WO2007037256A1 - Light wavelength multiplexer/demultiplexer - Google Patents

Light wavelength multiplexer/demultiplexer Download PDF

Info

Publication number
WO2007037256A1
WO2007037256A1 PCT/JP2006/319137 JP2006319137W WO2007037256A1 WO 2007037256 A1 WO2007037256 A1 WO 2007037256A1 JP 2006319137 W JP2006319137 W JP 2006319137W WO 2007037256 A1 WO2007037256 A1 WO 2007037256A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
slab waveguide
optical
slab
arrayed
Prior art date
Application number
PCT/JP2006/319137
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Yamada
Yuji Moriya
Mikitaka Itoh
Original Assignee
Ntt Electronics Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Electronics Corporation filed Critical Ntt Electronics Corporation
Publication of WO2007037256A1 publication Critical patent/WO2007037256A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section

Definitions

  • the present invention relates to an optical wavelength multiplexer / demultiplexer in which an arrayed waveguide composed of a plurality of channel waveguides having a constant optical waveguide length difference and a slab waveguide formed at both ends of the arrayed waveguide are formed in the core About.
  • an optical wavelength multiplexer / demultiplexer using an arrayed waveguide is expected as a main component that is a key component of wavelength multiplexing technology required in an optical fiber communication network or the like.
  • FIG. 17 is a conceptual diagram of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90.
  • the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • the first optical waveguide 21 is connected to the first slab waveguide 22.
  • the first slab waveguide 22 is connected to one side of the optical waveguide 27.
  • the other side of the arrayed waveguide 27 is connected to the second slab waveguide 31.
  • the second slab waveguide 31 is connected to the second optical waveguide 32.
  • FIG. 18 is an enlarged view of a broken line part of FIG. FIG. 18 illustrates the first slab waveguide 22, the channel waveguide 26, and the inclined portion 91.
  • the inclined portion 91 is connected to the channel waveguide 26 and the first slab waveguide 22 and to the channel waveguide 26 and the second slab waveguide 31 (shown in FIG. )
  • FIG. 19 is a cross-sectional view taken along the line CC ′ of FIG. FIG. 19 shows the channel waveguide 26, the substrate 33, the cladding layer 34, and the inclined portion 91. As shown in FIG. 19, the inclined portion 91 is formed between the channel waveguides 26.
  • FIG. 20 is a cross-sectional view taken along the line DD ′ of FIG. FIG. 20 shows the first slab waveguide 22, the substrate 33, the clad layer 34, and the inclined portion 91. As shown in FIG. The wall thickness decreases as the distance from the first slab waveguide 22 increases.
  • the arrayed waveguide-type wavelength multiplexing / demultiplexing circuit 90 demultiplexes optical signals of different wavelengths input to the first optical waveguide 21 for each wavelength and outputs them from a predetermined second optical waveguide 32. can do.
  • the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is connected to the array waveguide 27 and the first slab waveguide 22 and the array waveguide 27 and the second slab waveguide. Propagation loss occurring at the connection point with the waveguide 31 can be reduced.
  • the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is provided at the connection point between the array waveguide 27 and the first slab waveguide 22 and at the connection point between the array waveguide 27 and the second slab waveguide 31. By forming a part of the taper, propagation loss can be reduced (not shown in Figures 17 to 20).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-159718
  • the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 may be manufactured by changing the chip size, the center wavelength, the wavelength interval, or the number of channels.
  • the width and length of the channel waveguide 26 the connection angle between the array waveguide 27 and the first slab waveguide 22, and the array waveguide 27 and the second slab guide are changed.
  • the connection angle with the waveguide 31, the shape of the curved surface connected to the arrayed waveguide 27 of the first slab waveguide 22 and the second slab waveguide 31, and the like change.
  • the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 must be manufactured by changing the width, length, thickness, and inclination angle of the inclined portion 91. Changes in the width of the inclined portion 91 and the like lead to changes in manufacturing conditions such as etching of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90.
  • the tapered portion when a tapered portion is formed at a connection portion between the arrayed waveguide 27 and the first slab waveguide 22 and a connection portion between the arrayed waveguide 27 and the second slab waveguide 31, the tapered portion
  • the width of the portion connected to the first slab waveguide 22, the length of the tapered portion, and the width force of the portion connected to the channel waveguide 26 of the tapered portion vary. Changing the length of the taper portion leads to a change in manufacturing conditions such as etching of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90.
  • the design change of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 causes a problem that the yield deteriorates when the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is manufactured.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical wavelength multiplexer / demultiplexer that has a good yield in manufacturing and reduces propagation loss.
  • the first invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side taper portion that is equally spaced, and a first array waveguide side taper portion.
  • the first invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and an optical signal is used as the pattern of the core.
  • a first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide
  • a plurality of first slab waveguide side tapered portions that propagate optical signals, each having an equal interval, the width being narrower as the distance from the first slab waveguide is reduced,
  • the first slab waveguide side tapered portion is connected to the side opposite to the side where the first slab waveguide is located, and the width of the first slab waveguide side tapered portion is located in the first slab waveguide side tapered portion.
  • the first arrayed waveguide side taper that propagates the optical signal becomes narrower as it gets farther from the par part, and has a certain optical waveguide length difference, and one end of the first arrayed waveguide side tapered part
  • the optical wavelength multiplexer / demultiplexer can be manufactured such as etching even when the structure or shape is changed. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a high yield in manufacturing.
  • the first invention of the present application has a refractive index between the cladding layer and the core and is adjacent to each other. Between the first slab waveguide side taper portion, and in contact with the side of the first slab waveguide where the first slab waveguide side taper portion is located, and as the distance from the first slab waveguide increases, the thickness increases. It is preferable that the first slab waveguide side inclined portion where the thickness becomes thinner is further formed as the pattern of the core.
  • the first slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the first slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. . In addition, since the first slab waveguide side inclined portion is provided, the optical wavelength multiplexer / demultiplexer propagates at a connection point between the first slab waveguide side tapered portion and the first slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
  • the second invention of the present application includes a second optical waveguide, a second slab waveguide, a second slab waveguide side tapered portion, and a second arrayed waveguide side tapered portion that are equally spaced.
  • An optical wavelength multiplexer / demultiplexer in which an arrayed waveguide, a first slab waveguide, and a first optical waveguide are formed.
  • the second invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
  • the second slab waveguide side tapered portion is connected to the side opposite to the side where the second slab waveguide is located, and the width of the second slab waveguide side tapered portion is the second slab waveguide side location.
  • the second slab waveguide is narrower than the side facing the conducting side and the second slab waveguide
  • the second arrayed waveguide side tapered part that propagates the optical signal becomes narrower as it is farther from the tapered part, and has a certain optical waveguide length difference, and one end of the second arrayed waveguide side tapered part is Multiple channels connected to the side opposite to the side where the second slab waveguide taper is located
  • An arrayed waveguide composed of waveguides, a first slab waveguide connected to the other end of the arrayed waveguide to refract an optical signal, and a side of the first slab waveguide on which the arrayed waveguide is located;
  • An optical wavelength multiplexer / demultiplexer formed with a first optical waveguide connected to opposite sides and propagating an optical signal.
  • the optical wavelength multiplexer / demultiplexer can be manufactured such as etching even if the structure or shape is changed in design. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a high yield in manufacturing.
  • the second slab waveguide has a refractive index between the clad layer and the core, and is between the adjacent tapered portions of the second slab waveguide.
  • a second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side tapered portion is located and becomes thinner as it gets farther from the second slab waveguide is further formed as a pattern of the core. It is preferred that
  • the second slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the second slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. .
  • the second slab waveguide side inclined portion by providing the said optical wavelength demultiplexer is propagation occurring in connecting portion between the second slab waveguide and the second slab waveguide side tapered portion It is possible to reduce the loss. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that has good yield in manufacturing and reduces propagation loss.
  • the third invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side taper portion and a first array waveguide side taper portion that are equally spaced.
  • the optical waveguide multiplexer / demultiplexer in which the arrayed waveguide, the second arrayed waveguide side tapered portion, the equally spaced second slab waveguide side tapered portion, the second slab waveguide, and the second optical waveguide are formed. is there.
  • the third invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
  • Connected to one end of the first optical waveguide that propagates The first slab waveguide to be folded is connected to the side of the first slab waveguide opposite to the side on which the first optical waveguide is located. Each of them is equidistant and the width is far from the first slab waveguide.
  • the first slab waveguide side taper part that propagates the optical signal becomes narrower as it becomes smaller, and is connected to the side of the first slab waveguide side taper part that faces the side where the first slab waveguide is located
  • the width of the first slab waveguide side taper portion is narrower than the side of the first slab waveguide side taper portion facing the side where the first slab waveguide side is located, and the width becomes narrower as the distance from the first slab waveguide side taper portion increases.
  • the first slab waveguide side taper portion, the first array waveguide side taper portion, the second array waveguide side taper portion, and the second slab waveguide side taper portion are provided.
  • the wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
  • the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent first slab waveguide side tapered portions.
  • the first slab waveguide side taper is in contact with the side where the taper is located, and is far from the first slab waveguide.
  • the first slab waveguide side inclined portion that becomes thinner as it is thinner, and has a refractive index between the cladding layer and the core, and is between the second slab waveguide side tapered portion that contacts P, and 2
  • the second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side tapered portion of the slab waveguide is located and becomes thinner as the distance from the second slab waveguide increases, It is preferable that the pattern is further formed.
  • the first slab waveguide side inclined portion and the second slab waveguide side are provided on the core.
  • the inclined portion can be formed with a certain size. If the inclined portion on the first slab waveguide side and the inclined portion on the second slab waveguide side are of a certain size, the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure and shape are changed. The change of conditions can be reduced.
  • the optical wavelength multiplexer / demultiplexer includes the first slab waveguide side tapered portion and the first slab waveguide by providing the first slab waveguide side inclined portion and the second slab waveguide side inclined portion.
  • Propagation loss occurring at the connection point between the waveguide and the connection point between the second slab waveguide side tapered portion and the second slab waveguide can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
  • the fourth invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide-side equal-width portion that is equally spaced, a first array waveguide-side taper.
  • This is an optical wavelength multiplexer / demultiplexer in which a section, an arrayed waveguide, a second slab waveguide, and a second optical waveguide are formed.
  • the fourth invention of the present application includes a clad layer formed on a substrate and a core having a higher refractive index than the clad layer and surrounded by the clad layer.
  • a first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide
  • a plurality of first slab waveguide side equal width parts that are equally spaced and have a uniform width and propagate an optical signal, the first slab waveguide side, etc.
  • the width is narrower than the first slab waveguide side equal width portion, and the first slab waveguide side equal width portion force is far.
  • the first arrayed waveguide side taper that propagates the optical signal becomes narrower, and the optical waveguide length is constant.
  • An array waveguide composed of a plurality of channel waveguides connected to a side of the tapered portion on the first array waveguide side opposite to the side where the equal width portion on the first slab waveguide side is located; and the array waveguide A second slab waveguide that diffracts an optical signal, and a second slab waveguide that is connected to the side of the second slab waveguide that faces the side where the arrayed waveguide is located, and a plurality of optical signals are transmitted.
  • the second optical waveguide is an optical wavelength multiplexer / demultiplexer.
  • the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure and shape are changed in design. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
  • the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the first slab waveguide side.
  • the first slab waveguide side inclined portion is in contact with the side where the first slab waveguide side equal width portion is located, and the first slab waveguide side inclined portion becomes thinner as it gets farther from the first slab waveguide. Further, it is preferably formed.
  • the first slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the first slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the design and structure of the structure are changed. . In addition, by providing the first slab waveguide side inclined portion, the optical wavelength multiplexer / demultiplexer propagates at a connection point between the first slab waveguide side equal width portion and the first slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
  • the fifth invention of the present application includes a second optical waveguide, a second slab waveguide, a second slab waveguide side equal-width portion that is equally spaced, and a second array waveguide side taper.
  • This is an optical wavelength multiplexer / demultiplexer in which a section, an arrayed waveguide, a first slab waveguide, and a first optical waveguide are formed.
  • the fifth invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer. Connected to one end of the second optical waveguide and a plurality of second optical waveguides propagating the optical signal.
  • a second slab waveguide that diffracts the signal, and a side of the second slab waveguide that is opposite to the side where the second optical waveguide is located. are connected to a side of the second slab waveguide side equal width portion facing the side where the second slab waveguide side is located, and the width is the first slab waveguide side equal width portion.
  • the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure or shape is changed. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
  • the second slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the second slab waveguide side.
  • a second slab waveguide side inclined portion formed so as to be in contact with the side where the second slab waveguide side equal width portion is located and having a thickness that decreases as the distance from the second slab waveguide increases. It is preferably formed as a pattern of the core.
  • the second slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the second slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. . In addition, since the second slab waveguide side inclined portion is provided, the optical wavelength multiplexer / demultiplexer propagates at a connection portion between the second slab waveguide side equal width portion and the second slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
  • the sixth invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side equal-width portion that is equally spaced, and a first array waveguide side taper.
  • An optical waveguide multiplexer / demultiplexer in which a second slab waveguide and a second optical waveguide are formed. is there.
  • the sixth invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
  • a first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide
  • a plurality of first slab waveguide side equal width parts that are equally spaced and have a uniform width and propagate an optical signal, the first slab waveguide side, etc.
  • the taper section on the first array waveguide side that propagates the optical signal becomes narrower as the distance increases, and a certain optical waveguide
  • An arrayed waveguide comprising a plurality of channel waveguides having a difference and having one end connected to a side of the first arrayed waveguide side tapered portion facing the side where the first slab waveguide side equal width portion is located Connected to the other end of the arrayed waveguide, and becomes wider as the distance from the arrayed waveguide increases, and the second arrayed waveguide side tapered portion that propagates an optical signal, and the second arrayed waveguide side
  • the taper part is connected to the side opposite to the side where the arrayed waveguide is located, and each is equidistant, and the width of the tapered part of the second arrayed waveguide side is the side where the arrayed wave
  • the second slab waveguide side equal width part that is wider and uniform than the opposite side and propagates the optical signal, and the second array waveguide side taper part of the second slab waveguide side equal width part are positioned.
  • Connected to the side opposite to the mounting side and diffracts the optical signal A slab waveguide and a plurality of second optical waveguides that are connected to a side of the second slab waveguide opposite to the side where the equal-width portion on the second slab waveguide side is located and propagate an optical signal This is an optical wavelength multiplexer / demultiplexer.
  • the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the design and structure of the structure are changed. Therefore, an optical wavelength multiplexer / demultiplexer with good yield in manufacturing is required. You can power s offer.
  • the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the first slab waveguide side.
  • a first slab waveguide side inclined portion that is in contact with a side where the first slab waveguide side equal width portion is located and becomes thinner as it is farther from the first slab waveguide, the cladding layer, and the core Between the adjacent equal width portions of the second slab waveguide and on the side of the second slab waveguide where the equal width portion of the second slab waveguide is located. It is preferable that a second slab waveguide side inclined portion that comes into contact with the second slab waveguide and that becomes thinner as it is farther from the second slab waveguide is further formed as a pattern of the core.
  • the first slab waveguide side inclined portion and the second slab waveguide side equal width portion are equally spaced, the first slab waveguide side inclined portion and the second slab are provided on the core.
  • the inclined portion on the waveguide side can be formed with a certain size. If the first slab waveguide side inclined portion and the second slab waveguide side inclined portion are of a certain size, the optical wavelength multiplexer / demultiplexer can be etched even if the structure or shape is changed in design. The change in manufacturing conditions can be reduced.
  • the optical wavelength multiplexer / demultiplexer includes the first slab waveguide side equal width portion and the first slab by providing the first slab waveguide side inclined portion and the second slab waveguide side inclined portion.
  • Propagation loss occurring at the connection point between the waveguide and the connection point between the second slab waveguide side equal width portion and the second slab waveguide can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
  • the present invention can provide an optical wavelength multiplexer / demultiplexer, optical wavelength multiplexer / demultiplexer, and optical wavelength multiplexer / demultiplexer that reduce propagation loss without increasing the yield and manufacturing man-hours.
  • FIG. 1 is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the first invention of the present application.
  • FIG. 2 is an enlarged view of a broken line part of FIG.
  • FIG. 3 is an enlarged view of a broken line portion of FIG. 1 after a first slab waveguide side inclined portion is formed.
  • FIG. 4 is a cross-sectional view taken along line AA ′ of FIG.
  • FIG. 5 is a cross-sectional view taken along the line ⁇ _ ⁇ in FIG.
  • FIG. 6 is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the second invention of the present application.
  • FIG. 7 is an enlarged view of a broken line part of FIG.
  • FIG. 8] is an enlarged view of the broken line portion of FIG. 6 after the second slab waveguide side inclined portion is formed.
  • It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the third invention of the present application.
  • 10 A conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the fourth invention of the present application.
  • FIG. 11 is an enlarged view of a broken line part of FIG.
  • FIG. 11 is an enlarged view of the broken line portion of FIG. 10 after the first slab waveguide side inclined portion is formed.
  • 13 It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to one embodiment of the fifth invention of the present application. 14] It is an enlarged view of a broken line part of FIG.
  • FIG. 14 is an enlarged view of the broken line portion of FIG. 13 after the second slab waveguide side inclined portion is formed.
  • Sono 16 It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to one embodiment of the sixth invention of the present application. 17] It is a conceptual diagram of a conventional arrayed waveguide type wavelength multiplexing / demultiplexing circuit.
  • FIG. 19 is a sectional view taken along the line CC ′ in FIG.
  • FIG. 20 is a cross-sectional view taken along the line DD ′ in FIG.
  • the first embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as a pattern of the core.
  • a first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide-side tapered portions that propagate optical signals, and each of them is equally spaced, the width is narrowed as the distance from the first slab waveguide increases, and the first slab waveguide
  • the side taper portion is connected to the side facing the side where the first slab waveguide is located, and the width is from the side facing the side where the first slab waveguide is located of the first slab waveguide side taper portion.
  • the first slab of the first arrayed waveguide side tapered portion that has a certain optical waveguide length difference and a first optical waveguide side tapered portion that becomes narrower and propagates an optical signal.
  • An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the waveguide-side tapered portion is located, and a second connected to the other end of the arrayed waveguide to diffract the optical signal.
  • An optical wavelength multiplexing / demultiplexing comprising: a slab waveguide; and a plurality of second optical waveguides that are connected to a side of the second slab waveguide opposite to the side on which the arrayed waveguide is positioned and that propagate optical signals. It is a vessel.
  • FIG. 1 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 10.
  • the optical wavelength multiplexer / demultiplexer 10 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • FIG. 2 is an enlarged view of a broken line part of FIG. Figure 2 shows the spacing 40 between the first slab waveguide 22, the first slab waveguide side taper portion 23, the first array waveguide side taper portion 24, the channel waveguide 26, and the first slab waveguide side taper portion. It is shown in the figure.
  • the optical wavelength multiplexer / demultiplexer 10 may be formed on a substrate (not shown in FIGS. 1 and 2).
  • the substrate material can be silicon (Si) or quartz glass (Si02).
  • the cladding layer may be formed by laminating quartz glass on the above-described substrate.
  • the core may be formed by laminating quartz glass mixed with impurities that increase the refractive index on the above-described cladding layer.
  • a flame accumulation method FHD method
  • CVD method chemical vapor deposition method
  • the clad layer may be formed by laminating quartz glass mixed with an impurity that lowers the refractive index on the above-described substrate.
  • the core may be formed by laminating quartz glass on the cladding layer described above.
  • the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side tapered portion 23, and the first array waveguide are formed as a pattern on the core described above using photolithography and etching.
  • the side taper portion 24, the channel waveguide 26, the second slab waveguide 31, and the second optical waveguide 32 may be formed.
  • the first optical waveguide 21 may be formed.
  • the number of first optical waveguides 21 is not limited to two.
  • the first slab waveguide 22 may be formed so as to be connected to one end of the first optical waveguide 21.
  • the first slab waveguide-side tapered portion 23 has a first optical waveguide of the first slab waveguide 22 so that the distance 40 between the first slab waveguide-side taper portions is equal. It may be formed so as to be connected to the side opposite to the side where 21 is located. Further, the width of the first slab waveguide side taper portion 23 becomes narrower as the distance from the first slab waveguide 22 increases.
  • the first arrayed waveguide side tapered portion 24 may be formed so as to be connected to the side of the first slab waveguide side tapered portion 23 that faces the side where the first slab waveguide 22 is located.
  • the width of the first arrayed waveguide side tapered portion 24 is narrower than the side of the first slab waveguide side tapered portion 23 that faces the side where the first slab waveguide 22 is located, and the first slab waveguide side It becomes narrower as it gets farther from the taper part 23.
  • the plurality of channel waveguides 26 are formed so that one end thereof is connected to the side of the first arrayed waveguide side tapered portion 24 opposite to the side where the first slab waveguide side tapered portion 23 is located. May be.
  • Each of the channel waveguides 26 has a certain optical waveguide length difference.
  • the arrayed waveguide 27 is composed of a plurality of channel waveguides 26.
  • the second slab waveguide 31 may be formed so as to be connected to the other end of the arrayed waveguide 27.
  • the second optical waveguide 32 may be formed so as to be connected to the side of the second slab waveguide 31 that faces the side where the arrayed waveguide 27 is located.
  • the clad layer may be laminated again.
  • the substrate described above may be heated at 1000 ° C or more. If the refractive index of the clad layer laminated on the upper surface of the substrate described above and the clad layer laminated again are the same, a single clad layer is formed after heating.
  • the optical wavelength multiplexer / demultiplexer 10 does not increase the yield and the number of manufacturing steps.
  • the optical wavelength multiplexer / demultiplexer 10 has the length of the first slab waveguide side tapered portion 23 and the first slab waveguide side tapered portion 23. 1 slab waveguide 22 width, first slab waveguide side taper 2 The width of the portion connected to the channel waveguide 26 of 3 and the width of the channel waveguide 26 are not changed.
  • the influence of the change in the chip size and the like of the optical wavelength multiplexer / demultiplexer 10 is absorbed by changing the width and length of the first arrayed waveguide side tapered portion 24.
  • the optical wavelength multiplexer / demultiplexer 10 can reduce the change in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that does not increase yield and manufacturing man-hours.
  • the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent tapered portions of the first slab waveguide.
  • a first slab waveguide side inclined portion that is in contact with the side on which the first slab waveguide side taper portion is located and becomes thinner as it gets farther from the first slab waveguide is further formed as a pattern of the core It is preferred that
  • FIG. 3 is an enlarged view of the broken line portion of FIG. 1 after the first slab waveguide side inclined portion 25 is formed.
  • FIG. 3 shows a first slab waveguide 22, a first slab waveguide side taper portion 23, a first array waveguide side taper portion 24, a first slab waveguide side inclined portion 25, and a channel waveguide 26. It is shown in the figure.
  • FIG. 4 is a cross-sectional view taken along the line ⁇ _ ⁇ ′ in FIG. FIG. 4 shows the first slab waveguide 22, the first slab waveguide side inclined portion 25, the substrate 33, and the cladding layer.
  • FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. FIG. 5 shows the first slab waveguide side tapered portion 23, the first slab waveguide side inclined portion 25, the substrate 33, and the cladding layer 34.
  • the first slab waveguide side inclined portion 25 of the optical wavelength multiplexer / demultiplexer 10 will be described.
  • the first slab waveguide side inclined portion 25 may be formed.
  • the first slab waveguide side inclined portion 25 may be formed by reactive ion etching. Adjust the photoresist exposure conditions, the type of gas used for reactive ion etching, the gas pressure, etc.
  • the slab waveguide side inclined portion 25 can be formed.
  • the formation of the slope of the first slab waveguide side slope 25 is also related to the progress of the reactive ion etching, and it is difficult to determine the manufacturing conditions because it requires time. Therefore, it is better not to change the manufacturing conditions of the first slab waveguide side inclined portion 25 as much as possible.
  • the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22 may be increased.
  • the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22 may be reduced.
  • the first slab waveguide side tapered portion 23 may be formed so as to ensure the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22. .
  • the first slab waveguide side tapered portion 23 is equally spaced, the first slab waveguide side inclined portion 25 can be formed with a constant size, so the optical wavelength multiplexer / demultiplexer 10 is designed with a structure and shape. Even if it is changed, changes in manufacturing conditions such as etching can be reduced.
  • the first slab waveguide side inclined portion 25 is located between the adjacent first slab waveguide side tapered portions 23, and the first slab waveguide 22 has a first slab waveguide 22 as shown in FIG.
  • the waveguide side taper part 23 may be formed so as to be in contact with the side where the part 23 is located.
  • the first slab waveguide side inclined portion 25 becomes thinner as the distance from the first slab waveguide 22 increases.
  • Optical signals having different wavelengths are input to the first optical waveguide 21.
  • the optical signal output from the first optical waveguide 21 is diffracted by the first slab waveguide 22 and input to the channel waveguide 26 via the first slab waveguide side tapered portion 23. Since each channel waveguide 26 has a constant optical waveguide length difference, the phase of the optical signal output from the channel waveguide 26 is shifted by a certain amount.
  • Optical signals whose phases are shifted by a certain amount interfere with each other when diffracted by the second slab waveguide 31. As a result of the interference, the optical signal is demultiplexed for each wavelength and output to a predetermined second optical waveguide 32.
  • the electromagnetic field distribution between the first slab waveguide 22 and the first slab waveguide side tapered portion 23 is different at the connection point between the first slab waveguide 22 and the first slab waveguide side tapered portion 23. ing. Part of the optical signal output from the first optical waveguide 21 to the first slab waveguide 22 In some cases, the light waveguide side taper portion 23 is incident on an unconnected portion.
  • the optical signal incident on the location where the first slab waveguide side tapered portion 23 is not connected is propagated by the optical wavelength multiplexer / demultiplexer 10. It is a loss. However, since the first slab waveguide side inclined portion 25 is formed, the optical signal incident on the portion where the first slab waveguide side tapered portion 23 is not connected is passed through the first slab waveguide side inclined portion 25. The first slab waveguide side taper portion 23, the first array waveguide side taper portion 24, or the channel waveguide 26 may be returned via. Therefore, the propagation loss of the optical wavelength multiplexer / demultiplexer 10 is reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
  • the second embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core.
  • a plurality of second optical waveguides; a second slab waveguide connected to one end of the second optical waveguide to refract an optical signal; and a side of the second slab waveguide where the second optical waveguide is located A plurality of second slab waveguide side taper portions for propagating optical signals, each of which is equidistant, narrower as the distance from the second slab waveguide increases, 2 connected to the side of the tapered portion of the slab waveguide facing the side where the second slab waveguide is located, and the width of the tapered portion of the second slab waveguide is the side of the tapered portion of the second slab waveguide Narrower than the opposite side and the second slab waveguide side taper
  • An array waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the slab waveguide side taper portion is located, and a first that diffracts an optical signal connected to the other end of the arrayed waveguide.
  • An optical wavelength multiplexer in which a slab waveguide and a first optical waveguide that propagates an optical signal are connected to a side of the first slab waveguide that faces the side where the arrayed waveguide is located. is there.
  • FIG. 6 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 11.
  • the optical wavelength multiplexer / demultiplexer 11 includes the first optical waveguide 21 and the first Slab waveguide 22, channel waveguide 26, array waveguide 27, second slab waveguide 31 and second
  • Optical waveguide 32 is provided.
  • FIG. 7 is an enlarged view of a broken line part of FIG. 7 shows the distance 41 between the channel waveguide 26, the second arrayed waveguide side tapered portion 28, the second slab waveguide side tapered portion 29, the second slab waveguide 31 and the second slab waveguide side tapered portion. It is shown in the figure.
  • the optical wavelength multiplexer / demultiplexer 11 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 in FIG.
  • the optical wavelength multiplexer / demultiplexer 11 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
  • the second slab waveguide side tapered portion 29 has a second optical waveguide of the second slab waveguide 31 so that the distance 41 between the second slab waveguide side taper portions is equal. It may be formed so as to be connected to the side opposite to the side where 32 is located. Further, the width of the second slab waveguide side taper portion 29 becomes narrower as the distance from the second slab waveguide 31 increases.
  • the second arrayed waveguide side tapered portion 28 may be formed so as to be connected to the side of the second slab waveguide side tapered portion 29 that faces the side where the second slab waveguide 31 is located.
  • the width of the second arrayed waveguide side tapered portion 28 is narrower than the side of the second slab waveguide side tapered portion 29 that faces the side where the second slab waveguide 31 is located, and the second slab waveguide side It becomes narrower as it gets farther from the taper section 29.
  • One end of the plurality of channel waveguides 26 is connected to the side of the second arrayed waveguide side tapered portion 28 opposite to the side where the second slab waveguide side tapered portion 29 is located, and the other end is connected.
  • the first slab waveguide 22 may be formed so as to be connected to the side opposite to the side where the first optical waveguide 21 is located.
  • the optical wavelength multiplexer / demultiplexer 11 does not increase the yield and the number of manufacturing steps will be described. Similar to the optical wavelength demultiplexer 10 in FIG. 1, the optical wavelength demultiplexer 11 absorbs the influence of the change in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and the manufacturing conditions such as etching are Changes can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
  • the second embodiment has a refractive index between the cladding layer and the core,
  • the second slab waveguide side taper portion is in contact with the second slab waveguide side taper portion, is in contact with the side where the second slab waveguide side taper portion is located, and becomes farther away from the second slab waveguide.
  • a second slab waveguide side inclined portion with a reduced thickness is further formed as the pattern of the core.
  • FIG. 8 is an enlarged view of the broken line portion of FIG. 6 after the second slab waveguide side inclined portion 30 is formed.
  • FIG. 8 shows a channel waveguide 26, a second arrayed waveguide side tapered portion 28, a second slab waveguide side tapered portion 29, a second slab waveguide side inclined portion 30, and a second slab waveguide 31. ing.
  • the second slab waveguide side inclined portion 30 of FIG. 8 can be formed.
  • the second slab waveguide side inclined portion 30 is located between the adjacent second slab waveguide side tapered portions 29 and touches the side where the second slab waveguide side tapered portion 29 of the second slab waveguide 31 is located. It may be formed as follows. The second slab waveguide side inclined portion 30 becomes thinner as the distance from the second slab waveguide 31 increases.
  • the second slab waveguide side tapered portions 29 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 11 is inclined to the second slab waveguide side.
  • the portion 30 can be formed with a constant size between the second slab waveguide side taper portion 29. Therefore, the optical wavelength multiplexer / demultiplexer 11 can reduce the change in manufacturing conditions such as etching even if the structure or shape is changed.
  • the second slab waveguide side inclined portion 30 reduces the propagation loss.
  • An optical signal having a specific wavelength is input to the same second optical waveguide 32.
  • the optical signal output from the second optical waveguide 32 is bent by the second slab waveguide 31 and input to the channel waveguide 26 via the second slab waveguide side tapered portion 29. Since each channel waveguide 26 has a constant optical waveguide length difference, the phase of the optical signal output from the channel waveguide 26 is shifted by a certain amount.
  • Optical signals whose phases are shifted by a certain amount interfere with each other when diffracted by the first slab waveguide 22. As a result of the interference, the optical signals are combined at different wavelengths and output to a specific first optical waveguide 21. It is.
  • the second slab waveguide side tapered portion 29 is connected to a part of the optical signal incident from the second optical waveguide 32 to the second slab waveguide 31. Being incident, it may be incident on the part that is not.
  • the optical signal incident on the portion where the second slab waveguide side taper portion 29 is not connected passes through the second slab waveguide side inclined portion 30 to the second array waveguide side taper portion 28, the second The taper may return to the slab waveguide side taper 29 or the channel waveguide 26. Therefore, the propagation loss of the optical wavelength multiplexer / demultiplexer 11 is reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
  • the third embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core.
  • a first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide-side tapered portions that propagate optical signals, and are narrower as the distance from the first slab waveguide increases.
  • the side taper portion is connected to the side facing the side where the first slab waveguide is located, and the width is from the side facing the side where the first slab waveguide is located of the first slab waveguide side taper portion. Narrow and from the tapered portion on the first slab waveguide side
  • the first slab of the first arrayed waveguide side tapered portion that has a certain optical waveguide length difference and a first optical waveguide side tapered portion that becomes narrower and propagates an optical signal.
  • An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the waveguide side taper portion is located, and connected to the other end of the arrayed waveguide, and the width of the arrayed waveguide increases as the distance increases.
  • the second arrayed waveguide-side tapered portion that propagates the optical signal is connected to the side of the second arrayed-waveguide-side tapered portion that faces the side where the arrayed waveguide is located.
  • the width of the tapered portion of the second arrayed waveguide side is wider than the side facing the side where the arrayed waveguide is located, and the width becomes wider as the distance from the tapered portion of the second arrayed waveguide side becomes larger.
  • 2nd slurry propagating signal Waveguide taper A second slab waveguide that diffracts an optical signal, and a second slab waveguide that diffracts an optical signal; and a second slab waveguide that is connected to a side of the second slab waveguide side tapered portion that faces the side where the second arrayed waveguide side tapered portion is located.
  • An optical wavelength multiplexer / demultiplexer in which a plurality of second optical waveguides that propagate optical signals are connected to a side of the slab waveguide that faces the side where the second slab waveguide side taper portion is located. .
  • FIG. 9 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 12.
  • the optical wavelength multiplexer / demultiplexer 12 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • the optical wavelength multiplexer / demultiplexer 12 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 in FIG.
  • the optical wavelength multiplexer / demultiplexer 12 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
  • the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side tapered portion 23, and the first arrayed waveguide side tapered portion 24 are provided.
  • An array waveguide 27 composed of a plurality of channel waveguides 26 is formed.
  • the second arrayed waveguide side tapered portion 28, the second slab waveguide side tapered portion 29, the second slab waveguide 31 and the second optical waveguide 32 are It ’s formed.
  • optical wavelength multiplexer / demultiplexer 12 reduces the yield and the number of manufacturing steps will be described.
  • the optical wavelength multiplexer / demultiplexer 12 can demultiplex an optical signal input to the first optical waveguide 21 for each wavelength and output the demultiplexed optical signal to the second optical waveguide 32.
  • the optical wavelength multiplexer / demultiplexer 12 can multiplex the optical signals input to the second optical waveguide 32 with different wavelengths and output them from the first optical waveguide 21.
  • the optical wavelength multiplexer / demultiplexer 12 can reduce the yield and the number of manufacturing steps. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a good yield in manufacturing.
  • the refractive index between the cladding layer and the core is The first slab waveguide side taper portion is in contact with the first slab waveguide side taper portion, is in contact with the side where the first slab waveguide side taper portion is located, and becomes farther away from the first slab waveguide.
  • the second slab waveguide side tapered portion having a refractive index between the first slab waveguide side inclined portion where the thickness is reduced and the clad layer and the core, and the second slab waveguide side tapered portion contacting P, The second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side taper portion of the slab waveguide is located and the thickness of the second slab waveguide side decreases as the distance from the second slab waveguide force increases. It is preferable that it is further formed as.
  • the optical wavelength multiplexer / demultiplexer 12 includes the first slab waveguide side inclined portion 25 and the second slab.
  • a force S can be formed to form the waveguide-side inclined portion 30.
  • the optical wavelength multiplexer / demultiplexer 12 is generated at the connection point between the first slab waveguide side taper portion 23 and the first slab waveguide 22. Propagation loss can be reduced.
  • the optical wavelength multiplexer / demultiplexer 12 is used to propagate the second slab waveguide side taper portion 29 and the second slab waveguide 31 at the connection point. Loss can be reduced.
  • the optical wavelength multiplexer / demultiplexer 12 can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield during manufacture.
  • the fourth embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as a pattern of the core.
  • a first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide side equal width portions that are equally spaced and have uniform widths and propagate optical signals, and the first slab waveguide side equal width portions Connected to the side opposite to the side where the slab waveguide is located, the width is narrower than the first slab waveguide side equal width part, and the first slab waveguide side equal width part force becomes narrower as the distance increases.
  • the first arrayed-waveguide-side taper portion to be carried and a certain optical waveguide length difference, one end of which is the side where the first-slab-waveguide-side equal-width portion of the first arrayed-waveguide-side tapered portion is located An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the second waveguide, a second slab waveguide connected to the other end of the arrayed waveguide and diffracting an optical signal, and a second slab waveguide
  • An optical wavelength multiplexer / demultiplexer formed with a plurality of second optical waveguides that are connected to a side opposite to the side where the arrayed waveguide is located and that propagate optical signals.
  • FIG. 10 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 13.
  • the optical wavelength multiplexer / demultiplexer 13 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • FIG. 11 is an enlarged view of a broken line part of FIG. Figure 11 shows the spacing between the first slab waveguide 22, the first arrayed waveguide side taper 24, the channel waveguide 26, the first slab waveguide side equal width part 35, and the first slab waveguide side tapered part. 42 is shown.
  • optical wavelength multiplexer / demultiplexer 13 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 of FIG.
  • the optical wavelength multiplexer / demultiplexer 13 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
  • the first slab waveguide-side equal width portion 35 has a first optical waveguide of the first slab waveguide 22 so that the interval 42 between the first slab waveguide-side tapered portions is equal. It may be formed so as to be connected to the side opposite to the side where 21 is located. Further, the first slab waveguide side equal width portion 35 may be formed to have a uniform width.
  • the second arrayed waveguide side tapered portion 28 may be formed on the side of the first slab waveguide side equal width portion 35 that faces the side where the first slab waveguide 22 is located.
  • the optical wavelength multiplexer / demultiplexer 13 absorbs the influence of the change in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and the manufacturing conditions such as etching are Changes can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
  • the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent equal width portions on the first slab waveguide side.
  • the first slab waveguide side inclined portion is in contact with the side where the first slab waveguide side equal width portion is located, and the first slab waveguide side inclined portion becomes thinner as it gets farther from the first slab waveguide. It is preferable to further form as follows.
  • FIG. 12 is an enlarged view of the broken line portion of FIG. 10 after the first slab waveguide side inclined portion 25 is formed.
  • FIG. 12 shows the first slab waveguide 22, the first array waveguide side taper section 24, the first slab waveguide side inclined section 25, the channel waveguide 26, and the first slab waveguide side equal width section 35. Has been.
  • the first slab waveguide side inclined portion 25 of FIG. 12 can be formed.
  • the first slab waveguide side inclined portion 25 is located between the adjacent first slab waveguide side equal width portions 35 and on the side of the first slab waveguide 22 where the first slab waveguide side equal width portion 35 is located. You may form so that it may contact
  • the first slab waveguide side inclined portion 25 becomes thinner as the distance from the second slab waveguide 31 increases.
  • the first slab waveguide side equal-width portions 35 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 13 is inclined to the first slab waveguide side.
  • the portion 25 can be formed with a constant size between the first slab waveguide side equal width portions 35. Therefore, the optical wavelength multiplexer / demultiplexer 13 can reduce changes in manufacturing conditions such as etching, even if the structure or shape is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
  • the fifth embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core.
  • a plurality of second optical waveguides; a second slab waveguide connected to one end of the second optical waveguide to refract an optical signal; and a side of the second slab waveguide where the second optical waveguide is located A plurality of second slab waveguide side equal width portions that are equally spaced and uniform in width and propagate optical signals, and the second slab waveguide side equal width portions.
  • the second arrayed waveguide side taper portion that propagates through the second slab waveguide side taper portion has a certain optical waveguide length difference, and one end is located at the second slab waveguide side taper portion of the second arrayed waveguide side taper portion.
  • An array waveguide composed of a plurality of channel waveguides connected to the side opposite to the side, a first slab waveguide connected to the other end of the array waveguide and diffracting an optical signal, and the first slab waveguide
  • An optical wavelength multiplexer / demultiplexer having a first optical waveguide connected to a side opposite to the side where the arrayed waveguide is positioned and transmitting an optical signal.
  • FIG. 13 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 14.
  • 1 includes an optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • FIG. 14 is an enlarged view of a broken line part of FIG. 14 shows the channel waveguide 26, the second arrayed waveguide side tapered portion 28, the second slab waveguide 31, the second slab waveguide side equal width portion 36, and the second slab waveguide side equal width portion. A distance 43 is shown.
  • the optical wavelength multiplexer / demultiplexer 14 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 11 in FIG.
  • the optical wavelength multiplexer / demultiplexer 14 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
  • the second slab waveguide-side equal-width portion 36 has a second optical waveguide of the second slab waveguide 31 so that the distance 43 between the second slab waveguide-side tapered portions is equal. It may be formed so as to be connected to the side opposite to the side where 32 is located. Further, the second slab waveguide side equal width portion 36 may be formed to have a uniform width.
  • the second arrayed waveguide side tapered portion 28 may be formed on the side of the second slab waveguide side equal width portion 36 that faces the side where the second slab waveguide 31 is located.
  • optical wavelength multiplexer / demultiplexer 14 does not increase the yield and the number of manufacturing steps will be described. Similar to the optical wavelength demultiplexer 11 in FIG. 6, the optical wavelength demultiplexer 14 absorbs the effect of changes in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and manufacturing conditions such as etching Can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
  • the second slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the second slab waveguide side.
  • a second slab waveguide side inclined portion formed so as to be in contact with a side where the second slab waveguide side equal width portion of the second slab waveguide side is located, and the thickness of the second slab waveguide side becomes thinner as the distance from the second slab waveguide force increases. It is preferable to further form as a pattern.
  • FIG. 15 is an enlarged view of the broken line portion of FIG. 13 after the second slab waveguide side inclined portion 30 is formed.
  • FIG. 15 shows a channel waveguide 26, a second arrayed waveguide side tapered portion 28, a second slab waveguide side inclined portion 30, a second slab waveguide 31 and a second slab waveguide side equal width portion 36. Yes.
  • the second slab waveguide side inclined portion 30 of FIG. 15 can be formed.
  • the second slab waveguide side inclined portion 30 is located between the adjacent second slab waveguide side equal width portions 36, and on the side of the second slab waveguide 31 where the second slab waveguide side equal width portion 36 is located. You may form so that it may contact
  • the second slab waveguide side inclined portion 30 becomes thinner as the distance from the second slab waveguide 31 increases.
  • the second slab waveguide side inclined portions 30 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 14 is provided with the second slab waveguide side inclined portions. 30 can be formed between the second slab waveguide side equal width portion 36 with a constant size. Therefore, the optical wavelength multiplexer / demultiplexer 14 can reduce changes in manufacturing conditions such as etching even when the design or structure of the structure is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
  • the sixth embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as the pattern of the core.
  • a first optical waveguide, a first slab waveguide that is connected to one end of the first optical waveguide and diffracts an optical signal, and faces the side of the first slab waveguide where the first optical waveguide is located A plurality of first slab waveguide side equal-width portions that are equally spaced and have uniform widths and that propagate optical signals, and the first slab waveguide-side equal width portions.
  • the width is narrower than the first slab waveguide side equal width part and the first slab waveguide side equal width part force becomes narrower, 1st array waveguide side taper part which transmits an optical signal, and a certain optical waveguide length difference, and one end is the 1st slab waveguide side equal width part of the 1st array waveguide side taper part
  • An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the optical waveguide is positioned, and the other end of the arrayed waveguide, and the width becomes wider as the distance from the arrayed waveguide increases.
  • a second arrayed-waveguide-side taper that propagates through the second-arrayed waveguide Taper Connected to the side opposite to the side on which a part of the arrayed waveguide is located, and each is equidistant, and the width is opposite to the side on which the arrayed waveguide is located in the second arrayed waveguide side tapered portion
  • the second slab waveguide side equal width part that is wider and uniform than the side and propagates the optical signal, and the side where the second array waveguide side taper part of the second slab waveguide side equal width part is located
  • An optical wavelength multiplexer / demultiplexer in which a plurality of second optical waveguides that propagate optical signals are formed.
  • FIG. 16 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 15.
  • the optical wavelength multiplexer / demultiplexer 15 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
  • the optical wavelength multiplexer / demultiplexer 15 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 13 in FIG.
  • the optical wavelength multiplexer / demultiplexer 15 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
  • an arrayed waveguide 27 comprising a plurality of channel waveguides 26 may be formed.
  • the second arrayed waveguide side tapered portion 28 Similar to the optical wavelength multiplexer / demultiplexer 14 in FIG. 14, the second arrayed waveguide side tapered portion 28, the second slurry The waveguide-side equal width portion 36, the second slab waveguide 31 and the second optical waveguide 32 may be formed.
  • optical wavelength multiplexer / demultiplexer 15 reduces the yield and the number of manufacturing steps will be described.
  • the optical wavelength multiplexer / demultiplexer 15 can demultiplex an optical signal input to the first optical waveguide 21 for each wavelength and output the demultiplexed optical signal to the second optical waveguide 32.
  • the optical wavelength multiplexer / demultiplexer 15 can multiplex the optical signals input to the second optical waveguide 32 with different wavelengths and output them from the first optical waveguide 21.
  • the optical wavelength multiplexer / demultiplexer 15 can reduce the yield and the number of manufacturing steps. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
  • the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent equal width portions on the first slab waveguide side.
  • the first slab waveguide side inclined portion which is in contact with the side where the first slab waveguide side equal width portion is located and becomes thinner as it gets farther from the first slab waveguide, the cladding layer and the clad layer A side having a bending ratio with the core, between the adjacent equal width portions of the second slab waveguide, and on the side where the equal width portion of the second slab waveguide is located.
  • a second slab waveguide-side inclined portion that is in contact with the second slab waveguide and whose thickness becomes thinner as the force of the second slab waveguide is further formed is further formed as a pattern of the core.
  • the optical wavelength multiplexer / demultiplexer 15 is generated at the connection point between the first slab waveguide side equal width portion 35 and the first slab waveguide 22. Propagation loss can be reduced.
  • the optical wavelength multiplexer / demultiplexer 15 is generated at the connection point between the second slab waveguide side equal width portion 36 and the second slab waveguide 31. Propagation loss can be reduced. Since the first slab waveguide side equal width portion 35 and the second slab waveguide side equal width portion 36 are each equidistant, the optical wavelength multiplexing / demultiplexing device 13 in FIG.
  • the optical wavelength multiplexer / demultiplexer 15 can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss due to yield.
  • optical wavelength multiplexer / demultiplexer of the present invention can be used in an optical fiber communication network as an optical component such as an optical multiplexer / demultiplexer or an optical switch.

Abstract

A change in the chip size, the center wavelength, the wavelength interval or the number of channels of an array waveguide will change the waveguide length or the like of the array waveguide. Then, an array waveguide type wavelength multiplexer/demultiplexer circuit should be produced with the width, length, thickness and inclination angle of its inclined portion changed. Changes in the width, length, thickness and inclination angle of the inclined portion result in changes in production conditions such as etching of the array waveguide type wavelength multiplexer/demultiplexer circuit. A change in etching condition poses problems such as yield of the array waveguide type wavelength multiplexer/demultiplexer circuit and an increase in production man-hours. A wavelength multiplexer/demultiplexer comprising first slab waveguide-side tapered units and second slab waveguide-side tapered unit that are formed at equal intervals, and first slab waveguide-side inclination units and second slab waveguide-side inclination units that are formed between the first slab waveguide-side tapered units and second slab waveguide-side tapered unit.

Description

明 細 書  Specification
光波長合分波器  Optical wavelength multiplexer / demultiplexer
技術分野  Technical field
[0001] 本発明は、一定の光導波路長差を有する複数のチャネル導波路からなるアレイ導 波路とアレイ導波路の両端に形成されたスラブ導波路がコアに形成された光波長合 分波器に関する。 背景技術  The present invention relates to an optical wavelength multiplexer / demultiplexer in which an arrayed waveguide composed of a plurality of channel waveguides having a constant optical waveguide length difference and a slab waveguide formed at both ends of the arrayed waveguide are formed in the core About. Background art
[0002] 従来から、アレイ導波路を用いた光波長合分波器は、光ファイバ一通信網等で必 要とされる波長多重化技術の要となる主要部品として、期待されている。  Conventionally, an optical wavelength multiplexer / demultiplexer using an arrayed waveguide is expected as a main component that is a key component of wavelength multiplexing technology required in an optical fiber communication network or the like.
[0003] 図 17から図 20を用いて、特許文献 1で開示されるアレイ導波路型波長合分波回路  [0003] An arrayed waveguide type wavelength multiplexing / demultiplexing circuit disclosed in Patent Document 1 using FIGS. 17 to 20
90を例に、従来の光波長合分波器について説明する。図 17は、アレイ導波路型波 長合分波回路 90の概念図である。アレイ導波路型波長合分波回路 90は、第 1光導 波路 21、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラブ導 波路 31及び第 2光導波路 32を備える。  A conventional optical wavelength multiplexer / demultiplexer will be described by taking 90 as an example. FIG. 17 is a conceptual diagram of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90. The arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0004] 第 1光導波路 21は、第 1スラブ導波路 22に接続される。第 1スラブ導波路 22は、了 レイ導波路 27の一方の側と接続される。アレイ導波路 27の他方の側は、第 2スラブ 導波路 31に接続される。また、第 2スラブ導波路 31は、第 2光導波路 32に接続され る。  The first optical waveguide 21 is connected to the first slab waveguide 22. The first slab waveguide 22 is connected to one side of the optical waveguide 27. The other side of the arrayed waveguide 27 is connected to the second slab waveguide 31. The second slab waveguide 31 is connected to the second optical waveguide 32.
[0005] 図 18は、図 17の破線部の拡大図である。図 18には、第 1スラブ導波路 22、チヤネ ル導波路 26及び傾斜部 91が図示されている。傾斜部 91は、チャネル導波路 26と第 1スラブ導波路 22との接続箇所及びチャネル導波路 26と第 2スラブ導波路 31との接 続箇所(図 17には図示してレ、なレ、。 )に形成されてもょレ、。  FIG. 18 is an enlarged view of a broken line part of FIG. FIG. 18 illustrates the first slab waveguide 22, the channel waveguide 26, and the inclined portion 91. The inclined portion 91 is connected to the channel waveguide 26 and the first slab waveguide 22 and to the channel waveguide 26 and the second slab waveguide 31 (shown in FIG. )
[0006] 図 19は、図 18の C— C'の断面図である。図 19には、チャネル導波路 26、基板 33 、クラッド層 34及び傾斜部 91が図示されている。図 19に示すように、傾斜部 91は、 チャネル導波路 26の間に形成されてもょレ、。  FIG. 19 is a cross-sectional view taken along the line CC ′ of FIG. FIG. 19 shows the channel waveguide 26, the substrate 33, the cladding layer 34, and the inclined portion 91. As shown in FIG. 19, the inclined portion 91 is formed between the channel waveguides 26.
[0007] 図 20は、図 18の D— D'の断面図である。図 20には、第 1スラブ導波路 22、基板 3 3、クラッド層 34及び傾斜部 91が図示されている。図 20に示すように、傾斜部 91の 肉厚は、第 1スラブ導波路 22から遠くなるにつれ薄くなる。 FIG. 20 is a cross-sectional view taken along the line DD ′ of FIG. FIG. 20 shows the first slab waveguide 22, the substrate 33, the clad layer 34, and the inclined portion 91. As shown in FIG. The wall thickness decreases as the distance from the first slab waveguide 22 increases.
[0008] 例えば、アレイ導波路型波長合分波回路 90は、第 1光導波路 21に入力された異な る波長の光信号を、波長ごとに分波して所定の第 2光導波路 32から出力することが できる。また、傾斜部 91が形成されていることで、アレイ導波路型波長合分波回路 90 は、アレイ導波路 27と第 1スラブ導波路 22との接続箇所及びアレイ導波路 27と第 2 スラブ導波路 31との接続箇所で発生する伝搬損失を低減することができる。  For example, the arrayed waveguide-type wavelength multiplexing / demultiplexing circuit 90 demultiplexes optical signals of different wavelengths input to the first optical waveguide 21 for each wavelength and outputs them from a predetermined second optical waveguide 32. can do. In addition, since the inclined portion 91 is formed, the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is connected to the array waveguide 27 and the first slab waveguide 22 and the array waveguide 27 and the second slab waveguide. Propagation loss occurring at the connection point with the waveguide 31 can be reduced.
[0009] また、アレイ導波路型波長合分波回路 90は、アレイ導波路 27と第 1スラブ導波路 2 2との接続箇所及びアレイ導波路 27と第 2スラブ導波路 31との接続箇所に、テーパ 一部を形成して、伝搬損失を低減することができる(図 17から図 20には図示していな い。)。  In addition, the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is provided at the connection point between the array waveguide 27 and the first slab waveguide 22 and at the connection point between the array waveguide 27 and the second slab waveguide 31. By forming a part of the taper, propagation loss can be reduced (not shown in Figures 17 to 20).
[0010] 特許文献 1 :特開 2001— 159718号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-159718
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] アレイ導波路型波長合分波回路 90は、チップサイズ、中心波長、波長間隔又はチ ャネル数を変更して製造することがある。チップサイズ等の構造や形状を設計変更す ると、チャネル導波路 26の幅及び導波路長、アレイ導波路 27と第 1スラブ導波路 22 との接続角及びアレイ導波路 27と第 2スラブ導波路 31との接続角、第 1スラブ導波路 22及び第 2スラブ導波路 31のアレイ導波路 27と接続する曲面の形状等が、変わる。 すると、アレイ導波路型波長合分波回路 90は、傾斜部 91の幅、長さ、厚み及び傾斜 角を変更して製造しなければならない。傾斜部 91の幅等の変更は、アレイ導波路型 波長合分波回路 90のエッチング等の製造条件の変更につながる。  The arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 may be manufactured by changing the chip size, the center wavelength, the wavelength interval, or the number of channels. When the design and structure such as the chip size are changed, the width and length of the channel waveguide 26, the connection angle between the array waveguide 27 and the first slab waveguide 22, and the array waveguide 27 and the second slab guide are changed. The connection angle with the waveguide 31, the shape of the curved surface connected to the arrayed waveguide 27 of the first slab waveguide 22 and the second slab waveguide 31, and the like change. Then, the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 must be manufactured by changing the width, length, thickness, and inclination angle of the inclined portion 91. Changes in the width of the inclined portion 91 and the like lead to changes in manufacturing conditions such as etching of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90.
[0012] また、アレイ導波路 27と第 1スラブ導波路 22との接続箇所及びアレイ導波路 27と 第 2スラブ導波路 31との接続箇所にテーパー部を形成している場合には、テーパー 部の第 1スラブ導波路 22と接続する箇所の幅、テーパー部の長さ及びテーパー部の チャネル導波路 26と接続する部分の幅力 変わる。テーパー部の長さ等の変更は、 アレイ導波路型波長合分波回路 90のエッチング等の製造条件の変更につながる。 よって、アレイ導波路型波長合分波回路 90の設計変更は、アレイ導波路型波長合 分波回路 90の製造にあたって歩留まりが悪くなる課題を発生させる。 [0013] 本発明は前記課題を解決する為になされたもので、製造にあたって歩留まりがよく 、伝搬損失を低減する光波長合分波器を提供することを目的とする。 [0012] In addition, when a tapered portion is formed at a connection portion between the arrayed waveguide 27 and the first slab waveguide 22 and a connection portion between the arrayed waveguide 27 and the second slab waveguide 31, the tapered portion The width of the portion connected to the first slab waveguide 22, the length of the tapered portion, and the width force of the portion connected to the channel waveguide 26 of the tapered portion vary. Changing the length of the taper portion leads to a change in manufacturing conditions such as etching of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90. Therefore, the design change of the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 causes a problem that the yield deteriorates when the arrayed waveguide type wavelength multiplexing / demultiplexing circuit 90 is manufactured. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical wavelength multiplexer / demultiplexer that has a good yield in manufacturing and reduces propagation loss.
課題を解決するための手段  Means for solving the problem
[0014] 上記目的を達成するために、本願第 1の発明は、第 1光導波路、第 1スラブ導波路 、等間隔である第 1スラブ導波路側テーパー部、第 1アレイ導波路側テーパー部、ァ レイ導波路、第 2スラブ導波路及び第 2光導波路が形成された光波長合分波器であ る。  [0014] In order to achieve the above object, the first invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side taper portion that is equally spaced, and a first array waveguide side taper portion. An optical wavelength multiplexer / demultiplexer in which an arrayed waveguide, a second slab waveguide, and a second optical waveguide are formed.
[0015] 具体的に、本願第 1の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回 折する第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が前記第 1スラブ導波路から遠 くなるにつれ狭くなり、光信号を伝搬する複数の第 1スラブ導波路側テーパー部と、 前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向す る側に接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が 位置する側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から遠 くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、一定の 光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前記第 1ス ラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチャネル導 波路からなるアレイ導波路と、前記アレイ導波路の他方の端に接続し、光信号を回折 する第 2スラブ導波路と、前記第 2スラブ導波路の前記アレイ導波路が位置する側と 対向する側に接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波 長合分波器である。  [0015] Specifically, the first invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and an optical signal is used as the pattern of the core. A first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide A plurality of first slab waveguide side tapered portions that propagate optical signals, each having an equal interval, the width being narrower as the distance from the first slab waveguide is reduced, The first slab waveguide side tapered portion is connected to the side opposite to the side where the first slab waveguide is located, and the width of the first slab waveguide side tapered portion is located in the first slab waveguide side tapered portion. Narrower than the side facing the first side and the first slab waveguide side The first arrayed waveguide side taper that propagates the optical signal becomes narrower as it gets farther from the par part, and has a certain optical waveguide length difference, and one end of the first arrayed waveguide side tapered part An array waveguide composed of a plurality of channel waveguides connected to the side opposite to the side on which the first slab waveguide side tapered portion is located, and the other end of the arrayed waveguide to diffract the optical signal. 2 slab waveguides, and a plurality of second optical waveguides that are connected to the side of the second slab waveguide that faces the side where the arrayed waveguides are located, and are formed with an optical wavelength combination. It is a waver.
[0016] 前記第 1スラブ導波路側テーパー部及び前記第 1アレイ導波路側テーパー部を備 えることで、前記光波長合分波器は、構造や形状を設計変更してもエッチング等の 製造条件の変更を低減することができる。従って、製造にあたって歩留まりのよい光 波長合分波器を提供することができる。  [0016] By providing the first slab waveguide side taper portion and the first array waveguide side taper portion, the optical wavelength multiplexer / demultiplexer can be manufactured such as etching even when the structure or shape is changed. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a high yield in manufacturing.
[0017] 本願第 1の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 1スラブ導波路側テーパー部の間にあり、前記第 1スラブ導波路の前記第 1 スラブ導波路側テーパー部が位置する側に接し、前記第 1スラブ導波路から遠くなる につれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、が前記コアのパターンとしてさら に形成されることが好ましい。 [0017] In the first invention of the present application, it has a refractive index between the cladding layer and the core and is adjacent to each other. Between the first slab waveguide side taper portion, and in contact with the side of the first slab waveguide where the first slab waveguide side taper portion is located, and as the distance from the first slab waveguide increases, the thickness increases. It is preferable that the first slab waveguide side inclined portion where the thickness becomes thinner is further formed as the pattern of the core.
[0018] 前記第 1スラブ導波路側テーパー部が等間隔であることで、前記コアに前記第 1ス ラブ導波路側傾斜部を一定の大きさで形成することができる。前記第 1スラブ導波路 側傾斜部が一定の大きさであれば、前記光波長合分波器は、構造や形状を設計変 更してもエッチング等の製造条件の変更を低減することができる。また、前記第 1スラ ブ導波路側傾斜部を備えることで、前記光波長合分波器は、前記第 1スラブ導波路 側テーパー部と前記第 1スラブ導波路との接続箇所で発生する伝搬損失を低減する ことができる。従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合 分波器を提供することができる。  [0018] Since the first slab waveguide side tapered portions are equally spaced, the first slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the first slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. . In addition, since the first slab waveguide side inclined portion is provided, the optical wavelength multiplexer / demultiplexer propagates at a connection point between the first slab waveguide side tapered portion and the first slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
[0019] 上記目的を達成するために、本願第 2の発明は、第 2光導波路、第 2スラブ導波路 、等間隔である第 2スラブ導波路側テーパー部、第 2アレイ導波路側テーパー部、ァ レイ導波路、第 1スラブ導波路及び第 1光導波路が形成された光波長合分波器であ る。  [0019] In order to achieve the above object, the second invention of the present application includes a second optical waveguide, a second slab waveguide, a second slab waveguide side tapered portion, and a second arrayed waveguide side tapered portion that are equally spaced. An optical wavelength multiplexer / demultiplexer in which an arrayed waveguide, a first slab waveguide, and a first optical waveguide are formed.
[0020] 具体的に、本願第 2の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する複数の第 2光導波路と、前記第 2光導波路の一方の端に接続し、光信 号を回折する第 2スラブ導波路と、前記第 2スラブ導波路の前記第 2光導波路が位置 する側と対向する側に接続し、それぞれが等間隔であり、幅が前記第 2スラブ導波路 力 遠くなるにつれ狭くなり、光信号を伝搬する複数の第 2スラブ導波路側テーパー 部と、前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波路が位置する側と対 向する側に接続し、幅が前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波 路が位置する側と対向する側より狭ぐかつ、前記第 2スラブ導波路側テーパー部か ら遠くなるにつれ狭くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、一定 の光導波路長差を有し、一方の端が前記第 2アレイ導波路側テーパー部の前記第 2 スラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチャネル 導波路からなるアレイ導波路と、前記アレイ導波路の他方の端に接続し、光信号を回 折する第 1スラブ導波路と、前記第 1スラブ導波路の前記アレイ導波路が位置する側 と対向する側に接続し、光信号を伝搬する第 1光導波路と、が形成された光波長合 分波器である。 [0020] Specifically, the second invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer. A second slab waveguide that is connected to one end of the second optical waveguide and diffracts the optical signal, and the second optical waveguide of the second slab waveguide is connected to one end of the second optical waveguide. A plurality of second slab waveguide side taper portions that are connected to the side opposite to the positioned side, are equidistant from each other, have a width that becomes narrower as the second slab waveguide force increases, and propagate an optical signal; The second slab waveguide side tapered portion is connected to the side opposite to the side where the second slab waveguide is located, and the width of the second slab waveguide side tapered portion is the second slab waveguide side location. The second slab waveguide is narrower than the side facing the conducting side and the second slab waveguide The second arrayed waveguide side tapered part that propagates the optical signal becomes narrower as it is farther from the tapered part, and has a certain optical waveguide length difference, and one end of the second arrayed waveguide side tapered part is Multiple channels connected to the side opposite to the side where the second slab waveguide taper is located An arrayed waveguide composed of waveguides, a first slab waveguide connected to the other end of the arrayed waveguide to refract an optical signal, and a side of the first slab waveguide on which the arrayed waveguide is located; An optical wavelength multiplexer / demultiplexer formed with a first optical waveguide connected to opposite sides and propagating an optical signal.
[0021] 前記第 2アレイ導波路側テーパー部及び前記第 2スラブ導波路側テーパー部を備 えることで、前記光波長合分波器は、構造や形状を設計変更してもエッチング等の 製造条件の変更を低減することができる。従って、製造にあたって歩留まりのよい光 波長合分波器を提供することができる。  [0021] By providing the second arrayed waveguide side tapered portion and the second slab waveguide side tapered portion, the optical wavelength multiplexer / demultiplexer can be manufactured such as etching even if the structure or shape is changed in design. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a high yield in manufacturing.
[0022] 本願第 2の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 2スラブ導波路側テーパー部の間にあり、前記第 2スラブ導波路の前記第 2 スラブ導波路側テーパー部が位置する側に接し、前記第 2スラブ導波路から遠くなる につれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパターンとしてさら に形成されることが好ましい。  [0022] In the second invention of the present application, the second slab waveguide has a refractive index between the clad layer and the core, and is between the adjacent tapered portions of the second slab waveguide. A second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side tapered portion is located and becomes thinner as it gets farther from the second slab waveguide is further formed as a pattern of the core. It is preferred that
[0023] 前記第 2スラブ導波路側テーパー部が等間隔であることで、前記コアに前記第 2ス ラブ導波路側傾斜部を一定の大きさで形成することができる。前記第 2スラブ導波路 側傾斜部が一定の大きさであれば、前記光波長合分波器は、構造や形状を設計変 更してもエッチング等の製造条件の変更を低減することができる。また、前記第 2スラ ブ導波路側傾斜部を備えることで、前記光波長合分波器は、前記第 2スラブ導波路 側テーパー部と前記第 2スラブ導波路との接続箇所で発生する伝搬損失を低減する こと力できる。従って、製造にあたって歩留まりがよ 伝搬損失を低減する光波長合 分波器を提供することができる。 [0023] Since the second slab waveguide side tapered portions are equally spaced, the second slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the second slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. . The second slab waveguide side inclined portion by providing the said optical wavelength demultiplexer is propagation occurring in connecting portion between the second slab waveguide and the second slab waveguide side tapered portion It is possible to reduce the loss. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that has good yield in manufacturing and reduces propagation loss.
[0024] 上記目的を達成するために、本願第 3の発明は、第 1光導波路、第 1スラブ導波路 、等間隔である第 1スラブ導波路側テーパー部、第 1アレイ導波路側テーパー部、ァ レイ導波路、第 2アレイ導波路側テーパー部、等間隔である第 2スラブ導波路側テー パー部、第 2スラブ導波路及び第 2光導波路が形成された光波長合分波器である。  [0024] In order to achieve the above object, the third invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side taper portion and a first array waveguide side taper portion that are equally spaced. The optical waveguide multiplexer / demultiplexer in which the arrayed waveguide, the second arrayed waveguide side tapered portion, the equally spaced second slab waveguide side tapered portion, the second slab waveguide, and the second optical waveguide are formed. is there.
[0025] 具体的に、本願第 3の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回 折する第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が前記第 1スラブ導波路から遠 くなるにつれ狭くなり、光信号を伝搬する複数の第 1スラブ導波路側テーパー部と、 前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向す る側に接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が 位置する側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から遠 くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、一定の 光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前記第 1ス ラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチャネル導 波路からなるアレイ導波路と、前記アレイ導波路の他方の端に接続し、幅が前記ァレ ィ導波路力ら遠くなるにつれ広くなり、光信号を伝搬する第 2アレイ導波路側テーパ 一部と、前記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する側と対 向する側に接続し、それぞれが等間隔であり、幅が前記第 2アレイ導波路側テーパ 一部の前記アレイ導波路が位置する側と対向する側より広ぐかつ、前記第 2アレイ 導波路側テーパー部から遠くなるにつれ広くなり、光信号を伝搬する第 2スラブ導波 路側テーパー部と、前記第 2スラブ導波路側テーパー部の前記第 2アレイ導波路側 テーパー部が位置する側と対向する側に接続し、光信号を回折する第 2スラブ導波 路と、前記第 2スラブ導波路の前記第 2スラブ導波路側テーパー部が位置する側と対 向する側に接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波長 合分波器である。 [0025] Specifically, the third invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer. Connected to one end of the first optical waveguide that propagates The first slab waveguide to be folded is connected to the side of the first slab waveguide opposite to the side on which the first optical waveguide is located. Each of them is equidistant and the width is far from the first slab waveguide. The first slab waveguide side taper part that propagates the optical signal becomes narrower as it becomes smaller, and is connected to the side of the first slab waveguide side taper part that faces the side where the first slab waveguide is located The width of the first slab waveguide side taper portion is narrower than the side of the first slab waveguide side taper portion facing the side where the first slab waveguide side is located, and the width becomes narrower as the distance from the first slab waveguide side taper portion increases. The first arrayed waveguide-side tapered portion that propagates the optical signal and the first optical waveguide-side tapered portion that has a certain optical waveguide length difference and one end of which is the first-arrayed waveguide-side tapered portion. Multiple channels connected to the opposite side Connected to the other end of the arrayed waveguide, and the width of the arrayed waveguide becomes wider with increasing distance from the arrayed waveguide force. Connected to the side of the second arrayed waveguide side taper that faces the side on which the arrayed waveguide is located, each of which is equally spaced, and the width of the tapered side of the second arrayed waveguide A second slab waveguide side taper portion that propagates an optical signal, wider than the side opposite to the side where the array waveguide is located, and wider from the second array waveguide side taper portion; A second slab waveguide side taper portion connected to a side of the second array waveguide side facing the side where the tapered portion is located, a second slab waveguide that diffracts an optical signal, and the second slab waveguide side 2nd slab waveguide side taper That connects to the side to side and a pair direction, and a plurality of second optical waveguide for propagating an optical signal, an optical wavelength division multiplexer which is formed.
[0026] 前記第 1スラブ導波路側テーパー部、前記第 1アレイ導波路側テーパー部、前記 第 2アレイ導波路側テーパー部及び前記第 2スラブ導波路側テーパー部を備えるこ とで、前記光波長合分波器は、構造や形状を設計変更してもエッチング等の製造条 件の変更を低減することができる。従って、製造にあたって歩留まりのよい光波長合 分波器を提供することができる。  [0026] The first slab waveguide side taper portion, the first array waveguide side taper portion, the second array waveguide side taper portion, and the second slab waveguide side taper portion are provided. The wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
[0027] 本願第 3の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 1スラブ導波路側テーパー部の間にあり、前記第 1スラブ導波路の前記第 1 スラブ導波路側テーパー部が位置する側に接し、前記第 1スラブ導波路から遠くなる につれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、前記クラッド層と前記コアとの間 の屈折率を有し、 P 接する前記第 2スラブ導波路側テーパー部の間にあり、前記第 2 スラブ導波路の前記第 2スラブ導波路側テーパー部が位置する側に接し、前記第 2 スラブ導波路から遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前 記コアのパターンとしてさらに形成されることが好ましい。 [0027] In the third invention of the present application, the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent first slab waveguide side tapered portions. The first slab waveguide side taper is in contact with the side where the taper is located, and is far from the first slab waveguide The first slab waveguide side inclined portion that becomes thinner as it is thinner, and has a refractive index between the cladding layer and the core, and is between the second slab waveguide side tapered portion that contacts P, and 2 The second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side tapered portion of the slab waveguide is located and becomes thinner as the distance from the second slab waveguide increases, It is preferable that the pattern is further formed.
[0028] 前記第 1スラブ導波路側テーパー部及び前記第 2スラブ導波路側テーパー部が等 間隔であることで、前記コアに前記第 1スラブ導波路側傾斜部及び前記第 2スラブ導 波路側傾斜部を一定の大きさで形成することができる。前記第 1スラブ導波路側傾斜 部及び前記第 2スラブ導波路側傾斜部が一定の大きさであれば、前記光波長合分 波器は、構造や形状を設計変更してもエッチング等の製造条件の変更を低減するこ とができる。また、前記第 1スラブ導波路側傾斜部及び前記第 2スラブ導波路側傾斜 部を備えることで、前記光波長合分波器は、前記第 1スラブ導波路側テーパー部と 前記第 1スラブ導波路との接続箇所及び前記第 2スラブ導波路側テーパー部と前記 第 2スラブ導波路との接続箇所で発生する伝搬損失を低減することができる。従って 、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器を提供するこ とがでさる。  [0028] Since the first slab waveguide side tapered portion and the second slab waveguide side tapered portion are equally spaced, the first slab waveguide side inclined portion and the second slab waveguide side are provided on the core. The inclined portion can be formed with a certain size. If the inclined portion on the first slab waveguide side and the inclined portion on the second slab waveguide side are of a certain size, the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure and shape are changed. The change of conditions can be reduced. In addition, the optical wavelength multiplexer / demultiplexer includes the first slab waveguide side tapered portion and the first slab waveguide by providing the first slab waveguide side inclined portion and the second slab waveguide side inclined portion. Propagation loss occurring at the connection point between the waveguide and the connection point between the second slab waveguide side tapered portion and the second slab waveguide can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
[0029] 上記目的を達成するために、本願第 4の発明は、第 1光導波路、第 1スラブ導波路 、等間隔である第 1スラブ導波路側等幅部、第 1アレイ導波路側テーパー部、アレイ 導波路、第 2スラブ導波路及び第 2光導波路が形成された光波長合分波器である。  [0029] In order to achieve the above object, the fourth invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide-side equal-width portion that is equally spaced, a first array waveguide-side taper. This is an optical wavelength multiplexer / demultiplexer in which a section, an arrayed waveguide, a second slab waveguide, and a second optical waveguide are formed.
[0030] 具体的に、本願第 4の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回 折する第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を伝搬す る複数の第 1スラブ導波路側等幅部と、前記第 1スラブ導波路側等幅部の前記第 1ス ラブ導波路が位置する側と対向する側に接続し、幅が前記第 1スラブ導波路側等幅 部より狭 かつ、前記第 1スラブ導波路側等幅部力 遠くなるにつれ狭くなり、光信 号を伝搬する第 1アレイ導波路側テーパー部と、一定の光導波路長差を有し、一方 の端が前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波路側等幅部が位置 する側と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、前記 アレイ導波路の他方の端に接続し、光信号を回折する第 2スラブ導波路と、前記第 2 スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光信号を伝 搬する複数の第 2光導波路と、が形成された光波長合分波器である。 [0030] Specifically, the fourth invention of the present application includes a clad layer formed on a substrate and a core having a higher refractive index than the clad layer and surrounded by the clad layer. A first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide A plurality of first slab waveguide side equal width parts that are equally spaced and have a uniform width and propagate an optical signal, the first slab waveguide side, etc. Connected to the side of the width portion facing the side where the first slab waveguide is located, the width is narrower than the first slab waveguide side equal width portion, and the first slab waveguide side equal width portion force is far The first arrayed waveguide side taper that propagates the optical signal becomes narrower, and the optical waveguide length is constant. It has, on the other hand An array waveguide composed of a plurality of channel waveguides connected to a side of the tapered portion on the first array waveguide side opposite to the side where the equal width portion on the first slab waveguide side is located; and the array waveguide A second slab waveguide that diffracts an optical signal, and a second slab waveguide that is connected to the side of the second slab waveguide that faces the side where the arrayed waveguide is located, and a plurality of optical signals are transmitted. The second optical waveguide is an optical wavelength multiplexer / demultiplexer.
[0031] 前記第 1スラブ導波路側等幅部及び前記第 1アレイ導波路側テーパー部を備える ことで、前記光波長合分波器は、構造や形状を設計変更してもエッチング等の製造 条件の変更を低減することができる。従って、製造にあたって歩留まりのよい光波長 合分波器を提供することができる。  [0031] By providing the first slab waveguide side equal width portion and the first array waveguide side taper portion, the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure and shape are changed in design. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
[0032] 本願第 4の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 1スラブ導波路側等幅部の間にあり、前記第 1スラブ導波路の前記第 1スラ ブ導波路側等幅部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつれ 肉厚が薄くなる第 1スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形成 されることが好ましい。  [0032] In the fourth invention of the present application, the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the first slab waveguide side. The first slab waveguide side inclined portion is in contact with the side where the first slab waveguide side equal width portion is located, and the first slab waveguide side inclined portion becomes thinner as it gets farther from the first slab waveguide. Further, it is preferably formed.
[0033] 前記第 1スラブ導波路側等幅部が等間隔であることで、前記コアに前記第 1スラブ 導波路側傾斜部を一定の大きさで形成することができる。前記第 1スラブ導波路側傾 斜部が一定の大きさであれば、前記光波長合分波器は、構造や形状を設計変更し てもエッチング等の製造条件の変更を低減することができる。また、前記第丄スラブ導 波路側傾斜部を備えることで、前記光波長合分波器は、前記第 1スラブ導波路側等 幅部と前記第 1スラブ導波路との接続箇所で発生する伝搬損失を低減することがで きる。従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器 を提供することができる。  [0033] Since the first slab waveguide side equal width portions are equally spaced, the first slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the first slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the design and structure of the structure are changed. . In addition, by providing the first slab waveguide side inclined portion, the optical wavelength multiplexer / demultiplexer propagates at a connection point between the first slab waveguide side equal width portion and the first slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
[0034] 上記目的を達成するために、本願第 5の発明は、第 2光導波路、第 2スラブ導波路 、等間隔である第 2スラブ導波路側等幅部、第 2アレイ導波路側テーパー部、アレイ 導波路、第 1スラブ導波路及び第 1光導波路が形成された光波長合分波器である。  [0034] In order to achieve the above object, the fifth invention of the present application includes a second optical waveguide, a second slab waveguide, a second slab waveguide side equal-width portion that is equally spaced, and a second array waveguide side taper. This is an optical wavelength multiplexer / demultiplexer in which a section, an arrayed waveguide, a first slab waveguide, and a first optical waveguide are formed.
[0035] 具体的に、本願第 5の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する複数の第 2光導波路と、前記第 2光導波路の一方の端に接続し、光信 号を回折する第 2スラブ導波路と、前記第 2スラブ導波路の前記第 2光導波路が位置 する側と対向する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を 伝搬する複数の第 2スラブ導波路側等幅部と、前記第 2スラブ導波路側等幅部の前 記第 2スラブ導波路が位置する側と対向する側に接続し、幅が前記第 2スラブ導波路 側等幅部より狭 かつ、前記第 2スラブ導波路側等幅部力 遠くなるにつれ狭くなり 、光信号を伝搬する第 2アレイ導波路側テーパー部と、一定の光導波路長差を有し、 一方の端が前記第 2アレイ導波路側テーパー部の前記第 2スラブ導波路側等幅部が 位置する側と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、 前記アレイ導波路の他方の端に接続し、光信号を回折する第 1スラブ導波路と、前記 第 1スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光信号 を伝搬する第 1光導波路と、が形成された光波長合分波器である。 [0035] Specifically, the fifth invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer. Connected to one end of the second optical waveguide and a plurality of second optical waveguides propagating the optical signal. A second slab waveguide that diffracts the signal, and a side of the second slab waveguide that is opposite to the side where the second optical waveguide is located. Are connected to a side of the second slab waveguide side equal width portion facing the side where the second slab waveguide side is located, and the width is the first slab waveguide side equal width portion. 2 Slab waveguide side equal width part Narrower as the second slab waveguide side equal width part force becomes narrower, and the second arrayed waveguide side taper part that propagates the optical signal and a certain optical waveguide length difference An array waveguide having a plurality of channel waveguides, one end of which is connected to a side of the second arrayed waveguide side tapered portion opposite to the side where the second slab waveguide side equal width portion is located A first slab waveguide connected to the other end of the arrayed waveguide to diffract the optical signal And a first optical waveguide that is connected to a side of the first slab waveguide that faces the side where the arrayed waveguide is located, and that propagates an optical signal.
[0036] 前記第 2スラブ導波路側等幅部及び前記第 2アレイ導波路側テーパー部を備える ことで、前記光波長合分波器は、構造や形状を設計変更してもエッチング等の製造 条件の変更を低減することができる。従って、製造にあたって歩留まりのよい光波長 合分波器を提供することができる。  [0036] By providing the second slab waveguide side equal width portion and the second array waveguide side taper portion, the optical wavelength multiplexer / demultiplexer can manufacture etching and the like even if the structure or shape is changed. The change of conditions can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
[0037] 本願第 5の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 2スラブ導波路側等幅部の間にあり、前記第 2スラブ導波路の前記第 2スラ ブ導波路側等幅部が位置する側に接するように形成され、前記第 2スラブ導波路か ら遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパター ンとしてさらに形成されることが好ましい。  [0037] In the fifth invention of the present application, the second slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the second slab waveguide side. A second slab waveguide side inclined portion formed so as to be in contact with the side where the second slab waveguide side equal width portion is located and having a thickness that decreases as the distance from the second slab waveguide increases. It is preferably formed as a pattern of the core.
[0038] 前記第 2スラブ導波路側等幅部が等間隔であることで、前記コアに前記第 2スラブ 導波路側傾斜部を一定の大きさで形成することができる。前記第 2スラブ導波路側傾 斜部が一定の大きさであれば、前記光波長合分波器は、構造や形状を設計変更し てもエッチング等の製造条件の変更を低減することができる。また、前記第 2スラブ導 波路側傾斜部を備えることで、前記光波長合分波器は、前記第 2スラブ導波路側等 幅部と前記第 2スラブ導波路との接続箇所で発生する伝搬損失を低減することがで きる。従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器 を提供することができる。 [0039] 上記目的を達成するために、本願第 6の発明は、第 1光導波路、第 1スラブ導波路 、等間隔である第 1スラブ導波路側等幅部、第 1アレイ導波路側テーパー部、アレイ 導波路、第 2アレイ導波路側テーパー部、等間隔である第 2スラブ導波路側等幅部、 第 2スラブ導波路及び第 2光導波路が形成された光波長合分波器である。 [0038] Since the second slab waveguide side equal width portions are equally spaced, the second slab waveguide side inclined portion can be formed in the core with a constant size. If the inclined portion on the second slab waveguide side has a constant size, the optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. . In addition, since the second slab waveguide side inclined portion is provided, the optical wavelength multiplexer / demultiplexer propagates at a connection portion between the second slab waveguide side equal width portion and the second slab waveguide. Loss can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing. [0039] In order to achieve the above object, the sixth invention of the present application includes a first optical waveguide, a first slab waveguide, a first slab waveguide side equal-width portion that is equally spaced, and a first array waveguide side taper. An optical waveguide multiplexer / demultiplexer in which a second slab waveguide and a second optical waveguide are formed. is there.
[0040] 具体的に、本願第 6の発明は、基板上に形成されたクラッド層と前記クラッド層に囲 まれ前記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信 号を伝搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回 折する第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を伝搬す る複数の第 1スラブ導波路側等幅部と、前記第 1スラブ導波路側等幅部の前記第 1ス ラブ導波路が位置する側と対向する側に接続し、幅が前記第 1スラブ導波路側等幅 部より狭ぐかつ、前記第 1スラブ導波路側等幅部から遠くなるにつれ狭くなり、光信 号を伝搬する第 1アレイ導波路側テーパー部と、一定の光導波路長差を有し、一方 の端が前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波路側等幅部が位置 する側と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、前記 アレイ導波路の他方の端に接続し、幅が前記アレイ導波路から遠くなるにつれ広くな り、光信号を伝搬する第 2アレイ導波路側テーパー部と、前記第 2アレイ導波路側テ 一パー部の前記アレイ導波路が位置する側と対向する側に接続し、それぞれが等間 隔であり、幅が前記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する 側と対向する側より広ぐかつ、均一であり、光信号を伝搬する第 2スラブ導波路側等 幅部と、前記第 2スラブ導波路側等幅部の前記第 2アレイ導波路側テーパー部が位 置する側と対向する側に接続し、光信号を回折する第 2スラブ導波路と、前記第 2ス ラブ導波路の前記第 2スラブ導波路側等幅部が位置する側と対向する側に接続し、 光信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波器である。  [0040] Specifically, the sixth invention of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer. A first optical waveguide propagating a signal, a first slab waveguide connected to one end of the first optical waveguide to circulate an optical signal, and the first optical waveguide of the first slab waveguide A plurality of first slab waveguide side equal width parts that are equally spaced and have a uniform width and propagate an optical signal, the first slab waveguide side, etc. Connected to the side of the width portion facing the side where the first slab waveguide is located, the width is narrower than the first slab waveguide side equal width portion, and from the first slab waveguide side equal width portion The taper section on the first array waveguide side that propagates the optical signal becomes narrower as the distance increases, and a certain optical waveguide An arrayed waveguide comprising a plurality of channel waveguides having a difference and having one end connected to a side of the first arrayed waveguide side tapered portion facing the side where the first slab waveguide side equal width portion is located Connected to the other end of the arrayed waveguide, and becomes wider as the distance from the arrayed waveguide increases, and the second arrayed waveguide side tapered portion that propagates an optical signal, and the second arrayed waveguide side The taper part is connected to the side opposite to the side where the arrayed waveguide is located, and each is equidistant, and the width of the tapered part of the second arrayed waveguide side is the side where the arrayed waveguide is located. The second slab waveguide side equal width part that is wider and uniform than the opposite side and propagates the optical signal, and the second array waveguide side taper part of the second slab waveguide side equal width part are positioned. Connected to the side opposite to the mounting side and diffracts the optical signal A slab waveguide and a plurality of second optical waveguides that are connected to a side of the second slab waveguide opposite to the side where the equal-width portion on the second slab waveguide side is located and propagate an optical signal This is an optical wavelength multiplexer / demultiplexer.
[0041] 前記第 1スラブ導波路側等幅部、前記第 1アレイ導波路側テーパー部、前記第 2ァ レイ導波路側テーパー部及び前記第 2スラブ導波路側等幅部を備えることで、前記 光波長合分波器は、構造や形状を設計変更してもエッチング等の製造条件の変更 を低減することができる。従って、製造にあたって歩留まりのよい光波長合分波器を 提供すること力 sできる。 [0041] The first slab waveguide side equal width portion, the first array waveguide side taper portion, the second array waveguide side taper portion, and the second slab waveguide side equal width portion, The optical wavelength multiplexer / demultiplexer can reduce changes in manufacturing conditions such as etching even if the design and structure of the structure are changed. Therefore, an optical wavelength multiplexer / demultiplexer with good yield in manufacturing is required. You can power s offer.
[0042] 本願第 6の発明において、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 1スラブ導波路側等幅部の間にあり、前記第 1スラブ導波路の前記第 1スラ ブ導波路側等幅部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつれ 肉厚が薄くなる第 1スラブ導波路側傾斜部と、前記クラッド層と前記コアとの間の屈折 率を有し、隣接する前記第 2スラブ導波路側等幅部の間にあり、前記第 2スラブ導波 路の前記第 2スラブ導波路側等幅部が位置する側に接し、前記第 2スラブ導波路か ら遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパター ンとしてさらに形成されることが好ましい。  [0042] In the sixth invention of the present application, the first slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the first slab waveguide side. A first slab waveguide side inclined portion that is in contact with a side where the first slab waveguide side equal width portion is located and becomes thinner as it is farther from the first slab waveguide, the cladding layer, and the core Between the adjacent equal width portions of the second slab waveguide and on the side of the second slab waveguide where the equal width portion of the second slab waveguide is located. It is preferable that a second slab waveguide side inclined portion that comes into contact with the second slab waveguide and that becomes thinner as it is farther from the second slab waveguide is further formed as a pattern of the core.
[0043] 前記第 1スラブ導波路側等幅部及び前記第 2スラブ導波路側等幅部が等間隔であ ることで、前記コアに前記第 1スラブ導波路側傾斜部及び前記第 2スラブ導波路側傾 斜部を一定の大きさで形成することができる。前記第 1スラブ導波路側傾斜部及び前 記第 2スラブ導波路側傾斜部が一定の大きさであれば、前記光波長合分波器は、構 造や形状を設計変更してもエッチング等の製造条件の変更を低減することができる。 また、前記第 1スラブ導波路側傾斜部及び前記第 2スラブ導波路側傾斜部を備える ことで、前記光波長合分波器は、前記第 1スラブ導波路側等幅部と前記第 1スラブ導 波路との接続箇所及び前記第 2スラブ導波路側等幅部と前記第 2スラブ導波路との 接続箇所で発生する伝搬損失を低減することができる。従って、製造にあたって歩留 まりがよぐ伝搬損失を低減する光波長合分波器を提供することができる。  [0043] Since the first slab waveguide side equal width portion and the second slab waveguide side equal width portion are equally spaced, the first slab waveguide side inclined portion and the second slab are provided on the core. The inclined portion on the waveguide side can be formed with a certain size. If the first slab waveguide side inclined portion and the second slab waveguide side inclined portion are of a certain size, the optical wavelength multiplexer / demultiplexer can be etched even if the structure or shape is changed in design. The change in manufacturing conditions can be reduced. The optical wavelength multiplexer / demultiplexer includes the first slab waveguide side equal width portion and the first slab by providing the first slab waveguide side inclined portion and the second slab waveguide side inclined portion. Propagation loss occurring at the connection point between the waveguide and the connection point between the second slab waveguide side equal width portion and the second slab waveguide can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
発明の効果  The invention's effect
[0044] 本発明は、歩留まり及び製造工数が増加せず、伝搬損失を低減する光波長合分 波器、光波長合分波器及び光波長合分波器を提供することができる。  The present invention can provide an optical wavelength multiplexer / demultiplexer, optical wavelength multiplexer / demultiplexer, and optical wavelength multiplexer / demultiplexer that reduce propagation loss without increasing the yield and manufacturing man-hours.
図面の簡単な説明  Brief Description of Drawings
[0045] [図 1]本願第 1の発明の一の実施形態に係る光波長合分波器の概念図である。  FIG. 1 is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the first invention of the present application.
[図 2]図 1の破線部の拡大図である。  FIG. 2 is an enlarged view of a broken line part of FIG.
[図 3]第 1スラブ導波路側傾斜部が形成された後の図 1の破線部の拡大図である。  FIG. 3 is an enlarged view of a broken line portion of FIG. 1 after a first slab waveguide side inclined portion is formed.
[図 4]図 3の A— A'の断面図である。  FIG. 4 is a cross-sectional view taken along line AA ′ of FIG.
[図 5]図 3の Β_Β'の断面図である。 [図 6]本願第 2の発明の一の実施形態に係る光波長合分波器の概念図である。 FIG. 5 is a cross-sectional view taken along the line Β_Β in FIG. FIG. 6 is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the second invention of the present application.
[図 7]図 6の破線部の拡大図である。 FIG. 7 is an enlarged view of a broken line part of FIG.
園 8]第 2スラブ導波路側傾斜部が形成された後の図 6の破線部の拡大図である。 園 9]本願第 3の発明の一の実施形態に係る光波長合分波器の概念図である。 園 10]本願第 4の発明の一の実施形態に係る光波長合分波器の概念図である。 FIG. 8] is an enlarged view of the broken line portion of FIG. 6 after the second slab waveguide side inclined portion is formed. 9] It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the third invention of the present application. 10] A conceptual diagram of an optical wavelength multiplexer / demultiplexer according to an embodiment of the fourth invention of the present application.
[図 11]図 10の破線部の拡大図である。 FIG. 11 is an enlarged view of a broken line part of FIG.
園 12]第 1スラブ導波路側傾斜部が形成された後の図 10の破線部の拡大図である。 園 13]本願第 5の発明の一の実施形態に係る光波長合分波器の概念図である。 園 14]図 13の破線部の拡大図である。 12] FIG. 11 is an enlarged view of the broken line portion of FIG. 10 after the first slab waveguide side inclined portion is formed. 13] It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to one embodiment of the fifth invention of the present application. 14] It is an enlarged view of a broken line part of FIG.
園 15]第 2スラブ導波路側傾斜部が形成された後の図 13の破線部の拡大図である。 園 16]本願第 6の発明の一の実施形態に係る光波長合分波器の概念図である。 園 17]従来のアレイ導波路型波長合分波回路の概念図である。 15] FIG. 14 is an enlarged view of the broken line portion of FIG. 13 after the second slab waveguide side inclined portion is formed. Sono 16] It is a conceptual diagram of an optical wavelength multiplexer / demultiplexer according to one embodiment of the sixth invention of the present application. 17] It is a conceptual diagram of a conventional arrayed waveguide type wavelength multiplexing / demultiplexing circuit.
園 18]図 17の破線部の拡大図である。 18] It is an enlarged view of a broken line part of FIG.
[図 19]図 18の C— C'の断面図である。 FIG. 19 is a sectional view taken along the line CC ′ in FIG.
[図 20]図 18の D— D'の断面図である。 FIG. 20 is a cross-sectional view taken along the line DD ′ in FIG.
符号の説明 Explanation of symbols
10、 11、 12、 13、 14、 15 光波長合分波器 10, 11, 12, 13, 14, 15 Optical wavelength multiplexer / demultiplexer
21 第 1光導波路  21 First optical waveguide
22 第 1スラブ導波路  22 First slab waveguide
23 第 1スラブ導波路側テーパー部  23 Tapered section on the first slab waveguide side
24 第 1アレイ導波路側テーパー部  24 First arrayed waveguide side taper
25 第 1スラブ導波路側傾斜部  25 Inclined part on the first slab waveguide side
26 チャネル導波路  26 channel waveguide
27 アレイ導波路  27 Arrayed waveguide
28 第 2アレイ導波路側テーパー部  28 Tapered section on the second arrayed waveguide
29 第 2スラブ導波路側テーパー部  29 2nd slab waveguide side taper
30 第 2スラブ導波路側傾斜部  30 Second slab waveguide side slope
31 第 2スラブ導波路 32 第 2光導波路 31 Second slab waveguide 32 Second optical waveguide
33 基板  33 Board
34 クラッド層  34 Clad layer
35 第 1スラブ導波路側等幅部  35 1st slab waveguide side equal width part
36 第 2スラブ導波路側等幅部  36 Equal width part on the second slab waveguide side
40 第 1スラブ導波路側テーパー部の間隔  40 Spacing of taper on the first slab waveguide side
41 第 2スラブ導波路側テーパー部の間隔  41 2nd slab waveguide side taper spacing
42 第 1スラブ導波路側等幅部の間隔  42 Distance between equal width parts on the first slab waveguide side
43 第 2スラブ導波路側等幅部の間隔  43 Distance between equal width parts on the second slab waveguide side
90 アレイ導波路型波長合分波回路  90 Arrayed-waveguide wavelength multiplexing / demultiplexing circuit
91 傾斜部  91 Slope
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0047] 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、 本発明は、以下に示す実施形態に限定されるものでない。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to embodiment shown below.
[0048] (実施の形態 1)  [0048] (Embodiment 1)
本願第 1の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回折する 第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向 する側に接続し、それぞれが等間隔であり、幅が前記第 1スラブ導波路から遠くなる につれ狭くなり、光信号を伝搬する複数の第 1スラブ導波路側テーパー部と、前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向する側に 接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置す る側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から遠くなるに つれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、一定の光導波路 長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波 路側テーパー部が位置する側と対向する側に接続する複数のチャネル導波路から なるアレイ導波路と、前記アレイ導波路の他方の端に接続し、光信号を回折する第 2 スラブ導波路と、前記第 2スラブ導波路の前記アレイ導波路が位置する側と対向する 側に接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波 器である。 The first embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as a pattern of the core. A first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide-side tapered portions that propagate optical signals, and each of them is equally spaced, the width is narrowed as the distance from the first slab waveguide increases, and the first slab waveguide The side taper portion is connected to the side facing the side where the first slab waveguide is located, and the width is from the side facing the side where the first slab waveguide is located of the first slab waveguide side taper portion. Narrow and from the tapered portion on the first slab waveguide side The first slab of the first arrayed waveguide side tapered portion that has a certain optical waveguide length difference and a first optical waveguide side tapered portion that becomes narrower and propagates an optical signal. An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the waveguide-side tapered portion is located, and a second connected to the other end of the arrayed waveguide to diffract the optical signal An optical wavelength multiplexing / demultiplexing comprising: a slab waveguide; and a plurality of second optical waveguides that are connected to a side of the second slab waveguide opposite to the side on which the arrayed waveguide is positioned and that propagate optical signals. It is a vessel.
[0049] 図 1及び図 2を用いて本願第 1の実施形態に係る光波長合分波器 10について説 明する。図 1は、光波長合分波器 10の概念図である。光波長合分波器 10は、第 1光 導波路 21、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラブ 導波路 31及び第 2光導波路 32を備える。  An optical wavelength multiplexer / demultiplexer 10 according to the first embodiment of the present application will be described with reference to FIGS. 1 and 2. FIG. 1 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 10. The optical wavelength multiplexer / demultiplexer 10 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0050] 図 2は、図 1の破線部の拡大図である。図 2には、第 1スラブ導波路 22、第 1スラブ 導波路側テーパー部 23、第 1アレイ導波路側テーパー部 24、チャネル導波路 26及 び第 1スラブ導波路側テーパー部の間隔 40が図示されている。  FIG. 2 is an enlarged view of a broken line part of FIG. Figure 2 shows the spacing 40 between the first slab waveguide 22, the first slab waveguide side taper portion 23, the first array waveguide side taper portion 24, the channel waveguide 26, and the first slab waveguide side taper portion. It is shown in the figure.
[0051] 光波長合分波器 10の製造について説明する。光波長合分波器 10は、基板(図 1 及び図 2には図示していない。)に形成されてもよい。例えば、基板の素材としては、 シリコン (Si)又は石英ガラス(Si〇2)をあげることができる。クラッド層は、前述した基 板に石英ガラスを積層して形成してもよい。コアは、屈折率を高くする不純物を混合 した石英ガラスを前述したクラッド層に積層して形成してもよい。例えば、クラッド層や コアを積層する方法としては、火炎蓄積法 (FHD法)、 CVD法 (化学気相成長法)又 はスパッタ法をあげることができる。  [0051] Manufacturing of the optical wavelength multiplexer / demultiplexer 10 will be described. The optical wavelength multiplexer / demultiplexer 10 may be formed on a substrate (not shown in FIGS. 1 and 2). For example, the substrate material can be silicon (Si) or quartz glass (Si02). The cladding layer may be formed by laminating quartz glass on the above-described substrate. The core may be formed by laminating quartz glass mixed with impurities that increase the refractive index on the above-described cladding layer. For example, as a method of laminating a clad layer and a core, a flame accumulation method (FHD method), a CVD method (chemical vapor deposition method), or a sputtering method can be given.
[0052] また、クラッド層は、屈折率を低くする不純物を混合した石英ガラスを前述した基板 に積層して形成してもよい。コアは、前述したクラッド層に石英ガラスを積層して形成 してもよい。  [0052] The clad layer may be formed by laminating quartz glass mixed with an impurity that lowers the refractive index on the above-described substrate. The core may be formed by laminating quartz glass on the cladding layer described above.
[0053] 例えば、フォトリソグラフィ及びエッチングを用いて、前述したコアにパターンとして、 第 1光導波路 21、第 1スラブ導波路 22、第 1スラブ導波路側テーパー部 23、第 1ァレ ィ導波路側テーパー部 24、チャネル導波路 26、第 2スラブ導波路 31及び第 2光導 波路 32を形成してもよい。  [0053] For example, the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side tapered portion 23, and the first array waveguide are formed as a pattern on the core described above using photolithography and etching. The side taper portion 24, the channel waveguide 26, the second slab waveguide 31, and the second optical waveguide 32 may be formed.
[0054] 図 1に示すように、第 1光導波路 21は、形成されてもよい。なお、第 1光導波路 21の 本数は、 2本に制限されない。  As shown in FIG. 1, the first optical waveguide 21 may be formed. The number of first optical waveguides 21 is not limited to two.
[0055] 第 1スラブ導波路 22は、第 1光導波路 21の一方の端に接続するように形成されても よい。 [0056] 図 2に示すように、第 1スラブ導波路側テーパー部 23は、第 1スラブ導波路側テー パー部の間隔 40が等しくなるように、第 1スラブ導波路 22の第 1光導波路 21が位置 する側と対向する側に接続するように形成されてもよい。また、第 1スラブ導波路側テ 一パー部 23の幅は、第 1スラブ導波路 22から遠くなるにつれ狭くなる。 The first slab waveguide 22 may be formed so as to be connected to one end of the first optical waveguide 21. [0056] As shown in FIG. 2, the first slab waveguide-side tapered portion 23 has a first optical waveguide of the first slab waveguide 22 so that the distance 40 between the first slab waveguide-side taper portions is equal. It may be formed so as to be connected to the side opposite to the side where 21 is located. Further, the width of the first slab waveguide side taper portion 23 becomes narrower as the distance from the first slab waveguide 22 increases.
[0057] 第 1アレイ導波路側テーパー部 24は、第 1スラブ導波路側テーパー部 23の第 1ス ラブ導波路 22が位置する側と対向する側に接続するように形成されてもよい。また、 第 1アレイ導波路側テーパー部 24の幅は、第 1スラブ導波路側テーパー部 23の第 1 スラブ導波路 22が位置する側と対向する側より狭ぐかつ、第 1スラブ導波路側テー パー部 23から遠くなるにつれ狭くなる。  [0057] The first arrayed waveguide side tapered portion 24 may be formed so as to be connected to the side of the first slab waveguide side tapered portion 23 that faces the side where the first slab waveguide 22 is located. The width of the first arrayed waveguide side tapered portion 24 is narrower than the side of the first slab waveguide side tapered portion 23 that faces the side where the first slab waveguide 22 is located, and the first slab waveguide side It becomes narrower as it gets farther from the taper part 23.
[0058] 複数のチャネル導波路 26は、一方の端が第 1アレイ導波路側テーパー部 24の第 1 スラブ導波路側テーパー部 23が位置する側と対向する側に接続するようにして形成 されてもよい。また、チャネル導波路 26のそれぞれは、一定の光導波路長差を有す る。アレイ導波路 27は、複数のチャネル導波路 26からなるものである。  [0058] The plurality of channel waveguides 26 are formed so that one end thereof is connected to the side of the first arrayed waveguide side tapered portion 24 opposite to the side where the first slab waveguide side tapered portion 23 is located. May be. Each of the channel waveguides 26 has a certain optical waveguide length difference. The arrayed waveguide 27 is composed of a plurality of channel waveguides 26.
[0059] 第 2スラブ導波路 31は、アレイ導波路 27の他方の端に接続するように形成されても よい。  The second slab waveguide 31 may be formed so as to be connected to the other end of the arrayed waveguide 27.
[0060] 第 2光導波路 32は、第 2スラブ導波路 31のアレイ導波路 27が位置する側と対向す る側に接続するように形成されてもよい。  [0060] The second optical waveguide 32 may be formed so as to be connected to the side of the second slab waveguide 31 that faces the side where the arrayed waveguide 27 is located.
[0061] 前述したコアに、第 1光導波路 21、第 1スラブ導波路 22、第 1スラブ導波路側テー パー部 23、第 1アレイ導波路側テーパー部 24、チャネル導波路 26、第 2スラブ導波 路 31及び第 2光導波路 32をパターンとして形成したら、クラッド層を再度積層しても よい。 [0061] In the core described above, the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side taper portion 23, the first array waveguide side taper portion 24, the channel waveguide 26, the second slab After the waveguide 31 and the second optical waveguide 32 are formed as a pattern, the clad layer may be laminated again.
[0062] クラッド層を再度積層したら、前述した基板を、 1000度以上で加熱してもよい。前 述した基板の上面に積層したクラッド層と再度積層したクラッド層の屈折率が同じで あれば、加熱後に一体となり 1つのクラッド層を形成する。  [0062] After the clad layer is again laminated, the substrate described above may be heated at 1000 ° C or more. If the refractive index of the clad layer laminated on the upper surface of the substrate described above and the clad layer laminated again are the same, a single clad layer is formed after heating.
[0063] 光波長合分波器 10が、歩留まり及び製造工数を増加させない点について説明す る。チップサイズ、中心波長、波長間隔又はチャネル数を変更された際、光波長合分 波器 10は、第 1スラブ導波路側テーパー部 23の長さ、第 1スラブ導波路側テーパー 部 23の第 1スラブ導波路 22に接続する箇所の幅、第 1スラブ導波路側テーパー部 2 3のチャネル導波路 26に接続する部分の幅及びチャネル導波路 26の幅を変更しな いようにした。そして、光波長合分波器 10のチップサイズ等の変更による影響は、第 1アレイ導波路側テーパー部 24の幅及び長さを変更して吸収するようにした。光波 長合分波器 10のチップサイズ等を変更しても、第 1アレイ導波路側テーパー部 24の 幅及び長さを変更するだけで済み、第 1スラブ導波路側テーパー部 23及びチャネル 導波路 26のエッチング等の製造条件は、変更する必要はない。よって、光波長合分 波器 10は、構造や形状を設計変更してもエッチング等の製造条件の変更を低減す ること力 Sできる。従って、歩留まり及び製造工数が増加しない光波長合分波器を提供 すること力 Sできる。 [0063] The point that the optical wavelength multiplexer / demultiplexer 10 does not increase the yield and the number of manufacturing steps will be described. When the chip size, the center wavelength, the wavelength interval, or the number of channels are changed, the optical wavelength multiplexer / demultiplexer 10 has the length of the first slab waveguide side tapered portion 23 and the first slab waveguide side tapered portion 23. 1 slab waveguide 22 width, first slab waveguide side taper 2 The width of the portion connected to the channel waveguide 26 of 3 and the width of the channel waveguide 26 are not changed. The influence of the change in the chip size and the like of the optical wavelength multiplexer / demultiplexer 10 is absorbed by changing the width and length of the first arrayed waveguide side tapered portion 24. Even if the chip size or the like of the optical wavelength multiplexer / demultiplexer 10 is changed, it is only necessary to change the width and length of the first arrayed waveguide side tapered portion 24, and the first slab waveguide side tapered portion 23 and the channel guide are changed. Manufacturing conditions such as etching of the waveguide 26 need not be changed. Therefore, the optical wavelength multiplexer / demultiplexer 10 can reduce the change in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that does not increase yield and manufacturing man-hours.
[0064] 本願第 1の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 1スラブ導波路側テーパー部の間にあり、前記第 1スラブ導波路の前 記第 1スラブ導波路側テーパー部が位置する側に接し、前記第 1スラブ導波路から 遠くなるにつれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、が前記コアのパターン としてさらに形成されることが好ましい。  [0064] In the first embodiment of the present application, the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent tapered portions of the first slab waveguide. A first slab waveguide side inclined portion that is in contact with the side on which the first slab waveguide side taper portion is located and becomes thinner as it gets farther from the first slab waveguide is further formed as a pattern of the core It is preferred that
[0065] 図 3から図 5を用いて、第 1スラブ導波路側傾斜部 25が形成された光波長合分波 器 10について説明する。図 3は、第 1スラブ導波路側傾斜部 25が形成された後の図 1の破線部の拡大図である。図 3には、第 1スラブ導波路 22、第 1スラブ導波路側テ 一パー部 23、第 1アレイ導波路側テーパー部 24、第 1スラブ導波路側傾斜部 25及 びチャネル導波路 26が図示されている。  The optical wavelength multiplexer / demultiplexer 10 in which the first slab waveguide side inclined portion 25 is formed will be described with reference to FIGS. 3 to 5. FIG. 3 is an enlarged view of the broken line portion of FIG. 1 after the first slab waveguide side inclined portion 25 is formed. FIG. 3 shows a first slab waveguide 22, a first slab waveguide side taper portion 23, a first array waveguide side taper portion 24, a first slab waveguide side inclined portion 25, and a channel waveguide 26. It is shown in the figure.
[0066] 図 4は、図 3の Α_Α'の断面図である。図 4には、第 1スラブ導波路 22、第 1スラブ 導波路側傾斜部 25、基板 33及びクラッド層 34が図示されている。また、図 5は、図 3 の B— B'の断面図である。図 5には、第 1スラブ導波路側テーパー部 23、第 1スラブ 導波路側傾斜部 25、基板 33及びクラッド層 34が図示されている。  FIG. 4 is a cross-sectional view taken along the line Α_Α ′ in FIG. FIG. 4 shows the first slab waveguide 22, the first slab waveguide side inclined portion 25, the substrate 33, and the cladding layer. FIG. 5 is a cross-sectional view taken along the line BB ′ of FIG. FIG. 5 shows the first slab waveguide side tapered portion 23, the first slab waveguide side inclined portion 25, the substrate 33, and the cladding layer 34.
[0067] 光波長合分波器 10の第 1スラブ導波路側傾斜部 25の形成について説明する。前 述したコアのパターンとして、第 1スラブ導波路側テーパー部 23等を形成する際に、 第 1スラブ導波路側傾斜部 25は、形成してもよい。例えば、第 1スラブ導波路側傾斜 部 25は、反応性イオンエッチングを用いて形成してもよレ、。フォトレジストの露光条件 、反応性イオンエッチングに用いるガスの種類やガスの圧力等を調整して所望の第 1 スラブ導波路側傾斜部 25を形成することができる。第 1スラブ導波路側傾斜部 25の 傾斜の形成については、反応性イオンエッチングの進行速度も関係し、製造条件の 決定は、時間が必要になり難しい。よって、第 1スラブ導波路側傾斜部 25の製造条 件は、なるべく変更しないほうがよい。 The formation of the first slab waveguide side inclined portion 25 of the optical wavelength multiplexer / demultiplexer 10 will be described. When the first slab waveguide side tapered portion 23 and the like are formed as the core pattern described above, the first slab waveguide side inclined portion 25 may be formed. For example, the first slab waveguide side inclined portion 25 may be formed by reactive ion etching. Adjust the photoresist exposure conditions, the type of gas used for reactive ion etching, the gas pressure, etc. The slab waveguide side inclined portion 25 can be formed. The formation of the slope of the first slab waveguide side slope 25 is also related to the progress of the reactive ion etching, and it is difficult to determine the manufacturing conditions because it requires time. Therefore, it is better not to change the manufacturing conditions of the first slab waveguide side inclined portion 25 as much as possible.
[0068] チャネル導波路 26の光導波路長差が大きくなると、第 1スラブ導波路側傾斜部 25 の第 1スラブ導波路 22に接続する側と対向する側の幅は、広くしてもよレ、。また、チヤ ネル導波路 26の光導波路長差が小さくなると、第 1スラブ導波路側傾斜部 25の第 1 スラブ導波路 22に接続する側と対向する側の幅は、狭くしてもよレ、。そこで、第 1スラ ブ導波路側傾斜部 25の第 1スラブ導波路 22に接続する側と対向する側の幅を確保 できるように、第 1スラブ導波路側テーパー部 23を形成してもよい。第 1スラブ導波路 側テーパー部 23が等間隔であることで、第 1スラブ導波路側傾斜部 25を一定の大き さで形成できるので、光波長合分波器 10は、構造や形状を設計変更してもエツチン グ等の製造条件の変更を低減することができる。  [0068] When the optical waveguide length difference of the channel waveguide 26 increases, the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22 may be increased. ,. When the optical waveguide length difference of the channel waveguide 26 is reduced, the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22 may be reduced. ,. Therefore, the first slab waveguide side tapered portion 23 may be formed so as to ensure the width of the first slab waveguide side inclined portion 25 on the side facing the side connected to the first slab waveguide 22. . Since the first slab waveguide side tapered portion 23 is equally spaced, the first slab waveguide side inclined portion 25 can be formed with a constant size, so the optical wavelength multiplexer / demultiplexer 10 is designed with a structure and shape. Even if it is changed, changes in manufacturing conditions such as etching can be reduced.
[0069] 図 3及び図 5に示すように、第 1スラブ導波路側傾斜部 25は、隣接する第 1スラブ導 波路側テーパー部 23の間にあり、第 1スラブ導波路 22の第 1スラブ導波路側テーパ 一部 23が位置する側に接するように形成されてもよい。図 4に示すように、第 1スラブ 導波路側傾斜部 25は、第 1スラブ導波路 22から遠くなるにつれ肉厚が薄くなる。  As shown in FIGS. 3 and 5, the first slab waveguide side inclined portion 25 is located between the adjacent first slab waveguide side tapered portions 23, and the first slab waveguide 22 has a first slab waveguide 22 as shown in FIG. The waveguide side taper part 23 may be formed so as to be in contact with the side where the part 23 is located. As shown in FIG. 4, the first slab waveguide side inclined portion 25 becomes thinner as the distance from the first slab waveguide 22 increases.
[0070] 第 1スラブ導波路側傾斜部 25が、伝搬損失を低減させる点について説明する。異 なる波長を有する光信号は、第 1光導波路 21に入力される。第 1光導波路 21から出 力された光信号は、第 1スラブ導波路 22で回折され、第 1スラブ導波路側テーパー 部 23を経由しチャネル導波路 26に入力される。それぞれのチャネル導波路 26がー 定の光導波路長差を有していることで、チャネル導波路 26から出力された光信号は 、位相が一定量ずれることになる。位相が一定量ずれている光信号は、第 2スラブ導 波路 31で回折された際に互いに干渉する。干渉された結果、光信号は、波長ごとに 分波され、所定の第 2光導波路 32に出力される。  The point that the first slab waveguide side inclined portion 25 reduces the propagation loss will be described. Optical signals having different wavelengths are input to the first optical waveguide 21. The optical signal output from the first optical waveguide 21 is diffracted by the first slab waveguide 22 and input to the channel waveguide 26 via the first slab waveguide side tapered portion 23. Since each channel waveguide 26 has a constant optical waveguide length difference, the phase of the optical signal output from the channel waveguide 26 is shifted by a certain amount. Optical signals whose phases are shifted by a certain amount interfere with each other when diffracted by the second slab waveguide 31. As a result of the interference, the optical signal is demultiplexed for each wavelength and output to a predetermined second optical waveguide 32.
[0071] 第 1スラブ導波路 22と第 1スラブ導波路側テーパー部 23との接続箇所において、 第 1スラブ導波路 22と第 1スラブ導波路側テーパー部 23との電磁界分布は、異なつ ている。第 1光導波路 21から第 1スラブ導波路 22に出力した光信号の一部は、第 1ス ラブ導波路側テーパー部 23が接続されていない箇所に入射することがある。 [0071] The electromagnetic field distribution between the first slab waveguide 22 and the first slab waveguide side tapered portion 23 is different at the connection point between the first slab waveguide 22 and the first slab waveguide side tapered portion 23. ing. Part of the optical signal output from the first optical waveguide 21 to the first slab waveguide 22 In some cases, the light waveguide side taper portion 23 is incident on an unconnected portion.
[0072] 第 1スラブ導波路側傾斜部 25が形成されていないと、第 1スラブ導波路側テーパー 部 23が接続されていない箇所に入射した光信号は、光波長合分波器 10の伝搬損 失となる。しかし、第 1スラブ導波路側傾斜部 25が形成されているので、第 1スラブ導 波路側テーパー部 23が接続されていない箇所に入射した光信号は、第 1スラブ導波 路側傾斜部 25を経由して、第 1スラブ導波路側テーパー部 23、第 1アレイ導波路側 テーパー部 24又はチャネル導波路 26に戻ることがある。よって、光波長合分波器 10 の伝搬損失は、低減する。従って、製造にあたって歩留まりがよぐ伝搬損失を低減 する光波長合分波器を提供することができる。 [0072] If the first slab waveguide side inclined portion 25 is not formed, the optical signal incident on the location where the first slab waveguide side tapered portion 23 is not connected is propagated by the optical wavelength multiplexer / demultiplexer 10. It is a loss. However, since the first slab waveguide side inclined portion 25 is formed, the optical signal incident on the portion where the first slab waveguide side tapered portion 23 is not connected is passed through the first slab waveguide side inclined portion 25. The first slab waveguide side taper portion 23, the first array waveguide side taper portion 24, or the channel waveguide 26 may be returned via. Therefore, the propagation loss of the optical wavelength multiplexer / demultiplexer 10 is reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
[0073] (実施の形態 2) [0073] (Embodiment 2)
本願第 2の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する複数の第 2光導波路と、前記第 2光導波路の一方の端に接続し、光信号を回 折する第 2スラブ導波路と、前記第 2スラブ導波路の前記第 2光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が前記第 2スラブ導波路から遠 くなるにつれ狭くなり、光信号を伝搬する複数の第 2スラブ導波路側テーパー部と、 前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波路が位置する側と対向す る側に接続し、幅が前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波路が 位置する側と対向する側より狭ぐかつ、前記第 2スラブ導波路側テーパー部から遠 くなるにつれ狭くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、一定の 光導波路長差を有し、一方の端が前記第 2アレイ導波路側テーパー部の前記第 2ス ラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチャネル導 波路からなるアレイ導波路と、前記アレイ導波路の他方の端に接続し、光信号を回折 する第 1スラブ導波路と、前記第 1スラブ導波路の前記アレイ導波路が位置する側と 対向する側に接続し、光信号を伝搬する第 1光導波路と、が形成された光波長合分 波器である。  The second embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core. A plurality of second optical waveguides; a second slab waveguide connected to one end of the second optical waveguide to refract an optical signal; and a side of the second slab waveguide where the second optical waveguide is located A plurality of second slab waveguide side taper portions for propagating optical signals, each of which is equidistant, narrower as the distance from the second slab waveguide increases, 2 connected to the side of the tapered portion of the slab waveguide facing the side where the second slab waveguide is located, and the width of the tapered portion of the second slab waveguide is the side of the tapered portion of the second slab waveguide Narrower than the opposite side and the second slab waveguide side taper The second arrayed-waveguide-side tapered part that propagates an optical signal and has a certain optical waveguide length difference, and one end of the second-arrayed-waveguide-side tapered part becomes smaller. (2) An array waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the slab waveguide side taper portion is located, and a first that diffracts an optical signal connected to the other end of the arrayed waveguide. An optical wavelength multiplexer in which a slab waveguide and a first optical waveguide that propagates an optical signal are connected to a side of the first slab waveguide that faces the side where the arrayed waveguide is located. is there.
[0074] 図 6及び図 7を用いて本実施形態に係る光波長合分波器 11を説明する。図 6は、 光波長合分波器 11の概念図である。光波長合分波器 11は、第 1光導波路 21、第 1 スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラブ導波路 31及び第The optical wavelength multiplexer / demultiplexer 11 according to this embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 11. The optical wavelength multiplexer / demultiplexer 11 includes the first optical waveguide 21 and the first Slab waveguide 22, channel waveguide 26, array waveguide 27, second slab waveguide 31 and second
2光導波路 32を備える。 2 Optical waveguide 32 is provided.
[0075] 図 7は、図 6の破線部の拡大図である。図 7には、チャネル導波路 26、第 2アレイ導 波路側テーパー部 28、第 2スラブ導波路側テーパー部 29、第 2スラブ導波路 31及 び第 2スラブ導波路側テーパー部の間隔 41が図示されている。 FIG. 7 is an enlarged view of a broken line part of FIG. FIG. 7 shows the distance 41 between the channel waveguide 26, the second arrayed waveguide side tapered portion 28, the second slab waveguide side tapered portion 29, the second slab waveguide 31 and the second slab waveguide side tapered portion. It is shown in the figure.
[0076] 光波長合分波器 11は、図 1の光波長合分波器 10と同様に製造することができる。 The optical wavelength multiplexer / demultiplexer 11 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 in FIG.
具体的に、光波長合分波器 11は、前述したコアに形成するパターンを変更すれば、 製造することができる。以下、前述したコアに形成するパターンの変更点について説 明する。  Specifically, the optical wavelength multiplexer / demultiplexer 11 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
[0077] 図 7に示すように、第 2スラブ導波路側テーパー部 29は、第 2スラブ導波路側テー パー部の間隔 41が等しくなるように、第 2スラブ導波路 31の第 2光導波路 32が位置 する側と対向する側に接続するように形成されてもよい。また、第 2スラブ導波路側テ 一パー部 29の幅は、第 2スラブ導波路 31から遠くなるにつれ狭くなる。  [0077] As shown in FIG. 7, the second slab waveguide side tapered portion 29 has a second optical waveguide of the second slab waveguide 31 so that the distance 41 between the second slab waveguide side taper portions is equal. It may be formed so as to be connected to the side opposite to the side where 32 is located. Further, the width of the second slab waveguide side taper portion 29 becomes narrower as the distance from the second slab waveguide 31 increases.
[0078] 第 2アレイ導波路側テーパー部 28は、第 2スラブ導波路側テーパー部 29の第 2ス ラブ導波路 31が位置する側と対向する側に接続するように形成されてもよい。また、 第 2アレイ導波路側テーパー部 28の幅は、第 2スラブ導波路側テーパー部 29の第 2 スラブ導波路 31が位置する側と対向する側より狭ぐかつ、第 2スラブ導波路側テー パー部 29から遠くなるにつれ狭くなる。  The second arrayed waveguide side tapered portion 28 may be formed so as to be connected to the side of the second slab waveguide side tapered portion 29 that faces the side where the second slab waveguide 31 is located. The width of the second arrayed waveguide side tapered portion 28 is narrower than the side of the second slab waveguide side tapered portion 29 that faces the side where the second slab waveguide 31 is located, and the second slab waveguide side It becomes narrower as it gets farther from the taper section 29.
[0079] 複数のチャネル導波路 26は、一方の端が第 2アレイ導波路側テーパー部 28の第 2 スラブ導波路側テーパー部 29が位置する側と対向する側に接続し、他方の端が第 1 スラブ導波路 22の第 1光導波路 21が位置する側と対向する側に接続するように形成 されてもよレ、。  [0079] One end of the plurality of channel waveguides 26 is connected to the side of the second arrayed waveguide side tapered portion 28 opposite to the side where the second slab waveguide side tapered portion 29 is located, and the other end is connected. The first slab waveguide 22 may be formed so as to be connected to the side opposite to the side where the first optical waveguide 21 is located.
[0080] 光波長合分波器 11が、歩留まり及び製造工数を増加させない点について説明す る。図 1の光波長分波器 10と同様に、光波長合分波器 11は、チップサイズ等の変更 の影響を第 2アレイ導波路側テーパー部 28のみで吸収し、エッチング等の製造条件 の変更を低減させることができる。従って、製造にあたって歩留まりのよい光波長合 分波器を提供することができる。  The point that the optical wavelength multiplexer / demultiplexer 11 does not increase the yield and the number of manufacturing steps will be described. Similar to the optical wavelength demultiplexer 10 in FIG. 1, the optical wavelength demultiplexer 11 absorbs the influence of the change in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and the manufacturing conditions such as etching are Changes can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
[0081] 本願第 2の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 2スラブ導波路側テーパー部の間にあり、前記第 2スラブ導波路の前 記第 2スラブ導波路側テーパー部が位置する側に接し、前記第 2スラブ導波路から 遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパターン としてさらに形成されることが好ましい。 [0081] In the second embodiment of the present application, the second embodiment has a refractive index between the cladding layer and the core, The second slab waveguide side taper portion is in contact with the second slab waveguide side taper portion, is in contact with the side where the second slab waveguide side taper portion is located, and becomes farther away from the second slab waveguide. It is preferable that a second slab waveguide side inclined portion with a reduced thickness is further formed as the pattern of the core.
[0082] 図 8を用いて、第 2スラブ導波路側傾斜部 30が形成された光波長合分波器 11につ いて説明する。図 8は、第 2スラブ導波路側傾斜部 30が形成された後の図 6の破線 部の拡大図である。図 8には、チャネル導波路 26、第 2アレイ導波路側テーパー部 2 8、第 2スラブ導波路側テーパー部 29、第 2スラブ導波路側傾斜部 30及び第 2スラブ 導波路 31が図示されている。  The optical wavelength multiplexer / demultiplexer 11 in which the second slab waveguide side inclined portion 30 is formed will be described with reference to FIG. FIG. 8 is an enlarged view of the broken line portion of FIG. 6 after the second slab waveguide side inclined portion 30 is formed. FIG. 8 shows a channel waveguide 26, a second arrayed waveguide side tapered portion 28, a second slab waveguide side tapered portion 29, a second slab waveguide side inclined portion 30, and a second slab waveguide 31. ing.
[0083] 図 3の第 1スラブ導波路側傾斜部 25と同様に、図 8の第 2スラブ導波路側傾斜部 30 は、形成すること力できる。第 2スラブ導波路側傾斜部 30は、隣接する第 2スラブ導 波路側テーパー部 29の間にあり、第 2スラブ導波路 31の第 2スラブ導波路側テーパ 一部 29が位置する側に接するように形成されてもよい。第 2スラブ導波路側傾斜部 3 0は、第 2スラブ導波路 31から遠くなるにつれ肉厚が薄くなる。  [0083] Similar to the first slab waveguide side inclined portion 25 of FIG. 3, the second slab waveguide side inclined portion 30 of FIG. 8 can be formed. The second slab waveguide side inclined portion 30 is located between the adjacent second slab waveguide side tapered portions 29 and touches the side where the second slab waveguide side tapered portion 29 of the second slab waveguide 31 is located. It may be formed as follows. The second slab waveguide side inclined portion 30 becomes thinner as the distance from the second slab waveguide 31 increases.
[0084] 図 3の光波長分波器 10と同様に、第 2スラブ導波路側テーパー部 29が等間隔であ ることで、光波長合分波器 11は、第 2スラブ導波路側傾斜部 30を第 2スラブ導波路 側テーパー部 29の間に一定の大きさで形成することができる。よって、光波長合分 波器 11は、構造や形状を設計変更してもエッチング等の製造条件の変更を低減す ること力 Sできる。  Similar to the optical wavelength demultiplexer 10 of FIG. 3, the second slab waveguide side tapered portions 29 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 11 is inclined to the second slab waveguide side. The portion 30 can be formed with a constant size between the second slab waveguide side taper portion 29. Therefore, the optical wavelength multiplexer / demultiplexer 11 can reduce the change in manufacturing conditions such as etching even if the structure or shape is changed.
[0085] 第 2スラブ導波路側傾斜部 30が、伝搬損失を低減させる点について説明する。第 2 スラブ導波路側傾斜部 30は、図 3の第 1スラブ導波路側傾斜部 25と同様に、伝搬損 失を低減させることができる。特定の波長を有する光信号は、同一の第 2光導波路 3 2に入力される。第 2光導波路 32から出力された光信号は、第 2スラブ導波路 31で回 折され、第 2スラブ導波路側テーパー部 29を経由しチャネル導波路 26に入力される 。それぞれのチャネル導波路 26が一定の光導波路長差を有していることで、チヤネ ル導波路 26から出力された光信号は、位相が一定量ずれることになる。位相が一定 量ずれている光信号は、第 1スラブ導波路 22で回折された際に互いに干渉する。干 渉された結果、光信号は、異なる波長で合波され、特定の第 1光導波路 21に出力さ れる。 The point where the second slab waveguide side inclined portion 30 reduces the propagation loss will be described. Similarly to the first slab waveguide side inclined portion 25 of FIG. 3, the second slab waveguide side inclined portion 30 can reduce the propagation loss. An optical signal having a specific wavelength is input to the same second optical waveguide 32. The optical signal output from the second optical waveguide 32 is bent by the second slab waveguide 31 and input to the channel waveguide 26 via the second slab waveguide side tapered portion 29. Since each channel waveguide 26 has a constant optical waveguide length difference, the phase of the optical signal output from the channel waveguide 26 is shifted by a certain amount. Optical signals whose phases are shifted by a certain amount interfere with each other when diffracted by the first slab waveguide 22. As a result of the interference, the optical signals are combined at different wavelengths and output to a specific first optical waveguide 21. It is.
[0086] 前述したような電磁界分布の差が原因となり、第 2光導波路 32から第 2スラブ導波 路 31に入射した光信号の一部は、第 2スラブ導波路側テーパー部 29が接続されて レ、ない箇所に入射することがある。しかし、第 2スラブ導波路側テーパー部 29が接続 されていない箇所に入射した光信号は、第 2スラブ導波路側傾斜部 30を経由して、 第 2アレイ導波路側テーパー部 28、第 2スラブ導波路側テーパー部 29又はチャネル 導波路 26に戻ることがある。よって、光波長合分波器 11の伝搬損失は、低減する。 従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器を提供 すること力 Sできる。  [0086] Due to the difference in electromagnetic field distribution as described above, the second slab waveguide side tapered portion 29 is connected to a part of the optical signal incident from the second optical waveguide 32 to the second slab waveguide 31. Being incident, it may be incident on the part that is not. However, the optical signal incident on the portion where the second slab waveguide side taper portion 29 is not connected passes through the second slab waveguide side inclined portion 30 to the second array waveguide side taper portion 28, the second The taper may return to the slab waveguide side taper 29 or the channel waveguide 26. Therefore, the propagation loss of the optical wavelength multiplexer / demultiplexer 11 is reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a high yield in manufacturing.
[0087] (実施の形態 3)  (Embodiment 3)
本願第 3の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回折する 第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向 する側に接続し、それぞれが等間隔であり、幅が前記第 1スラブ導波路から遠くなる につれ狭くなり、光信号を伝搬する複数の第 1スラブ導波路側テーパー部と、前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向する側に 接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置す る側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から遠くなるに つれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、一定の光導波路 長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波 路側テーパー部が位置する側と対向する側に接続する複数のチャネル導波路から なるアレイ導波路と、前記アレイ導波路の他方の端に接続し、幅が前記アレイ導波路 力 遠くなるにつれ広くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、前 記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する側と対向する側に 接続し、それぞれが等間隔であり、幅が前記第 2アレイ導波路側テーパー部の前記 アレイ導波路が位置する側と対向する側より広ぐかつ、前記第 2アレイ導波路側テ 一パー部から遠くなるにつれ広くなり、光信号を伝搬する第 2スラブ導波路側テーパ 一部と、前記第 2スラブ導波路側テーパー部の前記第 2アレイ導波路側テーパー部 が位置する側と対向する側に接続し、光信号を回折する第 2スラブ導波路と、前記第 2スラブ導波路の前記第 2スラブ導波路側テーパー部が位置する側と対向する側に 接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波器で ある。 The third embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core. A first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide-side tapered portions that propagate optical signals, and are narrower as the distance from the first slab waveguide increases. The side taper portion is connected to the side facing the side where the first slab waveguide is located, and the width is from the side facing the side where the first slab waveguide is located of the first slab waveguide side taper portion. Narrow and from the tapered portion on the first slab waveguide side The first slab of the first arrayed waveguide side tapered portion that has a certain optical waveguide length difference and a first optical waveguide side tapered portion that becomes narrower and propagates an optical signal. An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the waveguide side taper portion is located, and connected to the other end of the arrayed waveguide, and the width of the arrayed waveguide increases as the distance increases. The second arrayed waveguide-side tapered portion that propagates the optical signal is connected to the side of the second arrayed-waveguide-side tapered portion that faces the side where the arrayed waveguide is located. The width of the tapered portion of the second arrayed waveguide side is wider than the side facing the side where the arrayed waveguide is located, and the width becomes wider as the distance from the tapered portion of the second arrayed waveguide side becomes larger. 2nd slurry propagating signal Waveguide taper A second slab waveguide that diffracts an optical signal, and a second slab waveguide that diffracts an optical signal; and a second slab waveguide that is connected to a side of the second slab waveguide side tapered portion that faces the side where the second arrayed waveguide side tapered portion is located. An optical wavelength multiplexer / demultiplexer in which a plurality of second optical waveguides that propagate optical signals are connected to a side of the slab waveguide that faces the side where the second slab waveguide side taper portion is located. .
[0088] 図 9を用いて、本願第 3の実施形態に係る光波長合分波器 12について説明する。  An optical wavelength multiplexer / demultiplexer 12 according to the third embodiment of the present application will be described with reference to FIG.
図 9は、光波長合分波器 12の概念図である。光波長合分波器 12は、第 1光導波路 2 1、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラブ導波路 31 及び第 2光導波路 32を備える。  FIG. 9 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 12. The optical wavelength multiplexer / demultiplexer 12 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0089] 光波長合分波器 12は、図 1の光波長合分波器 10と同様に製造することができる。  The optical wavelength multiplexer / demultiplexer 12 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 in FIG.
具体的に、光波長合分波器 12は、前述したコアに形成するパターンを変更すれば、 製造することができる。以下、前述したコアに形成するパターンの変更点について説 明する。  Specifically, the optical wavelength multiplexer / demultiplexer 12 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
[0090] 図 1の光波長合分波器 10と同様に、第 1光導波路 21、第 1スラブ導波路 22、第 1ス ラブ導波路側テーパー部 23、第 1アレイ導波路側テーパー部 24及び複数のチヤネ ル導波路 26からなるアレイ導波路 27は、形成されてもょレ、。  Similar to the optical wavelength multiplexer / demultiplexer 10 of FIG. 1, the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side tapered portion 23, and the first arrayed waveguide side tapered portion 24 are provided. An array waveguide 27 composed of a plurality of channel waveguides 26 is formed.
[0091] 図 6の光波長合分波器 11と同様に、第 2アレイ導波路側テーパー部 28、第 2スラブ 導波路側テーパー部 29、第 2スラブ導波路 31及び第 2光導波路 32は、形成されて ちょい。 Similar to the optical wavelength multiplexer / demultiplexer 11 in FIG. 6, the second arrayed waveguide side tapered portion 28, the second slab waveguide side tapered portion 29, the second slab waveguide 31 and the second optical waveguide 32 are It ’s formed.
[0092] 光波長合分波器 12が歩留まり及び製造工数を低減させる点について説明する。  The point that the optical wavelength multiplexer / demultiplexer 12 reduces the yield and the number of manufacturing steps will be described.
光波長合分波器 12は、第 1光導波路 21に入力した光信号を波長ごとに分波させ、 第 2光導波路 32に出力することができる。また、光波長合分波器 12は、第 2光導波 路 32に入力した光信号を異なる波長で合波し、第 1光導波路 21から出力することが できる。  The optical wavelength multiplexer / demultiplexer 12 can demultiplex an optical signal input to the first optical waveguide 21 for each wavelength and output the demultiplexed optical signal to the second optical waveguide 32. The optical wavelength multiplexer / demultiplexer 12 can multiplex the optical signals input to the second optical waveguide 32 with different wavelengths and output them from the first optical waveguide 21.
[0093] 図 1の光波長合分波器 10及び図 6の光波長合分波器 11と同様に、光波長合分波 器 12は、歩留まり及び製造工数を低減させることができる。従って、製造にあたって 歩留まりのよい光波長合分波器を提供することができる。  Like the optical wavelength multiplexer / demultiplexer 10 in FIG. 1 and the optical wavelength multiplexer / demultiplexer 11 in FIG. 6, the optical wavelength multiplexer / demultiplexer 12 can reduce the yield and the number of manufacturing steps. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer having a good yield in manufacturing.
[0094] 本願第 3の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 1スラブ導波路側テーパー部の間にあり、前記第 1スラブ導波路の前 記第 1スラブ導波路側テーパー部が位置する側に接し、前記第 1スラブ導波路から 遠くなるにつれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、前記クラッド層と前記コ ァとの間の屈折率を有し、 P 接する前記第 2スラブ導波路側テーパー部の間にあり、 前記第 2スラブ導波路の前記第 2スラブ導波路側テーパー部が位置する側に接し、 前記第 2スラブ導波路力 遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部 と、が前記コアのパターンとしてさらに形成されることが好ましい。 [0094] In the third embodiment of the present application, the refractive index between the cladding layer and the core is The first slab waveguide side taper portion is in contact with the first slab waveguide side taper portion, is in contact with the side where the first slab waveguide side taper portion is located, and becomes farther away from the first slab waveguide. The second slab waveguide side tapered portion having a refractive index between the first slab waveguide side inclined portion where the thickness is reduced and the clad layer and the core, and the second slab waveguide side tapered portion contacting P, The second slab waveguide side inclined portion that is in contact with the side where the second slab waveguide side taper portion of the slab waveguide is located and the thickness of the second slab waveguide side decreases as the distance from the second slab waveguide force increases. It is preferable that it is further formed as.
[0095] 図 3の光波長合分波器 10及び図 8の光波長合分波器 11と同様に、光波長合分波 器 12は、第 1スラブ導波路側傾斜部 25及び第 2スラブ導波路側傾斜部 30を形成す ること力 Sできる。 Similar to the optical wavelength multiplexer / demultiplexer 10 in FIG. 3 and the optical wavelength multiplexer / demultiplexer 11 in FIG. 8, the optical wavelength multiplexer / demultiplexer 12 includes the first slab waveguide side inclined portion 25 and the second slab. A force S can be formed to form the waveguide-side inclined portion 30.
[0096] 図 3の光波長合分波器 10と同様に、光波長合分波器 12は、第 1スラブ導波路側テ 一パー部 23と第 1スラブ導波路 22との接続箇所で発生する伝搬損失を低減すること ができる。また、図 8の光波長合分波器 11と同様に、光波長合分波器 12は、第 2スラ ブ導波路側テーパー部 29と第 2スラブ導波路 31との接続箇所で発生する伝搬損失 を低減することができる。第 1スラブ導波路側テーパー部 23及び第 2スラブ導波路側 テーパー部 29のそれぞれが等間隔であることで、図 3の光波長合分波器 10及び図 8の光波長合分波器 11と同様に、光波長合分波器 12は、構造や形状を設計変更し てもエッチング等の製造条件の変更を低減することができる。従って、製造にあたつ て歩留まりがよぐ伝搬損失を低減する光波長合分波器を提供することができる。  Similar to the optical wavelength multiplexer / demultiplexer 10 in FIG. 3, the optical wavelength multiplexer / demultiplexer 12 is generated at the connection point between the first slab waveguide side taper portion 23 and the first slab waveguide 22. Propagation loss can be reduced. Similarly to the optical wavelength multiplexer / demultiplexer 11 shown in FIG. 8, the optical wavelength multiplexer / demultiplexer 12 is used to propagate the second slab waveguide side taper portion 29 and the second slab waveguide 31 at the connection point. Loss can be reduced. The optical wavelength multiplexer / demultiplexer 10 in FIG. 3 and the optical wavelength multiplexer / demultiplexer 11 in FIG. 8 are obtained by arranging the first slab waveguide side tapered portion 23 and the second slab waveguide side tapered portion 29 at equal intervals. Similarly, the optical wavelength multiplexer / demultiplexer 12 can reduce changes in manufacturing conditions such as etching even if the structure and shape are changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield during manufacture.
[0097] (実施の形態 4) [Embodiment 4]
本願第 4の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回折する 第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向 する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を伝搬する複数 の第 1スラブ導波路側等幅部と、前記第 1スラブ導波路側等幅部の前記第 1スラブ導 波路が位置する側と対向する側に接続し、幅が前記第 1スラブ導波路側等幅部より 狭ぐかつ、前記第 1スラブ導波路側等幅部力 遠くなるにつれ狭くなり、光信号を伝 搬する第 1アレイ導波路側テーパー部と、一定の光導波路長差を有し、一方の端が 前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波路側等幅部が位置する側 と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、前記アレイ 導波路の他方の端に接続し、光信号を回折する第 2スラブ導波路と、前記第 2スラブ 導波路の前記アレイ導波路が位置する側と対向する側に接続し、光信号を伝搬する 複数の第 2光導波路と、が形成された光波長合分波器である。 The fourth embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as a pattern of the core. A first optical waveguide, a first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and a side of the first slab waveguide facing the side where the first optical waveguide is located A plurality of first slab waveguide side equal width portions that are equally spaced and have uniform widths and propagate optical signals, and the first slab waveguide side equal width portions Connected to the side opposite to the side where the slab waveguide is located, the width is narrower than the first slab waveguide side equal width part, and the first slab waveguide side equal width part force becomes narrower as the distance increases. Signal The first arrayed-waveguide-side taper portion to be carried and a certain optical waveguide length difference, one end of which is the side where the first-slab-waveguide-side equal-width portion of the first arrayed-waveguide-side tapered portion is located An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the second waveguide, a second slab waveguide connected to the other end of the arrayed waveguide and diffracting an optical signal, and a second slab waveguide An optical wavelength multiplexer / demultiplexer formed with a plurality of second optical waveguides that are connected to a side opposite to the side where the arrayed waveguide is located and that propagate optical signals.
[0098] 図 10及び図 11を用いて、本願第 4の実施形態に係る光波長合分波器 13について 説明する。図 10は、光波長合分波器 13の概念図である。光波長合分波器 13は、第 1光導波路 21、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラ ブ導波路 31及び第 2光導波路 32を備える。  An optical wavelength multiplexer / demultiplexer 13 according to the fourth embodiment of the present application will be described with reference to FIGS. 10 and 11. FIG. 10 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 13. The optical wavelength multiplexer / demultiplexer 13 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0099] 図 11は、図 10の破線部の拡大図である。図 11には、第 1スラブ導波路 22、第 1ァ レイ導波路側テーパー部 24、チャネル導波路 26、第 1スラブ導波路側等幅部 35及 び第 1スラブ導波路側テーパー部の間隔 42が図示されている。  FIG. 11 is an enlarged view of a broken line part of FIG. Figure 11 shows the spacing between the first slab waveguide 22, the first arrayed waveguide side taper 24, the channel waveguide 26, the first slab waveguide side equal width part 35, and the first slab waveguide side tapered part. 42 is shown.
[0100] 光波長合分波器 13は、図 1の光波長合分波器 10と同様に製造することができる。  [0100] The optical wavelength multiplexer / demultiplexer 13 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 10 of FIG.
具体的に、光波長合分波器 13は、前述したコアに形成するパターンを変更すれば、 製造することができる。以下、前述したコアに形成するパターンの変更点について説 明する。  Specifically, the optical wavelength multiplexer / demultiplexer 13 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
[0101] 図 11に示すように、第 1スラブ導波路側等幅部 35は、第 1スラブ導波路側テーパー 部の間隔 42が等しくなるように、第 1スラブ導波路 22の第 1光導波路 21が位置する 側と対向する側に接続するように形成されてもよい。また、第 1スラブ導波路側等幅部 35の幅は、均一となるように形成されてもよい。  [0101] As shown in FIG. 11, the first slab waveguide-side equal width portion 35 has a first optical waveguide of the first slab waveguide 22 so that the interval 42 between the first slab waveguide-side tapered portions is equal. It may be formed so as to be connected to the side opposite to the side where 21 is located. Further, the first slab waveguide side equal width portion 35 may be formed to have a uniform width.
[0102] 第 2アレイ導波路側テーパー部 28は、第 1スラブ導波路側等幅部 35の第 1スラブ 導波路 22が位置する側と対向する側に形成されてもよい。  The second arrayed waveguide side tapered portion 28 may be formed on the side of the first slab waveguide side equal width portion 35 that faces the side where the first slab waveguide 22 is located.
[0103] 光波長合分波器 13が、歩留まり及び製造工数を増加させない点について説明す る。図 1の光波長分波器 10と同様に、光波長合分波器 13は、チップサイズ等の変更 の影響を第 2アレイ導波路側テーパー部 28のみで吸収し、エッチング等の製造条件 の変更を低減させることができる。従って、製造にあたって歩留まりのよい光波長合 分波器を提供することができる。 [0104] 本願第 4の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 1スラブ導波路側等幅部の間にあり、前記第 1スラブ導波路の前記第 1 スラブ導波路側等幅部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつ れ肉厚が薄くなる第 1スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形 成されることが好ましい。 [0103] The point that the optical wavelength multiplexer / demultiplexer 13 does not increase the yield and the number of manufacturing steps will be described. Similar to the optical wavelength demultiplexer 10 in FIG. 1, the optical wavelength demultiplexer 13 absorbs the influence of the change in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and the manufacturing conditions such as etching are Changes can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing. [0104] In the fourth embodiment of the present application, the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent equal width portions on the first slab waveguide side. The first slab waveguide side inclined portion is in contact with the side where the first slab waveguide side equal width portion is located, and the first slab waveguide side inclined portion becomes thinner as it gets farther from the first slab waveguide. It is preferable to further form as follows.
[0105] 図 12を用いて、第 1スラブ導波路側傾斜部 25が形成された光波長合分波器 13に ついて説明する。図 12は、第 1スラブ導波路側傾斜部 25が形成された後の図 10の 破線部の拡大図である。図 12には、第 1スラブ導波路 22、第 1アレイ導波路側テー パー部 24、第 1スラブ導波路側傾斜部 25、チャネル導波路 26及び第 1スラブ導波 路側等幅部 35が図示されている。  [0105] The optical wavelength multiplexer / demultiplexer 13 in which the first slab waveguide side inclined portion 25 is formed will be described with reference to FIG. FIG. 12 is an enlarged view of the broken line portion of FIG. 10 after the first slab waveguide side inclined portion 25 is formed. FIG. 12 shows the first slab waveguide 22, the first array waveguide side taper section 24, the first slab waveguide side inclined section 25, the channel waveguide 26, and the first slab waveguide side equal width section 35. Has been.
[0106] 図 3の第 1スラブ導波路側傾斜部 25と同様に、図 12の第 1スラブ導波路側傾斜部 2 5は、形成することができる。第 1スラブ導波路側傾斜部 25は、隣接する第 1スラブ導 波路側等幅部 35の間にあり、第 1スラブ導波路 22の第 1スラブ導波路側等幅部 35 が位置する側に接するように形成されてもよい。第 1スラブ導波路側傾斜部 25は、第 2スラブ導波路 31から遠くなるにつれ肉厚が薄くなる。  Similar to the first slab waveguide side inclined portion 25 of FIG. 3, the first slab waveguide side inclined portion 25 of FIG. 12 can be formed. The first slab waveguide side inclined portion 25 is located between the adjacent first slab waveguide side equal width portions 35 and on the side of the first slab waveguide 22 where the first slab waveguide side equal width portion 35 is located. You may form so that it may contact | connect. The first slab waveguide side inclined portion 25 becomes thinner as the distance from the second slab waveguide 31 increases.
[0107] 図 1の光波長分波器 10と同様に、第 1スラブ導波路側等幅部 35が等間隔であるこ とで、光波長合分波器 13は、第 1スラブ導波路側傾斜部 25を第 1スラブ導波路側等 幅部 35の間に一定の大きさで形成することができる。よって、光波長合分波器 13は 、構造や形状を設計変更してもエッチング等の製造条件の変更を低減することがで きる。従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器 を提供することができる。  [0107] Similar to the optical wavelength demultiplexer 10 of Fig. 1, the first slab waveguide side equal-width portions 35 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 13 is inclined to the first slab waveguide side. The portion 25 can be formed with a constant size between the first slab waveguide side equal width portions 35. Therefore, the optical wavelength multiplexer / demultiplexer 13 can reduce changes in manufacturing conditions such as etching, even if the structure or shape is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
[0108] (実施の形態 5)  [Embodiment 5]
本願第 5の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する複数の第 2光導波路と、前記第 2光導波路の一方の端に接続し、光信号を回 折する第 2スラブ導波路と、前記第 2スラブ導波路の前記第 2光導波路が位置する側 と対向する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を伝搬す る複数の第 2スラブ導波路側等幅部と、前記第 2スラブ導波路側等幅部の前記第 2ス ラブ導波路が位置する側と対向する側に接続し、幅が前記第 2スラブ導波路側等幅 部より狭 かつ、前記第 2スラブ導波路側等幅部力 遠くなるにつれ狭くなり、光信 号を伝搬する第 2アレイ導波路側テーパー部と、一定の光導波路長差を有し、一方 の端が前記第 2アレイ導波路側テーパー部の前記第 2スラブ導波路側等幅部が位置 する側と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、前記 アレイ導波路の他方の端に接続し、光信号を回折する第 1スラブ導波路と、前記第 1 スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光信号を伝 搬する第 1光導波路と、が形成された光波長合分波器である。 The fifth embodiment of the present application includes a cladding layer formed on a substrate and a core having a higher refractive index than the cladding layer surrounded by the cladding layer, and transmits an optical signal as the pattern of the core. A plurality of second optical waveguides; a second slab waveguide connected to one end of the second optical waveguide to refract an optical signal; and a side of the second slab waveguide where the second optical waveguide is located A plurality of second slab waveguide side equal width portions that are equally spaced and uniform in width and propagate optical signals, and the second slab waveguide side equal width portions. The second of Connected to the side opposite to the side where the lab waveguide is located, the width is narrower than the equal width portion on the second slab waveguide side and the equal width portion force on the second slab waveguide side becomes narrower, and the optical signal becomes narrower. The second arrayed waveguide side taper portion that propagates through the second slab waveguide side taper portion has a certain optical waveguide length difference, and one end is located at the second slab waveguide side taper portion of the second arrayed waveguide side taper portion. An array waveguide composed of a plurality of channel waveguides connected to the side opposite to the side, a first slab waveguide connected to the other end of the array waveguide and diffracting an optical signal, and the first slab waveguide An optical wavelength multiplexer / demultiplexer having a first optical waveguide connected to a side opposite to the side where the arrayed waveguide is positioned and transmitting an optical signal.
[0109] 図 13及び図 14を用いて、本願第 5の実施形態に係る光波長合分波器 14について 説明する。図 13は、光波長合分波器 14の概念図である。光波長合分波器 14は、第An optical wavelength multiplexer / demultiplexer 14 according to the fifth embodiment of the present application will be described using FIG. 13 and FIG. FIG. 13 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 14. The optical wavelength multiplexer / demultiplexer 14
1光導波路 21、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラ ブ導波路 31及び第 2光導波路 32を備える。 1 includes an optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0110] 図 14は、図 13の破線部の拡大図である。図 14には、チャネル導波路 26、第 2ァレ ィ導波路側テーパー部 28、第 2スラブ導波路 31、第 2スラブ導波路側等幅部 36及 び第 2スラブ導波路側等幅部の間隔 43が図示されている。 FIG. 14 is an enlarged view of a broken line part of FIG. 14 shows the channel waveguide 26, the second arrayed waveguide side tapered portion 28, the second slab waveguide 31, the second slab waveguide side equal width portion 36, and the second slab waveguide side equal width portion. A distance 43 is shown.
[0111] 光波長合分波器 14は、図 6の光波長合分波器 11と同様に製造することができる。 The optical wavelength multiplexer / demultiplexer 14 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 11 in FIG.
具体的に、光波長合分波器 14は、前述したコアに形成するパターンを変更すれば、 製造することができる。以下、前述したコアに形成するパターンの変更点について説 明する。  Specifically, the optical wavelength multiplexer / demultiplexer 14 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
[0112] 図 14に示すように、第 2スラブ導波路側等幅部 36は、第 2スラブ導波路側テーパー 部の間隔 43が等しくなるように、第 2スラブ導波路 31の第 2光導波路 32が位置する 側と対向する側に接続するように形成されてもよい。また、第 2スラブ導波路側等幅部 36の幅は、均一となるように形成されてもよい。  As shown in FIG. 14, the second slab waveguide-side equal-width portion 36 has a second optical waveguide of the second slab waveguide 31 so that the distance 43 between the second slab waveguide-side tapered portions is equal. It may be formed so as to be connected to the side opposite to the side where 32 is located. Further, the second slab waveguide side equal width portion 36 may be formed to have a uniform width.
[0113] 第 2アレイ導波路側テーパー部 28は、第 2スラブ導波路側等幅部 36の第 2スラブ 導波路 31が位置する側と対向する側に形成されてもよい。  [0113] The second arrayed waveguide side tapered portion 28 may be formed on the side of the second slab waveguide side equal width portion 36 that faces the side where the second slab waveguide 31 is located.
[0114] 光波長合分波器 14が、歩留まり及び製造工数を増加させない点について説明す る。図 6の光波長分波器 11と同様に、光波長合分波器 14は、チップサイズ等の変更 の影響を第 2アレイ導波路側テーパー部 28のみで吸収し、エッチング等の製造条件 の変更を低減させることができる。従って、製造にあたって歩留まりのよい光波長合 分波器を提供することができる。 [0114] The point that the optical wavelength multiplexer / demultiplexer 14 does not increase the yield and the number of manufacturing steps will be described. Similar to the optical wavelength demultiplexer 11 in FIG. 6, the optical wavelength demultiplexer 14 absorbs the effect of changes in the chip size and the like only by the second arrayed waveguide side tapered portion 28, and manufacturing conditions such as etching Can be reduced. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a high yield in manufacturing.
[0115] 本願第 5の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 2スラブ導波路側等幅部の間にあり、前記第 2スラブ導波路の前記第 2 スラブ導波路側等幅部が位置する側に接するように形成され、前記第 2スラブ導波路 力 遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパタ ーンとしてさらに形成されることが好ましい。  [0115] In the fifth embodiment of the present application, the second slab waveguide has a refractive index between the cladding layer and the core, and is between the adjacent equal width portions on the second slab waveguide side. A second slab waveguide side inclined portion formed so as to be in contact with a side where the second slab waveguide side equal width portion of the second slab waveguide side is located, and the thickness of the second slab waveguide side becomes thinner as the distance from the second slab waveguide force increases. It is preferable to further form as a pattern.
[0116] 図 15を用いて、第 2スラブ導波路側傾斜部 30が形成された光波長合分波器 14に ついて説明する。図 15は、第 2スラブ導波路側傾斜部 30が形成された後の図 13の 破線部の拡大図である。図 15は、チャネル導波路 26、第 2アレイ導波路側テーパー 部 28、第 2スラブ導波路側傾斜部 30、第 2スラブ導波路 31及び第 2スラブ導波路側 等幅部 36が図示されている。  With reference to FIG. 15, the optical wavelength multiplexer / demultiplexer 14 in which the second slab waveguide side inclined portion 30 is formed will be described. FIG. 15 is an enlarged view of the broken line portion of FIG. 13 after the second slab waveguide side inclined portion 30 is formed. FIG. 15 shows a channel waveguide 26, a second arrayed waveguide side tapered portion 28, a second slab waveguide side inclined portion 30, a second slab waveguide 31 and a second slab waveguide side equal width portion 36. Yes.
[0117] 図 8の第 2スラブ導波路側傾斜部 30と同様に、図 15の第 2スラブ導波路側傾斜部 3 0は、形成することができる。第 2スラブ導波路側傾斜部 30は、隣接する第 2スラブ導 波路側等幅部 36の間にあり、第 2スラブ導波路 31の第 2スラブ導波路側等幅部 36 が位置する側に接するように形成されてもよい。第 2スラブ導波路側傾斜部 30は、第 2スラブ導波路 31から遠くなるにつれ肉厚が薄くなる。  Similar to the second slab waveguide side inclined portion 30 of FIG. 8, the second slab waveguide side inclined portion 30 of FIG. 15 can be formed. The second slab waveguide side inclined portion 30 is located between the adjacent second slab waveguide side equal width portions 36, and on the side of the second slab waveguide 31 where the second slab waveguide side equal width portion 36 is located. You may form so that it may contact | connect. The second slab waveguide side inclined portion 30 becomes thinner as the distance from the second slab waveguide 31 increases.
[0118] 図 8の光波長分波器 11と同様に、第 2スラブ導波路側傾斜部 30が等間隔であるこ とで、光波長合分波器 14は、第 2スラブ導波路側傾斜部 30を第 2スラブ導波路側等 幅部 36の間に一定の大きさで形成することができる。よって、光波長合分波器 14は 、構造や形状を設計変更してもエッチング等の製造条件の変更を低減することがで きる。従って、製造にあたって歩留まりがよぐ伝搬損失を低減する光波長合分波器 を提供することができる。  [0118] Similar to the optical wavelength demultiplexer 11 in FIG. 8, the second slab waveguide side inclined portions 30 are equally spaced, so that the optical wavelength multiplexer / demultiplexer 14 is provided with the second slab waveguide side inclined portions. 30 can be formed between the second slab waveguide side equal width portion 36 with a constant size. Therefore, the optical wavelength multiplexer / demultiplexer 14 can reduce changes in manufacturing conditions such as etching even when the design or structure of the structure is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss with a good yield in manufacturing.
[0119] (実施の形態 6)  [Embodiment 6]
本願第 6の実施形態は、基板上に形成されたクラッド層と前記クラッド層に囲まれ前 記クラッド層より高い屈折率のコアとを有し、前記コアのパターンとして、光信号を伝 搬する第 1光導波路と、前記第 1光導波路の一方の端に接続し、光信号を回折する 第 1スラブ導波路と、前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向 する側に接続し、それぞれが等間隔であり、幅が均一であり、光信号を伝搬する複数 の第 1スラブ導波路側等幅部と、前記第 1スラブ導波路側等幅部の前記第 1スラブ導 波路が位置する側と対向する側に接続し、幅が前記第 1スラブ導波路側等幅部より 狭ぐかつ、前記第 1スラブ導波路側等幅部力 遠くなるにつれ狭くなり、光信号を伝 搬する第 1アレイ導波路側テーパー部と、一定の光導波路長差を有し、一方の端が 前記第 1アレイ導波路側テーパー部の前記第 1スラブ導波路側等幅部が位置する側 と対向する側に接続する複数のチャネル導波路からなるアレイ導波路と、前記アレイ 導波路の他方の端に接続し、幅が前記アレイ導波路から遠くなるにつれ広くなり、光 信号を伝搬する第 2アレイ導波路側テーパー部と、前記第 2アレイ導波路側テーパ 一部の前記アレイ導波路が位置する側と対向する側に接続し、それぞれが等間隔で あり、幅が前記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する側と 対向する側より広ぐかつ、均一であり、光信号を伝搬する第 2スラブ導波路側等幅 部と、前記第 2スラブ導波路側等幅部の前記第 2アレイ導波路側テーパー部が位置 する側と対向する側に接続し、光信号を回折する第 2スラブ導波路と、前記第 2スラ ブ導波路の前記第 2スラブ導波路側等幅部が位置する側と対向する側に接続し、光 信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波器である。 The sixth embodiment of the present application includes a clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer, and transmits an optical signal as the pattern of the core. A first optical waveguide, a first slab waveguide that is connected to one end of the first optical waveguide and diffracts an optical signal, and faces the side of the first slab waveguide where the first optical waveguide is located A plurality of first slab waveguide side equal-width portions that are equally spaced and have uniform widths and that propagate optical signals, and the first slab waveguide-side equal width portions. 1 Connected to the side opposite to the side where the slab waveguide is located, the width is narrower than the first slab waveguide side equal width part and the first slab waveguide side equal width part force becomes narrower, 1st array waveguide side taper part which transmits an optical signal, and a certain optical waveguide length difference, and one end is the 1st slab waveguide side equal width part of the 1st array waveguide side taper part An arrayed waveguide composed of a plurality of channel waveguides connected to the side opposite to the side where the optical waveguide is positioned, and the other end of the arrayed waveguide, and the width becomes wider as the distance from the arrayed waveguide increases. A second arrayed-waveguide-side taper that propagates through the second-arrayed waveguide Taper Connected to the side opposite to the side on which a part of the arrayed waveguide is located, and each is equidistant, and the width is opposite to the side on which the arrayed waveguide is located in the second arrayed waveguide side tapered portion The second slab waveguide side equal width part that is wider and uniform than the side and propagates the optical signal, and the side where the second array waveguide side taper part of the second slab waveguide side equal width part is located A second slab waveguide that diffracts an optical signal, and a side that faces the side of the second slab waveguide where the second slab waveguide side equal width portion is located, An optical wavelength multiplexer / demultiplexer in which a plurality of second optical waveguides that propagate optical signals are formed.
[0120] 図 16を用いて、本願第 6の実施形態に係る光波長合分波器 15について説明する 。図 16は、光波長合分波器 15の概念図である。光波長合分波器 15は、第 1光導波 路 21、第 1スラブ導波路 22、チャネル導波路 26、アレイ導波路 27、第 2スラブ導波 路 31及び第 2光導波路 32を備える。  [0120] An optical wavelength multiplexer / demultiplexer 15 according to the sixth embodiment of the present application will be described with reference to FIG. FIG. 16 is a conceptual diagram of the optical wavelength multiplexer / demultiplexer 15. The optical wavelength multiplexer / demultiplexer 15 includes a first optical waveguide 21, a first slab waveguide 22, a channel waveguide 26, an arrayed waveguide 27, a second slab waveguide 31, and a second optical waveguide 32.
[0121] 光波長合分波器 15、図 10の光波長合分波器 13と同様に製造することができる。  The optical wavelength multiplexer / demultiplexer 15 can be manufactured in the same manner as the optical wavelength multiplexer / demultiplexer 13 in FIG.
具体的に、光波長合分波器 15は、前述したコアに形成するパターンを変更すれば、 製造することができる。以下、前述したコアに形成するパターンの変更点について説 明する。  Specifically, the optical wavelength multiplexer / demultiplexer 15 can be manufactured by changing the pattern formed on the core described above. In the following, changes in the pattern formed on the core will be described.
[0122] 図 10の光波長合分波器 13と同様に、第 1光導波路 21、第 1スラブ導波路 22、第 1 スラブ導波路側等幅部 35、第 1アレイ導波路側テーパー部 24及び複数のチャネル 導波路 26からなるアレイ導波路 27は、形成されてもょレ、。  Similar to the optical wavelength multiplexer / demultiplexer 13 in FIG. 10, the first optical waveguide 21, the first slab waveguide 22, the first slab waveguide side equal width portion 35, and the first array waveguide side taper portion 24. And an arrayed waveguide 27 comprising a plurality of channel waveguides 26 may be formed.
[0123] 図 14の光波長合分波器 14と同様に、第 2アレイ導波路側テーパー部 28、第 2スラ ブ導波路側等幅部 36、第 2スラブ導波路 31及び第 2光導波路 32は、形成されてもよ レ、。 Similar to the optical wavelength multiplexer / demultiplexer 14 in FIG. 14, the second arrayed waveguide side tapered portion 28, the second slurry The waveguide-side equal width portion 36, the second slab waveguide 31 and the second optical waveguide 32 may be formed.
[0124] 光波長合分波器 15が歩留まり及び製造工数を低減させる点について説明する。  The point that the optical wavelength multiplexer / demultiplexer 15 reduces the yield and the number of manufacturing steps will be described.
光波長合分波器 15は、第 1光導波路 21に入力した光信号を波長ごとに分波させ、 第 2光導波路 32に出力することができる。また、光波長合分波器 15は、第 2光導波 路 32に入力した光信号を異なる波長で合波し、第 1光導波路 21から出力することが できる。  The optical wavelength multiplexer / demultiplexer 15 can demultiplex an optical signal input to the first optical waveguide 21 for each wavelength and output the demultiplexed optical signal to the second optical waveguide 32. The optical wavelength multiplexer / demultiplexer 15 can multiplex the optical signals input to the second optical waveguide 32 with different wavelengths and output them from the first optical waveguide 21.
[0125] 図 10の光波長合分波器 13及び図 13の光波長合分波器 14と同様に、光波長合分 波器 15は、歩留まり及び製造工数を低減させることができる。従って、製造にあたつ て歩留まりのよい光波長合分波器を提供することができる。  Similar to the optical wavelength multiplexer / demultiplexer 13 in FIG. 10 and the optical wavelength multiplexer / demultiplexer 14 in FIG. 13, the optical wavelength multiplexer / demultiplexer 15 can reduce the yield and the number of manufacturing steps. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer with a good yield in manufacturing.
[0126] 本願第 6の実施形態において、前記クラッド層と前記コアとの間の屈折率を有し、隣 接する前記第 1スラブ導波路側等幅部の間にあり、前記第 1スラブ導波路の前記第 1 スラブ導波路側等幅部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつ れ肉厚が薄くなる第 1スラブ導波路側傾斜部と、前記クラッド層と前記コアとの間の屈 折率を有し、隣接する前記第 2スラブ導波路側等幅部の間にあり、前記第 2スラブ導 波路の前記第 2スラブ導波路側等幅部が位置する側に接し、前記第 2スラブ導波路 力 遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパタ ーンとしてさらに形成されることが好ましい。  [0126] In the sixth embodiment of the present application, the first slab waveguide has a refractive index between the cladding layer and the core and is between the adjacent equal width portions on the first slab waveguide side. The first slab waveguide side inclined portion which is in contact with the side where the first slab waveguide side equal width portion is located and becomes thinner as it gets farther from the first slab waveguide, the cladding layer and the clad layer A side having a bending ratio with the core, between the adjacent equal width portions of the second slab waveguide, and on the side where the equal width portion of the second slab waveguide is located. It is preferable that a second slab waveguide-side inclined portion that is in contact with the second slab waveguide and whose thickness becomes thinner as the force of the second slab waveguide is further formed is further formed as a pattern of the core.
[0127] 図 12の光波長合分波器 13と同様に、光波長合分波器 15は、第 1スラブ導波路側 等幅部 35と第 1スラブ導波路 22との接続箇所で発生する伝搬損失を低減することが できる。また、図 15の光波長合分波器 14と同様に、光波長合分波器 15は、第 2スラ ブ導波路側等幅部 36と第 2スラブ導波路 31との接続箇所で発生する伝搬損失を低 減することができる。第 1スラブ導波路側等幅部 35及び第 2スラブ導波路側等幅部 3 6のそれぞれが等間隔であることで、図 12の光波長合分波器 13及び図 15の光波長 合分波器 14と同様に、光波長合分波器 15は、構造や形状を設計変更してもエッチ ング等の製造条件の変更を低減することができる。従って、製造にあたって歩留まり 力 ぐ伝搬損失を低減する光波長合分波器を提供することができる。  Similar to the optical wavelength multiplexer / demultiplexer 13 in FIG. 12, the optical wavelength multiplexer / demultiplexer 15 is generated at the connection point between the first slab waveguide side equal width portion 35 and the first slab waveguide 22. Propagation loss can be reduced. Similarly to the optical wavelength multiplexer / demultiplexer 14 in FIG. 15, the optical wavelength multiplexer / demultiplexer 15 is generated at the connection point between the second slab waveguide side equal width portion 36 and the second slab waveguide 31. Propagation loss can be reduced. Since the first slab waveguide side equal width portion 35 and the second slab waveguide side equal width portion 36 are each equidistant, the optical wavelength multiplexing / demultiplexing device 13 in FIG. 12 and the optical wavelength multiplexing / demultiplexing in FIG. Similar to the waver 14, the optical wavelength multiplexer / demultiplexer 15 can reduce changes in manufacturing conditions such as etching even if the structure or shape is changed. Therefore, it is possible to provide an optical wavelength multiplexer / demultiplexer that reduces propagation loss due to yield.
産業上の利用可能性 本発明の光波長合分波器は、光分合波器や光スィッチ等の光学部品として光ファ ィバー通信網で利用できる。 Industrial applicability The optical wavelength multiplexer / demultiplexer of the present invention can be used in an optical fiber communication network as an optical component such as an optical multiplexer / demultiplexer or an optical switch.

Claims

請求の範囲 The scope of the claims
[1] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、  [1] A clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
光信号を伝搬する第 1光導波路と、  A first optical waveguide for propagating an optical signal;
前記第 1光導波路の一方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が前記第 1スラブ導波路から遠くなるにつれ狭くなり、光信 号を伝搬する複数の第 1スラブ導波路側テーパー部と、  A first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and connected to a side of the first slab waveguide opposite to the side where the first optical waveguide is located. A plurality of tapered portions on the first slab waveguide side that are equally spaced, narrow in width as they become farther from the first slab waveguide, and propagate optical signals;
前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向 する側に接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路 が位置する側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から 遠くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、 一定の光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前 記第 1スラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチヤ ネル導波路からなるアレイ導波路と、  A side of the first slab waveguide side taper portion that is connected to a side facing the side where the first slab waveguide is located, and a width of the first slab waveguide side taper portion is a side where the first slab waveguide is located. And the first arrayed waveguide side tapered part that propagates the optical signal, and has a certain optical waveguide length difference, and is narrower as it is farther from the first slab waveguide side tapered part. An arrayed waveguide comprising a plurality of channel waveguides, one end of which is connected to the side opposite to the side where the first slab waveguide side tapered portion is located of the first arrayed waveguide side tapered portion;
前記アレイ導波路の他方の端に接続し、光信号を回折する第 2スラブ導波路と、 前記第 2スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光 信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波器。  A second slab waveguide that diffracts an optical signal connected to the other end of the arrayed waveguide, and a side that faces the side of the second slab waveguide where the arrayed waveguide is located; An optical wavelength multiplexer / demultiplexer formed with a plurality of second optical waveguides to propagate.
[2] 前記クラッド層と前記コアとの間の屈折率を有し、 P 接する前記第 1スラブ導波路側 テーパー部の間にあり、前記第 1スラブ導波路の前記第 1スラブ導波路側テーパー 部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形成されたことを特徴 とする請求項 1に記載の光波長合分波器。 [2] The first slab waveguide side taper of the first slab waveguide, which has a refractive index between the cladding layer and the core and is between the first slab waveguide side taper portion in contact with P The first slab waveguide side inclined portion, which is in contact with the side where the portion is located and becomes thinner as it is farther from the first slab waveguide, is further formed as a pattern of the core. The optical wavelength multiplexer / demultiplexer according to 1.
[3] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、 [3] A clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
光信号を伝搬する複数の第 2光導波路と、  A plurality of second optical waveguides for propagating optical signals;
前記第 2光導波路の一方の端に接続し、光信号を回折する第 2スラブ導波路と、 前記第 2スラブ導波路の前記第 2光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が前記第 2スラブ導波路から遠くなるにつれ狭くなり、光信 号を伝搬する複数の第 2スラブ導波路側テーパー部と、 A second slab waveguide connected to one end of the second optical waveguide and diffracting an optical signal; a second slab waveguide connected to the side of the second slab waveguide opposite to the side where the second optical waveguide is located; A plurality of second slab waveguide side taper portions that are equally spaced, narrow in width as they become farther from the second slab waveguide, and propagate optical signals;
前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波路が位置する側と対向 する側に接続し、幅が前記第 2スラブ導波路側テーパー部の前記第 2スラブ導波路 が位置する側と対向する側より狭ぐかつ、前記第 2スラブ導波路側テーパー部から 遠くなるにつれ狭くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、 一定の光導波路長差を有し、一方の端が前記第 2アレイ導波路側テーパー部の前 記第 2スラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチヤ ネル導波路からなるアレイ導波路と、  The second slab waveguide side tapered portion is connected to the side facing the side where the second slab waveguide is located, and the width of the second slab waveguide side tapered portion is the side where the second slab waveguide is located. And the second arrayed waveguide side tapered part that propagates the optical signal, and has a certain optical waveguide length difference, and is narrower as it is farther from the second slab waveguide side tapered part. An arrayed waveguide comprising a plurality of channel waveguides, one end of which is connected to the side opposite to the side where the second slab waveguide side tapered portion is located, of the second arrayed waveguide side tapered portion;
前記アレイ導波路の他方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光 信号を伝搬する第 1光導波路と、が形成された光波長合分波器。  A first slab waveguide that diffracts an optical signal connected to the other end of the arrayed waveguide, and a side that faces the side of the first slab waveguide where the arrayed waveguide is located; An optical wavelength multiplexer / demultiplexer formed with a first optical waveguide that propagates.
[4] 前記クラッド層と前記コアとの間の屈折率を有し、隣接する前記第 2スラブ導波路側 テーパー部の間にあり、前記第 2スラブ導波路の前記第 2スラブ導波路側テーパー 部が位置する側に接し、前記第 2スラブ導波路から遠くなるにつれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形成されたことを特徴 とする請求項 3に記載の光波長合分波器。 [4] The second slab waveguide side taper of the second slab waveguide, which has a refractive index between the cladding layer and the core, is between the adjacent second slab waveguide side taper portions. The second slab waveguide side inclined portion, which is in contact with the side where the portion is located and becomes thinner as it gets farther from the second slab waveguide, is further formed as a pattern of the core. 4. An optical wavelength multiplexer / demultiplexer according to 3.
[5] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、 [5] A clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
光信号を伝搬する第 1光導波路と、  A first optical waveguide for propagating an optical signal;
前記第 1光導波路の一方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が前記第 1スラブ導波路から遠くなるにつれ狭くなり、光信 号を伝搬する複数の第 1スラブ導波路側テーパー部と、  A first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and connected to a side of the first slab waveguide opposite to the side where the first optical waveguide is located. A plurality of tapered portions on the first slab waveguide side that are equally spaced, narrow in width as they become farther from the first slab waveguide, and propagate optical signals;
前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路が位置する側と対向 する側に接続し、幅が前記第 1スラブ導波路側テーパー部の前記第 1スラブ導波路 が位置する側と対向する側より狭ぐかつ、前記第 1スラブ導波路側テーパー部から 遠くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テーパー部と、 一定の光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前 記第 1スラブ導波路側テーパー部が位置する側と対向する側に接続する複数のチヤ ネル導波路からなるアレイ導波路と、 A side of the first slab waveguide side taper portion that is connected to a side facing the side where the first slab waveguide is located, and a width of the first slab waveguide side taper portion is a side where the first slab waveguide is located. A first arrayed waveguide-side tapered portion that is narrower than the side facing the first slab waveguide and becomes narrower as it is farther from the first slab waveguide-side tapered portion, and propagates an optical signal; A plurality of channel guides having a certain optical waveguide length difference and having one end connected to the side opposite to the side where the first slab waveguide side taper portion is located, of the first array waveguide side taper portion. An array of waveguides, and
前記アレイ導波路の他方の端に接続し、幅が前記アレイ導波路から遠くなるにつれ 広くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、  A second arrayed waveguide-side tapered portion that is connected to the other end of the arrayed waveguide and becomes wider as the distance from the arrayed waveguide increases, and propagates an optical signal;
前記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する側と対向する 側に接続し、それぞれが等間隔であり、幅が前記第 2アレイ導波路側テーパー部の 前記アレイ導波路が位置する側と対向する側より広ぐかつ、前記第 2アレイ導波路 側テーパー部から遠くなるにつれ広くなり、光信号を伝搬する第 2スラブ導波路側テ 一パー部と、  The second arrayed waveguide side tapered portion is connected to the side opposite to the side where the arrayed waveguide is located, and each of the arrayed waveguides of the second arrayed waveguide side tapered portion is equidistant from each other. A second slab waveguide side taper portion that is wider than a side opposite to the positioned side and becomes wider as it is farther from the tapered portion on the second array waveguide side, and propagates an optical signal;
前記第 2スラブ導波路側テーパー部の前記第 2アレイ導波路側テーパー部が位置 する側と対向する側に接続し、光信号を回折する第 2スラブ導波路と、  A second slab waveguide connected to a side of the second slab waveguide side tapered portion opposite to a side where the second arrayed waveguide side tapered portion is located, and diffracts an optical signal;
前記第 2スラブ導波路の前記第 2スラブ導波路側テーパー部が位置する側と対向 する側に接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波長合 分波器。  An optical wavelength multiplexing / demultiplexing comprising: a plurality of second optical waveguides that are connected to a side of the second slab waveguide that faces the side where the tapered portion on the second slab waveguide side is located and that propagate optical signals. vessel.
[6] 前記クラッド層と前記コアとの間の屈折率を有し、隣接する前記第 1スラブ導波路側 テーパー部の間にあり、前記第 1スラブ導波路の前記第 1スラブ導波路側テーパー 部が位置する側に接し、前記第 1スラブ導波路から遠くなるにつれ肉厚が薄くなる第 1スラブ導波路側傾斜部と、前記クラッド層と前記コアとの間の屈折率を有し、隣接す る前記第 2スラブ導波路側テーパー部の間にあり、前記第 2スラブ導波路の前記第 2 スラブ導波路側テーパー部が位置する側に接し、前記第 2スラブ導波路から遠くなる につれ肉厚が薄くなる第 2スラブ導波路側傾斜部と、が前記コアのパターンとしてさら に形成されたことを特徴とする請求項 5に記載の光波長合分波器。  [6] The first slab waveguide side taper of the first slab waveguide, which has a refractive index between the cladding layer and the core, is between the adjacent first slab waveguide side taper portions. The first slab waveguide side inclined portion that is in contact with the side where the portion is located and becomes thinner as it is farther from the first slab waveguide, and has a refractive index between the cladding layer and the core, and is adjacent Between the second slab waveguide side taper portion, contacting the side of the second slab waveguide where the second slab waveguide side taper portion is located, and being further away from the second slab waveguide. 6. The optical wavelength multiplexer / demultiplexer according to claim 5, wherein a second slab waveguide side inclined portion having a reduced thickness is further formed as a pattern of the core.
[7] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、  [7] A clad layer formed on a substrate and a core having a higher refractive index than that of the clad layer surrounded by the clad layer.
光信号を伝搬する第 1光導波路と、  A first optical waveguide for propagating an optical signal;
前記第 1光導波路の一方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が均一であり、光信号を伝搬する複数の第 1スラブ導波路 側等幅部と、 A first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and connected to a side of the first slab waveguide opposite to the side where the first optical waveguide is located. A plurality of equal width portions on the side of the first slab waveguide, each of which is equally spaced and uniform in width and propagates an optical signal;
前記第 1スラブ導波路側等幅部の前記第 1スラブ導波路が位置する側と対向する 側に接続し、幅が前記第 1スラブ導波路側等幅部より狭ぐかつ、前記第 1スラブ導 波路側等幅部から遠くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テ 一パー部と、  The first slab waveguide side equal width portion is connected to the side facing the side where the first slab waveguide is located, and the width is narrower than the first slab waveguide side equal width portion, and the first slab waveguide side A first array waveguide-side taper portion that becomes narrower as it gets farther from the waveguide-side equal-width portion and propagates an optical signal;
一定の光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前 記第 1スラブ導波路側等幅部が位置する側と対向する側に接続する複数のチャネル 導波路からなるアレイ導波路と、  A plurality of channel guides having a certain optical waveguide length difference and having one end connected to a side opposite to the side where the first slab waveguide side equal width part is located of the first arrayed waveguide side tapered part. An array of waveguides, and
前記アレイ導波路の他方の端に接続し、光信号を回折する第 2スラブ導波路と、 前記第 2スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光 信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波器。  A second slab waveguide that diffracts an optical signal connected to the other end of the arrayed waveguide, and a side that faces the side of the second slab waveguide where the arrayed waveguide is located; An optical wavelength multiplexer / demultiplexer formed with a plurality of second optical waveguides to propagate.
[8] 前記クラッド層と前記コアとの間の屈折率を有し、隣接する前記第 1スラブ導波路側 等幅部の間にあり、前記第 1スラブ導波路の前記第 1スラブ導波路側等幅部が位置 する側に接し、前記第 1スラブ導波路から遠くなるにつれ肉厚が薄くなる第 1スラブ導 波路側傾斜部と、が前記コアのパターンとしてさらに形成されたことを特徴とする請求 項 7に記載の光波長合分波器。  [8] The first slab waveguide side of the first slab waveguide, which has a refractive index between the cladding layer and the core, is between the adjacent equal width portions of the first slab waveguide side A first slab waveguide-side inclined portion that is in contact with the side where the equal-width portion is located and becomes thinner as it is farther from the first slab waveguide, is further formed as a pattern of the core The optical wavelength multiplexer / demultiplexer according to claim 7.
[9] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、  [9] A clad layer formed on a substrate and a core having a higher refractive index than the clad layer, surrounded by the clad layer,
光信号を伝搬する複数の第 2光導波路と、  A plurality of second optical waveguides for propagating optical signals;
前記第 2光導波路の一方の端に接続し、光信号を回折する第 2スラブ導波路と、 前記第 2スラブ導波路の前記第 2光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が均一であり、光信号を伝搬する複数の第 2スラブ導波路 側等幅部と、  A second slab waveguide connected to one end of the second optical waveguide and diffracting an optical signal; a second slab waveguide connected to the side of the second slab waveguide opposite to the side where the second optical waveguide is located; A plurality of equal width portions on the second slab waveguide side that are equally spaced, have a uniform width, and propagate optical signals;
前記第 2スラブ導波路側等幅部の前記第 2スラブ導波路が位置する側と対向する 側に接続し、幅が前記第 2スラブ導波路側等幅部より狭ぐかつ、前記第 2スラブ導 波路側等幅部から遠くなるにつれ狭くなり、光信号を伝搬する第 2アレイ導波路側テ 一パー部と、 一定の光導波路長差を有し、一方の端が前記第 2アレイ導波路側テーパー部の前 記第 2スラブ導波路側等幅部が位置する側と対向する側に接続する複数のチャネル 導波路からなるアレイ導波路と、 The second slab waveguide side equal width portion is connected to a side facing the side where the second slab waveguide is located, and the width is narrower than the second slab waveguide side equal width portion, and the second slab waveguide side A second arrayed-waveguide-side taper that becomes narrower as it gets farther from the waveguide-side equal-width part and propagates an optical signal; A plurality of channel guides having a certain optical waveguide length difference and having one end connected to the side opposite to the side where the second slab waveguide side equal width part is located of the second arrayed waveguide side tapered part. An array of waveguides, and
前記アレイ導波路の他方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記アレイ導波路が位置する側と対向する側に接続し、光 信号を伝搬する第 1光導波路と、が形成された光波長合分波器。  A first slab waveguide that diffracts an optical signal connected to the other end of the arrayed waveguide, and a side that faces the side of the first slab waveguide where the arrayed waveguide is located; An optical wavelength multiplexer / demultiplexer formed with a first optical waveguide that propagates.
[10] 前記クラッド層と前記コアとの間の屈折率を有し、 P 接する前記第 2スラブ導波路側 等幅部の間にあり、前記第 2スラブ導波路の前記第 2スラブ導波路側等幅部が位置 する側に接するように形成され、前記第 2スラブ導波路から遠くなるにつれ肉厚が薄 くなる第 2スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形成されたこ とを請求項 9に記載の光波長合分波器。 [10] The second slab waveguide side of the second slab waveguide, which has a refractive index between the cladding layer and the core and is between the equal width portions of the second slab waveguide side in contact with P A second slab waveguide side inclined portion that is formed so as to be in contact with the side where the equal width portion is located and becomes thinner as the distance from the second slab waveguide is further formed as a pattern of the core. The optical wavelength multiplexer / demultiplexer according to claim 9.
[11] 基板上に形成されたクラッド層と前記クラッド層に囲まれ前記クラッド層より高い屈折 率のコアとを有し、前記コアのパターンとして、 [11] A clad layer formed on a substrate and a core having a refractive index higher than that of the clad layer surrounded by the clad layer.
光信号を伝搬する第 1光導波路と、  A first optical waveguide for propagating an optical signal;
前記第 1光導波路の一方の端に接続し、光信号を回折する第 1スラブ導波路と、 前記第 1スラブ導波路の前記第 1光導波路が位置する側と対向する側に接続し、そ れぞれが等間隔であり、幅が均一であり、光信号を伝搬する複数の第 1スラブ導波路 側等幅部と、  A first slab waveguide connected to one end of the first optical waveguide and diffracting an optical signal, and connected to a side of the first slab waveguide opposite to the side where the first optical waveguide is located. A plurality of equal width portions on the side of the first slab waveguide, each of which is equally spaced and uniform in width and propagates an optical signal;
前記第 1スラブ導波路側等幅部の前記第 1スラブ導波路が位置する側と対向する 側に接続し、幅が前記第 1スラブ導波路側等幅部より狭ぐかつ、前記第 1スラブ導 波路側等幅部から遠くなるにつれ狭くなり、光信号を伝搬する第 1アレイ導波路側テ 一パー部と、  The first slab waveguide side equal width portion is connected to the side facing the side where the first slab waveguide is located, and the width is narrower than the first slab waveguide side equal width portion, and the first slab waveguide side A first array waveguide-side taper portion that becomes narrower as it gets farther from the waveguide-side equal-width portion and propagates an optical signal;
一定の光導波路長差を有し、一方の端が前記第 1アレイ導波路側テーパー部の前 記第 1スラブ導波路側等幅部が位置する側と対向する側に接続する複数のチャネル 導波路からなるアレイ導波路と、  A plurality of channel guides having a certain optical waveguide length difference and having one end connected to a side opposite to the side where the first slab waveguide side equal width part is located of the first arrayed waveguide side tapered part. An array of waveguides, and
前記アレイ導波路の他方の端に接続し、幅が前記アレイ導波路から遠くなるにつれ 広くなり、光信号を伝搬する第 2アレイ導波路側テーパー部と、  A second arrayed waveguide-side tapered portion that is connected to the other end of the arrayed waveguide and becomes wider as the distance from the arrayed waveguide increases, and propagates an optical signal;
前記第 2アレイ導波路側テーパー部の前記アレイ導波路が位置する側と対向する 側に接続し、それぞれが等間隔であり、幅が前記第 2アレイ導波路側テーパー部の 前記アレイ導波路が位置する側と対向する側より広ぐかつ、均一であり、光信号を 伝搬する第 2スラブ導波路側等幅部と、 The second arrayed waveguide side tapered portion faces the side where the arrayed waveguide is located The second arrayed waveguide side taper portion is wider and uniform than the side facing the side where the arrayed waveguide is located, and propagates an optical signal. A second slab waveguide side equi-width portion;
前記第 2スラブ導波路側等幅部の前記第 2アレイ導波路側テーパー部が位置する 側と対向する側に接続し、光信号を回折する第 2スラブ導波路と、  A second slab waveguide that diffracts an optical signal, connected to a side of the second slab waveguide side equal width portion that faces the side where the second arrayed waveguide side tapered portion is located;
前記第 2スラブ導波路の前記第 2スラブ導波路側等幅部が位置する側と対向する 側に接続し、光信号を伝搬する複数の第 2光導波路と、が形成された光波長合分波 前記クラッド層と前記コアとの間の屈折率を有し、隣接する前記第 1スラブ導波路側 等幅部の間にあり、前記第 1スラブ導波路の前記第 1スラブ導波路側等幅部が位置 する側に接し、前記第 1スラブ導波路から遠くなるにつれ肉厚が薄くなる第 1スラブ導 波路側傾斜部と、前記クラッド層と前記コアとの間の屈折率を有し、隣接する前記第 A plurality of second optical waveguides that are connected to a side of the second slab waveguide that faces the side where the equal-width portion on the second slab waveguide side is located and a plurality of second optical waveguides that propagate optical signals are formed. Wave has a refractive index between the cladding layer and the core, is between the adjacent equal width portions of the first slab waveguide side, and is equal to the first slab waveguide side equal width of the first slab waveguide The first slab waveguide-side inclined portion that is in contact with the side where the portion is located and becomes thinner as it is farther from the first slab waveguide, and has a refractive index between the cladding layer and the core, and is adjacent Said first
2スラブ導波路側等幅部の間にあり、前記第 2スラブ導波路の前記第 2スラブ導波路 側等幅部が位置する側に接し、前記第 2スラブ導波路から遠くなるにつれ肉厚が薄く なる第 2スラブ導波路側傾斜部と、が前記コアのパターンとしてさらに形成されたこと を特徴とする特徴とする請求項 11に記載の光波長合分波器。 2 between the slab waveguide-side equal width portions, in contact with the side of the second slab waveguide where the second slab waveguide-side equal width portion is located, and as the distance from the second slab waveguide increases, the wall thickness increases. 12. The optical wavelength multiplexer / demultiplexer according to claim 11, wherein a thinned second slab waveguide side inclined portion is further formed as a pattern of the core.
PCT/JP2006/319137 2005-09-27 2006-09-27 Light wavelength multiplexer/demultiplexer WO2007037256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005279789A JP2007093721A (en) 2005-09-27 2005-09-27 Light wavelength multiplexer and demultiplexer
JP2005-279789 2005-09-27

Publications (1)

Publication Number Publication Date
WO2007037256A1 true WO2007037256A1 (en) 2007-04-05

Family

ID=37899680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319137 WO2007037256A1 (en) 2005-09-27 2006-09-27 Light wavelength multiplexer/demultiplexer

Country Status (2)

Country Link
JP (1) JP2007093721A (en)
WO (1) WO2007037256A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009251176A (en) * 2008-04-03 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Optical signal processing circuit
JP2016145891A (en) * 2015-02-06 2016-08-12 古河電気工業株式会社 Array waveguide diffraction grating and optical integrated element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130723A (en) * 1997-05-12 1999-02-02 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing element
JP2000147283A (en) * 1998-09-03 2000-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit
JP2003075666A (en) * 2001-06-22 2003-03-12 Furukawa Electric Co Ltd:The Array waveguide diffraction grating type optical multiplexer/demultiplexer
JP2004013076A (en) * 2002-06-11 2004-01-15 Fujitsu Ltd Arrayed waveguide type optical wavelength demultiplexer device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1130723A (en) * 1997-05-12 1999-02-02 Oki Electric Ind Co Ltd Optical multiplexing/demultiplexing element
JP2000147283A (en) * 1998-09-03 2000-05-26 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide circuit
JP2003075666A (en) * 2001-06-22 2003-03-12 Furukawa Electric Co Ltd:The Array waveguide diffraction grating type optical multiplexer/demultiplexer
JP2004013076A (en) * 2002-06-11 2004-01-15 Fujitsu Ltd Arrayed waveguide type optical wavelength demultiplexer device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGITA A. ET AL.: "Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 12, no. 9, 2000, pages 1180 - 1182, XP000968634 *

Also Published As

Publication number Publication date
JP2007093721A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
WO2001059495A1 (en) Waveguide optical interferometer
JP2002202419A (en) Array waveguide diffraction grating type optical coupling/branching device and optical waveguide circuit
EP1251652A2 (en) Arrayed waveguide grating optical multiplexer/demultiplexer
WO2005114280A1 (en) Optical multiplex-demultiplexer
JP2001194541A (en) Optical waveguide circuit
US20040247243A1 (en) Array waveguide diffraction grating type optical multiplexer/branching filter
KR20010078349A (en) Wavelength multiplexing/demultiplexing unit, wavelength multiplexing/demultiplexing apparatus and wavelength multiplexing/demultiplexing method
US6798952B2 (en) Optical multiplexer/demultiplexer
JP3246710B2 (en) Optical device manufacturing method
WO2007037256A1 (en) Light wavelength multiplexer/demultiplexer
EP1273936A2 (en) Optical waveguide
US20100008626A1 (en) Optical chip for arrayed waveguide grating type optical multiplexer/demultiplexer circuit, waveguide substrate, and method for fabricating optical chip for arrayed waveguide grating type optical multiplexer/demultiplexer circuit
EP1130424A2 (en) Optical waveguide circuit
JP3472247B2 (en) Waveguide type optical multiplexer / demultiplexer
US6690852B2 (en) Optical multiplexer/demultiplexer
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
US7031569B2 (en) Optical multi-demultiplexer
JP2003014960A (en) Waveguide type optical signal processing circuit
JP3857925B2 (en) Optical multiplexer / demultiplexer
JPH112733A (en) Array grating optical synthesizing and branching device
JP2005010333A (en) Waveguide type optical signal processor
JP3797483B2 (en) Arrayed waveguide grating
US6424760B1 (en) Optical multiplexer/demultiplexer
JP4284852B2 (en) Optical multiplexer / demultiplexer
JP2011128206A (en) Array waveguide diffraction grating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810628

Country of ref document: EP

Kind code of ref document: A1