WO2007037257A1 - Non-contact rotary transmission device and electric power generation system - Google Patents

Non-contact rotary transmission device and electric power generation system Download PDF

Info

Publication number
WO2007037257A1
WO2007037257A1 PCT/JP2006/319143 JP2006319143W WO2007037257A1 WO 2007037257 A1 WO2007037257 A1 WO 2007037257A1 JP 2006319143 W JP2006319143 W JP 2006319143W WO 2007037257 A1 WO2007037257 A1 WO 2007037257A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary
rotor
permanent magnets
central rotor
rotors
Prior art date
Application number
PCT/JP2006/319143
Other languages
French (fr)
Japanese (ja)
Inventor
Akio Hashizume
Yasuyoshi Hashizume
Original Assignee
Shiozaki, Hiromitsu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiozaki, Hiromitsu filed Critical Shiozaki, Hiromitsu
Publication of WO2007037257A1 publication Critical patent/WO2007037257A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/005Magnetic gearings with physical contact between gears

Definitions

  • the present invention relates to a non-contact type rotation transmission device suitable for transmitting rotation in a non-contact manner using magnetic force, and a power generation system using the rotation transmission device.
  • Patent Document 1 Conventionally, as this type of non-contact type rotation transmission device, there is a magnetic coupling disclosed in Patent Document 1 below.
  • This magnetic coupling is supported coaxially on the input shaft of rotation via a copper alloy ring force bearing case. Further, the output shaft of the rotation is supported by a bearing supported in the boss portion of the bearing case at the inner end thereof, extends coaxially in the copper alloy ring, and is connected to the load.
  • the cylindrical yoke is coaxially supported on the output side shaft in the copper alloy ring, and a plurality of permanent magnets are arranged on the outer peripheral surface of the yoke along the circumferential direction. It is fixed with a gap.
  • each permanent magnet has a gap with respect to the inner peripheral surface of the copper alloy ring, and is positioned in non-contact with the copper alloy ring. For this reason, the magnetic flux of each permanent magnet passes through the inside of the copper alloy ring through the gap.
  • Patent Document 1 JP 2000-197340 A
  • the present invention has been devised in the configuration and arrangement of the permanent magnet, and appropriately transmits the rotation including the low rotation speed range that does not depend on the eddy current. It is an object of the present invention to provide a non-contact type rotation transmission device and a power generation system using the rotation transmission device.
  • the central rotor includes a central rotor body (60a) and a plurality of permanent magnets (60b to 60i) provided at intervals along the outer peripheral wall of the central rotor body.
  • Each of the plurality of planetary rotors has a predetermined distance between the planetary rotor main body (110a to 140a) and a plurality of permanent magnets of the central rotor at intervals along the outer peripheral wall of the planetary rotor main body.
  • a plurality of permanent magnets (110b to 110d, 120b to 120d, 130b to 130d, 1 black to 140d) provided so as to be able to be magnetically attracted or repelled with a gap therebetween.
  • One of the plurality of planetary rotors is set as an input shaft for rotation, and the axis of the central rotor is set as an output shaft for rotation.
  • the central rotor body is formed with V-shaped grooves (63b) formed at intervals along the outer peripheral wall,
  • Each planetary rotor is formed with V-shaped grooves (11 lb, 121b, 131b, 141b) formed at intervals along the outer peripheral wall,
  • Each permanent magnet of the central rotor is formed in a substantially rhomboid columnar shape so as to have both side inclined walls (65) and the other side inclined walls (66) parallel to the both side inclined walls.
  • the permanent magnets of each planetary rotor are arranged on both side inclined walls (113, 123, 133, 143) and on the other side inclined walls (114, 124, 134, 144) parallel to these two side inclined walls, respectively. ) So that it has a substantially rhomboid column shape,
  • the permanent magnets of the central rotor and each planetary rotor are fitted in the V-shaped grooves of the central rotor and each planetary rotor, respectively, on both side inclined walls.
  • each permanent magnet of the central rotor and the outer end of each permanent magnet of each planetary rotor are cut off from the top formed by the other inclined walls, respectively, so that the end walls (66a, 114a, 12 4a, 134a, 144a).
  • the permanent magnets of the central rotor and the planetary rotors face each other at the end walls as they rotate.
  • the end wall of the permanent magnet can increase the area density of the lines of magnetic force and can form the lines of magnetic force as perpendicular to the outer surface of the end wall as possible.
  • the present invention provides the contactless rotation transmission device according to claim 1 or 2
  • Each planetary rotor has a planetary shaft (70 to 100) that coaxially supports the corresponding planetary rotor body.
  • the connecting means is composed of timing belts (170a, 170b, 200) for connecting the planetary shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors.
  • the present invention provides the contactless rotation transmission device according to claim 3,
  • each timing belt is connected to each planetary shaft of each planetary rotor, and is characterized in that.
  • each permanent magnet is attracted by one permanent magnet of each planetary rotor located closest to each permanent magnet in the rotational direction. Under such suction, the central rotor can rotate smoothly with the rotation of each planetary rotor.
  • the power generation system according to the present invention, A rotating body (A) that rotates according to the speed based on wind power or hydraulic power,
  • Non-contact rotation transmission device (C)
  • a rotating power generation means (E) A rotating power generation means (E),
  • the central rotor includes a central rotor body (60a) and a plurality of permanent magnets (60b to 60i) provided at intervals along the outer peripheral wall of the central rotor body.
  • Each of the plurality of planetary rotors has a predetermined distance between the planetary rotor main body (110a to 140a) and a plurality of permanent magnets of the central rotor at intervals along the outer peripheral wall of the planetary rotor main body.
  • a plurality of permanent magnets (110b to 110d, 120b to 120d, 130b to 130d, 1 black to 140d) provided so as to be able to be magnetically attracted or repelled with a gap therebetween.
  • the rotation of the rotating body is input to the input shaft and transmitted to the output shaft, with one of the planetary rotors serving as the rotation input shaft and the central rotor shaft serving as the rotation output shaft.
  • the rotating power generation means rotates to generate electric power based on the rotation of the output axial force of the rotation transmission device.
  • each permanent magnet of the central rotor and each permanent magnet of each planetary rotor are attracted or repelled without contact with each other through the respective opposing end walls that do not depend on eddy currents. Since it is achieved by exerting the matching magnetic action, it is possible to generate power appropriately including the low rotation speed range.
  • the rotation power generating means can be used without changing the rotation of the rotating body as it is or by increasing the speed of the rotation. Can communicate to. As a result, it is possible to further improve power generation by effectively utilizing wind power or hydraulic power while achieving the operational effects of the rotation transmission device described above.
  • the present invention provides the power generation system according to claim 5,
  • the central rotor body is formed with V-shaped grooves (63b) formed at intervals along the outer peripheral wall,
  • Each planetary rotor is formed with V-shaped grooves (11 lb, 121b, 131b, 141b) formed at intervals along the outer peripheral wall,
  • Each permanent magnet of the central rotor is formed in a substantially rhomboid columnar shape so as to have both side inclined walls (65) and the other side inclined walls (66) parallel to the both side inclined walls.
  • the permanent magnets of each planetary rotor are arranged on both side inclined walls (113, 123, 133, 143) and on the other side inclined walls (114, 124, 134, 144) parallel to these two side inclined walls, respectively. ) So that it has a substantially rhomboid column shape,
  • the permanent magnets of the central rotor and each planetary rotor are fitted in the V-shaped grooves of the central rotor and each planetary rotor, respectively, on both side inclined walls.
  • each permanent magnet of the central rotor and the outer end of each permanent magnet of each planetary rotor are cut off from the top formed by the other inclined walls, respectively, so that the end walls (66a, 114a, 12 4a, 134a, 144a).
  • the permanent magnets of the central rotor and the planetary rotors face each other at the end walls as they rotate.
  • the end wall of the permanent magnet can increase the area density of the lines of magnetic force and can form the lines of magnetic force as perpendicular to the outer surface of the end wall as possible.
  • the present invention provides the power generation system according to claim 5 or 6. [Koo! /
  • Each planetary rotor has a planetary shaft (70 to 100) that coaxially supports each corresponding planetary rotor body,
  • the connecting means is composed of timing belts (170a, 170b, 200) for connecting the planetary shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors.
  • the present invention provides the power generation system according to claim 7,
  • the permanent magnet force of the central rotor is the rotation of the planets closest to the permanent magnets in the direction of rotation.
  • the attractive force between these opposing permanent magnets is maximized.
  • the total force of each attractive force between the remaining corresponding permanent magnets of each planetary rotor and the central rotor is set so that each timing is slightly larger than the force required to separate the opposed permanent magnets from each other.
  • a belt is characterized in that it connects each planetary shaft of each planetary rotator.
  • FIG. 1 shows a wind power generation system to which the present invention is applied.
  • This wind power generation system includes a windmill A, a gear box B, a non-contact type rotation transmission device C, a speed increaser D, and an AC generator E.
  • the left and right sides in FIG. 1 correspond to the front and rear of the wind power generation system in FIG. Therefore, in FIG. 1, the lower side and the upper side in the figure correspond to the left side and the right side of the wind power generation system.
  • the windmill A is constituted by a propeller type windmill such as a Sabotus type, a Darius type, or a paddle type.
  • the windmill A has an input shaft 20a (described later) of the gearbox B at its support A1. It is erected on this gear box B.
  • the support A1 of the windmill A is supported on a horizontal installation surface L (see FIG. 2) by a plurality of stays (not shown).
  • the gear box B is configured by providing an input side bevel gear and an output side bevel gear (not shown!) In a rectangular parallelepiped casing 10.
  • the input-side bevel gear is coaxially supported in the casing 10 on the inner end portion of the input shaft 20a that extends upward from the upper wall 11 of the casing 10 so as to rotate upward.
  • the output side bevel gear is positioned so as to be orthogonal to the axis of the input side bevel gear on its axis, and meshes with the input side bevel gear, and the output side bevel gear is
  • the casing 10 is coaxially supported by the inner end portion of the output shaft 2 Ob extending horizontally and rearwardly from the rear wall 12 of the casing 10. Note that the gear ratio of the input side bevel gear and the output side bevel gear is 1.
  • the casing 10 also has a bottom Installed on wall 13 on horizontal installation surface L.
  • the rotation transmission device C is connected to the output shaft 20b of the gear box B through the force coupling 30 at its input shaft (a planetary shaft 90 described later) as shown in FIG.
  • the rotation transmission device C includes a support body 40 as shown in FIGS. 1, 2 and 4, and this support body 40 has a bottom wall 40a and front and rear side support walls 40b and 40c.
  • the bottom wall 40a is installed on the installation surface L.
  • the both side support walls 40b, 40c are arranged in the front-rear direction (the output shaft 20b of the gear box B) so that they are parallel to each other in the left-right direction (direction perpendicular to the paper surface of FIG. 2) on the bottom wall 40a. (Axial direction) is set up at intervals.
  • the support body 40 has four sets of clamping members 40d, and these four sets of clamping members 40d are described below with respect to the upper, lower, left and right corners of the side support walls 40b, 40c. By sandwiching, both side support walls 40b and 40c are maintained in the standing state as described above.
  • the clamping member 40d is composed of a cylinder 41, a double-cut bolt 42, and double nuts 43. As a result, the clamping member 40d sandwiches the cylinder 41 between the lower right corners of the support walls 40b and 40c on both sides, and inserts the double-ended bolt 42 into the lower right corner of the support wall 40b. 41 and the support wall 40c are inserted into the lower right corner and both nuts 43 are fastened to both ends of the double-sided bolt 42, so that the lower right corner of each of the support walls 40b and 40c is supported. Pinch. Each of the remaining clamping members 40d also clamps the upper right corner, the lower left corner, and the upper left corner of the both-side support walls 40b and 40c with the same configuration as the above-described clamping member. .
  • the rotation transmission device C includes a central shaft 50 and a central rotor 60 as shown in FIGS. 1 and 2, and the central shaft 50 is parallel to the output shaft 20b of the gear box B. As shown in the figure, both bearings 40b and 40c are supported through both bearings 40e and 40f.
  • the bearing 40e is coaxially fitted in the large diameter portion of the stepped hole 45 formed in the center of the support wall 40b, while the bearing 40f is the center of the support wall 40c. It is coaxially fitted in the large diameter part of the stepped hole 46 formed in the part.
  • the central shaft 50 has both bearings 40e, 40f and stepped holes 45, 46 at each intermediate portion in the axial direction. Are supported by both side support walls 40b and 40c so as to be rotatable. Both stop rings 47 are fitted on the central shaft 50 so as to sandwich both bearings 40e and 40f, thereby restricting displacement of the central shaft 50 with respect to both side support walls 40b and 40c.
  • the central rotor 60 includes a central rotor main body 60a (hereinafter referred to as the rotor main body 6 Oa) and eight permanent magnets 60b to 60i as shown in FIG. 1, FIG. 2 or FIG. ing.
  • the rotor body 60a is formed concentrically on the annular wall 61 as shown in FIG. 3, the annular boss 62 concentrically formed on the inner peripheral portion of the annular wall 61, and the outer peripheral portion of the annular wall 61.
  • An annular outer peripheral wall 63 is provided.
  • the rotor body 60a is coaxially connected to the intermediate portion of the central shaft 50 by the annular boss 62 between the both supporting walls 40b and 40c via the key 64 (see Fig. 2).
  • the annular wall 61 and the annular outer peripheral wall 63 are maintained along the side support walls 40b and 40c.
  • the key 64 is fitted in a key groove 64a formed at an intermediate portion of the central shaft 50. 2 and 3, each reference numeral 61a indicates an opening formed in the annular wall 61 in the circumferential direction.
  • the outer peripheral surface of the outer peripheral wall 63 has eight flat portions 63a, and these flat portions 63a are formed at equal intervals along the outer peripheral surface of the outer peripheral wall 63. Further, each V-shaped groove 63b for fitting each permanent magnet 60b to 60i is formed in the corresponding flat portion 63a, and the groove direction of each V-shaped groove 63b is the outer periphery. Along the axial direction of the wall 63.
  • each of the permanent magnets 60b to 60i has the same outer shape, the configuration will be described with the permanent magnet 60b as an example.
  • the permanent magnet 60b is formed in a substantially rhombic column shape so as to have both inclined walls 65 and both inclined walls 66 parallel to the both inclined walls 65, respectively. It has been done.
  • the permanent magnet 60b is cut off at both upper and lower ends thereof to form end walls 65a and 66a parallel to each other.
  • the permanent magnet 60b is magnetized to the N pole on the end wall 65a side and magnetized to the S pole on the end wall 66a side.
  • the edge permanent walls 60a and 66a of the permanent magnet 60b are formed by increasing the area density of the magnetic lines of force of the permanent magnet 60b at the end walls 65a and 66a, and by applying the magnetic lines of force to the end walls. This is because the outer surfaces of 65a and 66a are formed as perpendicular as possible.
  • the outer diameter of the rotor body 60a is, for example, 300 mm, and the outer diameters of the rotor bodies 110a to 14 Oa (described later) are 100 mm. This is based on the assumption that the number of permanent magnets in the central rotor 60 is 8, and the number of permanent magnets in each planetary rotor 110-140 is 3, respectively, when the planetary rotor rotates once. Means one-eighth of a revolution.
  • the permanent magnet 60b configured as described above is fitted into the corresponding V-shaped groove 63b at both inclined walls 65, and both the inclined walls 66 of the permanent magnet 60b are
  • the outer peripheral wall 63 projects outwardly from the corresponding V-shaped groove 63b through the opening 67a (see FIG. 1) of the pressing plate 67 from the corresponding V-shaped groove 63b.
  • the holding plate 67 is fastened to each corresponding flat surface portion 63a of the outer peripheral wall 63 with a plurality of screws 67b.
  • the remaining permanent magnets 60c to 60i are also fitted in the corresponding V-shaped grooves 63b by the two inclined walls 65, respectively, and the two inclined walls 66 of the remaining permanent magnets 60b. Projecting outwardly from the corresponding V-shaped grooves 63b in the radial direction of the outer peripheral wall 63 through the openings 67a of the corresponding pressing plates 67, respectively. Each corresponding pressing plate 67 is fastened to the outer peripheral wall 63 to the corresponding flat surface portion 63a with a plurality of screws 67b.
  • the N pole is magnetized on the end wall 65a side
  • the S pole is magnetized on the end wall 66a side.
  • both end walls 65a, 6 of each permanent magnet 60b to 60i are used, both end walls 65a, 6 of each permanent magnet 60b to 60i
  • the rotation transmission device C includes four planetary shafts 70 to 1 as shown in FIG. 1 or FIG.
  • the four planetary shafts 70 to 100 are parallel to the central shaft 50, respectively, and, similar to the central shaft 50, out of the both side support walls 40b and 40c via the respective bearings (not shown).
  • the central rotor 60 is rotatably supported on the outer peripheral side portion.
  • the planetary axes 70 and 100 are positioned symmetrically with respect to the radial line D1 on the side of the radial line D1 relative to the radial lines D2 and D8 as shown in FIG.
  • the planetary shafts 80 and 90 are positioned symmetrically with respect to the radial line D5 on the radial line D5 side from both radial lines D4 and D6.
  • the planet axes 70 and 80 are symmetrically positioned with respect to the radial line D3, and the planetary axes 90 and 100 are symmetrically positioned with respect to the radial line D7. Furthermore, each planetary axis 70 ⁇ : The axis of the LOO is located on the same circle.
  • the planetary rotor 110 includes a central rotor body 110a (hereinafter referred to as a rotor body 110a) and three permanent magnets 110b to 110d.
  • the rotor main body 110a includes an annular wall 111 and an annular boss 112 formed concentrically on the inner peripheral portion of the annular wall 111.
  • the rotor body 110a is coaxially fitted to the intermediate portion of the planetary shaft 70 in the axial direction between the support walls 40b and 40c via the key (not shown) by the annular boss 112. Supported to maintain the annular wall 111 along the side support walls 40b, 40c
  • the outer peripheral surface of the annular wall 111 has three flat portions 11 la, and these flat portions 11 la are formed at equal intervals along the outer peripheral surface of the annular wall 111.
  • V-shaped grooves 11 lb for fitting the permanent magnets 110b to l10d are formed in the corresponding flat portions 11la, and the groove directions of the grooves 111b are annular walls. Along the 111 axial direction.
  • each of the permanent magnets 110b to 110d is formed to have the same outer shape as that of the permanent magnet 60b described above.
  • each of the permanent magnets 110b to 110d includes the two inclined walls 113, the two inclined walls 114, and the two end walls 113a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. 114a.
  • each permanent magnet 110b to 110d is fitted into each V-shaped groove 111b of the annular wall 111 and both the inclined walls 113b, and the permanent magnets 110b to 110d.
  • the two inclined walls 114 protrude outwardly from the corresponding V-shaped grooves 11 lb in the radial direction of the annular wall 111 through the openings 115a (see FIG. 1) of the pressing plates 115, respectively.
  • each pressing plate 115 is fastened to the corresponding flat portion 11 la on the annular wall 111 with a plurality of screws 115b.
  • each permanent magnet 110b to 110d force is magnetized to the N pole on the end wall 114a side, and is magnetized to the S pole on the end wall 113a side.
  • the planetary rotor 120 includes a central rotor body 120a (hereinafter referred to as a rotor body 120a) and three permanent magnets 120b to 120d.
  • the rotor main body 120a includes an annular wall 121 and an annular boss 122 formed concentrically on the inner peripheral portion of the annular wall 121.
  • the rotor main body 120a is coaxially fitted and supported by the annular boss 122 at the intermediate portion of the planetary shaft 80 between both side support walls 40b and 40c via a key (not shown).
  • the annular wall 121 is maintained along the side support walls 40b and 40c.
  • the outer peripheral surface of the annular wall 121 has three flat portions 121a, and these flat portions 12la are formed at equal intervals along the outer peripheral surface of the annular wall 121. Further, V-shaped grooves 121b for fitting the respective permanent magnets 120b to 120d are formed in the corresponding flat portions 121a, respectively, and the groove direction of each V-shaped groove 121b is an annular wall 121. Along the axial direction.
  • each of the permanent magnets 120b to 120d is formed to have the same outer shape as that of the permanent magnet 60b described above.
  • each of the permanent magnets 120b to 120d includes the two inclined walls 123, the two inclined walls 124, and the two end walls 123a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. , 124a.
  • the permanent magnets 120b to 120d are respectively fitted into the V-shaped grooves 12 lb of the annular wall 121 by the inclined walls 123, and the permanent magnets 120b to 120d Both inclined walls 124 protrude in the radial direction of the annular wall 121 outward from each V-shaped groove 121b through an opening (not shown) of each pressing plate 125.
  • each pressing plate 125 is fastened to each corresponding flat surface portion 121a with a plurality of screws 125b.
  • Each permanent magnet 120b to 120d is magnetized to the N pole on the end wall 124a side and magnetized to the S pole on the end wall 123a side.
  • the planetary rotor 130 includes a central rotor body 130a (hereinafter referred to as a rotor body 130a) and three permanent magnets 130b to 130d.
  • the rotor main body 130a includes an annular wall 131 and an annular boss 132 formed concentrically on the inner peripheral portion of the annular wall 131.
  • the rotor body 130a is coaxially fitted and supported by the annular boss 132 at an intermediate portion of the planetary shaft 90 between both side support walls 40b and 40c via a key (not shown).
  • the annular wall 131 is maintained along the side support walls 40b and 40c.
  • the outer peripheral surface of the annular wall 131 has three flat portions 131 a, and these flat portions 13 la are formed at equal intervals along the outer peripheral surface of the annular wall 131.
  • Each permanent magnet 1 Each V-shaped groove 13 lb for fitting 30b to 130d is formed in each corresponding flat portion 13la, and these are formed along the axial direction of the annular wall 131.
  • each of the permanent magnets 130b to 130d is formed to have the same outer shape as that of the permanent magnet 60b described above.
  • each of the permanent magnets 130b to 130d includes the two inclined walls 133, the two inclined walls 134, and the two end walls 133a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. 134a.
  • the permanent magnets 130b to 130d are fitted into the V-shaped grooves 13 lb of the annular wall 131 by the inclined walls 133, respectively.
  • the inclined wall 134 protrudes outward from each V-shaped groove 131b in the radial direction of the annular wall 131 through an opening (not shown) of each pressing plate 135.
  • each pressing plate 135 is fastened to each corresponding flat surface portion 13 la by a plurality of screws 135b.
  • the permanent magnets 130b to 30d are magnetized to the N pole on the end wall 133a side and magnetized to the S pole on the end wall 134a side.
  • the planetary rotor 140 includes a central rotor body 140a (hereinafter referred to as the rotor body 140a! And three permanent magnets 140b to 140d.
  • the rotor body 140a includes an annular wall 141 and an annular boss 142 formed concentrically on the inner peripheral portion of the annular wall 141.
  • the rotor main body 140a is coaxially fitted and supported by an annular boss 142 at an intermediate portion of the planetary shaft 100 between both side support walls 40b and 40c via a key (not shown).
  • the annular wall 141 is maintained along the side support walls 40b and 40c.
  • the outer peripheral surface of the annular wall 141 has three flat portions 141a, and these flat portions 14la are formed along the outer peripheral surface of the annular wall 141 at equal intervals. Further, each V-shaped groove 141b force for fitting each permanent magnet 140b to 140d is formed in the corresponding flat portion 141a, and the groove direction of each V-shaped groove 141b is an annular wall 141. Along the axial direction.
  • each of the permanent magnets 140b to 140d is formed to have the same outer shape as that of the permanent magnet 60b described above.
  • each of the permanent magnets 140b to 140d includes the two inclined walls 143, the two inclined walls 144, and the two end walls 143a corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a and 66a of the permanent magnet 60b, respectively. 144a.
  • each permanent magnet 140b to 140d is fitted in each V-shaped groove 141b of the annular wall 141 by the both inclined walls 143, and both the permanent magnets 140b to 140d are inclined to both sides.
  • Wall 144 Projecting outward from each V-shaped groove 141b in the radial direction of the annular wall 141 through the opening 145a (see FIG. 1) of each pressing plate 145.
  • each pressing plate 145 is fastened to each corresponding flat surface portion 14 la with a plurality of screws 145b.
  • the permanent magnets 140b to 140d are magnetized to the N pole on the end wall 143a side and magnetized to the S pole on the end wall 144a side.
  • the interval between the opposing end walls of the opposing permanent magnets is as described above.
  • the predetermined value for example, lmn! To 2 mm
  • This predetermined value is determined by adjusting one outer diameter dimension H (see FIGS. 5 and 6) of the permanent magnet.
  • the rotation transmission device C includes an eccentric rotor 150.
  • the eccentric rotor 150 includes a rotor body 150a and two permanent magnets 150b.
  • the rotor body 150a includes an annular wall 151, an annular boss 152 formed on the inner peripheral portion of the annular wall 151, and an outer peripheral wall 153 formed concentrically on the outer peripheral portion of the annular wall 151.
  • the rotor body 150a is coaxially fitted and supported by the annular boss 152 via the key 152a to the extended end 51 of the central shaft 50 toward the front side of the front support wall 40b.
  • the annular wall 151 and the outer peripheral wall 153 are maintained along the front support wall 40b.
  • the annular boss 152 is formed so as to be eccentric at the center by a predetermined amount G with respect to the center of the annular wall 151 (axial center of the central shaft 50). For this reason, the eccentric rotor 150 is eccentric by a predetermined amount G with respect to the center of the central shaft 50 in the direction connecting the centers of the permanent magnets 150b in the width direction.
  • the outer peripheral surface of the outer peripheral wall 153 has two flat portions 153 a, and these flat portions 153 a are formed along the outer peripheral surface of the outer peripheral wall 153 at equal intervals. However, the two flat portions 153a are located in the eccentric direction of the boss 152 at the center thereof.
  • Each permanent magnet 150b is formed in the same rectangular parallelepiped shape, and each permanent magnet 150b is accommodated in a box-shaped recess 153b formed in each flat surface portion 153a of the outer peripheral wall 153.
  • Each retaining plate 154 prevents it from coming off.
  • each pressing plate 154 is fastened to each corresponding flat surface portion 153a with a plurality of screws 154a.
  • Each permanent magnet The stone 150b faces the outside through the opening 154b of the corresponding pressing plate 154. Further, each permanent magnet 150b is magnetized to the N pole on the surface side.
  • the rotation transmission device C includes a rotation promoting body 160, and the rotation promoting body 160 is configured by a base body 160a and a permanent magnet 160b.
  • the base 160a is installed at the bottom wall 161 on the front end of the bottom wall 40a of the rotation transmission device C.
  • the inclined upper wall 162 of the base 160a is attached to each permanent magnet 150b of the eccentric rotor 150. It is located directly under the lateral side of the outer peripheral surface of the rotor body 150a so as to face each other.
  • the permanent magnet 160b is formed in a fan shape in cross section, and the permanent magnet 160b is positioned so as to face each permanent magnet 150b of the eccentric rotor 150 on the cross-section arcuate surface.
  • the permanent magnet 160b is magnetized to the N pole on the arcuate surface side of the cross section.
  • the rotation promoting body 160 promotes the counterclockwise rotation illustrated in FIG. 7 of the eccentric rotor 150 by the magnetic repulsion action between the permanent magnet 160b and each permanent magnet 150b.
  • the support 40, the rotor main body 60a, the rotor main bodies 110a, 120a, 130a, 140a, 150a and the base body 160a described above are formed of a nonmagnetic material (for example, aluminum).
  • a nonmagnetic material for example, aluminum
  • the central shaft 50 and each planetary shaft 70 ⁇ : L00 are formed of a nonmagnetic material (for example, stainless steel 316).
  • the support body 40, the rotor body 60a, the rotor bodies 110a, 120a, 130a, 140a, 150a, the base body 160a, the central shaft 50, and the planetary shafts 70 to: LOO is provided for each of the central rotor 60.
  • the magnetic action between the permanent magnet and each permanent magnet of each planetary rotor 110 to 140 is not adversely affected magnetically.
  • each of the permanent magnets 60b to 60i, 110b to 110d, 120b to 120d, 130b to 130d, 140b to 140d, 150b, 160b described above is formed of a permanent magnet material, The magnetic force of each permanent magnet is constant. In the present embodiment, since each permanent magnet is formed of neodymium, the magnetic force of each permanent magnet can be maintained very strongly.
  • the rotation transmission device C has two front timing belts 170 a and 170 b as shown in FIG. 4, and the timing belt 170 a includes both upper left and lower left sprockets. It is equipped with 180a and 180b.
  • a series of tooth portions formed in an uneven shape on the inner peripheral wall of the timing belt 170a is sequentially meshed with a series of tooth portions formed in an uneven shape on each outer peripheral wall of both sprockets 180a and 180b, so that 170a and both sprockets 180a and 180b rotate in the same direction.
  • the left upper sprocket 180a is coaxially supported by the front extension portion of the planetary shaft 100 from the left upper corner of the front support wall 40b.
  • the lower left sprocket 180b is coaxially supported by the front extension of the planetary shaft 90 from the lower left corner of the front support wall 40b.
  • the timing belt 170b is mounted on both the upper right and lower right sprockets 190a, 190b.
  • a series of teeth formed in a concavo-convex shape on the inner peripheral wall of the timing belt 170b is sequentially meshed with a series of teeth formed in a concavo-convex shape on the outer peripheral walls of both sprockets 190a, 190b, whereby the timing belt 170b And both sprockets 190a, 190b rotate in the same direction.
  • the upper right sprocket 190a is coaxially supported by the front extension portion of the planetary shaft 70 from the upper right corner of the front support wall 40b.
  • the lower right sprocket 190b is coaxially supported by the front extension portion of the planetary shaft 80 from the lower left corner of the front support wall 40b.
  • the rotation transmission device C has a rear timing belt 200 as shown in FIG. 1.
  • the rear timing belt 200 is mounted on the left and right upper sprockets 210a and 210b. ing.
  • a series of teeth formed in an uneven shape on the inner peripheral wall of the timing belt 200 is sequentially meshed with a series of teeth formed in an uneven shape on the outer peripheral walls of both sprockets 210a and 210b, whereby the timing belt 200 And both sprockets 210a and 210b rotate in the same direction.
  • the upper left sprocket 210a is coaxially supported by the rear extension portion of the planetary shaft 100 from the upper left corner of the rear support wall 40c.
  • the sprocket 21 Ob on the upper right side is coaxially supported by the rear extension portion of the planetary shaft 70 with the force on the upper right corner of the rear support wall 40c.
  • the rotation transmission device C includes the timing belt 200 as shown in FIGS.
  • a tension degree adjusting mechanism 220 is provided, and this tension degree adjusting mechanism 220 is attached to a notch 44 formed at the center of the upper end of the rear support wall 40c.
  • the tension degree adjusting mechanism 220 has an L-shaped metal plate 221.
  • the metal plate 221 is mounted on the bottom of the notch 44 at the bottom plate portion 221a, and the rising plate portion 221b. Is extended upward along the rear surface of the support wall 40c.
  • the tension degree adjusting mechanism 220 includes a metal plate 222 and a roller 223, and the metal plate 222 is also mounted with a rear force on the rising plate portion 221b of the metal plate 221.
  • the roller 223 is rotatably fitted to the lower portion of the metal plate 222 by a roller shaft 223a. The roller 223 presses the intermediate portion of the upper belt portion of the timing belt 200 downward, and Adjust the tension of the timing belt 200.
  • each timing belt 170a, 170b and 200 and each corresponding sprocket 180a, 180b, 190a, 190b, 210a and 210b is determined by the rotation of each planetary rotor 110-140. Accordingly, it is selected to satisfy the following two conditions for smoothly rotating the central rotor 60.
  • the permanent magnets of the central rotor 60 are The meshing positions are selected so that they are attracted by the permanent magnets of the planetary rotors 110 to 140 located closest to the magnet in the rotational direction.
  • the speed increaser D has a large-diameter gear 230 and a small-diameter gear 240 that meshes with the gear 230.
  • the gear 230 has a T-shaped bracket in cross section at its shaft hole portion 231.
  • the central shaft 50 is coaxially fitted and supported via the hollow shaft portion 23 2 of 230a at the intermediate portion on the rear end side of the central shaft 50.
  • the bracket 230a is fitted in the hollow shaft portion 232 via the key 232a to the intermediate portion on the rear end side of the central shaft 50, and the front flange portion 223 of the bracket 220a is a gear. It is fixed to the front wall of 230.
  • the rear end portion of the central shaft 50 is rotatably supported by a pillow type bearing member 250. Further, the bearing member 250 is placed on a box-like table 250a on the installation surface L.
  • the small-diameter gear 240 is coaxially supported on the rotating shaft 260 of the AC generator E, and the gear 240 is meshed with the large-diameter gear 230.
  • the gear ratio of the gear 240 to the gear 230 is 8.
  • the AC generator E also serves as an AC generator such as a three-phase synchronous generator. This AC generator E is driven by the speed increaser D to generate a three-phase AC power. To do.
  • the rotation of the windmill A is transmitted by the gearbox B via the input shaft 20a, the input bevel gear, the output bevel gear and the output shaft 20b, and the coupling 30 according to the wind speed.
  • the gearbox B To the input shaft (planetary axis 90).
  • the gear ratio of the input side bevel gear to the output side bevel gear in the gear box B is 1, the rotational speed of the output shaft 20b of the gear box B is equal to the rotational speed of the windmill A.
  • both planetary rotors 110 and 120 are coupled with the sprockets 190a and 190b and the two planetary shafts 70 and 80 with the attachment of the timing belt 170b.
  • the shaft 70, the timing belt 170b, the sprocket 190b, and the planetary shaft 80 all rotate counterclockwise. Therefore, the rotor bodies and the permanent magnets of the planetary rotors 110 and 120 rotate in the clockwise direction.
  • each planetary rotor 110-140 force is connected by the three timing belts 170a, 200, and 170b as described above, so each planetary rotor 110-140 force windmill A rotation Accordingly, both rotate in the counterclockwise direction. Then, the central rotor 60 rotates as follows as the planetary rotors 110 to 140 rotate!
  • the permanent magnet 60d force of the central rotor 60, two of the three permanent magnets of the planetary rotor 120, f array, and the f3 ⁇ 4 of both permanent magnets 120b and 120d Near the permanent magnet 120d.
  • the permanent magnet 60f of the central rotor 60 is located in close proximity to the permanent magnet 130b between two of the three permanent magnets of the planetary rotor 130, for example, between the permanent magnets 130b and 130c.
  • the permanent magnet 60h of the central rotor 60 is located close to the permanent magnet 140c between two of the three permanent magnets of the planetary rotor 140, for example, the permanent magnets 140c and 140d. (See Fig. 8).
  • any permanent magnet of the central rotor 60 faces the shifted permanent magnets of the planetary rotors 110 to 140, and is in a state. Then, the permanent magnet force of the central rotor 60 is attracted by the permanent magnets of the planetary rotors 110 to 140 located closest to the permanent magnets in the rotational direction as described above. Under such suction, the central rotor 60 rotates smoothly in the clockwise direction as the planetary rotors 110 to 140 rotate in the counterclockwise direction (see FIGS. 10 and 11). ). Here, the central rotor 60 makes one eighth rotation with each planetary rotor 110-140 making one rotation.
  • the eccentric rotor 150 rotates in the clockwise direction in conjunction with the central rotor 60.
  • the axial force of the central shaft 50 is also eccentric by a predetermined amount G in the direction connecting the centers in the width direction of the permanent magnets 150b.
  • the angle at which the permanent magnet 150b enters the counter-clockwise direction toward the cross-section arc-shaped surface of the permanent magnet 160b of the rotation promoting body 160 that is, the entry angle at which the two permanent magnets 150b and 160b act magnetically, It changes so as to increase by an angle corresponding to the predetermined amount G.
  • the magnetic force between the permanent magnets 150b and 160b changes so as to increase gradually.
  • the rotation of the central rotor 60 can be promoted more smoothly.
  • the AC generator E is not limited to three phases, and may be, for example, a single phase AC generator. Further, instead of the AC generator E, a DC generator may be adopted. According to this, DC power can be generated according to the wind speed.
  • the present invention may be applied to, for example, a hydroelectric power generation system instead of a wind power generation system.
  • a hydroelectric power generation system instead of the wind turbine A and the gear box B, the water turbine is coaxially connected to the input shaft of the rotation transmission device C via the coupling 30, so that the substantially same operation effect as the above embodiment is achieved.
  • AC power is generated by hydropower.
  • each permanent magnet force of the central rotor 60 may have a polarity that attracts each permanent magnet of each planetary rotor 110-140.
  • each permanent magnet of the central rotor 60 or each permanent magnet of each planetary rotor 110 to 140 may be a polarity opposite to the polarity described in the above embodiment.
  • each permanent magnet force of the central rotor 60 may have a polarity that repels each permanent magnet of each planetary rotor 110-140.
  • the timing bell ⁇ 200 may be installed via the sprockets at the rear extension ends of the planetary shafts 80 and 90 instead of the planetary shafts 70 and 100.
  • the timing belts 170a, 170b, and 200 are all configured in such a configuration that all the planetary shafts 70-: L00 rotate in the same direction without being limited to the configuration described in the above embodiment. Equip each timing belt 170a, 170b and 200!
  • the center axis 50 may be grasped as a concept included in the central rotor 60, and each planetary axis 70 ⁇ : L00 may be grasped as a concept included in each corresponding planetary rotor 110 ⁇ 140. Yes.
  • the speed increaser D may be configured with, for example, both pulleys corresponding to both gears 230 and 240 and a belt fitted to these pulleys instead of the configuration of both gears 230 and 240.
  • gearbox B (10) The gear ratio of both bevel gears in gearbox B may be set to 8, and gearbox D may be eliminated.
  • the input shaft of the rotation transmission device C may be the planetary shaft 120, not limited to the planetary shaft 90. If the gearbox B is installed higher, the input shaft of the rotation transmission device C may be the planetary shaft 70 or 100!
  • the drive motor is connected coaxially to the planetary shaft that is the input shaft of the rotation transmission device C via the force coupling 30 and replaced with the AC generator E.
  • a rotational load such as a hydraulic pump may be connected coaxially to the central shaft 50 that is the output shaft of the rotation transmission device C via the speed increaser D.
  • the rotation transmission device C can transmit the rotation of the drive motor to the rotation load, and the rotation load can be rotated.
  • Such rotation of the rotation load can be made smooth including the low rotation region under the effect of the rotation transmission device C described in the above embodiment. Therefore, the operation by the rotation of the rotation load can be stably maintained.
  • the rotation transmission device C has a function of decelerating to 1/8. Therefore, the rotational speed of the drive motor is high and the rotational load is low.
  • the rotation transmission device C is suitable as a constant speed reduction device.
  • the number of permanent magnets of the central rotor 60 and the number of permanent magnets of each of the planetary rotors 110 to 140 described in the above embodiment may be changed as appropriate.
  • the reduction ratio of rotation transmission device C ratio of input rotation speed to output rotation speed
  • FIG. 1 is a partially broken plan view showing an embodiment of a wind power generation system according to the present invention.
  • FIG. 2 is a cross-sectional side view of an essential part of the wind power generation system.
  • FIG. 3 The central rotor and each planetary rotor in the above embodiment are viewed from the front support wall. It is an enlarged front view.
  • FIG. 4 is a front view of the front support wall in the embodiment as seen together with the front timing belt.
  • FIG. 5 is a front view of the permanent magnet in the embodiment.
  • FIG. 6 is a side view of the permanent magnet in the embodiment.
  • FIG. 7 is a front view of the eccentric rotator in the embodiment described above together with the rotation promoting body and the front side force.
  • FIG. 8 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.
  • FIG. 9 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.
  • FIG. 10 is a front view showing the rotation process of the central rotor and each planetary rotor in the embodiment.
  • FIG. 11 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

A non-contact rotary transmission device capable of properly transmitting rotations including those in a low rotational speed range without relying upon eddy current by improving the structure and arrangement of permanent magnets. Planetary rotors (110) to (140) are disposed along the outer periphery of a center rotor (60). The center rotor (60) comprises a rotor body (60a) and the permanent magnets (60b) to (60i) installed at intervals along the outer peripheral wall of the rotor body (60a). Each of the planetary rotors (110) to (140) comprises a rotor body and the permanent magnets installed at intervals along the outer peripheral wall of the rotor body. The permanent magnets of each of the planetary rotors (110) to (140) are positioned so as to be magnetically attracted to either of the permanent magnets of the center rotor (60) in such a manner that they face each other through a predetermined clearance. A timing belt is wrapped around each of both planetary rotors (110, 120), (130, 140), and (140, 110).

Description

明 細 書  Specification
非接触型回転伝達装置及び発電システム  Non-contact rotation transmission device and power generation system
技術分野  Technical field
[0001] 本発明は、磁力を利用して回転を非接触にて伝達するに適した非接触型回転伝達 装置及びこの回転伝達装置を用 V、た発電システムに関する。  [0001] The present invention relates to a non-contact type rotation transmission device suitable for transmitting rotation in a non-contact manner using magnetic force, and a power generation system using the rotation transmission device.
背景技術  Background art
[0002] 従来、この種の非接触型回転伝達装置としては、下記特許文献 1に開示された磁 気カップリングがある。この磁気カップリングにおいては、銅合金リング力 ベアリング ケースを介し、回転の入力側軸に同軸的に支持されている。また、回転の出力側軸 は、その内端部にて、ベアリングケースのボス部内に支持したベアリングにより支持さ れて、銅合金リング内に同軸的に延出して、負荷に接続される。  Conventionally, as this type of non-contact type rotation transmission device, there is a magnetic coupling disclosed in Patent Document 1 below. This magnetic coupling is supported coaxially on the input shaft of rotation via a copper alloy ring force bearing case. Further, the output shaft of the rotation is supported by a bearing supported in the boss portion of the bearing case at the inner end thereof, extends coaxially in the copper alloy ring, and is connected to the load.
[0003] 筒状ヨークは、銅合金リング内にて、出力側軸に同軸的に支持されており、このョー クの周壁部外周面には、その周方向に沿い、複数の永久磁石が互いに間隙をおい て固着されている。ここで、各永久磁石は、銅合金リングの内周面に対し間隙をおい て、当該銅合金リングとは非接触にて位置している。このため、各永久磁石の磁束は 、上記間隙を介し銅合金リングの内部を通る。  [0003] The cylindrical yoke is coaxially supported on the output side shaft in the copper alloy ring, and a plurality of permanent magnets are arranged on the outer peripheral surface of the yoke along the circumferential direction. It is fixed with a gap. Here, each permanent magnet has a gap with respect to the inner peripheral surface of the copper alloy ring, and is positioned in non-contact with the copper alloy ring. For this reason, the magnetic flux of each permanent magnet passes through the inside of the copper alloy ring through the gap.
[0004] このような構成において、入力側軸が回転されると、銅合金リングが回転し、この銅 合金リング内の磁束が変化して当該銅合金リング内に渦電流が発生する。このように 発生する渦電流に起因して誘導される磁界が各永久磁石に磁力として作用し、ョー クが出力側軸と共に当該銅合金リングに付随して回転する。これにより、この回転が、 磁気カップリングにより、上記非接触のもとに、負荷に伝達されるようになっている。 特許文献 1:特開 2000— 197340号公報  In such a configuration, when the input side shaft is rotated, the copper alloy ring is rotated, and the magnetic flux in the copper alloy ring is changed to generate an eddy current in the copper alloy ring. The magnetic field induced by the eddy current thus generated acts as a magnetic force on each permanent magnet, and the yoke rotates along with the copper alloy ring together with the output side shaft. Thereby, this rotation is transmitted to the load by the magnetic coupling in the non-contact manner. Patent Document 1: JP 2000-197340 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記磁気カップリングでは、回転を伝達するにあたり、上述のように、 銅合金リング内に発生する渦電流を利用して 、るため、入力側軸の回転数が低 、と 、渦電流に起因して誘導される磁界が不十分なため、出力側軸が回転しにくぐ回転 の伝達が適正にはなされ得ないという不具合を招く。 [0005] However, in the magnetic coupling, as described above, since the eddy current generated in the copper alloy ring is used to transmit the rotation, the rotational speed of the input side shaft is low. Because the magnetic field induced by eddy current is insufficient, the output shaft is difficult to rotate. This leads to a problem that the transmission of the message cannot be properly performed.
[0006] そこで、本発明は、以上のようなことに対処するため、永久磁石の構成及び配置に 工夫を凝らし、渦電流に依存することなぐ回転数の低い範囲を含めて回転を適正に 伝達するようにした非接触型回転伝達装置及びこの回転伝達装置を用いた発電シ ステムを提供することを目的とする。  [0006] Therefore, in order to deal with the above-described problems, the present invention has been devised in the configuration and arrangement of the permanent magnet, and appropriately transmits the rotation including the low rotation speed range that does not depend on the eddy current. It is an object of the present invention to provide a non-contact type rotation transmission device and a power generation system using the rotation transmission device.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題の解決にあたり、本発明に係る非接触型回転伝達装置は、請求項 1の記 載によれば、 [0007] In solving the above-described problems, a non-contact type rotation transmission device according to the present invention, according to the description of claim 1,
中央回転子(50、 60)と、この中央回転子の外周に沿い配設される複数の遊星回 転子(70〜100、 110〜140、 180a, 180b, 190a, 190b, 210a, 210b)と、複数 の遊星回転子を共に同一方向に回転させるように連結する連結手段(170a、 170b ゝ 200)とを備え、  A central rotor (50, 60) and a plurality of planetary rotors (70-100, 110-140, 180a, 180b, 190a, 190b, 210a, 210b) arranged along the outer circumference of the central rotor; Connecting means (170a, 170b ゝ 200) for connecting a plurality of planetary rotors so as to rotate together in the same direction,
中央回転子は、中央回転子本体 (60a)と、この中央回転子本体の外周壁に沿い 間隔をお ヽて設けられた複数の永久磁石(60b〜60i)とを具備し、  The central rotor includes a central rotor body (60a) and a plurality of permanent magnets (60b to 60i) provided at intervals along the outer peripheral wall of the central rotor body.
複数の遊星回転子は、それぞれ、遊星回転子本体(110a〜140a)と、この遊星回 転子本体の外周壁に沿い間隔をお 、て中央回転子の複数の永久磁石の 、ずれか に所定の間隙を介し対向して磁気的に吸引或いは反発し得るように設けられた複数 の永久磁石(110b〜110d、 120b〜120d、 130b〜130d、 1墨〜 140d)とを具 備し、  Each of the plurality of planetary rotors has a predetermined distance between the planetary rotor main body (110a to 140a) and a plurality of permanent magnets of the central rotor at intervals along the outer peripheral wall of the planetary rotor main body. A plurality of permanent magnets (110b to 110d, 120b to 120d, 130b to 130d, 1 black to 140d) provided so as to be able to be magnetically attracted or repelled with a gap therebetween.
複数の遊星回転子のいずれかの軸を、回転の入力軸とし、前記中央回転子の軸を 前記回転の出力軸とする。  One of the plurality of planetary rotors is set as an input shaft for rotation, and the axis of the central rotor is set as an output shaft for rotation.
[0008] これによれば、入力軸が回転すると、複数の遊星回転子が連結手段による連結の もとに同一方向に回転し、中央回転子が、その各永久磁石にて、これに対応する各 遊星回転子の各永久磁石により吸引或いは反発されて、回転する。  [0008] According to this, when the input shaft rotates, a plurality of planetary rotors rotate in the same direction under the connection by the connecting means, and the central rotor corresponds to each permanent magnet. Each planetary rotor is rotated by being attracted or repelled by each permanent magnet.
[0009] ここで、このような回転は、渦電流に依存することなぐ中央回転子の各永久磁石と 各遊星回転子の各永久磁石とが各対向端壁を介し互いに非接触にて吸引或いは反 発し合う磁気作用を発揮することで達成されるので、回転数の低い範囲を含めて回 転を適正に伝達し得る。 [0010] また、本発明は、請求項 2の記載によれば、請求項 1に記載の非接触型回転伝達 装置において、 [0009] Here, such rotation is caused by the permanent magnets of the central rotor and the permanent magnets of the planetary rotors that are not in contact with each other through the opposing end walls without depending on eddy currents. Since this is achieved by exerting repulsive magnetic action, the rotation can be properly transmitted including the low rotation speed range. [0010] Further, according to the present invention, in the non-contact type rotation transmission device according to claim 1,
中央回転子本体は、その外周壁に沿い間隔をおいて形成した各 V字状溝 (63b)を 形成してなり、  The central rotor body is formed with V-shaped grooves (63b) formed at intervals along the outer peripheral wall,
各遊星回転子は、その外周壁に沿い間隔をおいて形成した各 V字状溝(11 lb、 1 21b、 131b, 141b)を形成してなり、  Each planetary rotor is formed with V-shaped grooves (11 lb, 121b, 131b, 141b) formed at intervals along the outer peripheral wall,
中央回転子の各永久磁石は、両ー側傾斜壁(65)及びこれら両ー側傾斜壁にそれ ぞれ平行な両他側傾斜壁 (66)を有するように略菱形柱状に形成されており、 各遊星回転子の各永久磁石は、両ー側傾斜壁(113、 123、 133、 143)及びこれ ら両ー側傾斜壁にそれぞれ平行な両他側傾斜壁(114、 124、 134、 144)を有する ように略菱形柱状に形成されており、  Each permanent magnet of the central rotor is formed in a substantially rhomboid columnar shape so as to have both side inclined walls (65) and the other side inclined walls (66) parallel to the both side inclined walls. The permanent magnets of each planetary rotor are arranged on both side inclined walls (113, 123, 133, 143) and on the other side inclined walls (114, 124, 134, 144) parallel to these two side inclined walls, respectively. ) So that it has a substantially rhomboid column shape,
中央回転子及び各遊星回転子の各永久磁石は、それぞれ、両ー側傾斜壁にて中 央回転子及び各遊星回転子の各 V字状溝に嵌着されており、  The permanent magnets of the central rotor and each planetary rotor are fitted in the V-shaped grooves of the central rotor and each planetary rotor, respectively, on both side inclined walls.
中央回転子の各永久磁石の外端部及び各遊星回転子の各永久磁石の外端部は 、それぞれ、各他側傾斜壁で形成する頂部を切除することで、端壁 (66a、 114a, 12 4a、 134a, 144a)として形成されていることを特徴とする。  The outer end of each permanent magnet of the central rotor and the outer end of each permanent magnet of each planetary rotor are cut off from the top formed by the other inclined walls, respectively, so that the end walls (66a, 114a, 12 4a, 134a, 144a).
[0011] これにより、中央回転子及び各遊星回転子の各永久磁石は、回転に伴い、互いに 、各端壁にて対向することとなる。ここで、永久磁石の端壁は、磁力線の面積密度を 高めるとともに、磁力線を端壁の外面に対しできる限り直角に形成し得る。その結果、 上述した各対向端壁間の磁力が良好に確保され、請求項 1に記載の発明の作用効 果がより一層向上され得る。 Accordingly, the permanent magnets of the central rotor and the planetary rotors face each other at the end walls as they rotate. Here, the end wall of the permanent magnet can increase the area density of the lines of magnetic force and can form the lines of magnetic force as perpendicular to the outer surface of the end wall as possible. As a result, the above-described magnetic force between the opposing end walls can be secured satisfactorily, and the operational effect of the invention according to claim 1 can be further improved.
[0012] また、本発明は、請求項 3の記載によれば、請求項 1または 2に記載の非接触型回 転伝達装置において、 [0012] Further, according to the invention described in claim 3, the present invention provides the contactless rotation transmission device according to claim 1 or 2,
各遊星回転子は、それぞれ、上記各対応の遊星回転子本体を同軸的に支持する 遊星軸(70〜100)を有しており、  Each planetary rotor has a planetary shaft (70 to 100) that coaxially supports the corresponding planetary rotor body.
連結手段は、各遊星回転子のうち中央回転子の外周に沿 、互いに隣り合う両遊星 回転子の各遊星軸を連結する各タイミングベルト(170a、 170b, 200)で構成されて いることを特徴とする。 [0013] このように、連結手段を各タイミングベルトとすることで、請求項 1または 2に記載の 発明と同様の作用効果がより一層確実に達成され得る。 The connecting means is composed of timing belts (170a, 170b, 200) for connecting the planetary shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors. And [0013] Thus, by using the timing belt as the connecting means, the same effect as that of the first or second aspect of the invention can be achieved more reliably.
[0014] また、本発明は、請求項 4の記載によれば、請求項 3に記載の非接触型回転伝達 装置において、 [0014] According to the description of claim 4, the present invention provides the contactless rotation transmission device according to claim 3,
中央回転子の 、ずれの永久磁石も各遊星回転子の 、ずれの永久磁石とも対向し ていないとき、中央回転子の各永久磁石力 これら各永久磁石に回転方向において 最も近く位置する各遊星回転子の一永久磁石によりそれぞれ吸引され、かつ、中央 回転子の各永久磁石の 1つが各遊星回転子のいずれかの一永久磁石と対向すると き、これら両対向永久磁石の間の吸引力が最大となるが、各遊星回転子及び中央回 転子の残りの各対応永久磁石の間の各吸引力の総和が、上記両対向永久磁石を互 いに離れさせるに要する力よりも少し大きくなるように、各タイミングベルトが各両遊星 回転子の各遊星軸を連結して 、ることを特徴とする。  When the permanent magnet of the central rotor is not opposite to the permanent magnet of the planetary rotor, the permanent magnet force of the central rotor is the rotation of the planets closest to the permanent magnets in the direction of rotation. When each permanent magnet of the central rotor is opposed to one permanent magnet of each planetary rotor, the attractive force between these opposing permanent magnets is maximized. However, the sum of the attractive forces between the remaining corresponding permanent magnets of each planetary rotor and the central rotor is slightly larger than the force required to separate the opposed permanent magnets from each other. In addition, each timing belt is connected to each planetary shaft of each planetary rotor, and is characterized in that.
[0015] これにより、中央回転子の一永久磁石が遊星回転子の一永久磁石の端壁に対向 しているとき、これら両対向永久磁石の間の吸引力が最大となる力 各遊星回転子及 び中央回転子の残りの各対応永久磁石との間の各吸引力の総和が、上述の両対向 永久磁石を互いに離れさせるに要する力よりも少し大きくなる。  [0015] Thereby, when the permanent magnet of the central rotor faces the end wall of the permanent magnet of the planetary rotor, the force that maximizes the attractive force between the opposed permanent magnets. In addition, the sum of the attractive forces between the remaining corresponding permanent magnets of the central rotor is slightly larger than the force required to separate the opposed permanent magnets from each other.
[0016] このため、各遊星回転子が回転すると、この回転に伴い、残りの遊星回転子の各対 応永久磁石の磁力の総和が中央回転子の残りの対応永久磁石を吸引し、中央回転 子が、その永久磁石にて、上記遊星回転子の一永久磁石から容易に引き離されて 円滑に回転し得る。  [0016] Therefore, when each planetary rotor rotates, the total magnetic force of the corresponding permanent magnets of the remaining planetary rotors attracts the remaining corresponding permanent magnets of the central rotor and rotates centrally with this rotation. The child can be easily pulled away from the permanent magnet of the planetary rotor by the permanent magnet and rotate smoothly.
[0017] このような回転に伴!、、中央回転子の!/、ずれの永久磁石も、各遊星回転子の!/、ず れの永久磁石とも対向していない状態になると、中央回転子の各永久磁石が、上述 のごとぐこれら各永久磁石に回転方向において最も近く位置する各遊星回転子の 一永久磁石によりそれぞれ吸引される。しかして、このような吸引のもと、中央回転子 は、各遊星回転子の回転に伴い円滑に回転し得る。  [0017] Along with such rotation, the central rotor! /, And the displaced permanent magnets are not opposed to each planetary rotor! / As described above, each permanent magnet is attracted by one permanent magnet of each planetary rotor located closest to each permanent magnet in the rotational direction. Under such suction, the central rotor can rotate smoothly with the rotation of each planetary rotor.
[0018] 以上より、中央回転子の回転がより一層円滑になされ、その結果、請求項 3に記載 の発明の作用効果がより一層向上され得る。  [0018] As described above, the rotation of the central rotor can be performed more smoothly, and as a result, the operational effects of the invention of claim 3 can be further improved.
[0019] また、本発明に係る発電システムは、請求項 5の記載によれば、 風力或 、は水力に基づく速度に応じて回転する回転体 (A)と、 [0019] Further, according to the description of claim 5, the power generation system according to the present invention, A rotating body (A) that rotates according to the speed based on wind power or hydraulic power,
非接触型回転伝達装置 (C)と、  Non-contact rotation transmission device (C),
回転発電手段 (E)とを備えて、  A rotating power generation means (E),
非接触型回転伝達装置は、  Non-contact type rotation transmission device
中央回転子(50、 60)と、この中央回転子の外周に沿い配設される複数の遊星回 転子(70〜100、 110〜140、 180a, 180b, 190a, 190b, 210a, 210b)と、複数 の遊星回転子を共に同一方向に回転させるように連結する連結手段(170a、 170b ゝ 200)とを備え、  A central rotor (50, 60) and a plurality of planetary rotors (70-100, 110-140, 180a, 180b, 190a, 190b, 210a, 210b) arranged along the outer circumference of the central rotor; Connecting means (170a, 170b ゝ 200) for connecting a plurality of planetary rotors so as to rotate together in the same direction,
中央回転子は、中央回転子本体 (60a)と、この中央回転子本体の外周壁に沿い 間隔をお ヽて設けられた複数の永久磁石(60b〜60i)とを具備し、  The central rotor includes a central rotor body (60a) and a plurality of permanent magnets (60b to 60i) provided at intervals along the outer peripheral wall of the central rotor body.
複数の遊星回転子は、それぞれ、遊星回転子本体(110a〜140a)と、この遊星回 転子本体の外周壁に沿い間隔をお 、て中央回転子の複数の永久磁石の 、ずれか に所定の間隙を介し対向して磁気的に吸引或いは反発し得るように設けられた複数 の永久磁石(110b〜110d、 120b〜120d、 130b〜130d、 1墨〜 140d)とを具 備し、  Each of the plurality of planetary rotors has a predetermined distance between the planetary rotor main body (110a to 140a) and a plurality of permanent magnets of the central rotor at intervals along the outer peripheral wall of the planetary rotor main body. A plurality of permanent magnets (110b to 110d, 120b to 120d, 130b to 130d, 1 black to 140d) provided so as to be able to be magnetically attracted or repelled with a gap therebetween.
複数の遊星回転子のいずれかの軸を、回転の入力軸とし、中央回転子の軸を上記 回転の出力軸とするようにして、回転体の回転を入力軸に入力されて出力軸に伝達 するようになっており、  The rotation of the rotating body is input to the input shaft and transmitted to the output shaft, with one of the planetary rotors serving as the rotation input shaft and the central rotor shaft serving as the rotation output shaft. Is supposed to
回転発電手段は、回転伝達装置の出力軸力 の回転に基づき回転して発電するよ うになつている。  The rotating power generation means rotates to generate electric power based on the rotation of the output axial force of the rotation transmission device.
[0020] これによれば、風力或いは水力に基づく速度に応じて回転体が回転すると、この回 転が非接触型回転伝達装置の入力軸を回転させ、複数の遊星回転子が連結手段 による連結のもとに同一方向に回転し、中央回転子が、その各永久磁石にて、これに 対応する各遊星回転子の各永久磁石により吸引或いは反発されて回転し、出力軸 を回転させる。これに伴い、回転発電手段が、非接触型回転伝達装置により上述し た回転体の回転を伝達されて発電する。  [0020] According to this, when the rotating body rotates according to the speed based on wind power or hydraulic power, this rotation rotates the input shaft of the non-contact type rotation transmission device, and the plurality of planetary rotors are connected by the connecting means. The central rotor rotates in the same direction and is rotated by being attracted or repelled by the permanent magnets of the corresponding planetary rotors by the permanent magnets to rotate the output shaft. Along with this, the rotating power generation means generates power by transmitting the rotation of the rotating body described above by the non-contact type rotation transmission device.
[0021] このような発電は、中央回転子の各永久磁石と各遊星回転子の各永久磁石とが、 渦電流に依存することなぐ各対向端壁を介し互いに非接触にて吸引或いは反発し 合う磁気作用を発揮することで達成されるので、回転数の低い範囲を含めて発電を 適正になし得る。 [0021] In such power generation, each permanent magnet of the central rotor and each permanent magnet of each planetary rotor are attracted or repelled without contact with each other through the respective opposing end walls that do not depend on eddy currents. Since it is achieved by exerting the matching magnetic action, it is possible to generate power appropriately including the low rotation speed range.
[0022] ここで、回転伝達装置の入力側及び出力側の少なくとも一方の回転を増速する増 速手段を採用すれば、回転体の回転をそのまま或いはこの回転を増速して回転発 電手段に伝達できる。その結果、上述した回転伝達装置の作用効果を達成しつつ、 風力或いは水力を有効に活用して発電をさらに向上させ得る。  Here, if a speed increasing means for increasing the speed of at least one of the input side and the output side of the rotation transmitting device is adopted, the rotation power generating means can be used without changing the rotation of the rotating body as it is or by increasing the speed of the rotation. Can communicate to. As a result, it is possible to further improve power generation by effectively utilizing wind power or hydraulic power while achieving the operational effects of the rotation transmission device described above.
[0023] また、本発明は、請求項 6の記載によれば、請求項 5に記載の発電システムにおい て、  [0023] According to the description of claim 6, the present invention provides the power generation system according to claim 5,
中央回転子本体は、その外周壁に沿い間隔をおいて形成した各 V字状溝 (63b)を 形成してなり、  The central rotor body is formed with V-shaped grooves (63b) formed at intervals along the outer peripheral wall,
各遊星回転子は、その外周壁に沿い間隔をおいて形成した各 V字状溝(11 lb、 1 21b、 131b, 141b)を形成してなり、  Each planetary rotor is formed with V-shaped grooves (11 lb, 121b, 131b, 141b) formed at intervals along the outer peripheral wall,
中央回転子の各永久磁石は、両ー側傾斜壁(65)及びこれら両ー側傾斜壁にそれ ぞれ平行な両他側傾斜壁 (66)を有するように略菱形柱状に形成されており、 各遊星回転子の各永久磁石は、両ー側傾斜壁(113、 123、 133、 143)及びこれ ら両ー側傾斜壁にそれぞれ平行な両他側傾斜壁(114、 124、 134、 144)を有する ように略菱形柱状に形成されており、  Each permanent magnet of the central rotor is formed in a substantially rhomboid columnar shape so as to have both side inclined walls (65) and the other side inclined walls (66) parallel to the both side inclined walls. The permanent magnets of each planetary rotor are arranged on both side inclined walls (113, 123, 133, 143) and on the other side inclined walls (114, 124, 134, 144) parallel to these two side inclined walls, respectively. ) So that it has a substantially rhomboid column shape,
中央回転子及び各遊星回転子の各永久磁石は、それぞれ、両ー側傾斜壁にて中 央回転子及び各遊星回転子の各 V字状溝に嵌着されており、  The permanent magnets of the central rotor and each planetary rotor are fitted in the V-shaped grooves of the central rotor and each planetary rotor, respectively, on both side inclined walls.
中央回転子の各永久磁石の外端部及び各遊星回転子の各永久磁石の外端部は 、それぞれ、各他側傾斜壁で形成する頂部を切除することで、端壁 (66a、 114a, 12 4a、 134a, 144a)として形成されていることを特徴とする。  The outer end of each permanent magnet of the central rotor and the outer end of each permanent magnet of each planetary rotor are cut off from the top formed by the other inclined walls, respectively, so that the end walls (66a, 114a, 12 4a, 134a, 144a).
[0024] これによれば、中央回転子及び各遊星回転子の各永久磁石は、回転に伴い、互い に、各端壁にて対向することとなる。ここで、永久磁石の端壁は、磁力線の面積密度 を高めるとともに、磁力線を端壁の外面に対しできる限り直角に形成し得る。その結 果、上述した各対向端壁間の磁力が良好に確保され、請求項 1に記載の発明の作 用効果がより一層向上され得る発電システムの提供が可能となる。 [0024] According to this, the permanent magnets of the central rotor and the planetary rotors face each other at the end walls as they rotate. Here, the end wall of the permanent magnet can increase the area density of the lines of magnetic force and can form the lines of magnetic force as perpendicular to the outer surface of the end wall as possible. As a result, it is possible to provide a power generation system in which the above-described magnetic force between the opposing end walls is satisfactorily secured and the operational effect of the invention according to claim 1 can be further improved.
[0025] また、本発明は、請求項 7の記載によれば、請求項 5または 6に記載の発電システ ム【こお!/、て、 [0025] According to the description of claim 7, the present invention provides the power generation system according to claim 5 or 6. [Koo! /
各遊星回転子は、それぞれ、各対応の遊星回転子本体を同軸的に支持する遊星 軸(70〜100)を有しており、  Each planetary rotor has a planetary shaft (70 to 100) that coaxially supports each corresponding planetary rotor body,
連結手段は、各遊星回転子のうち中央回転子の外周に沿 、互いに隣り合う両遊星 回転子の各遊星軸を連結する各タイミングベルト(170a、 170b, 200)で構成されて いることを特徴とする。  The connecting means is composed of timing belts (170a, 170b, 200) for connecting the planetary shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors. And
[0026] このように、連結手段を各タイミングベルトとすることで、請求項 5または 6に記載の 発明と同様の作用効果がより一層確実に達成され得る。  [0026] Thus, by using each timing belt as the connecting means, the same effect as that of the invention of claim 5 or 6 can be achieved more reliably.
[0027] また、本発明は、請求項 8の記載によれば、請求項 7に記載の発電システムにおい て、 [0027] According to the description of claim 8, the present invention provides the power generation system according to claim 7,
中央回転子の 、ずれの永久磁石も各遊星回転子の 、ずれの永久磁石とも対向し ていないとき、中央回転子の各永久磁石力 これら各永久磁石に回転方向において 最も近く位置する各遊星回転子の一永久磁石によりそれぞれ吸引され、かつ、中央 回転子の各永久磁石の 1つが各遊星回転子のいずれかの一永久磁石と対向すると き、これら両対向永久磁石の間の吸引力が最大となるが、各遊星回転子及び中央回 転子の残りの各対応永久磁石の間の各吸引力の総和力 両対向永久磁石を互いに 離れさせるに要する力よりも少し大きくなるように、各タイミングベルトが、各両遊星回 転子の各遊星軸を連結して 、ることを特徴とする。  When the permanent magnet of the central rotor is not opposite to the permanent magnet of the planetary rotor, the permanent magnet force of the central rotor is the rotation of the planets closest to the permanent magnets in the direction of rotation. When each permanent magnet of the central rotor is opposed to one permanent magnet of each planetary rotor, the attractive force between these opposing permanent magnets is maximized. However, the total force of each attractive force between the remaining corresponding permanent magnets of each planetary rotor and the central rotor is set so that each timing is slightly larger than the force required to separate the opposed permanent magnets from each other. A belt is characterized in that it connects each planetary shaft of each planetary rotator.
[0028] これにより、中央回転子の一永久磁石が遊星回転子の一永久磁石の端壁に対向 しているとき、これら両対向永久磁石の間の吸引力が最大となる力 各遊星回転子及 び中央回転子の残りの各対応永久磁石との間の各吸引力の総和が、上述の両対向 永久磁石を互いに離れさせるに要する力よりも少し大きくなる。  [0028] Thereby, when the permanent magnet of the central rotor faces the end wall of the permanent magnet of the planetary rotor, the force that maximizes the attractive force between the opposed permanent magnets. In addition, the sum of the attractive forces between the remaining corresponding permanent magnets of the central rotor is slightly larger than the force required to separate the opposed permanent magnets from each other.
[0029] このため、各遊星回転子が回転すると、この回転に伴い、残りの遊星回転子の各対 応永久磁石の磁力の総和が中央回転子の残りの対応永久磁石を吸引し、中央回転 子が、その永久磁石にて、上記遊星回転子の一永久磁石から容易に引き離されて 円滑に回転し得る。  [0029] Therefore, when each planetary rotor rotates, the total magnetic force of the corresponding permanent magnets of the remaining planetary rotors attracts the remaining corresponding permanent magnets of the central rotor and rotates centrally with this rotation. The child can be easily pulled away from the permanent magnet of the planetary rotor by the permanent magnet and rotate smoothly.
[0030] このような回転に伴!、、中央回転子の!/、ずれの永久磁石も、各遊星回転子の!/、ず れの永久磁石とも対向していない状態になると、中央回転子の各永久磁石が、上述 のごとぐこれら各永久磁石に回転方向において最も近く位置する各遊星回転子の 一永久磁石によりそれぞれ吸引される。しかして、このような吸引のもと、中央回転子 は、各遊星回転子の回転に伴い円滑に回転し得る。 [0030] With such rotation !, the central rotor! /, And the displaced permanent magnets are not opposed to each planetary rotor! /, And any of the permanent magnets, the central rotor! Each permanent magnet is Each of these permanent magnets is attracted by one permanent magnet of each planetary rotor located closest in the rotation direction. Under such suction, the central rotor can rotate smoothly with the rotation of each planetary rotor.
[0031] 以上より、中央回転子の回転がより一層円滑になされ、その結果、請求項 7に記載 の発明の作用効果がより一層向上され得る。  [0031] From the above, the rotation of the central rotor can be performed more smoothly, and as a result, the operational effect of the invention of claim 7 can be further improved.
[0032] なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段と の対応関係を示す。 [0032] It should be noted that the reference numerals in parentheses of the above means indicate the correspondence with specific means described in the embodiments described later.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、本発明の一実施形態を図面により説明する。図 1は、本発明が適用された風 力発電システムを示している。この風力発電システムは、風車 A、ギアボックス B、非 接触型回転伝達装置 C、増速機 D及び交流発電機 Eを備えている。なお、本実施形 態において、図 1にて、図示左方及び右方が、当該風力発電システムの前方及び後 方に対応する。従って、図 1にて、図示下方及び上方が、当該風力発電システムの 左方及び右方に対応する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows a wind power generation system to which the present invention is applied. This wind power generation system includes a windmill A, a gear box B, a non-contact type rotation transmission device C, a speed increaser D, and an AC generator E. In this embodiment, the left and right sides in FIG. 1 correspond to the front and rear of the wind power generation system in FIG. Therefore, in FIG. 1, the lower side and the upper side in the figure correspond to the left side and the right side of the wind power generation system.
[0034] 風車 Aは、サボ-ウス型、ダリウス型或いはパドル型等のプロペラ型風車でもって構 成されており、この風車 Aは、その支柱 A1にて、ギアボックス Bの入力軸 20a (後述す る)に同軸的に支持されて、このギアボックス B上に立設されている。なお、風車 Aの 支柱 A1は、複数のスティ(図示しない)でもって、水平状設置面 L (図 2参照)上に支 持されている。  [0034] The windmill A is constituted by a propeller type windmill such as a Sabotus type, a Darius type, or a paddle type. The windmill A has an input shaft 20a (described later) of the gearbox B at its support A1. It is erected on this gear box B. The support A1 of the windmill A is supported on a horizontal installation surface L (see FIG. 2) by a plurality of stays (not shown).
[0035] ギアボックス Bは、入力側べベルギア及び出力側の両べベルギア(図示しな!、)を 直方体形状のケーシング 10内に設けて構成されている。上記入力側べベルギアは、 ケーシング 10の上壁 11から上方に向け回転可能に延出する入力軸 20aの内端部に ケーシング 10内にて同軸的に支持されている。  [0035] The gear box B is configured by providing an input side bevel gear and an output side bevel gear (not shown!) In a rectangular parallelepiped casing 10. The input-side bevel gear is coaxially supported in the casing 10 on the inner end portion of the input shaft 20a that extends upward from the upper wall 11 of the casing 10 so as to rotate upward.
[0036] また、上記出力側べベルギアは、その軸にて、上記入力側べベルギアの軸に直交 するように位置して、当該入力側べベルギアと嚙合しており、当該出力側べベルギア は、ケーシング 10の後壁 12から後方に向け水平状に回転可能に延出する出力軸 2 Obの内端部にケーシング 10内にて同軸的に支持されている。なお、上記入力側べ ベルギア及び出力側べベルギアのギア比は 1である。また、ケーシング 10は、その底 壁 13にて、水平状設置面 L上に設置されている。 [0036] Further, the output side bevel gear is positioned so as to be orthogonal to the axis of the input side bevel gear on its axis, and meshes with the input side bevel gear, and the output side bevel gear is The casing 10 is coaxially supported by the inner end portion of the output shaft 2 Ob extending horizontally and rearwardly from the rear wall 12 of the casing 10. Note that the gear ratio of the input side bevel gear and the output side bevel gear is 1. The casing 10 also has a bottom Installed on wall 13 on horizontal installation surface L.
[0037] 回転伝達装置 Cは、図 1にて示すごとぐその入力軸 (後述する遊星軸 90)にて、力 ップリング 30を介し、ギアボックス Bの出力軸 20bに連結されている。当該回転伝達 装置 Cは、図 1、図 2及び図 4にて示すごとぐ支持体 40を備えており、この支持体 40 は、底壁 40a及び前後の両側支持壁 40b、 40cを有しており、底壁 40aは、設置面 L 上に設置されている。 [0037] The rotation transmission device C is connected to the output shaft 20b of the gear box B through the force coupling 30 at its input shaft (a planetary shaft 90 described later) as shown in FIG. The rotation transmission device C includes a support body 40 as shown in FIGS. 1, 2 and 4, and this support body 40 has a bottom wall 40a and front and rear side support walls 40b and 40c. The bottom wall 40a is installed on the installation surface L.
[0038] 両側支持壁 40b、 40cは、底壁 40a上にて、左右方向(図 2の紙面に直角な方向) には互いに平行となるように、前後方向(ギアボックス Bの出力軸 20bの軸方向)には 間隔をお 、て立設されて 、る。  [0038] The both side support walls 40b, 40c are arranged in the front-rear direction (the output shaft 20b of the gear box B) so that they are parallel to each other in the left-right direction (direction perpendicular to the paper surface of FIG. 2) on the bottom wall 40a. (Axial direction) is set up at intervals.
[0039] また、支持体 40は 4組の挟持部材 40dを有しており、これら 4組の挟持部材 40dは 、両側支持壁 40b、 40cの上下左右の各隅角部を以下に述べるように挟持することで 、両側支持壁 40b、 40cを上述のような立設状態に維持している。  [0039] Further, the support body 40 has four sets of clamping members 40d, and these four sets of clamping members 40d are described below with respect to the upper, lower, left and right corners of the side support walls 40b, 40c. By sandwiching, both side support walls 40b and 40c are maintained in the standing state as described above.
[0040] 4組の挟持部材 40dは、共に同一の構成を有するので、図 2にて示す挟持部材 40 dを例にとりその構成を説明する。当該挟持部材 40dは、筒 41、両切りボルト 42及び 両ナット 43でもって構成されている。し力して、当該挟持部材 40dは、筒 41を、両側 支持壁 40b、 40cの各右下側隅角部の間に挟み、両切りボルト 42を支持壁 40bの右 下側隅角部、筒 41及び支持壁 40cの右下側隅角部に挿通し、かつ当該両切りボル ト 42の両端部に両ナット 43を締着することで、両側支持壁 40b、 40cの各右下側隅 角部を挟持する。残りの各挟持部材 40dも、それぞれ、上述の挟持部材と同様の構 成にて、両側支持壁 40b、 40cの各右上側隅角部、各左下隅角部及び各左上隅角 部を挟持する。  [0040] Since the four pairs of clamping members 40d have the same configuration, the configuration will be described by taking the clamping member 40d shown in Fig. 2 as an example. The clamping member 40d is composed of a cylinder 41, a double-cut bolt 42, and double nuts 43. As a result, the clamping member 40d sandwiches the cylinder 41 between the lower right corners of the support walls 40b and 40c on both sides, and inserts the double-ended bolt 42 into the lower right corner of the support wall 40b. 41 and the support wall 40c are inserted into the lower right corner and both nuts 43 are fastened to both ends of the double-sided bolt 42, so that the lower right corner of each of the support walls 40b and 40c is supported. Pinch. Each of the remaining clamping members 40d also clamps the upper right corner, the lower left corner, and the upper left corner of the both-side support walls 40b and 40c with the same configuration as the above-described clamping member. .
[0041] また、当該回転伝達装置 Cは、図 1及び図 2にて示すごとぐ中央軸 50及び中央回 転子 60を備えており、中央軸 50は、ギアボックス Bの出力軸 20bと平行になるように、 両ベアリング 40e、 40fを介し両ィ則支持壁 40b、 40c【こ回転自在【こ支持されて!ヽる。  Further, the rotation transmission device C includes a central shaft 50 and a central rotor 60 as shown in FIGS. 1 and 2, and the central shaft 50 is parallel to the output shaft 20b of the gear box B. As shown in the figure, both bearings 40b and 40c are supported through both bearings 40e and 40f.
[0042] ここで、ベアリング 40eは、支持壁 40bの中央部に形成した段付き穴部 45の大径部 内に同軸的に嵌装されており、一方、ベアリング 40fは、支持壁 40cの中央部に形成 した段付き穴部 46の大径部内に同軸的に嵌装されている。これにより、中央軸 50は 、その軸方向の各中間部位にて、両ベアリング 40e、 40f及び各段付き穴部 45、 46 の各小径部に揷通されて、両側支持壁 40b、 40cに回転自在に支持されている。な お、両ストップリング 47が、両ベアリング 40e、 40fを挟持するように中央軸 50に嵌着 されて、当該中央軸 50の両側支持壁 40b、 40cに対する変位を規制している。 [0042] Here, the bearing 40e is coaxially fitted in the large diameter portion of the stepped hole 45 formed in the center of the support wall 40b, while the bearing 40f is the center of the support wall 40c. It is coaxially fitted in the large diameter part of the stepped hole 46 formed in the part. As a result, the central shaft 50 has both bearings 40e, 40f and stepped holes 45, 46 at each intermediate portion in the axial direction. Are supported by both side support walls 40b and 40c so as to be rotatable. Both stop rings 47 are fitted on the central shaft 50 so as to sandwich both bearings 40e and 40f, thereby restricting displacement of the central shaft 50 with respect to both side support walls 40b and 40c.
[0043] 中央回転子 60は、図 1、図 2或いは図 3にて示すごとぐ中央回転子本体 60a (以 下、回転子本体6 Oaという)と、 8つの永久磁石 60b〜60iとを備えている。回転子本 体 60aは、図 3にて示すごとぐ環状壁 61と、この環状壁 61の内周部に同心的に形 成した環状ボス 62と、環状壁 61の外周部に同心的に形成した環状外周壁 63とを有 する。 [0043] The central rotor 60 includes a central rotor main body 60a (hereinafter referred to as the rotor main body 6 Oa) and eight permanent magnets 60b to 60i as shown in FIG. 1, FIG. 2 or FIG. ing. The rotor body 60a is formed concentrically on the annular wall 61 as shown in FIG. 3, the annular boss 62 concentrically formed on the inner peripheral portion of the annular wall 61, and the outer peripheral portion of the annular wall 61. An annular outer peripheral wall 63 is provided.
[0044] しかして、回転子本体 60aは、環状ボス 62にて、中央軸 50の中間部位に、両側支 持壁 40b、 40cの間にて、キー 64 (図 2参照)を介し同軸的に嵌装支持されて、環状 壁 61及び環状外周壁 63を、両側支持壁 40b、 40cに沿い維持する。なお、キー 64 は、中央軸 50の中間部位に形成したキー溝 64aに嵌着されている。また、図 2及び 図 3にて、各符号 61aは、環状壁 61に周方向に形成した開口部をそれぞれ示す。  [0044] Therefore, the rotor body 60a is coaxially connected to the intermediate portion of the central shaft 50 by the annular boss 62 between the both supporting walls 40b and 40c via the key 64 (see Fig. 2). By being fitted and supported, the annular wall 61 and the annular outer peripheral wall 63 are maintained along the side support walls 40b and 40c. The key 64 is fitted in a key groove 64a formed at an intermediate portion of the central shaft 50. 2 and 3, each reference numeral 61a indicates an opening formed in the annular wall 61 in the circumferential direction.
[0045] ここで、外周壁 63の外周面は、 8つの平面部 63aを有しており、これら平面部 63a は、外周壁 63の外周面に沿い等間隔にて形成されている。また、各永久磁石 60b〜 60iを嵌着するための各 V字状溝 63bが、各対応の平面部 63aにてそれぞれ形成さ れており、これら各 V字状溝 63bの溝方向は、外周壁 63の軸方向に沿う。  Here, the outer peripheral surface of the outer peripheral wall 63 has eight flat portions 63a, and these flat portions 63a are formed at equal intervals along the outer peripheral surface of the outer peripheral wall 63. Further, each V-shaped groove 63b for fitting each permanent magnet 60b to 60i is formed in the corresponding flat portion 63a, and the groove direction of each V-shaped groove 63b is the outer periphery. Along the axial direction of the wall 63.
[0046] 各永久磁石 60b〜60iは、共に、同一の外形形状でもって形成されているので、永 久磁石 60bを例に挙げてその構成につき説明する。  [0046] Since each of the permanent magnets 60b to 60i has the same outer shape, the configuration will be described with the permanent magnet 60b as an example.
[0047] 永久磁石 60bは、図 3、図 5或いは図 6にて示すように、両傾斜壁 65及びこれら両 傾斜壁 65にそれぞれ平行な両傾斜壁 66を有するように、略菱形柱状に形成されて いる。当該永久磁石 60bは、その上下両端部にて切除されて、互いに平行な端壁 65 a、 66aを形成している。本実施形態では、永久磁石 60bは、端壁 65a側にて、 N極 に着磁され、端壁 66a側にて S極に着磁されている。  [0047] As shown in FIG. 3, FIG. 5, or FIG. 6, the permanent magnet 60b is formed in a substantially rhombic column shape so as to have both inclined walls 65 and both inclined walls 66 parallel to the both inclined walls 65, respectively. It has been done. The permanent magnet 60b is cut off at both upper and lower ends thereof to form end walls 65a and 66a parallel to each other. In the present embodiment, the permanent magnet 60b is magnetized to the N pole on the end wall 65a side and magnetized to the S pole on the end wall 66a side.
[0048] 上述のよう〖こ永久磁石 60b〖こ端壁 65a、 66aを形成したのは、永久磁石 60bの磁力 線の各端壁 65a、 66aにおける面積密度を高くするとともに、磁力線を各端壁 65a、 6 6aの外面に対しできる限り直角に形成させるためである。  [0048] As described above, the edge permanent walls 60a and 66a of the permanent magnet 60b are formed by increasing the area density of the magnetic lines of force of the permanent magnet 60b at the end walls 65a and 66a, and by applying the magnetic lines of force to the end walls. This is because the outer surfaces of 65a and 66a are formed as perpendicular as possible.
[0049] 本実施形態では、永久磁石 60bの外形寸法は、例えば、図 5及び図 6にて示す設 定されている。良卩ち、 a = 60° , H = 30mm, W= 22. 3mm、 T= 5mm及び h= 19 . 3mmと設定されている。 [0049] In the present embodiment, the external dimensions of the permanent magnet 60b are, for example, the settings shown in Figs. It has been determined. Good, a = 60 °, H = 30mm, W = 22.3mm, T = 5mm and h = 19.3mm.
[0050] 但し、回転子本体 60aの外径は、例えば、 300mmであり、回転子本体 110a〜14 Oa (後述する)の各外径は 100mmであるとする。これは、中央回転子 60の永久磁石 の数が 8であり、各遊星回転子 110〜140の永久磁石の数がそれぞれ 3であることを 前提として、遊星回転子が 1回転したとき中央回転子が 8分の 1回転することを意味 する。 [0050] However, the outer diameter of the rotor body 60a is, for example, 300 mm, and the outer diameters of the rotor bodies 110a to 14 Oa (described later) are 100 mm. This is based on the assumption that the number of permanent magnets in the central rotor 60 is 8, and the number of permanent magnets in each planetary rotor 110-140 is 3, respectively, when the planetary rotor rotates once. Means one-eighth of a revolution.
[0051] しかして、上述のように構成された永久磁石 60bは、両傾斜壁 65にて、対応の V字 状溝 63b内に嵌着されており、この永久磁石 60bの両傾斜壁 66は、外周壁 63の径 方向に上記対応の V字状溝 63bから外方へ押さえ板 67の開口部 67a (図 1参照)を 通り突出している。ここで、押さえ板 67は、複数のねじ 67bでもって、外周壁 63の各 対応平面部 63aに締着されて ヽる。  [0051] Therefore, the permanent magnet 60b configured as described above is fitted into the corresponding V-shaped groove 63b at both inclined walls 65, and both the inclined walls 66 of the permanent magnet 60b are The outer peripheral wall 63 projects outwardly from the corresponding V-shaped groove 63b through the opening 67a (see FIG. 1) of the pressing plate 67 from the corresponding V-shaped groove 63b. Here, the holding plate 67 is fastened to each corresponding flat surface portion 63a of the outer peripheral wall 63 with a plurality of screws 67b.
[0052] 残りの各永久磁石 60c〜60iも、それぞれ、両傾斜壁 65にて、各対応の V字状溝 6 3bに嵌着されており、これら残りの各永久磁石 60bの両傾斜壁 66は、外周壁 63の 径方向に各対応の V字状溝 63bからそれぞれ外方へ各対応の押さえ板 67の開口部 67aを通りそれぞれ突出している。なお、各対応押さえ板 67は、複数のねじ 67bでも つて、外周壁 63にその対応平面部 63aにそれぞれ締着されている。また、各永久磁 石 60c〜60iにおいても、端壁 65a側にて N極に着磁され、端壁 66a側にて S極に着 磁されている。  [0052] The remaining permanent magnets 60c to 60i are also fitted in the corresponding V-shaped grooves 63b by the two inclined walls 65, respectively, and the two inclined walls 66 of the remaining permanent magnets 60b. Projecting outwardly from the corresponding V-shaped grooves 63b in the radial direction of the outer peripheral wall 63 through the openings 67a of the corresponding pressing plates 67, respectively. Each corresponding pressing plate 67 is fastened to the outer peripheral wall 63 to the corresponding flat surface portion 63a with a plurality of screws 67b. In each of the permanent magnets 60c to 60i, the N pole is magnetized on the end wall 65a side, and the S pole is magnetized on the end wall 66a side.
[0053] ここで、中央回転子 60を中央軸 50の軸心周りに 8等分するための 8つの半径線を [0053] Here, eight radial lines for dividing the central rotor 60 into eight equal parts around the central axis of the central axis 50 are shown.
、図 3にて示すごとぐ D1〜D8とすれば、各永久磁石 60b〜60iの各両端壁 65a、 6As shown in FIG. 3, if D1 to D8 are used, both end walls 65a, 6 of each permanent magnet 60b to 60i
6aの幅方向中心力 各対応の直径線 D1〜D8と一致する。 Center force in the width direction of 6a It corresponds to each corresponding diameter line D1-D8.
[0054] また、当該回転伝達装置 Cは、図 1或いは図 3にて示すごとぐ 4つの遊星軸 70〜1[0054] Further, the rotation transmission device C includes four planetary shafts 70 to 1 as shown in FIG. 1 or FIG.
00及びこれら遊星軸 70〜100に対応する 4つの遊星回転子 110〜140を備えてい る。 00 and four planetary rotors 110-140 corresponding to these planetary axes 70-100.
[0055] 4つの遊星軸 70〜100は、それぞれ、中央軸 50と平行になるように、この中央軸 5 0と同様に、各両ベアリング(図示しない)を介し両側支持壁 40b、 40cのうち中央回 転子 60の外周側部位に回転自在に支持されて 、る。 [0056] ここで、両遊星軸 70、 100は、図 3にて示すごとぐ両半径線 D2、 D8よりも半径線 D1側にて、当該半径線 D1を基準に対称的に位置し、両遊星軸 80、 90は、両半径 線 D4、 D6よりも半径線 D5側にて、当該半径線 D5を基準に対称的に位置する。ま た、両遊星軸 70、 80は、半径線 D3を基準に対称的に位置し、両遊星軸 90、 100は 、半径線 D7を基準に対称的に位置する。さらに、各遊星軸 70〜: LOOの軸心は、同 一円周上に位置する。 [0055] The four planetary shafts 70 to 100 are parallel to the central shaft 50, respectively, and, similar to the central shaft 50, out of the both side support walls 40b and 40c via the respective bearings (not shown). The central rotor 60 is rotatably supported on the outer peripheral side portion. [0056] Here, the planetary axes 70 and 100 are positioned symmetrically with respect to the radial line D1 on the side of the radial line D1 relative to the radial lines D2 and D8 as shown in FIG. The planetary shafts 80 and 90 are positioned symmetrically with respect to the radial line D5 on the radial line D5 side from both radial lines D4 and D6. The planet axes 70 and 80 are symmetrically positioned with respect to the radial line D3, and the planetary axes 90 and 100 are symmetrically positioned with respect to the radial line D7. Furthermore, each planetary axis 70 ~: The axis of the LOO is located on the same circle.
[0057] 遊星回転子 110は、図 3にて示すごとく、中央回転子本体 110a (以下、回転子本 体 110aという)と、 3つの永久磁石 110b〜110dとを備えている。回転子本体 110a は、環状壁 111と、この環状壁 111の内周部に同心的に形成した環状ボス 112とで もって構成されている。しかして、当該回転子本体 110aは、環状ボス 112にて、遊星 軸 70の軸方向中間部位に、両側支持壁 40b、 40cの間にて、キー(図示しない)を介 し、同軸的に嵌装支持されて、環状壁 111を両側支持壁 40b、 40cに沿い維持する  As shown in FIG. 3, the planetary rotor 110 includes a central rotor body 110a (hereinafter referred to as a rotor body 110a) and three permanent magnets 110b to 110d. The rotor main body 110a includes an annular wall 111 and an annular boss 112 formed concentrically on the inner peripheral portion of the annular wall 111. Thus, the rotor body 110a is coaxially fitted to the intermediate portion of the planetary shaft 70 in the axial direction between the support walls 40b and 40c via the key (not shown) by the annular boss 112. Supported to maintain the annular wall 111 along the side support walls 40b, 40c
[0058] ここで、環状壁 111の外周面は、 3つの平面部 11 laを有しており、これら平面部 11 laは、環状壁 111の外周面に沿い等間隔にて形成されている。また、各永久磁石 1 10b〜l 10dを嵌装するための V字状溝 11 lbが、各対応の各平面部 11 laに形成さ れており、これら各溝 111bの溝方向は、環状壁 111の軸方向に沿う。 Here, the outer peripheral surface of the annular wall 111 has three flat portions 11 la, and these flat portions 11 la are formed at equal intervals along the outer peripheral surface of the annular wall 111. In addition, V-shaped grooves 11 lb for fitting the permanent magnets 110b to l10d are formed in the corresponding flat portions 11la, and the groove directions of the grooves 111b are annular walls. Along the 111 axial direction.
[0059] 各永久磁石 110b〜110dは、それぞれ、上述した永久磁石 60bと同様の外形形状 を有するように形成されている。ここで、各永久磁石 110b〜110dは、それぞれ、永 久磁石 60bの両傾斜壁 65、両傾斜壁 66及び両端壁 65a、 66aにそれぞれ対応する 両傾斜壁 113、両傾斜壁 114及び両端壁 113a、 114aを有する。  [0059] Each of the permanent magnets 110b to 110d is formed to have the same outer shape as that of the permanent magnet 60b described above. Here, each of the permanent magnets 110b to 110d includes the two inclined walls 113, the two inclined walls 114, and the two end walls 113a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. 114a.
[0060] しかして、各永久磁石 110b〜110dは、それぞれ、両傾斜壁 113〖こて、環状壁 11 1の各 V字状溝 111b内に嵌着されており、各永久磁石 110b〜110dの両傾斜壁 11 4は、環状壁 111の径方向に各対応の V字状溝 11 lbから外方へ各押さえ板 115の 開口部 115a (図 1参照)を通り突出している。ここで、各押さえ板 115は、複数のねじ 115bでもって、環状壁 111にその対応平面部 11 laに締着されている。本実施形態 では、各永久磁石 110b〜110d力 端壁 114a側にて N極に着磁され、端壁 113a側 にて S極に着磁されている。 [0061] 遊星回転子 120は、中央回転子本体 120a (以下、回転子本体 120aという)と、 3つ の永久磁石 120b〜120dとを備えている。回転子本体 120aは、環状壁 121と、この 環状壁 121の内周部に同心的に形成した環状ボス 122とでもって構成されている。 しかして、当該回転子本体 120aは、環状ボス 122にて、遊星軸 80の中間部位に、 両側支持壁 40b、 40cの間にて、キー(図示しない)を介し、同軸的に嵌装支持され て、環状壁 121を両側支持壁 40b、 40cに沿い維持する。 [0060] Therefore, each permanent magnet 110b to 110d is fitted into each V-shaped groove 111b of the annular wall 111 and both the inclined walls 113b, and the permanent magnets 110b to 110d. The two inclined walls 114 protrude outwardly from the corresponding V-shaped grooves 11 lb in the radial direction of the annular wall 111 through the openings 115a (see FIG. 1) of the pressing plates 115, respectively. Here, each pressing plate 115 is fastened to the corresponding flat portion 11 la on the annular wall 111 with a plurality of screws 115b. In this embodiment, each permanent magnet 110b to 110d force is magnetized to the N pole on the end wall 114a side, and is magnetized to the S pole on the end wall 113a side. [0061] The planetary rotor 120 includes a central rotor body 120a (hereinafter referred to as a rotor body 120a) and three permanent magnets 120b to 120d. The rotor main body 120a includes an annular wall 121 and an annular boss 122 formed concentrically on the inner peripheral portion of the annular wall 121. Thus, the rotor main body 120a is coaxially fitted and supported by the annular boss 122 at the intermediate portion of the planetary shaft 80 between both side support walls 40b and 40c via a key (not shown). Thus, the annular wall 121 is maintained along the side support walls 40b and 40c.
[0062] ここで、環状壁 121の外周面は、 3つの平面部 121aを有しており、これら平面部 12 laは、環状壁 121の外周面に沿い等間隔にて形成されている。また、各永久磁石 1 20b〜120dを嵌装するための V字状溝 121bが、各対応の平面部 121aにそれぞれ 形成されており、これら各 V字状溝 121 bの溝方向は環状壁 121の軸方向に沿う。  Here, the outer peripheral surface of the annular wall 121 has three flat portions 121a, and these flat portions 12la are formed at equal intervals along the outer peripheral surface of the annular wall 121. Further, V-shaped grooves 121b for fitting the respective permanent magnets 120b to 120d are formed in the corresponding flat portions 121a, respectively, and the groove direction of each V-shaped groove 121b is an annular wall 121. Along the axial direction.
[0063] 各永久磁石 120b〜120dは、それぞれ、上述した永久磁石 60bと同様の外形形状 を有するように形成されている。ここで、各永久磁石 120b〜120dは、それぞれ、永 久磁石 60bの両傾斜壁 65、両傾斜壁 66及び両端壁 65a、 66aにそれぞれ対応する 両傾斜壁 123、両傾斜壁 124及び両端壁 123a、 124aを有する。  [0063] Each of the permanent magnets 120b to 120d is formed to have the same outer shape as that of the permanent magnet 60b described above. Here, each of the permanent magnets 120b to 120d includes the two inclined walls 123, the two inclined walls 124, and the two end walls 123a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. , 124a.
[0064] しかして、各永久磁石 120b〜120dは、それぞれ、両傾斜壁 123にて、環状壁 12 1の各 V字状溝 12 lb内に嵌着されており、各永久磁石 120b〜 120dの両傾斜壁 12 4は、環状壁 121の径方向に各 V字状溝 121bから外方へ各押さえ板 125の開口部( 図示しない)を通り突出している。ここで、各押さえ板 125は、複数のねじ 125bでもつ て、各対応平面部 121aに締着されている。なお、各永久磁石 120b〜120dは、端 壁 124a側にて N極に着磁され、端壁 123a側にて S極に着磁されて 、る。  [0064] Thus, the permanent magnets 120b to 120d are respectively fitted into the V-shaped grooves 12 lb of the annular wall 121 by the inclined walls 123, and the permanent magnets 120b to 120d Both inclined walls 124 protrude in the radial direction of the annular wall 121 outward from each V-shaped groove 121b through an opening (not shown) of each pressing plate 125. Here, each pressing plate 125 is fastened to each corresponding flat surface portion 121a with a plurality of screws 125b. Each permanent magnet 120b to 120d is magnetized to the N pole on the end wall 124a side and magnetized to the S pole on the end wall 123a side.
[0065] 遊星回転子 130は、中央回転子本体 130a (以下、回転子本体 130aという)と、 3つ の永久磁石 130b〜130dとを備えている。回転子本体 130aは、環状壁 131と、この 環状壁 131の内周部に同心的に形成した環状ボス 132とでもって構成されている。 しかして、当該回転子本体 130aは、環状ボス 132にて、遊星軸 90の中間部位に、 両側支持壁 40b、 40cの間にて、キー(図示しない)を介し、同軸的に嵌装支持され て、環状壁 131を両側支持壁 40b、 40cに沿い維持する。  [0065] The planetary rotor 130 includes a central rotor body 130a (hereinafter referred to as a rotor body 130a) and three permanent magnets 130b to 130d. The rotor main body 130a includes an annular wall 131 and an annular boss 132 formed concentrically on the inner peripheral portion of the annular wall 131. Thus, the rotor body 130a is coaxially fitted and supported by the annular boss 132 at an intermediate portion of the planetary shaft 90 between both side support walls 40b and 40c via a key (not shown). Thus, the annular wall 131 is maintained along the side support walls 40b and 40c.
[0066] ここで、環状壁 131の外周面は、 3つの平面部 131aを有しており、これら平面部 13 laは、環状壁 131の外周面に沿い等間隔にて形成されている。また、各永久磁石 1 30b〜 130dを嵌装するための各 V字状溝 13 lbが、各対応の平面部 13 laに形成さ れており、これらは、環状壁 131の軸方向に沿い形成されている。 Here, the outer peripheral surface of the annular wall 131 has three flat portions 131 a, and these flat portions 13 la are formed at equal intervals along the outer peripheral surface of the annular wall 131. Each permanent magnet 1 Each V-shaped groove 13 lb for fitting 30b to 130d is formed in each corresponding flat portion 13la, and these are formed along the axial direction of the annular wall 131.
[0067] 各永久磁石 130b〜130dは、それぞれ、上述した永久磁石 60bと同様の外形形状 を有するように形成されている。ここで、各永久磁石 130b〜130dは、それぞれ、永 久磁石 60bの両傾斜壁 65、両傾斜壁 66及び両端壁 65a、 66aにそれぞれ対応する 両傾斜壁 133、両傾斜壁 134及び両端壁 133a、 134aを有する。  [0067] Each of the permanent magnets 130b to 130d is formed to have the same outer shape as that of the permanent magnet 60b described above. Here, each of the permanent magnets 130b to 130d includes the two inclined walls 133, the two inclined walls 134, and the two end walls 133a respectively corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a, 66a of the permanent magnet 60b. 134a.
[0068] しかして、各永久磁石 130b〜130dは、それぞれ、両傾斜壁 133にて、環状壁 13 1の各 V字状溝 13 lbに嵌着されており、各永久磁石 130b〜 130dの両傾斜壁 134 は、環状壁 131の径方向に各 V字状溝 131bから外方へ各押さえ板 135の開口部( 図示しない)を通り突出している。ここで、各押さえ板 135は、複数のねじ 135bでもつ て、各対応平面部 13 laに締着されている。本実施形態では、各永久磁石 130b〜l 30dは、端壁 133a側にて N極に着磁され、端壁 134a側にて S極に着磁されている。  [0068] Thus, the permanent magnets 130b to 130d are fitted into the V-shaped grooves 13 lb of the annular wall 131 by the inclined walls 133, respectively. The inclined wall 134 protrudes outward from each V-shaped groove 131b in the radial direction of the annular wall 131 through an opening (not shown) of each pressing plate 135. Here, each pressing plate 135 is fastened to each corresponding flat surface portion 13 la by a plurality of screws 135b. In the present embodiment, the permanent magnets 130b to 30d are magnetized to the N pole on the end wall 133a side and magnetized to the S pole on the end wall 134a side.
[0069] 遊星回転子 140は、中央回転子本体 140a (以下、回転子本体 140aと!、う)と、 3つ の永久磁石 140b〜140dとを備えている。回転子本体 140aは、環状壁 141と、この 環状壁 141の内周部に同心的に形成した環状ボス 142とでもって構成されている。 しかして、当該回転子本体 140aは、環状ボス 142にて、遊星軸 100の中間部位に、 両側支持壁 40b、 40cの間にて、キー(図示しない)を介し、同軸的に嵌装支持され て、環状壁 141を両側支持壁 40b、 40cに沿い維持する。  [0069] The planetary rotor 140 includes a central rotor body 140a (hereinafter referred to as the rotor body 140a!) And three permanent magnets 140b to 140d. The rotor body 140a includes an annular wall 141 and an annular boss 142 formed concentrically on the inner peripheral portion of the annular wall 141. Thus, the rotor main body 140a is coaxially fitted and supported by an annular boss 142 at an intermediate portion of the planetary shaft 100 between both side support walls 40b and 40c via a key (not shown). The annular wall 141 is maintained along the side support walls 40b and 40c.
[0070] ここで、環状壁 141の外周面は、 3つの平面部 141aを有しており、これら平面部 14 laは、環状壁 141の外周面に沿い等間隔にて形成されている。また、各永久磁石 1 40b〜140dを嵌装するための各 V字状溝 141b力 各対応の平面部 141aに形成さ れており、これら各 V字状溝 141bの溝方向は、環状壁 141の軸方向に沿う。  Here, the outer peripheral surface of the annular wall 141 has three flat portions 141a, and these flat portions 14la are formed along the outer peripheral surface of the annular wall 141 at equal intervals. Further, each V-shaped groove 141b force for fitting each permanent magnet 140b to 140d is formed in the corresponding flat portion 141a, and the groove direction of each V-shaped groove 141b is an annular wall 141. Along the axial direction.
[0071] 各永久磁石 140b〜140dは、それぞれ、上述した永久磁石 60bと同様の外形形状 を有するように形成されている。ここで、各永久磁石 140b〜140dは、それぞれ、永 久磁石 60bの両傾斜壁 65、両傾斜壁 66及び両端壁 65a、 66aにそれぞれ対応する 両傾斜壁 143、両傾斜壁 144及び両端壁 143a、 144aを有する。  [0071] Each of the permanent magnets 140b to 140d is formed to have the same outer shape as that of the permanent magnet 60b described above. Here, each of the permanent magnets 140b to 140d includes the two inclined walls 143, the two inclined walls 144, and the two end walls 143a corresponding to the two inclined walls 65, the two inclined walls 66, and the both end walls 65a and 66a of the permanent magnet 60b, respectively. 144a.
[0072] しかして、各永久磁石 140b〜140dは、それぞれ、両傾斜壁 143にて、環状壁 14 1の各 V字状溝 141bに嵌着されており、各永久磁石 140b〜140dの両傾斜壁 144 は、環状壁 141の径方向に各 V字状溝 141bから外方へ各押さえ板 145の開口部 1 45a (図 1参照)を通り突出している。ここで、各押さえ板 145は、複数のねじ 145bで もって、各対応平面部 14 laに締着されている。なお、各永久磁石 140b〜140dは、 端壁 143a側にて N極に着磁され、端壁 144a側にて S極に着磁されている。 [0072] Therefore, each permanent magnet 140b to 140d is fitted in each V-shaped groove 141b of the annular wall 141 by the both inclined walls 143, and both the permanent magnets 140b to 140d are inclined to both sides. Wall 144 Projecting outward from each V-shaped groove 141b in the radial direction of the annular wall 141 through the opening 145a (see FIG. 1) of each pressing plate 145. Here, each pressing plate 145 is fastened to each corresponding flat surface portion 14 la with a plurality of screws 145b. The permanent magnets 140b to 140d are magnetized to the N pole on the end wall 143a side and magnetized to the S pole on the end wall 144a side.
[0073] 本実施形態では、中央回転子 60の一永久磁石が各遊星回転子 110〜140の一 永久磁石に対向したとき、これら両対向永久磁石の各対向端壁の間の間隔は、上述 した中央回転子 60の永久磁石の形状を前提として、当該両対向永久磁石間の吸引 力を有効に発揮させ得るように、所定値 (例えば、 lmn!〜 2mm)に設定されている。 なお、この所定値は、永久磁石の一外径寸法 H (図 5及び図 6参照)を調整すること で、行う。 [0073] In the present embodiment, when the permanent magnet of the central rotor 60 faces the permanent magnets of the planetary rotors 110 to 140, the interval between the opposing end walls of the opposing permanent magnets is as described above. On the premise of the shape of the permanent magnet of the central rotor 60, the predetermined value (for example, lmn! To 2 mm) is set so that the attractive force between the opposed permanent magnets can be effectively exhibited. This predetermined value is determined by adjusting one outer diameter dimension H (see FIGS. 5 and 6) of the permanent magnet.
[0074] また、当該回転伝達装置 Cは、偏心回転子 150を備えている。この偏心回転子 150 は、回転子本体 150aと、 2つの永久磁石 150bとを備えている。回転子本体 150aは 、環状壁 151と、この環状壁 151の内周部に形成した環状ボス 152と、環状壁 151の 外周部に同心的に形成した外周壁 153とを有する。  The rotation transmission device C includes an eccentric rotor 150. The eccentric rotor 150 includes a rotor body 150a and two permanent magnets 150b. The rotor body 150a includes an annular wall 151, an annular boss 152 formed on the inner peripheral portion of the annular wall 151, and an outer peripheral wall 153 formed concentrically on the outer peripheral portion of the annular wall 151.
[0075] しかして、回転子本体 150aは、環状ボス 152にて、キー 152aを介し、中央軸 50の うち前側支持壁 40bの前側への延出端部 51に同軸的に嵌装支持されて、環状壁 15 1及び外周壁 153を、前側支持壁 40bに沿 ヽ維持する。  [0075] Thus, the rotor body 150a is coaxially fitted and supported by the annular boss 152 via the key 152a to the extended end 51 of the central shaft 50 toward the front side of the front support wall 40b. The annular wall 151 and the outer peripheral wall 153 are maintained along the front support wall 40b.
[0076] ここで、環状ボス 152は、その中心にて、環状壁 151の中心(中央軸 50の軸心)に 対し所定量 Gだけ偏心するように形成されている。このため、偏心回転子 150は、中 央軸 50の軸心に対し、両永久磁石 150bの幅方向中心を結ぶ方向へ所定量 Gだけ 偏心している。  Here, the annular boss 152 is formed so as to be eccentric at the center by a predetermined amount G with respect to the center of the annular wall 151 (axial center of the central shaft 50). For this reason, the eccentric rotor 150 is eccentric by a predetermined amount G with respect to the center of the central shaft 50 in the direction connecting the centers of the permanent magnets 150b in the width direction.
[0077] また、外周壁 153の外周面は、 2つの平面部 153aを有しており、これら平面部 153 aは、外周壁 153の外周面に沿い等間隔にて形成されている。但し、 2つの平面部 1 53aは、その中心にて、ボス 152の偏心方向に位置している。  Further, the outer peripheral surface of the outer peripheral wall 153 has two flat portions 153 a, and these flat portions 153 a are formed along the outer peripheral surface of the outer peripheral wall 153 at equal intervals. However, the two flat portions 153a are located in the eccentric direction of the boss 152 at the center thereof.
[0078] 各永久磁石 150bは、共に、同一の直方体形状に形成されており、これら各永久磁 石 150bは、外周壁 153の各平面部 153aに形成した箱状凹所 153b内に収容されて 、各押さえ板 154により抜け止めされている。ここで、各押さえ板 154は、それぞれ、 複数のねじ 154aでもって、各対応平面部 153aに締着されている。また、各永久磁 石 150bは、各対応の押さえ板 154の開口部 154bを通して外部を臨んでいる。また 、各永久磁石 150bは、その表面側にて、 N極に着磁されている。 Each permanent magnet 150b is formed in the same rectangular parallelepiped shape, and each permanent magnet 150b is accommodated in a box-shaped recess 153b formed in each flat surface portion 153a of the outer peripheral wall 153. Each retaining plate 154 prevents it from coming off. Here, each pressing plate 154 is fastened to each corresponding flat surface portion 153a with a plurality of screws 154a. Each permanent magnet The stone 150b faces the outside through the opening 154b of the corresponding pressing plate 154. Further, each permanent magnet 150b is magnetized to the N pole on the surface side.
[0079] また、当該回転伝達装置 Cは、回転促進体 160を備えており、この回転促進体 160 は、基体 160aと、永久磁石 160bとでもって構成されている。基体 160aは、その底壁 161にて、回転伝達装置 Cの底壁 40aの前端部上に設置されており、この基体 160a の傾斜状上壁 162は、偏心回転子 150の各永久磁石 150bに対向し得るように、回 転子本体 150aの外周面の横側直下に位置している。  Further, the rotation transmission device C includes a rotation promoting body 160, and the rotation promoting body 160 is configured by a base body 160a and a permanent magnet 160b. The base 160a is installed at the bottom wall 161 on the front end of the bottom wall 40a of the rotation transmission device C. The inclined upper wall 162 of the base 160a is attached to each permanent magnet 150b of the eccentric rotor 150. It is located directly under the lateral side of the outer peripheral surface of the rotor body 150a so as to face each other.
[0080] 永久磁石 160bは、断面扇状に形成されており、この永久磁石 160bは、その断面 円弧状表面にて、偏心回転子 150の各永久磁石 150bに対向し得るように位置して いる。ここで、永久磁石 160bは、その断面円弧状表面側にて、 N極に着磁されてい る。  [0080] The permanent magnet 160b is formed in a fan shape in cross section, and the permanent magnet 160b is positioned so as to face each permanent magnet 150b of the eccentric rotor 150 on the cross-section arcuate surface. Here, the permanent magnet 160b is magnetized to the N pole on the arcuate surface side of the cross section.
これ〖こより、回転促進体 160は、永久磁石 160bの各永久磁石 150bとの間の磁気的 反発作用により、偏心回転子 150の図 7にて図示反時計方向回転を促進する。  Accordingly, the rotation promoting body 160 promotes the counterclockwise rotation illustrated in FIG. 7 of the eccentric rotor 150 by the magnetic repulsion action between the permanent magnet 160b and each permanent magnet 150b.
[0081] 本実施形態では、上述した支持体 40、回転子本体 60a、各回転子本体 110a、 12 0a、 130a, 140a, 150a並びに基体 160aは、非磁性材料(例えば、アルミニウム)で もって形成されている。また、中央軸 50及び各遊星軸 70〜: L00は、非磁性材料 (例 えば、ステンレス鋼 316)でもって形成されている。  In the present embodiment, the support 40, the rotor main body 60a, the rotor main bodies 110a, 120a, 130a, 140a, 150a and the base body 160a described above are formed of a nonmagnetic material (for example, aluminum). ing. Further, the central shaft 50 and each planetary shaft 70˜: L00 are formed of a nonmagnetic material (for example, stainless steel 316).
[0082] 従って、支持体 40、回転子本体 60a、各回転子本体 110a、 120a, 130a, 140a, 150a,基体 160a、中央軸 50及び各遊星軸 70〜: LOOが、中央回転子 60の各永久 磁石と各遊星回転子 110〜140の各永久磁石との間の磁気作用に対し、磁気的に 悪影響を及ぼすことはな 、。  Accordingly, the support body 40, the rotor body 60a, the rotor bodies 110a, 120a, 130a, 140a, 150a, the base body 160a, the central shaft 50, and the planetary shafts 70 to: LOO is provided for each of the central rotor 60. The magnetic action between the permanent magnet and each permanent magnet of each planetary rotor 110 to 140 is not adversely affected magnetically.
[0083] また、上述した各永久磁石 60b〜60i、 110b〜110d、 120b〜120d、 130b〜13 0d、 140b〜140d、 150b, 160bは、永久磁石材料で形成されて ヽること力ら、当該 各永久磁石の磁力は、それぞれ、一定である。また、本実施形態では、当該各永久 磁石は、ネオジゥムで形成されているから、当該各永久磁石の磁力は、非常に強く維 持され得る。  [0083] Further, each of the permanent magnets 60b to 60i, 110b to 110d, 120b to 120d, 130b to 130d, 140b to 140d, 150b, 160b described above is formed of a permanent magnet material, The magnetic force of each permanent magnet is constant. In the present embodiment, since each permanent magnet is formed of neodymium, the magnetic force of each permanent magnet can be maintained very strongly.
[0084] また、当該回転伝達装置 Cは、図 4にて示すごとぐ 2つの前側タイミングベルト 170 a、 170bを有しており、タイミングベルト 170aは、左上側及び左下側の両スプロケット 180a, 180bに卷装されている。ここで、タイミングベルト 170aの内周壁に凹凸状に 形成した一連の歯部が、両スプロケット 180a、 180bの各外周壁に凹凸状に形成し た一連の歯部に順次嚙合することで、タイミングベルト 170a及び両スプロケット 180a 、 180bが同一方向に回転する。 Further, the rotation transmission device C has two front timing belts 170 a and 170 b as shown in FIG. 4, and the timing belt 170 a includes both upper left and lower left sprockets. It is equipped with 180a and 180b. Here, a series of tooth portions formed in an uneven shape on the inner peripheral wall of the timing belt 170a is sequentially meshed with a series of tooth portions formed in an uneven shape on each outer peripheral wall of both sprockets 180a and 180b, so that 170a and both sprockets 180a and 180b rotate in the same direction.
[0085] なお、左上側スプロケット 180aは、遊星軸 100のうち前側支持壁 40bの左上側隅 角部からの前側延出部に同軸的に支持されている。左下側スプロケット 180bは、遊 星軸 90のうち前側支持壁 40bの左下側隅角部からの前側延出部に同軸的に支持さ れている。 [0085] Note that the left upper sprocket 180a is coaxially supported by the front extension portion of the planetary shaft 100 from the left upper corner of the front support wall 40b. The lower left sprocket 180b is coaxially supported by the front extension of the planetary shaft 90 from the lower left corner of the front support wall 40b.
[0086] また、タイミングベルト 170bは、右上側及び右下側の両スプロケット 190a、 190bに 卷装されている。ここで、タイミングベルト 170bの内周壁に凹凸状に形成した一連の 歯部が、両スプロケット 190a、 190bの各外周壁に凹凸状に形成した一連の歯部に 順次嚙合することで、タイミングベルト 170b及び両スプロケット 190a、 190bが同一 方向に回転する。  [0086] The timing belt 170b is mounted on both the upper right and lower right sprockets 190a, 190b. Here, a series of teeth formed in a concavo-convex shape on the inner peripheral wall of the timing belt 170b is sequentially meshed with a series of teeth formed in a concavo-convex shape on the outer peripheral walls of both sprockets 190a, 190b, whereby the timing belt 170b And both sprockets 190a, 190b rotate in the same direction.
[0087] なお、右上側スプロケット 190aは、遊星軸 70のうち前側支持壁 40bの右上側隅角 部からの前側延出部に同軸的に支持されている。右下側スプロケット 190bは、遊星 軸 80のうち前側支持壁 40bの左下側隅角部からの前側延出部に同軸的に支持され ている。  [0087] Note that the upper right sprocket 190a is coaxially supported by the front extension portion of the planetary shaft 70 from the upper right corner of the front support wall 40b. The lower right sprocket 190b is coaxially supported by the front extension portion of the planetary shaft 80 from the lower left corner of the front support wall 40b.
[0088] また、当該回転伝達装置 Cは、図 1にて示すごとぐ後側タイミングベルト 200を有し ており、この後側タイミングベルト 200は、左右両上側のスプロケット 210a、 210bに 卷装されている。ここで、タイミングベルト 200の内周壁に凹凸状に形成した一連の 歯部が、両スプロケット 210a、 210bの各外周壁に凹凸状に形成した一連の歯部に 順次嚙合することで、タイミングベルト 200及び両スプロケット 210a、 210bが同一方 向に回転する。  Further, the rotation transmission device C has a rear timing belt 200 as shown in FIG. 1. The rear timing belt 200 is mounted on the left and right upper sprockets 210a and 210b. ing. Here, a series of teeth formed in an uneven shape on the inner peripheral wall of the timing belt 200 is sequentially meshed with a series of teeth formed in an uneven shape on the outer peripheral walls of both sprockets 210a and 210b, whereby the timing belt 200 And both sprockets 210a and 210b rotate in the same direction.
[0089] なお、左上側のスプロケット 210aは、遊星軸 100のうち後側支持壁 40cの左上側 隅角部からの後側延出部に同軸的に支持されている。また、右上側のスプロケット 21 Obは、遊星軸 70のうち後側支持壁 40cの右上側隅角部力もの後側延出部に同軸的 に支持されている。  Note that the upper left sprocket 210a is coaxially supported by the rear extension portion of the planetary shaft 100 from the upper left corner of the rear support wall 40c. The sprocket 21 Ob on the upper right side is coaxially supported by the rear extension portion of the planetary shaft 70 with the force on the upper right corner of the rear support wall 40c.
[0090] また、当該回転伝達装置 Cは、図 1及び図 2にて示すごとぐタイミングベルト 200の 張り度合い調節機構 220を有しており、この張り度合い調節機構 220は、後側支持 壁 40cの上端中央部に形成した切欠部 44に装着されている。当該張り度合い調節 機構 220は、 L字状の金属板 221を有しており、この金属板 221は、その底板部 221 aにて、切欠部 44の底部上に装着されて、立ち上がり板部 221bを支持壁 40cの後 面に沿い上方に向け延出させている。 In addition, the rotation transmission device C includes the timing belt 200 as shown in FIGS. A tension degree adjusting mechanism 220 is provided, and this tension degree adjusting mechanism 220 is attached to a notch 44 formed at the center of the upper end of the rear support wall 40c. The tension degree adjusting mechanism 220 has an L-shaped metal plate 221. The metal plate 221 is mounted on the bottom of the notch 44 at the bottom plate portion 221a, and the rising plate portion 221b. Is extended upward along the rear surface of the support wall 40c.
[0091] また、張り度合い調節機構 220は、金属板 222及びローラ 223を有しており、金属 板 222は、金属板 221の立ち上がり板部 221bに後方力も装着されている。ローラ 22 3は、ローラ軸 223aにより、金属板 222の下部に回転自在に嵌着されており、この口 ーラ 223は、タイミングベルト 200の上側ベルト部の中間部位を下方に向けて押さえ 、当該タイミングベルト 200の張り度合 、を調節する。  The tension degree adjusting mechanism 220 includes a metal plate 222 and a roller 223, and the metal plate 222 is also mounted with a rear force on the rising plate portion 221b of the metal plate 221. The roller 223 is rotatably fitted to the lower portion of the metal plate 222 by a roller shaft 223a. The roller 223 presses the intermediate portion of the upper belt portion of the timing belt 200 downward, and Adjust the tension of the timing belt 200.
[0092] 本実施形態では、各タイミングベルト 170a、 170b及び 200と各対応のスプロケット 180a, 180b, 190a, 190b, 210a及び 210bとの間の嚙合位置は、各遊星回転子 110〜140の回転に伴い、中央回転子 60を円滑に回転させるベぐ次の 2つの条件 を満たすように選定されて 、る。  In this embodiment, the meshing position between each timing belt 170a, 170b and 200 and each corresponding sprocket 180a, 180b, 190a, 190b, 210a and 210b is determined by the rotation of each planetary rotor 110-140. Accordingly, it is selected to satisfy the following two conditions for smoothly rotating the central rotor 60.
[0093] 第 1に、中央回転子 60のいずれの永久磁石も各遊星回転子 110〜140のいずれ の永久磁石とも対向していない状態では、中央回転子 60の各永久磁石が、これら各 永久磁石に回転方向にお!、て最も近く位置する各遊星回転子 110〜140の一永久 磁石によりそれぞれ吸引されるように、上記嚙合位置が選定されている。  [0093] First, in a state where none of the permanent magnets of the central rotor 60 is opposed to any of the permanent magnets of the planetary rotors 110 to 140, the permanent magnets of the central rotor 60 are The meshing positions are selected so that they are attracted by the permanent magnets of the planetary rotors 110 to 140 located closest to the magnet in the rotational direction.
[0094] 第 2に、中央回転子 60の各永久磁石の 1つが各遊星回転子 110〜140のいずれ かの一永久磁石と対向するとき、これら両対向永久磁石の間の吸引力が最大となる 力 各遊星回転子及び中央回転子 60の残りの各対応永久磁石の間の各吸引力の 総和が、上述の両対向永久磁石を互いに離れさせるに要する力よりも少し大きくなる ように、上述の嚙合位置が選定されている。  [0094] Second, when one of the permanent magnets of the central rotor 60 faces one of the permanent magnets of the planetary rotors 110 to 140, the attraction force between these opposed permanent magnets is maximum. The total force of the attractive forces between the remaining corresponding permanent magnets of each planetary rotor and the central rotor 60 is slightly larger than the force required to separate the opposed permanent magnets from each other. The combination position is selected.
[0095] 増速機 Dは、大径のギア 230と、このギア 230に嚙合する小径のギア 240とを有し ており、ギア 230は、その軸穴部 231にて、断面 T字状ブラケット 230aの中空軸部 23 2を介し、中央軸 50の後端部側中間部位に同軸的に嵌装支持されている。  The speed increaser D has a large-diameter gear 230 and a small-diameter gear 240 that meshes with the gear 230. The gear 230 has a T-shaped bracket in cross section at its shaft hole portion 231. The central shaft 50 is coaxially fitted and supported via the hollow shaft portion 23 2 of 230a at the intermediate portion on the rear end side of the central shaft 50.
[0096] ここで、ブラケット 230aは、中空軸部 232にて、キー 232aを介し、中央軸 50の後端 部側中間部位に嵌装されており、当該ブラケット 220aの前側フランジ部 223は、ギア 230の前壁に固着されている。 [0096] Here, the bracket 230a is fitted in the hollow shaft portion 232 via the key 232a to the intermediate portion on the rear end side of the central shaft 50, and the front flange portion 223 of the bracket 220a is a gear. It is fixed to the front wall of 230.
[0097] なお、中央軸 50の後端部は、ピロ一型軸受け部材 250により回転自在に支持され ている。また、軸受け部材 250は、設置面 L上の箱状の台 250a上に載置されている Note that the rear end portion of the central shaft 50 is rotatably supported by a pillow type bearing member 250. Further, the bearing member 250 is placed on a box-like table 250a on the installation surface L.
[0098] 小径のギア 240は、交流発電機 Eの回転軸 260に同軸的に支持されており、このギ ァ 240は、大径のギア 230に嚙合する。本実施形態では、ギア 240のギア 230に対 するギア比は、 8である。 [0098] The small-diameter gear 240 is coaxially supported on the rotating shaft 260 of the AC generator E, and the gear 240 is meshed with the large-diameter gear 230. In the present embodiment, the gear ratio of the gear 240 to the gear 230 is 8.
[0099] 交流発電機 Eは、三相の同期発電機等の交流発電機力もなるもので、この交流発 電機 Eは、増速機 Dにより増速駆動されて、三相の交流電力を発生する。  [0099] The AC generator E also serves as an AC generator such as a three-phase synchronous generator. This AC generator E is driven by the speed increaser D to generate a three-phase AC power. To do.
[0100] 以上のように構成した本実施形態において、風車 Aが風を受けて回転すると、ギア ボックス B力 入力軸 20aにて、風車 Aによりその回転に伴い駆動される。このため、 ギアボックス Bでは、入力軸 20aが回転し、これに伴い、上記入力側べベルギア、上 記出力側べベルギア及び出力軸 20bが回転する。なお、風車 Aの回転速度は、風速 に比例する。  [0100] In the present embodiment configured as described above, when the windmill A rotates by receiving wind, the windmill A is driven by the gearbox B force input shaft 20a along with the rotation. For this reason, in the gear box B, the input shaft 20a rotates, and accordingly, the input bevel gear, the output bevel gear, and the output shaft 20b rotate. Note that the rotational speed of windmill A is proportional to the wind speed.
[0101] 従って、風車 Aの回転は、風速に応じて、ギアボックス Bにより入力軸 20a、上記入 力側べベルギア、上記出力側べベルギア及び出力軸 20b及びカップリング 30を介し 回転伝達装置 Cの入力軸(遊星軸 90)に伝達される。ここで、ギアボックス Bにおける 上記入力側べベルギアの上記出力側べベルギアとのギア比は 1であるから、ギアボ ックス Bの出力軸 20bの回転速度は、風車 Aの回転速度にそれぞれ等しい。  [0101] Accordingly, the rotation of the windmill A is transmitted by the gearbox B via the input shaft 20a, the input bevel gear, the output bevel gear and the output shaft 20b, and the coupling 30 according to the wind speed. To the input shaft (planetary axis 90). Here, since the gear ratio of the input side bevel gear to the output side bevel gear in the gear box B is 1, the rotational speed of the output shaft 20b of the gear box B is equal to the rotational speed of the windmill A.
[0102] 以上のようにして風車 Aの回転が回転伝達装置 Cの入力軸に伝達されると、当該回 転伝達装置 Cにおいては、両遊星回転子 130、 140力 上述のごとぐ両スプロケット 180b, 180a及び両遊星軸 90、 100を介しタイミングベルト 170aの卷装でもって連 結されているため、スプロケット 180b、遊星軸 90、タイミングベルト 170a、スプロケッ ト 180a及び遊星軸 100が共に同一方向(例えば、図 3及び図 4にて図示反時計方向 )に回転する。これに伴い、両遊星回転子 130、 140の各回転子本体及び各永久磁 石が上記反時計方向に回転する。  [0102] When the rotation of the windmill A is transmitted to the input shaft of the rotation transmission device C as described above, in the rotation transmission device C, the two planetary rotors 130 and 140 force both sprockets 180b as described above. , 180a and both planetary shafts 90 and 100 are connected with the timing belt 170a as a fitting, so that the sprocket 180b, the planetary shaft 90, the timing belt 170a, the sprocket 180a and the planetary shaft 100 are all in the same direction (for example, , Rotate counterclockwise (illustrated in FIGS. 3 and 4). Accordingly, the rotor bodies and permanent magnets of the planetary rotors 130 and 140 rotate in the counterclockwise direction.
[0103] また、両遊星回転子 140、 110力 上述のごとぐ両スプロケット 210a、 210a及び 両遊星軸 100、 70を介しタイミングベルト 200の卷装でもって連結されているため、ス プロケット 210a、遊星軸 100、タイミングベルト 200、スプロケット 210b及び遊星軸 7 0が共に上記反時計方向に回転する。よって、両遊星回転子 140、 110の各回転子 本体及び各永久磁石が上記時計方向に回転する。 [0103] Further, since the two planetary rotors 140 and 110 are connected with the sprockets 210a and 210a and the two planetary shafts 100 and 70 as described above, the timing belt 200 is connected, so The procket 210a, the planetary shaft 100, the timing belt 200, the sprocket 210b, and the planetary shaft 70 rotate together in the counterclockwise direction. Therefore, the rotor main bodies and the permanent magnets of the planetary rotors 140 and 110 rotate in the clockwise direction.
[0104] また、両遊星回転子 110、 120力 上述のごとく、両スプロケット 190a、 190b及び 両遊星軸 70、 80を介しタイミングベルト 170bの卷装でもって連結されているため、ス プロケット 190a、遊星軸 70、タイミングベルト 170b、スプロケット 190b及び遊星軸 80 が共に上記反時計方向に回転する。よって、両遊星回転子 110、 120の各回転子本 体及び各永久磁石が上記時計方向に回転する。  [0104] Also, as described above, both planetary rotors 110 and 120 are coupled with the sprockets 190a and 190b and the two planetary shafts 70 and 80 with the attachment of the timing belt 170b. The shaft 70, the timing belt 170b, the sprocket 190b, and the planetary shaft 80 all rotate counterclockwise. Therefore, the rotor bodies and the permanent magnets of the planetary rotors 110 and 120 rotate in the clockwise direction.
[0105] 以上のように、各遊星回転子 110〜140力 上述のように 3つのタイミングベルト 17 0a、 200及び 170bでもって連結されているため、各遊星回転子 110〜140力 風車 Aの回転に伴い、共に上記反時計方向に回転する。すると、中央回転子 60が、各遊 星回転子 110〜140の回転に伴!、次のように回転する。  [0105] As described above, each planetary rotor 110-140 force is connected by the three timing belts 170a, 200, and 170b as described above, so each planetary rotor 110-140 force windmill A rotation Accordingly, both rotate in the counterclockwise direction. Then, the central rotor 60 rotates as follows as the planetary rotors 110 to 140 rotate!
[0106] ここで、各遊星回転子 110〜140が上述のように回転する前の停止状態において、 例えば、中央回転子 60の永久磁石 60bが、その端壁 66aにて、図 8にて示すごとく、 遊星回転子 110の 3つの永久磁石のうちの 1つ、例えば、永久磁石 110bの端壁 114 aに対向しているものとする。  Here, in the stopped state before each planetary rotor 110-140 rotates as described above, for example, the permanent magnet 60b of the central rotor 60 is shown in FIG. 8 at its end wall 66a. In this way, it is assumed that one of the three permanent magnets of the planetary rotor 110, for example, faces the end wall 114a of the permanent magnet 110b.
[0107] このとき、中央回転子 60の永久磁石 60d力 遊星回転子 120の 3つの永久磁石の うちの 2つ、 f列え ίま、、両永久磁石 120b、 120dの f¾【こお!ヽて、永久磁石 120d寄り【こ 位置するものとする。また、中央回転子 60の永久磁石 60fが、遊星回転子 130の 3つ の永久磁石のうちの 2つ、例えば、永久磁石 130b、 130cの間において、永久磁石 1 30bに大きく接近して位置するものとする。また、中央回転子 60の永久磁石 60hが、 遊星回転子 140の 3つの永久磁石のうちの 2つ、例えば、永久磁石 140c、 140dの 間において、永久磁石 140cに大きく接近して位置するものとする(図 8参照)。  [0107] At this time, the permanent magnet 60d force of the central rotor 60, two of the three permanent magnets of the planetary rotor 120, f array, and the f¾ of both permanent magnets 120b and 120d. Near the permanent magnet 120d. Further, the permanent magnet 60f of the central rotor 60 is located in close proximity to the permanent magnet 130b between two of the three permanent magnets of the planetary rotor 130, for example, between the permanent magnets 130b and 130c. Shall. In addition, the permanent magnet 60h of the central rotor 60 is located close to the permanent magnet 140c between two of the three permanent magnets of the planetary rotor 140, for example, the permanent magnets 140c and 140d. (See Fig. 8).
[0108] このような状態においては、上述のように、中央回転子 60の永久磁石 60bが遊星 回転子 110の永久磁石 110bの端壁 114aに対向して!/、るとき、これら両対向永久磁 石の間の吸引力が最大となる力 各遊星回転子 110〜140及び中央回転子 60の残 りの各対応永久磁石との間の各吸引力の総和力 上述の両対向永久磁石を互いに 離れさせるに要する力よりも少し大きくなる。 [0109] このため、上述のように各遊星回転子 110〜140が回転すると、この回転に伴い、 残りの遊星回転子 120〜140の各対応永久磁石の磁力の総和が中央回転子 60の 残りの対応永久磁石を吸引し、中央回転子 60が、その永久磁石 60bにて、遊星回転 子 110の永久磁石 110bから容易に引き離されて図 8にて図示時計方向に円滑に回 転し得る。 [0108] In such a state, as described above, when the permanent magnet 60b of the central rotor 60 faces the end wall 114a of the permanent magnet 110b of the planetary rotor 110! The force that maximizes the attraction force between the magnets The total force of the attraction forces between the planetary rotors 110 to 140 and the remaining corresponding permanent magnets of the central rotor 60 Slightly greater than the force required to separate. [0109] Therefore, when each planetary rotor 110-140 rotates as described above, the total magnetic force of the corresponding permanent magnets of the remaining planetary rotors 120-140 is the remainder of the central rotor 60. The corresponding permanent magnet is attracted, and the central rotor 60 can be easily pulled away from the permanent magnet 110b of the planetary rotor 110 by the permanent magnet 60b, and can smoothly rotate in the clockwise direction shown in FIG.
[0110] このような回転に伴い、中央回転子 60のいずれの永久磁石も、図 9にて示すごとく 、各遊星回転子 110〜140の 、ずれの永久磁石とも対向して 、な 、状態になると、 中央回転子 60の各永久磁石力 上述のごとぐこれら各永久磁石に回転方向にお いて最も近く位置する各遊星回転子 110〜140の一永久磁石によりそれぞれ吸引さ れる。しかして、このような吸引のもと、中央回転子 60は、各遊星回転子 110〜140 の上記反時計方向への回転に伴い、上記時計方向に円滑に回転する(図 10及び図 11参照)。ここで、中央回転子 60は、各遊星回転子 110〜140の 1回転に伴い、 8分 の 1回転する。  [0110] With such rotation, as shown in FIG. 9, any permanent magnet of the central rotor 60 faces the shifted permanent magnets of the planetary rotors 110 to 140, and is in a state. Then, the permanent magnet force of the central rotor 60 is attracted by the permanent magnets of the planetary rotors 110 to 140 located closest to the permanent magnets in the rotational direction as described above. Under such suction, the central rotor 60 rotates smoothly in the clockwise direction as the planetary rotors 110 to 140 rotate in the counterclockwise direction (see FIGS. 10 and 11). ). Here, the central rotor 60 makes one eighth rotation with each planetary rotor 110-140 making one rotation.
[0111] また、このような回転は、渦電流に依存することなぐ中央回転子 60の各永久磁石 と各遊星回転子 110〜140の各永久磁石とが各対向端壁を介し互いに非接触にて 吸弓 Iし合う磁気作用を発揮することで達成されるので、回転数の低!、範囲を含めて 回転を適正に伝達し得る。  [0111] Further, such rotation does not depend on the eddy current, and the permanent magnets of the central rotor 60 and the permanent magnets of the planetary rotors 110 to 140 are not in contact with each other through the opposing end walls. This is achieved by demonstrating the magnetic action that interacts with each other, so the rotation speed is low! The rotation can be properly transmitted including the range.
[0112] 以上のような回転状態においては、偏心回転子 150が中央回転子 60に連動して 上記時計方向に回転する。ここで、当該偏心回転子 150は、両永久磁石 150bの幅 方向中心を結ぶ方向へ中央軸 50の軸心力も所定量 Gだけ偏心している。このため、 永久磁石 150bが回転促進体 160の永久磁石 160bの断面円弧状表面に向け上記 反時計方向に進入する角度、即ち、両永久磁石 150b、 160bが磁気的に作用し合う 進入角度が、上記所定量 Gに対応する角度だけ大きくなるように変化する。このこと は、両永久磁石 150b、 160bの間の磁力が緩やかに増大するように変化することを 意味する。その結果、中央回転子 60の回転がより一層円滑に促進され得る。  In the rotational state as described above, the eccentric rotor 150 rotates in the clockwise direction in conjunction with the central rotor 60. Here, in the eccentric rotor 150, the axial force of the central shaft 50 is also eccentric by a predetermined amount G in the direction connecting the centers in the width direction of the permanent magnets 150b. For this reason, the angle at which the permanent magnet 150b enters the counter-clockwise direction toward the cross-section arc-shaped surface of the permanent magnet 160b of the rotation promoting body 160, that is, the entry angle at which the two permanent magnets 150b and 160b act magnetically, It changes so as to increase by an angle corresponding to the predetermined amount G. This means that the magnetic force between the permanent magnets 150b and 160b changes so as to increase gradually. As a result, the rotation of the central rotor 60 can be promoted more smoothly.
[0113] 以上のようにして、中央回転子 60が回転すると、この回転が増速機 Dにより両ギア 2 30、 240でもって 8倍に増速されて交流発電機 Eに伝達される。このため、風速が低 くても、当該交流発電機 Eは、風速に対応する回転速度にて、駆動されて、三相交流 電力を適正に発生する。 [0113] When the central rotor 60 rotates as described above, this rotation is increased by a factor of 8 with both gears 230 and 240 by the gearbox D and transmitted to the AC generator E. For this reason, even if the wind speed is low, the AC generator E is driven at a rotational speed corresponding to the wind speed to generate a three-phase AC. Properly generate power.
[0114] これにより、上述した回転伝達装置の作用効果を達成しつつ、回転数の低い範囲 をも含めて三相交流電力を適正に発生する風力発電システムの提供が可能となる。  [0114] Thus, it is possible to provide a wind power generation system that appropriately generates three-phase AC power including a range where the rotational speed is low, while achieving the operational effects of the rotation transmission device described above.
[0115] なお、本発明の実施にあたり、上記実施形態に限ることなぐ次のような種々の変形 例が挙げられる。  [0115] In the implementation of the present invention, the following various modifications are possible without being limited to the above embodiment.
(1)交流発電機 Eは、三相に限らず、例えば、単相の交流発電機であってもよい。ま た、交流発電機 Eに代えて、直流発電機を採用してもよい。これによれば、風速に応 じて直流電力を発生し得る。  (1) The AC generator E is not limited to three phases, and may be, for example, a single phase AC generator. Further, instead of the AC generator E, a DC generator may be adopted. According to this, DC power can be generated according to the wind speed.
(2)本発明は、風力発電システムに代えて、例えば、水力発電システムに適用しても よい。この場合、風車 A及びギアボックス Bに代えて、水車を、カップリング 30を介し、 回転伝達装置 Cの入力軸に同軸的に連結することで、上記実施形態と実質的に同 様の作用効果を達成しつつ、水力により交流電力を発生する。  (2) The present invention may be applied to, for example, a hydroelectric power generation system instead of a wind power generation system. In this case, instead of the wind turbine A and the gear box B, the water turbine is coaxially connected to the input shaft of the rotation transmission device C via the coupling 30, so that the substantially same operation effect as the above embodiment is achieved. AC power is generated by hydropower.
(3)中央回転子 60の各永久磁石及び各遊星回転子 110〜140の各永久磁石の着 磁極性は、上記実施形態にて述べた極性とは逆の極性であってもよい。要するに、 中央回転子 60の各永久磁石力 各遊星回転子 110〜140の各永久磁石と互いに 吸引し合う極性であればよい。  (3) The polarity of the permanent magnets of the central rotor 60 and the permanent magnets of the planetary rotors 110 to 140 may be opposite to the polarity described in the above embodiment. In short, each permanent magnet force of the central rotor 60 may have a polarity that attracts each permanent magnet of each planetary rotor 110-140.
(4)中央回転子 60の各永久磁石或いは各遊星回転子 110〜140の各永久磁石の 着磁極性は、上記実施形態にて述べた極性とは逆の極性であってもよい。要するに 、中央回転子 60の各永久磁石力 各遊星回転子 110〜140の各永久磁石と互いに 反発し合う極性であってもよ 、。  (4) The magnetic pole property of each permanent magnet of the central rotor 60 or each permanent magnet of each planetary rotor 110 to 140 may be a polarity opposite to the polarity described in the above embodiment. In short, each permanent magnet force of the central rotor 60 may have a polarity that repels each permanent magnet of each planetary rotor 110-140.
(5)各タイミングベルトに代えて、チェーンを採用してもよ!、。  (5) Instead of each timing belt, a chain may be adopted!
(6)タイミングベル卜 200は、両遊星軸 70、 100に代えて、両遊星軸 80、 90の各後側 延出端部に各スプロケットを介し卷装するようにしてもょ ヽ。  (6) The timing bell 卜 200 may be installed via the sprockets at the rear extension ends of the planetary shafts 80 and 90 instead of the planetary shafts 70 and 100.
(7)各タイミングベルト 170a、 170b及び 200は、上記実施形態にて述べた卷装構成 に限ることなぐ全遊星軸 70〜: L00が共に同一方向に連動して回転するような卷装 構成で各タイミングベルト 170a、 170b及び 200を卷装すればよ!ヽ。  (7) The timing belts 170a, 170b, and 200 are all configured in such a configuration that all the planetary shafts 70-: L00 rotate in the same direction without being limited to the configuration described in the above embodiment. Equip each timing belt 170a, 170b and 200!
(8)中央軸 50を中央回転子 60に含めた概念として把握し、各遊星軸 70〜: L00を各 対応の遊星回転子 110〜140にそれぞれ含めた概念として把握するようにしてもよ い。 (8) The center axis 50 may be grasped as a concept included in the central rotor 60, and each planetary axis 70 ~: L00 may be grasped as a concept included in each corresponding planetary rotor 110 ~ 140. Yes.
(9)増速機 Dは、両ギア 230、 240の構成に代えて、例えば、両ギア 230、 240に対 応する両プーリ及びこれらプーリに卷装するベルトでもって構成してもよ ヽ。  (9) The speed increaser D may be configured with, for example, both pulleys corresponding to both gears 230 and 240 and a belt fitted to these pulleys instead of the configuration of both gears 230 and 240.
(10)ギアボックス Bの両べベルギアのギア比を 8にして、増速機 Dを廃止するようにし てもよい。  (10) The gear ratio of both bevel gears in gearbox B may be set to 8, and gearbox D may be eliminated.
(11)回転伝達装置 Cの入力軸は、遊星軸 90に限ることなぐ遊星軸 120であっても よい。また、ギアボックス Bの設置位置を高くすれば、回転伝達装置 Cの入力軸は、 遊星軸 70或!、は 100であってもよ!/、。  (11) The input shaft of the rotation transmission device C may be the planetary shaft 120, not limited to the planetary shaft 90. If the gearbox B is installed higher, the input shaft of the rotation transmission device C may be the planetary shaft 70 or 100!
(12)上記実施形態において、風車 A及びギアボックス Bに代えて、駆動電動機を力 ップリング 30を介し回転伝達装置 Cの入力軸である遊星軸に同軸的に連結し、交流 発電機 Eに代えて、油圧ポンプ等の回転負荷を、増速機 Dを介し、回転伝達装置 C の出力軸である中央軸 50に同軸的に連結するようにしてもょ 、。  (12) In the above embodiment, instead of the windmill A and the gear box B, the drive motor is connected coaxially to the planetary shaft that is the input shaft of the rotation transmission device C via the force coupling 30 and replaced with the AC generator E. Thus, a rotational load such as a hydraulic pump may be connected coaxially to the central shaft 50 that is the output shaft of the rotation transmission device C via the speed increaser D.
[0116] これによれば、回転伝達装置 Cにより上記駆動電動機の回転を上記回転負荷に伝 達し、当該回転負荷を回転させることができる。このような回転負荷の回転は、上記 実施形態にて述べた回転伝達装置 Cの作用効果のもと、低回転領域をも含めて円 滑になされ得る。従って、上記回転負荷の回転による作動は、安定的に維持され得 る。  [0116] According to this, the rotation transmission device C can transmit the rotation of the drive motor to the rotation load, and the rotation load can be rotated. Such rotation of the rotation load can be made smooth including the low rotation region under the effect of the rotation transmission device C described in the above embodiment. Therefore, the operation by the rotation of the rotation load can be stably maintained.
[0117] ここで、増速機 Dを廃止すれば、回転伝達装置 Cは 8分の 1に減速する機能を有す るので、上記駆動電動機の回転数が高ぐ上記回転負荷が低い回転数で回転するも のである場合に、当該回転伝達装置 Cは定減速装置として好適である。  [0117] Here, if the speed increaser D is abolished, the rotation transmission device C has a function of decelerating to 1/8. Therefore, the rotational speed of the drive motor is high and the rotational load is low. The rotation transmission device C is suitable as a constant speed reduction device.
(13)上記実施形態にて述べた中央回転子 60の永久磁石の数や各遊星回転子 11 0〜140の永久磁石の数は、必要に応じて適宜変更してもよい。なお、このように変 更することで、回転伝達装置 Cの減速比(出力回転数に対する入力回転数の比)は、 8分の 1以外の値に変更される。  (13) The number of permanent magnets of the central rotor 60 and the number of permanent magnets of each of the planetary rotors 110 to 140 described in the above embodiment may be changed as appropriate. By changing in this way, the reduction ratio of rotation transmission device C (ratio of input rotation speed to output rotation speed) is changed to a value other than 1/8.
図面の簡単な説明  Brief Description of Drawings
[0118] [図 1]本発明に係る風力発電システムの一実施形態を示す部分破断平面図である。  FIG. 1 is a partially broken plan view showing an embodiment of a wind power generation system according to the present invention.
[図 2]上記風力発電システムの要部断面側面図である。  FIG. 2 is a cross-sectional side view of an essential part of the wind power generation system.
[図 3]上記実施形態における中央回転子及び各遊星回転子を前側支持壁からみた 拡大正面図である。 [FIG. 3] The central rotor and each planetary rotor in the above embodiment are viewed from the front support wall. It is an enlarged front view.
[図 4]上記実施形態における前側支持壁を前側タイミングベルトと共にみた正面図で ある。  FIG. 4 is a front view of the front support wall in the embodiment as seen together with the front timing belt.
[図 5]上記実施形態における永久磁石の正面図である。  FIG. 5 is a front view of the permanent magnet in the embodiment.
[図 6]上記実施形態における永久磁石の側面図である。 FIG. 6 is a side view of the permanent magnet in the embodiment.
[図 7]上記実施形態における偏心回転体を回転促進体とともに前側力 みた正面図 である。  FIG. 7 is a front view of the eccentric rotator in the embodiment described above together with the rotation promoting body and the front side force.
[図 8]上記実施形態における中央回転子及び各遊星回転子の回転過程を示す正面 図である。  FIG. 8 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.
[図 9]上記実施形態における中央回転子及び各遊星回転子の回転過程を示す正面 図である。  FIG. 9 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.
[図 10]上記実施形態における中央回転子及び各遊星回転子の回転過程を示す正 面図である。  FIG. 10 is a front view showing the rotation process of the central rotor and each planetary rotor in the embodiment.
[図 11]上記実施形態における中央回転子及び各遊星回転子の回転過程を示す正 面図である。  FIG. 11 is a front view showing a rotation process of the central rotor and each planetary rotor in the embodiment.
符号の説明 Explanation of symbols
50· ··中央軸、 60· ··中央回転子、  50 ··· Central axis, 60 ··· Central rotor,
60a〜60i、 110b〜110d、 120b〜120d、 130b〜130d、 1墨〜 140d…永久磁 石、  60a-60i, 110b-110d, 120b-120d, 130b-130d, 1 black-140d ... Permanent magnet,
63b、 111b, 121b, 131b, 141b- "V字状溝、  63b, 111b, 121b, 131b, 141b- "V-shaped groove,
65、 66、 113、 123、 133、 143、 114、 124、 134、 144· · ·傾斜壁、  65, 66, 113, 123, 133, 143, 114, 124, 134, 144
66a, 114a, 124a, 134a, 144a…端壁、  66a, 114a, 124a, 134a, 144a ... end walls,
110a〜140a…回転子本体、 60b…永久磁石、 70〜: LOO…遊星軸、  110a ~ 140a ... Rotor body, 60b ... Permanent magnet, 70 ~: LOO ... Planetary axis,
110〜140· · ·遊星回転子、  110-140 ··· Planetary rotor,
170a, 170b, 200· · ·タイミングベル K  170a, 170b, 200 ... timing bell K
180a, 180b, 190a, 190b, 210a, 120b…スプロケット、 Α· · ·風車、 C…非接触型 回転伝達装置、 E…交流発電機。  180a, 180b, 190a, 190b, 210a, 120b… Sprocket, Α ···· Windmill, C… Non-contact type rotation transmission device, E… AC generator

Claims

請求の範囲 The scope of the claims
[1] 中央回転子と、この中央回転子の外周に沿い配設される複数の遊星回転子と、前 記複数の遊星回転子を共に同一方向に回転させるように連結する連結手段とを備え 前記中央回転子は、中央回転子本体と、この中央回転子本体の外周壁に沿い間 隔をお 、て設けられた複数の永久磁石とを具備し、  [1] A central rotor, a plurality of planetary rotors disposed along the outer periphery of the central rotor, and a coupling means for connecting the plurality of planetary rotors so as to rotate together in the same direction. The central rotor includes a central rotor body and a plurality of permanent magnets provided at intervals along the outer peripheral wall of the central rotor body.
前記複数の遊星回転子は、それぞれ、遊星回転子本体と、この遊星回転子本体の 外周壁に沿い間隔をお 、て前記中央回転子の前記複数の永久磁石の 、ずれかに 所定の間隙を介し対向して磁気的に吸引或いは反発し得るように設けられた複数の 永久磁石とを具備し、  Each of the plurality of planetary rotors has a gap between the planetary rotor main body and the outer peripheral wall of the planetary rotor main body, and a gap between the plurality of permanent magnets of the central rotor. And a plurality of permanent magnets provided so as to be magnetically attracted or repelled by facing each other,
前記複数の遊星回転子のいずれかの軸を、回転の入力軸とし、前記中央回転子の 軸を前記回転の出力軸とするようにした非接触型回転伝達装置。  A non-contact type rotation transmission device in which any one of the plurality of planetary rotors is used as an input shaft for rotation, and the shaft of the central rotor is used as an output shaft for rotation.
[2] 前記中央回転子本体は、その外周壁に沿い間隔をおいて形成した各 V字状溝を 形成してなり、  [2] The central rotor body is formed with V-shaped grooves formed at intervals along the outer peripheral wall thereof.
前記各遊星回転子は、その外周壁に沿い間隔をおいて形成した各 V字状溝を形 成してなり、  Each planetary rotor is formed with V-shaped grooves formed at intervals along the outer peripheral wall thereof.
前記中央回転子の前記各永久磁石は、両ー側傾斜壁及びこれら両ー側傾斜壁に それぞれ平行な両他側傾斜壁を有するように略菱形柱状に形成されており、 前記各遊星回転子の前記各永久磁石は、両ー側傾斜壁及びこれら両ー側傾斜壁 にそれぞれ平行な両他側傾斜壁を有するように略菱形柱状に形成されており、 前記中央回転子及び前記各遊星回転子の前記各永久磁石は、それぞれ、前記両 一側傾斜壁にて前記中央回転子及び前記各遊星回転子の前記各 V字状溝に嵌着 されており、  Each permanent magnet of the central rotor is formed in a substantially rhomboid column shape so as to have both-side inclined walls and both-side inclined walls parallel to the both-side inclined walls, and the planetary rotors. The permanent magnets are formed in a substantially rhombic column shape so as to have both-side inclined walls and both-side inclined walls parallel to the two-side inclined walls, respectively, and the central rotor and the planetary rotations. The permanent magnets of the rotor are fitted into the V-shaped grooves of the central rotor and the planetary rotors, respectively, on the one-side inclined walls.
前記中央回転子の前記各永久磁石の外端部及び前記各遊星回転子の前記各永 久磁石の外端部は、それぞれ、前記各他側傾斜壁で形成する頂部を切除することで 、端壁として形成されて!ヽることを特徴とする請求項 1に記載の非接触型回転伝達装 置。  The outer end portions of the permanent magnets of the central rotor and the outer end portions of the permanent magnets of the planetary rotors are cut off from the tops formed by the other inclined walls. Formed as a wall! 2. The non-contact type rotation transmission device according to claim 1, wherein
[3] 前記各遊星回転子は、それぞれ、前記各対応の遊星回転子本体を同軸的に支持 する遊星軸を有しており、 [3] Each of the planetary rotors coaxially supports the corresponding planetary rotor body. Has a planetary axis that
前記連結手段は、前記各遊星回転子のうち前記中央回転子の外周に沿 、互いに 隣り合う両遊星回転子の各遊星軸を連結する各タイミングベルトで構成されているこ とを特徴とする請求項 1または 2に記載の非接触型回転伝達装置。  The connecting means is constituted by timing belts for connecting the planet shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors. Item 3. The contactless rotation transmission device according to item 1 or 2.
[4] 前記中央回転子のいずれの永久磁石も前記各遊星回転子のいずれの永久磁石と も対向していないとき、前記中央回転子の各永久磁石が、これら各永久磁石に回転 方向において最も近く位置する前記各遊星回転子の一永久磁石によりそれぞれ吸 引され、かつ、前記中央回転子の前記各永久磁石の 1つが前記各遊星回転子のい ずれかの一永久磁石と対向するとき、これら両対向永久磁石の間の吸引力が最大と なるが、前記各遊星回転子及び前記中央回転子の残りの各対応永久磁石の間の各 吸引力の総和が、前記両対向永久磁石を互いに離れさせるに要する力よりも少し大 きくなるように、前記各タイミングベルトが、前記各両遊星回転子の各遊星軸を連結し ていることを特徴とする請求項 3に記載の非接触型回転伝達装置。 [4] When none of the permanent magnets of the central rotor is opposed to any of the permanent magnets of the planetary rotors, the permanent magnets of the central rotor are most opposed to the permanent magnets in the rotation direction. When each permanent magnet of the planetary rotor is attracted by a permanent magnet of each of the planetary rotors located nearby, and one of the permanent magnets of the central rotor faces one permanent magnet of each of the planetary rotors, The attraction force between the two opposing permanent magnets is maximized, but the sum of the attraction forces between the respective corresponding permanent magnets of the planetary rotor and the central rotor is such that the opposing permanent magnets are mutually connected. 4. The non-contact type rotation according to claim 3, wherein each of the timing belts connects each planetary shaft of each of the planetary rotors so as to be slightly larger than a force required to separate the two planetary rotors. Transmission device.
[5] 風力或 、は水力に基づく速度に応じて回転する回転体と、 [5] A rotating body that rotates according to the speed based on wind power or hydraulic power,
非接触型回転伝達装置と、  A non-contact rotation transmission device;
回転発電手段とを備えて、  A rotating power generation means,
前記非接触型回転伝達装置は、  The non-contact type rotation transmission device is:
中央回転子と、この中央回転子の外周に沿い配設される複数の遊星回転子と、前 記複数の遊星回転子を共に同一方向に回転させるように連結する連結手段とを備え 前記中央回転子は、中央回転子本体と、この中央回転子本体の外周壁に沿い間 隔をお 、て設けられた複数の永久磁石とを具備し、  A central rotor, a plurality of planetary rotors disposed along an outer periphery of the central rotor, and a connecting means for connecting the plurality of planetary rotors so as to rotate together in the same direction. The rotor includes a central rotor body and a plurality of permanent magnets provided at intervals along the outer peripheral wall of the central rotor body.
前記複数の遊星回転子は、それぞれ、遊星回転子本体と、この遊星回転子本体の 外周壁に沿い間隔をお 、て前記中央回転子の前記複数の永久磁石の 、ずれかに 所定の間隙を介し対向して磁気的に吸引或いは反発し得るように設けられた複数の 永久磁石とを具備し、  Each of the plurality of planetary rotors has a gap between the planetary rotor main body and the outer peripheral wall of the planetary rotor main body, and a gap between the plurality of permanent magnets of the central rotor. And a plurality of permanent magnets provided so as to be magnetically attracted or repelled by facing each other,
前記複数の遊星回転子のいずれかの軸を、回転の入力軸とし、前記中央回転子の 軸を前記回転の出力軸とするようにして、前記回転体の回転を前記入力軸に入力さ れて前記出力軸に伝達するようになっており、 One of the plurality of planetary rotors is used as an input shaft for rotation, and the shaft of the central rotor is used as an output shaft for rotation, so that the rotation of the rotating body is input to the input shaft. Is transmitted to the output shaft,
前記回転発電手段は、前記回転伝達装置の前記出力軸からの回転に基づき回転 して発電するようにした発電システム。  The rotational power generation means is a power generation system configured to generate power by rotating based on rotation from the output shaft of the rotation transmission device.
[6] 前記中央回転子本体は、その外周壁に沿い間隔をおいて形成した各 V字状溝を 形成してなり、  [6] The central rotor body is formed with V-shaped grooves formed at intervals along the outer peripheral wall thereof.
前記各遊星回転子は、その外周壁に沿い間隔をおいて形成した各 V字状溝を形 成してなり、  Each planetary rotor is formed with V-shaped grooves formed at intervals along the outer peripheral wall thereof.
前記中央回転子の前記各永久磁石は、両ー側傾斜壁及びこれら両ー側傾斜壁に それぞれ平行な両他側傾斜壁を有するように略菱形柱状に形成されており、 前記各遊星回転子の前記各永久磁石は、両ー側傾斜壁及びこれら両ー側傾斜壁 にそれぞれ平行な両他側傾斜壁を有するように略菱形柱状に形成されており、 前記中央回転子及び前記各遊星回転子の前記各永久磁石は、それぞれ、前記両 一側傾斜壁にて前記中央回転子及び前記各遊星回転子の前記各 V字状溝に嵌着 されており、  Each permanent magnet of the central rotor is formed in a substantially rhomboid column shape so as to have both-side inclined walls and both-side inclined walls parallel to the both-side inclined walls, and the planetary rotors. The permanent magnets are formed in a substantially rhombic column shape so as to have both-side inclined walls and both-side inclined walls parallel to the two-side inclined walls, respectively, and the central rotor and the planetary rotations. The permanent magnets of the rotor are fitted into the V-shaped grooves of the central rotor and the planetary rotors, respectively, on the one-side inclined walls.
前記中央回転子の前記各永久磁石の外端部及び前記各遊星回転子の前記各永 久磁石の外端部は、それぞれ、前記各他側傾斜壁で形成する頂部を切除することで 、端壁として形成されて ヽることを特徴とする請求項 5に記載の発電システム。  The outer end portions of the permanent magnets of the central rotor and the outer end portions of the permanent magnets of the planetary rotors are cut off from the tops formed by the other inclined walls. 6. The power generation system according to claim 5, wherein the power generation system is formed as a wall.
[7] 前記各遊星回転子は、それぞれ、前記各対応の遊星回転子本体を同軸的に支持 する遊星軸を有しており、  [7] Each of the planetary rotors has a planetary shaft that coaxially supports the corresponding planetary rotor body,
前記連結手段は、前記各遊星回転子のうち前記中央回転子の外周に沿 、互いに 隣り合う両遊星回転子の各遊星軸を連結する各タイミングベルトで構成されているこ とを特徴とする請求項 5または 6に記載の発電システム。  The connecting means is constituted by timing belts for connecting the planet shafts of the planetary rotors adjacent to each other along the outer periphery of the central rotor of the planetary rotors. Item 7. The power generation system according to item 5 or 6.
[8] 前記中央回転子のいずれの永久磁石も前記各遊星回転子のいずれの永久磁石と も対向していないとき、前記中央回転子の各永久磁石が、これら各永久磁石に回転 方向において最も近く位置する前記各遊星回転子の一永久磁石によりそれぞれ吸 引され、かつ、前記中央回転子の前記各永久磁石の 1つが前記各遊星回転子のい ずれかの一永久磁石と対向するとき、これら両対向永久磁石の間の吸引力が最大と なるが、前記各遊星回転子及び前記中央回転子の残りの各対応永久磁石の間の各 吸引力の総和が、前記両対向永久磁石を互いに離れさせるに要する力よりも少し大 きくなるように、前記各タイミングベルトが、前記各両遊星回転子の各遊星軸を連結し ていることを特徴とする請求項 7に記載の発電システム。 [8] When none of the permanent magnets of the central rotor is opposed to any of the permanent magnets of the planetary rotors, the permanent magnets of the central rotor are the most in the rotational direction of the permanent magnets. When each permanent magnet of the planetary rotor is attracted by a permanent magnet of each of the planetary rotors located nearby, and one of the permanent magnets of the central rotor faces one permanent magnet of each of the planetary rotors, The attraction force between the two opposing permanent magnets is maximized, but each of the planetary rotors and the remaining corresponding permanent magnets of the central rotor are each The timing belts connect the planetary shafts of the planetary rotors so that the total attraction force is slightly larger than the force required to separate the opposed permanent magnets from each other. 8. The power generation system according to claim 7, wherein
PCT/JP2006/319143 2005-09-28 2006-09-27 Non-contact rotary transmission device and electric power generation system WO2007037257A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-281730 2005-09-28
JP2005281730A JP4817412B2 (en) 2005-09-28 2005-09-28 Non-contact rotation transmission device and power generation system

Publications (1)

Publication Number Publication Date
WO2007037257A1 true WO2007037257A1 (en) 2007-04-05

Family

ID=37899681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319143 WO2007037257A1 (en) 2005-09-28 2006-09-27 Non-contact rotary transmission device and electric power generation system

Country Status (3)

Country Link
JP (1) JP4817412B2 (en)
TW (1) TWI347727B (en)
WO (1) WO2007037257A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270918A (en) * 2011-07-26 2011-12-07 融德(大连)机电工程设备有限公司 Magnetic coupler with adjustable starting state gap
WO2012034026A1 (en) * 2010-09-10 2012-03-15 Future Force, Llc Apparatus and method for generating power from a fluid current
WO2012044791A1 (en) * 2010-09-29 2012-04-05 David Chi-Henry Su Magnetic levitation transmission
CN104009610A (en) * 2014-06-12 2014-08-27 上海市东方海事工程技术有限公司 Permanent magnet eddy current speed regulator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038022B (en) * 2014-05-21 2016-08-17 煤科集团沈阳研究院有限公司 A kind of mining speed-adjusting-type permanent-magnet actuating device
CN104333198B (en) * 2014-11-11 2016-07-20 迈格钠磁动力股份有限公司 A kind of permanent magnet speed regulation device of single magnet rotor
CN104660010B (en) * 2015-03-12 2017-08-25 江苏南自通华电力自动化股份有限公司 A kind of outer-rotor type vortex drive device
CN112850170B (en) * 2021-03-02 2022-06-10 王坦之 Non-contact driving transmission system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493036A (en) * 1972-05-02 1974-01-11
JPH0217879A (en) * 1988-07-06 1990-01-22 Tadao Ikejiri Compound magnetic geared motor
JP2002247833A (en) * 2001-02-16 2002-08-30 Isel Co Ltd Planetary geared transmission
JP2002303254A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Wind power generator
JP3106621U (en) * 2003-08-08 2005-01-06 永和 劉 Non-contact type wheel drive
JP2005315370A (en) * 2004-04-30 2005-11-10 Chugoku Electric Power Co Inc:The Power transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493036A (en) * 1972-05-02 1974-01-11
JPH0217879A (en) * 1988-07-06 1990-01-22 Tadao Ikejiri Compound magnetic geared motor
JP2002247833A (en) * 2001-02-16 2002-08-30 Isel Co Ltd Planetary geared transmission
JP2002303254A (en) * 2001-04-05 2002-10-18 Mitsubishi Heavy Ind Ltd Wind power generator
JP3106621U (en) * 2003-08-08 2005-01-06 永和 劉 Non-contact type wheel drive
JP2005315370A (en) * 2004-04-30 2005-11-10 Chugoku Electric Power Co Inc:The Power transmission device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012034026A1 (en) * 2010-09-10 2012-03-15 Future Force, Llc Apparatus and method for generating power from a fluid current
WO2012044791A1 (en) * 2010-09-29 2012-04-05 David Chi-Henry Su Magnetic levitation transmission
CN102270918A (en) * 2011-07-26 2011-12-07 融德(大连)机电工程设备有限公司 Magnetic coupler with adjustable starting state gap
CN104009610A (en) * 2014-06-12 2014-08-27 上海市东方海事工程技术有限公司 Permanent magnet eddy current speed regulator

Also Published As

Publication number Publication date
JP4817412B2 (en) 2011-11-16
TW200721641A (en) 2007-06-01
TWI347727B (en) 2011-08-21
JP2007092849A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2007037257A1 (en) Non-contact rotary transmission device and electric power generation system
KR101241078B1 (en) Planetary geared motor and dynamo
JO2437B1 (en) Drive Apparatus
Davey et al. Axial flux cycloidal magnetic gears
CN105980164A (en) Wheel having electricity generation-combined electromechanical means having plurality of auxiliary power structures
US20040178689A1 (en) Apparatus for increasing turning force using magnetic force
US7786634B2 (en) Motor- or a generator-related arrangement
CN103930694A (en) Gear transmission device and drive unit
JPWO2007043554A1 (en) Power generator
JP5598840B2 (en) Rotating body device
JP2007032420A (en) Wind power generating device
JP2002089430A (en) Wind power generating equipment
WO2019071919A1 (en) Straight stator excitation generator utilizing belt drive
CN209743506U (en) Stable cycloidal pin gear speed reducer
JP2012010486A (en) Power generation system
WO2019142221A1 (en) Electric machine
JP2006025468A (en) Generator
JP2001016842A (en) Extract unit for high-output power supply
CN104868682B (en) Outward rotation type permanent magnet brushless electric machine
BG3271U1 (en) Rotor system for generating electricity from low-pressure fluid flow
CN2487153Y (en) Magnetic generator
JP2002317751A (en) Rotation assisting device
JPS60241769A (en) Generating set
JPH11318070A (en) Electromagnetic rotor and generation device utilizing it
JP3903219B2 (en) Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810634

Country of ref document: EP

Kind code of ref document: A1