WO2007039605A1 - Résine dispersante de polyamine amphiphile - Google Patents

Résine dispersante de polyamine amphiphile Download PDF

Info

Publication number
WO2007039605A1
WO2007039605A1 PCT/EP2006/066988 EP2006066988W WO2007039605A1 WO 2007039605 A1 WO2007039605 A1 WO 2007039605A1 EP 2006066988 W EP2006066988 W EP 2006066988W WO 2007039605 A1 WO2007039605 A1 WO 2007039605A1
Authority
WO
WIPO (PCT)
Prior art keywords
pigment
dispersant resin
polyamine
polyamine dispersant
amphiphilic
Prior art date
Application number
PCT/EP2006/066988
Other languages
English (en)
Inventor
Hendrik Jan Willem Van Den Haak
Jamie Macliver Roy
Michel Menting
Original Assignee
Akzo Nobel Coatings International B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel Coatings International B.V. filed Critical Akzo Nobel Coatings International B.V.
Publication of WO2007039605A1 publication Critical patent/WO2007039605A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/283Compounds containing ether groups, e.g. oxyalkylated monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6423Polyalkylene polyamines; polyethylenimines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • C09B67/0069Non aqueous dispersions of pigments containing only a solvent and a dispersing agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents

Definitions

  • the invention relates to an amphiphilic polyamine dispersant resin having a polyamine backbone and pendent side groups.
  • the invention further relates to pigment compositions comprising the polyamine dispersant resin, a process for dispersing pigments, and water and solvent borne coating compositions comprising the pigment compositions.
  • amphiphilic pigment dispersant offers considerable advantages to the paint industry.
  • one pigment composition comprising the amphiphilic dispersant resin can be used in both water and solvent borne coating compositions simplifies the logistics of production as well as distribution.
  • a polyamine dispersant resin of the above-mentioned type is known from US patent 6,111 ,054.
  • This document relates to the use of compounds obtainable by the reaction of organic acids with polyamines as dispersing agents for organic and inorganic pigments and for extenders and fillers in organic and aqueous systems, so-called amphiphilic dispersants.
  • the organic acids in one pendent side group comprise water-compatible blocks, such as polyethers, and solvent- compatible blocks, such as polycaprolactone. Exemplified is a side chain with a total number average molecular weight Mn of 900.
  • a drawback is the inferior stability of pigment compositions prepared from such dispersants.
  • the invention seeks to provide an amphiphilic polyamine dispersant resin which permits the preparation of stable pigment compositions. It also permits the preparation of pigment concentrates which can be easily incorporated into both water and solvent borne coating compositions wherein the pigments are stably dispersed.
  • the dispersant resin should be suitable for use with a wide range of pigments.
  • the pigment compositions should allow the preparation of both solvent and water borne paints having excellent properties and stability, especially in the case of pigments which are difficult to disperse and stabilize.
  • the invention now provides an amphiphilic polyamine dispersant resin having a polyamine backbone and pendent side groups, wherein the side groups comprise a) at least one side group substantially compatible with water linked to the polyamine backbone via a covalent bond, and b) at least one hydrophobic side group substantially compatible with at least one organic solvent.
  • the polyamine dispersant resin of the invention can suitably be prepared by reacting
  • aliphatic amines may be mentioned.
  • these aliphatic amines contain at least three primary, secondary, and/or tertiary amine groups.
  • Aliphatic linear polyamines comprising primary and secondary amino groups may be used, such as diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine, hexaethylene heptamine, and higher homologues.
  • aliphatic branched polyamines are used, particularly (C2-C4)-alkylene amines, which comprise primary, secondary, and tertiary amino groups and which have molecular weights of 600-2,000,000 g/mole, such as the Lupasol® types produced by BASF or the Epomin® types produced by Nippon Shokubai.
  • These branched aliphatic polyamines which are also known as polyimines or polyaziridines, are produced by known methods, e.g. by the polymerization of ethylene imine.
  • types with an average Mw of about 600-3,000 g/mole are preferably used, more preferably types with an average Mw of about 1 ,000-2,500 g/mole.
  • Suitable compounds (b) can be obtained by the reaction of at least one compound having at least two isocyanate groups with a polyalkylene oxide based group having at least one isocyanate-reactive group.
  • the polyalkylene oxide based group having at least one isocyanate-reactive group may be selected from polyalkylene glycol monoalkyl ether and polyoxyalkylene monoamine.
  • suitable alkylene oxides are ethylene oxide, propylene oxide, butylene oxide, or mixtures thereof. It is preferred that the polyalkylene oxide based side groups are based on ethylene oxide or a mixture of ethylene oxide and propylene oxide.
  • polyalkylene oxide based group having at least one isocyanate-reactive group is a compound according to formula (I) or (II), or a mixture thereof,
  • R 1 is selected from Ci to C 4 alkyl groups, n is 0 to 25, m is 1 to 50, and n+m ⁇ 50. It is to be understood that the (CsH 6 O) and (C2H 4 O) units may be present in the compound as blocks of polypropylene oxide and polyethylene oxide or as a more or less random mixture of propylene oxide and ethylene oxide derived units.
  • suitable amines according to formula (I) are polyoxyalkylene monoamines, which are commercially available from Huntsman under the trade designation Jeffamine ® M.
  • Suitable ethers according to formula (II) are polyalkylene oxide based alkoxy compounds, which are commercially available from Clariant under the trade designation Polyglykol M.
  • Examples of compounds having at least two isocyanate groups include 1 ,6- diisocyanatohexane, isophorone diisocyanate, 2,4-toluene diisocyanate, 2,6- toluene diisocyanate, diphenyl methane-diisocyanate, 4,4'-bis(isocyanato- cyclohexyl) methane, 1 ,4-diisocyanatobutane, 1 ,5-diisocyanato-2,2-dimethyl pentane, 2,2,4-trimethyl-1 ,6-diisocyanatohexane, 1 ,10-diisocyanatodecane, 4,4- diisocyanato-cyclohexane, 2,4-hexahydrotoluene diisocyanate, 2,6-hexahydro- toluene diisocyanate, norbornane diisocyanate, 1 ,3
  • the amount of compounds having at least one amine-reactive group and a pendent hydrophilic polyalkylene oxide based group is selected such as to ensure that the content of polyalkylene oxide in the polyamine dispersant resin is at least 10 weight-%, calculated on the weight of the dispersant.
  • the amount of polyalkylene oxide in the polyamine dispersant resin does not exceed 80 weight-%. It is most preferred that the amount of polyalkylene oxide is in the range of 20 to 50 weight-%.
  • the polyamine dispersant resin preferably comprises at least two, more preferably at least three pendent hydrophilic polyalkylene oxide based side groups per molecule. The hydrophobic side groups are different from the hydrophilic side groups.
  • Suitable compounds (c) may include acid-terminated hydrophobic groups (c1 ), the reaction product of at least one compound having at least two isocyanate groups with a long-chain alcohol (c2), or mixtures thereof.
  • acid-terminated hydrophobic groups (c1 ) include acid-terminated polyesters such as those obtainable by the acid-initiated polymerization of a lactone (e.g. propiolactone, valerolactone, caprolactone) or by the condensation of hydroxy-carboxylic acids (e.g. 12-hydroxy stearic acid, ricinoleic acid, commercially available from Akzo Nobel as Nouracid CS80, and hydroxyl caproic acid).
  • the acid groups provide the reaction with the amine groups of the polyamine backbone by forming a salt, an amide, or a combination thereof.
  • Examples of the reaction product of at least one compound having at least two isocyanate groups with a long-chain alcohol (c2) include the above-mentioned diisocyanates reacted with long-chain mono-alcohols, e.g. hydrogenated polybutadiene with one terminal hydroxyl group, which are commercially available from Shell under the trade designation Kraton ® , e.g. Kraton LiquidTM L-1203, or alcohol-initiated polycaprolactone.
  • the amount of compounds having hydrophobic groups used in the preparation of the polyamine dispersant resin may be selected such as to ensure that the content of hydrophobic groups in the polyamine dispersant resin is at least 20 weight-%, calculated on the weight of the dispersant.
  • the amount of hydrophobic groups in the polyamine dispersant resin does not exceed 80 weight-%. It is most preferred that the amount of hydrophobic groups is in the range of 40 to 70 weight-%.
  • the polyamine dispersant resin preferably comprises at least two, more preferably at least three pendent hydrophobic based side groups per molecule.
  • the pendent hydrophobic side groups may be linked to the polyamine backbone via covalent bonds or via ionic bonds. Also a combination of covalently and ionically linked pendent hydrophobic side groups is possible.
  • the side groups have a number average molecular weight Mn of 500 to 4,000, more preferably of 1 ,000 to 2,000.
  • the polyamine dispersant resin can be prepared in a conventional manner.
  • the polyamine dispersant may be prepared by reacting the polyamine backbone with the hydrophilic and hydrophobic tails, either simultaneously or in two consecutive steps.
  • the order of reaction depends on the types of amino-reactive groups used in the different tails and can easily be decided by those skilled in the art.
  • the invention also relates to a composition comprising the polyamine dispersant resin and a pigment.
  • Compositions comprising a high proportion of pigment i.e. pigment concentrates, are preferred, because such compositions are particularly effective in providing colour and hiding to coatings.
  • the pigment concentrates generally comprise 5 to 85 weight-%, preferably 20 to 75 weight-% of pigment, based on the total weight of the pigment concentrate.
  • the pigment preparation of the invention may comprise an inorganic or an organic pigment. It is also possible for the pigment preparation to comprise a plurality of different pigments, for example two or more inorganic pigments, two or more organic pigments, or a mixture of one or more inorganic pigments and one or more organic pigments.
  • the organic pigments typically are organic chromatic and black pigments.
  • Inorganic pigments can likewise be colour pigments (chromatic, black, and white pigments), as well as luster pigments and the inorganic pigments typically used as fillers.
  • diazo condensation pigments 106, 113, 126, 127, 155, 174, 176, 180, and 188; diazo condensation pigments:
  • C.I. Pigment Yellow 138 diketopyrrolopyrrole pigments: C.I. Pigment Orange 71 , 73, and 81 ; C.I. Pigment Red 254, 255, 264, 270, and
  • Suitable inorganic colour pigments are: white pigments: titanium dioxide (C.I. Pigment White 6), zinc white, pigment grade zinc oxide; zinc sulfide, lithopone; black pigments: iron oxide black (C.I. Pigment Black 11 ), iron manganese black, spinel black (C.I. Pigment Black 27); carbon black (C.I. Pigment Black 7); chromatic pigments: chromium oxide, chromium oxide hydrate green; chrome green (C.I. Pigment Green 48); cobalt green (C.I. Pigment Green 50); ultramarine green; cobalt blue (C.I. Pigment Blue 28 and 36; C.I.
  • Pigment Blue 72 ultramarine blue; manganese blue; ultramarine violet; cobalt violet; manganese violet; red iron oxide (C.I. Pigment Red 101 ); cadmium sulfoselenide (C.I. Pigment Red 108); cerium sulfide (C.I. Pigment Red 265); molybdate red (C. I. Pigment Red 104); ultramarine red; brown iron oxide (C.I. Pigment Brown 6 and 7), mixed brown, spinel phases and corundum phases (C.I. Pigment Brown 29, 31 , 33, 34, 35, 37, 39, and 40), chromium titanium yellow (C.I. Pigment Brown 24), chrome orange; cerium sulfide (C.I.
  • Pigment Orange 75 yellow iron oxide (C.I. Pigment Yellow 42); nickel titanium yellow (C.I. Pigment Yellow 53; C.I. Pigment Yellow 157, 158, 159, 160, 161 , 162, 163, 164, and 189); chromium titanium yellow; spinel phases (C.I. Pigment Yellow 119); cadmium sulfide and cadmium zinc sulfide (C.I. Pigment Yellow 37 and 35); chrome yellow (C.I. Pigment Yellow 34); bismuth vanadate (C.I. Pigment Yellow 184).
  • inorganic pigments typically used as fillers are transparent silicon dioxide, ground quartz, aluminium oxide, aluminium hydroxide, natural micas, natural and precipitated chalk, and barium sulfate.
  • Luster pigments are platelet-shaped pigments having a monophasic or polyphasic construction the colour play of which is marked by the interplay of interference, reflection, and absorption phenomena.
  • Examples are aluminium platelets and aluminium, iron oxide, and mica platelets bearing one or more coats, especially of metal oxides.
  • the composition suitably comprises up to 150 weight-%, preferably 1 to 100 weight-%, and most preferably 2 to 50 weight-% of the polyamine dispersant resin of the invention, calculated on the weight of the pigment.
  • the most suitable amount of polyamine dispersant resin depends, among others, on the particular type of pigment to be dispersed.
  • the mixture may optionally comprise other known additives, such as additional dispersing agents, anti-foaming agents, and/or polymeric or oligomeric binders.
  • the pigment composition may comprise a pigment synergist, such as Solsperse 5000 or 12000 commercially available from Noveon. This additive may be added in an amount ranging from 0.01 to 5 weight-% on the total composition.
  • the composition may be a liquid composition comprising an organic and/or an aqueous based diluent.
  • the pigment preparation of the invention is a free-flowing powder which is suitable for use as a stir-in pigment. Also solid compacted pigment preparations can be used, for example in the form of pellets or tablets.
  • the pigment concentrates or tinting pastes can be obtained by a process wherein a liquid mixture comprising a pigment, the polyamine dispersant resin of the invention, and optionally a liquid diluent are subjected to shear force.
  • the pigment dispersant resin of the invention can be used in combination with one or more other pigment dispersion aids and/or surfactants. Examples of suitable equipment for carrying out the process are bead mills, jet mills, ultrasonic mills, basket mills, roll mills, and high-speed dissolvers. Inorganic or organic pigments or mixtures thereof may be used.
  • either water or organic solvents may be used, such as glycols, glycol ethers, glycol esters, or ether esters, for example ethylene glycol or higher homologues thereof, ethylene glycol mono-n-butyl ether, propylene glycol methyl ether acetate, or ethylethoxy propionate.
  • the pigment preparations of the present invention are notable for their excellent colour properties, especially with regard to colour strength, brilliance, hue and hiding power, and especially for their stir-in characteristics, i.e. they can be dispersed in application media with a minimal input of energy, simply by stirring or shaking.
  • the pigment preparations of the present invention additionally have the following advantages: they have a high pigment content, exhibit very good stability in storage, are both economically and ecologically advantageous with regard to packaging, storage, and transportation, and they are more flexible in use, i.e. they can be used for pigmenting water borne compositions as well as solvent borne compositions.
  • the invention further relates to a coating composition
  • a coating composition comprising at least one organic film-forming binder, at least one pigment, and a pigment dispersant resin, wherein the pigment dispersant resin is a polyamine dispersant resin as described above.
  • the coating composition may be an aqueous coating composition as well as a solvent borne coating composition.
  • the coating composition may for example be a base coat composition.
  • Base coat compositions are colour- and/or effect-imparting coating compositions which are used in multilayer lacquer systems having a clear top coat. Such multilayer lacquer systems are frequently used to protect and decorate motor vehicles and large transportation vehicles.
  • the coating composition may further comprise other ingredients, additives or auxiliaries commonly used in coating compositions, such as dyes, levelling agents, organic solvents, wetting agents, anti-cratering agents, anti-foaming agents, antisagging agents, heat stabilizers, light stabilizers, UV absorbers, antioxidants, and fillers.
  • additives or auxiliaries commonly used in coating compositions, such as dyes, levelling agents, organic solvents, wetting agents, anti-cratering agents, anti-foaming agents, antisagging agents, heat stabilizers, light stabilizers, UV absorbers, antioxidants, and fillers.
  • the pigment concentrate can be part of a modular system for the preparation of a pigmented coating composition.
  • a modular system may, for example, comprise one or more pigment concentrates as a tinting module, a binder module, and a reducer module.
  • the base coat compositions mentioned above can suitably be prepared by mixing the modules of such a modular system.
  • compositions and mixtures are given in parts by weight (pbw).
  • Bayhydrol VPLS 2952 Aqueous polyurethane dispersion ex Bayer
  • Binder mix 2 A mixture of Setal 1616 ss-75 (25.6 pbw), a surface tension modifier (11.78 pbw), Setal 168 ss-80 (21.31 pbw), and a wax additive (41.31 pbw)
  • Binder mix 2 A mixture of Setal 1616 ss-75 (25.6 pbw), a surface tension modifier (11.78 pbw), Setal 168 ss-80 (21.31 pbw), and a wax additive (41.31 pbw)
  • the solids content of the compositions was determined by measuring the weight loss after heating a sample to 140 0 C for 30 minutes.
  • the molecular weights were determined by size exclusion chromatography using polystyrene as standard.
  • the fineness of the pigment dispersions was determined with a Hegman gauge.
  • the reported fineness value in ⁇ m represents the largest particles found in the sample.
  • the gloss of the coatings was measured using a Byk Gardner micro TRI gloss unit.
  • the transparency of the coatings was measured on foil against a reference foil without coating.
  • the reference foil has a transparency of 100%.
  • the colour was measured using a spectrophotometer and L * a * b * values according to the CIE Lab system.
  • IPDI isophorone diisocyanate
  • DBTDL dibutyl tin dilaurate
  • the obtained product was a slightly yellow/orange solid material with an acid value of 13.5 mg KOH/g, a Mw of 7,258, and a Mn of 2,488.
  • Example 2 Use of the dispersant resin for dispersing pigments
  • Pigment pastes were prepared with the polyamine dispersant resin of Example 1 , a red pigment Irgazin DPP Red BO ex Ciba, and several solvents. The pastes were shaken for 1.5 hours with 600 g zirconox beads 1.2-1.7 mm on a Skandex Paint Shaker Model No. SO 400. After shaking, the beads were separated by centrifugal force. The compositions of the pastes are summarized in Table 1 below.
  • Solvent borne coating compositions were prepared as shown in Table 4.
  • the water borne coating compositions were mixed with Autowave 099 ex Akzo Nobel in a 50:50 weight ratio, based on the amount of pigment in the coating compositions.
  • Autowave Reducer was added to obtain a viscosity of the resulting coating composition of 25-30 seconds with DIN cup 4 at 20 0 C.
  • the coating compositions were applied with a spray gun on pre-primed tin plates and dried at room temperature.
  • a clear coat composition of Autoclear LV Ultra, Ultra Fast Hardener, and Ultra Thin (volume mixing ratio 3:1 :1 ) was sprayed on the dried base coat and cured at room temperature for 24 hours.
  • the solvent borne coating compositions were mixed with Autobase Plus Q 110 ex Akzo Nobel in a 50:50 weight ratio, based on the amount of pigment in the coating compositions.
  • Autobase Plus Reducer Medium was added to obtain a viscosity of the resulting coating composition of 16-18 seconds with DIN cup 4 at 20 0 C.
  • the coating compositions were applied with a spray gun on pre-primed tin plates and dried at room temperature.
  • a clear coat composition of Autoclear MS 2000, Autocryl Hardener MS 30, and 1.2.3 Thinner Fast (weight mixing ratio 100:50:9.65) was sprayed on the dried base coat and cured at room temperature for 24 hours.
  • Table 5 Water borne coating compositions white reductions colour properties.
  • Pigment pastes comprising 37.5 wt.% and 40 wt.% Irgazin DPP Red BO were prepared in the same manner as Example 1. The formulations are listed in Table 7.
  • Water borne coating compositions were prepared as shown in Table 8. These water borne coating compositions were applied on foil as mentioned in Example 3. After drying, gloss and transparency were measured. The results are provided in Table 9.
  • Solvent borne coating compositions were prepared as shown in Table 10.
  • Table 11 Water borne coating compositions white reductions colour properties.
  • Pigment pastes were prepared with the polyamine dispersant resin of Example 1 , a blue pigment lrgalite Blue PG ex Ciba, and a pigment synergist chosen from Solsperse 5000 and Solsperse 12000 ex Noveon.
  • the pastes were shaken with 600 g zirconox beads 1.2-1.7 mm on a Skandex machine for 1.5 hours, as mentioned in Example 2, except for pigment paste 20, which was shaken for 2 hours.
  • the compositions of the pastes are summarized in Table 13 below. The figures are given in parts by weight.
  • Example 9 Use of pigment pastes in water borne coating compositions
  • Water borne coating compositions were prepared as shown in Table 14. These water borne coating compositions were applied on foil as mentioned in Example 3. After drying, gloss and transparency were measured. The results are provided in Table 15.
  • Solvent borne coating compositions were prepared as shown in Table 16.
  • the water borne coating compositions were mixed with Autowave 099 ex Akzo Nobel in a 68:32 weight ratio, based on the amount of pigment in the coating compositions. With Autowave Reducer the resulting coating composition was set to spraying viscosity. The coating compositions were applied with a spray gun on pre-primed tin plates and dried at room temperature and treated further as mentioned in Example 4.
  • the solvent borne coating compositions were prepared, cured, and coated with a clear coat as mentioned in Example 4.
  • Table 17 Water borne coating compositions white reductions colour properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

Cette invention concerne une résine dispersante de polyamine amphiphile comprenant un squelette polyamine et des groupes latéraux pendants, ces groupes comportant a) au moins un groupe latéral sensiblement compatible avec l’eau fixé au squelette polyamine par une liaison covalente, et b) au moins un groupe latéral hydrophobe sensiblement compatible avec au moins un solvant organique.
PCT/EP2006/066988 2005-10-04 2006-10-03 Résine dispersante de polyamine amphiphile WO2007039605A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP05109208 2005-10-04
EP05109208.8 2005-10-04
US74904005P 2005-12-12 2005-12-12
US60/749,040 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007039605A1 true WO2007039605A1 (fr) 2007-04-12

Family

ID=37616547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066988 WO2007039605A1 (fr) 2005-10-04 2006-10-03 Résine dispersante de polyamine amphiphile

Country Status (1)

Country Link
WO (1) WO2007039605A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035107A1 (fr) 2013-09-06 2015-03-12 Lubrizol Advanced Materials, Inc. Dispersants contenant un copolymère greffé multi-bases et multi-acides
WO2016094026A1 (fr) 2014-12-09 2016-06-16 Lubrizol Advanced Materials, Inc. Additif pour empêcher la séparation de phases d'un additif anti-retrait dans des compositions de polyester thermodurcissable insaturé
WO2019060278A1 (fr) 2017-09-19 2019-03-28 Lubrizol Advanced Materials, Inc. Dispersant polyester comportant plusieurs amines préparé par le biais d'un intermédiaire anhydride
WO2020055691A1 (fr) 2018-09-10 2020-03-19 Lubrizol Advanced Materials, Inc. Dispersant polyester multi-amine et son procédé de fabrication
WO2020186126A1 (fr) 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Dispersant polyester comportant plusieurs amines préparé par le biais d'un intermédiaire anhydride
WO2020186133A1 (fr) 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Dispersant multi-amine obtenu par un intermédiaire anhydride
WO2022132491A1 (fr) 2020-12-18 2022-06-23 Lubrizol Advanced Materials, Inc. Composition de dispersion de pigment stable
WO2022132492A1 (fr) 2020-12-18 2022-06-23 Lubrizol Advanced Materials, Inc. Procédé de production d'un polymère à l'aide d'une dispersion de pigment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565145A (en) * 1994-05-25 1996-10-15 The Procter & Gamble Company Compositions comprising ethoxylated/propoxylated polyalkyleneamine polymers as soil dispersing agents
US6111054A (en) * 1997-07-26 2000-08-29 Byk-Chemie Gmbh Products obtainable by salt formation from polyamines and the use thereof as dispersing agents for pigments and extenders
WO2001005875A1 (fr) * 1999-07-15 2001-01-25 MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH Copolymeres sequences cationiques
WO2001092421A1 (fr) * 2000-05-27 2001-12-06 Basf Aktiengesellschaft Preparations pigmentaires contenant de la polyethylenimine alcoxylee
WO2002072639A2 (fr) * 2001-03-12 2002-09-19 King Industries, Inc. Nouveaux dispersants polymères fonctionnels acides
WO2005010109A2 (fr) * 2003-07-18 2005-02-03 The Lubrizol Corporation Compositions
EP1685895A2 (fr) * 2005-01-28 2006-08-02 Goldschmidt GmbH Résines de dispersion contenant un polyéther/polyester.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565145A (en) * 1994-05-25 1996-10-15 The Procter & Gamble Company Compositions comprising ethoxylated/propoxylated polyalkyleneamine polymers as soil dispersing agents
US6111054A (en) * 1997-07-26 2000-08-29 Byk-Chemie Gmbh Products obtainable by salt formation from polyamines and the use thereof as dispersing agents for pigments and extenders
WO2001005875A1 (fr) * 1999-07-15 2001-01-25 MedInnova Gesellschaft für medizinische Innovationen aus akademischer Forschung mbH Copolymeres sequences cationiques
WO2001092421A1 (fr) * 2000-05-27 2001-12-06 Basf Aktiengesellschaft Preparations pigmentaires contenant de la polyethylenimine alcoxylee
WO2002072639A2 (fr) * 2001-03-12 2002-09-19 King Industries, Inc. Nouveaux dispersants polymères fonctionnels acides
WO2005010109A2 (fr) * 2003-07-18 2005-02-03 The Lubrizol Corporation Compositions
EP1685895A2 (fr) * 2005-01-28 2006-08-02 Goldschmidt GmbH Résines de dispersion contenant un polyéther/polyester.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015035107A1 (fr) 2013-09-06 2015-03-12 Lubrizol Advanced Materials, Inc. Dispersants contenant un copolymère greffé multi-bases et multi-acides
WO2016094026A1 (fr) 2014-12-09 2016-06-16 Lubrizol Advanced Materials, Inc. Additif pour empêcher la séparation de phases d'un additif anti-retrait dans des compositions de polyester thermodurcissable insaturé
WO2019060278A1 (fr) 2017-09-19 2019-03-28 Lubrizol Advanced Materials, Inc. Dispersant polyester comportant plusieurs amines préparé par le biais d'un intermédiaire anhydride
WO2020055691A1 (fr) 2018-09-10 2020-03-19 Lubrizol Advanced Materials, Inc. Dispersant polyester multi-amine et son procédé de fabrication
WO2020186126A1 (fr) 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Dispersant polyester comportant plusieurs amines préparé par le biais d'un intermédiaire anhydride
WO2020186133A1 (fr) 2019-03-14 2020-09-17 Lubrizol Advanced Materials, Inc. Dispersant multi-amine obtenu par un intermédiaire anhydride
WO2022132491A1 (fr) 2020-12-18 2022-06-23 Lubrizol Advanced Materials, Inc. Composition de dispersion de pigment stable
WO2022132492A1 (fr) 2020-12-18 2022-06-23 Lubrizol Advanced Materials, Inc. Procédé de production d'un polymère à l'aide d'une dispersion de pigment

Similar Documents

Publication Publication Date Title
US8017686B2 (en) Polyurethane dispersant resin
JP5363812B2 (ja) 固体顔料濃厚物
KR101478329B1 (ko) 분산제 및 분산 안정제로서의 부가 화합물
US7318864B2 (en) Pigment preparations
WO2007039605A1 (fr) Résine dispersante de polyamine amphiphile
CN101945911B (zh) 润湿剂和分散剂及其制备和应用
KR101526527B1 (ko) 습윤제 및 분산제의 제조 및 용도
US9045644B2 (en) Solid pigment preparations containing water-soluble surface-active polyurethane-base additives
US10023690B2 (en) Hyperbranched phosphoric acid esters
EP3233260B1 (fr) Dispersant universel
EP1931736B1 (fr) Preparation de pigment
US7172653B2 (en) Solid pigment preparations comprising surface-active additives based on alkoxylated bisphenols
RU2418815C2 (ru) Полиуретановая диспергирующая смола
BRPI0615276B1 (pt) Dispersing polyurethane resin; polyurethane polymer; composition; process for preparing composition; and use of a dispersing resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06793950

Country of ref document: EP

Kind code of ref document: A1