WO2007040423A1 - Procede de production d'energie par mouvements rotatifs et en va-et-vient et dispositif de transformation et d'extraction d'energie dans des milieux liquides - Google Patents

Procede de production d'energie par mouvements rotatifs et en va-et-vient et dispositif de transformation et d'extraction d'energie dans des milieux liquides Download PDF

Info

Publication number
WO2007040423A1
WO2007040423A1 PCT/RU2006/000511 RU2006000511W WO2007040423A1 WO 2007040423 A1 WO2007040423 A1 WO 2007040423A1 RU 2006000511 W RU2006000511 W RU 2006000511W WO 2007040423 A1 WO2007040423 A1 WO 2007040423A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
vortex tube
heat generator
energy
fluid
Prior art date
Application number
PCT/RU2006/000511
Other languages
English (en)
Russian (ru)
Inventor
Indus Kashipovich Shamatov
Ildus Khamitovich Galeev
Yury Pavlovich Zakhmatov
Vyacheslav Prokofyevich Luzhetsky
Ilshat Gaiseevich Musin
Olga Aleksandrovna Timoshkina
Ruslan Indusovich Shamatov
Nurislyam Nurullovich Sharapov
Original Assignee
Indus Kashipovich Shamatov
Ildus Khamitovich Galeev
Yury Pavlovich Zakhmatov
Luzhetsky Vyacheslav Prokofyev
Ilshat Gaiseevich Musin
Olga Aleksandrovna Timoshkina
Ruslan Indusovich Shamatov
Nurislyam Nurullovich Sharapov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indus Kashipovich Shamatov, Ildus Khamitovich Galeev, Yury Pavlovich Zakhmatov, Luzhetsky Vyacheslav Prokofyev, Ilshat Gaiseevich Musin, Olga Aleksandrovna Timoshkina, Ruslan Indusovich Shamatov, Nurislyam Nurullovich Sharapov filed Critical Indus Kashipovich Shamatov
Publication of WO2007040423A1 publication Critical patent/WO2007040423A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V40/00Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies
    • F24V40/10Production or use of heat resulting from internal friction of moving fluids or from friction between fluids and moving bodies the fluid passing through restriction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect

Definitions

  • a method of energy release by means of rotational-translational motion of a liquid and a device for converting and releasing energy in liquid media is provided.
  • a method of energy release through rotational - translational motion of a liquid The invention relates to methods for influencing a fluid flow and can be used in hydrodynamics, mainly in heat and mass transfer apparatuses.
  • the invention also relates to the field of heat engineering. It can be used in heat generators providing heat supply to large systems of high and medium pressure, as well as in devices for heating liquids, used mainly for various heating systems, for example, in heating systems of buildings and structures, as well as in hydrocarbon production.
  • the invention is known “A method of producing heat and a device for its implementation)), W patent RU 2242684, publ. 2004.12.20, IPC F24J ⁇ / 00, in which the preformed flow of the liquid coolant is accelerated to a directed vortex state, for which, in a limited space, the target coolant flow rate is reached by the surface of the swirl working body.
  • the invention is used to directly convert mechanical energy into thermal energy, increase the efficiency of conversion of rotational energy to thermal energy, and simplify the design of a heat generator.
  • the proposed method requires preliminary heating of the liquid, which reduces the efficiency and increases the energy consumption for the implementation of the process. In this method, the liquid is transferred to the vapor-gas mixture, which also leads to a decrease in the efficiency of conversion of rotational energy into thermal energy.
  • the invention is known “A method of producing thermal energy and a heat generator for its implementation)), application RU 3 Xa 2003132417, publ. 2005.05.10, IPC F25B29 / 00, according to which the production of thermal energy in liquid media carried out by converting the energy of a moving fluid into thermal energy, for which the moving flow of a liquid medium is subjected to continuous and intense swirling. However, in this method, the efficiency of converting rotational energy into thermal energy is low.
  • the invention is known “A method of increasing the efficiency of the process of heat generation in a cavitation vortex heat generator)), application RU 99110395, publ. 2001.03.20, IPC F24J ⁇ / 00 according to which a vortex flow is generated in a vortex heat generator.
  • the energy of the stream is converted into thermal energy.
  • a cavitation flow is used, in which the conversion is carried out by the collapse of cavitation cavities formed in the cavitation zone of the working channel and the simultaneous conversion of the kinetic energy of rotation of the stream exiting the working channel to potential.
  • the resonance effect is not used, which leads to a decrease in the efficiency of conversion of rotational energy into thermal energy.
  • the invention is known “Method of intensification of the working process in vortex cavitation apparatus)), patent RU, N ° 2212596, publ. 2001.02.20, IPC F24J ⁇ / 00, in accordance with which the fluid flows through an axisymmetric channel of variable cross-section and: creates stream lines transverse to the main flow for vortices with cavitation cavities.
  • the resonance effect is not used, which leads to a decrease in the efficiency of conversion of rotational energy into thermal energy.
  • the invention minimizes the interaction zone of the flow on the limiting medium, first of all, on the walls of the designed devices and creates a flow system that minimizes the influence of the interaction zone and interaction products on the limiting medium without the use of flow-converting devices located near the interaction zone. Those. solves another technical problem.
  • the technical result of the proposed method is to increase the conversion efficiency of the total specific energy (hydrodynamic pressure) of a fluid working fluid (TPT) into thermal energy, as well as an increase in heat transfer to the heat carrier.
  • a primary flow of a fluid working fluid is formed.
  • the formation is carried out outside the spatial region of the heat generator.
  • the primary flow is given translational motion, an external perturbing effect is imposed on the flow of the fluid working fluid inside the space of the heat generator, secondary flows of the fluid working fluid are formed, and the flow of the fluid working fluid (TPT) is diverted in the flow direction.
  • the proposed method is characterized in that the primary flow is formed in the pipeline, the diameter of which is equal to the diameter of the inlet pipe of the heat generator and is, for example, from 50 mm to 120 mm, and the primary flow has the characteristics of a laminar, straight flow.
  • the proposed method is as follows.
  • a hydrodynamic converter is installed, which is made, for example, as a screw nozzle with a vortex plate of the inlet nozzle.
  • the vortex plate is in cross section a curved plate, which corresponds, for example, to the geometrical location of the points of the sinusoid.
  • the swirling of the flow occurs due to the narrowing of the inlet nozzle, and also on its inner surface there may be helical grooves providing for the swirling of the translational fluid stream.
  • the TPT stream is divided, for example, into two cavitation flows, which form flat jets in the cylindrical part of the heat generator. Plane jets are formed due to the passage of flow between the walls of the nozzle and the vortex plate. Further, flows in the form of flat cavitation jets are accelerated in the helical surfaces of the cylindrical part of the heat generator. Due to the pulsating nature of the cavitation jets, which are also additionally superimposed by ultrasonic vibrations from the volume resonator and the resonance plate, secondary cavitation flows are formed in which standing waves are formed. As a result, the total specific energy of the flow or its hydrodynamic pressure substantially increases.
  • En is the total specific energy of the flow
  • R is the radius of rotation of the stream
  • V 2 V 2 + ⁇ + U V ⁇ V 2 " kinetic energy of a unit mass of fluid ⁇ - potential energy
  • the method implements the principle of an ultrasonic hydrodynamic emitter, a vortex transducer, and a cavitation effect. As a result, a combined method of heat generation is implemented, thereby achieving the claimed technical result.
  • a device for converting and releasing energy in liquid media or a heat generator is intended to implement a method of energy release through rotational - translational motion of a liquid while converting the kinetic energy of a rotating stream, cavitation processes in a stream and resonant processes in a standing wave, into heat.
  • the rectilinear fluid flow by the inlet nozzle of the device is converted into accelerated rotational-translational motion (vortex), then accelerated in a screw channel with subsequent braking of the resonance plate.
  • the invention is known "Method of generating energy and a device for its implementation (options)", application RU, Xa 2003107803, publ.
  • MIZH F24J ⁇ / 00 the device of which consists of a housing with inlet outlet pipes and a diffuser.
  • the incoming stream is twisted due to the tangential supply of water, which leads to significant energy losses during the conversion process.
  • the invention is known “A method of producing heat and a device for its implementation)), JNi patent RU 2242684, publ. 2004.12.20, IPC F24J ⁇ / 00, the device of which includes a sealed capacity of the swirl, nozzles for the supply and selection of liquid coolant, a sound and heat insulating casing. Moreover, there is a space between the casing and the housing, as well as the active zone of the coolant and the passive zone of the coolant. However, the device is too complicated and expensive. It is not possible to increase the efficiency of conversion of rotational energy into thermal energy.
  • the invention is known as “Thermoreceptor and device for heating liquids)), patent RU, JCha 2045715, publ.
  • IPC F25B29 / 00 comprising a housing, a motion accelerator, a brake device.
  • the device is intended for heating directly in the pipeline viscous liquids such as oil in order to reduce the viscosity of the liquid, to ensure heating of the liquid.
  • viscous liquids such as oil
  • it is impossible to achieve effective conversion of kinetic energy into thermal energy.
  • the input fluid flow is supplied tangentially, and in the operating modes of the heat generator there is a high working pressure developed in the housing, which reaches 1000 atm, which significantly complicates the device and reduces its efficiency.
  • the closest technical solution to the proposed device is the invention of "a fluid heater", N ° patent RU, N ° 2255267, publ. 2005.06.27, IPC F17D1 / 18, F25B29 / 00, containing a vortex tube, the ends of which are equipped with hydrodynamic transducers of fluid motion, a flow former is installed at the end of the vortex tube relative to it, the housing of hydrodynamic transducers of fluid motion is made in the form of sockets at the ends of the vortex tube , a flow former, the axis of symmetry of which is coaxial with the longitudinal axis of the vortex tube and a flow divider made in the form of a plate, the surface of which is parallel to the longitudinal axis of the vortex tube.
  • vortex heat generators are used for direct energy conversion from rotational - translational motion to heat.
  • hydrodynamic emitters are used, which also use resonance phenomena.
  • the technical result of the proposed design is to increase the power of the heat generator without reducing efficiency, simplifying the design, reducing energy loss during the release of thermal energy and energy removal through the coolant.
  • the device for converting and releasing energy in liquid media (either a hydrodynamic converter or a heat generator) consists of a vortex tube (1), hydrodynamic transducers of fluid motion (TPT) made in the form of cones (2, 3) at the ends of the vortex tube, flow former (4), the axis of symmetry of which is coaxial with the longitudinal axis of the vortex tube (1), the flow divider (5), made in the form of a plate, the surface of which is parallel to the longitudinal axis of the vortex tube.
  • TPT hydrodynamic transducers of fluid motion
  • the proposed device is characterized in that the vortex tube, which simultaneously serves as a volume resonator, is made with helical grooves (6) on the inner wall of the cylindrical part, made of elastic laminated plastic and, for example, helical grooves are made inside a plastic screw insert.
  • the vortex tube is equipped with a metal casing (7), covering with a gap “a” the outer surface of the vortex tube (1), the length of the cylindrical part “L” of the vortex tube refers to the diameter of its cylindrical part “d”, as 1 to 3 (or the length of the cylindrical part of the vortex tube is a multiple of its diameter), which ensures the formation of the TPT vortex flow in the vortex tube while ensuring the cavitation regime of the vortex flow and its resonant amplification.
  • the hydrodynamic converter at the inlet of the vortex tube is made in the form of a cone-shaped screw nozzle (2), the outer part of which is connected flush with the vortex tube (1).
  • the cone is also made, for example, of laminated plastic, inside which a flow former (8) is placed, which is made in the form of a plate having a helical surface and is placed in the inlet cone of the hydrodynamic transducer in front of the active zone of the heat generator, and the hydrodynamic transducer at the outlet (3) of the vortex tube made in the form of a flow divider (5), which simultaneously works as a resonant plate and as a braking device, flush with the cylindrical part of the vortex tube in front of the outlet cone (3) hydrodynamic transducer, which is located in turn, in front of the passive zone of the heat generator and is coaxially connected to the pipeline (9).
  • a flow former (8) is placed, which is made in the form of a plate having a helical surface and is placed in the inlet cone of the hydrodynamic transducer in front of the active zone of the heat generator, and the hydrodynamic transducer at the outlet (3) of the vortex tube made in the form of a flow divider (5), which simultaneously works as
  • FIG. 2 - shows a cross section of the inlet nozzle with a flow former
  • FIG. 3 - shows a cross section of the outlet nozzle with a flow divider.
  • the proposed heat generator is arranged as follows.
  • the pipeline (9) is rigidly connected to the casing (7) of the heat generator, which is made of metal.
  • a vortex tube (1) which is made of elastic laminated plastic.
  • An input cone (2) which is also made of plasmass, is placed in a vortex tube at its inlet end.
  • the output cone (3) can be placed both directly on the output part of the vortex tube (1), and in the casing (7) of the heat generator.
  • the output cone can be made of both plastic and metal.
  • the vortex tube acts as a cavity resonator.
  • grooves (6) located along the vortex tube along a screw. These grooves allow the movement of cavitation plane jets along the vortex tube.
  • hydrodynamic fluid transducer which is made in the form of a screw plate screwed (8).
  • the input hydrodynamic converter can be made, for example, in the form of two or more plates, forming several flat flows.
  • a brake plate (5) is installed, which is made flat, placed along the longitudinal axis of the vortex tube. It also acts as a flat resonator, transmitting a resonant effect on the TPT stream. Due to the passage of plane cavitation jets with a standing wave formed in them through the braking device, which is also the output hydrodynamic converter, the jets are mixed and broken into a simple turbulent flow, which is then inhibited in the output cone of the heat generator due to expansion, releasing the maximum amount of kinetic and potential energy flow. In this case, the most efficient transition of the specific potential energy of the flow occurs. Thus, the technical result of this technical solution is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention concerne des procédés pour agir sur un flux de fluide en écoulement et peut s'utiliser en hydrodynamique, notamment dans des appareils d'échange de masses et de chaleur. Le procédé consiste en ce que l'on forme un flux primaire d'un fluide de travail coulant en dehors du domaine spatial du générateur de chaleur, on confère au flux de fluide un mouvement linéaire, on superpose au flux de fluide de travail une excitation externe à l'intérieur de l'espace de générateur de chaleur, on forme des flux secondaires de fluide de travail, et l'on évacue le flux de fluide de travail dans la direction d'écoulement. Le flux primaire est formé dans une tuyauterie dont le diamètre est égal au diamètre de la tubulure d'entrée du générateur de chaleur. Le dispositif de production d'énergie est constitué d'un tube tourbillonnaire, de convertisseurs hydrodynamiques de mouvements du flux en mouvement, qui se présentent comme des cônes réalisés à l'extrémité du tube tourbillonnaire, d'un formateur de flux dont l'axe de symétrie est coaxial à l'axe longitudinal du tube tourbillonnaire et d'un séparateur de flux ayant la forme d'une plaque dont la surface est parallèle à l'axe longitudinal du tube tourbillonnaire. Ce dernier est réalisé avec des cannelures en hélice sur la paroi interne de la partie cylindrique, constituée d'un plastique à couches multiples et munie d'un boîtier métallique.
PCT/RU2006/000511 2005-10-05 2006-10-02 Procede de production d'energie par mouvements rotatifs et en va-et-vient et dispositif de transformation et d'extraction d'energie dans des milieux liquides WO2007040423A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2005131920 2005-10-05
RU2005131920/06A RU2287118C1 (ru) 2005-10-05 2005-10-05 Способ выделения энергии посредством вращательно-поступательного движения жидкости и устройство для преобразования и выделения энергии в жидких средах

Publications (1)

Publication Number Publication Date
WO2007040423A1 true WO2007040423A1 (fr) 2007-04-12

Family

ID=37500844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2006/000511 WO2007040423A1 (fr) 2005-10-05 2006-10-02 Procede de production d'energie par mouvements rotatifs et en va-et-vient et dispositif de transformation et d'extraction d'energie dans des milieux liquides

Country Status (2)

Country Link
RU (1) RU2287118C1 (fr)
WO (1) WO2007040423A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2435769A1 (fr) * 2009-05-27 2012-04-04 Serazitdinov, Tagir Mitasimovich Convertisseur structurel à cavitation
RU171253U1 (ru) * 2016-04-22 2017-05-25 Андрей Николаевич Карелин Система гидроаэродинамической трансформации
CN112589694A (zh) * 2020-12-11 2021-04-02 华东理工大学 一种纯水空化射流冲击强化喷嘴
CN113250618A (zh) * 2021-05-21 2021-08-13 长江大学 一种螺杆换向式井下增压器
CN113464360A (zh) * 2021-07-22 2021-10-01 徐庆伟 一种无叶片风力发电方法
CN113464359A (zh) * 2021-07-22 2021-10-01 徐庆伟 一种无扇叶风力发电系统
CN114307899A (zh) * 2021-12-30 2022-04-12 西南石油大学 一种旋流脉冲空化装置
CN114482967A (zh) * 2022-01-12 2022-05-13 中国石油大学(华东) 井下空化射流增产增注装置及其控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2344356C1 (ru) * 2007-08-02 2009-01-20 Овченкова Оксана Анатольевна Способ тепломассоэнергообмена и устройство для его осуществления
WO2010062215A1 (fr) * 2008-11-25 2010-06-03 КОРЯКИН, Михаил Васильевич Dispositif pour le chauffage de locaux
RU2456068C1 (ru) * 2010-11-09 2012-07-20 Ильшат Гайсеевич Мусин Способ физико-химической обработки жидких углеводородных смесей и проточный электрохимический реактор для его реализации
RU188382U1 (ru) * 2018-06-04 2019-04-09 Владимир Григорьевич Гальцев Вихревой ускоритель текучих сред

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188090A (en) * 1991-04-08 1993-02-23 Hydro Dynamics, Inc. Apparatus for heating fluids
RU2045715C1 (ru) * 1993-04-26 1995-10-10 Юрий Семенович Потапов Теплогенератор и устройство для нагрева жидкостей
RU2086812C1 (ru) * 1995-07-18 1997-08-10 Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН Способ создания системы потоков
RU2165054C1 (ru) * 2000-06-16 2001-04-10 Юрий Семенович Потапов Способ получения тепла
RU2242684C1 (ru) * 2004-02-12 2004-12-20 Резник Виктор Александрович Способ получения тепла и устройство для его осуществления
RU2255267C2 (ru) * 2003-06-27 2005-06-27 Лисняк Станислав Афанасьевич Нагреватель текучей среды

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188090A (en) * 1991-04-08 1993-02-23 Hydro Dynamics, Inc. Apparatus for heating fluids
RU2045715C1 (ru) * 1993-04-26 1995-10-10 Юрий Семенович Потапов Теплогенератор и устройство для нагрева жидкостей
RU2086812C1 (ru) * 1995-07-18 1997-08-10 Институт химии и технологии редких элементов и минерального сырья Кольского научного центра РАН Способ создания системы потоков
RU2165054C1 (ru) * 2000-06-16 2001-04-10 Юрий Семенович Потапов Способ получения тепла
RU2255267C2 (ru) * 2003-06-27 2005-06-27 Лисняк Станислав Афанасьевич Нагреватель текучей среды
RU2242684C1 (ru) * 2004-02-12 2004-12-20 Резник Виктор Александрович Способ получения тепла и устройство для его осуществления

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2435769A1 (fr) * 2009-05-27 2012-04-04 Serazitdinov, Tagir Mitasimovich Convertisseur structurel à cavitation
EP2435769A4 (fr) * 2009-05-27 2015-02-18 Serazitdinov Tagir Mitasimovich Convertisseur structurel à cavitation
RU171253U1 (ru) * 2016-04-22 2017-05-25 Андрей Николаевич Карелин Система гидроаэродинамической трансформации
CN112589694A (zh) * 2020-12-11 2021-04-02 华东理工大学 一种纯水空化射流冲击强化喷嘴
CN112589694B (zh) * 2020-12-11 2024-03-29 华东理工大学 一种纯水空化射流冲击强化喷嘴
CN113250618A (zh) * 2021-05-21 2021-08-13 长江大学 一种螺杆换向式井下增压器
CN113464360A (zh) * 2021-07-22 2021-10-01 徐庆伟 一种无叶片风力发电方法
CN113464359A (zh) * 2021-07-22 2021-10-01 徐庆伟 一种无扇叶风力发电系统
CN114307899A (zh) * 2021-12-30 2022-04-12 西南石油大学 一种旋流脉冲空化装置
CN114307899B (zh) * 2021-12-30 2023-05-26 西南石油大学 一种旋流脉冲空化装置
CN114482967A (zh) * 2022-01-12 2022-05-13 中国石油大学(华东) 井下空化射流增产增注装置及其控制方法

Also Published As

Publication number Publication date
RU2287118C1 (ru) 2006-11-10

Similar Documents

Publication Publication Date Title
WO2007040423A1 (fr) Procede de production d'energie par mouvements rotatifs et en va-et-vient et dispositif de transformation et d'extraction d'energie dans des milieux liquides
US8387956B2 (en) Heat-generating jet injection
US9932246B2 (en) Pulse cavitation processor and method of using same
US9776159B2 (en) Device for conducting sonochemical reactions and processing liquids
CN111266027B (zh) 文丘里超声多尺度气泡发生器
Zhidkov et al. Detailed consideration of the shock-wave (pulsation) concept of the Ranque–Hilsch vortex effect
RU2511888C1 (ru) Способ генерирования колебаний жидкостного потока и гидродинамический генератор колебаний для его осуществления
EP1808651A2 (fr) Générateur thermique à cavitation et procédé de génération de chaleur par le générateur thermique à cavitation
RU2131094C1 (ru) Кавитационный тепловой генератор
RU2267364C1 (ru) Способ генерирования колебаний жидкостного потока и гидродинамический генератор колебаний
RU77176U1 (ru) Гидродинамический ультразвуковой депарафинизатор насосно-компрессорных труб
RU2392046C2 (ru) Устройство деструкции углеводородов и его применение
RU2231004C1 (ru) Роторный кавитационный насос-теплогенератор
RU2366869C1 (ru) Высокоскоростной вихревой нагреватель
RU2503896C2 (ru) Устройство для нагрева жидкости
RU2517986C2 (ru) Устройство для нагрева жидкости
RU51403U1 (ru) Теплогенератор кавитационного типа
RU217233U1 (ru) Устройство для снижения вязкости нефти и нефтепродуктов
RU2415350C1 (ru) Кавитационно-вихревой теплогенератор
RU85838U1 (ru) Эжектор с газоструйными ультразвуковыми генераторами
RU2603306C1 (ru) Гидродинамический кавитатор
RU2609553C2 (ru) Устройство для нагрева жидкости
RU2755857C1 (ru) Теплообменник
RU188382U1 (ru) Вихревой ускоритель текучих сред
RU2091734C1 (ru) Способ создания ультразвуковых колебаний в потоке жидкости

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812920

Country of ref document: EP

Kind code of ref document: A1