WO2007036556A1 - Anordnung zur bestimmung eines absoluten neigungswinkels gegenüber der horizontalen - Google Patents

Anordnung zur bestimmung eines absoluten neigungswinkels gegenüber der horizontalen Download PDF

Info

Publication number
WO2007036556A1
WO2007036556A1 PCT/EP2006/066853 EP2006066853W WO2007036556A1 WO 2007036556 A1 WO2007036556 A1 WO 2007036556A1 EP 2006066853 W EP2006066853 W EP 2006066853W WO 2007036556 A1 WO2007036556 A1 WO 2007036556A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
angle
sensor element
arrangement
horizontal
Prior art date
Application number
PCT/EP2006/066853
Other languages
English (en)
French (fr)
Inventor
Thomas Brandmeier
Christian Lauerer
Michael Feser
Jens Paggel
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to JP2008532785A priority Critical patent/JP2009510424A/ja
Priority to US12/088,291 priority patent/US20090025998A1/en
Priority to EP06806875A priority patent/EP1929241A1/de
Publication of WO2007036556A1 publication Critical patent/WO2007036556A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/0133Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by integrating the amplitude of the input signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/05Attitude
    • B60G2400/051Angle
    • B60G2400/0511Roll angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/019Inclination due to load distribution or road gradient
    • B60G2800/0194Inclination due to load distribution or road gradient transversal with regard to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0018Roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01306Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01327Angular velocity or angular acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road

Definitions

  • the invention relates to an arrangement for determining an absolute angle of inclination relative to the horizontal with at least one sensor element having a main axis of sensitivity, wherein the at least one sensor element is arranged such that its main axis of sensitivity is in the plane defined by the angle of inclination to be detected (inclination plane) and at least one sensor element generates a sensor signal as a function of the angle of inclination relative to the horizontal.
  • the detection of the absolute inclination angle is for example for the reliable detection of a rollover of a motor vehicle of great importance.
  • the fundamental problem in detecting a vehicle smash - next to the long time scale on which the event occurs - is the angle of the vehicle relative to the horizontal.
  • This angle which is also referred to as the vehicle or roll angle, has hitherto been determined by integration over a measured angular velocity (so-called roll rate or yaw rate) over the vehicle's longitudinal axis (so-called roll axis).
  • the precision of the result for this integration is determined by two unknowns: the start value of the integral and the sensor zero point of a rotation rate sensor used to determine the rotation rate. To make matters worse, in practice that all real rotation rate sensors have a zero point drift.
  • the zero-point drift of the sensor is usually determined by a very slow low-pass filter. This is based on the assumption that the motor vehicle is normal
  • FIG. 1 shows the roll rate necessary for the rollover of a motor vehicle as a function of the bank angle and thus of the vehicle angle relative to the horizontal.
  • DE 44 36 379 A1 discloses a sensor arrangement for detecting a specific angle of inclination.
  • the sensor arrangement consists of at least two sensor elements, these being arranged such that their main sensitivity axes lie in the plane defined by the tilt angles to be detected and form an angle with respect to a reference plane of the arrangement corresponding to the tilt angles to be detected.
  • the sensor elements each generate a sensor signal as a function of the angle of inclination of the reference plane relative to the horizontal direction.
  • the sensor elements are arranged with their Haupt restkeitsachse at an angle to the horizontal, which corresponds to the tilt angle of, for example, integrated in a vehicle arrangement. This means that the main axis of sensitivity of a sensor element lies exactly level when the vehicle is in the right or left tilt position. Due to the principle of the structure of the sensor elements, a sensor signal is emitted exactly when the vehicle has reached this tilting position.
  • the sensor arrangement described in DE 44 36 379 A1 is thus able to detect an absolute angle of the vehicle relative to the horizontal, the detection is restricted to a single angle, which is determined by the arrangement of the main sensitivity axes of the sensor elements.
  • An inventive arrangement for determining an absolute inclination angle which is also referred to below as the absolute angle, has at least one sensor element which has a main axis of sensitivity.
  • the at least one sensor element is arranged such that its main sensitivity axis lies in the plane defined by the inclination angle to be detected (inclination plane) and the at least one sensor element generates a sensor signal as a function of the inclination angle relative to the horizontal.
  • the sensor signal provided by the sensor element is a measured acceleration of the device.
  • a device for determining an acceleration component of the measured acceleration and a processing unit to which the measured acceleration and the acceleration component can be supplied in order to determine an acceleration adjusted by the acceleration component, from which the absolute angle of inclination of the arrangement relative to the horizontal can be determined is.
  • the invention is used inter alia in a means of transport, in particular in a motor vehicle in conjunction with an occupant protection system, wherein the absolute angle of inclination is used for the decision whether a protective device of the occupant protection system is triggered and / or the vehicle stabilizing measures are taken.
  • the tilt plane formed or defined by the at least one sensor element is perpendicular to a vehicle longitudinal axis of the vehicle. Accordingly, the tilting axis of the vehicle to be monitored runs parallel to the direction of travel of the vehicle.
  • the arrangement according to the invention makes it possible to determine the actual angle of inclination relative to the horizontal, that is to say independent of the criticality of the angle of inclination with regard to an unstable driving situation or an threatened rollover. It can thus not only a single angle, such as the tilt angle in DE 44 36 379 Al, are recognized, but it is possible at any time of movement, but also during the stoppage of the arrangement, the indication of the angle to the horizontal.
  • the acceleration component is determined in a direction which deviates from a direction of movement of the arrangement.
  • the direction of movement corresponds, for example, to the direction of travel of the vehicle.
  • the acceleration component is a transverse acceleration of the, moved in the direction of movement, arrangement.
  • the lateral acceleration corresponds to that during a dynamic driving situation of the vehicle
  • Vehicle occurring centrifugal acceleration by what proportion of the measured by the at least one sensor device acceleration is adjusted.
  • the measured acceleration is attributed to the proportion of the vertical dynamics and the gravitational acceleration, from which the absolute angle of the arrangement or of the vehicle can be determined with high accuracy.
  • the acceleration component can be determined in different ways, eg measured or calculated.
  • sensory determined measured values can be used in particular in a vehicle elsewhere, as a result of which the realization of the invention is possible in a cost-effective manner without further components.
  • the device for determining the acceleration component is designed to determine these from at least one of the following parameters: the speed of the arrangement; a curve radius on which the arrangement is located; a yaw rate; a steering angle.
  • This information is provided, for example, by an ABS (antilock braking system) and / or an ESP (Electronic Stability Program) sensor system. Wheel speed information and possibly speed information can be used by the ABS sensor system to calculate the lateral acceleration.
  • the ESP sensor can be used to interrogate the yaw angle change and the longitudinal speed and possibly also the steering angle and to calculate the lateral acceleration.
  • the at least one sensor element is arranged with its main sensitivity axis at an angle in the inclination plane to the horizontal, whereby an improved measurement accuracy of the measured acceleration and thus the absolute angle determined therefrom can be achieved.
  • a first sensor element with a first main sensitivity axis and a second sensor element with a second main sensitivity axis are provided.
  • two sensor elements one obtains an intrinsic correction of the sensor drift if it has the same sign for both sensors. In the worst case of an opposite sensor drift, the error is as great as that of the measured value determined with a single sensor.
  • the absolute inclination angle ⁇ of the arrangement with respect to the horizonals according to the formula
  • Ai, m is the acceleration measured by the first sensor element
  • a 2 , m are the acceleration measured by the second sensor element; a y , dyn the acceleration component;
  • a 2 is the adjusted acceleration of the second sensor element; ⁇ is the absolute inclination angle.
  • the vehicle angle ⁇ to the horizontal can be determined by the measured gravitational accelerations Al and A2 of the two sensor elements according to (1), where (1) applies in this general form at rest and straight ahead of the arrangement or the vehicle. In dynamic driving situations the centrifugal acceleration of the vehicle must be considered.
  • the centrifugal acceleration can be determined from the measurement signals described above, for example the ABS or ESP sensor technology.
  • the measured lateral acceleration (Ai, m of the first sensor element and A 2 , m of the second sensor element) can be in a dynamic driving situation (eg fast cornering) around the "dynamic" component
  • the remaining static acceleration (Ai or A 2 ) can be used to calculate the angle, which determines the absolute angle of the vehicle.
  • the first main sensitivity axis of the first sensor element and the second main sensitivity axis of the second sensor element are arranged at an angle of 90 ° to one another.
  • the first main axis of sensitivity of the first sensor element and the second main axis of sensitivity of the second sensor element each occupy an angle of 45 ° to the vertical of the arrangement when the absolute inclination angle to the horizontal is 0 °.
  • the two sensor elements determine - when the vehicle is at rest and in the horizontal - the same measured value. The change in the measured value is linear in the angular variation of the vehicle relative to horizontal.
  • the sensor signal is linear in the measured variable and, on the other hand, two signals are compared in order to determine a parameter. This redundancy increases the accuracy in measuring the acceleration of the vehicle. However, an angle-linear measured value is already available with a sensor element.
  • this therefore also has a further device for tilt angle calculation, which is designed to carry out an integration via a rotation rate determined by a rotation rate sensor. Since dynamic driving limit situations are generally only of short duration and the method of calculating the angle for short time intervals is quite precise, the faulty integration does not represent a disadvantage.
  • the last determined absolute angle is used according to a further preferred embodiment, which is determined as described above. This ensures a higher accuracy in determining the angle compared to conventional methods.
  • a switching device is provided, which determines according to predetermined criteria, whether the inclination angle of the arrangement relative to the horizontal by the further device using rotation rate signals or not to be determined, and the second device is activated accordingly or not.
  • FIG. 2 shows a vehicle in a schematic representation from the rear with a sensor element pair in a position inclined relative to the horizontal;
  • FIG. 3 shows the course of determined vehicle inclinations over time, which contrasts uncompensated inclination angle determination with a reference method
  • FIG. 4a shows a representation of a first vehicle model, according to which a driving dynamics-induced acceleration component a y , d yn can be determined
  • FIG. 5 shows the comparison of time profiles of the acceleration-dynamically induced acceleration component ay, dyn r determined with different vehicle models 6 is a schematic representation of the arrangement according to the invention, which is extended by a further device for tilt angle calculation, which is designed to perform an integration via a rotation rate determined by a rotation rate sensor;
  • FIG. 7 shows the comparison of time profiles of the determined bank angle
  • the sensor elements designed as acceleration sensors have a main sensitivity axis H1 or H2.
  • the tilt plane spanned by the sensor elements or by their main sensitivity axes is perpendicular to a vehicle longitudinal axis (perpendicular to the plane of the page) of the vehicle 1. Accordingly, the tilting axis of the vehicle to be monitored runs parallel to the direction of travel of the vehicle.
  • an acceleration Ai, m or A 2 , m is measured, each of a component a y , d y n in the y-direction (transverse to the direction of travel and parallel to a reference plane 3) and a component of a z, dyn Reassemble the in z-direction (perpendicular to the reference plane 3).
  • the reference plane 3 is inclined relative to a horizontal plane 2 by the inclination angle ⁇ to be determined.
  • the component acting in the direction of travel (x-direction) which is influenced by ascending and descending, can be neglected in the context of the present invention, since its influence is low.
  • the main sensitivity axes Hl, H2 of the two acceleration sensors form an angle of 90 ° to each other.
  • Both acceleration sensors preferably assume an angle Oi, O 2 of 45 ° to the vehicle vertical or to the reference plane 3.
  • both accelerometers measure gravity and inertial acceleration in dynamic driving situations.
  • the measuring range of the acceleration sensors should be chosen such that, taking into account the digitization errors or the possible signal resolution (determined by a signal background noise), the proportion of gravity delivers a sufficiently large signal in the measurement of the acceleration Ai, m or A 2 , m ,
  • the centrifugal acceleration can be e.g. determine measurement signals provided by an ABS or ESP sensor. In addition, other methods can be used.
  • Speeds v VL , V VR , V HL and V HR of the four wheels or their wheel speeds of the vehicle are determined from which the speed v of the vehicle and a driven by this radius of curvature can be determined.
  • the arrangement is typical for an ABS sensor. Using a in the figure as a vehicle model 1 designated and familiar to those skilled algorithm then a y , d y n can be determined.
  • the driving-dynamically induced acceleration component a y , d yn can also, as can be seen from FIG. 4b, be calculated from the vehicle speed v and the yaw rate ⁇ (in the figure above) or the vehicle speed v, the yaw rate ⁇ and the steering angle ⁇ L (in FIG the figure below) are determined.
  • This arrangement is typical for an ESP sensor.
  • the acceleration-dynamically induced acceleration component a y , d yn is known, the measured lateral acceleration (Ai, m of the first sensor element and A 2 , m of the second sensor element) can be reduced by the "dynamic" component in a dynamic driving situation (eg fast cornering) ( equations (2) and (3)) and the remaining static acceleration (Ai or A 2 ) are used for the angle calculation (see equation (I)), whereby the absolute angle ⁇ of the vehicle can be determined.
  • a dynamic driving situation eg fast cornering
  • the measured acceleration is thus attributed to the vertical dynamics and the gravitational acceleration. With this remaining acceleration, the absolute angle ⁇ of the vehicle is determined with high accuracy.
  • the rollout rate of rotation of the vehicle By differentiation can be determined from the absolute angle, the rollout rate of rotation of the vehicle, which in principle a replacement of conventional yaw rate sensors can be created.
  • the dynamic vertical acceleration can be determined by the fact that the gravitational acceleration is constant. If the vehicle is traveling on a gradient (in the x-direction), errors of the order of magnitude (1-cos ⁇ ) occur, where ⁇ represents the inclination angle of the gradient. In most everyday situations, the error is negligible.
  • FIG. 5 shows different time profiles of centrifugal accelerations which were determined with different vehicle models and thus with different input values, as described in conjunction with FIGS. 4a and 4b by way of example.
  • FIG. 7 shows the result of the two different calculation methods on the basis of the chronological progression of the bank angle, wherein a switchover takes place at the time 9 sec.
  • Fig. 8 shows the result of differentiation of the absolute angle compared to a reference sensor.
  • the arrangement according to the invention allows a simple and cost-effective variant for absolute angle detection. There are no more sensor elements needed than are necessary in conventional arrangements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Gyroscopes (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird eine Anordnung zur Bestimmung eines absoluten Neigungswinkels (α) gegenüber der Horizontalen, insbesondere für die Verwendung in einem Kraftfahrzeug (1), vorgeschlagen. Diese weist zumindest ein Sensorelement auf mit einer Hauptempfindlichkeitsachse (H1,H2), wobei das zumindest eine Sensorelement derart angeordnet ist, dass dessen Hauptempfindlichkeitsachse (H1,H2) in der durch die zu detektierenden Neigungswinkel definierten Ebene (Neigungsebene) liegt und das zumindest eine Sensorelement in Abhängigkeit des Neigungswinkels (α) gegenüber der Horizontalen (2) ein Sensorsignal erzeugt. Das von dem Sensorelement gelieferte Sensorsignal ist eine gemessene Beschleunigung (A1,m, A2,m) der Anordnung. Ferner sind eine Einrichtung (14) zum Ermitteln einer Beschleunigungskomponente (ay,dyn) der gemessenen Beschleunigung (A1,m, A2,m) und eine Verarbeitungseinheit (16) vorgesehen, welcher die gemessene Beschleunigung (A1,m, A2,m) und die Beschleunigungskomponente (ay,dyn) zuführbar sind, um eine von der Beschleunigungskomponente bereinigte Beschleunigung (A1, A2) zu ermitteln, aus der der absolute Neigungswinkel (α) der Anordnung gegenüber der Horizontalen bestimmbar ist.

Description

Beschreibung
Anordnung zur Bestimmung eines absoluten Neigungswinkels gegenüber der Horizontalen
Die Erfindung betrifft eine Anordnung zur Bestimmung eines absoluten Neigungswinkels gegenüber der Horizontalen mit zumindest einem Sensorelement, das eine Hauptempfindlichkeitsachse aufweist, wobei das zumindest eine Sensorelement derart angeordnet ist, dass dessen Hauptempfindlichkeitsachse in der durch die zu detektierenden Neigungswinkel definierten Ebene (Neigungsebene) liegt und das zumindest eine Sensorelement in Abhängigkeit des Neigungswinkels gegenüber der Horizontalen ein Sensorsignal erzeugt.
Die Erkennung des absoluten Neigungswinkels ist beispielsweise für die zuverlässige Erkennung eines Überschlags eines Kraftfahrzeugs von großer Bedeutung. Grundsatzliches Problem bei der Erkennung eines Fahrzeuguberschlags - neben der lan- gen Zeitskala, auf der das Ereignis ablauft - ist der Winkel des Fahrzeugs relativ zur Horizontalen.
Dieser auch als Fahrzeug- oder Rollwinkel bezeichnete Winkel wird bislang über die Integration über eine gemessene Winkel- geschwindigkeit (sog. Rollrate oder Drehrate) über die Fahrzeuglangsachse (sog. Rollachse) bestimmt. Die Präzision des Ergebnisses für diese Integration ist von zwei Unbekannten bestimmt: dem Startwert des Integrals und dem Sensor- Nullpunkt eines zur Ermittlung der Drehrate verwendeten Dreh- ratensensors . Erschwerend kommt in der Praxis hinzu, dass alle realen Drehratensensoren eine Nullpunktsdrift aufweisen.
Die Nullpunktsdrift des Sensors wird in der Regel durch einen sehr langsamen Tiefpassfilter ermittelt. Hierbei liegt die Annahme zugrunde, dass sich das Kraftfahrzeug im normalen
Gebrauch nicht permanent in einer Richtung um die Rollachse dreht. Dieses Vorgehen liefert so lange korrekte Ergebnisse wie sich das Kraftfahrzeug in einer „zweidimensionalen Welt" bewegt. Bewegt sich das Kraftfahrzeug jedoch aufgrund von Berg- und Talfahrt bei gleichzeitiger Lenkbewegung im Raum, so erzeugt man bei Verwendung eines einzelnen Drehratensen- sors prinzipbedingt einen Fehler in der Messung des Rollwinkels. Dieser Messfehler lasst sich nur durch Verwendung von drei Drehratensensoren eliminieren, wodurch die Kosten für die Sensoranordnung sehr hoch werden. Auch wenn der Nullpunkt des Drehratensensors gut bekannt ist, verbleibt der Startwert des Integrals als Unbekannte.
Bekannte Losungen des Problems vertrauen darauf, dass das Fahrzeug im normalen Betrieb in der Regel horizontal liegt, weswegen der Fahrzeugwinkel im Mittel über einen längeren Zeitraum, z.B. mehrere Sekunden, gleich null sein sollte. U- berschlagsereignisse finden aber nicht nur im normalen Straßenverkehr statt, sondern auch im Gelände. Bei Gelandefahrt kann nicht davon ausgegangen werden, dass das Fahrzeug im Mittel über den längeren Zeitraum in der Waagrechten liegt. Ein langsamer Tiefpass als Integralruckfuhrung kann deshalb zu Fehleinschatzungen der Situation fuhren, so dass die Aktivierung eines Insassenschutzmittels unter Umstanden nicht o- der zu einem falschen Zeitpunkt erfolgt. Als Beispiel sei eine längere Fahrt mit Querneigung genannt. Bei dieser ist nicht auszuschließen, dass nach hinreichend langer Zeit ein entsprechend großer Querneigungswinkel 'vergessen' wird.
Figur 1 zeigt die zum Überschlag eines Kraftfahrzeugs notwendige Rollrate als Funktion der Querneigung und somit des Fahrzeugwinkels relativ zur Horizontalen. Mit zunehmendem
Fahrzeugwinkel nimmt die für den Überschlag notwendige Rollrate ab. Ist der Fahrzeugwinkel des Fahrzeugs relativ zur Horizontalen unbekannt, kann keine sichere Entscheidung für die Auslosung eines Insassenschutzsystems oder eines Systems zur Stabilisierung des Kraftfahrzeugs getroffen werden. Aus der DE 44 36 379 Al ist eine Sensoranordnung zur Detekti- on eines bestimmten Neigungswinkels bekannt. Die Sensoranordnung besteht aus wenigstens zwei Sensorelementen, wobei diese derart angeordnet sind, dass ihre Hauptempfindlichkeitsachsen in der durch die zu detektierenden Neigungswinkeln definierten Ebene (Neigungsebenen) liegen und jeweils einen Winkel zu einer Bezugsebene der Anordnung bilden, die den zu detektierenden Neigungswinkeln entsprechen. Die Sensorelemente erzeugen jeweils in Abhängigkeit des Neigungswinkels der Bezugs- ebene gegenüber der Horizontalrichtung ein Sensorsignal. Die Sensorelemente sind mit ihrer Hauptempfindlichkeitsachse in einem solchen Winkel zur Horizontalen angeordnet, der dem Kippwinkel der, z.B. in einem Fahrzeug integrierten, Anordnung entspricht. Dies bedeutet, dass die Hauptempfindlich- keitsachse eines Sensorelements genau dann waagerecht liegt, wenn sich das Fahrzeug in der rechten bzw. linken Kipplage befindet. Prinzipbedingt durch den Aufbau der Sensorelemente wird genau dann ein Sensorsignal abgegeben, wenn das Fahrzeug diese Kipplage erreicht hat.
Die in der DE 44 36 379 Al beschriebene Sensoranordnung ist damit zwar in der Lage einen Absolutwinkel der Fahrzeugs gegenüber der Horizontalen zu erkennen, allerdings ist die Erkennung auf einen einzigen Winkel beschränkt, der durch die Anordnung der Hauptempfindlichkeitsachsen der Sensorelemente festgelegt ist.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Anordnung zur Bestimmung eine absoluten Neigungswinkels gegenüber der Horizontalen anzugeben, welche die oben genannten Nachteile nicht aufweist.
Diese Aufgabe wird durch eine Anordnung zur Bestimmung eines absoluten Neigungswinkels mit den Merkmalen des Patentanspru- ches 1 gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Eine erfindungsgemäße Anordnung zur Bestimmung eines absoluten Neigungswinkels, der nachfolgend auch als Absolutwinkel bezeichnet wird, weist zumindest eine Sensorelement auf, das eine Hauptempfindlichkeitsachse aufweist. Das zumindest eine Sensorelement ist derart angeordnet, dass dessen Hauptempfindlichkeitsachse in der durch die zu detektierenden Neigungswinkel definierten Ebene (Neigungsebene) liegt und das zumindest eine Sensorelement in Abhängigkeit des Neigungswinkels gegenüber der Horizontalen ein Sensorsignal erzeugt. Das von dem Sensorelement gelieferte Sensorsignal ist eine gemessene Beschleunigung der Anordnung. Es sind weiter eine Einrichtung zum Ermitteln einer Beschleunigungskomponente der gemessenen Beschleunigung und eine Verarbeitungseinheit vorgesehen, welcher die gemessene Beschleunigung und die Be- schleunigungskomponente zuführbar sind, um eine von der Beschleunigungskomponente bereinigte Beschleunigung zu ermitteln, aus der der absolute Neigungswinkel der Anordnung gegenüber der Horizontalen bestimmbar ist.
Die Erfindung findet unter anderem Verwendung in einem Verkehrsmittel, insbesondere in einem Kraftfahrzeug in Verbindung mit einem Insassenschutzsystem, wobei der absolute Neigungswinkel für die Entscheidung herangezogen wird, ob eine Schutzeinrichtung des Insassenschutzsystems ausgelöst wird und/oder das Kraftfahrzeug stabilisierende Maßnahmen getroffen werden.
Die durch das zumindest eine Sensorelement aufgespannte bzw. definierte Neigungsebene steht senkrecht zu einer Fahrzeug- längsachse des Fahrzeugs. Demnach verläuft die zu überwachende Kippachse des Fahrzeugs parallel zur Fahrtrichtung des Fahrzeugs .
Durch die erfindungsgemäße Anordnung wird eine Bestimmung des tatsächlichen Neigungswinkels gegenüber der Horizontalen ermöglicht, d.h. unabhängig von der Kritikalität des Neigungswinkels hinsichtlich einer instabilen Fahrsituation oder ei- nes drohenden Überschlags. Es kann somit nicht nur ein einziger Winkel, wie z.B. der Kippwinkel in der DE 44 36 379 Al, erkannt werden, sondern es ist zu jedem Zeitpunkt der Bewegung, aber auch wahrend des Stillstands der Anordnung, die Angabe des Winkels gegenüber der Horizontalen möglich.
Gemäß einer bevorzugten Ausfuhrungsform wird die Beschleunigungskomponente in einer Richtung ermittelt, die von einer Bewegungsrichtung der Anordnung abweicht. Die Bewegungsrich- tung entspricht z.B. der Fahrtrichtung des Fahrzeugs.
Gemäß einer weiteren bevorzugten Ausfuhrungsform ist die Beschleunigungskomponente eine Querbeschleunigung der, in der Bewegungsrichtung bewegten, Anordnung. Die Querbeschleunigung entspricht der wahrend einer dynamischen Fahrsituation des
Fahrzeugs auftretenden Zentrifugalbeschleunigung, um welchen Anteil die durch die zumindest eine Sensorvorrichtung gemessene Beschleunigung bereinigt wird. Die gemessene Beschleunigung wird auf den Anteil der vertikalen Dynamik und die Schwerebeschleunigung zurückgeführt, aus denen sich mit hoher Genauigkeit der Absolutwinkel der Anordnung bzw. des Fahrzeugs bestimmen lasst.
Die Beschleunigungskomponente kann auf unterschiedliche Weise ermittelt, z.B. gemessen oder errechnet, werden. Dabei können insbesondere in einem Fahrzeug an anderer Stelle bereits sensorisch ermittelte Messwerte verwendet werden, wodurch die Realisierung der Erfindung ohne weitere Komponenten auf kostengünstige Weise möglich ist. Dazu ist die Einrichtung zum Ermitteln der Beschleunigungskomponente gemäß einer weiteren bevorzugten Ausfuhrungsform dazu ausgebildet, diese aus zumindest einem der folgenden Parameter zu ermitteln: der Geschwindigkeit der Anordnung; einem Kurvenradius, auf dem sich die Anordnung befindet; - einer Gierrate; einem Lenkwinkel. Diese Informationen werden beispielsweise von einer ABS (An- tiblockiersystem) - und/oder einer ESP (Elektronisches Stabilitätsprogramm) -Sensorik bereitgestellt. Von der ABS-Sensorik können Raddrehzahlinformationen und gegebenenfalls Geschwin- digkeitsinformationen zur Berechnung der Querbeschleunigung herangezogen werden. Von der ESP-Sensorik können Gierwinkeländerung und Längsgeschwindigkeit und zusätzlich eventuell der Lenkwinkel abgefragt und zur Berechnung der Querbeschleunigung herangezogen werden.
Gemäß einer weiteren bevorzugten Ausführungsform ist das zumindest eine Sensorelement mit seiner Hauptempfindlichkeitsachse in einem Winkel in der Neigungsebene zu der Horizontalen angeordnet, wodurch eine verbesserte Messgenauigkeit der gemessenen Beschleunigung und damit des daraus ermittelten Absolutwinkels erzielbar ist.
Gemäß einer weiteren bevorzugten Ausführungsform sind ein erstes Sensorelement mit einer ersten Hauptempfindlichkeits- achse und ein zweites Sensorelement mit einer zweiten Hauptempfindlichkeitsachse vorgesehen. Mit zwei Sensorelementen erhält man eine intrinsische Korrektur der Sensordrift, wenn diese das gleiche Vorzeichen für beide Sensoren besitzt. Im ungünstigsten Fall einer entgegen gesetzten Sensordrift ist der Fehler so groß wie der des mit einem Einzelsensor ermittelten Messwertes.
Gemäß einer weiteren bevorzugten Ausführungsform wird der absolute Neigungswinkel α der Anordnung gegenüber der Horizon- talen nach der Formel
CC _ 4 -A :D
A + A2
berechnet , wobei
1
A = A,m (2: 1
A - A,m + " TTlf ' ay,dyn ( 3 )
und
Ai , m die von dem ersten Sensorelement gemessene Beschleunigung;
A2 , m die von dem zweiten Sensorelement gemessene Beschleunigung; ay, dyn die Beschleunigungskomponente;
AAii die bereinigte Beschleunigung des ersten Sensorelements;
A2 die bereinigte Beschleunigung des zweiten Sensorelements; α der absolute Neigungswinkel ist.
Der Fahrzeugwinkel α zur Horizontalen lässt sich durch die gemessen Schwerebeschleunigungen Al und A2 der zwei Sensorelemente gemäß (1) ermitteln, wobei (1) in dieser allgemeinen Form in Ruhe und in Geradeausfahrt der Anordnung bzw. des Fahrzeugs gilt. In dynamischen Fahrsituationen muss die Zentrifugalbeschleunigung des Fahrzeugs berücksichtigt werden. Die Zentrifugalbeschleunigung lässt sich aus den weiter oben beschriebenen Messsignalen, z.B. der ABS- oder ESP-Sensorik, ermitteln. Ist die fahrdynamisch hervorgerufene Beschleuni- gungskomponente ay,dyn bekannt, kann die gemessene Querbeschleunigung (Ai,m des ersten Sensorelements und A2,m des zweiten Sensorelements) in einer dynamischen Fahrsituation (z.B. schnelle Kurvenfahrt) um die „dynamische" Komponente reduziert werden und die verbleibende statische Beschleunigung (Ai bzw. A2) zur Winkelberechnung verwendet werden. Hierdurch ist der Absolutwinkel des Fahrzeugs bestimmbar.
Gemäß einer weiteren bevorzugten Ausführungsform sind die erste Hauptempfindlichkeitsachse des ersten Sensorelements und die zweite Hauptempfindlichkeitsachse des zweiten Sensorelements in einem Winkel von 90° zueinander angeordnet. Wei- ter bevorzugt nehmen die erste Hauptempfindlichkeitsachse des ersten Sensorelements und die zweite Hauptempfindlichkeitsachse des zweiten Sensorelements jeweils einen Winkel von 45° zur Senkrechten der Anordnung ein, wenn der absolute Nei- gungswinkel zur Horizontalen 0° ist. Die beiden Sensorelemente ermitteln - wenn sich das Fahrzeug in Ruhe und in der waagerechten befindet - den gleichen Messwert. Die Änderung des Messwertes ist linear in der Winkelvariation des Fahrzeugs relativ zu horizontalen. Damit erreicht man zwei Vorteile: Zum einen ist das Sensorsignal linear in der Messgroße und zum anderen werden zwei Signale verglichen, um einen Parameter zu ermitteln. Diese Redundanz erhöht die Genauigkeit in der Messung der Beschleunigung des Fahrzeugs. Ein im Winkel linearer Messwert ist allerdings auch schon mit einem Sensor- element verfugbar.
In fahrdynamischen Grenzsituationen müssen diese als solche erkannt werden, in welcher die erfindungsgemaße Vorgehensweise an ihre Grenzen stoßt. Die Absolutwinkelberechnung muss gegebenenfalls verworfen werden und eine konventionelle Winkelberechnung über die Drehrate durchgeführt werden. Gemäß einer weiteren bevorzugten Ausfuhrungsform weist diese deshalb ferner eine weitere Einrichtung zur Neigungswinkelberechnung auf, welche dazu ausgebildet ist, eine Integration über eine von einem Drehratensensor ermittelte Drehrate vorzunehmen. Da fahrdynamische Grenzsituationen in der Regel nur von kurzer Dauer sind und das Verfahren der Winkelberechnung für kurze Zeitintervalle recht präzise ist, stellt die feh- leranfallige Integration keinen Nachteil dar.
Als Startwert für die Integration der Drehrate wird gemäß einer weiteren bevorzugten Ausfuhrungsform der letzte ermittelte Absolutwinkel herangezogen, der wie oben beschrieben ermittelt wird. Hierdurch ist eine gegenüber herkömmlichen Ver- fahren höhere Genauigkeit in der Winkelbestimmung sicher gestellt. Gemäß einer weiteren bevorzugten Ausfuhrungsform ist eine Umschalteinrichtung vorgesehen, welche nach vorbestimmten Kriterien festlegt, ob der Neigungswinkel der Anordnung gegenüber der Horizontalen durch die weitere Einrichtung unter Verwendung von Drehratensignalen oder nicht ermittelt werden soll, und die zweite Einrichtung entsprechend aktiviert oder nicht .
Die Erfindung wird im Weiteren anhand der in den Zeichnungen angegebenen Ausfuhrungsbeispiele naher erläutert. Es zeigen:
Fig. 1 die zum Überschlag eines Fahrzeugs notwendige Rollrate als Funktion des Fahrzeugwinkels relativ zur Horizontalen;
Fig. 2 ein Fahrzeug in schematischer Darstellung von hinten mit einem Sensorelementpaar in einer gegenüber der Horizontalen geneigten Lage;
Fig. 3 den Verlauf von ermittelten Querneigungen des Fahrzeugs über die Zeit, das eine unkompensierte Neigungswinkelbestimmung einem Referenzverfahren gegenüber stellt;
Fig. 4a eine Darstellung eines ersten Fahrzeugmodells, nach dem eine fahrdynamisch hervorgerufene Beschleunigungskomponente ay,dyn ermittelbar ist;
Fig. 4b eine Darstellung weiterer Fahrzeugmodelle, nach de- nen eine fahrdynamisch hervorgerufene Beschleunigungskomponente ay,dyn ermittelbar ist;
Fig. 5 den Vergleich von zeitlichen Verlaufen der mit verschiedenen Fahrzeugmodellen ermittelten fahrdyna- misch hervorgerufenen Beschleunigungskomponente äy, dyn r Fig. 6 eine schematische Darstellung der erfindungsgemäßen Anordnung, welche um eine weitere Einrichtung zur Neigungswinkelberechnung erweitert ist, welche dazu ausgebildet ist, eine Integration über eine von ei- nem Drehratensensor ermittelte Drehrate vorzunehmen;
Fig. 7 den Vergleich von zeitlichen Verläufen der ermittelten Querneigung;
Fig. 8 den Vergleich von zeitlichen Verläufen der ermittelten Rollrate, die ein Referenzverfahren mit dem erfindungsgemäßen Vorgehen gegenüberstellt.
Anhand der Fig. 2, in der ein Fahrzeug 1 in schematischer Darstellung von hinten mit einem (in der Figur nicht näher dargestellten) Sensorelementpaar in einer gegenüber der Horizontalen um den Winkel α geneigten Lage dargestellt ist, wird die erfindungsgemäße Ermittlung des tatsächlichen Neigungs- winkeis α am besten deutlich.
Die als Beschleunigungssensoren ausgebildeten Sensorelemente weisen eine Hauptempfindlichkeitsachse Hl bzw. H2 auf. Die durch die Sensorelemente bzw. durch deren Hauptempfindlich- keitsachsen aufgespannte Neigungsebene steht senkrecht zu einer Fahrzeuglängsachse (senkrecht zur Blattebene) des Fahrzeugs 1. Demnach verläuft die zu überwachende Kippachse des Fahrzeugs parallel zur Fahrtrichtung des Fahrzeugs.
In den Hauptempfindlichkeitsachsen Hl bzw. H2 wird jeweils eine Beschleunigung Ai,m bzw. A2,m gemessen, die sich jeweils aus einer Komponente ay,dyn in y-Richtung (quer zur Fahrtrichtung und parallel zu einer Bezugsebene 3) und einer Komponente az,dyn in z-Richtung (senkrecht zur Bezugsebene 3) zusam- mensetzen. Die Bezugsebene 3 ist gegenüber einer Horizontalebene 2 um den zu ermittelnden Neigungswinkel α geneigt. Die in Fahrtrichtung (x-Richtung) wirkende Komponente, die durch Berg- und Talfahrt beeinflusst wird, kann im Rahmen der vorliegenden Erfindung vernachlässigt werden, da deren Ein- fluss gering ist.
Die Hauptempfindlichkeitsachsen Hl, H2 der zwei Beschleunigungssensoren bilden einen Winkel von 90° zu einander. Beide Beschleunigungssensoren nehmen vorzugsweise einen Winkel Oi, O2 von 45° zur Fahrzeugsenkrechten bzw. zur Bezugsebene 3 ein. Damit messen beiden Beschleunigungssensoren die Schwerkraft und eine Trägheitsbeschleunigung in dynamischen Fahrsituationen .
Abweichend von der hier dargestellten und beschriebenen An- Ordnung der Beschleunigungssensoren, können auch andere Winkel gewählt werden. Darüber hinaus ist die Bestimmung des Neigungswinkels α auch mit nur einem Sensorelement möglich.
Der Messbereich der Beschleunigungssensoren ist so zu wählen, dass, unter Berücksichtigung der Digitalisierungsfehler bzw. der möglichen Signalauflösung (bestimmt durch ein Signalgrundrauschen) , der Anteil der Schwerkraft ein ausreichend großes Signal bei der Messung der Beschleunigung Ai,m bzw. A2,m liefert .
Um den Winkel α ermitteln zu können, ist die Ermittlung der auf das Fahrzeug wirkenden Zentrifugalbeschleunigung erforderlich, die durch eine fahrdynamische Situation hervorgerufen ist. Die Zentrifugalbeschleunigung lässt sich z.B. von einer ABS- oder einer ESP-Sensorik zur Verfügung gestellten Messsignalen ermitteln. Daneben können auch andere Verfahren verwendet werden.
Die fahrdynamisch hervorgerufene Beschleunigungskomponente ay,dyn kann, wie dies aus Figur 4a ersichtlich ist, aus den
Geschwindigkeiten vVL, vVR, VHL und VHR der vier Räder bzw. deren Raddrehzahlen des Fahrzeugs ermittelt werden, aus denen die Geschwindigkeit v des Fahrzeugs und ein von diesem gefahrener Kurvenradius ermittelbar sind. Die Anordnung ist für eine ABS-Sensorik typisch. Unter Anwendung eines in der Figur als Fahrzeugmodell 1 bezeichneten und dem Fachmann geläufigen Algorithmus kann dann ay,dyn ermittelt werden.
Die fahrdynamisch hervorgerufene Beschleunigungskomponente ay,dyn kann auch, wie dies aus Figur 4b ersichtlich ist, aus der Fahrzeuggeschwindigkeit v und der Gierate ψ (in der Figur oben) bzw. der Fahrzeuggeschwindigkeit v, der Gierate ψ und dem Lenkwinkel δL (in der Figur unten) ermittelt werden. Diese Anordnung ist für eine ESP-Sensorik typisch. Unter Anwendung eines in der Figur als Fahrzeugmodell 2 bzw. 3 bezeichneten und dem Fachmann geläufigen Algorithmus kann dann eben- falls ay,dyn ermittelt werden.
Ist die fahrdynamisch hervorgerufene Beschleunigungskomponente ay,dyn bekannt, kann die gemessene Querbeschleunigung (Ai,m des ersten Sensorelements und A2,m des zweiten Sensorelements) in einer dynamischen Fahrsituation (z.B. schnelle Kurvenfahrt) um die „dynamische" Komponente reduziert werden (vgl. Gleichungen (2) und (3)) und die verbleibende statische Beschleunigung (Ai bzw. A2) zur Winkelberechnung (vgl. Gleichung (I)) verwendet werden. Hierdurch ist der Absolutwinkel α des Fahrzeugs bestimmbar.
Die gemessene Beschleunigung wird somit auf die vertikale Dynamik und die Schwerebeschleunigung zurückgeführt. Mit dieser verbleibenden Beschleunigung wird mit hoher Genauigkeit der Absolutwinkel α des Fahrzeugs bestimmt.
Durch Differentiation kann aus dem Absolutwinkel die Rolloder Drehrate des Fahrzeugs bestimmt werden, wodurch prinzipiell ein Ersatz herkömmlicher Drehratensensoren geschaffen werden kann. Die dynamische Vertikalbeschleunigung kann mittels der Tatsache, dass die Schwerebeschleunigung konstant ist, bestimmt werden. Fährt das Fahrzeug an einer Steigung (in x-Richtung) kommt es zu Fehlern in der Größenordnung (1-cosΦ), wobei Φ den Neigungswinkel der Steigung darstellt. In den meisten Alltagssi- tuationen ist der Fehler vernachlässigbar.
Welchen Einfluss die Bereinigung der gemessenen Beschleunigung um die Querbeschleunigung hat, ist anhand der Fig. 3 erkennbar, in der der zeitliche Verlauf der Querneigung einer Referenzmessung, welche mit einem Sensor vorgenommen wurde, und einer Ermittlung nach Erfindung (als V2g-Verfahren bezeichnet) gegenübergestellt sind, wobei eine Kompensation um ay,dyn nicht erfolgte.
In Fig. 5 sind verschiedene zeitliche Verläufe von Zentrifugalbeschleunigungen dargestellt, die mit unterschiedlichen Fahrzeugmodellen und damit mit unterschiedlichen Eingangswerten, wie in Verbindung mit Fig. 4a und 4b exemplarische beschreiben, ermittelt wurden.
In fahrdynamischen Grenzsituationen müssen diese als solche erkannt werden, in welcher die erfindungsgemäße Vorgehensweise an ihre Grenzen stößt. Die Absolutwinkelberechnung über die gemessene Beschleunigung 10, die Ermittlung der Fahrdyna- mik Informationen 12 und die Anwendung eines Fahrzeugmodells zur Berechnung von ay,dyn zur Neigungsberechnung 16 wird in einer solchen Grenzsituation verworfen und es wird eine konventionelle Winkelberechnung über eine sensorisch ermittelte Drehrate 20 und eine Integration 22 durchgeführt (Fig. 6) . Die Steuerung, wann das eine oder das andere Verfahren angewandt wird, erfolgt über eine Umschaltlogik 18. Kriterien für eine Umschaltung könnten eines oder mehrere der folgenden Kriterien sein: Raddrehzahlen der Räder, Driftwinkel des Fahrzeugs, Querbeschleunigung (Zentrifugalbeschleunigung) Lenkwinkel usw. Startwert für die Integration des Winkels ist der letzte Absolutwinkel, der durch 16 errechnet wurde. Da fahrdynamische Grenzsituationen in der Regel nur von kurzer Dauer sind und das Verfahren der Winkelberechnung für kurze Zeitintervalle recht präzise ist, stellt die fehleranfällige Integration keinen Nachteil dar.
Fig. 7 zeigt anhand des zeitlichen Verlaufs der Querneigung das Ergebnis der beiden unterschiedlichen Berechnungsmethoden, wobei zum Zeitpunkt 9 sec eine Umschaltung erfolgt. Wie gut zu erkennen ist, führt die Absolutwinkelerkennung in Grenzsituationen durch 16 zu unbrauchbaren Ergebnissen.
Die hohe Präzision der Absolutwinkelerkennung ermöglicht es, den ermittelten Absolutwinkel zur Bestimmung der Rollrate heranzuziehen. Fig. 8 zeigt das Resultat der Differentiation des Absolutwinkels im Vergleich zu einem Referenzsensor.
Die erfindungsgemäße Anordnung erlaubt eine einfache und kostengünstige Variante zur Absolutwinkelerkennung. Es werden nicht mehr Sensorelemente benötigt als in herkömmlichen Anordnungen notwendig sind.
Es besteht die Möglichkeit, den Rollratensensor durch die Kombination aus zwei Beschleunigungssensoren zu ersetzen, wodurch sich auch deutliche Kosteneinsparungen realisieren lassen .

Claims

Patentansprüche
1. Anordnung zur Bestimmung eines absoluten Neigungswinkels (α) gegenüber der Horizontalen, insbesondere für die Verwen- düng in einem Kraftfahrzeug (1), mit zumindest einem Sensorelement, das eine Hauptempfindlichkeitsachse (Hl, H2) aufweist, wobei das zumindest eine Sensorelement derart angeordnet ist, dass dessen Hauptempfindlichkeitsachse (Hl, H2) in der durch die zu detektierenden Neigungswinkel definierten Ebene (Neigungsebene) liegt und das zumindest eine Sensorelement in Abhängigkeit des Neigungswinkels (α) gegenüber der Horizontalen (2) ein Sensorsignal erzeugt, d a d u r c h g e k e n n z e i c h n e t, dass das von dem Sensorelement gelieferte Sensorsignal eine gemessene Beschleunigung (Ax,m, A2,m) der Anordnung ist; eine Einrichtung (14) zum Ermitteln einer Beschleunigungskomponente (ay,dyn) der gemessenen Beschleunigung (Ai,m, A2,m) vorgesehen ist; eine Verarbeitungseinheit (16) vorgesehen ist, welcher die gemessene Beschleunigung (Ax,m, A2,m) und die Beschleunigungskomponente (ay,dyn) zuführbar sind, um eine von der Beschleunigungskomponente bereinigte Beschleunigung (Ai, A2) zu ermitteln, aus der der absolute Neigungswinkel (α) der Anordnung gegenüber der Horizontalen bestimmbar ist.
2. Anordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Beschleunigungskomponente (ay,dyn) in einer Richtung er- mittelt wird, die von einer Bewegungsrichtung des Fahrzeugs abweicht .
3. Anordnung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die Beschleunigungskomponente (ay,dyn) eine Querbeschleunigung bzw. die Zentrifugalbeschleunigung der, in der Bewegungsrichtung bewegten, Anordnung ist.
4. Anordnung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Einrichtung (14) zum Ermitteln der Beschleunigungskompo- nente dazu ausgebildet ist, diese aus zumindest einem der folgenden Parameter zu ermitteln: der Geschwindigkeit der Anordnung; einem Kurvenradius, auf dem sich die Anordnung befindet; einer Gierrate; - einem Lenkwinkel.
5. Anordnung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass das zumindest eine Sensorelement mit seiner Hauptempfindlich- keitsachse (Hl, H2) in einem Winkel in der Neigungsebene zu der Horizontalen (2) angeordnet ist.
6. Anordnung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass ein erstes Sensorelement mit einer ersten Hauptempfindlichkeitsachse (Hl) und ein zweites Sensorelement mit einer zweiten Hauptempfindlichkeitsachse (H2) vorgesehen sind.
7. Anordnung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, dass der absolute Neigungswinkel α der Anordnung gegenüber der Horizontalen (2) nach der Formel
A1-A2 CC = ' 2
A1+A2
berechnet wird, und
Figure imgf000018_0001
A = A2 m + —j= aydyn ist, wobei
Ai,m die von dem ersten Sensorelement gemessene Beschleunigung; A2,m die von dem zweiten Sensorelement gemessene Beschleunigung; ay,dyn die Beschleunigungskomponente;
Ai die bereinigte Beschleunigung des ersten Sensorelements; A2 die bereinigte Beschleunigung des zweiten Sensorelements; α der absolute Neigungswinkel ist.
8. Anordnung nach Anspruch 6 oder 7, d a d u r c h g e k e n n z e i c h n e t, dass die erste Hauptempfindlichkeitsachse (Hl) des ersten Sensorelements und die zweite Hauptempfindlichkeitsachse (H2) des zweiten Sensorelements in einem Winkel von 90° zueinander angeordnet sind.
9. Anordnung nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass die erste Hauptempfindlichkeitsachse (Hl) des ersten Sensorelements und die zweite Hauptempfindlichkeitsachse (H2) des zweiten Sensorelements jeweils einen Winkel von 45° zur Senkrechten der Anordnung einnehmen, wenn der absolute Neigungswinkel zur Horizontalen 0° ist.
10. Anordnung nach einem der vorherigen Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass diese ferner eine weitere Einrichtung (20,22) zur Neigungswinkelberechnung aufweist, welche dazu ausgebildet ist, eine Integration über eine von einem Drehratensensor ermittelte Drehrate vorzunehmen.
11. Anordnung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass als Startwert für die Integration der Drehrate der letzte ermittelte Absolutwinkel herangezogen wird.
12. Anordnung nach Anspruch 10 oder 11, d a d u r c h g e k e n n z e i c h n e t, dass eine Umschalteinrichtung (18) vorgesehen ist, welche nach vorbestimmten Kriterien festlegt, ob der Neigungswinkel der Anordnung gegenüber der Horizontalen durch die weitere Einrichtung unter Verwendung von Drehratensignalen oder nicht ermittelt werden soll, und die zweite Einrichtung entsprechend aktiviert oder nicht.
13. Verwendung der Anordnung nach einem der vorherigen Ansprüche in einem Verkehrsmittel, insbesondere in einem Kraft- fahrzeug in Verbindung mit einem Insassenschutzsystem, wobei der absolute Neigungswinkel für die Entscheidung herangezogen wird, ob eine Schutzeinrichtung des Insassenschutzsystems ausgelöst wird und/oder das Kraftfahrzeug stabilisierende Maßnahmen getroffen werden.
PCT/EP2006/066853 2005-09-30 2006-09-28 Anordnung zur bestimmung eines absoluten neigungswinkels gegenüber der horizontalen WO2007036556A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008532785A JP2009510424A (ja) 2005-09-30 2006-09-28 水平面に対する絶対傾斜角を求める装置
US12/088,291 US20090025998A1 (en) 2005-09-30 2006-09-28 Arrangement for Determining an Absolute Tilt Angle in Relation to the Horizontal
EP06806875A EP1929241A1 (de) 2005-09-30 2006-09-28 Anordnung zur bestimmung eines absoluten neigungswinkels gegenüber der horizontalen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005047021.1 2005-09-30
DE102005047021A DE102005047021B3 (de) 2005-09-30 2005-09-30 Anordnung zur Bestimmung eines absoluten Neigungswinkels gegenüber der Horizontalen

Publications (1)

Publication Number Publication Date
WO2007036556A1 true WO2007036556A1 (de) 2007-04-05

Family

ID=37622136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066853 WO2007036556A1 (de) 2005-09-30 2006-09-28 Anordnung zur bestimmung eines absoluten neigungswinkels gegenüber der horizontalen

Country Status (5)

Country Link
US (1) US20090025998A1 (de)
EP (1) EP1929241A1 (de)
JP (1) JP2009510424A (de)
DE (1) DE102005047021B3 (de)
WO (1) WO2007036556A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655577B2 (en) 2007-10-26 2014-02-18 Wabco Gmbh Device and method for automatically adjusting the horizontal ride level of a utility vehicle
CN107933564A (zh) * 2017-11-16 2018-04-20 盯盯拍(深圳)技术股份有限公司 道路坡度估算方法、道路坡度估算装置、终端设备以及计算机可读存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050886B2 (en) * 2008-08-15 2011-11-01 Apple Inc. Motion plane correction for MEMs-based input devices
WO2011111098A1 (ja) * 2010-03-10 2011-09-15 三菱電機株式会社 車両状態検出装置および車両状態検出システム
DE102011010845B3 (de) * 2011-02-10 2012-06-28 Audi Ag Verfahren und Vorrichtung zum Beeinflussen des Kurvenfahrverhaltens eines Kraftwagens sowie Kraftwagen
DE102013226128A1 (de) * 2013-12-16 2015-06-18 Continental Teves Ag & Co. Ohg Adaptive Unterstützung beim Öffnen einer Fahrzeugtür
FR3015413B1 (fr) * 2013-12-19 2017-06-09 Renault Sas Procede de detection d'une section courbe de chaussee a inclinaison transversale a partir d'un vehicule automobile en deplacement sur cette chaussee
US9168950B1 (en) * 2014-09-19 2015-10-27 Robert Bosch Gmbh Banked curve detection using vertical and lateral acceleration
JP2016217980A (ja) * 2015-05-25 2016-12-22 清水建設株式会社 傾斜計
US10241215B2 (en) * 2015-11-19 2019-03-26 Agjunction Llc Sensor alignment calibration
JP2018082682A (ja) 2016-11-25 2018-05-31 本田技研工業株式会社 作業機
CN112082575B (zh) * 2020-09-07 2022-04-01 北京华研军盛科技有限公司 一种用于测试加速度对倾角传感器影响的试验装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6282471B1 (en) * 1998-06-09 2001-08-28 Land Rover Group Limited Vehicle roll control
US20040010383A1 (en) * 2000-09-25 2004-01-15 Jianbo Lu Passive wheel lift identification for an automotive vehicle using operating input torque to wheel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4244112C2 (de) * 1992-12-24 2000-10-12 Bayerische Motoren Werke Ag Antiblockierregelsystem für Motorräder
US5446658A (en) * 1994-06-22 1995-08-29 General Motors Corporation Method and apparatus for estimating incline and bank angles of a road surface
DE4436379A1 (de) * 1994-10-12 1996-04-18 Telefunken Microelectron Sensoranordnung zur Neigungsdetektierung
DE19821617C1 (de) * 1998-05-15 1999-09-30 Daimler Chrysler Ag Verfahren und Vorrichtung zur Messung des Neigungswinkels in seitlich geneigten Kurven und deren Verwendung
DE10361281A1 (de) * 2003-12-24 2005-07-28 Daimlerchrysler Ag Verfahren zur Erkennung kritischer Fahrsituationen eines Fahrzeugs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6282471B1 (en) * 1998-06-09 2001-08-28 Land Rover Group Limited Vehicle roll control
US20040010383A1 (en) * 2000-09-25 2004-01-15 Jianbo Lu Passive wheel lift identification for an automotive vehicle using operating input torque to wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8655577B2 (en) 2007-10-26 2014-02-18 Wabco Gmbh Device and method for automatically adjusting the horizontal ride level of a utility vehicle
CN107933564A (zh) * 2017-11-16 2018-04-20 盯盯拍(深圳)技术股份有限公司 道路坡度估算方法、道路坡度估算装置、终端设备以及计算机可读存储介质
CN107933564B (zh) * 2017-11-16 2020-11-13 盯盯拍(深圳)技术股份有限公司 道路坡度估算方法、道路坡度估算装置、终端设备以及计算机可读存储介质

Also Published As

Publication number Publication date
EP1929241A1 (de) 2008-06-11
DE102005047021B3 (de) 2007-05-10
US20090025998A1 (en) 2009-01-29
JP2009510424A (ja) 2009-03-12

Similar Documents

Publication Publication Date Title
DE102005047021B3 (de) Anordnung zur Bestimmung eines absoluten Neigungswinkels gegenüber der Horizontalen
EP1989086B1 (de) Verfahren und vorrichtung zur bestimmung des rollwinkels eines kraftrades
EP1157898B1 (de) Verfahren zur Detektion von Überrollvorgängen bei Kraftfahrzeugen mit Sicherheitseinrichtungen
EP3180625B1 (de) Auflösungserhöhung im drehzahlsignal zwischen drehzahlpulsen
EP2111557B1 (de) Verfahren und vorrichtung zur bestimmung der geschwindigkeit eines fahrzeugs
DE69737104T2 (de) Sicherheitsvorrichtung für fahrzeuge
EP1276640A1 (de) Anordnung zur plausibilisierung einer überrollentscheidung
EP1157899A2 (de) Verfahren und Sicherheitssystem zur Erkennung eines Überschlages und zur Auslösung einer Sicherheitseinrichtung in einem Kraftfahrzeug
EP0769701B1 (de) Vorrichtung zur Erfassung einer Fahrzeugquerneigung
EP0957339A2 (de) Verfahren und Vorrichtung zur Messung des Neigungswinkels in seitlich geneigten Kurven
DE102017218487A1 (de) Verfahren zum Betrieb eines Inertialsensorsystems, Inertialsystem und Fahrzeug mit Inertialsystem
EP1855918B1 (de) Verfahren und vorrichtung zum bestimmen eines initialschwimmwinkels zur schleudererkennung bei überrollsensierung
DE10354944B4 (de) Verfahren und Anordnung zur Bestimmung einer Fahrgeschwindigkeit
EP2544935B1 (de) Verfahren und vorrichtung zur erkennung einer abweichung eines drehratensignals eines drehratensensors
EP1536986A1 (de) Vorrichtung zur erkennung eines fahrzeug berschlags
DE102007061811A1 (de) Verfahren und Vorrichtung zur Fahrtrichtungserkennung eines Fahrzeugs
DE102004038000A1 (de) Verfahren zur Bestimmung des Neigungswinkels eines Fahrzeuges und Verwendung desselben für die Erzeugung eines Auslösesignales für eine Sicherheitseinrichtung bei einem Überrollvorgang
DE10325548B4 (de) Vorrichtung und Verfahren zum Messen von Bewegungsgrößen eines Kraftfahrzeugs
DE10260416A1 (de) Verfahren und System zur Bestimmung der Geschwindigkeit eines Fahrzeugs
EP2036776A2 (de) Verfahren zur Bestimmung der Ausrichtung eines Objekts
WO2017009237A1 (de) Verfahren zur ermittlung einer neigung einer fahrzeugkarosserie
EP3990322B1 (de) Verfahren zur kalibrierung der orientierung eines in einem fahrzeug vorgesehenen beschleunigungssensors
EP4234354A1 (de) Verfahren zur plausibilisierung einer drehrate eines fahrzeugaufbaus eines fahrzeugs und vorrichtung zur ausführung des verfahrens
DE102020216170A1 (de) Verfahren zur Bestimmung von Informationen zu einer Kollision
DE102018207779A1 (de) Verfahren zum näherungsweisen Ermitteln des Schwimmwinkels oder der Schräglaufsteifigkeit an einer Achse eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006806875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008532785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006806875

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12088291

Country of ref document: US