WO2007037003A1 - Body formed by joining panels - Google Patents

Body formed by joining panels Download PDF

Info

Publication number
WO2007037003A1
WO2007037003A1 PCT/JP2005/017888 JP2005017888W WO2007037003A1 WO 2007037003 A1 WO2007037003 A1 WO 2007037003A1 JP 2005017888 W JP2005017888 W JP 2005017888W WO 2007037003 A1 WO2007037003 A1 WO 2007037003A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
panels
polygon
dimensional structure
apex
Prior art date
Application number
PCT/JP2005/017888
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhito Atake
Hirotomo Ochi
Original Assignee
Atake Laboratory Inc.
Ochi International Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atake Laboratory Inc., Ochi International Co., Ltd. filed Critical Atake Laboratory Inc.
Priority to JP2007537502A priority Critical patent/JP4792038B2/en
Priority to PCT/JP2005/017888 priority patent/WO2007037003A1/en
Publication of WO2007037003A1 publication Critical patent/WO2007037003A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3211Structures with a vertical rotation axis or the like, e.g. semi-spherical structures
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H33/00Other toys
    • A63H33/16Models made by folding paper
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/34315Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts
    • E04B1/34321Structures characterised by movable, separable, or collapsible parts, e.g. for transport characterised by separable parts mainly constituted by panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/327Arched structures; Vaulted structures; Folded structures comprised of a number of panels or blocs connected together forming a self-supporting structure
    • E04B2001/3276Panel connection details
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3294Arched structures; Vaulted structures; Folded structures with a faceted surface

Definitions

  • the present invention relates to a technique for forming a three-dimensional structure using a plurality of panels.
  • Patent Document 1 describes a technique for forming a spherical shell three-dimensional structure using a plurality of hexagonal panels.
  • a plurality of hexagonal panels are connected in advance to simplify the work of forming a three-dimensional structure.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-116187
  • the present invention solves the above problems.
  • the present invention provides a technique for simplifying the work of forming a three-dimensional structure with a plurality of panels.
  • the technology of the present invention provides a new and useful panel connector.
  • This panel connector Three or more polygon panels are connected in series via each other! Adjacent panels are connected so as to be swingable around the connecting side.
  • a side that continues in one direction along the extension of the predetermined vertex force panel connector and a side that continues in the other direction along the extension of the predetermined vertex force panel connector are connected in order.
  • a predetermined three-dimensional structure is formed.
  • the panels connected in series means that the panels are connected one by one up to the panel force located at one end up to the panel located at the other end. It is prohibited to connect multiple panels of 3 or more to one panel, excluding the panels located at both ends, and two panels connected to one panel! .
  • this panel connector According to this panel connector, a side that continues in one direction from the predetermined vertex along the outer extension of the panel connector, and a side that continues in the other direction from the predetermined vertex along the outer extension of the panel connector.
  • a three-dimensional structure can be formed.
  • the sides to be connected can be easily found, and the work of forming the three-dimensional structure is simplified.
  • the plurality of polygon panels since the plurality of polygon panels are connected in series, the plurality of polygon panels can be folded alternately with the front surface and the front surface or the back surface and the back surface of the polygon panel facing each other. As a result, the volume required to house the panel connector can be reduced.
  • this panel connection body it is possible to simplify the work of forming a three-dimensional structure with a plurality of panels.
  • the apex in the three-dimensional structure is formed when a predetermined three-dimensional structure is formed. Is preferably formed by five or more triangular panels.
  • a panel connection body that forms a dome-shaped three-dimensional structure or a panel connection body that forms a parabolic antenna-shaped three-dimensional structure. Etc. can be realized.
  • the vertex in the three-dimensional structure is formed when the predetermined three-dimensional structure is formed. Formed by six triangular panels, and the apex formed by the five panels is the larger of the apex and base angles of the triangular panel, and is formed by the six panels It is preferable to gather the smaller of the apex and base angles of the triangle panel at the apex! /!
  • At least one coupling side can be separated and Z-coupled.
  • a panel coupling body when a panel coupling body is provided with many polygon panels, for example, it can be divided into a plurality of panel coupling bodies as required. A large number of polygonal panels can be divided and handled, and the work of transporting the panel assembly and the work of forming the three-dimensional structure can be facilitated.
  • FIG. 1 is a diagram showing a state where the panel connector of Example 1 is developed on a substantially flat surface.
  • FIG. 2 is a diagram showing a three-dimensional structure formed by the panel connector of Example 1.
  • FIG. 3 is a diagram showing a connecting portion of a polygon panel.
  • FIG. 4 is a diagram showing a state where a polygon panel is folded.
  • FIG. 5 is a view showing a state in which the panel connector of Example 1 is folded.
  • FIG. 6 is a diagram showing a panel connector that can be separated Z-connected.
  • FIG. 7 is a view showing a state where the panel connector of Example 2 is developed on a substantially flat surface.
  • FIG. 8 is a view showing a three-dimensional structure formed by the panel connector of Example 2.
  • FIG. 9 is a view showing a state in which the panel connector of Example 2 is folded.
  • FIG. 10 is a diagram showing a state where the panel connector of Example 3 is developed on a substantially flat surface.
  • FIG. 11 is a view showing a three-dimensional structure formed by the panel connector of Example 3.
  • FIG. 12 is a view showing a state where the panel connector of Example 3 is folded.
  • FIG. 13 is a view showing a state where the panel connector of Example 4 is developed on a substantially flat surface.
  • FIG. 14 is a diagram showing a three-dimensional structure formed by the panel connector of Example 4.
  • FIG. 15 is a view showing a state in which the panel connector of Example 4 is folded.
  • FIG. 16 is a diagram showing a state in which the panel connector of Example 5 is developed on a substantially flat surface.
  • FIG. 17 is a view showing a three-dimensional structure formed by the panel connector of Example 5.
  • FIG. 18 is a diagram showing a state in which the panel connector of Example 5 is folded.
  • FIG. 19 is a diagram showing a state where the panel connector of Example 6 is developed on a substantially flat surface.
  • FIG. 20 is a view showing a three-dimensional structure formed by the panel connector of Example 6.
  • FIG. 21 is a diagram showing a state in which the panel connector of Example 6 is folded.
  • the polygonal panel has a predetermined rigidity.
  • the polygonal panel of the panel connection body has an isosceles triangular contour shape.
  • the apex angle of the isosceles triangle is greater than 60 degrees, and the base angle of the isosceles triangle is less than 60 degrees.
  • the panel connector forms one vertex by gathering the apex angles of the five triangular panels, and forms one vertex by gathering the base angles of the six triangular panels. To form a three-dimensional structure.
  • a polygon panel constituted by an outer frame frame or a polygon obtained by stretching a membrane material on a skeleton frame can be used.
  • the panel connector has a fastener.
  • the fastener includes a pair of rails and a slider.
  • One of the pair of rails is provided along a side extending in one direction along the extension of the predetermined apex force panel coupling body.
  • the other of the pair of rails is provided along a side extending in the other direction along an extension of the predetermined apex force panel coupling body. It is.
  • the slider connects the pair of rails when operated along the pair of rails in a direction away from the predetermined apex, and is operated in the direction of the direction along the pair of rails toward the predetermined apex.
  • the pair of rails are separated from each other.
  • FIG. 1 shows a state in which the panel connector 40 of the present embodiment is developed on a substantially flat surface.
  • the panel coupling body 40 includes 32 polygonal panels 1 to 32 having a triangular contour shape.
  • the shapes of the polygon panels 1 to 21 and the polygon panels 24 to 30 are the same, and are isosceles triangles having a base to height ratio of approximately 4: 3. This isosceles triangle is different from the regular triangle in that the apex angle and the base angle are different.
  • the apex angle is greater than 60 degrees and the two base angles are greater than 60 degrees / J.
  • the shape of the polygonal pannels 22, 23, 31, 32 is half the shape of the polygonal panels 1-21, 24-30.
  • polygonal panels 1 to 32 are connected in series via the sides. That is, in the panel connection body 40, two panels are provided in one panel, except for the polygon panels 1 and 32 located at both ends where a plurality of polygon panels are connected to one polygon panel. It is connected. Adjacent panels are connected so as to be swingable about the connecting side. As shown in FIG. 1, for example, the polygon panel 16 and the polygon panel 17 are connected so as to be swingable about a connecting side 35 as an axis.
  • Each of the polygon panels 1 to 32 has a predetermined rigidity.
  • the material and configuration of the polygon panels 1 to 32 are not particularly limited.
  • As the material of the polygonal panels 1 to 32 for example, a wood material, a metal material, a resin material, or the like can be used.
  • a plate-like material as a core material may be covered with a film material or the like.
  • the core material is formed of foamable resin, a lightweight panel with excellent heat insulation can be configured.
  • the apex P force serving as a reference is connected to the reference edge P in one direction along the extension of the panel connector 40 (along arrow L1 in FIG. 1)
  • the apex P force to be connected can be connected to the other side (along the arrow L2 in FIG. 1) along the outer extension of the panel coupling body 40.
  • the arrows a to m in Fig. 1 indicate the combinations of sides that can be connected. Is shown.
  • the panel connection body 40 forms a three-dimensional structure by sequentially connecting a side continuous from the vertex P along the one direction L1 and a side continuous from the vertex P along the other direction L2.
  • FIG. 2 shows a three-dimensional structure formed by the panel connector 40.
  • the polygonal panels 1 to 32 are positioned along the substantially hemispherical surface with no gaps, so that a substantially circular opening is formed.
  • a dome shape having 42 and an internal space can be formed.
  • each vertex is formed by five or more polygonal panels 1-32.
  • each vertex is formed by five or six polygon panels 1-32.
  • the apexes formed by the five polygon panels 1 to 32 are the apex angles of the polygon panels 1 to 32 that are isosceles triangles, and the apex formed by the six panels.
  • the base angles of the polygonal panels 1 to 32 which are isosceles triangles, are gathered.
  • apex A formed by five polygon panels 10, 11, 26, 27, 28 has each apex angle of polygon panels 10, 11, 26, 27, 28 ( The corners marked with white circles in the figure gather together.
  • six polygon non-nodes 11, 12, 13, 28, 29, 30 [the vertex B formed by this is the base angle of each of the polygon panels 11, 12, 13, 28, 29, 30 ( Corners with black circles in the figure) are gathered.
  • each vertex angle of the polygon panels 1 to 32 is larger than 60 degrees
  • each base angle of the polygon panels 1 to 32 is larger than 60 degrees.
  • polygon panels 1 to 32 When polygon panels 1 to 32 have a triangular outline shape, one vertex is formed by polygon panels 1 to 32, which approximate a curved surface with a relatively large radius of curvature. It is possible to form a polyhedral shape. Accordingly, it is possible to realize a panel connection body that forms a dome shape, a panel connection body that forms a parabolic antenna shape, and the like. In addition, the apex angles or base angles of the polygonal panels 1 to 3 2 that are isosceles triangles gather at each apex to form a panel connection that accurately forms a dome shape, a parabolic antenna shape, etc. The body can be realized.
  • vertex in the three-dimensional structure does not include a corner (for example, corner C) located in the opening 42.
  • fastening parts such as bolts can be used. wear.
  • Fasteners, Velcro (registered trademark), etc. are pre-installed on each of the continuous sides in the other direction (along arrow L2 in FIG. 1)!
  • FIG. 3 is a cross-sectional view taken along line III in FIG. 2, and shows a configuration in the vicinity of the connection side in the panel connection body 40.
  • the polygon panels are connected to each other by a hinge-type connector 37 so as to be swingable.
  • the polygonal panels 1 to 32 have a predetermined thickness, and each side of the polygonal panels 1 to 32 is a surface that extends in the thickness direction. Therefore, if the side surfaces of the polygon panels 1 to 32 are tapered, the polygon panels come into contact with each other through the surfaces when the three-dimensional structure is formed, and the rigidity of the three-dimensional structure can be increased. it can.
  • the taper angle provided on the side surface of the polygon panel can be determined based on the angle formed between the polygon panels when the three-dimensional structure is formed.
  • the connectors 37 are alternately arranged on the front and back of the panel connector 40.
  • the coupler 37 that connects the polygon panel 1 and the polygon panel 2 is provided on the surface ls, 2s side of the polygon panels 1, 2. Therefore, the polygon panel 1 and the polygon panel 2 can be folded so that the surface Is of the polygon panel 1 and the surface 2s of the polygon panel 2 face each other.
  • a connector 37 that connects the polygon panel 2 and the polygon panel 3 is provided on the back surfaces 2t and 2t of the polygon panels 2 and 3. Therefore, the polygon panel 2 and the polygon panel 3 can be folded so that the back surface 2t of the polygon panel 2 and the back surface 3t of the polygon panel 3 face each other.
  • FIG. 4 shows the folded state of polygon panels 1, 2, 3, ....
  • the surface Is of the polygon panel 1 and the surface 2s of the polygon panel 2 face each other.
  • the back surface 2t of the polygon panel 2 and the back surface 3t of the polygon panel 3 face each other.
  • the other polygon panels 4 to 32 can be folded in the same manner.
  • the polygon panels 1 to 32 are connected in series, so that the polygon panels 1 to 3 2 are alternately arranged with the front surface and front surface or the back surface and back surface of the adjacent polygon panels facing each other. It can be folded.
  • FIG. 5 shows an overall view of the panel coupling body 40 in a folded state.
  • the panel connector 40 can have a triangular prism shape in the same manner as when the polygon panels 1 to 32 are overlapped while the polygon panels 1 to 32 are connected in series. .
  • the panel coupling body 40 can be folded so that the polygonal panels 1 to 32 are overlapped in order, and the volume required for storage can be kept relatively small. As a result, transportation and the like can be performed easily.
  • a three-dimensional structure is formed by the panel connector 40, a side continuous in one direction from the reference vertex P along the extension of the panel connector 40 (along arrow L1 in FIG. 1), A three-dimensional structure can be formed by sequentially connecting the reference vertex P to the other side in the other direction along the extension of the panel connection body 40 (along arrow L2 in FIG. 1). Thereby, the work of forming the three-dimensional structure can be easily performed.
  • the panel coupling body 40 can be applied to, for example, a three-dimensional structure used in the outdoors, underwater, outer space, or the like by appropriately selecting the size, the material to be used, and the like.
  • the panel coupling body 40 at least one portion of the coupling side connecting the polygon panels 1 to 32 may be configured to be capable of separation Z coupling.
  • the connecting edge 35 that connects the polygon panel 16 and the polygon panel 17 is separated by, for example, providing a separating tool 39 that can be separated and connected between the polygon panel 16 and the polygon panel 17.
  • Z can be connected.
  • the panel coupling body 40 can be divided into a plurality of panel coupling bodies and handled, and the panel coupling body 40 can be easily transported and formed into a three-dimensional structure as shown in FIG.
  • a polygon panel 27a composed only of the outer frame frame 27b or a polygon panel 28a in which a membrane material 28c is stretched on the skeleton frame 28b can be used.
  • FIG. 7 shows a state in which the panel connector 50 of the present embodiment is developed on a substantially flat surface.
  • the panel connector 50 includes six polygonal panels 51 to 56 having a rectangular outline shape.
  • six polygon panels 51 to 56 force sides They are connected in series via each other.
  • Each of the polygon panels 51 to 56 has a predetermined rigidity.
  • the polygon panels 51 to 56 are made of a material cover having heat insulating properties. Specifically, it has a structure in which a plate-like member formed by foaming resin is covered with a synthetic fiber cloth.
  • the apex P force serving as the reference is connected to one side along the extension of the panel connector 50 (along arrow L1 in FIG. 7) and the reference
  • the apex P force panel connecting body 50 can be connected in sequence to the other side (along arrow L2 in FIG. 7) along the outer extension of panel connecting body 50.
  • Arrows a to g in FIG. 7 indicate combinations of sides that can be connected.
  • the panel connection body 50 forms a three-dimensional structure by sequentially connecting a side continuous from the apex P in the one direction L1 and a side continuous from the apex P in the other direction L2.
  • a fastener including a first rail 61, a second rail 62, and a slider 63 is provided.
  • the first rail 61 is provided along a continuous side in one direction (arrow L1 in FIG. 7) along the outer extension of the apex P force panel coupling body 50.
  • the apex P force is also provided along the extending side of the panel coupling body 50 in the other direction (arrow L2 in FIG. 7).
  • the slider 63 when the slider 63 is operated along the first rail 61 and the second rail 62 in the direction approaching the apex P, the first rail 61 and the second rail 62 are separated from each other.
  • the panel coupling body 50 by connecting the slider 63, connectable sides and pairs of sides a to f can be connected in order. Further, by operating the slider 63 in the reverse direction, the connectable sides and sets of sides a to g can be separated in the reverse order.
  • the polygon panels 50 to 56 are connected by the series of fasteners 61, 62, and 63, so that the polygon panels 50 to 56 are connected without a gap.
  • FIG. 8 shows a three-dimensional structure formed by the panel connector 50.
  • the polygon panels 51 to 56 of the panel connector 50 can form a rectangular parallelepiped shape that seals the internal space.
  • the polygonal panel 56 located on the upper surface is operated by the slider 63. It functions as a lid that can be opened and closed. Since the polygonal panels 51 to 56 have heat insulation properties, the three-dimensional structure formed by the panel connector 50 can reduce the temperature change of the article accommodated in the internal space.
  • the three-dimensional structure formed by the panel connection body 50 can be used as a heat insulating box (cold box).
  • FIG. 9 shows a state where the panel coupling body 50 is folded.
  • the polygon panels 51 to 56 are connected in series, so that the polygon panels 51 to 56 are alternately folded while the front and back surfaces of the polygon panels 51 to 56 are opposed to the back surface. This is possible.
  • the panel connector 50 can be folded into a form in which the polygon panels 51 to 56 are superimposed, and the volume required for storage can be kept relatively small.
  • FIG. 10 shows a state in which the panel connector 70 of the present embodiment is developed on a substantially flat surface.
  • the panel connector 70 includes nine polygon panels 71 to 79.
  • nine polygon panels 71 to 79 are connected in series via the sides.
  • Each of the polygon panels 71 to 79 has a predetermined rigidity.
  • the polygon panels 71-79 have water resistance.
  • the reference apex P force also extends in one direction along the extension of the panel connector 70 (along the arrow L1 in FIG. 10) and the reference edge.
  • the apex point P force that becomes can be sequentially connected to the other side (along arrow L2 in FIG. 10) along the outer extension of the panel coupling body 70.
  • Arrows a to f in FIG. 10 indicate connectable sides and combinations of sides.
  • the panel connection body 70 forms a three-dimensional structure by connecting the side where the apex P force is continuous in one direction L1 and the side where the apex P is continuous in the other direction L2 in order.
  • FIG. 11 shows a three-dimensional structure formed by the panel connector 70.
  • the polygonal panels 71 to 79 of the panel coupling body 70 can form a ship shape. Since the polygon panels 71 to 79 have water resistance, the three-dimensional structure formed by the panel coupling body 70 is used as a ship by connecting the polygon panels 71 to 79 in a liquid-tight manner. be able to.
  • FIG. 12 shows a state in which the panel coupling body 70 is folded. Since the polygon panels 71 to 79 are connected in series in the panel connector 70, the polygon panels 71 to 79 are alternately folded while the front surface and the front surface or the back surface and the back surface of the polygon panels 71 to 79 are opposed to each other. It is possible. As shown in FIG. 12, the panel coupling body 70 can be folded into a form in which the polygonal panels 71 to 79 are superimposed, and the volume required for housing is relatively small.
  • FIG. 13 shows a state in which the panel connector 80 of the present embodiment is developed on a substantially flat surface.
  • the panel connector 80 includes six polygonal panels 81 to 86.
  • six polygon panels 81 to 86 are connected in series via the force sides.
  • Each of the polygon panels 81 to 86 has a predetermined rigidity.
  • the polygon panel 81 has a hole 8 lx!
  • the reference vertex P force also extends in one direction along the extension of the panel connector 80 (along arrow L1 in FIG. 13) and the reference edge
  • the apex point P force that can be connected to the side connected in the other direction along the extension of the panel coupling body 80 (along the arrow L2 in FIG. 13) can be connected in order.
  • Arrows a to f in FIG. 13 indicate connectable sides and combinations of sides.
  • the panel connection body 80 can form a three-dimensional structure by connecting the side where the apex P force is continuous in the one direction L1 and the side where the apex P is continuous in the other direction L2 in order.
  • FIG. 14 shows a three-dimensional structure formed by the panel connector 80.
  • the polygon panels 81 to 89 of the panel connector 80 can form a three-dimensional structure shaped like a house.
  • the three-dimensional structure formed by the panel connector 80 can be used as a hut used by small animals such as dogs.
  • FIG. 15 shows a state where the panel coupling body 80 is folded.
  • the polygon panels 81 to 86 are connected in series! Therefore, the polygon panels 81 to 86 are alternately arranged with the front surface and the front surface or the back surface and the back surface of the polygon panels 81 to 86 facing each other. Fold to It is possible.
  • the panel connector 80 can be folded into a form in which the polygon panels 81 to 86 are overlapped, and the volume required for housing is relatively small.
  • FIG. 16 shows a state in which the panel connector 90 of the present embodiment is developed on a substantially flat surface.
  • the panel coupling body 90 includes seven polygonal panels 91 to 97.
  • the panel connector 90 seven polygonal panels 91 to 97 are connected in series via sides.
  • Each of the polygon panels 91 to 97 has a predetermined rigidity.
  • Each of the polygon panels 91 to 97 is coated with a light-reflective paint.
  • the reference vertex P force also extends in one direction along the extension of the panel connector 90 (along the arrow L1 in FIG. 16) and the reference edge
  • the apex P force that can be connected to the other side of the panel connecting body 90 in the other direction can be connected in order.
  • Arrows a to f in FIG. 16 indicate connectable sides and combinations of sides.
  • the panel connection body 90 forms a three-dimensional structure by connecting the side where the apex P force is also continuous in one direction L1 and the side which is continuous from the apex P in the other direction L2.
  • FIG. 17 shows a three-dimensional structure formed by the panel connector 90.
  • the polygon panels 91 to 97 of the panel connector 90 can form a triangular pyramid-shaped three-dimensional structure. Since the polygonal panels 91 to 97 are coated with a light-reflective paint, the three-dimensional structure formed by the panel coupling body 90 can be used as, for example, a triangular cone at a construction site or the like.
  • FIG. 18 shows a state where the panel coupling body 90 is folded. Since the polygon panels 91 to 97 are connected in series in the panel connector 90, the polygon panels 91 to 97 are alternately folded while the front surface and the front surface or the back surface and the back surface of the polygon panels 91 to 97 are opposed to each other. It is possible. As shown in FIG. 18, the panel connector 90 can be folded into a shape in which the polygon panels 91 to 97 are superimposed, and the volume required for storage is relatively small. [0031] (Example 6)
  • FIG. 19 shows a state where the panel connector 100 of the present embodiment is developed on a substantially flat surface.
  • the panel connector 100 includes 32 polygonal panels 101 to 132.
  • the polygon panels 101 to 132 12 polygon panels 101, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126, 132 have a regular pentagonal outline shape. ing.
  • polygon panels 102, 103, 104, 105, 106, 108, 110, 112, 114, 116, 117, 119, 121, 123, 125, 127, 128, 129, 130, 131 are regular six It has a square outline shape.
  • each of the polygon panels 101 to 132 has a predetermined rigidity.
  • the reference vertex P force also extends in one direction along the extension of the panel connector 100 (along the arrow L1 in FIG. 19),
  • the apex P force serving as a reference can also be connected in order to the side that continues in the other direction (along the arrow L2 in FIG. 19) along the extension of the panel connector 100.
  • the panel connection body 100 forms a three-dimensional structure by sequentially connecting a side continuous from the apex P in the one direction L1 and a side continuous from the apex P in the other direction L2.
  • FIG. 20 shows a three-dimensional structure formed by the panel connector 100.
  • the polygon panels 101 to 132 are spaced along a substantially spherical surface by sequentially connecting the side continuous from the vertex P in the one direction L1 and the side continuous from the vertex P in the other direction L2. Therefore, it is possible to form a substantially spherical shape having an internal space. In other words, it is possible to form a Ryukyu shape without an opening.
  • each vertex is formed by three polygonal panels 101-132. More specifically, each vertex is formed by two regular hexagonal polygon panels and one pentagonal polygon panel. As a result, it is possible to form a polyhedral shape that approximates a curved surface having a large curvature radius. It is possible to realize a panel connection body that forms a dome shape, a parabolic antenna shape, etc.
  • FIG. 21 shows a state in which the panel coupling body 100 is folded.
  • the polygon panels 101 to 132 are connected in series, so that the polygon panels 101 to 132 are exchanged with the front and back surfaces of the polygon panels 101 to 132 facing each other. It is possible to fold each other.
  • the panel connector 100 can be folded into a form in which the polygonal panels 101 to 132 are overlapped, and the volume required for storage can be kept relatively small.

Abstract

A technique for simplifying work for forming a three-dimensional structure by panels. A body formed by serially joining three or more polygonal panels at their sides, in which adjacent panels are joined so as to be pivotable about the axis that is the part at which the adjacent panels are joined. When sides that are continuous in one direction from a specific vertex along an outer edge of the body and sides that are continuous in the other direction from the specific vertex along an outer edge of the body are sequentially joined together, a predetermined three-dimensional structure is formed.

Description

明 細 書  Specification
パネル連結体  Panel connector
技術分野  Technical field
[0001] 本発明は、複数のパネルによって立体構造物を形成する技術に関する。  The present invention relates to a technique for forming a three-dimensional structure using a plurality of panels.
背景技術  Background art
[0002] 所定の輪郭形状に成形した複数のパネルを予め用意しておき、複数のパネルを対 応する辺と辺を介して接続して 、くことによって、所定の立体構造物を形成する技術 が開発されている。この技術〖こよると、立体構造物を複数のパネルに分割した状態で 運搬することができるとともに、比較的に簡単な作業によって立体構造物を形成する ことが可能となる。  [0002] Technology for forming a predetermined three-dimensional structure by preparing a plurality of panels molded in a predetermined contour shape in advance and connecting the plurality of panels via corresponding sides. Has been developed. According to this technique, the three-dimensional structure can be transported in a state of being divided into a plurality of panels, and the three-dimensional structure can be formed by a relatively simple operation.
特許文献 1には、複数の六角形パネルによって、球殻の立体構造物を形成する技 術が記載されている。この技術では、複数の六角形パネルを予め連結しておくことに よって、立体構造物を形成する作業を簡単化するようにしている。このとき、複数の六 角形パネルを直列に連結しておくことによって、六角形パネルの表面と表面又は裏 面と裏面とを対向させながら、複数の六角形パネルを交互に折り畳むことを可能とし 、複数の六角形パネルを収納するのに要する体積を抑えるようにして 、る。  Patent Document 1 describes a technique for forming a spherical shell three-dimensional structure using a plurality of hexagonal panels. In this technique, a plurality of hexagonal panels are connected in advance to simplify the work of forming a three-dimensional structure. At this time, by connecting a plurality of hexagonal panels in series, it is possible to fold a plurality of hexagonal panels alternately while facing the front surface and the front surface or the back surface and the back surface of the hexagonal panel. Reduce the volume required to store multiple hexagonal panels.
特許文献 1:特開 2001— 116187号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-116187
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 特許文献 1の技術によると、複数のパネルが直列に連結されているパネル連結体 において、立体構造物を形成する際に接続されるべき辺と辺力 様々〖こ位置すること となる。立体構造物を形成する際には、対応する辺と辺を逐一特定しながら接続する 必要があり、煩雑な作業を強いられることとなる。 [0003] According to the technique of Patent Document 1, in a panel assembly in which a plurality of panels are coupled in series, the sides and the side forces to be connected when forming a three-dimensional structure are variously located. . When forming a three-dimensional structure, it is necessary to connect the corresponding sides while specifying the corresponding sides one by one, which requires complicated work.
本発明は、上記の問題を解決する。本発明は、複数のパネルによって立体構造物 を形成する作業を簡単化するための技術を提供する。  The present invention solves the above problems. The present invention provides a technique for simplifying the work of forming a three-dimensional structure with a plurality of panels.
課題を解決するための手段  Means for solving the problem
[0004] 本発明の技術は、新規で有用なパネル連結体を提供する。このパネル連結体は、 3以上の複数の多角形パネルが辺同士を介して直列に連結されて!、る。隣接するパ ネル同士は、連結辺を軸に揺動可能に連結されている。このパネル連結体は、所定 の頂点力 パネル連結体の外延に沿って一方方向に連なる辺と、前記所定の頂点 力 パネル連結体の外延に沿って他方方向に連なる辺とが順に接続されたときに、 所定の立体構造物を形成する。 [0004] The technology of the present invention provides a new and useful panel connector. This panel connector Three or more polygon panels are connected in series via each other! Adjacent panels are connected so as to be swingable around the connecting side. In this panel connector, a side that continues in one direction along the extension of the predetermined vertex force panel connector and a side that continues in the other direction along the extension of the predetermined vertex force panel connector are connected in order. In addition, a predetermined three-dimensional structure is formed.
ここでいうパネルが直列に連結されているとは、一端に位置するパネル力 他端に 位置するパネルまで、パネルが 1つずつ順に連結されていることを意味する。一のパ ネルに 3以上の複数のパネルが連結することが禁止されており、両端に位置するパ ネルを除!、て一のパネルに 2つのパネルが連結されて!、る状態を意味する。  Here, the panels connected in series means that the panels are connected one by one up to the panel force located at one end up to the panel located at the other end. It is prohibited to connect multiple panels of 3 or more to one panel, excluding the panels located at both ends, and two panels connected to one panel! .
[0005] このパネル連結体によると、所定の頂点からパネル連結体の外延に沿って一方方 向に連なる辺と、前記所定の頂点からパネル連結体の外延に沿って他方方向に連 なる辺とを順に接続することによって、立体構造物を形成することができる。パネル連 結体を立体構造物に組立てる際に、接続されるべき辺と辺を容易に見出すことがで きるので、立体構造物を形成する作業が簡単化される。 [0005] According to this panel connector, a side that continues in one direction from the predetermined vertex along the outer extension of the panel connector, and a side that continues in the other direction from the predetermined vertex along the outer extension of the panel connector. By connecting in order, a three-dimensional structure can be formed. When assembling the panel assembly into a three-dimensional structure, the sides to be connected can be easily found, and the work of forming the three-dimensional structure is simplified.
このパネル連結体では、複数の多角形パネルが直列に連結されているので、多角 形パネルの表面と表面又は裏面と裏面とを対向させながら、複数の多角形パネルを 交互に折り畳むことができる。それにより、パネル連結体を収納するのに要する体積 を抑えることができる。  In this panel connection body, since the plurality of polygon panels are connected in series, the plurality of polygon panels can be folded alternately with the front surface and the front surface or the back surface and the back surface of the polygon panel facing each other. As a result, the volume required to house the panel connector can be reduced.
このパネル連結体を用いることにより、複数のパネルによって立体構造物を形成す る作業を簡単ィ匕することが可能となる。  By using this panel connection body, it is possible to simplify the work of forming a three-dimensional structure with a plurality of panels.
[0006] 上記のパネル連結体にぉ 、て、複数の多角形パネル力 輪郭形状が三角形であ る三角形パネルである場合、所定の立体構造物を形成したときに、立体構造物にお ける頂点が 5枚以上の三角形パネルによって形成されることが好ましい。  [0006] When the plurality of polygonal panel force contours are triangular panels having a triangular shape, the apex in the three-dimensional structure is formed when a predetermined three-dimensional structure is formed. Is preferably formed by five or more triangular panels.
それにより、曲率半径の大きな曲面を近似する多面体形状を形成することが可能と なり、例えばドーム形状の立体構造物を形成するパネル連結体や、パラボラアンテナ 形状の立体構造物を形成するパネル連結体等を実現することが可能となる。  As a result, it is possible to form a polyhedral shape that approximates a curved surface with a large radius of curvature. For example, a panel connection body that forms a dome-shaped three-dimensional structure or a panel connection body that forms a parabolic antenna-shaped three-dimensional structure. Etc. can be realized.
[0007] さらに、前記三角形パネルの輪郭形状が、頂角と底角の大きさが異なる二等辺三 角形である場合、前記所定の立体構造物を形成したときに立体構造物における頂点 力 又は 6枚の三角形パネルによって形成されるとともに、 5枚のパネルによって形成 される頂点には三角形パネルの頂角と底角のうちの大きい方が集まっており、 6枚の パネルによって形成される頂点には三角形パネルの頂角と底角のうちの小さい方が 集まって!/、ることが好まし!/、。 [0007] Furthermore, when the contour shape of the triangular panel is an isosceles triangle having different apex and base angles, the vertex in the three-dimensional structure is formed when the predetermined three-dimensional structure is formed. Formed by six triangular panels, and the apex formed by the five panels is the larger of the apex and base angles of the triangular panel, and is formed by the six panels It is preferable to gather the smaller of the apex and base angles of the triangle panel at the apex! /!
それにより、ドーム形状やパラボラアンテナ形状等を精度よく形成するパネル連結 体を実現することが可能となる。  As a result, it is possible to realize a panel connection body that accurately forms a dome shape, a parabolic antenna shape, or the like.
[0008] 上記のパネル連結体では、前記所定の頂点からパネル連結体の外延に沿って一 方方向に連なる辺と、前記所定の頂点からパネル連結体の外延に沿って他方方向 に連なる辺とを、順に接続する接続手段が付加されて ヽることが好ま ヽ。 [0008] In the above panel connector, a side continuous in one direction from the predetermined vertex along the outer extension of the panel connector, and a side continuous in the other direction from the predetermined vertex along the outer extension of the panel connector. It is preferable to add a connection means to connect them in order.
それにより、接続すべき辺と辺を誤ることなぐ立体構造物を簡単に形成することが 可能となる。  This makes it possible to easily form a three-dimensional structure that does not mistake the sides to be connected.
[0009] 上記のパネル連結体では、少なくとも一箇所の連結辺が、分離 Z連結可能となつ ていることが好ましい。  [0009] In the panel coupling body, it is preferable that at least one coupling side can be separated and Z-coupled.
それにより、例えばパネル連結体が多数の多角形パネルを備える場合に、必要に 応じて複数のパネル連結体に分割することができる。多数の多角形パネルを分割し て取り扱うことが可能となり、パネル連結体を運搬する作業や立体構造物を形成する 作業をやり易くすることが可能となる。  Thereby, when a panel coupling body is provided with many polygon panels, for example, it can be divided into a plurality of panel coupling bodies as required. A large number of polygonal panels can be divided and handled, and the work of transporting the panel assembly and the work of forming the three-dimensional structure can be facilitated.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]実施例 1のパネル連結体を略平面上に展開した様子を示す図。 [0010] FIG. 1 is a diagram showing a state where the panel connector of Example 1 is developed on a substantially flat surface.
[図 2]実施例 1のパネル連結体が形成する立体構造物を示す図。  FIG. 2 is a diagram showing a three-dimensional structure formed by the panel connector of Example 1.
[図 3]多角形パネルの連結部を示す図。  FIG. 3 is a diagram showing a connecting portion of a polygon panel.
[図 4]多角形パネルが折り畳まれた状態を示す図。  FIG. 4 is a diagram showing a state where a polygon panel is folded.
[図 5]実施例 1のパネル連結体が折り畳まれた状態を示す図。  FIG. 5 is a view showing a state in which the panel connector of Example 1 is folded.
[図 6]分離 Z連結可能なパネル連結体を示す図。  FIG. 6 is a diagram showing a panel connector that can be separated Z-connected.
[図 7]実施例 2のパネル連結体を略平面上に展開した様子を示す図。  FIG. 7 is a view showing a state where the panel connector of Example 2 is developed on a substantially flat surface.
[図 8]実施例 2のパネル連結体が形成する立体構造物を示す図。  FIG. 8 is a view showing a three-dimensional structure formed by the panel connector of Example 2.
[図 9]実施例 2のパネル連結体が折り畳まれた状態を示す図。  FIG. 9 is a view showing a state in which the panel connector of Example 2 is folded.
[図 10]実施例 3のパネル連結体を略平面上に展開した様子を示す図。 [図 11]実施例 3のパネル連結体が形成する立体構造物を示す図。 FIG. 10 is a diagram showing a state where the panel connector of Example 3 is developed on a substantially flat surface. FIG. 11 is a view showing a three-dimensional structure formed by the panel connector of Example 3.
[図 12]実施例 3のパネル連結体が折り畳まれた状態を示す図。  FIG. 12 is a view showing a state where the panel connector of Example 3 is folded.
[図 13]実施例 4のパネル連結体を略平面上に展開した様子を示す図。  FIG. 13 is a view showing a state where the panel connector of Example 4 is developed on a substantially flat surface.
[図 14]実施例 4のパネル連結体が形成する立体構造物を示す図。  FIG. 14 is a diagram showing a three-dimensional structure formed by the panel connector of Example 4.
[図 15]実施例 4のパネル連結体が折り畳まれた状態を示す図。  FIG. 15 is a view showing a state in which the panel connector of Example 4 is folded.
[図 16]実施例 5のパネル連結体を略平面上に展開した様子を示す図。  FIG. 16 is a diagram showing a state in which the panel connector of Example 5 is developed on a substantially flat surface.
[図 17]実施例 5のパネル連結体が形成する立体構造物を示す図。  FIG. 17 is a view showing a three-dimensional structure formed by the panel connector of Example 5.
[図 18]実施例 5のパネル連結体が折り畳まれた状態を示す図。  FIG. 18 is a diagram showing a state in which the panel connector of Example 5 is folded.
[図 19]実施例 6のパネル連結体を略平面上に展開した様子を示す図。  FIG. 19 is a diagram showing a state where the panel connector of Example 6 is developed on a substantially flat surface.
[図 20]実施例 6のパネル連結体が形成する立体構造物を示す図。  FIG. 20 is a view showing a three-dimensional structure formed by the panel connector of Example 6.
[図 21]実施例 6のパネル連結体が折り畳まれた状態を示す図。  FIG. 21 is a diagram showing a state in which the panel connector of Example 6 is folded.
符号の説明  Explanation of symbols
[0011] 40、 50、 60、 70、 80、 90、 100·,ノ ネル連結体  [0011] 40, 50, 60, 70, 80, 90, 100 ..., non-connected body
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 最初に、以下に説明する実施例の主要な特徴を列記する。 [0012] First, the main features of the embodiments described below are listed.
(形態 1) 多角形パネルは、所定の剛性を備えている。  (Form 1) The polygonal panel has a predetermined rigidity.
(形態 2) 多角形パネルには、孔が形成されている。  (Form 2) A hole is formed in the polygonal panel.
(形態 3) パネル連結体の多角形パネルは、二等辺三角形の輪郭形状を有している 。その二等辺三角形の頂角は 60度よりも大きぐその二等辺三角形の底角は 60度よ りも小さい。そして、パネル連結体は、 5枚の三角形パネルの頂角が集まることによつ て一の頂点を形成するとともに、 6枚の三角形パネルの底角が集まることによって一 の頂点を形成することによって、立体構造物を形成する。  (Form 3) The polygonal panel of the panel connection body has an isosceles triangular contour shape. The apex angle of the isosceles triangle is greater than 60 degrees, and the base angle of the isosceles triangle is less than 60 degrees. The panel connector forms one vertex by gathering the apex angles of the five triangular panels, and forms one vertex by gathering the base angles of the six triangular panels. To form a three-dimensional structure.
(形態 4) パネル連結体には、外枠フレームによって構成される多角形パネルや、骨 格フレームに膜材を張った多角形を用いることができる。  (Form 4) As the panel connection body, a polygon panel constituted by an outer frame frame or a polygon obtained by stretching a membrane material on a skeleton frame can be used.
(形態 5) パネル連結体は、ファスナーを備えている。ファスナーは、一対のレールと スライダを備えている。一対のレールの一方は、所定の頂点力 パネル連結体の外 延に沿って一方方向に連なる辺に沿って設けられている。一対のレールの他方は、 所定の頂点力 パネル連結体の外延に沿って他方方向に連なる辺に沿って設けら れている。スライダは、一対のレールに沿って前記所定の頂点から遠ざ力る方向に操 作されたときに一対のレールを接続し、一対のレールに沿って前記所定の頂点へ向 力 方向に操作されたときに一対のレールを離反する。 (Form 5) The panel connector has a fastener. The fastener includes a pair of rails and a slider. One of the pair of rails is provided along a side extending in one direction along the extension of the predetermined apex force panel coupling body. The other of the pair of rails is provided along a side extending in the other direction along an extension of the predetermined apex force panel coupling body. It is. The slider connects the pair of rails when operated along the pair of rails in a direction away from the predetermined apex, and is operated in the direction of the direction along the pair of rails toward the predetermined apex. The pair of rails are separated from each other.
実施例  Example
[0013] (実施例 1)  [0013] (Example 1)
本発明を実施した実施例 1のパネル体について図面を参照しながら説明する。図 1 は、本実施例のパネル連結体 40を略平面上に展開した様子を示している。図 1に示 すように、パネル連結体 40は、三角形の輪郭形状を有する 32枚の多角形パネル 1 〜32を備えている。多角形パネル 1〜32のなかで、多角形パネル 1〜21と多角形パ ネル 24〜30の形状は同一であり、底辺と高さの比が略 4 : 3の二等辺三角形である。 この二等辺三角形は、正三角形とは異なり、頂角と底角の大きさが相違している。頂 角は 60度より大きく、 2つの底角は 60度より/ J、さい。多角形パネノレ 22、 23、 31、 32 の形状は、多角形パネル 1〜21、 24〜30の形状を半分にしたものである。  A panel body of Example 1 embodying the present invention will be described with reference to the drawings. FIG. 1 shows a state in which the panel connector 40 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 1, the panel coupling body 40 includes 32 polygonal panels 1 to 32 having a triangular contour shape. Among the polygon panels 1 to 32, the shapes of the polygon panels 1 to 21 and the polygon panels 24 to 30 are the same, and are isosceles triangles having a base to height ratio of approximately 4: 3. This isosceles triangle is different from the regular triangle in that the apex angle and the base angle are different. The apex angle is greater than 60 degrees and the two base angles are greater than 60 degrees / J. The shape of the polygonal pannels 22, 23, 31, 32 is half the shape of the polygonal panels 1-21, 24-30.
パネル連結体 40では、 32枚の多角形パネル 1〜32が、辺同士を介して直列に連 結されている。即ち、パネル連結体 40では、一の多角形パネルに 3以上の複数の多 角形パネルが連結されることなぐ両端に位置する多角形パネル 1、 32を除いて、一 のパネルに 2つのパネルが連結している。隣接しているパネル同士は、連結辺を軸 に揺動可能に連結されている。図 1に示すように、例えば多角形パネル 16と多角形 パネル 17は、連結辺 35を軸に揺動可能に連結されている。  In the panel connector 40, 32 polygonal panels 1 to 32 are connected in series via the sides. That is, in the panel connection body 40, two panels are provided in one panel, except for the polygon panels 1 and 32 located at both ends where a plurality of polygon panels are connected to one polygon panel. It is connected. Adjacent panels are connected so as to be swingable about the connecting side. As shown in FIG. 1, for example, the polygon panel 16 and the polygon panel 17 are connected so as to be swingable about a connecting side 35 as an axis.
多角形パネル 1〜32のそれぞれは、所定の剛性を備えている。多角形パネル 1〜 32の材料や構成は特に限定されない。多角形パネル 1〜32の材料には、例えば木 材ゃ金属材料ゃ榭脂材料等を用いることができる。また、心材となる板状材料を膜材 等で被覆する構成としてもよい。例えば心材を発泡性榭脂で形成すると、断熱性に 優れた軽量なパネルを構成することができる。  Each of the polygon panels 1 to 32 has a predetermined rigidity. The material and configuration of the polygon panels 1 to 32 are not particularly limited. As the material of the polygonal panels 1 to 32, for example, a wood material, a metal material, a resin material, or the like can be used. In addition, a plate-like material as a core material may be covered with a film material or the like. For example, when the core material is formed of foamable resin, a lightweight panel with excellent heat insulation can be configured.
[0014] 図 1に示すように、パネル連結体 40では、基準となる頂点 P力 パネル連結体 40の 外延に沿って一方方向に(図 1中の矢印 L1に沿って)連なる辺と、基準となる頂点 P 力もパネル連結体 40の外延に沿って他方方向に(図 1中の矢印 L2に沿って)連なる 辺とが、接続可能となっている。図 1中の矢印 a〜mは、接続可能な辺と辺の組み合 わせを示している。パネル連結体 40は、頂点 Pから一方方向 L1に沿って連なる辺と 、頂点 Pから他方方向 L2に沿って連なる辺とが順に接続されることによって、立体構 造物を形成する。 [0014] As shown in FIG. 1, in the panel connector 40, the apex P force serving as a reference is connected to the reference edge P in one direction along the extension of the panel connector 40 (along arrow L1 in FIG. 1) The apex P force to be connected can be connected to the other side (along the arrow L2 in FIG. 1) along the outer extension of the panel coupling body 40. The arrows a to m in Fig. 1 indicate the combinations of sides that can be connected. Is shown. The panel connection body 40 forms a three-dimensional structure by sequentially connecting a side continuous from the vertex P along the one direction L1 and a side continuous from the vertex P along the other direction L2.
図 2は、パネル連結体 40が形成する立体構造物を示している。図 2に示すように、 接続可能な辺と辺の組 a〜mが接続されることによって、多角形パネル 1〜32が略半 球面に沿って隙間なく位置することにより、略円形の開口部 42を備えるとともに内部 空間を有するドーム形状を形成することができる。パネル連結体 40が形成する立体 構造物では、各頂点が 5枚以上の多角形パネル 1〜32によって形成されている。詳 しくは、各頂点が 5枚又は 6枚の多角形パネル 1〜32によって形成されている。さらに 詳しくは、 5枚の多角形パネル 1〜32によって形成される頂点には、二等辺三角形で ある多角形パネル 1〜32の頂角が集まっており、 6枚のパネルによって形成される頂 点には、二等辺三角形である多角形パネル 1〜32の底角が集まっている。図 2に示 すように、例えば 5枚の多角形パネル 10、 11、 26、 27、 28によって形成される頂点 Aには、多角形パネル 10、 11、 26、 27、 28の各頂角(図中の白丸を付した角)が集 まって ヽる。また、 6枚の多角形ノ ネノレ 11、 12、 13、 28、 29、 30【こよって形成される 頂点 Bには、多角形パネル 11、 12、 13、 28、 29、 30の各底角(図中の黒丸を付した 角)が集まっている。ここで、多角形パネル 1〜32の各頂角は 60度よりも大きぐ多角 形パネル 1〜32の各底角は 60度よりも大きい。  FIG. 2 shows a three-dimensional structure formed by the panel connector 40. As shown in FIG. 2, when the connectable sides and pairs of sides a to m are connected, the polygonal panels 1 to 32 are positioned along the substantially hemispherical surface with no gaps, so that a substantially circular opening is formed. A dome shape having 42 and an internal space can be formed. In the three-dimensional structure formed by the panel connection body 40, each vertex is formed by five or more polygonal panels 1-32. Specifically, each vertex is formed by five or six polygon panels 1-32. More specifically, the apexes formed by the five polygon panels 1 to 32 are the apex angles of the polygon panels 1 to 32 that are isosceles triangles, and the apex formed by the six panels. The base angles of the polygonal panels 1 to 32, which are isosceles triangles, are gathered. As shown in FIG. 2, for example, apex A formed by five polygon panels 10, 11, 26, 27, 28 has each apex angle of polygon panels 10, 11, 26, 27, 28 ( The corners marked with white circles in the figure gather together. In addition, six polygon non-nodes 11, 12, 13, 28, 29, 30 [the vertex B formed by this is the base angle of each of the polygon panels 11, 12, 13, 28, 29, 30 ( Corners with black circles in the figure) are gathered. Here, each vertex angle of the polygon panels 1 to 32 is larger than 60 degrees, and each base angle of the polygon panels 1 to 32 is larger than 60 degrees.
多角形パネル 1〜32が三角形の輪郭形状を有している場合、一の頂点が 5以上の 多角形パネル 1〜32によって形成されていることによって、曲率半径が比較的に大き い曲面に近似する多面体形状を形成することが可能となる。それにより、ドーム形状 を形成するパネル連結体や、パラボラアンテナ形状を形成するパネル連結体等を実 現することが可能となる。さらに、各頂点には、二等辺三角である多角形パネル 1〜3 2の頂角同士又は底角同士が集まって 、ることによって、ドーム形状やパラボラアン テナ形状等を精度よく形成するパネル連結体を実現することが可能となる。  When polygon panels 1 to 32 have a triangular outline shape, one vertex is formed by polygon panels 1 to 32, which approximate a curved surface with a relatively large radius of curvature. It is possible to form a polyhedral shape. Accordingly, it is possible to realize a panel connection body that forms a dome shape, a panel connection body that forms a parabolic antenna shape, and the like. In addition, the apex angles or base angles of the polygonal panels 1 to 3 2 that are isosceles triangles gather at each apex to form a panel connection that accurately forms a dome shape, a parabolic antenna shape, etc. The body can be realized.
なお、ここでいう立体構造物における頂点には、開口部 42に位置する角部(例えば 角部 C)を含まないものとする。  It should be noted that the vertex in the three-dimensional structure here does not include a corner (for example, corner C) located in the opening 42.
パネル連結体 40の辺と辺の連結は、例えばボルト等の締結部品を用いることがで きる。あるいは、基準となる頂点 Pからパネル連結体 40の外延に沿って一方方向に( 図 1中の矢印 L1に沿って)連なる辺と、基準となる頂点 Pからパネル連結体 40の外 延に沿って他方方向に(図 1中の矢印 L2に沿って)連なる辺のそれぞれに、ファスナ 一やマジックテープ (登録商標)等を予め設けてお!、てもよ!/、。 For connecting the sides of the panel connector 40, for example, fastening parts such as bolts can be used. wear. Alternatively, the side that extends from the reference vertex P in one direction along the extension of the panel connection body 40 (along arrow L1 in FIG. 1) and the extension of the panel connection body 40 from the reference vertex P. Fasteners, Velcro (registered trademark), etc. are pre-installed on each of the continuous sides in the other direction (along arrow L2 in FIG. 1)!
図 3は、図 2中の III線に沿う断面図であり、パネル連結体 40における連結辺の近傍 の構成を示している。図 3に例示するように、パネル連結体 40では、多角形パネル同 士がヒンジ型の連結具 37によって揺動可能に連結されている。図 3に示すように、多 角形パネル 1〜32は所定の厚みを有しており、多角形パネル 1〜32の各辺は厚み 方向に広がりを持つ面となる。従って、多角形パネル 1〜32の側面をテーパ状にして おくと、立体構造物を形成したときに多角形パネル同士が面を介して当接することと なり、立体構造物の剛性を高めることができる。多角形パネルの側面に設けるテーパ の角度は、立体構造物を形成したときに多角形パネル同士が成す角度に基づいて 定めることができる。  FIG. 3 is a cross-sectional view taken along line III in FIG. 2, and shows a configuration in the vicinity of the connection side in the panel connection body 40. As illustrated in FIG. 3, in the panel connector 40, the polygon panels are connected to each other by a hinge-type connector 37 so as to be swingable. As shown in FIG. 3, the polygonal panels 1 to 32 have a predetermined thickness, and each side of the polygonal panels 1 to 32 is a surface that extends in the thickness direction. Therefore, if the side surfaces of the polygon panels 1 to 32 are tapered, the polygon panels come into contact with each other through the surfaces when the three-dimensional structure is formed, and the rigidity of the three-dimensional structure can be increased. it can. The taper angle provided on the side surface of the polygon panel can be determined based on the angle formed between the polygon panels when the three-dimensional structure is formed.
連結具 37は、パネル連結体 40の表裏に交互に配置されている。例えば多角形パ ネル 1と多角形パネル 2を連結する連結具 37は、多角形パネル 1、 2の表面 ls、 2s側 に設けられている。それ〖こより、多角形パネル 1と多角形パネル 2は、多角形パネル 1 の表面 Isと多角形パネル 2の表面 2sとが対向するように折り畳むことが可能となって いる。また、多角形パネル 2と多角形パネル 3を連結する連結具 37は、多角形パネル 2、 3の裏面 2t、 2t側に設けられている。それ〖こより、多角形パネル 2と多角形パネル 3は、多角形パネル 2の裏面 2tと多角形パネル 3の裏面 3tとが対向するように折り畳 むことが可能となっている。  The connectors 37 are alternately arranged on the front and back of the panel connector 40. For example, the coupler 37 that connects the polygon panel 1 and the polygon panel 2 is provided on the surface ls, 2s side of the polygon panels 1, 2. Therefore, the polygon panel 1 and the polygon panel 2 can be folded so that the surface Is of the polygon panel 1 and the surface 2s of the polygon panel 2 face each other. In addition, a connector 37 that connects the polygon panel 2 and the polygon panel 3 is provided on the back surfaces 2t and 2t of the polygon panels 2 and 3. Therefore, the polygon panel 2 and the polygon panel 3 can be folded so that the back surface 2t of the polygon panel 2 and the back surface 3t of the polygon panel 3 face each other.
図 4に、多角形パネル 1、 2、 3、 · ·を折り畳んだ状態を示す。図 4に示すように、多 角形パネル 1、 2、 3、 · ·を折り畳んだ状態では、多角形パネル 1の表面 Isと多角形パ ネル 2の表面 2sとが対向している。また、多角形パネル 2の裏面 2tと多角形パネル 3 の裏面 3tとが対向している。他の多角形パネル 4〜32も同様に折り畳むことができる 。パネル連結体 40では、多角形パネル 1〜32が直列に連結されているので、隣り合 う多角形パネルの表面と表面又は裏面と裏面を対向させながら、多角形パネル 1〜3 2を交互に折り畳むことが可能となって 、る。 図 5は、折り畳まれた状態のパネル連結体 40の全体像を示している。図 5に示すよ うに、パネル連結体 40は、多角形パネル 1〜32を一連に連結した状態のままで、多 角形パネル 1〜32を重畳するときと同様に、三角柱形状となることができる。 Fig. 4 shows the folded state of polygon panels 1, 2, 3, .... As shown in FIG. 4, when the polygonal panels 1, 2, 3,... Are folded, the surface Is of the polygon panel 1 and the surface 2s of the polygon panel 2 face each other. Further, the back surface 2t of the polygon panel 2 and the back surface 3t of the polygon panel 3 face each other. The other polygon panels 4 to 32 can be folded in the same manner. In the panel connector 40, the polygon panels 1 to 32 are connected in series, so that the polygon panels 1 to 3 2 are alternately arranged with the front surface and front surface or the back surface and back surface of the adjacent polygon panels facing each other. It can be folded. FIG. 5 shows an overall view of the panel coupling body 40 in a folded state. As shown in FIG. 5, the panel connector 40 can have a triangular prism shape in the same manner as when the polygon panels 1 to 32 are overlapped while the polygon panels 1 to 32 are connected in series. .
[0017] パネル連結体 40は、多角形パネル 1〜32が順に重畳するように折り畳むことがで きること力 、収納するのに要する体積を比較的に小さく抑えることができる。それに より、運搬等を容易に行うことができる。一方、パネル連結体 40によって立体構造物 を形成する際には、基準となる頂点 Pからパネル連結体 40の外延に沿って一方方向 に(図 1中の矢印 L1に沿って)連なる辺と、基準となる頂点 Pからパネル連結体 40の 外延に沿って他方方向に(図 1中の矢印 L2に沿って)連なる辺とを順に連結すること によって、立体構造物を形成することができる。それにより、立体構造物を形成する 作業を容易に行うことができる。  [0017] The panel coupling body 40 can be folded so that the polygonal panels 1 to 32 are overlapped in order, and the volume required for storage can be kept relatively small. As a result, transportation and the like can be performed easily. On the other hand, when a three-dimensional structure is formed by the panel connector 40, a side continuous in one direction from the reference vertex P along the extension of the panel connector 40 (along arrow L1 in FIG. 1), A three-dimensional structure can be formed by sequentially connecting the reference vertex P to the other side in the other direction along the extension of the panel connection body 40 (along arrow L2 in FIG. 1). Thereby, the work of forming the three-dimensional structure can be easily performed.
パネル連結体 40は、その大きさや利用する材質等を適宜選択することによって、例 えば屋外や水中や宇宙空間等で利用される立体構造物に適用することができる。  The panel coupling body 40 can be applied to, for example, a three-dimensional structure used in the outdoors, underwater, outer space, or the like by appropriately selecting the size, the material to be used, and the like.
[0018] パネル連結体 40では、多角形パネル 1〜32を連結している連結辺の少なくとも 1箇 所を、分離 Z連結可能な構成してもよい。図 6に示すように、例えば多角形パネル 16 と多角形パネル 17の間に分離 Z連結可能な連結具 39を設けることによって、多角 形パネル 16と多角形パネル 17を連結する連結辺 35を分離 Z連結可能とすることが できる。それにより、パネル連結体 40を複数のパネル連結体に分割して取り扱うこと が可能となり、パネル連結体 40の運搬作業や立体構造物の形成作業がやり易くなる 図 6に示すように、パネル連結体 40に用いる多角形パネルには、外枠フレーム 27b のみで構成される多角形パネル 27aや、骨格フレーム 28bに膜材 28cを張った多角 形パネル 28aを用いることもできる。  [0018] In the panel coupling body 40, at least one portion of the coupling side connecting the polygon panels 1 to 32 may be configured to be capable of separation Z coupling. As shown in Fig. 6, the connecting edge 35 that connects the polygon panel 16 and the polygon panel 17 is separated by, for example, providing a separating tool 39 that can be separated and connected between the polygon panel 16 and the polygon panel 17. Z can be connected. As a result, the panel coupling body 40 can be divided into a plurality of panel coupling bodies and handled, and the panel coupling body 40 can be easily transported and formed into a three-dimensional structure as shown in FIG. As the polygon panel used for the body 40, a polygon panel 27a composed only of the outer frame frame 27b or a polygon panel 28a in which a membrane material 28c is stretched on the skeleton frame 28b can be used.
[0019] (実施例 2) [0019] (Example 2)
本発明を実施した実施例 2のパネル連結体 50について図面を参照しながら説明す る。図 7は、本実施例のパネル連結体 50を略平面上に展開した様子を示している。 図 7に示すように、パネル連結体 50は、矩形の輪郭形状を有する 6枚の多角形パネ ル 51〜56を備えている。パネル連結体 50では、 6枚の多角形パネル 51〜56力 辺 同士を介して直列に連結されている。 A panel connector 50 of Example 2 embodying the present invention will be described with reference to the drawings. FIG. 7 shows a state in which the panel connector 50 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 7, the panel connector 50 includes six polygonal panels 51 to 56 having a rectangular outline shape. In the panel connector 50, six polygon panels 51 to 56 force sides They are connected in series via each other.
多角形パネル 51〜56のそれぞれは、所定の剛性を備えている。多角形パネル 51 〜56は、断熱性を有する材料カゝら構成されている。詳しくは、発泡性榭脂によって形 成されて!/ヽる板状部材を、合成繊維布によって被覆した構造となって ヽる。  Each of the polygon panels 51 to 56 has a predetermined rigidity. The polygon panels 51 to 56 are made of a material cover having heat insulating properties. Specifically, it has a structure in which a plate-like member formed by foaming resin is covered with a synthetic fiber cloth.
[0020] 図 7に示すように、パネル連結体 50では、基準となる頂点 P力 パネル連結体 50の 外延に沿って一方方向に(図 7中の矢印 L1に沿って)連なる辺と、基準となる頂点 P 力 パネル連結体 50の外延に沿って他方方向に(図 7中の矢印 L2に沿って)連なる 辺とが、順に接続可能となっている。図 7中の矢印 a〜gは、接続可能な辺と辺の組み 合わせを示している。パネル連結体 50は、頂点 Pから一方方向 L1に連なる辺と、頂 点 Pから他方方向 L2に連なる辺とが順に接続されることによって、立体構造物を形成 する。 [0020] As shown in FIG. 7, in the panel connector 50, the apex P force serving as the reference is connected to one side along the extension of the panel connector 50 (along arrow L1 in FIG. 7) and the reference The apex P force panel connecting body 50 can be connected in sequence to the other side (along arrow L2 in FIG. 7) along the outer extension of panel connecting body 50. Arrows a to g in FIG. 7 indicate combinations of sides that can be connected. The panel connection body 50 forms a three-dimensional structure by sequentially connecting a side continuous from the apex P in the one direction L1 and a side continuous from the apex P in the other direction L2.
パネル連結体 50では、第 1レール 61と第 2レール 62とスライダ 63を備えるファスナ 一が設けられている。第 1レール 61は、頂点 P力 パネル連結体 50の外延に沿って 一方方向に(図 7中の矢印 L1)連なる辺に沿って設けられている。第 2レール 62は、 頂点 P力もパネル連結体 50の外延に沿って他方方向に(図 7中の矢印 L2)連なる辺 に沿って設けられている。スライダ 63は、第 1レール 61と第 2レール 62を略平行にし た状態で、第 1レール 61と第 2レール 62に沿って頂点 Pから遠ざ力る方向に操作さ れたときに、第 1レール 61と第 2レール 62を接続していく。またスライダ 63は、第 1レ ール 61と第 2レール 62に沿って頂点 Pへ近づく方向に操作されたときに、第 1レール 61と第 2レール 62を離反していく。パネル連結体 50では、スライダ 63を操作すること によって、接続可能な辺と辺の組 a〜fを順に接続することができる。また、スライダ 63 を逆方向に操作することによって、接続可能な辺と辺の組 a〜gを逆の順で離反させ ることができる。パネル連結体 50では、多角形パネル 50〜56の接続が一連のファス ナー 61、 62、 63によって行われるので、多角形パネル 50〜56が隙間無く接続され る。  In the panel connector 50, a fastener including a first rail 61, a second rail 62, and a slider 63 is provided. The first rail 61 is provided along a continuous side in one direction (arrow L1 in FIG. 7) along the outer extension of the apex P force panel coupling body 50. In the second rail 62, the apex P force is also provided along the extending side of the panel coupling body 50 in the other direction (arrow L2 in FIG. 7). When the slider 63 is operated in the direction of moving away from the apex P along the first rail 61 and the second rail 62 with the first rail 61 and the second rail 62 being substantially parallel, Connect the first rail 61 and the second rail 62. Further, when the slider 63 is operated along the first rail 61 and the second rail 62 in the direction approaching the apex P, the first rail 61 and the second rail 62 are separated from each other. In the panel coupling body 50, by connecting the slider 63, connectable sides and pairs of sides a to f can be connected in order. Further, by operating the slider 63 in the reverse direction, the connectable sides and sets of sides a to g can be separated in the reverse order. In the panel connector 50, the polygon panels 50 to 56 are connected by the series of fasteners 61, 62, and 63, so that the polygon panels 50 to 56 are connected without a gap.
[0021] 図 8は、パネル連結体 50が形成する立体構造物を示している。図 8に示すように、 パネル連結体 50の多角形パネル 51〜56は、内部空間を密閉する直方体形状を形 成することができる。上面に位置する多角形パネル 56は、スライダ 63を操作すること によって、開閉可能な蓋として機能する。多角形パネル 51〜56は断熱性を有してい るので、パネル連結体 50が形成する立体構造物は、内部空間に収容した物品の温 度変化を低減することができる。パネル連結体 50によって形成される立体構造物は 、保温庫 (保冷庫)として利用することができる。 FIG. 8 shows a three-dimensional structure formed by the panel connector 50. As shown in FIG. 8, the polygon panels 51 to 56 of the panel connector 50 can form a rectangular parallelepiped shape that seals the internal space. The polygonal panel 56 located on the upper surface is operated by the slider 63. It functions as a lid that can be opened and closed. Since the polygonal panels 51 to 56 have heat insulation properties, the three-dimensional structure formed by the panel connector 50 can reduce the temperature change of the article accommodated in the internal space. The three-dimensional structure formed by the panel connection body 50 can be used as a heat insulating box (cold box).
図 9は、パネル連結体 50を折り畳んだ状態を示している。パネル連結体 50では多 角形パネル 51〜56が直列に連結されているので、多角形パネル 51〜56の表面と 表面又は裏面と裏面とを対向させながら、多角形パネル 51〜56を交互に折り畳むこ とが可能となっている。図 9に示すように、パネル連結体 50は、多角形パネル 51〜5 6を重畳した形態に折り畳むことが可能であり、収納するのに要する体積が比較的に 小さく抑えられる。  FIG. 9 shows a state where the panel coupling body 50 is folded. In the panel connector 50, the polygon panels 51 to 56 are connected in series, so that the polygon panels 51 to 56 are alternately folded while the front and back surfaces of the polygon panels 51 to 56 are opposed to the back surface. This is possible. As shown in FIG. 9, the panel connector 50 can be folded into a form in which the polygon panels 51 to 56 are superimposed, and the volume required for storage can be kept relatively small.
[0022] (実施例 3) [0022] (Example 3)
本発明を実施した実施例 3のパネル連結体 70について図面を参照しながら説明す る。図 10は、本実施例のパネル連結体 70を略平面上に展開した様子を示している。 図 10に示すように、パネル連結体 70は、 9枚の多角形パネル 71〜79を備えている。 パネル連結体 70では、 9枚の多角形パネル 71〜79が、辺同士を介して直列に連結 されている。多角形パネル 71〜79のそれぞれは、所定の剛性を備えている。また、 多角形パネル 71〜79は、耐水性を有している。  A panel connector 70 of Example 3 embodying the present invention will be described with reference to the drawings. FIG. 10 shows a state in which the panel connector 70 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 10, the panel connector 70 includes nine polygon panels 71 to 79. In the panel connector 70, nine polygon panels 71 to 79 are connected in series via the sides. Each of the polygon panels 71 to 79 has a predetermined rigidity. Moreover, the polygon panels 71-79 have water resistance.
[0023] 図 10に示すように、パネル連結体 70では、基準となる頂点 P力もパネル連結体 70 の外延に沿って一方方向に(図 10中の矢印 L1に沿って)連なる辺と、基準となる頂 点 P力もパネル連結体 70の外延に沿って他方方向に(図 10中の矢印 L2に沿って) 連なる辺とが、順に接続可能となっている。図 10中の矢印 a〜fは、接続可能な辺と 辺の組み合わせを示している。パネル連結体 70は、頂点 P力も一方方向 L1に連なる 辺と、頂点 Pから他方方向 L2に連なる辺とが順に接続されることによって、立体構造 物を形成する。 [0023] As shown in FIG. 10, in the panel connector 70, the reference apex P force also extends in one direction along the extension of the panel connector 70 (along the arrow L1 in FIG. 10) and the reference edge. The apex point P force that becomes can be sequentially connected to the other side (along arrow L2 in FIG. 10) along the outer extension of the panel coupling body 70. Arrows a to f in FIG. 10 indicate connectable sides and combinations of sides. The panel connection body 70 forms a three-dimensional structure by connecting the side where the apex P force is continuous in one direction L1 and the side where the apex P is continuous in the other direction L2 in order.
[0024] 図 11は、パネル連結体 70が形成する立体構造物を示している。図 11に示すように 、パネル連結体 70の多角形パネル 71〜79は、船形形状を形成することができる。 多角形パネル 71〜 79は耐水性を有して 、るので、多角形パネル 71〜 79を液密に 接続することによって、パネル連結体 70が形成する立体構造物を船として利用する ことができる。 FIG. 11 shows a three-dimensional structure formed by the panel connector 70. As shown in FIG. 11, the polygonal panels 71 to 79 of the panel coupling body 70 can form a ship shape. Since the polygon panels 71 to 79 have water resistance, the three-dimensional structure formed by the panel coupling body 70 is used as a ship by connecting the polygon panels 71 to 79 in a liquid-tight manner. be able to.
図 12は、パネル連結体 70を折り畳んだ状態を示している。パネル連結体 70では 多角形パネル 71〜79が直列に連結されているので、多角形パネル 71〜79の表面 と表面又は裏面と裏面とを対向させながら、多角形パネル 71〜79を交互に折り畳む ことが可能となっている。図 12に示すように、パネル連結体 70は、多角形パネル 71 〜79を重畳した形態に折り畳むことが可能であり、収納するのに要する体積が比較 的に小さく抑えられる。  FIG. 12 shows a state in which the panel coupling body 70 is folded. Since the polygon panels 71 to 79 are connected in series in the panel connector 70, the polygon panels 71 to 79 are alternately folded while the front surface and the front surface or the back surface and the back surface of the polygon panels 71 to 79 are opposed to each other. It is possible. As shown in FIG. 12, the panel coupling body 70 can be folded into a form in which the polygonal panels 71 to 79 are superimposed, and the volume required for housing is relatively small.
[0025] (実施例 4) [Example 4]
本発明を実施した実施例 4のパネル連結体 80について図面を参照しながら説明す る。図 13は、本実施例のパネル連結体 80を略平面上に展開した様子を示している。 図 13に示すように、パネル連結体 80は、 6枚の多角形パネル 81〜86を備えている。 パネル連結体 80では、 6枚の多角形パネル 81〜86力 辺同士を介して直列に連結 されている。多角形パネル 81〜86のそれぞれは、所定の剛性を備えている。また、 多角形パネル 81には、孔 8 lxが形成されて!、る。  A panel connector 80 of Example 4 embodying the present invention will be described with reference to the drawings. FIG. 13 shows a state in which the panel connector 80 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 13, the panel connector 80 includes six polygonal panels 81 to 86. In the panel connector 80, six polygon panels 81 to 86 are connected in series via the force sides. Each of the polygon panels 81 to 86 has a predetermined rigidity. In addition, the polygon panel 81 has a hole 8 lx!
[0026] 図 13に示すように、パネル連結体 80では、基準となる頂点 P力もパネル連結体 80 の外延に沿って一方方向に(図 13中の矢印 L1に沿って)連なる辺と、基準となる頂 点 P力もパネル連結体 80の外延に沿って他方方向に(図 13中の矢印 L2に沿って) 連なる辺とが、順に接続可能となっている。図 13中の矢印 a〜fは、接続可能な辺と 辺の組み合わせを示している。パネル連結体 80は、頂点 P力も一方方向 L1に連なる 辺と、頂点 Pから他方方向 L2に連なる辺とが順に接続されることによって、立体構造 物を形成することができる。  [0026] As shown in FIG. 13, in the panel connector 80, the reference vertex P force also extends in one direction along the extension of the panel connector 80 (along arrow L1 in FIG. 13) and the reference edge The apex point P force that can be connected to the side connected in the other direction along the extension of the panel coupling body 80 (along the arrow L2 in FIG. 13) can be connected in order. Arrows a to f in FIG. 13 indicate connectable sides and combinations of sides. The panel connection body 80 can form a three-dimensional structure by connecting the side where the apex P force is continuous in the one direction L1 and the side where the apex P is continuous in the other direction L2 in order.
[0027] 図 14は、パネル連結体 80が形成する立体構造物を示している。図 14に示すように 、パネル連結体 80の多角形パネル 81〜89は、家を模した形状の立体構造物を形 成することができる。パネル連結体 80が形成する立体構造物は、犬等の小動物が使 用する小屋として用いることができる。  FIG. 14 shows a three-dimensional structure formed by the panel connector 80. As shown in FIG. 14, the polygon panels 81 to 89 of the panel connector 80 can form a three-dimensional structure shaped like a house. The three-dimensional structure formed by the panel connector 80 can be used as a hut used by small animals such as dogs.
図 15は、パネル連結体 80を折り畳んだ状態を示している。パネル連結体 80では 多角形パネル 81〜86が直列に連結されて!、るので、多角形パネル 81〜86の表面 と表面又は裏面と裏面とを対向させながら、多角形パネル 81〜86を交互に折り畳む ことが可能となっている。図 15に示すように、パネル連結体 80は、多角形パネル 81 〜86を重畳した形態に折り畳むことが可能であり、収納するのに要する体積が比較 的に小さく抑えられる。 FIG. 15 shows a state where the panel coupling body 80 is folded. In the panel connection body 80, the polygon panels 81 to 86 are connected in series! Therefore, the polygon panels 81 to 86 are alternately arranged with the front surface and the front surface or the back surface and the back surface of the polygon panels 81 to 86 facing each other. Fold to It is possible. As shown in FIG. 15, the panel connector 80 can be folded into a form in which the polygon panels 81 to 86 are overlapped, and the volume required for housing is relatively small.
[0028] (実施例 5) [Example 5]
本発明を実施した実施例 5のパネル連結体 90について図面を参照しながら説明す る。図 16は、本実施例のパネル連結体 90を略平面上に展開した様子を示している。 図 16に示すように、パネル連結体 90は、 7枚の多角形パネル 91〜97を備えている。 パネル連結体 90では、 7枚の多角形パネル 91〜97が、辺同士を介して直列に連結 されている。多角形パネル 91〜97のそれぞれは、所定の剛性を備えている。また、 多角形パネル 91〜97のそれぞれは、光反射性の塗料が塗布されている。  A panel connector 90 of Embodiment 5 in which the present invention is implemented will be described with reference to the drawings. FIG. 16 shows a state in which the panel connector 90 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 16, the panel coupling body 90 includes seven polygonal panels 91 to 97. In the panel connector 90, seven polygonal panels 91 to 97 are connected in series via sides. Each of the polygon panels 91 to 97 has a predetermined rigidity. Each of the polygon panels 91 to 97 is coated with a light-reflective paint.
[0029] 図 16に示すように、パネル連結体 90では、基準となる頂点 P力もパネル連結体 90 の外延に沿って一方方向に(図 16中の矢印 L1に沿って)連なる辺と、基準となる頂 点 P力もパネル連結体 90の外延に沿って他方方向に(図 16中の矢印 L2に沿って) 連なる辺とが、順に接続可能となっている。図 16中の矢印 a〜fは、接続可能な辺と 辺の組み合わせを示している。パネル連結体 90は、頂点 P力も一方方向 L1に連なる 辺と、頂点 Pから他方方向 L2に連なる辺とが順に接続されることによって、立体構造 物を形成する。 [0029] As shown in FIG. 16, in the panel connector 90, the reference vertex P force also extends in one direction along the extension of the panel connector 90 (along the arrow L1 in FIG. 16) and the reference edge Also, the apex P force that can be connected to the other side of the panel connecting body 90 in the other direction (along arrow L2 in FIG. 16) can be connected in order. Arrows a to f in FIG. 16 indicate connectable sides and combinations of sides. The panel connection body 90 forms a three-dimensional structure by connecting the side where the apex P force is also continuous in one direction L1 and the side which is continuous from the apex P in the other direction L2.
[0030] 図 17は、パネル連結体 90が形成する立体構造物を示している。図 17に示すように 、パネル連結体 90の多角形パネル 91〜97は、三角錘形状の立体構造物を形成す ることができる。多角形パネル 91〜97は光反射性の塗料が塗布されているので、パ ネル連結体 90が形成する立体構造物を、例えば工事現場等の三角コーンとして利 用することができる。  FIG. 17 shows a three-dimensional structure formed by the panel connector 90. As shown in FIG. 17, the polygon panels 91 to 97 of the panel connector 90 can form a triangular pyramid-shaped three-dimensional structure. Since the polygonal panels 91 to 97 are coated with a light-reflective paint, the three-dimensional structure formed by the panel coupling body 90 can be used as, for example, a triangular cone at a construction site or the like.
図 18は、パネル連結体 90を折り畳んだ状態を示している。パネル連結体 90では 多角形パネル 91〜97が直列に連結されているので、多角形パネル 91〜97の表面 と表面又は裏面と裏面とを対向させながら、多角形パネル 91〜97を交互に折り畳む ことが可能となっている。図 18に示すように、パネル連結体 90は、多角形パネル 91 〜97を重畳した形態に折り畳むことが可能であり、収納するのに要する体積が比較 的に小さく抑えられる。 [0031] (実施例 6) FIG. 18 shows a state where the panel coupling body 90 is folded. Since the polygon panels 91 to 97 are connected in series in the panel connector 90, the polygon panels 91 to 97 are alternately folded while the front surface and the front surface or the back surface and the back surface of the polygon panels 91 to 97 are opposed to each other. It is possible. As shown in FIG. 18, the panel connector 90 can be folded into a shape in which the polygon panels 91 to 97 are superimposed, and the volume required for storage is relatively small. [0031] (Example 6)
本発明を実施した実施例 6のパネル連結体 100について図面を参照しながら説明 する。図 19は、本実施例のパネル連結体 100を略平面上に展開した様子を示して いる。図 19に示すように、パネル連結体 100は、 32枚の多角形パネル 101〜132を 備えている。多角形パネル 101〜132のなかで、 12枚の多角形パネル 101、 107、 1 09、 111、 113、 115、 118、 120、 122、 124、 126、 132は、正五角形の輪郭形状 を有している。また、 20枚の多角形パネル 102、 103、 104、 105、 106、 108、 110 、 112、 114、 116、 117、 119、 121、 123、 125、 127、 128、 129、 130、 131は、 正六角形の輪郭形状を有している。  A panel connector 100 of Example 6 in which the present invention is implemented will be described with reference to the drawings. FIG. 19 shows a state where the panel connector 100 of the present embodiment is developed on a substantially flat surface. As shown in FIG. 19, the panel connector 100 includes 32 polygonal panels 101 to 132. Among the polygon panels 101 to 132, 12 polygon panels 101, 107, 109, 111, 113, 115, 118, 120, 122, 124, 126, 132 have a regular pentagonal outline shape. ing. 20 polygon panels 102, 103, 104, 105, 106, 108, 110, 112, 114, 116, 117, 119, 121, 123, 125, 127, 128, 129, 130, 131 are regular six It has a square outline shape.
パネル連結体 100では、 32枚の多角形パネル 101〜132力 辺同士を介して直列 に連結されている。多角形パネル 101〜132のそれぞれは、所定の剛性を備えてい る。  In the panel connector 100, 32 polygon panels 101 to 132 are connected in series via the force sides. Each of the polygon panels 101 to 132 has a predetermined rigidity.
[0032] 図 19に示すように、パネル連結体 100では、基準となる頂点 P力もパネル連結体 1 00の外延に沿って一方方向に(図 19中の矢印 L1に沿って)連なる辺と、基準となる 頂点 P力もパネル連結体 100の外延に沿って他方方向に(図 19中の矢印 L2に沿つ て)連なる辺とが、順に接続可能となっている。パネル連結体 100は、頂点 Pから一方 方向 L1に連なる辺と、頂点 Pから他方方向 L2に連なる辺とが順に接続されることによ つて、立体構造物を形成する。  As shown in FIG. 19, in the panel connector 100, the reference vertex P force also extends in one direction along the extension of the panel connector 100 (along the arrow L1 in FIG. 19), The apex P force serving as a reference can also be connected in order to the side that continues in the other direction (along the arrow L2 in FIG. 19) along the extension of the panel connector 100. The panel connection body 100 forms a three-dimensional structure by sequentially connecting a side continuous from the apex P in the one direction L1 and a side continuous from the apex P in the other direction L2.
[0033] 図 20は、パネル連結体 100が形成する立体構造物を示している。図 20に示すよう に、頂点 Pから一方方向 L1に連なる辺と、頂点 Pから他方方向 L2に連なる辺とが順 に接続されることによって、多角形パネル 101〜132が略球面に沿って隙間なく位置 することとなり、内部空間を有する略球形形状を形成することができる。即ち、開口部 を有しな!/ヽ球形形状を形成することができる。  FIG. 20 shows a three-dimensional structure formed by the panel connector 100. As shown in FIG. 20, the polygon panels 101 to 132 are spaced along a substantially spherical surface by sequentially connecting the side continuous from the vertex P in the one direction L1 and the side continuous from the vertex P in the other direction L2. Therefore, it is possible to form a substantially spherical shape having an internal space. In other words, it is possible to form a Ryukyu shape without an opening.
パネル連結体 100が形成する立体構造物では、各頂点が 3枚の多角形パネル 10 1〜132によって形成されている。さらに詳しくは、各頂点が、 2枚の正六角形状の多 角形パネルと 1枚の五角形状の多角形パネルによって形成されて 、る。それにより、 曲率半径の大きな曲面を近似する多面体形状を形成することが可能となる。ドーム 形状やパラボラアンテナ形状等を形成するパネル連結体を実現することが可能とな る。 In the three-dimensional structure formed by the panel connection body 100, each vertex is formed by three polygonal panels 101-132. More specifically, each vertex is formed by two regular hexagonal polygon panels and one pentagonal polygon panel. As a result, it is possible to form a polyhedral shape that approximates a curved surface having a large curvature radius. It is possible to realize a panel connection body that forms a dome shape, a parabolic antenna shape, etc. The
図 21は、パネル連結体 100を折り畳んだ状態を示している。パネル連結体 100で は多角形パネル 101〜132が直列に連結されているので、多角形パネル 101〜13 2の表面と表面又は裏面と裏面とを対向させながら、多角形パネル 101〜132を交 互に折り畳むことが可能となっている。図 21に示すように、パネル連結体 100は、多 角形パネル 101〜132を重畳した形態に折り畳むことが可能であり、収納するのに要 する体積を比較的に小さく抑えることができる。  FIG. 21 shows a state in which the panel coupling body 100 is folded. In the panel connector 100, the polygon panels 101 to 132 are connected in series, so that the polygon panels 101 to 132 are exchanged with the front and back surfaces of the polygon panels 101 to 132 facing each other. It is possible to fold each other. As shown in FIG. 21, the panel connector 100 can be folded into a form in which the polygonal panels 101 to 132 are overlapped, and the volume required for storage can be kept relatively small.
以上、本発明の実施形態について詳細に説明した力 これらは例示に過ぎず、特 許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上 に例示した具体例を様々に変形、変更したものが含まれる。  As described above, the force described in detail for the embodiment of the present invention is merely an example, and does not limit the scope of the patent claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによつ て技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定され るものではない。本明細書または図面に例示した技術は複数の目的を同時に達成 するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つも のである。  The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The technology exemplified in this specification or the drawings achieves a plurality of objects at the same time, and the achievement of one of the objects itself has technical utility.

Claims

請求の範囲 The scope of the claims
[1] 3枚以上の多角形パネルが辺同士を介して直列に連結されて!、るパネル連結体で あり、  [1] Three or more polygonal panels are connected in series via the sides!
隣接するパネル同士は、連結辺を軸に揺動可能に連結されており、  Adjacent panels are connected so as to be swingable around the connecting side,
所定の頂点力 パネル連結体の外延に沿って一方方向に連なる辺と、前記所定の 頂点からパネル連結体の外延に沿って他方方向に連なる辺とが順に接続されたとき に、所定の立体構造物を形成するパネル連結体。  A predetermined vertex force when a side continuous in one direction along the outer extension of the panel connection body and a side continuous in the other direction along the outer extension of the panel connection body from the predetermined vertex are connected in order. A panel assembly that forms an object.
[2] 前記複数の多角形パネルは、輪郭形状が三角形である三角形パネルであり、 前記所定の立体構造物を形成したときに、立体構造物における頂点が 5枚以上の 三角形パネルによって形成されることを特徴とする請求項 1のパネル連結体。 [2] The plurality of polygonal panels are triangular panels whose outline shape is a triangle, and when the predetermined three-dimensional structure is formed, the three-dimensional structure is formed by three or more triangular panels. The panel connector according to claim 1, wherein:
[3] 前記三角形パネルの輪郭形状は、頂角と底角の大きさが異なる二等辺三角形であ り、 [3] The outline shape of the triangular panel is an isosceles triangle having different apex and base angles.
前記所定の立体構造物を形成したときに、立体構造物における頂点が 5又は 6枚 の三角形パネルによって形成されており、  When the predetermined three-dimensional structure is formed, the vertex of the three-dimensional structure is formed by five or six triangular panels,
5枚のパネルによって形成される頂点には、三角形パネルの頂角と底角のうちの大 きい方が集まっており、 6枚のパネルによって形成される頂点には、三角形パネルの 頂角と底角のうちの小さ 、方が集まって 、ることを特徴とする請求項 2のパネル連結 体。  The apex formed by the five panels is the larger of the apex and base angles of the triangular panel, and the apex formed by the six panels is the apex and base of the triangular panel. 3. The panel connector according to claim 2, wherein the smaller one of the corners gathers.
[4] 前記複数の多角形パネルのそれぞれは、輪郭形状が五角形である五角形パネル 又は六角形である六角形パネルであり、  [4] Each of the plurality of polygonal panels is a pentagonal panel having a pentagonal outline shape or a hexagonal panel having a hexagonal shape,
前記所定の立体構造物を形成したときに、立体構造物における頂点が 3枚の多角 形パネルによって形成されることを特徴とする請求項 1のパネル連結体。  2. The panel connection body according to claim 1, wherein when the predetermined three-dimensional structure is formed, a vertex of the three-dimensional structure is formed by three polygon panels.
[5] 前記所定の頂点からパネル連結体の外延に沿って一方方向に連なる辺と、前記所 定の頂点力 パネル連結体の外延に沿って他方方向に連なる辺とを、順に接続する 接続手段が付加されていることを特徴とする請求項 1から 4のパネル連結体。 [5] A connecting means for sequentially connecting a side continuous in one direction from the predetermined apex along the outer extension of the panel coupling body and a side continuous in the other direction along the outer extension of the predetermined vertex force panel coupling body The panel connector according to claim 1, further comprising:
[6] 少なくとも一箇所の連結辺が、分離 Z連結可能となっていることを特徴とする請求 項 1から 4の!、ずれかのパネル連結体。 [6] The panel connection body according to any one of claims 1 to 4, wherein at least one connection side can be separated and Z-connected.
PCT/JP2005/017888 2005-09-28 2005-09-28 Body formed by joining panels WO2007037003A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007537502A JP4792038B2 (en) 2005-09-28 2005-09-28 Panel connector
PCT/JP2005/017888 WO2007037003A1 (en) 2005-09-28 2005-09-28 Body formed by joining panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017888 WO2007037003A1 (en) 2005-09-28 2005-09-28 Body formed by joining panels

Publications (1)

Publication Number Publication Date
WO2007037003A1 true WO2007037003A1 (en) 2007-04-05

Family

ID=37899442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017888 WO2007037003A1 (en) 2005-09-28 2005-09-28 Body formed by joining panels

Country Status (2)

Country Link
JP (1) JP4792038B2 (en)
WO (1) WO2007037003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004041A (en) * 2016-07-07 2018-01-11 株式会社阿竹研究所 Unit panel achieving three-dimensional structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216734A (en) * 1990-12-14 1992-08-06 Toho Sheet & Frame Co Ltd Structure of assembling type and its assembling method
JP2001116186A (en) * 1999-10-19 2001-04-27 Koji Yamawaki Connectable hexagonal flat plate, connectable complex- shaped flat plate, and connecting type three-dimensional construction
JP2005219533A (en) * 2004-02-03 2005-08-18 Japan Aerospace Exploration Agency Truss structure and its assembling, deploying and storing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435361B2 (en) * 1998-10-05 2003-08-11 株式会社石崎錻力店 Fuller dome type simple building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04216734A (en) * 1990-12-14 1992-08-06 Toho Sheet & Frame Co Ltd Structure of assembling type and its assembling method
JP2001116186A (en) * 1999-10-19 2001-04-27 Koji Yamawaki Connectable hexagonal flat plate, connectable complex- shaped flat plate, and connecting type three-dimensional construction
JP2005219533A (en) * 2004-02-03 2005-08-18 Japan Aerospace Exploration Agency Truss structure and its assembling, deploying and storing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004041A (en) * 2016-07-07 2018-01-11 株式会社阿竹研究所 Unit panel achieving three-dimensional structure

Also Published As

Publication number Publication date
JPWO2007037003A1 (en) 2009-04-02
JP4792038B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
US5894045A (en) Cellular core structure building component
US3914486A (en) Shear form structures
US7104864B1 (en) Blocks and building system for the construction of lifesize inflatable play structures
US20090117311A1 (en) Interlocking spatial components
EP3319700B1 (en) Toy construction set
US9340967B2 (en) Kit including self-supporting panels for assembling a modular structure
US11878255B2 (en) Puzzle kits
US6941704B2 (en) Deployable structure
WO2007037003A1 (en) Body formed by joining panels
JP2001173889A (en) Connecting structural element for solid structure
JP2013541429A (en) High strength low density multipurpose panel
CN108518407B (en) Symmetric foldable and unfoldable thick plate structure
US20040206014A1 (en) Modular building element
CN205396580U (en) Collapsible polyhedral structure
KR102051918B1 (en) Prefabricated instant dome house having non-frame structure
JP2021534952A (en) Construction system for creating three-dimensional structures
GB2317580A (en) Objects formed of folded paper
US4271645A (en) Building construction
CN210310850U (en) Wing fuselage attach fitting and aircraft
US20050266767A1 (en) Toy wall panel with resistive hinge connections
US20110272401A1 (en) Apparatus And Method To Form A Fabric Blanket Into A Box
JP3370960B2 (en) Structural unit for forming spherical shell structure, spherical shell structure using the structural unit, and method of storing and assembling the same
CN208001810U (en) Quick disassembled type Pet combined room
JP2014031860A (en) Joined box system
JP3224137U (en) Partition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007537502

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05788009

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)