WO2007035978A1 - Procede de lixiviation de minerai lateritique a la pression atmospherique - Google Patents

Procede de lixiviation de minerai lateritique a la pression atmospherique Download PDF

Info

Publication number
WO2007035978A1
WO2007035978A1 PCT/AU2005/001497 AU2005001497W WO2007035978A1 WO 2007035978 A1 WO2007035978 A1 WO 2007035978A1 AU 2005001497 W AU2005001497 W AU 2005001497W WO 2007035978 A1 WO2007035978 A1 WO 2007035978A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
ore
leaching
cobalt
recover
Prior art date
Application number
PCT/AU2005/001497
Other languages
English (en)
Inventor
Houyuan Liu
Eric Girvan Roche
Jaidev Prasad
Original Assignee
Bhp Billiton Innovation Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bhp Billiton Innovation Pty Ltd filed Critical Bhp Billiton Innovation Pty Ltd
Priority to EA200800997A priority Critical patent/EA200800997A1/ru
Priority to EP05789466A priority patent/EP1929056A4/fr
Priority to AU2005336880A priority patent/AU2005336880A1/en
Priority to JP2008532537A priority patent/JP2009510258A/ja
Priority to PCT/AU2005/001497 priority patent/WO2007035978A1/fr
Publication of WO2007035978A1 publication Critical patent/WO2007035978A1/fr
Priority to US12/054,877 priority patent/US20080271571A1/en
Priority to ECSP088357 priority patent/ECSP088357A/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • C22B26/22Obtaining magnesium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a hydrometallurgical process to recover nickel and cobalt from nickeliferous laterite ores and, in particular, to the atmospheric leaching of both low magnesium fraction (eg limonite) and high magnesium fraction (eg saprolite) ores with a mineral acid to dissolve nickel and cobalt.
  • the process also includes a step in which magnesium values in the leach liquor are recovered.
  • HPAL high-pressure acid leach
  • 4,044,096 provides guidelines to optimize the high- pressure acid leaching of nickeliferous lateritic ores through a combination of operational steps to improve the economics and efficiency of leaching.
  • the steps include scalping laterite ore to remove the coarse (high magnesium) fraction and thus lower the acid consumption.
  • the HPAL process is most amenable for high iron ores containing 40 wt % iron or higher. Lateritic ores with an iron content less than 40 wt % contain in general a higher amount of acid consuming minerals and are therefore not preferred for direct high pressure leaching.
  • U.S. Pat. No. 3,804,613 teaches a method of high-pressure acid leaching of saprolite ore at relatively low acid/ore ratios by preconditioning the saprolite with leach liquor from the high-pressure leach step. No mention is made of concurrent limonite leaching.
  • U.S. Pat. No. 3,991 ,159 teaches the use of saprolite ore to neutralize acid resulting from the high-pressure acid leach of limonite ore. Leaching of the saprolite fraction is carried out at high temperature (150.degree.-250.degree. C.) and pressure for effective iron and aluminum rejection, but with relatively low nickel extraction from the saprolite ore.
  • U.S. Pat. No. 4,097,575 teaches saprolite ore roasting at 500.degree.-750.degree. C. under oxidizing conditions to increase its neutralization capacity before neutralization of HPAL liquors. This process suffers from the additional need for roasting facilities.
  • U.S. Pat. No. 4,062,924 describes a method for leaching limonite ores in acidic media at temperatures up to HO.degree. C. and in the presence of hydrogen sulfide gas to precipitate dissolved nickel and cobalt. Most dissolved iron is also reduced to the divalent oxidation state however, consuming very high amounts of the reducing gas in addition to high acid consumption.
  • U.S. Pat. No. 4,065,542 teaches a similar method. In this process, ferrous iron produced by the method described above is used to leach metal values from manganiferous sea nodules.
  • 4,511 ,540 illustrates a way to recover nickel and cobalt from ores with a manganiferous matrix by leaching with sulfuric acid in the presence of sulfur dioxide gas at temperatures below the boiling point of the liquid solution. None of these processes includes the treatment of saprolitic ores.
  • nickel and cobalt are leached from saprolite ore by contact with a mineral acid at room temperature or in the temperature range of 60.degree.-80.degree. C.
  • the leaching mode can be conducted by heap, vat, or agitation leaching.
  • US Patent 6,261 ,527 also discloses a hydrometallurgical process for the recovery of nickel and cobalt from both limonite and saprolite ores, however in that process, iron is rejected as jarosite.
  • Jarosite may decompose slowly to iron hydroxides releasing sulphuric acid.
  • the released acid may redissolve traces of precipitated heavy metals, such as Mn, Ni, Co, Cu and Zn, present in the leach residue tailing, thereby mobilizing these metals into the ground or surface water around the tailings deposit.
  • Another disadvantage of this process is that jarosite contains sulphate, and this increases the acid requirement for leaching significantly. Sulphuric acid is a large input in acid leaching processing, so there is also an economic disadvantage in the jarosite process.
  • the present invention aims to overcome or alleviate one or more of the problems associated with prior art processes.
  • an atmospheric leaching process in the recovery of nickel and cobalt from a lateritic ore said lateritic ore including a low magnesium ore fraction and a high magnesium ore fraction, said process including the steps of:
  • An advantage of the invention is the provision of an efficient and economical method to leach both low magnesium (eg limonite) and high magnesium (eg saprolite) ores in a single process stage at atmospheric pressure, to obtain high percent dissolution of nickel and cobalt.
  • a further advantage of the method is that it avoids the high capital costs associated with sophisticated autoclaves.
  • Another advantage of a preferred form of the method is that it also avoids the production of jarosite.
  • An advantage of a preferred form of the invention is that the magnesium containing barren solution produced from the leaching process is treated to recover magnesium sulphate, which is then processed to give MgO, Mg(OH) 2 or MgCO 3 and SO 2 .
  • the SO 2 is advantageously used to regenerate H 2 SO 4 .
  • the MgO or MgCO 3 may be fed back into the leaching process as a neutralising agent, disposed of as a stable residue, or sold as a commercial product.
  • the low magnesium containing ore fraction includes the limonite fraction of the laterite ore (Mg wt % approximately less than 6). This fraction may also include low to medium level magnesium content smectite or nontronite ores which generally have a magnesium content of about 4 wt % to 8 wt %.
  • the high magnesium containing ore fraction includes the saprolite fraction of the laterite ore (Mg wt % greater than approximately 8). This fraction may also include smectite or nontronite ores.
  • step (a) of an aqueous pulp of both the low magnesium and high magnesium containing ore fractions is generally carried out in sodium, alkali metal and ammonium free water at solids concentration from approximately 20 wt % and above, limited by slurry rheology.
  • the ratio of acid to combined ore is typically at least 0.5. Preferably, the ratio is about 0.5 to 1.0, such as 0.5 to 0.7.
  • the aqueous pulp is subjected to a leaching step in step (b) utilising a concentrated mineral acid at atmospheric pressure.
  • leaching is conducted whilst agitating leach reactants.
  • the leaching step is carried out at a temperature up to the boiling point of the leach reactants at atmospheric pressure. Most preferably the reaction temperature is as high as possible to achieve rapid leaching at atmospheric pressure.
  • a preferred leaching temperature is at least 6O 0 C, more preferably at least 75 0 C.
  • leaching is carried out at around 8O 0 C or higher, such as at least 85°C.
  • leaching is conducted at around 95°C.
  • the leaching of both the low and high magnesium fractions occurs in a single process stage, which may comprise a single step, in which the two fractions are leached simultaneously, eg in the same tank or reactor.
  • the two fractions may be leached in sequential steps in the single process stage.
  • the low magnesium fraction eg limonite
  • the higher magnesium fraction is subsequently added to the slurry to be leached in a second step.
  • the sequential leaching of the low and high magnesium fractions may be in accordance with the disclosure of WO 03/093517, the entire disclosure of which is incorporated herein by reference.
  • Leaching is conducted for a period of time sufficient to release at least a substantial portion of the nickel and cobalt from the laterite ore into solution. Typically leaching is conducted for up to 30 hours. However, preferably leaching is conducted for up to 5 hours. More preferably, leaching is conducted for up to 4 hours. In a preferred embodiment, leaching is conducted for about 2 hours.
  • the leaching process typically also results in precipitation in at least some of the iron in the ore as one or more Fe containing compounds, such as a sulphate, a hydroxide or an oxide.
  • the mineral acid used in the leaching process is preferably sulphuric acid, more preferably it is concentrated sulphuric acid.
  • concentration of sulphuric acid added to the ore pulp is preferably greater than 90 wt %.
  • the dose of sulphuric acid is preferably 100 to 140 % of the stoichiometric amount required to dissolve approximately over 90% of nickel, cobalt, iron, manganese and over 80 % of the aluminum and magnesium in the ore.
  • the ratio of the high magnesium ore to low magnesium ore is ideally in a dry ratio of from 0.5 to 1.3. Preferably, the ratio is from 1 to 1.30. However, the high/low magnesium ore ratio will largely depend on the laterite ore composition.
  • the leaching of both the high and low magnesium fractions may optionally be followed by a second leaching step.
  • any unused acid from the first leaching step may be reacted with additional high magnesium ore fraction, such as saprolite.
  • Leaching conditions of temperature, time and acid concentration are typically similar to those of the first leaching step.
  • Addition of saprolite can cause further precipitation of Fe containing compounds.
  • Conditions of temperature, time and acid concentration may conveniently be controlled to allow part or all of the iron and aluminum to be precipitated.
  • the acidity may be conveniently controlled by the addition of saprolite, MgO, Mg(OH) 2 , MgCO 3 or another alkali.
  • the leach slurry may be treated in accordance with the method disclosed in WO 03/093517 (the entire disclosure of which is incorporated herein by reference), in which saprolite ore is added to a leach slurry in order to precipitate goethite or other relatively low sulphate-containing forms of iron oxide or iron hydroxide.
  • the leach slurry may be treated in accordance with the method disclosed in US 6,261 ,527 (the entire disclosure of which is also incorporated herein by reference) in which an iron precipitating agent selected from sodium, potassium ammonium ions and mixtures thereof is added to the slurry to precipitate jarosite.
  • MgO is added to the slurry in order to precipitate iron containing compounds.
  • the MgO addition results in an increase of pH to a value of 3.0 or higher, causing iron precipitation.
  • the leached slurry is then treated to recover dissolved nickel and cobalt values therefrom.
  • Such metal extraction treatment may be one or more of techniques known to those working in the art. Examples of such metal extraction techniques include ion exchange, resin-in-pulp, direct recovery by solvent extraction, mixed hydroxide precipitation or mixed sulphide precipitation.
  • the recovered nickel and cobalt values are recovered as mixed nickel/cobalt hydroxides or mixed nickel/cobalt sulphides.
  • the solid leach residue which usually includes precipitated iron compounds such as Fe sulphates eg jarosite or Fe hydroxides, eg goethite, may be removed from solution depending on the recovery process used. Alternatively, the solid residue may be retained with the leach solution during subsequent removal of residual Fe and/or Al.
  • the spent leach solution Prior to or after recovery of nickel and cobalt from the leach solution, the spent leach solution is preferably treated to remove any residual Fe and/or Al in solution.
  • this step requires an increase in solution pH, such as by adding a neutralising agent, such as MgO, Mg(OH) 2 or MgCO 3 , and preferably addition of an oxidising agent such as air.
  • a neutralising agent such as MgO, Mg(OH) 2 or MgCO 3
  • an oxidising agent such as air.
  • a sufficient quantity of neutralising agent is added such that the solution pH is increased to around 3 or above.
  • a sufficient amount of the oxidising agent is also added to oxidise any residual Fe 2+ in solution to Fe 3+ , which then precipitates out as goethite.
  • the supernatant solution mainly contains dissolved magnesium, possibly together with a small quantity of manganese.
  • the supernatant solution is then treated in order to recover the magnesium as magnesium salts. This is achieved typically by evaporation until the magnesium salts crystalise out.
  • reverse osmosis or precipitation by a strong alkali such as caustic soda, soda ash or lime, may be used.
  • the magnesium salt is typically a magnesium sulphate where the leaching acid used was sulphuric acid. It has been the conventional, practice to discard the magnesium salts as waste, meaning that metal values in the salts are therefore lost. Moreover, when the magnesium salt comprises magnesium sulphate, the sulphate component is also lost, which increases the acid requirement for the leaching process significantly. Sulphuric acid is usually an expensive input in acid leaching, so there is an economic disadvantage in simply discarding a source of sulphate.
  • the present invention is also concerned with treating the magnesium salt to recover magnesium compounds.
  • the recovery process also preferably includes a sulphate recovery stage.
  • the magnesium is recovered as a magnesium oxide, magnesium hydroxide or magnesium carbonate. More preferably, the magnesium is recovered as magnesium oxide.
  • the magnesium recovery process may comprise that disclosed in co-pending Australian provisional patent application 2005900431 filed on 1 February 2005, the entire disclosure of which is incorporated herein by reference.
  • the magnesium salt may be subjected to calcination.
  • the magnesium salt is magnesium sulphate
  • calcination results in formation of MgO and/or MgCO 3 and SO 2 gas.
  • the SO 2 gas may be captured and fed to a sulphuric acid production process , in which sulphuric acid is regenerated according to the following process:
  • the MgO, Mg(OH) 2 or MgCO ⁇ produced from the magnesium salt is a good source of alkaline compound, which can be fed back to the leach solution as a neutralising agent to effect precipitation, separately or in combination, metals such as Ni, Co, Al, Fe, Mn and other elements as desired.
  • a mixture of limonite and saprolite ore in a dry ratio of about 1 is formed into an aqueous pulp.
  • the aqueous pulp is then mixed with concentrated sulphuric acid, having a concentration of 93% H 2 SO 4 , to form a leach slurry.
  • the dose of acid is greater than 100% of the stoichiometric amount required to dissolve over 90% of the Ni and Co in the combined ore fractions.
  • a first leaching process is conducted in a single reactor at a temperature of at least 8O 0 C and for at least 2 hours. During the first leaching process, iron compounds precipitate out of solution.
  • Overflow from the leaching process is conveyed to a second reactor, where a saprolite ore slurry is added to the mixture.
  • a second leaching process is then conducted, also at a temperature of at least 80 0 C and for a time of around 2 hours. During the second leaching process, further iron compounds precipitate out from solution.
  • the solid residue is separated from the leached slurry.
  • the pregnant leach solution is then subjected to a recovery process during which nickel and cobalt values are recovered.
  • the spent leach solution is also treated to remove any residual iron and aluminium. This is effected by the addition of a neutralising agent comprising MgO or MgCO 3 .
  • a neutralising agent comprising MgO or MgCO 3 .
  • the pH of the barren solution is thereby increased, to a value higher than 3.
  • the iron is precipitated largely as hydroxides, such as Fe(OH) 3 .
  • the barren leach solution contains mainly dissolved magnesium.
  • the spent leach solution is directed to an evaporation pond and excess water evaporated therefrom, causing crystallisation of magnesium sulphate.
  • the magnesium sulphate is then subjected to a magnesium recovery process. This comprises calcination to produce MgO, or MgCO 3 , and SO 2 gas. The SO 2 gas is then used as a reactant in a sulphuric acid recovery process.
  • Example 2 is a Comparative Example demonstrating calcination of MgSO 4 JH 2 O under non-reducing conditions, which shows that MgSO 4 remains as the product.
  • Example 3 demonstrates that calcination under reducing conditions achieves production of MgO at moderate temperatures, that is, at temperatures significantly lower than those at which calcination is conventionally conducted.
  • a sample of magnesium sulphate heptahydrate (4.0353g) was placed in a small crucible and calcined in a thermogravimetric analyser (TGA) under a flow of dry nitrogen (5L/min). The temperature in the TGA was raised by 10°C/min from room temperature to 1000 0 C. The sample exhibited a weight loss of approximately 2.07g by 400 0 C and exhibited very little further weight loss. The resulting mass of the sample (1.9386g) corresponds closely with the formula MgSO 4 (theoretical weight of 1.9706g). A graphical depiction of the TGA run is shown in Figure 1.
  • Example 4 is a Flowsheet, illustrated in Figure 3, which sets out the process stages in an embodiment of the present invention.
  • separation of the leach residue from the pregnant leach solution takes place prior to removal of residual iron and aluminium and recovery of Ni and Co metal values.
  • the recovery of Ni and Co is effected using one of the techniques selected from mixed hydroxide precipitation, mixed sulphide precipitation, solvent extraction or ion exchange.
  • Example 5
  • Example 5 is a Flowsheet, illustrated in Figure 4, setting out the process stages in a further embodiment of the present invention.
  • the Ni and Co metal values are recovered, using the Resin-in-Pulp (R-I-P) extraction technique, prior to removal of residual iron and aluminum, subsequent manganese precipitation and separation of leach residue from the barren solution.
  • R-I-P Resin-in-Pulp

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L'invention concerne un procédé de lixiviation atmosphérique utile dans l'extraction de nickel et de cobalt à partir d'un minerai latéritique, ledit minerai comprenant une fraction de minerai à faible teneur en magnésium et une fraction de minerai à forte teneur en magnésium. Le procédé comporte les étapes consistant à: (a) former une pâte aqueuse du minerai latéritique, (b) lixivier la pâte aqueuse à l'aide d'un acide inorganique concentré, à la pression atmosphérique, pour produire une suspension contenant une liqueur d'attaque et un résidu de lixiviation, (c) traiter la liqueur d'attaque, soit séparément, soit comme partie de la suspension afin d'en extraire le nickel et le cobalt dissous, cette opération produisant une solution stérile contenant du magnésium, (d) traiter la solution contenant du magnésium afin d'en extraire un sel contenant du magnésium.
PCT/AU2005/001497 2005-09-30 2005-09-30 Procede de lixiviation de minerai lateritique a la pression atmospherique WO2007035978A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EA200800997A EA200800997A1 (ru) 2005-09-30 2005-09-30 Способ выщелачивания латеритной руды при атмосферном давлении
EP05789466A EP1929056A4 (fr) 2005-09-30 2005-09-30 Procede de lixiviation de minerai lateritique a la pression atmospherique
AU2005336880A AU2005336880A1 (en) 2005-09-30 2005-09-30 Process for leaching lateritic ore at atmospheric pressure
JP2008532537A JP2009510258A (ja) 2005-09-30 2005-09-30 大気圧でラテライト鉱石を浸出するための方法
PCT/AU2005/001497 WO2007035978A1 (fr) 2005-09-30 2005-09-30 Procede de lixiviation de minerai lateritique a la pression atmospherique
US12/054,877 US20080271571A1 (en) 2005-09-30 2008-03-25 Process for Leaching Lateritic Ore at Atmospheric Pressure
ECSP088357 ECSP088357A (es) 2005-09-30 2008-04-09 Proceso para lixiviar mineral laterítico a presion atmosferica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2005/001497 WO2007035978A1 (fr) 2005-09-30 2005-09-30 Procede de lixiviation de minerai lateritique a la pression atmospherique

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/054,877 Continuation US20080271571A1 (en) 2005-09-30 2008-03-25 Process for Leaching Lateritic Ore at Atmospheric Pressure

Publications (1)

Publication Number Publication Date
WO2007035978A1 true WO2007035978A1 (fr) 2007-04-05

Family

ID=37899271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2005/001497 WO2007035978A1 (fr) 2005-09-30 2005-09-30 Procede de lixiviation de minerai lateritique a la pression atmospherique

Country Status (7)

Country Link
US (1) US20080271571A1 (fr)
EP (1) EP1929056A4 (fr)
JP (1) JP2009510258A (fr)
AU (1) AU2005336880A1 (fr)
EA (1) EA200800997A1 (fr)
EC (1) ECSP088357A (fr)
WO (1) WO2007035978A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003160A1 (fr) * 2006-07-03 2008-01-10 Curlook Enterprises Inc. Système de récupération de métaux pour lixiviation haute pression de latérites de nickel limoniteuses
WO2009114904A1 (fr) * 2008-03-19 2009-09-24 Bhp Billiton Ssm Development Pty Ltd Procédé pour lixiviation atmosphérique de minerais de latérite au moyen d'une solution de lixiviation hypersaline
WO2009146518A1 (fr) * 2008-06-02 2009-12-10 Vale S.A. Récupération de magnésium et de soufre dans la lixiviation de minerais de nickel latéritique
US20110120267A1 (en) * 2008-06-25 2011-05-26 Eric Girvan Roche Iron Precipitation
CN107406906A (zh) * 2014-11-18 2017-11-28 联盟镁公司 在HCl回收回路中使用硫酸生产镁化合物和各种副产物的方法
WO2020019917A1 (fr) * 2018-07-24 2020-01-30 眉山顺应动力电池材料有限公司 Procédé de recyclage de fer, de scandium et d'aluminium à partir de minerais de nickel latéritiques de type limonite
CN114702051A (zh) * 2022-06-06 2022-07-05 潍坊泽隆新材料有限公司 一种采用副产物碳酸镁滤饼生产超细高活性氧化镁的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905383B1 (fr) * 2006-09-06 2008-11-07 Eramet Sa Procede de traitement hydrometallurgique d'un minerai de nickel et de cobalt lateritique,et procede de preparation de concentres intermediaires ou de produits commerciaux de nickel et/ou de cobalt l'utilisant.
WO2008138039A1 (fr) * 2007-05-14 2008-11-20 Bhp Billiton Ssm Development Pty Ltd Récupération de nickel à partir d'un minerai de latérite à haute teneur de matériaux ferreux
US7901484B2 (en) * 2007-08-28 2011-03-08 Vale Inco Limited Resin-in-leach process to recover nickel and/or cobalt in ore leaching pulps
AU2009266418A1 (en) * 2008-07-02 2010-01-07 Bhp Billiton Ssm Development Pty Ltd A process for heap leaching of nickeliferous oxidic ores
US20110174113A1 (en) * 2010-01-18 2011-07-21 Gme Resources Ltd. Acid Recovery
EP2703503B1 (fr) * 2012-09-04 2018-02-28 Canbekte, Hüsnü Sinan Procédé de précipitation du fer à partir de solutions de lixiviation
EP2759610B1 (fr) * 2013-01-25 2017-01-04 Canbekte, Hüsnü Sinan Procédé de récupération de fer sous forme d'hématite et d'autres valeurs métalliques à partir d'une solution de lixiviation de sulfate
CN103159237B (zh) * 2013-03-18 2014-11-05 昆明理工大学 一种红土镍矿酸浸沉镍废水制备七水硫酸镁的方法
JP5622061B2 (ja) * 2013-03-26 2014-11-12 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
JP5637294B1 (ja) * 2013-11-29 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637293B1 (ja) * 2013-11-29 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637297B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637295B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP5637296B1 (ja) * 2013-12-03 2014-12-10 住友金属鉱山株式会社 中和処理方法
JP7057900B2 (ja) * 2019-09-17 2022-04-21 住友金属鉱山株式会社 ニッケル酸化鉱石スラリーの前処理方法
CN115029551B (zh) * 2022-05-07 2024-04-09 金川集团股份有限公司 一种高镁低镍精矿酸浸降镁方法
CN115057481A (zh) * 2022-06-09 2022-09-16 云南金浔资源股份有限公司 一种高性能锂离子动力电池使用硫酸钴生产方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006215A (en) * 1975-04-02 1977-02-01 The International Nickel Company, Inc. Recovering iron, nickel, or cobalt from sulfate solution
CA1024353A (fr) * 1974-10-10 1978-01-17 Inco Limited Lixiviation des minerais de nickel silicates au moyen d'acide chlorhydrique
US4548794A (en) * 1983-07-22 1985-10-22 California Nickel Corporation Method of recovering nickel from laterite ores
US5571308A (en) * 1995-07-17 1996-11-05 Bhp Minerals International Inc. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore
WO2000003044A1 (fr) * 1998-07-08 2000-01-20 Crew Development Corporation Procede d'isolation et de production d'un metal magnesium, d'un chlorure de magnesium, de magnesite et de produits a base de magnesium
WO2001032943A2 (fr) * 1999-11-03 2001-05-10 Bhp Minerals International, Inc. Processus de lixiviation a pression atmospherique permettant de recuperer du nickel et du cobalt de limonite et de minerais saprolithiques
US6379637B1 (en) * 2000-10-31 2002-04-30 Walter Curlook Direct atmospheric leaching of highly-serpentinized saprolitic nickel laterite ores with sulphuric acid
WO2003093517A1 (fr) * 2002-04-29 2003-11-13 Qni Technology Pty Ltd Procede de lixivation a pression atmospherique de minerais de nickel lateritiques

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3804613A (en) * 1971-09-16 1974-04-16 American Metal Climax Inc Ore conditioning process for the efficient recovery of nickel from relatively high magnesium containing oxidic nickel ores
US3793432A (en) * 1972-01-27 1974-02-19 D Weston Hydrometallurgical treatment of nickel group ores
US3991159A (en) * 1975-01-09 1976-11-09 Amax Inc. High temperature neutralization of laterite leach slurry
CA1043576A (fr) * 1975-06-10 1978-12-05 Inco Limited Lessivage en deux etapes de minerai de limonite et de nodules marins
CA1050278A (fr) * 1975-06-10 1979-03-13 Inco Limited Lixiviation des limonites
US4044096A (en) * 1975-12-11 1977-08-23 Amax Inc. Sulfuric acid leaching of nickeliferous laterite
US4097575A (en) * 1976-11-05 1978-06-27 Amax Inc. Roast-neutralization-leach technique for the treatment of laterite ore
DE2906808C2 (de) * 1979-02-12 1981-04-02 Gebrüder Sulzer AG, 8401 Winterthur Verfahren zur Gewinnung von Nickel aus lateritischen Erzen, insbesondere bei hohem Magnesiumgehalt
US4298379A (en) * 1980-01-31 1981-11-03 The Hanna Mining Company Production of high purity and high surface area magnesium oxide
FR2492844A1 (fr) * 1980-10-29 1982-04-30 Pechiney Ugine Kuhlmann Valorisation de cuivre, nickel et cobalt par traitement de minerais oxydes a matrice manganifere
CA1171287A (fr) * 1980-11-05 1984-07-24 William R. Hatch Lixiviation acide des minerais de nickel a la laterite

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1024353A (fr) * 1974-10-10 1978-01-17 Inco Limited Lixiviation des minerais de nickel silicates au moyen d'acide chlorhydrique
US4006215A (en) * 1975-04-02 1977-02-01 The International Nickel Company, Inc. Recovering iron, nickel, or cobalt from sulfate solution
US4548794A (en) * 1983-07-22 1985-10-22 California Nickel Corporation Method of recovering nickel from laterite ores
US5571308A (en) * 1995-07-17 1996-11-05 Bhp Minerals International Inc. Method for recovering nickel from high magnesium-containing Ni-Fe-Mg lateritic ore
WO2000003044A1 (fr) * 1998-07-08 2000-01-20 Crew Development Corporation Procede d'isolation et de production d'un metal magnesium, d'un chlorure de magnesium, de magnesite et de produits a base de magnesium
WO2001032943A2 (fr) * 1999-11-03 2001-05-10 Bhp Minerals International, Inc. Processus de lixiviation a pression atmospherique permettant de recuperer du nickel et du cobalt de limonite et de minerais saprolithiques
US6379637B1 (en) * 2000-10-31 2002-04-30 Walter Curlook Direct atmospheric leaching of highly-serpentinized saprolitic nickel laterite ores with sulphuric acid
WO2003093517A1 (fr) * 2002-04-29 2003-11-13 Qni Technology Pty Ltd Procede de lixivation a pression atmospherique de minerais de nickel lateritiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1929056A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008003160A1 (fr) * 2006-07-03 2008-01-10 Curlook Enterprises Inc. Système de récupération de métaux pour lixiviation haute pression de latérites de nickel limoniteuses
WO2009114904A1 (fr) * 2008-03-19 2009-09-24 Bhp Billiton Ssm Development Pty Ltd Procédé pour lixiviation atmosphérique de minerais de latérite au moyen d'une solution de lixiviation hypersaline
US8268039B2 (en) 2008-03-19 2012-09-18 Bhp Billiton Ssm Development Pty Ltd. Process for atmospheric leaching of laterite ores using hypersaline leach solution
WO2009146518A1 (fr) * 2008-06-02 2009-12-10 Vale S.A. Récupération de magnésium et de soufre dans la lixiviation de minerais de nickel latéritique
US8470272B2 (en) 2008-06-02 2013-06-25 Vale S.A. Magnesium recycling and sulphur recovery in leaching of lateritic nickel ores
AP2883A (en) * 2008-06-02 2014-05-31 Vale Sa Magnesium recycling and sulphur recovery in leaching of lateritic nickel ores
AU2009253864B2 (en) * 2008-06-02 2015-01-29 Vale S.A. Magnesium recycling and sulphur recovery in leaching of lateritic nickel ores
US20110120267A1 (en) * 2008-06-25 2011-05-26 Eric Girvan Roche Iron Precipitation
CN107406906A (zh) * 2014-11-18 2017-11-28 联盟镁公司 在HCl回收回路中使用硫酸生产镁化合物和各种副产物的方法
EP3221479A4 (fr) * 2014-11-18 2018-05-16 Alliance Magnésium Procédé de production de composés de magnésium et de divers sous-produits en utilisant de l'acide sulfurique dans une boucle de récupération d'acide chlorhydrique
WO2020019917A1 (fr) * 2018-07-24 2020-01-30 眉山顺应动力电池材料有限公司 Procédé de recyclage de fer, de scandium et d'aluminium à partir de minerais de nickel latéritiques de type limonite
CN114702051A (zh) * 2022-06-06 2022-07-05 潍坊泽隆新材料有限公司 一种采用副产物碳酸镁滤饼生产超细高活性氧化镁的方法

Also Published As

Publication number Publication date
EA200800997A1 (ru) 2008-08-29
US20080271571A1 (en) 2008-11-06
AU2005336880A1 (en) 2007-04-05
JP2009510258A (ja) 2009-03-12
EP1929056A4 (fr) 2009-04-15
ECSP088357A (es) 2008-06-30
EP1929056A1 (fr) 2008-06-11

Similar Documents

Publication Publication Date Title
US20080271571A1 (en) Process for Leaching Lateritic Ore at Atmospheric Pressure
CA2521817A1 (fr) Methode de lixiviation atmospherique de minerai lateritique
US6680035B2 (en) Atmospheric leach process for the recovery of nickel and cobalt from limonite and saprolite ores
US7416711B2 (en) Atmospheric pressure leach process for lateritic nickel ore
US20060002835A1 (en) Method for nickel and cobalt recovery from laterite ores by reaction with concentrated acid and water leaching
AU2005284620A1 (en) Method for nickel and cobalt recovery from laterite ores by combination of atmospheric and moderate pressure leaching
WO2009114903A1 (fr) Procédé permettant de récupérer du nickel et/ou du cobalt de minerais de latérite à teneur en fer élevée
US8361191B2 (en) Low acid leaching of nickel and cobalt from lean iron-containing nickel ores
WO2008138038A1 (fr) Lixiviation à faible eh avec recyclage du soufre
EP2850217B1 (fr) Élimination, sous pression atmosphérique, de fer ferrique présent sous forme d'hématite
EP2553129B1 (fr) Lixiviation faiblement acide de nickel et de cobalt à partir de minerais de nickel pauvres contenant du fer
CN101273146A (zh) 常压浸提红土矿石的方法
AU2011235562A1 (en) Low acid leaching of nickel and cobalt from lean iron-containing nickel ores
US9057116B2 (en) Method for enhancing solid-liquid separation in conjunction with laterite leaching
EP2276865B1 (fr) Procédé de lixiviation sélective du cobalt présent dans des minerais latéritiques
AU2009200702B2 (en) Acid recovery
US20110174113A1 (en) Acid Recovery
ZA200507870B (en) Process for leaching lateritic ore at atmospheric pressure
AU2003209829B2 (en) Atmospheric pressure leach process for lateritic nickel ore
KR20080058458A (ko) 대기압에서의 라테라이트 광석 침출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005336880

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580051731.8

Country of ref document: CN

Ref document number: 2005789466

Country of ref document: EP

Ref document number: 2008532537

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005336880

Country of ref document: AU

Date of ref document: 20050930

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005336880

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 08042425

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 200800997

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 1020087010595

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005789466

Country of ref document: EP