WO2007040098A1 - Charged particle beam equipment and method for irradiating charged particle beam - Google Patents

Charged particle beam equipment and method for irradiating charged particle beam Download PDF

Info

Publication number
WO2007040098A1
WO2007040098A1 PCT/JP2006/319069 JP2006319069W WO2007040098A1 WO 2007040098 A1 WO2007040098 A1 WO 2007040098A1 JP 2006319069 W JP2006319069 W JP 2006319069W WO 2007040098 A1 WO2007040098 A1 WO 2007040098A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
side electrode
voltage
lens
Prior art date
Application number
PCT/JP2006/319069
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Sugiyama
Ryoji Hagiwara
Junichi Tashiro
Original Assignee
Sii Nanotechnology Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sii Nanotechnology Inc. filed Critical Sii Nanotechnology Inc.
Publication of WO2007040098A1 publication Critical patent/WO2007040098A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31742Etching microareas for repairing masks
    • H01J2237/31744Etching microareas for repairing masks introducing gas in vicinity of workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31749Focused ion beam

Definitions

  • the present invention relates to a charged particle beam apparatus that irradiates and processes or observes a charged particle beam to a fine structure such as a new material, a semiconductor device, a photomask, an X-ray mask, a memory element, or a magnetic head. And a charged particle beam irradiation method.
  • the present invention relates to a charged particle beam apparatus and a charged particle beam irradiation method when the energy of a charged particle beam reaching a sample is less than 20 keV.
  • an ion source an aggregating lens for focusing a charged particle beam from the ion source on a sample, a deflecting unit for deflecting, a power source for applying a voltage to the sample, and a deflecting unit
  • a charged particle beam apparatus provided with means for controlling the intensity of the deflection signal according to the voltage applied to the sample (see, for example, Patent Document 1).
  • the energy of the charged particle beam is increased and the focusing lens is increased. It is said that the damage of the sample can be suppressed by reducing the energy of the charged particle beam by the voltage applied to the sample.
  • an auxiliary electrode having the same potential as that of the sample is disposed between the focusing lens and the sample, and the gas nozzle force that can blow out the active gas through the minute opening is disposed between the sample and the auxiliary electrode.
  • a charged particle beam apparatus has been proposed (see, for example, Patent Document 2). According to such a charged particle beam apparatus, the energy of the charged particle beam can be reduced by the voltage applied to the auxiliary electrode, and an electric field can be generated between the sample and the auxiliary electrode. It is said that gas-assisted etching can be performed while preventing discharge accompanying the supply of active gas.
  • the charged particle beam device that holds the sample at the ground potential and sets the extraction voltage to a value having a polarity opposite to that of the acceleration voltage, and extracts and irradiates the ion source charged particle beam by the potential difference.
  • a charged particle beam apparatus including a high voltage tube that is applied to the same potential and allows a charged particle beam to pass through, and a shield tube that shields the high voltage tube from the high voltage tube at a predetermined interval.
  • Patent Document 3 it is supposed that a sample can be irradiated with a low-energy charged particle beam with the sample at ground potential without scattering the charged particle beam.
  • Patent Document 1 Japanese Patent Laid-Open No. 3-26105
  • Patent Document 2 JP-A-64-19667
  • Patent Document 3 JP-A-5-28947
  • Patent Document 1 since a concave lens is formed by a decelerating electric field between the focusing lens and the sample, the discharge depends on the sample shape, and the sample is damaged or worn. There was a risk of device failure.
  • the sample is an insulator, a charge is induced on the sample surface by the electric field, and the surface potential becomes unstable due to charge injection and secondary electron emission due to irradiation of the charged particle beam. For this reason, there is a problem that the charged particle beam is affected by the potential change, and the irradiation point is not determined and high-precision machining cannot be performed.
  • Patent Document 2 it is possible to prevent the above-mentioned discharge by making an electric field between the electrode and the sample, but in order to apply the sample to a high voltage, It doesn't change. Since the sample is exchanged using the transfer arm or robot arm, the applied voltage of the gas nozzle, auxiliary electrode, detector, etc. applied to the same voltage as the sample and the sample is released each time. It was necessary to apply voltage to the same potential again!]. And even if there is insulation degradation at one place, there is a possibility of discharging, which is problematic in terms of reliability.
  • Patent Document 3 it is possible to solve these problems by setting the sample to the ground potential, but an electric field exists between the focusing lens and the shield tube, and parasitic lens action occurs. End up. For this reason, there has been a problem that the optical axis shift due to the manufacturing accuracy occurs and the beam diameter increases due to off-axis aberration. In addition, since the extraction electrode and the focusing lens are at the same potential, changing the extraction voltage to adjust the amount of the charged particle beam extracted from the ion source also affects the trajectory of the charged particle beam. There was a problem.
  • the present invention has been made in view of the above-described circumstances, and can suppress the aberration of the charged particle beam, reduce the beam diameter, and stably irradiate the charged particle beam with low energy.
  • a charged particle beam apparatus and a charged particle beam irradiation method are provided.
  • a charged particle beam apparatus and a charged particle irradiation method capable of freely adjusting the amount and energy of the charged particle beam and the focusing of the charged particle beam are provided.
  • the present invention proposes the following means.
  • the present invention includes a charged particle supply unit that emits and irradiates a charged particle beam to a grounded sample surface, an acceleration power source that is connected to the charged particle supply unit and applies an acceleration voltage, and the charged particle supply
  • a charged particle beam apparatus comprising: acceleration means for extracting and accelerating the charged particle beam from a portion; and focusing means for focusing the charged particle beam accelerated by the acceleration means and irradiating the sample surface.
  • Each of the accelerating means and the converging means can apply at least one voltage of the incident side electrode, the intermediate electrode, and the emission side electrode.
  • Each of the exit side electrode of the bipotential lens of the acceleration means and the entrance side electrode of the bipotential lens of the focusing means is connected to an intermediate acceleration power source that applies a voltage having a polarity different from the polarity of the charged particle beam.
  • the incident-side electrode of the bipotential lens of the accelerating means is connected to a bow I power supply for applying a voltage to the incident-side electrode, and the emission-side electrode of the bipotential lens of the focusing means is grounded. Yes.
  • the acceleration means and the focusing means are provided with a bipotential lens, and the potential difference between the acceleration voltage and the voltage applied to the emission side electrode of the bipotential lens (the emission side electrode)
  • the charged particle beam can be bundled by the electric field formed by the three electrodes, the entrance electrode, the intermediate electrode, and the exit electrode.
  • the bipotential lens has a potential difference between the acceleration voltage and the voltage applied to the incident side electrode (potential of the incident side electrode), and a potential difference between the acceleration voltage and the voltage applied to the output side electrode (of the output side electrode).
  • the charged particle beam aberration can be reduced. In other words, the charged particle beam can be accelerated or decelerated, focused effectively, and irradiated with a reduced beam diameter.
  • the charged particle beam is extracted from the charged particle supply unit by the potential of the incident side electrode of the bipotential lens of the accelerating means.
  • the aberration is suppressed to a small value and accelerated to a high energy state due to the relationship between the potential of the incident side electrode and the potential of the output side electrode connected to the intermediate acceleration power source.
  • the potential of the grounded exit-side electrode is incident on the entrance-side electrode of the focusing device's bi-potential lens, which is at the same potential as the exit-side electrode of the acceleration means's bi-potential lens, at a constant velocity while maintaining a high energy state.
  • the charged particle beam is effectively focused and irradiated onto the sample with a small beam diameter.
  • the output side electrode of the bipotential lens of the focusing means and the sample are grounded to each other and are free of an electric field. For this reason, the charged particle beam can be stably irradiated onto the sample without fear of discharge or the like.
  • the incident side electrode of the bipotential lens of the acceleration means is pulled out.
  • the output side electrode is connected to an intermediate acceleration power source.
  • the voltage of the incident side electrode can be set by the extraction power supply so that the amount of the charged particle beam extracted from the charged particle supply unit is optimized.
  • the intermediate acceleration power supplies the voltages of the exit side electrode of the acceleration lens and the entrance side electrode of the bipotential lens of the focusing unit. Can be set.
  • an acceleration means and a focusing means as a bipotential lens, an electric field can be created between these bipotential lenses and between the bipotential lens of the focusing means and the sample.
  • the intermediate electrode of the bipotential lens of the accelerating unit is connected to a condenser lens power source that applies a voltage having a polarity different from the polarity of the charged particle beam to the intermediate electrode.
  • the intermediate electrode of the bipotential lens of the focusing means is more preferably connected to an objective lens power source that applies a voltage having a polarity different from the polarity of the charged particle beam to the intermediate electrode. ! /
  • the intermediate electrodes of the bipotential lenses of the accelerating unit and the focusing unit are connected to the condenser lens power source and the objective lens power source, respectively. Can be set. Then, by setting the polarity of the voltage to be applied to a polarity different from the polarity of the charged particle beam, the charged particle beam is accelerated in the intermediate electrode, and the aberration can be further reduced. It can be focused effectively.
  • the present invention provides a charged particle beam irradiation that irradiates a sample surface with a charged particle beam that is extracted from a charged particle supply unit to which an acceleration voltage is applied by a potential difference from the acceleration voltage.
  • a method comprising: an acceleration step for accelerating the charged particle beam; and a focusing step for focusing the charged particle beam. It is possible to apply different voltages to the pole, the intermediate electrode, and the output electrode, and a first neuropotential lens in which three electrodes are arranged in parallel is arranged, and the incident electrode of the first bipotential lens is arranged. A voltage is applied to the first bipotential lens to draw out the charged particle beam according to a potential difference from the acceleration voltage, and to enter the first bipotential lens.
  • a voltage having a polarity different from the polarity of the charged particle beam is applied to suppress the charged particle beam convergence by the electric field formed by the incident side electrode, the intermediate electrode, and the emission side electrode, and the acceleration.
  • the charged particle beam is accelerated by a potential difference between a voltage and a voltage applied to the emission-side electrode;
  • the incident electrode is made incident at the same speed, and the polarity of the charged particle beam is applied to the intermediate electrode.
  • a voltage of different polarity is applied, the output side electrode is grounded, and the electric field formed by the incident side electrode, the intermediate electrode, and the output side electrode is decelerated by the potential difference between the calovelocity voltage and the grounded output side electrode. It is characterized by irradiating a grounded sample surface by focusing a charged particle beam by the above method.
  • the potential difference between the acceleration voltage and the voltage applied to the incident electrode of the first bipotential lens (according to the incident side electrode) during the acceleration step can be extracted in an optimal amount. Then, by applying a voltage having a polarity different from the polarity of the charged particle beam to each of the intermediate electrode and the emission side electrode, the charged particle beam can be brought into a high energy state by accelerating while suppressing aberrations small.
  • the incident side electrode of the second bipotential lens is made equipotential with the output side electrode of the first bipotential lens, and a voltage having a polarity different from that of the charged particle beam is applied to the intermediate electrode.
  • the charged particle beam in a high energy state is decelerated to a low energy state by focusing and the focused electrode surface is irradiated with the charged particle beam. Can do.
  • the acceleration Bipotential lenses are arranged in the process and focusing process. Therefore, the amount and energy of the charged particle beam to be irradiated and the focusing of the charged particle beam can be adjusted freely.
  • the charged particle beam applied to the sample can be reduced in energy, the aberration can be suppressed, and the beam diameter can be reduced. Therefore, it is possible to process the sample with high accuracy while minimizing the damage to the sample caused by irradiation with the charged particle beam.
  • FIG. 1 is a configuration diagram of an ion beam apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a bipotential lens according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a bipotential lens according to an embodiment of the present invention.
  • FIG. 4 is a graph showing characteristics of a bipotential lens according to an embodiment of the present invention. Explanation of symbols
  • Ion beam device charged particle beam device
  • Figure 1 shows the configuration of the charged particle beam system.
  • Fig. 2 is a cross-sectional view of the bipotential lens
  • Fig. 3 is a schematic diagram of the bipotential lens
  • Fig. 4 is a graph showing the characteristics of the bipotential lens.
  • an ion beam device 1 (charged particle beam device) irradiates a sample placement unit 2 for placing a sample P and a surface of the sample P (hereinafter referred to as sample surface S).
  • the ion supply unit 3 (charged particle supply unit) for supplying the ion beam B (charged particle beam), the acceleration unit 4 for accelerating the ion beam B from the ion supply unit 3 force, and the acceleration unit 4 And a focusing means 5 for decelerating and focusing the ion beam B.
  • the sample P is, for example, a photomask in photolithography.
  • the sample P is placed in the sample installation part 2 and is in a grounded state.
  • the ion supply unit 3 includes an ion source 6.
  • the ion source 6 is, for example, liquid gallium, is provided with a filament (not shown), and is connected to the filament power source 6a. For this reason, the ion source 6 is always kept in a liquid state by being heated by the filament, and is capable of emitting gallium ions (Ga +) as the ion beam B by a potential difference generated in the periphery.
  • an acceleration power source 7 capable of adjusting the voltage is connected to the ion supply unit 3, and a positive acceleration voltage E is applied thereto.
  • the acceleration means 4 and the focusing means 5 are provided with a first Neupotential lens 8 and a second bipotential lens 9, respectively.
  • the first bipotential lens 8 and the second bipotential lens 9 are insulated from the incident side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the output side electrodes 8c and 9c, respectively.
  • the insulator 10 being electrically insulated, different voltages can be applied. Is possible.
  • the incident-side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the emission-side electrodes 8c and 9c are formed with through-holes 8d and 9d that pass through coaxially so that the incident ion beam B can pass therethrough.
  • the potentials of the incident-side electrodes 8a and 9a of these bipotential lenses are VI
  • the potentials of the intermediate electrodes 8b and 9b are V2
  • the potentials of the emission-side electrodes 8c and 9c are V3.
  • An electric field can be formed between the incident side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the output side electrodes 8c and 9c.
  • the ion beam B penetrating through the through holes 8d and 9d can be focused by the formed electric field.
  • the ion beam B penetrating through the through holes 8d and 9d is accelerated (decelerated) by the incident speed due to the difference between the potential VI of the incident side electrodes 8a and 9a and the potential V3 of the emission side electrodes 8c and 9c.
  • the ion beam B which is a positive ion (Ga +) incident on the bipotential lens, is emitted at a reduced speed from the incident speed when VI> V3, and from the incident speed when V3 ⁇ V1. Accelerated and emitted. Furthermore, as shown in FIG.
  • the image plane S1 (for example, as shown in FIG. 3).
  • Both the chromatic aberration coefficient Cc and the spherical aberration coefficient Cs at the surface 15 mm away from the emission-side electrodes 8c and 9c) are both small.
  • an objective lens focusing means 5
  • 3 and 4 are explanatory diagrams of the objective lens (focusing means 5), but the same can be considered for the condenser lens (acceleration means 4).
  • the image plane S1 is replaced with the object plane (ion source 6) by inverting the top and bottom of Fig. 3.
  • the symbol representing the potential of each electrode is left as it is.
  • the trajectory of the ion beam B runs in the opposite direction to the objective lens (focusing means 5). Due to the reciprocity of the orbit, the aberration coefficient at the object surface is as shown in Fig.4.
  • a condenser lens under the condition of VI> V3.
  • the incident ion beam B is further accelerated (decelerated) by increasing the difference between the potential VI and the potential V3.
  • the ion beam B can be effectively focused and emitted with reduced aberration.
  • the bipotential lens has the same polarity as the acceleration mode in which the intermediate electrodes 8b and 9b have a polarity different from the polarity of the ion beam B (a cathode when the ion beam B is a gallium ion (anode)).
  • There is a deceleration mode By setting the bipotential lens to the acceleration mode, the ion beam B aberration can be further reduced.
  • the incident side electrode 8a of the first bipotential lens 8 is connected to the cathode of the extraction power source 11 capable of adjusting the voltage.
  • the anode of the extraction power source 11 is connected to the anode of the acceleration power source 7 so that the voltage of the incident side electrode 8a of the first bipotential lens 8 is relatively lower than the voltage of the ion supply unit 3. It can be.
  • the intermediate electrode 8b is connected to the cathode of the condenser lens power source 12 capable of adjusting the voltage, and a negative voltage having a polarity different from that of the ion beam B (anode) is applied.
  • the exit side electrode 8c of the first bipotential lens 8 and the entrance side electrode 9a of the second bipotential lens 9 are connected by an intermediate acceleration tube 13 having conductivity, and the intermediate acceleration tube 13 is connected to the cathode of the intermediate acceleration power source 14 capable of adjusting the voltage.
  • the inside of the exit side electrode 8c of the first bipotential lens 8, the entrance side electrode 9a of the second bipotential lens 9 and the intermediate acceleration power source 14 has a polarity different from the polarity (anode) of the ion beam B. A certain negative voltage is applied equally.
  • the intermediate electrode 9b of the second bipotential lens 9 is connected to the cathode of the objective lens power supply 15 capable of adjusting the voltage, and a negative voltage having a polarity different from that of the ion beam B (anode) is applied. It has been. Furthermore, the output-side electrode 9c is grounded, and an electric field is not formed between the same and the grounded sample P.
  • the ion beam apparatus 1 further includes a blanking electrode 16 that performs ONZOFF of the irradiated ion beam B and an optical axis of the ion beam B inside the intermediate accelerator tube 13.
  • Alignment electrode 17 for correcting the deviation, and astigmatism corrector 18 that corrects the distortion of the cross-sectional shape of ion beam B and forms a perfect circle.
  • the blanking electrode 16 is connected to a blanking power source 19 and can apply a voltage to deflect the passing ion beam B so that the sample P is not irradiated.
  • the alignment electrode 17 is The optical axis of the ion beam B that passes through can be corrected by connecting a voltage source 20 and applying an electric voltage to form an electric field.
  • the astigmatism corrector 18 is connected to the astigmatism correction power source 21 and applies a voltage to form an electric field, thereby correcting the distortion of the cross-sectional shape of the passing ion beam B.
  • the ion beam apparatus 1 includes a scanning electrode 22 between the second bipotential lens 9 and the sample P.
  • the scanning electrode 22 is connected to the scanning power source 23, and the position of the ion beam B passing through the sample surface S can be adjusted by operating the voltage of the scanning power source 23.
  • a gas gun that discharges an assist gas to a processing position on the sample surface S, or a secondary electron detector that detects secondary electrons generated when the sample surface S is irradiated with the ion beam B Or a secondary ion detector for detecting secondary ions may be provided near the sample surface S.
  • a gas gun that discharges an assist gas to a processing position on the sample surface S
  • a secondary electron detector that detects secondary electrons generated when the sample surface S is irradiated with the ion beam B
  • a secondary ion detector for detecting secondary ions may be provided near the sample surface S.
  • These gas guns, secondary electron detectors, secondary ion detectors, and the like can be provided in an equipotential environment in which the output electrode 9c of the sample P and the second bipotential lens 9 is grounded. Therefore, it can be operated without the need for insulation treatment.
  • gallium as the ion source 6 of the ion supply unit 3 is always kept in a liquid state by a filament (not shown). Then, the acceleration voltage E of +10 kV is applied to the ion supply unit 3 because the voltage of the acceleration power source 7 is set to 10 kV, for example. In addition, since the extraction power supply 11 is set to a voltage of 6 kV, for example, a voltage of +4 kV is applied to the incident side electrode 8a of the first bipotential lens 8.
  • a potential difference of 6 kV (potential of the incident side electrode 8a) is generated by the acceleration voltage E and the voltage applied to the incident side electrode 8a of the first bipotential lens 8.
  • the potential of the incident side electrode 8a is caused by this potential.
  • the liquid gallium as the ion source 6 is extracted from the ion supply unit 3 as gallium ions (Ga +), and is incident on the first bipotential lens 8 as the acceleration means 4 as the ion beam B.
  • the condenser lens power supply 12 is set to a voltage of 20 kV, for example
  • the intermediate acceleration power supply 14 is set to a voltage of 10 kV, for example.
  • the acceleration mode to which voltage is applied the incident ion beam B is suppressed to a small aberration and accelerated to 20 keV by the potential of the emission side electrode 8c to be in a high energy state.
  • the ion beam B accelerated by the first bipotential lens 8 passes through the interior of the intermediate acceleration tube 13, which is equipotential, to the second bipotential lens 9 at a constant speed.
  • the blanking electrode 16 is turned ON / OFF as necessary, the optical axis is corrected by the alignment electrode 17, the cross-sectional distortion is corrected by the astigmatism corrector 18, and the second bipotential lens 9 is corrected.
  • the objective lens power supply 15 is set to a voltage of 2 OkV, for example.
  • the intermediate electrode 9b of the second bipotential lens 9 is applied to a voltage of 20 kV. Also, since the output side electrode 9c is grounded, it is OkV.
  • the potential of the incident side electrode 9a is 20 kV
  • the potential of the output side electrode 9c is 10 kV
  • the ion beam B incident on the second bipotential lens 9 is decelerated to 10 kV by the potential of the emission side electrode 9c, and is formed by the incidence side electrode 9a, the intermediate electrode 9b, and the emission side electrode 9c.
  • the light is effectively focused and emitted with small aberration.
  • the ion beam B focused by the second bipotential lens 9 is irradiated on the sample surface S with a small beam diameter and in a low energy state.
  • the output electrode 9c of the second bipotential lens 9 and the sample P are grounded and have no electric field, the ion beam B is stable without being affected by the electric field.
  • the scanning electrode 22 is scanned so as to irradiate a predetermined processing position, and the sample surface S is irradiated.
  • the characteristics of the two bipotential lenses of the first bipotential lens 8 in the acceleration unit 4 and the second bipotential lens 9 in the focusing unit 5 are determined.
  • the aberration can be reduced and focused effectively, and the beam diameter can be reduced.
  • the ion beam B is finally irradiated on the sample surface S as a low energy state only by the energy by the acceleration voltage E applied by the acceleration power source 7. For this reason, the damage of the irradiated sample P can be minimized and the sample P can be processed with high accuracy.
  • the setting of the voltage of each power supply is not limited to that described above, and the voltage can be set according to the performance of each power supply. Therefore, the acceleration power supply 7 connected to the ion supply unit 3 can set the voltage so that the energy of the ion beam B when the sample P is irradiated is optimized. Further, the voltage of the extraction power source 11 can be set so that the amount of the ion beam B extracted from the ion source 6 is optimum. Further, the voltage of the intermediate accelerating power source 14 varies between the potential VI of the incident side electrodes 8a and 9a in the first bipotential lens 8 and the second bipotential lens 9 and the potential V3 of the output side electrodes 8c and 9c.
  • the ratio can be increased and the aberration can be decreased.
  • stable irradiation of the ion beam B can be realized by keeping the emission-side electrode 9c of the second bipolar potential lens 9 and the sample P in contact with each other regardless of other electrodes.
  • the acceleration means 4 and the focusing means 5 are each provided with a bipotential lens, so that the amount and energy of the ion beam B to be irradiated and the bundle of the ion beam B can be freely adjusted and stably irradiated. it can.
  • the force using the sample P processed in the ion beam apparatus 1 as a photomask is not limited to this.
  • the ion beam apparatus 1 may be used to process a sample into a thin piece so that the sample can be observed with a TEM.
  • the sample P since the sample P is in a grounded state, it may be an insulator.
  • the ion source 6 of the ion supply unit 3 is liquid gallium, and is not limited to the force that uses the ion beam B as the gallium ion (Ga +).
  • the ion source 6 is not limited to a liquid but may be a solid or gas, or may be an anion.
  • the ion source 6 may be an ion source using rare gas (Ar) or alkali metal (Cs) as an ion species.
  • it is not limited to an ion beam, but may be a charged particle beam that is a charged particle such as an electron beam.
  • negatively charged particles such as an ion beam or an electron beam due to negative ions, it is necessary to reverse the polarity of the voltage applied to each in the above-described embodiment.
  • the force that the acceleration means 4 is provided with the first bipotential lens 8 and the focusing means 5 is provided with the second bipotential lens 9 is not limited to this. As long as at least one bipotential lens is provided in each of the acceleration means 4 and the focusing means 5, a configuration in which a plurality of bipotential lenses are provided may be employed.
  • the charged particle beam applied to the sample can be reduced in energy, the aberration can be suppressed, and the beam diameter can be reduced. For this reason, it is possible to minimize damage to the sample accompanying irradiation of the charged particle beam and to process the sample with high accuracy.

Abstract

Charged particle beam equipment for irradiating a charged particle beam stably with low energy while reducing the beam diameter by suppressing aberration of the charged particle beam, and its irradiation method. Charged particle beam equipment in which the quantity, energy and focusing of a charged particle beam can be regulated freely, and its irradiation method are also provided. The charged particle beam equipment (1) comprises a charged particle supply section (3) applied with an acceleration voltage E, a means (4) for deriving and accelerating a charged particle beam B, and a means (5) for focusing the charged particle beam B and irradiating an earthed sample surface S with the charged particle beam B thus focused. The accelerating means (4) and the focusing means (5) comprise bipotential lenses (8, 9). An exit side electrode (8c) and an incident side electrode (9a) are connected with an intermediate acceleration power supply (14) for applying a voltage having a polarity different from that of the charged particle beam B. An incident side electrode (8a) is connected with a deriving power supply (11) and an exit side electrode (9c) is earthed.

Description

明 細 書  Specification
荷電粒子ビーム装置及び荷電粒子ビームの照射方法  Charged particle beam apparatus and charged particle beam irradiation method
技術分野  Technical field
[0001] 本発明は、新素材、半導体デバイス、フォトマスク、 X線マスク、記憶素子、磁気へッ ドなどの微細構造物に荷電粒子ビームを照射し、加工あるいは観察する荷電粒子ビ ーム装置及び荷電粒子ビームの照射方法に関する。特に、試料に到達する荷電粒 子ビームのエネルギーを 20keV未満とする場合の荷電粒子ビーム装置及び荷電粒 子ビームの照射方法に関する。  [0001] The present invention relates to a charged particle beam apparatus that irradiates and processes or observes a charged particle beam to a fine structure such as a new material, a semiconductor device, a photomask, an X-ray mask, a memory element, or a magnetic head. And a charged particle beam irradiation method. In particular, the present invention relates to a charged particle beam apparatus and a charged particle beam irradiation method when the energy of a charged particle beam reaching a sample is less than 20 keV.
背景技術  Background art
[0002] 従来から、 TEM (透過電子顕微鏡)の試料作成やフォトマスクの修正として、荷電 粒子ビーム装置で対象箇所に荷電粒子ビームを照射して加工を行う方法が提案さ れている。しかし、近年、荷電粒子ビームの照射による TEM試料やフォトマスクなど の被照射物のダメージが問題となっている。すなわち、 TEM試料作成においては、 試料の結晶格子の欠陥、非晶質ィ匕などが生じ、 TEM画質の低下を招いている。また 、フォトマスクの修正においては、照射された荷電粒子ビームの荷電粒子がクォーツ 部にも進入してしまい、クォーツ部の透過率が減少してしまうことが問題となっている 。これらの被照射物のダメージは、照射される荷電粒子ビームのエネルギーを小さく することによって改善される一方、荷電粒子ビームのエネルギーに反比例して集束レ ンズの収差 (主に色収差)は大きくなつてしまう。このため、荷電粒子ビームを所定の ビーム径まで集束することができないことで、高精度の加工が行えなくなってしまう問 題があった。このような問題に対応するものとして、下記に示すような荷電粒子ビーム 装置が提案されている。  [0002] Conventionally, as a TEM (transmission electron microscope) sample preparation and photomask correction, there has been proposed a method in which a charged particle beam is irradiated onto a target portion to perform processing using a charged particle beam apparatus. However, in recent years, damage to irradiated objects such as TEM samples and photomasks due to irradiation with charged particle beams has become a problem. That is, in the preparation of a TEM sample, defects in the crystal lattice of the sample, amorphous defects, etc. occur, leading to a decrease in TEM image quality. Further, in the correction of the photomask, there is a problem that the charged particles of the irradiated charged particle beam enter the quartz part and the transmittance of the quartz part decreases. While the damage to these irradiated objects can be improved by reducing the energy of the charged particle beam, the focusing lens aberration (mainly chromatic aberration) increases in inverse proportion to the energy of the charged particle beam. End up. For this reason, there is a problem that the charged particle beam cannot be focused to a predetermined beam diameter, so that high-precision machining cannot be performed. In order to deal with such problems, the following charged particle beam devices have been proposed.
[0003] すなわち、イオン源と、イオン源からの荷電粒子ビームを試料に集束するための集 束レンズと、偏向するための偏向手段と、試料に電圧を印加するための電源と、偏向 手段への偏向信号強度を試料に印加される電圧に応じて制御するための手段とを 備えた荷電粒子ビーム装置が提案されている (例えば、特許文献 1参照)。このような 荷電粒子ビーム装置によれば、荷電粒子ビームのエネルギーを大きくして集束レン ズによって効果的に集束させるとともに、試料に印加された電圧によって、荷電粒子 ビームのエネルギーを小さくして、試料のダメージを抑えることができるとされている。 That is, to an ion source, an aggregating lens for focusing a charged particle beam from the ion source on a sample, a deflecting unit for deflecting, a power source for applying a voltage to the sample, and a deflecting unit There has been proposed a charged particle beam apparatus provided with means for controlling the intensity of the deflection signal according to the voltage applied to the sample (see, for example, Patent Document 1). According to such a charged particle beam apparatus, the energy of the charged particle beam is increased and the focusing lens is increased. It is said that the damage of the sample can be suppressed by reducing the energy of the charged particle beam by the voltage applied to the sample.
[0004] また、集束レンズと試料との間に試料と同電位となる補助電極を配置し、微小開口 を介して活性ガスを吹き出し可能なガスノズル力 試料と補助電極との間に配置され ている荷電粒子ビーム装置が提案されている (例えば、特許文献 2参照)。このような 荷電粒子ビーム装置によれば、補助電極に印加された電圧によって、荷電粒子ビー ムのエネルギーを小さくするとともに、試料と補助電極との間を無電場とすることがで き、試料への活性ガス供給に伴う放電を防止しつつガスアシストエッチングを行うこと ができるとされている。  [0004] Further, an auxiliary electrode having the same potential as that of the sample is disposed between the focusing lens and the sample, and the gas nozzle force that can blow out the active gas through the minute opening is disposed between the sample and the auxiliary electrode. A charged particle beam apparatus has been proposed (see, for example, Patent Document 2). According to such a charged particle beam apparatus, the energy of the charged particle beam can be reduced by the voltage applied to the auxiliary electrode, and an electric field can be generated between the sample and the auxiliary electrode. It is said that gas-assisted etching can be performed while preventing discharge accompanying the supply of active gas.
[0005] また、試料を接地電位に保持するとともに、引き出し電圧を加速電圧と逆極性の値 に設定して、電位差によってイオン源力 荷電粒子ビームを引き出し照射する荷電 粒子ビーム装置で、引き出し電圧と同電位に印加され、荷電粒子ビームを通過させ る高電圧チューブと、高電圧チューブと所定の間隔を保って高電圧チューブをシー ルドするシールドチューブとを備える荷電粒子ビーム装置が提案されて 、る(例えば 、特許文献 3参照)。このような荷電粒子ビーム装置では、荷電粒子ビームを散乱さ せずに、試料を接地電位として、低エネルギーの荷電粒子ビームを試料に照射させ ることができるとされている。  [0005] In addition, the charged particle beam device that holds the sample at the ground potential and sets the extraction voltage to a value having a polarity opposite to that of the acceleration voltage, and extracts and irradiates the ion source charged particle beam by the potential difference. There has been proposed a charged particle beam apparatus including a high voltage tube that is applied to the same potential and allows a charged particle beam to pass through, and a shield tube that shields the high voltage tube from the high voltage tube at a predetermined interval. (For example, see Patent Document 3). In such a charged particle beam apparatus, it is supposed that a sample can be irradiated with a low-energy charged particle beam with the sample at ground potential without scattering the charged particle beam.
特許文献 1:特開平 3 - 26105号公報  Patent Document 1: Japanese Patent Laid-Open No. 3-26105
特許文献 2 :特開昭 64— 19667号公報  Patent Document 2: JP-A-64-19667
特許文献 3:特開平 5 - 28947号公報  Patent Document 3: JP-A-5-28947
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、特許文献 1においては、集束レンズと試料との間に減速電場による凹 レンズが形成されているので、試料形状に依存して放電してしまい、試料の損傷や装 置の故障の恐れがあった。また、試料が絶縁体である場合、電場によって試料表面 に電荷が誘起され、荷電粒子ビームの照射による電荷注入、二次電子放出などとあ いまって表面電位が不安定となってしまう。このため、荷電粒子ビームが電位変化の 影響を受けて照射点が定まらず高精度加工ができなくなる問題があった。 [0007] また、特許文献 2においては、電極と試料との間を無電場とすることで、上述のよう な放電を防止することが可能ではあるが、試料を高電圧に印加させることには変りな い。また、試料の交換は搬送アームやロボットアームを使用して行われるので、その 都度に、試料及び試料と同電圧に印加されるガスノズル、補助電極、検出器等の印 加された電圧を解除し、再び同電位に電圧を印力!]させる必要があった。そして、 1箇 所でも絶縁劣化があると放電する可能性があり、信頼性の面で問題があった。 [0006] However, in Patent Document 1, since a concave lens is formed by a decelerating electric field between the focusing lens and the sample, the discharge depends on the sample shape, and the sample is damaged or worn. There was a risk of device failure. In addition, when the sample is an insulator, a charge is induced on the sample surface by the electric field, and the surface potential becomes unstable due to charge injection and secondary electron emission due to irradiation of the charged particle beam. For this reason, there is a problem that the charged particle beam is affected by the potential change, and the irradiation point is not determined and high-precision machining cannot be performed. [0007] Also, in Patent Document 2, it is possible to prevent the above-mentioned discharge by making an electric field between the electrode and the sample, but in order to apply the sample to a high voltage, It doesn't change. Since the sample is exchanged using the transfer arm or robot arm, the applied voltage of the gas nozzle, auxiliary electrode, detector, etc. applied to the same voltage as the sample and the sample is released each time. It was necessary to apply voltage to the same potential again!]. And even if there is insulation degradation at one place, there is a possibility of discharging, which is problematic in terms of reliability.
[0008] さらに、特許文献 3においては、試料を接地電位として、これらの問題を解決するこ とが可能であるが、集束レンズとシールドチューブ間に電界が存在し、寄生レンズ作 用が発生してしまう。このため、製作精度に起因する光軸ずれが発生し、軸外収差に よりビーム径が増大してしまう問題があった。また、引き出し電極と集束レンズとが同 電位であるため、イオン源から引き出される荷電粒子ビームの量を調整するために引 き出し電圧を変化させると、荷電粒子ビームの軌道も影響を受けてしまう問題があつ た。  [0008] Further, in Patent Document 3, it is possible to solve these problems by setting the sample to the ground potential, but an electric field exists between the focusing lens and the shield tube, and parasitic lens action occurs. End up. For this reason, there has been a problem that the optical axis shift due to the manufacturing accuracy occurs and the beam diameter increases due to off-axis aberration. In addition, since the extraction electrode and the focusing lens are at the same potential, changing the extraction voltage to adjust the amount of the charged particle beam extracted from the ion source also affects the trajectory of the charged particle beam. There was a problem.
[0009] この発明は、上述した事情に鑑みてなされたものであって、荷電粒子ビームの収差 を抑え、ビーム径を小さくするとともに、低エネルギーで荷電粒子ビームを安定して照 射することが可能な荷電粒子ビーム装置及び荷電粒子ビームの照射方法を提供す る。また、荷電粒子ビームの量及びエネルギー並びに荷電粒子ビームの集束を自在 に調整することが可能な荷電粒子ビーム装置及び荷電粒子の照射方法を提供する 課題を解決するための手段  [0009] The present invention has been made in view of the above-described circumstances, and can suppress the aberration of the charged particle beam, reduce the beam diameter, and stably irradiate the charged particle beam with low energy. A charged particle beam apparatus and a charged particle beam irradiation method are provided. In addition, a charged particle beam apparatus and a charged particle irradiation method capable of freely adjusting the amount and energy of the charged particle beam and the focusing of the charged particle beam are provided.
[0010] 上記課題を解決するために、この発明は以下の手段を提案している。 In order to solve the above problems, the present invention proposes the following means.
[0011] 本発明は、接地された試料表面に荷電粒子ビームを放出し照射する荷電粒子供 給部と、該荷電粒子供給部に接続され、加速電圧を印加する加速電源と、前記荷電 粒子供給部から前記荷電粒子ビームを引き出し、加速させる加速手段と、該加速手 段で加速された前記荷電粒子ビームを集束し、前記試料表面に照射する集束手段 とを備えた荷電粒子ビーム装置であって、前記加速手段及び前記集束手段のそれ ぞれは、入射側電極、中間電極及び出射側電極の異なる電圧を印加させることが可 能である 3つの電極が並列されたノ ィポテンシャルレンズを少なくとも一つ備え、前記 加速手段のバイポテンシャルレンズの出射側電極と、前記集束手段のバイポテンシ ャルレンズの入射側電極のそれぞれは、前記荷電粒子ビームの極性と異なる極性の 電圧を印加する中間加速電源と接続されるとともに、前記加速手段のバイポテンシャ ルレンズの入射側電極は該入射側電極に電圧を印加する弓 Iき出し電源と接続され、 前記集束手段のバイポテンシャルレンズの出射側電極は接地されて ヽることを特徴 としている。 The present invention includes a charged particle supply unit that emits and irradiates a charged particle beam to a grounded sample surface, an acceleration power source that is connected to the charged particle supply unit and applies an acceleration voltage, and the charged particle supply A charged particle beam apparatus comprising: acceleration means for extracting and accelerating the charged particle beam from a portion; and focusing means for focusing the charged particle beam accelerated by the acceleration means and irradiating the sample surface. Each of the accelerating means and the converging means can apply at least one voltage of the incident side electrode, the intermediate electrode, and the emission side electrode. Prepared Each of the exit side electrode of the bipotential lens of the acceleration means and the entrance side electrode of the bipotential lens of the focusing means is connected to an intermediate acceleration power source that applies a voltage having a polarity different from the polarity of the charged particle beam. The incident-side electrode of the bipotential lens of the accelerating means is connected to a bow I power supply for applying a voltage to the incident-side electrode, and the emission-side electrode of the bipotential lens of the focusing means is grounded. Yes.
[0012] この発明に係る荷電粒子ビーム装置によれば、加速手段及び集束手段にバイポテ ンシャルレンズを備え、加速電圧とバイポテンシャルレンズの出射側電極に印加され る電圧との電位差(出射側電極のポテンシャル)によって、荷電粒子ビームを加速及 び減速させるとともに、入射側電極、中間電極及び出射側電極の 3つの電極で形成 される電場によって、荷電粒子ビーム^^束させることができる。また、バイポテンシャ ルレンズは、加速電圧と入射側電極に印加される電圧との電位差 (入射側電極のポ テンシャル)と、加速電圧と出射側電極に印加される電圧との電位差(出射側電極の ポテンシャル)との比が大きくなるにつれて、荷電粒子ビームの収差を小さくすること ができる。つまり、荷電粒子ビームを加速または減速させるともに、効果的に集束し、 ビーム径を小さくして照射することができる。  According to the charged particle beam apparatus of the present invention, the acceleration means and the focusing means are provided with a bipotential lens, and the potential difference between the acceleration voltage and the voltage applied to the emission side electrode of the bipotential lens (the emission side electrode) In addition to accelerating and decelerating the charged particle beam depending on the potential, the charged particle beam can be bundled by the electric field formed by the three electrodes, the entrance electrode, the intermediate electrode, and the exit electrode. In addition, the bipotential lens has a potential difference between the acceleration voltage and the voltage applied to the incident side electrode (potential of the incident side electrode), and a potential difference between the acceleration voltage and the voltage applied to the output side electrode (of the output side electrode). As the ratio to (potential) increases, the charged particle beam aberration can be reduced. In other words, the charged particle beam can be accelerated or decelerated, focused effectively, and irradiated with a reduced beam diameter.
[0013] このため、荷電粒子ビームは、加速手段のバイポテンシャルレンズの入射側電極の ポテンシャルによって、荷電粒子供給部から引き出される。そして、入射側電極のポ テンシャルと、中間加速電源に接続された出射側電極のポテンシャルとの関係によつ て収差を小さく抑えるとともに、加速され高エネルギー状態となる。次に、加速手段の バイポテンシャルレンズの出射側電極と同電位である集束手段のバイポテンシャルレ ンズの入射側電極に高工ネルギー状態のまま等速度で入射し、接地された出射側 電極のポテンシャルによって、減速し低エネルギー状態になるとともに、荷電粒子ビ ームは効果的に集束され、小さいビーム径で試料に照射される。また、集束手段の バイポテンシャルレンズの出射側電極と試料との間は、互いに接地されており無電場 となっている。このため、放電などの恐れが無く安定して荷電粒子ビームを試料に照 射することができる。  For this reason, the charged particle beam is extracted from the charged particle supply unit by the potential of the incident side electrode of the bipotential lens of the accelerating means. The aberration is suppressed to a small value and accelerated to a high energy state due to the relationship between the potential of the incident side electrode and the potential of the output side electrode connected to the intermediate acceleration power source. Next, the potential of the grounded exit-side electrode is incident on the entrance-side electrode of the focusing device's bi-potential lens, which is at the same potential as the exit-side electrode of the acceleration means's bi-potential lens, at a constant velocity while maintaining a high energy state. As a result, the charged particle beam is effectively focused and irradiated onto the sample with a small beam diameter. In addition, the output side electrode of the bipotential lens of the focusing means and the sample are grounded to each other and are free of an electric field. For this reason, the charged particle beam can be stably irradiated onto the sample without fear of discharge or the like.
[0014] また、上述のように、加速手段のバイポテンシャルレンズの入射側電極は引き出し 電源に接続され、出射側電極は中間加速電源に接続されている。このため、荷電粒 子供給部から引き出される荷電粒子ビームの量が最適となるように、引き出し電源に よって入射側電極の電圧を設定することができる。また、荷電粒子ビームを高工ネル ギー状態として効果的に集束されるように、中間加速電源によって加速手段のノイボ テンシャルレンズの出射側電極及び集束手段のバイポテンシャルレンズの入射側電 極の電圧を設定することができる。さらに、加速手段と集束手段とをバイポテンシャル レンズとすることで、これらバイポテンシャルレンズの間、及び集束手段のバイポテン シャルレンズと試料との間を無電場とすることができるので、特許文献 3のような寄生 レンズ作用が発生しない。特許文献 3では、集束レンズとシールドチューブ間の電界 による寄生レンズの組み立て精度に起因する軸外収差が問題となる。一方、本発明 による構造では、図 2に示すバイポテンシャルレンズの 3枚電極の中心度及び傾きの 組み立て精度を確保することで軸外収差の発生を抑制することができる。その結果ィ オンビーム光学系全体の収差を小さく抑えることが可能である。 [0014] Further, as described above, the incident side electrode of the bipotential lens of the acceleration means is pulled out. Connected to a power source, the output side electrode is connected to an intermediate acceleration power source. For this reason, the voltage of the incident side electrode can be set by the extraction power supply so that the amount of the charged particle beam extracted from the charged particle supply unit is optimized. In order to effectively focus the charged particle beam as a high-energy state, the intermediate acceleration power supplies the voltages of the exit side electrode of the acceleration lens and the entrance side electrode of the bipotential lens of the focusing unit. Can be set. Furthermore, by using an acceleration means and a focusing means as a bipotential lens, an electric field can be created between these bipotential lenses and between the bipotential lens of the focusing means and the sample. Parasitic lens action does not occur. In Patent Document 3, off-axis aberration caused by the assembly accuracy of the parasitic lens due to the electric field between the focusing lens and the shield tube becomes a problem. On the other hand, in the structure according to the present invention, it is possible to suppress the occurrence of off-axis aberrations by ensuring the assembly accuracy of the centrality and inclination of the three electrodes of the bipotential lens shown in FIG. As a result, the aberration of the entire ion beam optical system can be suppressed.
[0015] また、上記の荷電粒子ビーム装置において、前記加速手段のバイポテンシャルレン ズの中間電極は、該中間電極に前記荷電粒子ビームの極性と異なる極性の電圧を 印加するコンデンサレンズ電源と接続されるとともに、前記集束手段のバイポテンシャ ルレンズの中間電極は、該中間電極に前記荷電粒子ビームの極性と異なる極性の 電圧を印加する対物レンズ電源に接続されて 、ることがより好ま 、とされて!/、る。  [0015] In the above charged particle beam device, the intermediate electrode of the bipotential lens of the accelerating unit is connected to a condenser lens power source that applies a voltage having a polarity different from the polarity of the charged particle beam to the intermediate electrode. In addition, the intermediate electrode of the bipotential lens of the focusing means is more preferably connected to an objective lens power source that applies a voltage having a polarity different from the polarity of the charged particle beam to the intermediate electrode. ! /
[0016] この発明に係わる荷電粒子ビーム装置によれば、加速手段及び集束手段のそれ ぞれのバイポテンシャルレンズの中間電極は、それぞれコンデンサレンズ電源及び 対物レンズ電源に接続されていて、単独で電圧を設定することができる。そして、印 カロされる電圧の極性を荷電粒子ビームの極性と異なる極性とすることによって、荷電 粒子ビームが中間電極で加速される加速モードとなり、さらに収差を小さくすることが でき、荷電粒子ビームを効果的に集束させることができる。  According to the charged particle beam apparatus according to the present invention, the intermediate electrodes of the bipotential lenses of the accelerating unit and the focusing unit are connected to the condenser lens power source and the objective lens power source, respectively. Can be set. Then, by setting the polarity of the voltage to be applied to a polarity different from the polarity of the charged particle beam, the charged particle beam is accelerated in the intermediate electrode, and the aberration can be further reduced. It can be focused effectively.
[0017] また、本発明は、加速電圧が印加された荷電粒子供給部から前記加速電圧との電 位差によって引き出され、加速された荷電粒子ビームを試料表面に照射する荷電粒 子ビームの照射方法であって、前記荷電粒子ビームを加速させる加速工程と、前記 荷電粒子ビームを集束させる集束工程とを備え、前記加速工程において、入射側電 極、中間電極及び出射側電極の異なる電圧を印カロさせることが可能である 3つの電 極が並列された第一のノ ィポテンシャルレンズを配置し、前記第一のバイポテンシャ ルレンズの入射側電極に電圧を印加して、前記加速電圧との電位差によって前記荷 電粒子ビームを引き出し、前記第一のバイポテンシャルレンズに入射させるとともに、 前記第一のバイポテンシャルレンズの中間電極及び出射側電極のそれぞれには前 記荷電粒子ビームの極性と異なる極性の電圧を印加し、前記入射側電極、前記中 間電極及び前記出射側電極によって形成される電場によって荷電粒子ビームの収 差を抑えるとともに、前記加速電圧と前記出射側電極に印加された電圧との電位差 によって前記荷電粒子ビームを加速させ、前記集束工程において、第二のバイポテ ンシャルレンズを配置し、入射側電極の電圧を前記第一のバイポテンシャルレンズの 出射側電極と等電位にすることで、等速度で入射させるとともに、中間電極には前記 荷電粒子ビームの極性と異なる極性の電圧を印加し、出射側電極を接地し、前記カロ 速電圧と接地された前記出射側電極との電位差によって減速させるとともに、入射側 電極、中間電極及び出射側電極によって形成される電場によって荷電粒子ビームを 集束させて接地された試料表面に照射させることを特徴としている。 [0017] Further, the present invention provides a charged particle beam irradiation that irradiates a sample surface with a charged particle beam that is extracted from a charged particle supply unit to which an acceleration voltage is applied by a potential difference from the acceleration voltage. A method comprising: an acceleration step for accelerating the charged particle beam; and a focusing step for focusing the charged particle beam. It is possible to apply different voltages to the pole, the intermediate electrode, and the output electrode, and a first neuropotential lens in which three electrodes are arranged in parallel is arranged, and the incident electrode of the first bipotential lens is arranged. A voltage is applied to the first bipotential lens to draw out the charged particle beam according to a potential difference from the acceleration voltage, and to enter the first bipotential lens. A voltage having a polarity different from the polarity of the charged particle beam is applied to suppress the charged particle beam convergence by the electric field formed by the incident side electrode, the intermediate electrode, and the emission side electrode, and the acceleration. The charged particle beam is accelerated by a potential difference between a voltage and a voltage applied to the emission-side electrode; By placing an equipotential lens and making the voltage of the incident side electrode equal to the output side electrode of the first bipotential lens, the incident electrode is made incident at the same speed, and the polarity of the charged particle beam is applied to the intermediate electrode. A voltage of different polarity is applied, the output side electrode is grounded, and the electric field formed by the incident side electrode, the intermediate electrode, and the output side electrode is decelerated by the potential difference between the calovelocity voltage and the grounded output side electrode. It is characterized by irradiating a grounded sample surface by focusing a charged particle beam by the above method.
[0018] この発明に係わる荷電粒子ビームの照射方法によれば、加速工程にぉ 、て、加速 電圧と第一のバイポテンシャルレンズの入射電極に印加された電圧との電位差 (入 射側電極のポテンシャル)によって、荷電粒子供給部力 最適な量の荷電粒子ビー ムを引き出すことができる。そして、中間電極及び出射側電極のそれぞれに荷電粒 子ビームの極性と異なる極性の電圧を印加することによって、収差を小さく抑えつつ 加速させ、荷電粒子ビームを高エネルギー状態とすることができる。次に、集束工程 にお 、て、第二のバイポテンシャルレンズの入射側電極を第一のバイポテンシャルレ ンズの出射側電極と等電位とし、中間電極に荷電粒子ビームの極性と異なる極性の 電圧を印加し、出射側電極を接地することで、高エネルギー状態となった荷電粒子 ビームを減速させ、低エネルギー状態とするとともに、集束させて、接地された試料 表面に荷電粒子ビームを照射することができる。 According to the charged particle beam irradiation method of the present invention, the potential difference between the acceleration voltage and the voltage applied to the incident electrode of the first bipotential lens (according to the incident side electrode) during the acceleration step. Depending on the potential), the charged particle beam can be extracted in an optimal amount. Then, by applying a voltage having a polarity different from the polarity of the charged particle beam to each of the intermediate electrode and the emission side electrode, the charged particle beam can be brought into a high energy state by accelerating while suppressing aberrations small. Next, in the focusing step, the incident side electrode of the second bipotential lens is made equipotential with the output side electrode of the first bipotential lens, and a voltage having a polarity different from that of the charged particle beam is applied to the intermediate electrode. The charged particle beam in a high energy state is decelerated to a low energy state by focusing and the focused electrode surface is irradiated with the charged particle beam. Can do.
発明の効果  The invention's effect
[0019] 本発明の荷電粒子ビーム装置及び荷電粒子ビームの照射方法によれば、加速ェ 程及び集束工程にバイポテンシャルレンズを配置している。このため、照射される荷 電粒子ビームの量及びエネルギー並びに荷電粒子ビームの集束を自在に調整してAccording to the charged particle beam apparatus and the charged particle beam irradiation method of the present invention, the acceleration Bipotential lenses are arranged in the process and focusing process. Therefore, the amount and energy of the charged particle beam to be irradiated and the focusing of the charged particle beam can be adjusted freely.
、接地された試料に安定して照射することができる。そして、試料に照射される荷電 粒子ビームを低エネルギーとするとともに、収差を抑えビーム径を小さくすることがで きる。このため、荷電粒子ビームの照射に伴う試料のダメージを最小限に抑えるととも に、高精度に試料を加工することができる。 It is possible to stably irradiate a grounded sample. In addition, the charged particle beam applied to the sample can be reduced in energy, the aberration can be suppressed, and the beam diameter can be reduced. Therefore, it is possible to process the sample with high accuracy while minimizing the damage to the sample caused by irradiation with the charged particle beam.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]この発明の実施形態のイオンビーム装置の構成図である。  FIG. 1 is a configuration diagram of an ion beam apparatus according to an embodiment of the present invention.
[図 2]この発明の実施形態のバイポテンシャルレンズの断面図である。  FIG. 2 is a cross-sectional view of a bipotential lens according to an embodiment of the present invention.
[図 3]この発明の実施形態のバイポテンシャルレンズの概略図である。  FIG. 3 is a schematic view of a bipotential lens according to an embodiment of the present invention.
[図 4]この発明の実施形態のバイポテンシャルレンズの特性を示すグラフである。 符号の説明  FIG. 4 is a graph showing characteristics of a bipotential lens according to an embodiment of the present invention. Explanation of symbols
[0021] 1 イオンビーム装置 (荷電粒子ビーム装置) [0021] 1 Ion beam device (charged particle beam device)
3 イオン供給部 (荷電粒子供給部)  3 Ion supply unit (charged particle supply unit)
4 加速手段  4 Acceleration means
5 集束手段  5 Focusing means
7 加速電源  7 Acceleration power supply
8 第一のバイポテンシャルレンズ  8 First bipotential lens
8a 入射側電極  8a Incident side electrode
8b 中間電極  8b Intermediate electrode
8c 出射側電極  8c Output side electrode
9 第二のバイポテンシャルレンズ  9 Second bipotential lens
9a 入射側電極  9a Incident side electrode
9b 中間電極  9b Intermediate electrode
9c 出射側電極  9c Output side electrode
11 引き出し電源  11 Drawer power supply
12 コンデンサレンズ電源  12 Condenser lens power supply
14 中間加速電源 15 対物レンズ電源 14 Intermediate acceleration power supply 15 Objective lens power supply
B イオンビーム(荷電粒子ビーム)  B ion beam (charged particle beam)
E 加速電圧  E Acceleration voltage
P 試料  P sample
S 試料表面  S Sample surface
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] (第 1の実施形態)  [0022] (First embodiment)
図 1から図 4は、この発明に係る実施形態を示している。図 1に荷電粒子ビーム装置 の構成図を示す。また、図 2にバイポテンシャルレンズの断面図、図 3にバイポテンシ ャルレンズの概略図、図 4にバイポテンシャルレンズの特性の表わすグラフを示す。  1 to 4 show an embodiment according to the present invention. Figure 1 shows the configuration of the charged particle beam system. Fig. 2 is a cross-sectional view of the bipotential lens, Fig. 3 is a schematic diagram of the bipotential lens, and Fig. 4 is a graph showing the characteristics of the bipotential lens.
[0023] 図 1に示すように、イオンビーム装置 1 (荷電粒子ビーム装置)は、試料 Pを配置する 試料設置部 2と、試料 Pの表面(以下、試料表面 Sとする)に照射されるイオンビーム B (荷電粒子ビーム)を供給するイオン供給部 3 (荷電粒子供給部)と、イオン供給部 3 力らイオンビーム Bを弓 Iき出し加速させる加速手段 4と、加速手段 4によって加速され たイオンビーム Bを減速し、集束させる集束手段 5とを備える。試料 Pは、例えば、フォ トリソグラフィにおけるフォトマスクである。また、図 1に示すように、試料 Pは、試料設 置部 2に配置されることで、接地された状態となっている。  As shown in FIG. 1, an ion beam device 1 (charged particle beam device) irradiates a sample placement unit 2 for placing a sample P and a surface of the sample P (hereinafter referred to as sample surface S). The ion supply unit 3 (charged particle supply unit) for supplying the ion beam B (charged particle beam), the acceleration unit 4 for accelerating the ion beam B from the ion supply unit 3 force, and the acceleration unit 4 And a focusing means 5 for decelerating and focusing the ion beam B. The sample P is, for example, a photomask in photolithography. In addition, as shown in FIG. 1, the sample P is placed in the sample installation part 2 and is in a grounded state.
[0024] 図 1に示すように、イオン供給部 3にはイオン源 6が備えられている。イオン源 6は、 例えば、液体ガリウムであり、図示しないフィラメントが設けられていて、フィラメント電 源 6aと接続されている。このため、イオン源 6は、フィラメントによって熱せられて常に 液体状態に保たれ、周辺に生じる電位差によってイオンビーム Bであるガリウムイオン (Ga+)を放出可能な状態になっている。さらに、イオン供給部 3には電圧を調整可能 な加速電源 7が接続され、正の加速電圧 Eが印加されて 、る。  As shown in FIG. 1, the ion supply unit 3 includes an ion source 6. The ion source 6 is, for example, liquid gallium, is provided with a filament (not shown), and is connected to the filament power source 6a. For this reason, the ion source 6 is always kept in a liquid state by being heated by the filament, and is capable of emitting gallium ions (Ga +) as the ion beam B by a potential difference generated in the periphery. Further, an acceleration power source 7 capable of adjusting the voltage is connected to the ion supply unit 3, and a positive acceleration voltage E is applied thereto.
[0025] また、加速手段 4及び集束手段 5には、それぞれ第一のノィポテンシャルレンズ 8 及び第二のバイポテンシャルレンズ 9が備えられている。図 2に示すように、第一のバ ィポテンシャルレンズ 8及び第二のバイポテンシャルレンズ 9は、それぞれ、入射側電 極 8a、 9a、中間電極 8b、 9b及び出射側電極 8c、 9cが、絶縁碍子 10によって電気 的に絶縁された状態で並列されているとともに、それぞれ異なる電圧を印加させるこ とが可能となっている。また、入射側電極 8a、 9a、中間電極 8b、 9b及び出射側電極 8c、 9cには、同軸に貫通する貫通孔 8d、 9dが形成され、入射されたイオンビーム B が貫通可能な構成となって 、る。 The acceleration means 4 and the focusing means 5 are provided with a first Neupotential lens 8 and a second bipotential lens 9, respectively. As shown in FIG. 2, the first bipotential lens 8 and the second bipotential lens 9 are insulated from the incident side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the output side electrodes 8c and 9c, respectively. In parallel with the insulator 10 being electrically insulated, different voltages can be applied. Is possible. The incident-side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the emission-side electrodes 8c and 9c are formed with through-holes 8d and 9d that pass through coaxially so that the incident ion beam B can pass therethrough. And
[0026] ここで、図 3に示すように、これらのバイポテンシャルレンズの入射側電極 8a、 9aの ポテンシャルを VI、中間電極 8b、 9bのポテンシャルを V2、及び出射側電極 8c、 9c のポテンシャルを V3とする。ポテンシャルは、加速電圧 Eと各々の電極に印加された レンズ電圧とによって、ポテンシャル =加速電圧 E—レンズ電圧で決定される。入射 側電極 8a、 9a、中間電極 8b、 9b及び出射側電極 8c、 9cの間に電場を形成すること ができる。そして、この形成された電場によって、貫通孔 8d、 9dを貫通するイオンビ ーム Bを集束させることができる。また、入射側電極 8a、 9aのポテンシャル VIと、出 射側電極 8c、 9cのポテンシャル V3との差によって、貫通孔 8d、 9dを貫通するイオン ビーム Bは入射速度より加速 (減速)される。つまり、バイポテンシャルレンズに入射さ れた陽イオン (Ga+)であるイオンビーム Bは、 VI >V3である場合は入射速度より減 速して出射されて、 V3<V1である場合は入射速度より加速して出射される。さらに、 図 4に示すように、入射側電極 8a、 9aのポテンシャル VI、出射側電極 8c、 9cのポテ ンシャル V3との比 V1ZV3が大きくなるにつれて、像面 S1 (例えば、図 3に示すよう に、出射側電極 8c、 9cから 15mm離れた面)での色収差係数 Cc、球面収差係数 Cs は、ともに小さくなる。なお、対物レンズ (集束手段 5)の場合は、 V1 >V3の条件で使 用する。また、図 3及び図 4は、対物レンズ (集束手段 5)についての説明図であるが、 コンデンサレンズ (加速手段 4)についても同様に考えることができる。図 3の上下を反 転して、像面 S1を物面 (イオン源 6)に置き換える。各電極のポテンシャルを表わす記 号はそのままとする。イオンビーム Bの軌道は前述の対物レンズ (集束手段 5)とは逆 方向に走ることになる。軌道の相反性により、物面での収差係数は図 4に示すように なる。像面 S1での収差を小さくするためには、物面での収差を小さくする必要がある 。従って、コンデンサレンズも VI >V3の条件で使用するれば収差を小さく抑えること ができる。 Here, as shown in FIG. 3, the potentials of the incident-side electrodes 8a and 9a of these bipotential lenses are VI, the potentials of the intermediate electrodes 8b and 9b are V2, and the potentials of the emission-side electrodes 8c and 9c are V3. The potential is determined by the potential = acceleration voltage E−lens voltage by the acceleration voltage E and the lens voltage applied to each electrode. An electric field can be formed between the incident side electrodes 8a and 9a, the intermediate electrodes 8b and 9b, and the output side electrodes 8c and 9c. The ion beam B penetrating through the through holes 8d and 9d can be focused by the formed electric field. Further, the ion beam B penetrating through the through holes 8d and 9d is accelerated (decelerated) by the incident speed due to the difference between the potential VI of the incident side electrodes 8a and 9a and the potential V3 of the emission side electrodes 8c and 9c. In other words, the ion beam B, which is a positive ion (Ga +) incident on the bipotential lens, is emitted at a reduced speed from the incident speed when VI> V3, and from the incident speed when V3 <V1. Accelerated and emitted. Furthermore, as shown in FIG. 4, as the ratio V1ZV3 of the potential VI of the incident side electrodes 8a and 9a and the potential V3 of the outgoing side electrodes 8c and 9c increases, the image plane S1 (for example, as shown in FIG. 3). Both the chromatic aberration coefficient Cc and the spherical aberration coefficient Cs at the surface 15 mm away from the emission-side electrodes 8c and 9c) are both small. In the case of an objective lens (focusing means 5), use it under the condition of V1> V3. 3 and 4 are explanatory diagrams of the objective lens (focusing means 5), but the same can be considered for the condenser lens (acceleration means 4). The image plane S1 is replaced with the object plane (ion source 6) by inverting the top and bottom of Fig. 3. The symbol representing the potential of each electrode is left as it is. The trajectory of the ion beam B runs in the opposite direction to the objective lens (focusing means 5). Due to the reciprocity of the orbit, the aberration coefficient at the object surface is as shown in Fig.4. In order to reduce the aberration on the image surface S1, it is necessary to reduce the aberration on the object surface. Therefore, aberrations can be minimized by using a condenser lens under the condition of VI> V3.
[0027] つまり、バイポテンシャルレンズにおいては、ポテンシャル VIとポテンシャル V3の 差を大きくすることによって、入射されたイオンビーム Bをさらに加速 (減速)するととも に、ポテンシャル VIとポテンシャル V3との比も大きくなることで、収差を小さくしてィ オンビーム Bを効果的に集束し出射させることができる。さらに、バイポテンシャルレン ズには、中間電極 8b、 9bをイオンビーム Bの極性と異なる極性 (イオンビーム Bがガリ ゥムイオン(陽極)である場合には陰極)とする加速モードと、同じ極性とする減速モ ードとがある。バイポテンシャルレンズは、加速モードとすることで、さらにイオンビー ム Bの収差を小さくすることができる。 [0027] In other words, in the bipotential lens, the incident ion beam B is further accelerated (decelerated) by increasing the difference between the potential VI and the potential V3. In addition, by increasing the ratio of potential VI to potential V3, the ion beam B can be effectively focused and emitted with reduced aberration. Furthermore, the bipotential lens has the same polarity as the acceleration mode in which the intermediate electrodes 8b and 9b have a polarity different from the polarity of the ion beam B (a cathode when the ion beam B is a gallium ion (anode)). There is a deceleration mode. By setting the bipotential lens to the acceleration mode, the ion beam B aberration can be further reduced.
[0028] 図 1に示すように、第一のバイポテンシャルレンズ 8の入射側電極 8aは、電圧を調 整可能な引き出し電源 11の陰極と接続されている。また、引き出し電源 11の陽極は 、加速電源 7の陽極と接続されていて、これにより第一のバイポテンシャルレンズ 8の 入射側電極 8aの電圧をイオン供給部 3の電圧よりも相対的に低電位とすることができ る。また、中間電極 8bは電圧を調整可能なコンデンサレンズ電源 12の陰極と接続さ れていて、イオンビーム Bの極性(陽極)と異なる極性である負の電圧が印加されてい る。さらに、第一のバイポテンシャルレンズ 8の出射側電極 8cと第二のバイポテンシャ ルレンズ 9の入射側電極 9aとは、導電性を有する中間加速管 13で接続されて ヽると ともに、中間加速管 13は電圧を調整可能な中間加速電源 14の陰極と接続されて ヽ る。このため、第一のバイポテンシャルレンズ 8の出射側電極 8c、第二のバイポテン シャルレンズ 9の入射側電極 9a及び中間加速電源 14の内部は、イオンビーム Bの極 性(陽極)と異なる極性である負の電圧が等しく印加されている。また、第二のバイポ テンシャルレンズ 9の中間電極 9bは、電圧を調整可能な対物レンズ電源 15の陰極と 接続されていて、イオンビーム Bの極性(陽極)と異なる極性である負の電圧が印加さ れている。さらに、出射側電極 9cは接地されており、同じく接地されている試料 Pとの 間には電場が形成されな ヽ構成となって ヽる。  As shown in FIG. 1, the incident side electrode 8a of the first bipotential lens 8 is connected to the cathode of the extraction power source 11 capable of adjusting the voltage. In addition, the anode of the extraction power source 11 is connected to the anode of the acceleration power source 7 so that the voltage of the incident side electrode 8a of the first bipotential lens 8 is relatively lower than the voltage of the ion supply unit 3. It can be. Further, the intermediate electrode 8b is connected to the cathode of the condenser lens power source 12 capable of adjusting the voltage, and a negative voltage having a polarity different from that of the ion beam B (anode) is applied. Furthermore, the exit side electrode 8c of the first bipotential lens 8 and the entrance side electrode 9a of the second bipotential lens 9 are connected by an intermediate acceleration tube 13 having conductivity, and the intermediate acceleration tube 13 is connected to the cathode of the intermediate acceleration power source 14 capable of adjusting the voltage. For this reason, the inside of the exit side electrode 8c of the first bipotential lens 8, the entrance side electrode 9a of the second bipotential lens 9 and the intermediate acceleration power source 14 has a polarity different from the polarity (anode) of the ion beam B. A certain negative voltage is applied equally. Also, the intermediate electrode 9b of the second bipotential lens 9 is connected to the cathode of the objective lens power supply 15 capable of adjusting the voltage, and a negative voltage having a polarity different from that of the ion beam B (anode) is applied. It has been. Furthermore, the output-side electrode 9c is grounded, and an electric field is not formed between the same and the grounded sample P.
[0029] また、図 1に示すように、イオンビーム装置 1は、さらに中間加速管 13の内部におい て、照射されるイオンビーム Bの ONZOFFを行うブランキング電極 16と、イオンビー ム Bの光軸のずれを修正するァライメント電極 17と、イオンビーム Bの断面形状の歪 みを補正し、真円に形成する非点補正器 18とを備えている。ブランキング電極 16は 、ブランキング電源 19と接続され、電圧を印加することで、通過するイオンビーム Bを 試料 Pに照射されないように偏向させることができる。また、ァライメント電極 17は、ァ ライメント電源 20と接続され、電圧を印加し電場を形成することで、通過するイオンビ ーム Bの光軸を修正することができる。さらに、非点補正器 18は、非点補正電源 21と 接続され、電圧を印加し電場を形成することで、通過するイオンビーム Bの断面形状 の歪みを修正することができる。また、イオンビーム装置 1は、第二のバイポテンシャ ルレンズ 9と試料 Pとの間に走査電極 22を備えている。走査電極 22は走査電源 23と 接続され、走査電源 23の電圧の操作によって、通過するイオンビーム Bの試料表面 Sに照射する位置を調整することができる。 In addition, as shown in FIG. 1, the ion beam apparatus 1 further includes a blanking electrode 16 that performs ONZOFF of the irradiated ion beam B and an optical axis of the ion beam B inside the intermediate accelerator tube 13. Alignment electrode 17 for correcting the deviation, and astigmatism corrector 18 that corrects the distortion of the cross-sectional shape of ion beam B and forms a perfect circle. The blanking electrode 16 is connected to a blanking power source 19 and can apply a voltage to deflect the passing ion beam B so that the sample P is not irradiated. The alignment electrode 17 is The optical axis of the ion beam B that passes through can be corrected by connecting a voltage source 20 and applying an electric voltage to form an electric field. Further, the astigmatism corrector 18 is connected to the astigmatism correction power source 21 and applies a voltage to form an electric field, thereby correcting the distortion of the cross-sectional shape of the passing ion beam B. In addition, the ion beam apparatus 1 includes a scanning electrode 22 between the second bipotential lens 9 and the sample P. The scanning electrode 22 is connected to the scanning power source 23, and the position of the ion beam B passing through the sample surface S can be adjusted by operating the voltage of the scanning power source 23.
[0030] なお、図示しないが、試料表面 Sの加工位置にアシストガスを吐出させるガス銃や、 試料表面 Sにイオンビーム Bを照射した際に発生する二次電子を検出する二次電子 検出器や二次イオンを検出する二次イオン検出器などを試料表面 S付近に設ける構 成としても良い。ガス銃によって試料表面 Sの加工位置に選択的にアシストガスを供 給することで、試料表面 Sを効果的にエッチングする、あるいはデポジションを行うこと ができる。また、二次電子検出器や二次イオン検出器によって、イオンビーム Bが照 射された試料表面 Sの状態を観察することができる。これら、ガス銃、二次電子検出 器及び二次イオン検出器などは、試料 P及び第二のバイポテンシャルレンズ 9の出射 側電極 9cが接地された等電位の環境のもとで設けることができるので、絶縁処理す る必要なく操作することができる。  [0030] Although not shown, a gas gun that discharges an assist gas to a processing position on the sample surface S, or a secondary electron detector that detects secondary electrons generated when the sample surface S is irradiated with the ion beam B Or a secondary ion detector for detecting secondary ions may be provided near the sample surface S. By selectively supplying the assist gas to the processing position of the sample surface S with a gas gun, the sample surface S can be effectively etched or deposited. Further, the state of the sample surface S irradiated with the ion beam B can be observed by a secondary electron detector or a secondary ion detector. These gas guns, secondary electron detectors, secondary ion detectors, and the like can be provided in an equipotential environment in which the output electrode 9c of the sample P and the second bipotential lens 9 is grounded. Therefore, it can be operated without the need for insulation treatment.
[0031] 次に、イオンビーム装置 1の作用について説明する。図 1に示すように、イオン供給 部 3のイオン源 6であるガリウムは、図示しないフィラメントによって、常に液体の状態 に保たれている。そして、加速電源 7の電圧が、例えば、 10kVに設定されていること で、イオン供給部 3には + 10kVの加速電圧 Eが印加されている。また、引き出し電源 11は、例えば、 6kVの電圧に設定されていることで、第一のバイポテンシャルレンズ 8の入射側電極 8aには + 4kVの電圧が印加されることになる。つまり、加速電圧 Eと 第一のバイポテンシャルレンズ 8の入射側電極 8aに印加された電圧とによって 6kV の電位差 (入射側電極 8aのポテンシャル)が生じており、この入射側電極 8aのポテン シャルによってイオン源 6である液体ガリウムは、ガリウムイオン(Ga+)となってイオン 供給部 3から引き出され、加速手段 4である第一のバイポテンシャルレンズ 8にイオン ビーム Bとなって入射される。 [0032] また、コンデンサレンズ電源 12は、例えば 20kVの電圧に設定され、中間加速電源 14は、例えば 10kVの電圧に設定されている。このため、第一のバイポテンシャルレ ンズ 8の中間電極 8bは 20kVの電圧に、出射側電極 8cは— 10kVの電圧にそれ ぞれ印加されて、出射側電極 8cのポテンシャルは 20kVとなる。このため、第一のバ ィポテンシャルレンズ 8では、入射側電極 8aのポテンシャルと出射側電極 8cのポテン シャルとの比 VlZV3 (20Z6 = 3. 3)を大きな値とし、また中間電極 8bに負の電圧 を印加した加速モードとすることで、入射したイオンビーム Bは、収差を小さく抑えると ともに、出射側電極 8cのポテンシャルによって 20keVに加速され、高エネルギー状 態となる。 Next, the operation of the ion beam apparatus 1 will be described. As shown in FIG. 1, gallium as the ion source 6 of the ion supply unit 3 is always kept in a liquid state by a filament (not shown). Then, the acceleration voltage E of +10 kV is applied to the ion supply unit 3 because the voltage of the acceleration power source 7 is set to 10 kV, for example. In addition, since the extraction power supply 11 is set to a voltage of 6 kV, for example, a voltage of +4 kV is applied to the incident side electrode 8a of the first bipotential lens 8. That is, a potential difference of 6 kV (potential of the incident side electrode 8a) is generated by the acceleration voltage E and the voltage applied to the incident side electrode 8a of the first bipotential lens 8. The potential of the incident side electrode 8a is caused by this potential. The liquid gallium as the ion source 6 is extracted from the ion supply unit 3 as gallium ions (Ga +), and is incident on the first bipotential lens 8 as the acceleration means 4 as the ion beam B. In addition, the condenser lens power supply 12 is set to a voltage of 20 kV, for example, and the intermediate acceleration power supply 14 is set to a voltage of 10 kV, for example. For this reason, the intermediate electrode 8b of the first bipotential lens 8 is applied to a voltage of 20 kV and the output-side electrode 8c is applied to a voltage of −10 kV, so that the potential of the output-side electrode 8c is 20 kV. Therefore, in the first bipolar potential lens 8, the ratio VlZV3 (20Z6 = 3.3) between the potential of the incident side electrode 8a and the potential of the outgoing side electrode 8c is set to a large value, and the intermediate electrode 8b is negatively charged. By adopting the acceleration mode to which voltage is applied, the incident ion beam B is suppressed to a small aberration and accelerated to 20 keV by the potential of the emission side electrode 8c to be in a high energy state.
[0033] 次に、第一のバイポテンシャルレンズ 8で加速されたイオンビーム Bは、第二のバイ ポテンシャルレンズ 9まで、等電位である中間加速管 13の内部を等速度で通過する 。この際、必要に応じてブランキング電極 16によって ON/OFFされ、ァライメント電 極 17によって光軸を修正され、非点補正器 18によって断面形状の歪みを修正され、 第二のバイポテンシャルレンズ 9に入射する。ここで、対物レンズ電源 15は、例えば 2 OkVの電圧に設定されている。このため、第二のバイポテンシャルレンズ 9の中間電 極 9bは、 20kVの電圧に印加されている。また、出射側電極 9cは接地されている ので OkVとなっている。つまり、第二のバイポテンシャルレンズ 9においては、入射側 電極 9aのポテンシャルは 20kVであり、出射側電極 9cのポテンシャルは 10kVとなり 、入射側電極 9aのポテンシャルと出射側電極 9cのポテンシャルとの比 V1ZV3 (20 /10 = 2)を大きくすることができる。このため、第二のバイポテンシャルレンズ 9に入 射したイオンビーム Bは、出射側電極 9cのポテンシャルによって 10kVに減速される とともに、入射側電極 9a、中間電極 9b及び出射側電極 9cとで形成される電場によつ て、収差を小さく抑えて効果的に集束され、出射される。このため、第二のバイポテン シャルレンズ 9で集束されたイオンビーム Bは、小さいビーム径で、かつ低エネルギー 状態で試料表面 Sに照射される。また、第二のバイポテンシャルレンズ 9の出射側電 極 9cと試料 Pとの間は、互いに接地されていて無電場であることで、イオンビーム Bは 電場の影響を受けずに安定した状態として、走査電極 22で所定の加工位置に照射 するように走査され、試料表面 Sに照射される。 [0034] 以上のように、本実施形態のイオンビーム装置 1では、加速手段 4における第一の バイポテンシャルレンズ 8及び集束手段 5における第二のバイポテンシャルレンズ 9の 二つのバイポテンシャルレンズの特性によって、加速し高エネルギー状態とした後に 減速させることで、収差を小さくし効果的に集束させて、ビーム径を小さくすることが できる。また、二つのバイポテンシャルレンズで加速し減速することで、イオンビーム B は最終的には加速電源 7によって印加された加速電圧 Eによるエネルギーのみで、 低エネルギー状態として試料表面 Sに照射される。このため、照射される試料 Pのダメ ージを最小限に抑えるとともに、高精度に試料 Pを加工することができる。 Next, the ion beam B accelerated by the first bipotential lens 8 passes through the interior of the intermediate acceleration tube 13, which is equipotential, to the second bipotential lens 9 at a constant speed. At this time, the blanking electrode 16 is turned ON / OFF as necessary, the optical axis is corrected by the alignment electrode 17, the cross-sectional distortion is corrected by the astigmatism corrector 18, and the second bipotential lens 9 is corrected. Incident. Here, the objective lens power supply 15 is set to a voltage of 2 OkV, for example. For this reason, the intermediate electrode 9b of the second bipotential lens 9 is applied to a voltage of 20 kV. Also, since the output side electrode 9c is grounded, it is OkV. That is, in the second bipotential lens 9, the potential of the incident side electrode 9a is 20 kV, the potential of the output side electrode 9c is 10 kV, and the ratio between the potential of the incident side electrode 9a and the potential of the output side electrode 9c V1ZV3 (20/10 = 2) can be increased. For this reason, the ion beam B incident on the second bipotential lens 9 is decelerated to 10 kV by the potential of the emission side electrode 9c, and is formed by the incidence side electrode 9a, the intermediate electrode 9b, and the emission side electrode 9c. By this electric field, the light is effectively focused and emitted with small aberration. For this reason, the ion beam B focused by the second bipotential lens 9 is irradiated on the sample surface S with a small beam diameter and in a low energy state. In addition, since the output electrode 9c of the second bipotential lens 9 and the sample P are grounded and have no electric field, the ion beam B is stable without being affected by the electric field. The scanning electrode 22 is scanned so as to irradiate a predetermined processing position, and the sample surface S is irradiated. As described above, in the ion beam apparatus 1 of the present embodiment, the characteristics of the two bipotential lenses of the first bipotential lens 8 in the acceleration unit 4 and the second bipotential lens 9 in the focusing unit 5 are determined. By accelerating to a high energy state and then decelerating, the aberration can be reduced and focused effectively, and the beam diameter can be reduced. In addition, by accelerating and decelerating with two bipotential lenses, the ion beam B is finally irradiated on the sample surface S as a low energy state only by the energy by the acceleration voltage E applied by the acceleration power source 7. For this reason, the damage of the irradiated sample P can be minimized and the sample P can be processed with high accuracy.
[0035] なお、各電源の電圧の設定は上述したものに限らず、各電源の性能に応じて電圧 を設定することが可能である。このため、イオン供給部 3に接続されている加速電源 7 は試料 Pに照射される際のイオンビーム Bのエネルギーを最適なものとするように電 圧を設定することができる。また、引き出し電源 11の電圧は、イオン源 6から引き出さ れるイオンビーム Bの量が最適となるように設定することができる。さらに、中間加速電 源 14の電圧は、第一のバイポテンシャルレンズ 8及び第二のバイポテンシャルレンズ 9における入射側電極 8a、 9aのポテンシャル VIと、出射側電極 8c、 9cのポテンシャ ル V3との比を大きくし、収差を小さくするように設定することができる。また、第二のバ ィポテンシャルレンズ 9の出射側電極 9cと試料 Pとは、他の電極と関係無く常に接地 した状態とすることで、安定したイオンビーム Bの照射を実現することができる。つまり 、加速手段 4及び集束手段 5において、それぞれバイポテンシャルレンズを備えること によって、照射されるイオンビーム Bの量及びエネルギー並びにイオンビーム Bの集 束を自在に調整し、安定して照射することができる。また、第一のバイポテンシャルレ ンズ 8と、第二のバイポテンシャルレンズ 9との間、及び第二のバイポテンシャルレン ズ 9と試料 Pとの間を無電場とすることができ、特許文献 3のような寄生レンズ作用が 発生しない。このため、それぞれのバイポテンシャルレンズの各電極の組み立て精度 を確保することで軸外収差の発生を抑制することができる。その結果イオンビーム光 学系全体の収差を小さく抑えることが可能である。  [0035] Note that the setting of the voltage of each power supply is not limited to that described above, and the voltage can be set according to the performance of each power supply. Therefore, the acceleration power supply 7 connected to the ion supply unit 3 can set the voltage so that the energy of the ion beam B when the sample P is irradiated is optimized. Further, the voltage of the extraction power source 11 can be set so that the amount of the ion beam B extracted from the ion source 6 is optimum. Further, the voltage of the intermediate accelerating power source 14 varies between the potential VI of the incident side electrodes 8a and 9a in the first bipotential lens 8 and the second bipotential lens 9 and the potential V3 of the output side electrodes 8c and 9c. The ratio can be increased and the aberration can be decreased. In addition, stable irradiation of the ion beam B can be realized by keeping the emission-side electrode 9c of the second bipolar potential lens 9 and the sample P in contact with each other regardless of other electrodes. In other words, the acceleration means 4 and the focusing means 5 are each provided with a bipotential lens, so that the amount and energy of the ion beam B to be irradiated and the bundle of the ion beam B can be freely adjusted and stably irradiated. it can. In addition, there can be no electric field between the first bipotential lens 8 and the second bipotential lens 9 and between the second bipotential lens 9 and the sample P. Parasitic lens action like this does not occur. For this reason, the occurrence of off-axis aberration can be suppressed by ensuring the assembly accuracy of each electrode of each bipotential lens. As a result, it is possible to reduce the aberration of the entire ion beam optical system.
[0036] 以上、本発明の実施形態について図面を参照して詳述した力 具体的な構成はこ の実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲の設計変更等 も含まれる。 [0036] As described above, the embodiment of the present invention has been described in detail with reference to the drawings. The specific configuration is not limited to this embodiment. Is also included.
[0037] なお、イオンビーム装置 1において加工される試料 Pをフォトマスクとした力 これに 限るものでは無い。例えば、 TEMで観察される試料などとして、 TEMで観察すること が可能となるように試料を薄片に加工するのにイオンビーム装置 1を使用するものとし ても良い。また、試料 Pは接地された状態にあるので、絶縁体であっても良い。また、 イオン供給部 3のイオン源 6は液体ガリウムであり、イオンビーム Bをガリウムイオン (G a+)とした力これに限るものでは無い。イオン源 6は、液体に限らず固体や気体でも良 ぐまた、陰イオンでも良ぐ例えば、希ガス (Ar)やアルカリ金属(Cs)などをイオン種 とするイオン源としても良い。さらには、イオンビームに限らず、電子ビームなど電荷を 帯びた粒子である荷電粒子ビームであれば良い。ただし、陰イオンによるイオンビー ムあるいは電子ビームなど負の電荷を帯びた粒子の場合には、前述の実施形態に おいて各々に印加された電圧の正負を逆にする必要がある。  [0037] It should be noted that the force using the sample P processed in the ion beam apparatus 1 as a photomask is not limited to this. For example, the ion beam apparatus 1 may be used to process a sample into a thin piece so that the sample can be observed with a TEM. Moreover, since the sample P is in a grounded state, it may be an insulator. The ion source 6 of the ion supply unit 3 is liquid gallium, and is not limited to the force that uses the ion beam B as the gallium ion (Ga +). The ion source 6 is not limited to a liquid but may be a solid or gas, or may be an anion. For example, the ion source 6 may be an ion source using rare gas (Ar) or alkali metal (Cs) as an ion species. Furthermore, it is not limited to an ion beam, but may be a charged particle beam that is a charged particle such as an electron beam. However, in the case of negatively charged particles such as an ion beam or an electron beam due to negative ions, it is necessary to reverse the polarity of the voltage applied to each in the above-described embodiment.
[0038] また、加速手段 4に第一のバイポテンシャルレンズ 8、集束手段 5に第二のバイポテ ンシャルレンズ 9が備えられているとした力 これに限ることは無い。加速手段 4及び 集束手段 5のそれぞれに少なくとも一つずつのバイポテンシャルレンズが備えられて いれば良ぐそれぞれに複数のバイポテンシャルレンズが設けられる構成としても良 い。  Further, the force that the acceleration means 4 is provided with the first bipotential lens 8 and the focusing means 5 is provided with the second bipotential lens 9 is not limited to this. As long as at least one bipotential lens is provided in each of the acceleration means 4 and the focusing means 5, a configuration in which a plurality of bipotential lenses are provided may be employed.
産業上の利用可能性  Industrial applicability
[0039] 試料に照射される荷電粒子ビームを低エネルギーとするとともに、収差を抑えビー ム径を小さくすることができる。このため、荷電粒子ビームの照射に伴う試料のダメー ジを最小限に抑えるとともに、高精度に試料を加工することができる。 [0039] The charged particle beam applied to the sample can be reduced in energy, the aberration can be suppressed, and the beam diameter can be reduced. For this reason, it is possible to minimize damage to the sample accompanying irradiation of the charged particle beam and to process the sample with high accuracy.

Claims

請求の範囲 The scope of the claims
[1] 接地された試料表面に荷電粒子ビームを放出し照射する荷電粒子供給部と、 該荷電粒子供給部に接続され、加速電圧を印加する加速電源と、  [1] A charged particle supply unit that emits and irradiates a charged particle beam to a grounded sample surface; an acceleration power source that is connected to the charged particle supply unit and applies an acceleration voltage;
前記荷電粒子供給部から前記荷電粒子ビームを引き出し、加速させる加速手段と 該加速手段で加速された前記荷電粒子ビームを集束し、前記試料表面に照射す る集束手段とを備えた荷電粒子ビーム装置であって、  A charged particle beam apparatus comprising: acceleration means for extracting and accelerating the charged particle beam from the charged particle supply unit; and focusing means for focusing the charged particle beam accelerated by the acceleration means and irradiating the sample surface Because
前記加速手段及び前記集束手段のそれぞれは、入射側電極、中間電極及び出射 側電極の異なる電圧を印加させることが可能である 3つの電極が並列されたバイポテ ンシャルレンズを少なくとも一つ備え、  Each of the accelerating means and the focusing means includes at least one bipotential lens in which three electrodes that can apply different voltages of the incident side electrode, the intermediate electrode, and the output side electrode are arranged in parallel,
前記加速手段のバイポテンシャルレンズの出射側電極と、前記集束手段のバイポ テンシャルレンズの入射側電極のそれぞれは、前記荷電粒子ビームの極性と異なる 極性の電圧を印加する中間加速電源と接続されるとともに、  Each of the exit-side electrode of the bipotential lens of the acceleration means and the entrance-side electrode of the bipotential lens of the focusing means is connected to an intermediate acceleration power source that applies a voltage having a polarity different from the polarity of the charged particle beam. ,
前記加速手段のバイポテンシャルレンズの入射側電極は該入射側電極に電圧を 印加する引き出し電源と接続され、  The incident side electrode of the bipotential lens of the accelerating means is connected to an extraction power source that applies a voltage to the incident side electrode;
前記集束手段のバイポテンシャルレンズの出射側電極は接地されて ヽることを特徴 とする荷電粒子ビーム装置。  The charged particle beam device according to claim 1, wherein the output side electrode of the bipotential lens of the focusing means is grounded.
[2] 請求項 1に記載の荷電粒子ビーム装置にぉ 、て、 [2] The charged particle beam apparatus according to claim 1, wherein
前記加速手段のバイポテンシャルレンズの中間電極は、該中間電極に前記荷電粒 子ビームの極性と異なる極性の電圧を印加するコンデンサレンズ電源と接続されると ともに、  The intermediate electrode of the bipotential lens of the accelerating means is connected to a condenser lens power source that applies a voltage having a polarity different from the polarity of the charged particle beam to the intermediate electrode.
前記集束手段のバイポテンシャルレンズの中間電極は、該中間電極に前記荷電粒 子ビームの極性と異なる極性の電圧を印加する対物レンズ電源に接続されているこ とを特徴とする荷電粒子ビーム装置。  The charged particle beam apparatus characterized in that the intermediate electrode of the bipotential lens of the focusing means is connected to an objective lens power source that applies a voltage having a polarity different from that of the charged particle beam to the intermediate electrode.
[3] 加速電圧が印加された荷電粒子供給部から前記加速電圧との電位差によって引き 出され、加速された荷電粒子ビームを試料表面に照射する荷電粒子ビームの照射 方法であって、 [3] A charged particle beam irradiation method in which a charged particle beam is extracted from a charged particle supply unit to which an acceleration voltage is applied by a potential difference from the acceleration voltage, and is accelerated to a sample surface,
前記荷電粒子ビームを加速させる加速工程と、前記荷電粒子ビームを集束させる 集束工程とを備え、 Accelerating step of accelerating the charged particle beam and focusing the charged particle beam A focusing process,
前記加速工程において、入射側電極、中間電極及び出射側電極の異なる電圧を 印加させることが可能である 3つの電極が並列された第一のノ ィポテンシャルレンズ を配置し、前記第一のバイポテンシャルレンズの入射側電極に電圧を印加して、前 記加速電圧との電位差によって前記荷電粒子ビームを引き出し、前記第一のバイポ テンシャルレンズに入射させるとともに、前記第一のバイポテンシャルレンズの中間電 極及び出射側電極のそれぞれには前記荷電粒子ビームの極性と異なる極性の電圧 を印加し、前記入射側電極、前記中間電極及び前記出射側電極によって形成され る電場によって荷電粒子ビームの収差を抑えるとともに、前記加速電圧と前記出射 側電極に印加された電圧との電位差によって前記荷電粒子ビームを加速させ、 前記集束工程において、第二のノ ィポテンシャルレンズを配置し、入射側電極の 電圧を前記第一のバイポテンシャルレンズの出射側電極と等電位にすることで、等 速度で入射させるとともに、中間電極には前記荷電粒子ビームの極性と異なる極性 の電圧を印加し、出射側電極を接地し、前記加速電圧と接地された前記出射側電極 との電位差によって減速させるとともに、入射側電極、中間電極及び出射側電極によ つて形成される電場によって荷電粒子ビームを集束させて接地された試料表面に照 射させることを特徴とする荷電粒子ビームの照射方法。  In the acceleration step, it is possible to apply different voltages to the incident side electrode, the intermediate electrode, and the emission side electrode. A voltage is applied to the incident side electrode of the lens, and the charged particle beam is drawn out by a potential difference from the acceleration voltage, is incident on the first bipotential lens, and the intermediate electrode of the first bipotential lens. A voltage having a polarity different from that of the charged particle beam is applied to each of the emission side electrode and the charged particle beam aberration is suppressed by an electric field formed by the incidence side electrode, the intermediate electrode, and the emission side electrode. Accelerating the charged particle beam by a potential difference between the acceleration voltage and a voltage applied to the emission-side electrode, In the focusing step, a second neutral potential lens is arranged and the voltage of the incident side electrode is set to the same potential as that of the output side electrode of the first bipotential lens so that the incident light is incident at the same speed and the intermediate electrode. A voltage having a polarity different from the polarity of the charged particle beam is applied to the output side electrode, and the output side electrode is grounded, and is decelerated by a potential difference between the acceleration voltage and the output side electrode that is grounded. A charged particle beam irradiation method characterized in that a charged particle beam is focused by an electric field formed by an emission side electrode and irradiated onto a grounded sample surface.
PCT/JP2006/319069 2005-10-03 2006-09-26 Charged particle beam equipment and method for irradiating charged particle beam WO2007040098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-289716 2005-10-03
JP2005289716A JP2007103107A (en) 2005-10-03 2005-10-03 Charged particle beam device and irradiation method of charged particle beam

Publications (1)

Publication Number Publication Date
WO2007040098A1 true WO2007040098A1 (en) 2007-04-12

Family

ID=37906141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319069 WO2007040098A1 (en) 2005-10-03 2006-09-26 Charged particle beam equipment and method for irradiating charged particle beam

Country Status (2)

Country Link
JP (1) JP2007103107A (en)
WO (1) WO2007040098A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220574B2 (en) * 2008-12-09 2013-06-26 日本電子株式会社 Tandem time-of-flight mass spectrometer
TW201422279A (en) * 2012-09-28 2014-06-16 Mevion Medical Systems Inc Focusing a particle beam
JP7339818B2 (en) 2019-09-03 2023-09-06 キオクシア株式会社 Charged particle beam device
US11562879B2 (en) * 2020-09-15 2023-01-24 Nuflare Technology, Inc. Low-blur electrostatic transfer lens for multi-beam electron gun

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149850A (en) * 1999-01-01 2000-05-30 Hitachi Ltd Charged particle beam device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149850A (en) * 1999-01-01 2000-05-30 Hitachi Ltd Charged particle beam device

Also Published As

Publication number Publication date
JP2007103107A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
EP1028452B1 (en) Scanning electron microscope
US7351983B2 (en) Focused ion beam system
US8269188B2 (en) Charged particle beam apparatus and sample processing method
JP4685115B2 (en) Electron beam exposure method
US9443692B2 (en) Focused ion beam low kV enhancement
JP6340165B2 (en) Electron gun, charged particle gun and charged particle beam apparatus using them
US20120319001A1 (en) Charged particle beam lens
TWI732817B (en) Apparatus and method for contamination control in ion beam apparatus
US20230377829A1 (en) Charged Particle Beam Device and Axis Adjustment Method Thereof
WO2007040098A1 (en) Charged particle beam equipment and method for irradiating charged particle beam
US8053725B2 (en) Beam quality in FIB systems
US7592604B2 (en) Charged particle beam apparatus
TWI773081B (en) Method of operating a charged particle gun, charged particle gun, and charged particle beam device
JP2007287495A (en) 2-lens optical system scanning type aberration corrected focused ion beam device, 3-lens optical system scanning type aberration corrected focused ion beam device, and 2-lens optical system projection type aberration corrected ion lithography device as well as 3-lens optical system projection type aberration corrected ion lithography device
JP5452722B2 (en) Aberration correction apparatus and charged particle beam apparatus using the same
US20030006377A1 (en) Tandem acceleration electrostatic lens
US11495433B1 (en) Charged particle beam apparatus, multi-beamlet assembly, and method of inspecting a specimen
JP4128487B2 (en) Charged particle beam equipment
WO2022249605A1 (en) Focused ion beam device
JP6261228B2 (en) Focused ion beam apparatus, focused ion / electron beam processing observation apparatus, and sample processing method
JP2000011936A (en) Electron beam optical system
JP3753048B2 (en) Secondary electron detector
JPH11317188A (en) Scanning electron microscope
JPH0636724A (en) Charged particle beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798335

Country of ref document: EP

Kind code of ref document: A1