WO2007043208A1 - Heat insulating coating material - Google Patents

Heat insulating coating material Download PDF

Info

Publication number
WO2007043208A1
WO2007043208A1 PCT/JP2006/309375 JP2006309375W WO2007043208A1 WO 2007043208 A1 WO2007043208 A1 WO 2007043208A1 JP 2006309375 W JP2006309375 W JP 2006309375W WO 2007043208 A1 WO2007043208 A1 WO 2007043208A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
silane coupling
insulating coating
coupling agent
coating material
Prior art date
Application number
PCT/JP2006/309375
Other languages
French (fr)
Japanese (ja)
Inventor
Miyuki Narita
Yoshiaki Akanuma
Takeshi Oshino
Original Assignee
Oshino Lamps Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oshino Lamps Limited filed Critical Oshino Lamps Limited
Publication of WO2007043208A1 publication Critical patent/WO2007043208A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the present invention relates to a heat insulating coating material capable of obtaining a heat insulating effect by being applied to a window glass or the like of a building.
  • an inorganic or organic heat insulating material or the like is used to block heat transfer from the outside or from the outside to the inside.
  • inorganic heat insulating materials include glass heat insulating materials such as glass fiber and foam glass, mineral heat insulating materials such as asbestos, slag cotton, perlite and vermiculite, porous silica, porous alumina, alumina, magnesia, zirconia and There are ceramic insulation materials such as refractory bricks, and carbon insulation materials such as black lead and carbon fiber.
  • organic heat insulating materials there are foamed plastic heat insulating materials such as expanded polyethylene, expanded polystyrene and expanded polyurethane, and natural heat insulating materials such as wood board, cork and plant fiber. Furthermore, by utilizing the low thermal conductivity of the gas, the gas such as air is made of aluminum.
  • the conventional heat insulating material has a mechanism in which the thermal conductivity decreases and the heat insulating efficiency increases by increasing the number of pores or voids to reduce the density.
  • the increase in the heat insulation effect due to the increase in the thickness of the heat insulating material causes a high cost associated with an increase in the amount of heat insulating material used and a practical disadvantage associated with an increase in the capacity of the heat insulating material.
  • an object of the present invention is to provide a heat insulating coating material that is inexpensive and has good usability.
  • the present inventor has formed various coating films and studied the heat insulating effect. As a result, when a silane coupling agent is applied to the surface of glass or the like, an excellent heat insulating coating film is formed. Has been found to be good and does not adversely affect substrates such as glass, and the present invention has been completed.
  • the present invention provides a thermal barrier coating material comprising a solution or dispersion containing a silane coupling agent.
  • the present invention also provides a heat insulation method characterized by applying a solution or dispersion containing a silane coupling agent to the surface of an inorganic material, a metal material or a resin material.
  • the heat insulating coating material of the present invention can be applied only to the glass surface of a building room, for example, to suppress heat radiation to the outside in the winter, and to radiate strong outdoor force in the summer. By suppressing it, the room can be insulated.
  • FIG. 1 is a diagram showing the indoor temperature and the outdoor temperature (black square) when a heat-insulating coating film of the present invention is processed on a window glass in summer (black circle) and when not processed (black triangle). .
  • FIG. 2 A diagram showing the indoor temperature and the outdoor temperature (black square) when the heat-insulating coating film of the present invention is applied to a window glass in winter (black circle) and when it is not processed (black triangle).
  • the heat insulating coating material of the present invention also has an aqueous solution or water dispersion strength containing a silane coupling agent.
  • the silane coupling agent may be a silane compound having at least one silanol group-forming alkoxy group and an organic functional group.
  • the following general formula (1) [0012] [Chemical 1]
  • R 2 and R 3 represents an alkoxy group or a hydroxyl group, the remainder represents an alkoxy group, a hydroxyl group or an alkyl group, and X represents an organic functional group
  • These alkoxy groups react with moisture on the surface of a substrate for forming a coating film, for example, an inorganic material such as glass or metal, an organic material or a metal material, and are hydrolyzed to form silanol. Hydrogen bonds with the hydroxyl groups present on the surface of the material.
  • a dehydration condensation takes place between silanols on the silicon produced by hydrolysis of alkoxy groups and hydroxyl groups present on the surface of the inorganic material or metal material to form a covalent bond, thereby forming an inorganic material. Adsorption of silane coupling agents on metal and metal materials occurs. Furthermore, a dehydration condensation reaction also occurs between silanols of the silane coupling agent on the inorganic material or metal material, and a transparent and strong film of the silane coupling agent can be formed on the inorganic material or metal material.
  • a part of the alkoxy groups of R 2 and R 3 may be a hydroxyl group.
  • the alkyl group represented by R 2 and R 3 include an alkyl group having 1 to 6 carbon atoms, such as a methyl group and an ethyl group. It is particularly preferable that at least one of R 1 R 2 and R 3 is an alkoxy group or a hydroxyl group and two or more is an alkoxy group.
  • the organic functional group represented by X includes a bur group, an epoxy group, a styryl group, a methacryloxy group, an attaryloxy group, an amino group, a ureido group, a chloropropyl group, a mercapto group, a sulfide group, and an isocyanate group. And alkyl groups containing these groups.
  • Such X causes a hydrogen bond, a dehydration condensation reaction, or a polymerization reaction between organic functional groups of the silane coupling agent bonded on the inorganic material, metal material, or organic material to form a strong coating film.
  • X is strongly bonded by chemical bonding or cross-linking with organic materials such as resin. As a result, a transparent and strong film of the silane coupling agent can be formed on the organic material.
  • silane coupling agents include butyltrichlorosilane, butyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysiloxysilane, and 3-glycidoxypropyl.
  • silane coupling agents are used as solutions or dispersions.
  • the solvent for the silane coupling agent is preferably stored in a non-aqueous solvent such as methanol, ethanol, propanol or acetone before application. Just before application, water may be added to this and used.
  • Solution or the concentration of the silane coupling agent in the dispersion is 0. 0 05-50 wt 0/0, further from 0.01 to 40 weight 0/0, especially 01 to 30 weight 0/0 Power preferably 0.! /.
  • the solution or dispersion containing the silane coupling agent may further contain a colorant such as a pigment or a dye.
  • a colorant such as a pigment or a dye.
  • the subject of application of the heat insulating coating material of the present invention is organic materials, inorganic materials, and metal materials! Also good.
  • inorganic materials include glass, ceramic, marble, and concrete.
  • metal material include aluminum, tin, zinc, molybdenum, tungsten, titanium, gold, silver, copper, nickel, iron, and alloys thereof.
  • Organic materials include polypropylene, polyethylene, polymethyl methacrylate, polybutylene terephthalate, polyacetal, ABS resin, polycarbonate, modified polyphenylene ether, polyacrylate, polyethersulfone, polysulfone, Polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyetherimide, polyetheretherketone, and reinforced polyethylene terephthalate.
  • the heat insulating coating material of the present invention can be used for forming a low thermal conductive transparent layer by coating on the surface of an inorganic material, a metal material and a resin material used as a base material. That is, the coating film of the heat insulating coating material of the present invention formed on an inorganic material, a metal material, or an organic material suppresses heat radiation from the inorganic material, the metal material, or the organic material to a low temperature zone, and a silane coupling agent. The temperature difference in the opposite direction between the layer and the inorganic material, metal material, or organic material increases, and heat conduction by convection, conduction and radiation from the high temperature zone to the low temperature zone can be reduced.
  • the existing window glass can be easily heat-insulated. Furthermore, since the heat insulating coating processing using the heat insulating coating material of the present invention can be performed without changing the structure of the window glass, it is also applied to the window glass of a vehicle such as an automobile that is connected only with the window glass of the building. be able to.
  • Fig. 1 shows the changes over time in the indoor temperature when an indoor window glass was processed on an indoor window glass in summer, the indoor temperature in the case of non-calorie, and the outdoor temperature.
  • the initial values of the room temperature for thermal insulation coating and non-calorie were 28.2 and 28.9 ° C, but when the air conditioner was operated at 18 ° C at the start of measurement, 1 hour Later room temperatures were 26.8 and 27.9 ° C, respectively, and after 8 hours they were 20.8 and 24.2 ° C.
  • the difference between the heat-insulated coating process and the weakness was 1.1 and 3.4 ° C after 1 and 8 hours, respectively.
  • the rate of decrease in temperature when the insulation film was processed and unprocessed 8 hours after the initial temperature was 26 and 16%, respectively.
  • the insulation effect of the insulation film processing was 1. A 6-fold effect was observed.
  • Fig. 2 shows changes over time in the indoor temperature when a thermal insulating coating is applied to the indoor window glass in winter, the indoor temperature in the case of non-calorie, and the outdoor temperature.
  • the initial values of the indoor temperature in the case of thermal insulation coating and non-calorie were 20.2 and 20.3 ° C, respectively, but after 1 hour, 16.1 and 12.8 ° C, respectively. It was 8.4 and 5.8 ° C after 6 hours.
  • the difference between heat-insulated coating and unprocessed film was 3.3 and 2.6 ° C after 1 and 6 hours, respectively.
  • the rate of decrease in temperature after 6 hours of heat treatment after the initial temperature is 58 and 71%, respectively, and the heat insulation effect of heat treatment is 1 compared to the case without heat treatment. A double effect was observed.
  • the heat insulating coating processing using the heat insulating coating material of the present invention is effective as a heat insulating material and has a heat insulating function without changing the structure of the window glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A heat insulating coating material comprising a solution or dispersion containing a silane coupling agent. Further, there is provided a method of heat insulation characterized in that an inorganic material, metallic material or resin material on the surface thereof is coated with a solution or dispersion containing a silane coupling agent. The provided heat insulating coating material is available at low cost and excels in applicability.

Description

明 細 書  Specification
断熱塗膜材  Thermal insulation coating material
技術分野  Technical field
[0001] 本発明は、建物の窓ガラス等に塗布することにより断熱効果の得られる断熱塗膜材 に関する。  TECHNICAL FIELD [0001] The present invention relates to a heat insulating coating material capable of obtaining a heat insulating effect by being applied to a window glass or the like of a building.
背景技術  Background art
[0002] 一般に密閉された空間、例えば建物や容器等において、内部力も外部あるいは外 部から内部への熱伝達を遮断するために無機系あるいは有機系断熱材等が用いら れている。  [0002] In general, in an enclosed space, for example, a building or a container, an inorganic or organic heat insulating material or the like is used to block heat transfer from the outside or from the outside to the inside.
無機系断熱材としてはガラス繊維及び泡ガラス等のガラス系断熱材、石綿、スラグ 綿、パーライト及びバーミキユライト等の鉱物系断熱材、多孔質シリカ、多孔質アルミ ナ、アルミナ、マグネシア、ジルコユア及び耐火れんが等のセラミックス系断熱材、黒 鉛及び炭素繊維等の炭素系断熱材がある。  Examples of inorganic heat insulating materials include glass heat insulating materials such as glass fiber and foam glass, mineral heat insulating materials such as asbestos, slag cotton, perlite and vermiculite, porous silica, porous alumina, alumina, magnesia, zirconia and There are ceramic insulation materials such as refractory bricks, and carbon insulation materials such as black lead and carbon fiber.
一方、有機系断熱材としては発泡ポリエチレン、発泡ポリスチレン及び発泡ポリウレ タン等の発泡プラスチック系断熱材、木質ボード、コルク及び植物繊維等の天然物 系断熱材がある。さらに、気体の低熱伝導性を利用し、空気等の気体をアルミニウム On the other hand, as organic heat insulating materials, there are foamed plastic heat insulating materials such as expanded polyethylene, expanded polystyrene and expanded polyurethane, and natural heat insulating materials such as wood board, cork and plant fiber. Furthermore, by utilizing the low thermal conductivity of the gas, the gas such as air is made of aluminum.
、紙及びプラスチック等に封入した空気層断熱材も知られて ヽる。 Also known are air-layer insulation materials sealed in paper and plastic.
[0003] このように、従来の断熱材はその細孔あるいは空隙を多くして密度を小さくすること によって熱伝導率が減少し、断熱効率が増加することをその機序とする。 [0003] As described above, the conventional heat insulating material has a mechanism in which the thermal conductivity decreases and the heat insulating efficiency increases by increasing the number of pores or voids to reduce the density.
[0004] この低密度化は機械的強度の減少及び温度上昇により起こる気体の対流に起因 する熱伝導性の増大を引き起こすために、この方法での断熱効率の上昇には限界 がある。 [0004] Since this reduction in density causes an increase in thermal conductivity due to a decrease in mechanical strength and gas convection caused by an increase in temperature, there is a limit to the increase in thermal insulation efficiency in this method.
また、断熱材の厚さの増加による断熱効果の上昇は、断熱材使用量の増加に伴う コスト高及び断熱材の容量増大に伴う実用面での不利をもたらす。  In addition, the increase in the heat insulation effect due to the increase in the thickness of the heat insulating material causes a high cost associated with an increase in the amount of heat insulating material used and a practical disadvantage associated with an increase in the capacity of the heat insulating material.
[0005] 一方、最近外壁に塗布するタイプの断熱材が用いられている力 これはセラミックを 塗布するものであり、極めて高価であるため、広く使用されるに至っていない。 [0005] On the other hand, a force that has recently been used for a type of heat insulating material applied to the outer wall. This is a ceramic-coated material that is extremely expensive and has not been widely used.
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0006] 従って、本発明の目的は、安価で、使用性が良好な断熱塗膜材を提供すること〖こ ある。  [0006] Accordingly, an object of the present invention is to provide a heat insulating coating material that is inexpensive and has good usability.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者は、種々の塗膜を形成してその断熱効果を検討してきたところ、シラン力 ップリング剤をガラス等の表面に塗布すれば、優れた断熱塗膜が形成され、使用性 が良好であり、ガラス等の基材に悪影響を及ぼさないことを見出し、本発明を完成し た。 [0007] The present inventor has formed various coating films and studied the heat insulating effect. As a result, when a silane coupling agent is applied to the surface of glass or the like, an excellent heat insulating coating film is formed. Has been found to be good and does not adversely affect substrates such as glass, and the present invention has been completed.
[0008] すなわち、本発明は、シランカップリング剤を含有する溶液又は分散液カゝらなる断 熱塗膜材を提供するものである。  That is, the present invention provides a thermal barrier coating material comprising a solution or dispersion containing a silane coupling agent.
また、本発明は、シランカップリング剤を含有する溶液又は分散液を、無機材料、金 属材料又は榭脂材料の表面に塗布することを特徴とする断熱方法を提供するもので ある。  The present invention also provides a heat insulation method characterized by applying a solution or dispersion containing a silane coupling agent to the surface of an inorganic material, a metal material or a resin material.
発明の効果  The invention's effect
[0009] 本発明の断熱塗膜材を用いれば、例えば建物の室内のガラス表面等に塗布する だけで、冬期においては室外側への放熱を抑制し、夏期においては室外側力もの放 射を抑制することによって室内を断熱できる。  [0009] With the use of the heat insulating coating material of the present invention, for example, it can be applied only to the glass surface of a building room, for example, to suppress heat radiation to the outside in the winter, and to radiate strong outdoor force in the summer. By suppressing it, the room can be insulated.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]夏期における窓ガラスに対して本発明の断熱塗膜加工した場合 (黒丸)及び未 加工の場合 (黒三角)の室内温度と室外温度 (黒四角)を示す図である。  [0010] FIG. 1 is a diagram showing the indoor temperature and the outdoor temperature (black square) when a heat-insulating coating film of the present invention is processed on a window glass in summer (black circle) and when not processed (black triangle). .
[図 2]冬期における窓ガラスに対して本発明の断熱塗膜加工した場合 (黒丸)及び未 加工の場合 (黒三角)の室内温度と室外温度 (黒四角)を示す図である。  [Fig. 2] A diagram showing the indoor temperature and the outdoor temperature (black square) when the heat-insulating coating film of the present invention is applied to a window glass in winter (black circle) and when it is not processed (black triangle).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の断熱塗膜材は、シランカップリング剤を含有する水性溶液又は水分散液 力もなるものである。シランカップリング剤としては、少なくとも 1個のシラノール基形成 性のアルコキシ基と、有機官能基とを有するシラン化合物であればよぐ例えば下記 一般式 (1) [0012] [化 1] [0011] The heat insulating coating material of the present invention also has an aqueous solution or water dispersion strength containing a silane coupling agent. The silane coupling agent may be a silane compound having at least one silanol group-forming alkoxy group and an organic functional group. For example, the following general formula (1) [0012] [Chemical 1]
R1 R 1
R2— Si— X ( 1 ) R 2 — Si— X (1)
R3 R 3
[0013] (式中、
Figure imgf000004_0001
R2及び R3の少なくとも 1個はアルコキシ基又は水酸基を示し、残余はァ ルコキシ基、水酸基又はアルキル基を示し、 Xは有機官能基を示す)
[0013] (where
Figure imgf000004_0001
At least one of R 2 and R 3 represents an alkoxy group or a hydroxyl group, the remainder represents an alkoxy group, a hydroxyl group or an alkyl group, and X represents an organic functional group)
で表される化合物が挙げられる。  The compound represented by these is mentioned.
[0014] R\ R2及び R3で示されるアルコキシ基としては、炭素数 1〜6のアルコキシ基、例え ばメトキシ基、エトキシ基等が挙げられる。これらのアルコキシ基は、塗膜を形成する ための基材、例えばガラスや金属等の無機材料、有機材料又は金属材料表面上で 水分と反応して加水分解を受けてシラノールとなり、無機材料や金属材料の表面に 存在する水酸基との間で水素結合する。あるいは、アルコキシ基の加水分解によつ て生じたケィ素上のシラノールと無機材料や金属材料の表面に存在する水酸基との 間に脱水縮合が起こって共有結合が形成されることによって、無機材料や金属材料 へのシランカップリング剤の吸着が起こる。さらに、無機材料や金属材料上のシラン カップリング剤のシラノール同士においても脱水縮合反応が起こり、無機材料や金属 材料上にシランカップリング剤の透明で強固な膜を形成することができる。 [0014] The alkoxy group represented by R \ R 2 and R 3, the alkoxy group having 1 to 6 carbon atoms, for example if a methoxy group, an ethoxy group, and the like. These alkoxy groups react with moisture on the surface of a substrate for forming a coating film, for example, an inorganic material such as glass or metal, an organic material or a metal material, and are hydrolyzed to form silanol. Hydrogen bonds with the hydroxyl groups present on the surface of the material. Alternatively, a dehydration condensation takes place between silanols on the silicon produced by hydrolysis of alkoxy groups and hydroxyl groups present on the surface of the inorganic material or metal material to form a covalent bond, thereby forming an inorganic material. Adsorption of silane coupling agents on metal and metal materials occurs. Furthermore, a dehydration condensation reaction also occurs between silanols of the silane coupling agent on the inorganic material or metal material, and a transparent and strong film of the silane coupling agent can be formed on the inorganic material or metal material.
[0015] なお、式(1)
Figure imgf000004_0002
R2及び R3のアルコキシ基の一部は水酸基となっていてもよい 。 R2及び R3で示されるアルキル基としては、炭素数 1〜6のアルキル基、例えば メチル基、ェチル基等が挙げられる。 R1 R2及び R3のうち少なくとも 1個はアルコキシ 基又は水酸基である力 2個以上がアルコキシ基であるものが特に好ましい。
[0015] Note that the formula (1)
Figure imgf000004_0002
A part of the alkoxy groups of R 2 and R 3 may be a hydroxyl group. Examples of the alkyl group represented by R 2 and R 3 include an alkyl group having 1 to 6 carbon atoms, such as a methyl group and an ethyl group. It is particularly preferable that at least one of R 1 R 2 and R 3 is an alkoxy group or a hydroxyl group and two or more is an alkoxy group.
[0016] Xで表される有機官能基としては、ビュル基、エポキシ基、スチリル基、メタクリロキ シ基、アタリロキシ基、アミノ基、ウレイド基、クロ口プロピル基、メルカプト基、スルフィ ド基、イソシァネート基、及びこれらの基を含有するアルキル基などが挙げられる。か 力る Xは、無機材料、金属材料又は有機材料上に結合したシランカップリング剤の有 機官能基同士で水素結合、脱水縮合反応あるいはポリマー化反応を起こし、強固な 塗膜を形成する。また、 Xは榭脂などの有機材料と化学結合又は架橋して強固に結 合することから、有機材料上にシランカップリング剤の透明で、強固な膜を形成するこ とがでさる。 [0016] The organic functional group represented by X includes a bur group, an epoxy group, a styryl group, a methacryloxy group, an attaryloxy group, an amino group, a ureido group, a chloropropyl group, a mercapto group, a sulfide group, and an isocyanate group. And alkyl groups containing these groups. Such X causes a hydrogen bond, a dehydration condensation reaction, or a polymerization reaction between organic functional groups of the silane coupling agent bonded on the inorganic material, metal material, or organic material to form a strong coating film. In addition, X is strongly bonded by chemical bonding or cross-linking with organic materials such as resin. As a result, a transparent and strong film of the silane coupling agent can be formed on the organic material.
[0017] シランカップリング剤の例としては、ビュルトリクロルシラン、ビュルトリメトキシシラン、 ビニルトリエトキシシラン、 2— (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラ キシシラン、 3—グリシドキシプロピルトリエトキシシラン、 p—スチリルトリメトキシシラン 、 3—メタクリロキシプロピルメチルジメトキシシラン、 3—メタクリロキシプロピルトリメトキ シシラン、 3—メタクリロキシプロピルメチルジェトキシシラン、 3—メタクリロキシプロピ ルトリエトキシシラン、 3—アタリロキシプロピルトリメトキシシラン、 N— 2 (アミノエチル) —3 ァミノプロピルメチルジメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピ ルトリメトキシシラン、 N— 2 (アミノエチル) 3 ァミノプロピルトリエトキシシラン、 3— ァミノプロピルトリメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 3—トリエトキシ シリル— N— (1, 3 ジメチループチリデン)プロピルァミン、 N—フエ-ルー 3 ァミノ プロピルトリメトキシシラン、 N— (ビニルベンジル) 2 アミノエチル一 3 ァミノプロ ピルトリメトキシシラン、 3—ウレイドプロピルトリエトキシシラン、 3—クロ口プロピルトリメ トキシシラン、 3—メルカプトプロピルメチルジメトキシシラン、 3—メルカプトプロビルト リメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフイド、 3—イソシァネート プロピルトリエトキシシラン等が挙げられる。これらのシランカップリング剤は、信越ィ匕 学工業、東レ 'ダウコーユング社等から市販されているものを使用することができる。  [0017] Examples of silane coupling agents include butyltrichlorosilane, butyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysiloxysilane, and 3-glycidoxypropyl. Triethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyljetoxysilane, 3-methacryloxypropyltriethoxysilane, 3- Atalyloxypropyltrimethoxysilane, N—2 (aminoethyl) —3 Aminopropylmethyldimethoxysilane, N—2 (aminoethyl) 3 aminopropyltrimethoxysilane, N—2 (aminoethyl) 3 aminopropyltriethoxysilane , 3-Aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3-Triethoxysilyl-N— (1,3 dimethylpropylidene) propylamine, N-Ferru 3 Amaminopropyltrimethoxysilane, N— (Vinylbenzyl) 2 Aminoethyl 1 3 Aminopropyltrimethoxysilane, 3-Ureidopropyltriethoxysilane, 3-Clopropropyltrimethoxysilane, 3-Mercaptopropylmethyldimethoxysilane, 3-Mercaptopropyl trimethoxysilane, Bis ( And triethoxysilylpropyl) tetrasulfide and 3-isocyanate propyltriethoxysilane. As these silane coupling agents, those commercially available from Shin-Etsu Chemical Co., Ltd., Toray Industries Co., Ltd., and the like can be used.
[0018] これらのシランカップリング剤は、溶液又は分散液として用いられる。シランカツプリ ング剤の溶媒としては、塗布前は、非水系の溶媒、例えばメタノール、エタノール、プ ロパノールあるいはアセトンなどに保存しておくのが好ましい。塗布直前には、これに 水をカ卩えて用いてもよい。溶液又は分散液中のシランカップリング剤の濃度は、 0. 0 05〜50質量0 /0、さらに 0. 01〜40質量0 /0、特に 0. 01〜30質量0 /0力好まし!/、。 [0018] These silane coupling agents are used as solutions or dispersions. The solvent for the silane coupling agent is preferably stored in a non-aqueous solvent such as methanol, ethanol, propanol or acetone before application. Just before application, water may be added to this and used. Solution or the concentration of the silane coupling agent in the dispersion is 0. 0 05-50 wt 0/0, further from 0.01 to 40 weight 0/0, especially 01 to 30 weight 0/0 Power preferably 0.! /.
[0019] シランカップリング剤を含有する溶液又は分散液には、さらに顔料、染料等の着色 剤を含有させてもよい。なお、これらの着色剤を配合しない場合には、得られる断熱 塗膜は透明であり、基材の色等に影響を及ぼさない。  [0019] The solution or dispersion containing the silane coupling agent may further contain a colorant such as a pigment or a dye. When these colorants are not blended, the resulting heat-insulating coating film is transparent and does not affect the color of the substrate.
[0020] 本発明の断熱塗膜材の塗布対象は、有機材料、無機材料、金属材料の!/、ずれで もよい。無機材料としてはガラス、セラミック、大理石及びコンクリートなどが挙げられる 。金属材料としてはアルミニウム、スズ、亜鉛、モリブデン、タングステン、チタン、金、 銀、銅、ニッケル、鉄、及びこれらの合金などが挙げられる。有機材料 (榭脂材料)と してはポリプロピレン、ポリエチレン、ポリメタクリル酸メチル、ポリブチレンテレフタレー ト、ポリアセタール、 ABS榭脂、ポリカーボネート、変性ポリフエ-レンエーテル、ポリ ァリレート、ポリエーテルスルフォン、ポリスルフォン、ポリフエ-レンスルファイド、ポリ アミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン及 び強化ポリエチレンテレフタレートなどが挙げられる。 [0020] The subject of application of the heat insulating coating material of the present invention is organic materials, inorganic materials, and metal materials! Also good. Examples of inorganic materials include glass, ceramic, marble, and concrete. Examples of the metal material include aluminum, tin, zinc, molybdenum, tungsten, titanium, gold, silver, copper, nickel, iron, and alloys thereof. Organic materials (grease materials) include polypropylene, polyethylene, polymethyl methacrylate, polybutylene terephthalate, polyacetal, ABS resin, polycarbonate, modified polyphenylene ether, polyacrylate, polyethersulfone, polysulfone, Polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyetherimide, polyetheretherketone, and reinforced polyethylene terephthalate.
[0021] 本発明の断熱塗膜材は基材として使用される無機材料、金属材料及び榭脂材料 の表面に塗布することによって低熱伝導性透明層を形成させるために用いることがで きる。すなわち、無機材料、金属材料又は有機材料上に形成された本発明の断熱塗 膜材による塗膜は無機材料、金属材料又は有機材料からの低温帯域への放熱を抑 制し、シランカップリング剤の層と無機材料、金属材料又は有機材料との逆方向の温 度差が大きくなり、高温帯域から低温帯域への対流、伝導及び放射による熱伝導を 低下させることができる。  [0021] The heat insulating coating material of the present invention can be used for forming a low thermal conductive transparent layer by coating on the surface of an inorganic material, a metal material and a resin material used as a base material. That is, the coating film of the heat insulating coating material of the present invention formed on an inorganic material, a metal material, or an organic material suppresses heat radiation from the inorganic material, the metal material, or the organic material to a low temperature zone, and a silane coupling agent. The temperature difference in the opposite direction between the layer and the inorganic material, metal material, or organic material increases, and heat conduction by convection, conduction and radiation from the high temperature zone to the low temperature zone can be reduced.
[0022] このことから、高温帯域側に本発明の断熱塗膜材による塗膜を積層させた時、高温 帯域から低温帯域への対流、伝導及び放射による熱伝導を低下させることによって、 高温帯域側の温度低下を抑制し、断熱効果をもたらす。すなわち、冬期において、 高温帯域となる窓ガラスの室内側に本発明の断熱塗膜材による塗膜を積層させた時 、室内から低温帯域となる室外への対流、伝導及び放射による熱伝導を低下させる こと〖こよって、室内の温度低下を抑制し、断熱効果をもたらす。  [0022] From this, when the coating film of the heat insulating coating material of the present invention is laminated on the high temperature zone side, the heat conduction by the convection, conduction and radiation from the high temperature zone to the low temperature zone is reduced, It suppresses the temperature drop on the side and brings about a heat insulation effect. In other words, in the winter, when the coating film of the heat insulating coating material of the present invention is laminated on the indoor side of the window glass that becomes the high temperature zone, the heat conduction due to convection, conduction, and radiation from the room to the outside that becomes the low temperature zone decreases. By doing so, the temperature drop in the room is suppressed and a heat insulating effect is brought about.
[0023] 一方、低温帯域側に本発明の断熱塗膜材による塗膜を積層させた時、高温帯域か ら低温帯域への放射による熱伝導を低下させることによって、低温帯域側の温度上 昇を抑制し、断熱効果をもたらす。すなわち、夏期において、低温帯域となる窓ガラ スの室内側に本発明の断熱塗膜材による塗膜を積層させた時、高温帯域となる室外 力 室内への放射による熱伝導を低下させることによって、室内の温度上昇を抑制し 、断熱効果をもたらす。  [0023] On the other hand, when a coating film made of the heat insulating coating material of the present invention is laminated on the low temperature zone side, the temperature rise on the low temperature zone side is reduced by reducing the heat conduction by radiation from the high temperature zone to the low temperature zone. Suppresses the heat insulation effect. That is, in the summer, when a coating film made of the heat-insulating coating material of the present invention is laminated on the indoor side of the window glass in the low temperature zone, the heat conduction due to radiation into the outdoor force chamber in the high temperature zone is reduced. It suppresses the temperature rise in the room and brings about an insulation effect.
[0024] また、一般に、結露発生条件として、温度 20°C、湿度 50%における室内において 、水蒸気の露点温度は 9. 6°Cになることから、窓の室内側の表面温度が 9. 6°C以下 になると結露が発生する。し力しながら、本発明によるこの塗膜による断熱効果により 、室内側の窓ガラスの表面温度低下を抑制することから、窓ガラス表面に発生する結 露を抑制することができる。 [0024] In general, as a condition for occurrence of condensation, indoors at a temperature of 20 ° C and a humidity of 50% Since the dew point temperature of water vapor is 9.6 ° C, condensation occurs when the surface temperature on the indoor side of the window falls below 9.6 ° C. However, due to the heat insulating effect of the coating film according to the present invention, a decrease in the surface temperature of the indoor window glass is suppressed, so that dew condensation occurring on the window glass surface can be suppressed.
[0025] 本発明の断熱塗膜材を用いた断熱塗膜加工は簡便に行うことができることから、既 存の窓ガラスに簡便に断熱加工を行うことができる。さらに、本発明の断熱塗膜材を 用いた断熱塗膜加工は、窓ガラスの構造を変更することなく行うことができることから 、建物の窓ガラスだけでなぐ自動車等の乗物の窓ガラスにも施すことができる。 実施例 [0025] Since the heat insulating coating process using the heat insulating coating material of the present invention can be easily performed, the existing window glass can be easily heat-insulated. Furthermore, since the heat insulating coating processing using the heat insulating coating material of the present invention can be performed without changing the structure of the window glass, it is also applied to the window glass of a vehicle such as an automobile that is connected only with the window glass of the building. be able to. Example
[0026] 以下、実施例により具体的に説明する。  [0026] Hereinafter, specific examples will be described.
[0027] 実施例 1 [0027] Example 1
夏期において容積 42m3の部屋の窓ガラス(1. 2m X O. 9m)の室内側に信越ィ匕学 工業株式会社製 KBM6123、 0. 5gを水 999. 5gで希釈した液を、 lm2あたり 6mg 塗布することを 2回繰り返すことによって断熱塗膜加工し、同様の部屋の窓ガラスに は加工をせず、ガラス面が外気になるようにそれぞれ取り付けた。これらの部屋は測 定開始と共にエアコンディショナーを 18°C設定で稼働状態とし、室内の経時変化を 測定した。その結果を図 1に示す。 In summer, a volume of 42m 3 room window glass (1.2m X O. 9m) inside the room, a solution obtained by diluting 0.5 g of KBM6123, made by Shin-Etsu Chemical Co., Ltd. with 99.5 g of water, per lm 2 The heat insulating coating was processed by repeating the application of 6mg twice, and the glass surface of the same room was not processed, and the glass surface was attached to the outside. In these rooms, the air conditioner was put into operation at 18 ° C at the start of measurement, and the changes over time in the room were measured. The results are shown in Fig. 1.
[0028] 図 1に夏期における室内の窓ガラスに断熱塗膜加工した場合の室内温度、未カロェ の場合の室内温度及び室外の気温の経時変化を示した。断熱塗膜加工及び未カロ ェの場合の室内温度の初期値は 28. 2及び 28. 9°Cであったのに対して、測定開始 と共にエアコンディショナーを 18°C設定で稼働すると、 1時間後の室内温度はそれぞ れ 26. 8及び 27. 9°Cを示し、 8時間後では 20. 8及び 24. 2°Cであった。断熱塗膜 加工及び未力卩ェの場合の差は 1及び 8時間後ではそれぞれ 1. 1及び 3. 4°Cの値を 示した。初期温度に対して 8時間後の断熱塗膜加工及び未加工の場合の温度低下 率はそれぞれ 26及び 16%の値を示し、断熱塗膜加工の断熱効果は未加工の場合 と比較すると 1. 6倍の効果が認められた。  [0028] Fig. 1 shows the changes over time in the indoor temperature when an indoor window glass was processed on an indoor window glass in summer, the indoor temperature in the case of non-calorie, and the outdoor temperature. The initial values of the room temperature for thermal insulation coating and non-calorie were 28.2 and 28.9 ° C, but when the air conditioner was operated at 18 ° C at the start of measurement, 1 hour Later room temperatures were 26.8 and 27.9 ° C, respectively, and after 8 hours they were 20.8 and 24.2 ° C. The difference between the heat-insulated coating process and the weakness was 1.1 and 3.4 ° C after 1 and 8 hours, respectively. The rate of decrease in temperature when the insulation film was processed and unprocessed 8 hours after the initial temperature was 26 and 16%, respectively.The insulation effect of the insulation film processing was 1. A 6-fold effect was observed.
[0029] また、電力で考察すると、 8時間後の室内温度に対して断熱塗膜加工した場合では 、 62%の電力量で未力卩ェの場合と同様の断熱効果を示すことになり、このことから 3 8%の電力を低減できることが推定された。 [0029] Further, when considering the electric power, when the heat insulating coating is processed with respect to the room temperature after 8 hours, the heat insulating effect similar to that in the case of incompetent with 62% electric power is shown. From this 3 It was estimated that 8% power could be reduced.
[0030] 実施例 2 [0030] Example 2
冬期における容積 42m3の部屋の窓ガラス(1. 2m X O. 9m)の室内側に信越ィ匕学 工業株式会社製 KBM6123、 0. 5gを水 999. 5gで希釈した液を、 lm2あたり 6mg 塗布することを 2回繰り返すことによって断熱塗膜加工し、同様の部屋の窓ガラスに は加工をせず、ガラス面が外気になるようにそれぞれ取り付けた。これらの部屋を夜 間にお 、て 2300kcalZhの温風暖房機で室温を 20°Cまで上昇させた後、この温風 暖房機を停止し、室内温度の経時変化を測定した。その結果を図 2に示す。 Window glass of the room volume of 42m 3 in the winter (1. 2m X O. 9m) Shin-Etsu I匕学Industry Co., Ltd. to the indoor side of the KBM6123, the liquid that the 0. 5g was diluted with water 999. 5g, per lm 2 The heat insulating coating was processed by repeating the application of 6mg twice, and the glass surface of the same room was not processed, and the glass surface was attached to the outside. In these rooms, the room temperature was raised to 20 ° C with a hot air heater of 2300kcalZh in the night, and then the hot air heater was stopped and the change in room temperature over time was measured. The result is shown in Fig.2.
[0031] 図 2に冬期における室内の窓ガラスに断熱塗膜加工した場合の室内温度、未カロェ の場合の室内温度及び室外の気温の経時変化を示した。断熱塗膜加工及び未カロ ェの場合の室内温度の初期値はそれぞれ 20. 2及び 20. 3°Cであったのに対して、 1時間後ではそれぞれ 16. 1及び 12. 8°Cを示し、 6時間後では 8. 4及び 5. 8°Cであ つた。断熱塗膜加工及び未加工の場合の差は 1及び 6時間後ではそれぞれ 3. 3及 び 2. 6°Cの値を示した。初期温度に対して 6時間後の断熱塗膜加工及び未加工の 場合の温度低下率はそれぞれ 58及び 71%の値を示し、断熱塗膜加工の断熱効果 は未加ェの場合と比較すると 1. 2倍の効果が認められた。  [0031] Fig. 2 shows changes over time in the indoor temperature when a thermal insulating coating is applied to the indoor window glass in winter, the indoor temperature in the case of non-calorie, and the outdoor temperature. The initial values of the indoor temperature in the case of thermal insulation coating and non-calorie were 20.2 and 20.3 ° C, respectively, but after 1 hour, 16.1 and 12.8 ° C, respectively. It was 8.4 and 5.8 ° C after 6 hours. The difference between heat-insulated coating and unprocessed film was 3.3 and 2.6 ° C after 1 and 6 hours, respectively. The rate of decrease in temperature after 6 hours of heat treatment after the initial temperature is 58 and 71%, respectively, and the heat insulation effect of heat treatment is 1 compared to the case without heat treatment. A double effect was observed.
[0032] また、電力で考察すると、 6時間後の室内温度に対して断熱塗膜加工した場合では 、 82%の電力量で未力卩ェの場合と同様の断熱効果を示すことになり、このことから 1 8%の電力を低減できることが推測された。  [0032] Further, when considering the electric power, when the heat insulating coating is processed with respect to the room temperature after 6 hours, the heat insulating effect similar to that in the case of incompetent with 82% electric energy is shown. From this, it was estimated that 18% of power could be reduced.
[0033] 実施例 3  [0033] Example 3
室温を 24°C、湿度を 45%に設定した恒温恒湿室において、縦 0. 35m、横 0. 55 m及び奥行き 0. 60mの一面を解放した冷凍庫の解放面に信越化学工業株式会社 製 KBM6123、0. 5gを水 999. 5gで希釈した液を、 lm2あたり 6mg塗布することを 2 回繰り返すことによる断熱塗膜加工及び未加工ガラス面が外側になるように取り付け 、冷凍庫内の温度を— 10°Cに保ち、表面に発生する結露の状態を観察した。その 結果を表 1に示す。 Manufactured by Shin-Etsu Chemical Co., Ltd. on the freezing side of the freezer with one side of 0.35 m in length, 0.55 m in width and 0.60 m in depth in a constant temperature and humidity chamber set at 24 ° C and humidity of 45% KBM6123,0. the solution was diluted with water 999. 5 g of 5g, mounted so as insulation coating process and raw glass surface due to repeated twice to per lm 2 6 mg coating is on the outside, the temperature in the freezer Was kept at -10 ° C, and the state of condensation on the surface was observed. The results are shown in Table 1.
[0034] [表 1] 時間/分 [0034] [Table 1] Hour / minute
0 30 60 90 120 断熱塗膜加工ガラス なし なし なし なし なし 未加工ガラス なし 流滴あり 流滴あり 流滴あり 流滴あり  0 30 60 90 120 Insulated coated glass None None None None None Unprocessed glass None With droplets With droplets With droplets With droplets
[0035] 未力卩ェのガラス表面には 30分後に結露が発生したのに対して、断熱塗膜加工した ガラス表面には結露の流滴の発生は観察されなカゝつた。このことから、本発明の活性 ケィ素誘導体による断熱塗膜加工にはガラス表面の断熱効果に起因する結露抑制 効果が認められた。 [0035] Condensation occurred on the glass surface of the unsatisfactory glass after 30 minutes, whereas no condensation droplets were observed on the heat-treated glass surface. From this, it was confirmed that the heat insulating coating processing with the active silicon derivative of the present invention had a dew condensation suppressing effect due to the heat insulating effect on the glass surface.
[0036] これらの結果から、本発明の断熱塗膜材を用いた断熱塗膜加工は断熱材として有 効であり、窓ガラスの構造を変更することなぐ断熱機能を有することが認められた。  [0036] From these results, it was confirmed that the heat insulating coating processing using the heat insulating coating material of the present invention is effective as a heat insulating material and has a heat insulating function without changing the structure of the window glass.

Claims

請求の範囲 The scope of the claims
[1] シランカップリング剤を含有する溶液又は分散液カゝらなる断熱塗膜材。  [1] A heat insulating coating material comprising a solution or dispersion containing a silane coupling agent.
[2] 溶液又は分散液中のシランカップリング剤の濃度が 0. 005〜50質量%である請求 項 1記載の断熱塗膜材。  [2] The heat insulating coating material according to [1], wherein the concentration of the silane coupling agent in the solution or dispersion is 0.005 to 50% by mass.
[3] シランカップリング剤が、下記一般式(1) [3] The silane coupling agent is represented by the following general formula (1)
[化 1]  [Chemical 1]
R1 R 1
R2— Si— X ( 1 ) R 2 — Si— X (1)
R3 R 3
(式中、
Figure imgf000010_0001
R2及び R3の少なくとも 1個はアルコキシ基又は水酸基を示し、残余はァ ルコキシ基、水酸基又はアルキル基を示し、 Xは有機官能基を示す)
(Where
Figure imgf000010_0001
At least one of R 2 and R 3 represents an alkoxy group or a hydroxyl group, the remainder represents an alkoxy group, a hydroxyl group or an alkyl group, and X represents an organic functional group)
で表される化合物である請求項 1又は 2記載の断熱塗膜材。  The heat insulating coating material according to claim 1 or 2, which is a compound represented by the formula:
[4] ガラス表面塗布用である請求項 1〜3の 、ずれか 1項記載の断熱塗膜材。 [4] The heat insulating coating material according to any one of claims 1 to 3, which is used for glass surface coating.
[5] 建物の室内側の窓ガラス表面塗布用である請求項 1〜4のいずれか 1項記載の断 熱塗膜材。 [5] The thermal insulation coating material according to any one of claims 1 to 4, wherein the thermal insulation coating material is used for coating a window glass surface on the indoor side of a building.
[6] シランカップリング剤を含有する溶液又は分散液を、無機材料、金属材料又は榭脂 材料の表面に塗布することを特徴とする断熱方法。  [6] A heat insulation method comprising applying a solution or dispersion containing a silane coupling agent to the surface of an inorganic material, a metal material, or a resin material.
[7] 溶液又は分散液中のシランカップリング剤の濃度が 0. 005〜50質量%である請求 項 6記載の断熱方法。 7. The heat insulation method according to claim 6, wherein the concentration of the silane coupling agent in the solution or dispersion is 0.005 to 50% by mass.
[8] シランカップリング剤が、下記一般式(1) [8] The silane coupling agent is represented by the following general formula (1)
[化 2]  [Chemical 2]
R1 R 1
R2— Si— X ( 1 ) R 2 — Si— X (1)
R3 R 3
(式中、 R R2及び R3の少なくとも 1個はアルコキシ基又は水酸基を示し、残余はァ ルコキシ基、水酸基又はアルキル基を示し、 Xは有機官能基を示す) で表される化合物である請求項 6又は 7記載の断熱方法。 (Wherein at least one of RR 2 and R 3 represents an alkoxy group or a hydroxyl group, the remainder represents an alkoxy group, a hydroxyl group or an alkyl group, and X represents an organic functional group) The heat insulation method of Claim 6 or 7 which is a compound represented by these.
表面がガラス表面である請求項 6〜8のいずれか 1項記載の断熱方法。  The heat insulation method according to any one of claims 6 to 8, wherein the surface is a glass surface.
表面が建物の室内側の窓ガラス表面である請求項 6〜9のいずれか 1項記載の断 熱方法。  The heat insulation method according to any one of claims 6 to 9, wherein the surface is a window glass surface on the indoor side of the building.
PCT/JP2006/309375 2005-10-14 2006-05-10 Heat insulating coating material WO2007043208A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-299987 2005-10-14
JP2005299987A JP2007106918A (en) 2005-10-14 2005-10-14 Heat-insulating coating film material

Publications (1)

Publication Number Publication Date
WO2007043208A1 true WO2007043208A1 (en) 2007-04-19

Family

ID=37942472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309375 WO2007043208A1 (en) 2005-10-14 2006-05-10 Heat insulating coating material

Country Status (2)

Country Link
JP (1) JP2007106918A (en)
WO (1) WO2007043208A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047529A (en) * 2012-08-31 2014-03-17 Akira Shibazaki Dwelling house utilizing solar heat
TWI480345B (en) * 2012-11-23 2015-04-11 Ind Tech Res Inst Paint, preparing method thereof, and film formed from the paint
KR102250901B1 (en) * 2015-12-03 2021-05-10 주식회사 엘지생활건강 Heat-conduction-preventive composition, heat-conduction-preventive glass, and method of preventing heat conduction for glass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183580A (en) * 2001-12-20 2003-07-03 Sekuto Kagaku:Kk Water-soluble heat insulating coating and heat insulation plate using the same
WO2003087003A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Water-based heat-radiation-preventive coating material for glass, heat-radiation-preventive glass, and method of preventing heat radiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183580A (en) * 2001-12-20 2003-07-03 Sekuto Kagaku:Kk Water-soluble heat insulating coating and heat insulation plate using the same
WO2003087003A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Water-based heat-radiation-preventive coating material for glass, heat-radiation-preventive glass, and method of preventing heat radiation

Also Published As

Publication number Publication date
JP2007106918A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
KR101424089B1 (en) Method for preparing heat-dissipating graphene coating material having conductivity using sol-gel method and graphene oxide and heat-dissipating graphene coating material having conductivity prepared by the same
AU2006337487B2 (en) Ceramic wall cladding composites that reflect IR radiation
KR102164554B1 (en) Improved hydrophobic aerogel materials
KR101424082B1 (en) Complex ceramic prepared by using sol-gel method, coating material for thin film having heat-resistance to ultra-high temperature and high resistance to corrosion comprising the same and method thereof
US6361871B1 (en) Composition of organofluorine-functional silanes and/or siloxanes, process for preparing it and its use
CN101210146B (en) Composition of reflective insulation dope, double-layer heat insulation dope and preparing method thereof
JP5716679B2 (en) Water-repellent substrate and method for producing the same
US8057851B2 (en) Ceramic wall cladding composites with electromagnetic shielding properties
JP5452929B2 (en) Method for coating a support
WO2017038649A1 (en) Method for manufacturing thermally insulated body, and thermally insulated body
JP4778346B2 (en) Vacuum insulation
WO2007043208A1 (en) Heat insulating coating material
EP3755826A1 (en) Magnesium alloy layered composites for electronic devices
Quinton et al. Influence of surface electrokinetics on organosilane adsorption
JP7238566B2 (en) Outer packaging for vacuum insulation, vacuum insulation, and articles with vacuum insulation
JP4421902B2 (en) Manufacturing method of heat radiation prevention glass
JP4086275B2 (en) Water-soluble heat insulating paint and heat insulating plate using the same
KR102250901B1 (en) Heat-conduction-preventive composition, heat-conduction-preventive glass, and method of preventing heat conduction for glass
CN216886548U (en) Aerogel inside lining heat preservation manger plate membrane part for new energy automobile
CN115849956B (en) Composite quartz ceramic material with hydrophobic moisture-proof coating and preparation method thereof
Lubert et al. Organically modified silicates: promising sensing materials with high porosity for SAW sensors
WO2019163131A1 (en) Structure, material for bonding applications, structure production method, and coating method
JP2001192235A (en) Substrate coated with organic group-containing silicon dioxide film and its manufacturing method
CN114096406A (en) Barrier material and product with same
JP2017150666A (en) Vacuum insulation material outer packaging material, vacuum insulation material, and apparatus with vacuum insulation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746192

Country of ref document: EP

Kind code of ref document: A1