal diffusion between the hydrogen separation membrane and the support. Enormous
【請求項 2】 前記水素分離膜を構成する金属と前記拡散抑制層を構成する金属 との合金の水素透過性能劣化は、 前記水素分離膜を構成する金属と前記支持体を構成 する金属との合金の水素透過性能劣化よりも小さいことを特徴とする請求項 1記載の 支持体付水素分離膜。 2. The deterioration of the hydrogen permeation performance of an alloy of a metal constituting the hydrogen separation membrane and a metal constituting the diffusion suppressing layer is caused by the metal constituting the hydrogen separation membrane and the metal constituting the support. 2. The hydrogen separation membrane with a support according to claim 1, wherein the hydrogen separation membrane is smaller than the hydrogen permeation performance deterioration of the alloy.
【請求項 3】 前記水素分離膜の前記拡散抑制層側の面の少なくとも一部はパラ ジゥムから構成され、 3. At least a part of the surface of the hydrogen separation membrane on the side of the diffusion suppressing layer is made of palladium.
前記拡散抑制層は、 銀、 イツトリゥムまたはガドリニゥムから構成されていること を特徴とする請求項 1または 2記載の支持体付水素分離膜。 3. The support-equipped hydrogen separation membrane according to claim 1, wherein the diffusion suppression layer is made of silver, yttrium, or gadolinium.
【請求項 4】 前記請求項 1〜 3のいずれかに記載の支持体付水素分離膜と、 前記支持体付水素分離膜上に形成されたプロトン導電性電解質膜と、 4. A hydrogen separation membrane with a support according to any one of claims 1 to 3, a proton conductive electrolyte membrane formed on the hydrogen separation membrane with a support,
前記プロトン導電性電解質膜上に形成された力ソードとを備えることを特徴とする 燃料電池。
A fuel cell, comprising: a force sword formed on the proton conductive electrolyte membrane.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005293291A JP2007098324A (en) | 2005-10-06 | 2005-10-06 | Hydrogen separation membrane with support body, and fuel cell equipped with the same |
JP2005-293291 | 2005-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007043370A1 true WO2007043370A1 (en) | 2007-04-19 |
Family
ID=37942615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319649 WO2007043370A1 (en) | 2005-10-06 | 2006-09-26 | Supported hydrogen separation membrane and fuel cell comprising same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007098324A (en) |
WO (1) | WO2007043370A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014527460A (en) * | 2011-07-22 | 2014-10-16 | 韓国エネルギー技術研究院Korea Institute Of Energy Research | Protective layer for hydrogen separation membrane and coating method thereof |
JPWO2015151756A1 (en) * | 2014-03-31 | 2017-04-13 | 富士フイルム株式会社 | Gas separation complex and method for producing the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI341049B (en) | 2007-05-31 | 2011-04-21 | Young Green Energy Co | Flow channel plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003118027A (en) * | 2001-10-16 | 2003-04-23 | Toyo Kohan Co Ltd | Method for producing gas-permeable layer-laminated material and method for producing part using the material |
JP2004149332A (en) * | 2002-10-29 | 2004-05-27 | Tokyo Gas Co Ltd | Hydrogen production system |
WO2004085044A1 (en) * | 2003-03-21 | 2004-10-07 | Worcester Polytechnic Institute | Method for fabricating composite gas separation modules |
JP2004344731A (en) * | 2003-05-21 | 2004-12-09 | Toyota Motor Corp | Hydrogen permeable membrane |
JP2005262082A (en) * | 2004-03-18 | 2005-09-29 | National Institute Of Advanced Industrial & Technology | Hydrogen separation membrane, production method therefor, and hydrogen separation method |
-
2005
- 2005-10-06 JP JP2005293291A patent/JP2007098324A/en active Pending
-
2006
- 2006-09-26 WO PCT/JP2006/319649 patent/WO2007043370A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003118027A (en) * | 2001-10-16 | 2003-04-23 | Toyo Kohan Co Ltd | Method for producing gas-permeable layer-laminated material and method for producing part using the material |
JP2004149332A (en) * | 2002-10-29 | 2004-05-27 | Tokyo Gas Co Ltd | Hydrogen production system |
WO2004085044A1 (en) * | 2003-03-21 | 2004-10-07 | Worcester Polytechnic Institute | Method for fabricating composite gas separation modules |
JP2004344731A (en) * | 2003-05-21 | 2004-12-09 | Toyota Motor Corp | Hydrogen permeable membrane |
JP2005262082A (en) * | 2004-03-18 | 2005-09-29 | National Institute Of Advanced Industrial & Technology | Hydrogen separation membrane, production method therefor, and hydrogen separation method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014527460A (en) * | 2011-07-22 | 2014-10-16 | 韓国エネルギー技術研究院Korea Institute Of Energy Research | Protective layer for hydrogen separation membrane and coating method thereof |
US9199204B2 (en) | 2011-07-22 | 2015-12-01 | Korea Institute Of Energy Research | Hydrogen-separation-membrane protection layer and a coating method therefor |
JPWO2015151756A1 (en) * | 2014-03-31 | 2017-04-13 | 富士フイルム株式会社 | Gas separation complex and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2007098324A (en) | 2007-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201117461A (en) | Internal reforming anode for solid oxide fuel cells | |
JP2003178764A (en) | Electrode structure body for solid polymer fuel cell | |
CA2624979C (en) | Hydrogen separation membrane with a carrier, fuel cell and hydrogen separation apparatus having same, and method of manufacturing same | |
JP5251062B2 (en) | Composite current collector plate for fuel cell and fuel cell | |
US8318373B2 (en) | Fuel cell assembly | |
WO2004001884A1 (en) | Fuel cell, electrode for fuel cell and method for producing them | |
JP4935176B2 (en) | Separator unit and fuel cell stack | |
CA2577047C (en) | Fuel cell production method and fuel cell | |
WO2007043370A1 (en) | Supported hydrogen separation membrane and fuel cell comprising same | |
JP2006035063A (en) | Hydrogen permeable membrane | |
JP5151270B2 (en) | Fuel cell components | |
WO2008040660A1 (en) | High performance cathode with controlled operating temperature range | |
US8137862B2 (en) | Fuel cell | |
JP2004356031A (en) | Fuel cell and small-sized electrical apparatus | |
JP2005166531A (en) | Fuel cell | |
JP4645095B2 (en) | Membrane electrode assembly, fuel cell | |
WO2009119434A1 (en) | Fuel cell unit, fuel cell stack and electronic device | |
JP5061544B2 (en) | Fuel cell | |
JP2005219936A (en) | Device equipped with hydrogen-permeable metal layer, and fuel cell | |
WO2007043368A1 (en) | Fuel cell and its fabrication method | |
JP7057731B2 (en) | Fuel cell and fuel cell manufacturing method | |
JP5217126B2 (en) | Fuel cell and manufacturing method thereof | |
JP2008027866A (en) | Fuel cell | |
JP2008027825A (en) | Fuel cell | |
JP4639853B2 (en) | Fuel cell and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06811004 Country of ref document: EP Kind code of ref document: A1 |