WO2007036636A2 - Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage - Google Patents

Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage Download PDF

Info

Publication number
WO2007036636A2
WO2007036636A2 PCT/FR2006/002194 FR2006002194W WO2007036636A2 WO 2007036636 A2 WO2007036636 A2 WO 2007036636A2 FR 2006002194 W FR2006002194 W FR 2006002194W WO 2007036636 A2 WO2007036636 A2 WO 2007036636A2
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxidation
circulation
phase
reduction
Prior art date
Application number
PCT/FR2006/002194
Other languages
English (en)
Other versions
WO2007036636A3 (fr
Inventor
Didier Pavone
Etienne Lebas
Original Assignee
Institut Francais Du Petrole
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Francais Du Petrole filed Critical Institut Francais Du Petrole
Priority to EP06820142A priority Critical patent/EP1934520A2/fr
Priority to JP2008532824A priority patent/JP2009509904A/ja
Priority to US12/088,437 priority patent/US20090017405A1/en
Publication of WO2007036636A2 publication Critical patent/WO2007036636A2/fr
Publication of WO2007036636A3 publication Critical patent/WO2007036636A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99008Unmixed combustion, i.e. without direct mixing of oxygen gas and fuel, but using the oxygen from a metal oxide, e.g. FeO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the field of the present invention is that of energy production, gas turbines, boilers and furnaces, especially for the oil, glass and cement industry.
  • the field of the invention also covers the use of these various means for the production of electricity, heat or steam.
  • the field of the invention gathers, more particularly, the devices and the processes making it possible, by the implementation of oxidation-reduction reactions of an active phase, to produce a hot gas using a hydrocarbon or a mixture of hydrocarbons and isolate the carbon dioxide produced so that it can be captured.
  • the invention also applies to the field of the production of hydrogen or oxygen.
  • One of the techniques that can be used to capture carbon dioxide is to carry out oxidation-reduction reactions of an active phase to decompose the combustion reaction usually used in two successive reactions:
  • the decoupling thus achieved between the oxidation phase and the reduction phase allows subsequent easier separation of the carbon dioxide from a gaseous mixture substantially free of oxygen and nitrogen.
  • FR-2,846,710 which describes a real rotary reactor in the sense that the reactor has a material rotation between a fixed part and a moving part to perform the successive reactions of oxidation and reduction of an active mass.
  • FR-04 / 08.549 filed by the applicant which describes a type of reactor that allows to achieve the same reactions as that described in the application FR-2,846,710, but without using a real rotation.
  • the rotation, or more precisely the passage from one configuration of the reactor to another, is obtained by the offset in time and fixed periodicity, a set of modules, preferably identical, and each having the possibility of being fed by specific means into an oxidizing gas, a reducing gas, or an inert gas (called a flushing gas).
  • the object of the present invention is to propose an optimized method for implementing a device that enables oxidation and reduction reactions of an active phase to produce a hot gas using a hydrocarbon, or of a mixture of hydrocarbons, and jointly isolate the carbon dioxide produced in order to easily capture it.
  • the invention relates to a method for producing a hot gas by oxidation of an active material contained by at least one reaction module working as a function of time successively in oxidation, scanning and reduction phases by setting contact by the successive circulation respectively of an oxidation gas, sweeping or reduction.
  • the circulation contacting phases of the oxidation and scanning gas are separated by a circulation stop of determined duration of the oxidation gas before circulation of the flushing gas.
  • the stopping time of circulation can be determined so as to increase the contact time of the oxidation gas on the active material.
  • the flow rate of the flushing gas may be greater than the rate of circulation of the oxidation gas.
  • the oxidation-reduction cycle of the oxido-reducing active mass comprises a fuel gas injection phase. During this phase, the fuel gas comes into contact with the oxidoreductive active mass which is in a partially oxidized state. Oxygen captured by this mass is transferred to the gas that oxidizes by releasing carbon oxides and water.
  • the devices comprise a set of reaction modules, each module comprising an active material working as a function of time successively in the oxidation phase, scanning and reduction by contacting respectively with an oxidation gas, sweep or reduction.
  • the contact with the active mass is carried out either by means of a supply system specific to each module and capable of receiving, as a function of time, an oxidation gas, a sweeping gas or a reduction gas, or by means of a rotatable assembly relative to a dispensing assembly.
  • the oxidation reaction of the gas (and thus the reduction of the redox mass) is located mainly near the inlet of the module, for example in the form of a monolith. Over time, this redox is moving downstream of the module since the upstream redox mass has been reduced and therefore no longer contains the oxygen necessary for combustion.
  • the applicant has noted a problem relating to unburnt combustible gases.
  • a simulation was carried out by considering a cylindrical channel 1 meter long, of internal diameter 2 mm, covered with an active mass (washcoat) of 50 microns thick.
  • the gases are injected at approximately 500 ° C. under 30 bar pressure.
  • the standard cycle considered comprises the following successive injection times: 3 s of air - 0.5 s of steam - 1.5 s of methane - 0.5 s of steam.
  • the respective injection speeds of air, water vapor, and methane are: 20 m / s, 5 m / s, 1 m / s.
  • Water vapor is introduced to clean the oxidant or fuel channel prior to the subsequent introduction of the fuel or oxidant.
  • curve 1 shows the flow rate of fuel gas injected and curve 2 the quantity of unburned gases (in mol / s on the ordinate), as a function of time (on the abscissa), for a channel. It is noted that during the oxidation phase of the gas (between times 14.5 and 16 s) a first quantity of unburnt appears at the outlet of the channel (curve 2). Then, a "puff" of unburned gases is produced between 16 s and 16.5 s illustrated by the peak 3.
  • a method, or method which reduces by about 25% the amount of unburnt present in said "puff" of unburned gases (peak 3 of Figure 1). For this, is introduced between the end of the fuel gas injection phase and the next sweep phase with steam, a short period during which nothing is injected. The fuel gas trapped in the channel then has time to oxidize on the redox mass, thus reducing the amount of unburned gas.
  • Figure 2 illustrates the new cycle of the method according to the invention.
  • Curve 1 represents in the same way the injection rate of the fuel in a cycle and conditions identical to the standard cycle, except for the incorporation of an injection stop lasting 0.5 s after the injection of the fuel. and before the injection of the sweeping water vapor. This pause is referenced 4 in FIG. 2.
  • the curve 2 With this new cycle, the curve 2 'represents the flow rate of unburnt during combustion, followed by the peak 3' corresponding to the "puff" of unburned gases.
  • Table 1 summarizes the results corresponding to the cycle according to the invention, illustrated by FIG.
  • the last row of the table gives the total amount of unburnt for one cycle, ie the integral under the curves 2 + 3, and 2 '+ 3'. It is found that the cycle according to the invention provides an overall reduction of unburned gases of 21% per cycle. The object of the invention being however to act on the volume of said "puff", it will better understand the contribution of this invention by comparing its volume, according to the invention or as the standard case. This comparison is proposed in the second line of the table. It appears that the invention reduces the unburnt volume of the puff by 26%.
  • the present invention is advantageously applicable to the devices described in documents FR-2,846,710 or FR-04 / 08,549.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne un procédé optimisé pour la production d'un gaz chaud par oxydation d'un matériau actif présentant une forme oxydée et une forme réduite au moyen d'un réacteur rotatif, ou à rotation simulée. Selon l'invention, le cycle de production comprend un arrêt de circulation entre une phase d'oxydation et une phase de balayage.

Description

PROCEDE POUR LA PRODUCTION D'UN GAZ CHAUD PAR OXYDATION COMPRENANT UN DÉLAI AVANT BALAYAGE
Domaine de l'invention: Le domaine de la présente invention est celui de la production d'énergie, des turbines à gaz, des chaudières et des fours, notamment pour l'industrie pétrolière, verrière et en cimenterie. Le domaine de l'invention couvre également l'utilisation de ces différents moyens pour la production d'électricité, de chaleur ou de vapeur. Le domaine de l'invention regroupe, plus particulièrement, les dispositifs et les procédés permettant, par la mise en œuvre de réactions d'oxydoréduction d'une phase active, de produire un gaz chaud à l'aide d'un hydrocarbure ou d'un mélange d'hydrocarbures et d'isoler le dioxyde de carbone produit de façon à pouvoir le capturer. L'invention s'applique également au domaine de la production d'hydrogène ou d'oxygène.
La croissance de la demande énergétique mondiale conduit à construire de nouvelles centrales thermiques et à émettre des quantités croissantes de dioxyde de carbone préjudiciables pour l'environnement. La capture du dioxyde de carbone en vue de sa séquestration est ainsi devenue une nécessité incontournable. Examen de l'art antérieur:
L'une des techniques pouvant être utilisées pour capturer le dioxyde de carbone consiste à mettre en œuvre des réactions d'oxydoréduction d'une phase active pour décomposer la réaction de combustion habituellement utilisée en deux réactions successives:
- une réaction d'oxydation de la phase active avec de l'air permet, grâce au caractère exothermique de l'oxydation, d'obtenir un gaz chaud dont l'énergie peut être exploitée;
- une réaction de réduction de la phase active ainsi oxydée à l'aide d'un gaz réducteur, permet ensuite d'obtenir une phase active réutilisable, ainsi qu'un mélange gazeux comprenant essentiellement du dioxyde de carbone et de l'eau.
Le découplage ainsi réalisé entre la phase d'oxydation et la phase de réduction permet une séparation ultérieure plus aisée du dioxyde de carbone à partir d'un mélange gazeux pratiquement dépourvu d'oxygène et d'azote.
On connaît le document US 5,447,024 qui décrit un procédé comprenant un premier réacteur mettant en œuvre une réaction de réduction d'un oxyde métallique à l'aide d'un gaz réducteur, et un second réacteur produisant le dit oxyde métallique par réaction d'oxydation avec de l'air humidifié. Les gaz d'échappement issus des deux réacteurs sont introduits dans les turbines à gaz d'une centrale électrique. Cependant, la mise en œuvre d'un tel procédé nécessite l'utilisation de deux réacteurs distincts et de moyens de transport d'une phase active qui se présente sous forme de particules solides. Il en résulte qu'un tel procédé est relativement compliqué à mettre en œuvre et entraîne des coûts d'exploitation et de maintenance importants. En outre, l'entraînement de fines particules de la phase active dans les gaz d'échappement peut être une source d'inconvénients par rapport aux traitements ultérieurs de ces gaz. On connaît également le document FR-2,846,710 qui décrit un réacteur rotatif réel au sens où le réacteur présente une rotation matérielle entre une partie fixe et une partie mobile pour effectuer les réactions successives d'oxydation puis de réduction d'une masse active. On connaît aussi le document FR-04/08.549 déposé par la demanderesse, qui décrit un type de réacteur qui permet de réaliser les mêmes réactions que celui décrit dans la demande FR-2,846,710, mais sans faire appel à une rotation réelle. La rotation, ou plus précisément le passage d'une configuration du réacteur à une autre, est obtenue par le décalage dans le temps et à périodicité fixée, d'un ensemble de modules, de préférence identiques, et ayant chacun la possibilité d'être alimenté par des moyens spécifiques en un gaz oxydant, un gaz réducteur, ou un gaz inerte (appelé gaz de balayage). Ces moyens spécifiques sont constitués essentiellement par un système de vannes permettant de délivrer sur chaque module, en fonction de la période de temps considérée, le gaz oxydant, le gaz de balayage, ou le gaz de réduction. Ces moyens sont spécifiques à chaque module. L'objet de la présente invention est de proposer un procédé optimisé de mise en oeuvre d'un dispositif permettant des réactions d'oxydation et de réduction d'une phase active pour produire un gaz chaud à l'aide d'un hydrocarbure, ou d'un mélange d'hydrocarbures, et de conjointement isoler le dioxyde de carbone produit afin de le capter aisément.
Ainsi, l'invention concerne un procédé pour la production d'un gaz chaud par oxydation d'un matériau actif contenu par au moins un module réactionnel travaillant en fonction du temps successivement en phases d'oxydation, de balayage et de réduction par mise en contact par la circulation successive respectivement d'un gaz d'oxydation, de balayage ou de réduction. Selon l'invention, les phases de mise en contact par circulation du gaz d'oxydation et de balayage sont séparées par un arrêt de circulation de durée déterminée du gaz d'oxydation avant la mise en circulation du gaz de balayage.
La durée d'arrêt de circulation peut être déterminée de manière à augmenter le temps de mise en contact du gaz d'oxydation sur le matériau actif.
La vitesse de circulation du gaz de balayage peut être supérieure à la vitesse de circulation du gaz d'oxydation.
On rappelle le déroulement d'un cycle d'oxydation, puis réduction sur une masse active.
Le cycle d'oxydoréduction de la masse active oxydoréductrice comprend une phase d'injection du gaz combustible. Au cours de cette phase, le gaz combustible entre en contact avec la masse active oxydoréductrice qui est dans un état partiellement oxydé. L'oxygène capté par cette masse est transféré au gaz qui s'oxyde en dégageant des oxydes de carbone et de l'eau.
Les dispositifs, selon le document FR-2,846,710, ou FR-04/08.549, cités ici en référence, comportent un ensemble de modules réactionnels, chaque module comportant un matériau actif travaillant en fonction du temps successivement en phase d'oxydation, de balayage et de réduction par mise en contact respectivement avec un gaz d'oxydation, de balayage ou de réduction. La mise en contact avec la masse active est réalisée, soit au moyen d'un système d'alimentation propre à chaque module et apte à recevoir en fonction du temps un gaz d'oxydation, de balayage ou de réduction, soit au moyen d'un ensemble rotatif par rapport à un ensemble de distribution.
Au début de la phase d'injection de combustible, la réaction d'oxydation du gaz (et donc la réduction de la masse oxydoréductrice) se localise principalement près de l'entrée du module, par exemple sous forme d'un monolithe. Avec le temps cette oxydoréduction se déplace vers l'aval du module puisque la masse oxydo-réductrice en amont a été réduite et qu'elle ne contient donc plus l'oxygène nécessaire à la combustion.
La demanderesse a constaté un problème relatif aux gaz combustibles imbrûlés. Plus la réaction s'effectue en aval du monolithe, plus grande est la proportion de gaz combustible qui peut traverser le monolithe sans avoir eu le temps d'entrer en contact avec la masse oxydo-réductrice, ce qui augmente le volume de gaz imbrûlés. Une simulation a été effectuée en considérant un canal cylindrique de 1 mètre de long, de diamètre interne 2 mm, recouvert d'une masse active (washcoat) de 50 μm d'épaisseur. Dans cette simulation d'un cycle d'oxydoréduction, les gaz sont injectés à environ 500°C, sous 30 bars de pression. Le cycle standard considéré comprend les durées d'injection successives suivantes: 3 s d'air - 0,5 s de vapeur d'eau — 1,5 s de méthane — 0,5 s de vapeur d'eau. Les vitesses d'injection respectives d'air, de vapeur d'eau, et de méthane sont: 20 m/s, 5 m/s, 1 m/s. La vapeur d'eau est introduite pour nettoyer le canal du comburant ou du carburant avant l'introduction suivante du carburant ou du comburant. Sur la figure 1, la courbe 1 présente le débit de gaz combustible injecté et la courbe 2 la quantité de gaz imbrûlés (en mol/s en ordonnée), en fonction du temps (en abscisse), pour un canal. On remarque que, durant la phase d'oxydation du gaz (entre les temps 14,5 et 16 s) une première quantité d'imbrûlés apparaît en sortie de canal (courbe 2). Ensuite, une "bouffée" de gaz imbrûlés est produite entre 16 s et 16,5 s illustrée par le pic 3.
Cette "bouffée" est très dommageable pour le rendement du procédé car on a une quantité d'imbrûlés importante. De plus, elle apparaît concomitamment avec une bouffé similaire de di oxyde de carbone. Or, selon le procédé, ce débit de CO2 doit être dirigé vers le dispositif de captation du CO2 et non pas vers la turbine à gaz. Il en va donc de même pour cette "bouffée" de gaz combustible (les imbrûlés). La conséquence est que l'on est contraint d'envoyer dans le fluide gazeux servant à la capture du CO2 une quantité non négligeable de gaz imbrûlé. Or, ce gaz ne peut pas être brûlé par la suite puisque le fluide gazeux sélectionné pour la captation du CO2 ne contient pas d'oxygène.
Ainsi, le rendement de la réaction chute, et on complique la captation et la séparation du CO2.
Selon la présente invention, il est proposé une méthode, ou un procédé, qui réduit d'environ 25% la quantité d'imbrûlés présents dans ladite "bouffée" de gaz imbrûlés (pic 3 de la figure 1). Pour cela, on introduit entre la fin de la phase d'injection du gaz combustible et la phase suivante de balayage par de la vapeur d'eau, une courte période pendant laquelle rien n'est injecté. Le gaz combustible prisonnier dans le canal a alors le temps de s'oxyder sur la masse oxydoréductrice, réduisant ainsi la quantité de gaz imbrûlés. La figure 2 illustre le nouveau cycle du procédé selon l'invention. La courbe 1, représente de la même façon le débit d'injection du combustible dans un cycle et des conditions identiques au cycle standard, sauf l'incorporation d'un arrêt d'injection de durée 0,5 s après l'injection du combustible et avant l'injection de la vapeur d'eau de balayage. Cette pause est référencée 4 sur la figure 2. Avec ce nouveau cycle, la courbe 2' représente le débit d'imbrûlés pendant la combustion, suivi par le pic 3' correspondant à la "bouffée" de gaz imbrûlés.
Résultats numériques
Les simulations numériques du procédé montre l'efficacité de la solution proposée. Le tableau 1 synthétise les résultats correspondants au cycle selon l'invention, illustré par la figure 2.
Figure imgf000009_0001
Tableau 1 : synthèse des résultats numériques
La dernière ligne du tableau donne la quantité totale d'imbrûlés pour un cycle, c'est-à-dire l'intégrale sous les courbes 2+3, et 2'+3'. On constate que le cycle selon l'invention apporte une réduction globale des gaz imbrûlés de 21% par cycle. Le but de l'invention étant cependant d'agir sur le volume de ladite "bouffée", on comprendra mieux l'apport de cette invention en comparant son volume, selon l'invention ou selon le cas standard. Cette comparaison est proposée à la deuxième ligne du tableau. Il apparaît que l'invention réduit le volume d'imbrûlés de la bouffée de 26%.
On remarquera aussi que cette meilleure combustion apporte une plus large utilisation de la masse oxydo-réductrice qui se traduit par une diminution complémentaire de 15% sur le volume d'imbrûlés apparu durant la phase d'injection du gaz combustible (première ligne du tableau).
La présente invention s'applique avantageusement aux dispositifs décrits dans les documents FR-2,846,710, ou FR-04/08.549.

Claims

REVENDICATIONS
1) Procédé pour la production d'un gaz chaud par oxydation d'un matériau actif contenu par au moins un module réactionnel travaillant en fonction du temps successivement en phases d'oxydation, de balayage et de réduction par mise en contact par la circulation successive respectivement d'un gaz d'oxydation, de balayage ou de réduction, caractérisé en ce que les phases de mise en contact par circulation du gaz d'oxydation et de balayage sont séparées par un arrêt de circulation de durée déterminée du gaz d'oxydation avant la mise en circulation du gaz de balayage.
2) Procédé selon la revendication 1, dans lequel ladite durée est déterminée de manière à augmenter le temps de mise en contact du gaz d'oxydation sur le matériau actif.
3) Procédé selon l'une des revendications 1 ou 2, dans lequel la vitesse de circulation du gaz de balayage est supérieure à la vitesse de circulation du gaz d'oxydation.
PCT/FR2006/002194 2005-09-29 2006-09-28 Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage WO2007036636A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06820142A EP1934520A2 (fr) 2005-09-29 2006-09-28 Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage
JP2008532824A JP2009509904A (ja) 2005-09-29 2006-09-28 掃気前遅延を含む酸化による高温ガスの製造方法
US12/088,437 US20090017405A1 (en) 2005-09-29 2006-09-28 Method for Producing a Hot Gas By Oxidation Comprising a Delay Prior to Scavenging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509969 2005-09-29
FR0509969A FR2891312B1 (fr) 2005-09-29 2005-09-29 Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage

Publications (2)

Publication Number Publication Date
WO2007036636A2 true WO2007036636A2 (fr) 2007-04-05
WO2007036636A3 WO2007036636A3 (fr) 2007-05-24

Family

ID=36617181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002194 WO2007036636A2 (fr) 2005-09-29 2006-09-28 Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage

Country Status (5)

Country Link
US (1) US20090017405A1 (fr)
EP (1) EP1934520A2 (fr)
JP (1) JP2009509904A (fr)
FR (1) FR2891312B1 (fr)
WO (1) WO2007036636A2 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291686B1 (en) * 1997-10-01 2001-09-18 Imperial Chemical Industries Plc Exothermic process
US6475454B1 (en) * 1999-01-14 2002-11-05 Ge Energy & Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
FR2846710A1 (fr) * 2002-11-06 2004-05-07 Inst Francais Du Petrole Dispositif et procede pour la production d'un gaz chaud par oxydation d'un materiau actif

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1317722B1 (it) * 2000-01-13 2003-07-15 Snam Progetti Procedimento per la produzione di gas di sintesi.
CA2340822C (fr) * 2000-03-17 2010-08-03 Snamprogetti S.P.A. Procede de production d'hydrogene
ITMI20040555A1 (it) * 2004-03-23 2004-06-23 Eni Spa Procedimento per la produzione di idrogeno e la co-produzione di anidride carbonica

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291686B1 (en) * 1997-10-01 2001-09-18 Imperial Chemical Industries Plc Exothermic process
US6475454B1 (en) * 1999-01-14 2002-11-05 Ge Energy & Environmental Research Corporation Thermally limited selective oxidation methods and apparatus
FR2846710A1 (fr) * 2002-11-06 2004-05-07 Inst Francais Du Petrole Dispositif et procede pour la production d'un gaz chaud par oxydation d'un materiau actif

Also Published As

Publication number Publication date
FR2891312A1 (fr) 2007-03-30
US20090017405A1 (en) 2009-01-15
EP1934520A2 (fr) 2008-06-25
WO2007036636A3 (fr) 2007-05-24
JP2009509904A (ja) 2009-03-12
FR2891312B1 (fr) 2010-12-17

Similar Documents

Publication Publication Date Title
EP2231826B1 (fr) Procede et chaine de traitement pour la conversion thermochimique par gazeification d'une charge humide de materiau biologique
FR2931204A1 (fr) Reduction catalytique trifonctionnelle a sec des nox d'une turbine a gaz
EP2802638B1 (fr) Procédé integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
EP2417344A1 (fr) Moteur a combustion interne et procédé de fonctionnement associé a un tel moteur
WO2004083729A2 (fr) Procede et dispositif de cogeneration par turbine a gaz avec chambre de postcombustion
FR2965816A1 (fr) Dispositif pour la transformation d'un combustible
FR2827591A1 (fr) Procede et dispositif de production d'un gaz riche en hydrogene par pyrolyse thermique d'hydrocarbures
BE1009707A6 (fr) Systeme energetique thermique a turbine a gaz avec oxydation partielle catalytique de combustible.
FR2924623A1 (fr) Procede de reduction catalytique selective d'oxydes d'azote dans des fumees de combustion et installation pour sa mise en oeuvre
FR2910489A1 (fr) Procede de production d'un gaz de synthese purifie a partir de biomasse incluant une etape de purification en amont de l'oxydation partielle
FR2966906A1 (fr) Generateur de vapeur a recuperation de chaleur
FR2966905A1 (fr) Generateur de vapeur a recuperation de chaleur avec reduction de nox
FR2816037A1 (fr) Bruleur et procede d'oxydation partielle d'un flux de gaz comprenant du sulfure d'hydrogene et le l'ammoniac
EP1934520A2 (fr) Procede pour la production d'un gaz chaud par oxydation comprenant un delai avant balayage
EP2223888B1 (fr) Procédé de production d'hydrogène avec captation totale du CO2, et réduction du méthane non converti
FR2960943A1 (fr) Procede integre d'oxycombustion et de production d'oxygene par boucle chimique
CA2971982C (fr) Reduction thermique de soufre
EP3610196B1 (fr) Procédé et installation de production d'électricité à partir d'une charge de combustible solide de récupération
EP2371444A1 (fr) Procédé et installation d'épuration de fumées contenant des polluants acides
FR3012578A1 (fr) Procede et installation de valorisation energetique de dechets
CA2861050A1 (fr) Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique
FR3047300A1 (fr) Procede de gazeification et dispositifs permettant de le mettre en oeuvre
BE781613A (fr) Procede et dispositif de fabrication de gaz reducteurs chauds.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006820142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008532824

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006820142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088437

Country of ref document: US