WO2007034563A1 - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
WO2007034563A1
WO2007034563A1 PCT/JP2005/017620 JP2005017620W WO2007034563A1 WO 2007034563 A1 WO2007034563 A1 WO 2007034563A1 JP 2005017620 W JP2005017620 W JP 2005017620W WO 2007034563 A1 WO2007034563 A1 WO 2007034563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
band
wavelength
optical amplifier
multiplexer
Prior art date
Application number
PCT/JP2005/017620
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoaki Takeyama
Keiko Sasaki
Tatsuya Tsuzuki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/017620 priority Critical patent/WO2007034563A1/en
Priority to JP2007536380A priority patent/JPWO2007034563A1/en
Publication of WO2007034563A1 publication Critical patent/WO2007034563A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/06766C-band amplifiers, i.e. amplification in the range of about 1530 nm to 1560 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06762Fibre amplifiers having a specific amplification band
    • H01S3/0677L-band amplifiers, i.e. amplification in the range of about 1560 nm to 1610 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to an optical amplifier, and more particularly to an optical amplifier that amplifies an L-band WDM (Wavelength Division Multiplex) optical signal.
  • L-band WDM Widelength Division Multiplex
  • WDM is the most effective transmission technology to meet such system demands.
  • WDM is a transmission system that multiplexes light of different wavelengths and transmits multiple signals simultaneously using a single optical fiber.
  • Currently, commercialization of WDM is already in progress mainly in North America.
  • EDFA Erbium-Doped Fiber Amplifier
  • EDFA Erbium-Doped Fiber Amplifier
  • EDFA Erbium-Doped Fiber Amplifier
  • EDFA Erbium-Doped Fiber Amplifier
  • EDFA is erbium (Er 3+) ⁇ Ka ⁇ fiber (EDF: Erbium- Do ped Fiber) and the amplifying medium, which can collectively amplifying the optical signal wavelength-multiplexed by using a wide gain band light It is an amplifier.
  • the C band (Conventional band: about 1530 to about 1560 nm) with the highest amplification efficiency was first commercialized, and now the L band (Longer wavelength b and: about 1570 to the next highest amplification efficiency). 1610nm) EDFA has also been commercialized.
  • an L-band EDFA is a multiplexer that combines, for example, an excitation light source (laser diode: LD) 1 that emits excitation light (pump light) of 0.98 m, and L-band signal light and excitation light. 2 and EDF3 into which the combined light is incident.
  • LD laser diode
  • Figure 3 shows the C band and L It is a figure which shows the gain band of a band.
  • the population inversion ratio is about 0.7
  • the 0.98-111 band and 1.48-m band excitation light used in the C-band amplification is supplied to the EDF under the setting of the inversion ratio lower than that of the C band Is done.
  • the inversion distribution rate is low, the amplification rate per unit length is low. Therefore, the EDF for L-band amplification is lengthened to supply almost the same gain to the L-band signal light and to have the same gain as the C-band signal light gain.
  • the amount of absorption per unit length at the excitation light wavelength is less than that at the L-band signal light wavelength. Due to the very small amount of radiation per unit length, as shown in the graph of 0. ge ⁇ mlSOmW in Fig. 6, the inversion distribution rate rises in the vicinity of 2 to 6 m (5 m) EDF length. . Incidentally, in the case of C-band signal light, the amount of radiation per unit length is not as small as that of L-band signal light, so this rise is not as pronounced as in the L-band.
  • C-band ASE Analog spontaneous emission
  • the ASE traveling toward the entrance is further amplified by the excitation light, and the entrance edge force is also emitted as a back ASE.
  • the conversion efficiency deteriorates due to being used for amplification of the excitation light 3 ⁇ 4ack ASE, and the conversion efficiency as high as the C-band EDFA cannot be obtained.
  • Patent Document 1 As a method for suppressing the efficiency degradation peculiar to the L band as described above, for example, there are techniques disclosed in Patent Documents 1 and 2.
  • Patent Document 1 in the L-band EDFA, the optical signal in the C-band EDF amplified by 0.98 m excitation light and the specific wavelength included in the ASE (the highest efficiency in the C-band is 1.55 m) A configuration in which this amplified light is used as a tap coupler or pumping light for an L-band optical signal is disclosed.
  • Patent Document 1 has the following problems.
  • C van EDF hardly amplifies L-band signal light.
  • the overall EDFA NF (Noise Figure) is almost equivalent to the loss caused by optical components such as tap couplers and filters placed between C-band EDF and L-band EDF, and isolators to prevent oscillation. : Noise figure) will deteriorate.
  • two EDFs are required: a first EDF that generates C-band ASE and a second EDF with L-band amplification. This leads to an increase in cost.
  • Patent Document 2 discloses a method of using 0.98 m residual pumping light output from C-band EDF and 1.55 m band ASE as excitation light for L-band EDF using a circulator. Yes.
  • Patent Document 2 has the following problems. First, the L-band EDF that amplifies the signal light is backward pumped. For this reason, the inversion distribution rate at the entrance to determine NF is greatly reduced, and it is thought that NF degradation will become severe. Second, a special part called a circuit is required. Furthermore, as in the technique of Patent Document 1, two EDFs are required, a first EDF that generates C-band ASE and a second EDF for L-band amplification.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-243755
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-94158
  • An object of the present invention is to provide an L-band optical amplifier capable of improving efficiency while suppressing an increase in cost.
  • the present invention employs the following configuration in order to achieve the above object.
  • the present invention includes a rare earth element-doped optical amplification medium having an incident end and an output end, and an L-band signal light is incident on the incident end.
  • a first light source that generates first light for exciting the rare earth element-doped optical amplification medium; a second light source that generates second light that promotes radiation in the rare earth element-doped optical amplification medium;
  • a multiplexer that multiplexes the first and second lights from the first and second light sources; And a supply unit that supplies the light combined by the multiplexer to the incident end or the output end.
  • the supply unit supplies the light combined by the multiplexer to the incident end
  • a second multiplexer that combines the first and second lights from the third and fourth light sources; and a second multiplexer that supplies the light combined by the second multiplexer to the emission end. And a supply unit.
  • the first light has a wavelength shorter than a C-band wavelength
  • the second light has a wavelength longer than the first light and shorter than the L band.
  • the second light has a wavelength near a radiation peak in the rare earth element-doped amplification medium.
  • the wavelength of the second light is about 1.
  • L 55 m More preferably, it is about 1.53 m.
  • the power of the second light is about
  • a power ratio between the second light and the first light is about -50 to OdB.
  • the rare earth element-doped optical amplifying medium of the optical amplifier according to the present invention is an erbium-doped fiber or an erbium-doped optical waveguide.
  • FIG. 1 is a diagram showing a configuration example of a conventional EDFA.
  • FIG. 3 is a diagram showing gain bands of C band and L band.
  • FIG. 4 is a diagram showing a configuration example of an embodiment of an optical amplifier according to the present invention.
  • FIG. 5 is a graph showing the relationship between wavelength and absorbed Z radiation of EDF.
  • FIG. 6 is a graph showing the relationship between EDF length and population inversion rate.
  • FIG. 7 is a graph showing the relationship between the wavelength at the incident end of the EDF and the back ASE.
  • FIG. 8 is a graph showing the relationship between wavelength and gain.
  • FIG. 8 is a table summarizing the characteristics of Examples and Comparative Examples 1 and 2.
  • FIG. 9 is a graph showing wavelengths that can be taken as second excitation light.
  • FIG. 11 is a graph showing a range that can be taken as the second pumping light power.
  • FIG. 12 is a graph showing a range that can be taken as a power ratio between the first excitation light and the second excitation light.
  • FIG. 13 is a diagram showing a modification of the embodiment, and shows a configuration example when the present invention is applied to a backward excitation EDFA.
  • FIG. 14 is a diagram showing a modification of the embodiment, and shows a configuration example when the present invention is applied to a bidirectional excitation EDFA.
  • FIG. 4 is a diagram showing an embodiment (configuration example) of an optical amplifier according to the present invention.
  • Fig. 4 shows an EDFA that amplifies L-band signal light by forward pumping as an optical amplifier.
  • the EDFA 10 includes an EDF 11 as a rare earth element-doped optical amplification medium having an incident end and an output end, a first light source 12, a second light source 13, a first light source 12, and A multiplexer 13 that multiplexes two wavelengths from the second light source 13, a L-band signal light, and a multiplexed light from the multiplexer 13, and combines them as a supply unit that is sent to the incident end of the EDF 15. It consists of waver 15.
  • the EDF 11 is an EDF for L-band amplification, and has an EDF length that is sufficiently longer than the C-band EDF so that the gain of the L-band signal light can be obtained at a predetermined value (for example, 14 dB) or more.
  • the first light source 12 is configured using, for example, a semiconductor laser (LD).
  • the first light source 12 emits first light that excites EDF. That is, the first light source generates pumping light having a wavelength shorter than the C band as pumping light (pump light) for the L band signal light.
  • the first light source 12 for example, a general-purpose 0.88, 0.88 or 1.48 m band excitation light (first light) used as an L-band excitation light source is applied. be able to.
  • the second light source 13 is configured using, for example, an LD.
  • the second light source 13 emits light having a wavelength that promotes radiation in the EDF 11 (second light).
  • the second light source 13 generates, as the second light, light having a wavelength longer than the wavelength of the excitation light output from the first light source 12 and shorter than the L band.
  • the wavelength of the second light is set to be near the radiation peak of EDF11.
  • FIG. 5 is a graph showing the relationship between the wavelength and the absorbed Z radiation of EDF.
  • the lower graph shows the absorption characteristics of EDF when EDF excitation light (for example, 0.98 / zm) is not incident
  • the upper graph shows the excitation light incident on EDF. Shows the radiation characteristics of EDF.
  • the wavelength near the peak (radiation peak) in this graph is set as the wavelength of the second light.
  • the wavelength around 1530 nm (about 1.53 ⁇ m) is set as the wavelength of the second light.
  • an lmW class low output LD that generates the second light having a desired wavelength can be used.
  • the multiplexers 14 and 15 for example, a WDM optical fiber force bra is applied.
  • the multiplexer 14 multiplexes the first light (excitation light) from the first light source 12 and the second light (referred to as “radiation promoting light”) from the second light source 13, Send to 15.
  • the multiplexer 15 has one wave or wavelength multiplexed L-bar. Signal light is incident.
  • the multiplexer 15 combines the L-band signal light and the light combined by the multiplexer 14 and enters the incident end of the EDF 11.
  • the first light from the first light source 12 (light that generates excitation light of EDF11 (absorption (increased inversion distribution rise): for example, 0.98 / ⁇ ⁇ )
  • the second light from the second light source 13 (light having a wavelength in the vicinity of the emission peak of EDF 11 (about 1.53 m) (radiation-promoting light (radiation-induced light)) is multiplexed by the multiplexer 14.
  • the light combined by the multiplexer 14 is combined with the L-band signal light by the multiplexer 15 and is incident on the incident end of the EDF 11.
  • the wavelength having the highest radiation characteristic is selected as the wavelength of the radiation promoting light (second light).
  • This wavelength is the most effective factor that causes (or induces) radiation in EDF11, and the inversion distribution near the EDF11 entrance (2-6 m, more specifically around 5 m), as shown in Figure 6.
  • Rise is suppressed. Suppressing the rise of the population inversion means that the generation of ASE near 5m is suppressed. This suppresses the generation of back ASE that travels in the direction of the entrance and is amplified by the excitation light and radiated at the entrance edge.
  • the excitation light first light
  • the conversion efficiency (amplification efficiency) of EDFA is improved.
  • the EDFA 10 can be configured by adding a low-power LD (second light source 13) and a multiplexer 14 to the configuration of the conventional EDFA. Therefore, efficiency can be improved at low cost.
  • a low-power LD second light source 13
  • a multiplexer 14 to the configuration of the conventional EDFA. Therefore, efficiency can be improved at low cost.
  • first and second lights described above both mean light that contributes to amplification of signal light.
  • EDF having a length of 28.5 m was applied as EDF11.
  • the L-band signal light amplified by the EDFA 10 32 waves (channels) at intervals of 100 GHz from 1577.03 nm to 1603.17 nm, and light of -20 dBmZch was applied.
  • a pumping LD that outputs 0.98 m and 130 mW light was used.
  • the EDF emission peak wavelength depends on the material doped with erbium (Er) (such as A1).
  • the emission peak wavelength of EDF11 applied in this example was 1.53 / zm. For this reason, an LD that outputs 1.53 / zm light (radiation promoting light) was used as the second light source 13.
  • the power of radiation promotion light was lmW.
  • FIG. 6 is a graph showing the relationship between the EDF length measured for the example and the population inversion ratio.
  • FIG. 7 is a graph showing the relationship between the wavelength and backASE measured for the example.
  • FIG. 8 is a graph showing the relationship between the wavelength and gain measured for the example.
  • FIG. 6 and FIG. 7 show the measurement results for Comparative Example 1 as an example to be compared with the Example
  • FIG. 8 shows the measurement results for Comparative Example 2 as an example to be compared with the Example. It is shown.
  • FIG. 9 is a table summarizing the measurement results of (2) Examples, (1) Comparative Example 1 and (3) Comparative Example 2. Details of Comparative Example 1 and Comparative Example 2 are as follows.
  • Comparative Example 1 As Comparative Example 1, an EDFA having the configuration shown in FIG.
  • Comparative Example 2 In addition to the configuration of Comparative Example 1, an excitation light force consisting of 5 C-band 5 nm-spacing 5 waves was made incident on the incident end of DF11. This excitation light is assumed to use ASE that spreads over the entire C band for excitation of EDF. Conditions other than those relating to incident light are the same as in the example.
  • FIG. 6 shows the measurement results when the light according to the example and the comparative example 1 is incident.
  • Comparative Example 1 conventional EDFA
  • the inversion distribution rate near the EDF11 entrance rises, and then the inversion distribution rate gradually increases toward the output end. Decreases.
  • this rising part appears at the incident end of EDF11 as a backASE in the C-band (peak: about 1530 nm) that causes deterioration of the excitation efficiency.
  • FIG. 8 shows a comparison between Example and Comparative Example 2.
  • the total power of the ASE (C band 7 waves) used in Comparative Example 2 and the radiation promoting light (1.53 m) in the example was set to lmW.
  • a comparison of the conversion efficiency between Example and Comparative Example 2 is shown in FIG.
  • FIG. 10 is a graph showing the relationship between the excitation wavelength (second light wavelength), the conversion efficiency, and the EDF radiation coefficient.
  • Fig. 10 we focus on the graph showing the relationship between conversion efficiency and wavelength. As a result, it can be seen that conversion efficiency is higher than those of Comparative Examples 1 and 2 in the wavelength band of 1490 nm to 1550 nm (about 1.49 to 1.55 m).
  • the conversion efficiency has a peak at a wavelength of 1532 nm (about 1.53 ⁇ m).
  • the conversion efficiency is maximized at the EDF radiation peak. Therefore, in the present invention, as the second light (radiation promoting light), the wavelength near the radiation peak (for example, around 1.53 m) is most preferably selected as the wavelength of the radiation peak. Is next preferred. In addition, selecting a wavelength near 1.53 m is preferable from the viewpoint of efficiently using excitation light of 0.98 m in view of the comparison result with Comparative Example 2.
  • the wavelength of the second light can be selected from a predetermined range centered on the radiation peak.
  • the peak wavelength (1532nm: -5.3dB) force is also reduced when the conversion efficiency decreases by ldB, 2dB, and 3dB.
  • m the peak wavelength
  • 1518-1545 approximately 1.51-: L 54 ⁇ m
  • It was 1512-1548 nm about 1.51-: L55 / zm.
  • One wavelength in these ranges can also be selected as the second light.
  • FIG. 11 is a graph showing the relationship between the power of 1.53 / z m pumping light (second light) and the conversion efficiency.
  • 7 dBm which is the power when the conversion efficiency reaches the peak, can be selected as the optical power.
  • the power of the second light can be selected as about -30 to 20 dBm as shown in FIG. Furthermore, in FIG. 11, the optical power ranges when the conversion efficiency is reduced by 1 dB, 2 dB, and 3 dB are ⁇ 10 to 17 dBm, 19 to 20 dBm, and ⁇ 25 to 22 dBm.
  • the power of the second light can be selected from any of these ranges.
  • FIG. 12 is a graph showing the power ratio between the second light (1.53 ⁇ m) and the first light (0.98 ⁇ m).
  • 1 ldB which is the power ratio when the conversion efficiency reaches its peak, can be selected.
  • the power ratio as shown in FIG. 12, an approximately -50 to OdB force can be selected. Further, in FIG. 12, the optical power ranges when ⁇ 1 dB, 2 dB, and 3 dB respectively decrease from the peak conversion efficiency were ⁇ 32 to ⁇ 6 dB, ⁇ 40 to 1 ldB, and ⁇ 47 to 0 dB.
  • the power ratio can be selected from any force in these ranges.
  • FIG. 13 is a diagram illustrating a configuration example of the EDFA 10A that performs backward excitation
  • FIG. 14 is a diagram illustrating a configuration example of the EDFA 10B that performs bidirectional excitation.
  • an EDFA 10A combines a first light source 12A that emits first light, a second light source 13A that emits second light, and a first light and a second light.
  • a multiplexer 14A and a multiplexer 15A as a supply unit for sending the combined light to the output end of the EDF 11 are provided. The same components as those shown in Fig. 4 can be applied.
  • the EDFA 10B includes a configuration related to forward excitation shown in FIG. And the configuration related to the backward pumping shown.
  • the EDFA 10B transmits the third light source 12B that generates the first light, the fourth light source 13B that generates the second light, and the first and second lights.
  • a multiplexer 14B as a second multiplexer for multiplexing and a multiplexer 15B as a second supply unit for supplying the light combined by the multiplexer 14B to the emission end of the EDF 11 are provided.
  • FIGS. 13 and 14 can be the same as the components shown in FIG. 4 (first light source 12, second light source 13, multiplexers 14 and 15). Therefore, description of each component is omitted.
  • EDF is applied as a rare earth element-doped optical amplification medium.
  • EDF it is also possible to apply an optical waveguide doped with erbium.
  • the optical amplifier to which erbium is applied as the rare earth element has been described.
  • the present invention is applied to an optical amplifier using an amplification medium doped with a rare earth element different from erbium (for example, prasedium or thulium).

Abstract

An optical amplifier comprising an optical amplification medium added with a rare earth element and having an incident end and an exit end with L-band signal light impinging on the incident end, a first light source generating first light for exciting the amplification medium, a second light source generating second light for accelerating radiation in the amplification medium, a multiplexer for multiplexing the first light and the second light, and a section for supplying multiplexed light from the multiplexer to the incident end or the exit end.

Description

明 細 書  Specification
光増幅器  Optical amplifier
技術分野  Technical field
[0001] 本発明は光増幅器に関し、特に Lバンドの WDM (Wavelength Division Multiplex) の光信号の増幅を行う光増幅器に関する。  The present invention relates to an optical amplifier, and more particularly to an optical amplifier that amplifies an L-band WDM (Wavelength Division Multiplex) optical signal.
背景技術  Background art
[0002] 近年、インターネット技術の発展に伴い、情報サービスの需要は飛躍的に増大して いる。幹線系の光伝送システムにおいては、さらなる大容量化、かつ柔軟なネットヮ ーク形成が求められて 、る。  In recent years, with the development of Internet technology, the demand for information services has increased dramatically. In trunk-line optical transmission systems, there is a demand for further large capacity and flexible network formation.
[0003] このようなシステム需要に対応する最も有効な伝送技術に WDMがある。 WDMは 、波長の異なる光を多重して、 1本の光ファイバで複数の信号を同時に伝送する伝送 方式である。現在、すでに北米を中心に WDMの商用化が進められている。  [0003] WDM is the most effective transmission technology to meet such system demands. WDM is a transmission system that multiplexes light of different wavelengths and transmits multiple signals simultaneously using a single optical fiber. Currently, commercialization of WDM is already in progress mainly in North America.
[0004] 一方、 WDMシステムを実現するキーコンポーネントとして、 EDFA(Erbium- Doped Fiber Amplifier)がある。 EDFAは、エルビウム(Er3+)添カ卩ファイバ(EDF : Erbium- Do ped Fiber)を増幅媒体とし、広い利得帯域を利用して波長多重した光信号を一括し て増幅することが可能な光増幅器である。 [0004] On the other hand, there is an EDFA (Erbium-Doped Fiber Amplifier) as a key component for realizing a WDM system. EDFA is erbium (Er 3+)添Ka卩fiber (EDF: Erbium- Do ped Fiber) and the amplifying medium, which can collectively amplifying the optical signal wavelength-multiplexed by using a wide gain band light It is an amplifier.
[0005] 最も増幅効率が良い Cバンド (Conventional band:約 1530〜約 1560nm)の EDFAが 初めに商用化され、現在は、その次に増幅効率が良い Lバンド (Longer wavelength b and:約1570〜1610nm)のEDFAも商用化されてきてぃる。  [0005] The C band (Conventional band: about 1530 to about 1560 nm) with the highest amplification efficiency was first commercialized, and now the L band (Longer wavelength b and: about 1570 to the next highest amplification efficiency). 1610nm) EDFA has also been commercialized.
[0006] 最も基本的な Lバンド EDFAの構成は、図 1に示すような前方励起構成を持つ。図 1において、 Lバンド EDFAは、例えば 0. 98 mの励起光 (ポンプ光)を発する励起 光源 (レーザダイオード: LD)1と、 Lバンドの信号光と励起光とを合波する合波器 2と、 合波された光が入射される EDF3とを備えて 、る。  [0006] The most basic L-band EDFA configuration has a forward excitation configuration as shown in FIG. In Fig. 1, an L-band EDFA is a multiplexer that combines, for example, an excitation light source (laser diode: LD) 1 that emits excitation light (pump light) of 0.98 m, and L-band signal light and excitation light. 2 and EDF3 into which the combined light is incident.
[0007] このような EDFAにおける Lバンドの光増幅の特徴について簡単に説明する。図 2 は、 EDFの単位長さあたりの利得 (利得係数)に関する波長特性を反転分布率 t(t = 0 . 0〜1. 0)について示した図であり、図 3は、 Cバンド及び Lバンドの利得帯域を示す 図である。 [0008] 図 2及び図 3に示すように、 Cバンドでは、反転分布率が約 0. 7(図 3では t=0. 65) のときに利得特性が平坦となり、 Cバンドの利得が支配的に (ほぼ一定に)なる。これに 対し、反転分布率が約 0. 7のとき、 Lバンドの波長は傾いた状態となる。このため、 L バンド増幅では、利得特性がほぼ平坦 (一定)となる反転分布率として、約 0. 4(図 3で は t=0. 39)が利用される。即ち、 Lバンドの光増幅では、 Cバンドよりも低い反転分 布率の設定状況下で、 Cバンド増幅で利用される 0. 98 111帯ゃ1. 48 m帯の励 起光が EDFに供給される。この場合、反転分布率が低いため、単位長さあたりの増 幅率が低くなる。従って、 Lバンド増幅用の EDFは、 Lバンド信号光に対してほぼ同じ 利得を供給し、且つ Cバンドの信号光利得と同じ利得にするために、長尺化される。 [0007] The characteristics of L-band optical amplification in EDFA will be briefly described. Figure 2 shows the wavelength characteristics of the EDF gain per unit length (gain coefficient) with respect to the inversion distribution rate t (t = 0.0 to 1.0). Figure 3 shows the C band and L It is a figure which shows the gain band of a band. As shown in FIG. 2 and FIG. 3, in the C band, the gain characteristic becomes flat when the population inversion ratio is about 0.7 (t = 0.65 in FIG. 3), and the gain of the C band dominates. (Almost constant). On the other hand, when the population inversion ratio is about 0.7, the wavelength of the L band is tilted. For this reason, in the L-band amplification, about 0.4 (t = 0.39 in Fig. 3) is used as the inversion distribution rate at which the gain characteristics are almost flat (constant). In other words, in the L-band optical amplification, the 0.98-111 band and 1.48-m band excitation light used in the C-band amplification is supplied to the EDF under the setting of the inversion ratio lower than that of the C band Is done. In this case, since the inversion distribution rate is low, the amplification rate per unit length is low. Therefore, the EDF for L-band amplification is lengthened to supply almost the same gain to the L-band signal light and to have the same gain as the C-band signal light gain.
[0009] 図 1に示すような EDFAの構成では、 Lバンドの信号光及び励起光が EDF3に入 射されると、励起光波長での単位長当たり吸収量に対し Lバンド信号光波長での単 位長当たりの放射量が非常に小さいことに起因し、図 6における 0. ge ^ mlSOmW のグラフに示すように、 EDF長 2〜6m(5m)付近で反転分布率の盛り上がりが発生す る。ちなみに、 Cバンド信号光の場合は、単位長あたりの放射量が Lバンド信号光ほ ど小さくないため、この盛り上がりは Lバンドほど顕著ではない。 EDF長 5m付近の反 転分布率の盛り上がりにより、ここで大量の Cバンドの ASE(Amplified Spontaneous E mission)が発生する。発生した ASEのうち、入り口方向に進行する ASEは励起光に よりさらに増幅され、入り口端力も back ASEとして放射されてしまう。上記の機構に より、図 1に示すような Lバンド EDFAでは、励起光力 ¾ack ASEの増幅に使われて しまうことによる変換効率の劣化が起こり、 Cバンド EDFAほどの変換効率が得られな い。  In the EDFA configuration as shown in FIG. 1, when L-band signal light and excitation light are incident on the EDF3, the amount of absorption per unit length at the excitation light wavelength is less than that at the L-band signal light wavelength. Due to the very small amount of radiation per unit length, as shown in the graph of 0. ge ^ mlSOmW in Fig. 6, the inversion distribution rate rises in the vicinity of 2 to 6 m (5 m) EDF length. . Incidentally, in the case of C-band signal light, the amount of radiation per unit length is not as small as that of L-band signal light, so this rise is not as pronounced as in the L-band. A large amount of C-band ASE (Amplified Spontaneous Emission) occurs due to the rise of the reversal distribution rate near the EDF length of 5 m. Of the generated ASE, the ASE traveling toward the entrance is further amplified by the excitation light, and the entrance edge force is also emitted as a back ASE. With the above mechanism, in the L-band EDFA as shown in Fig. 1, the conversion efficiency deteriorates due to being used for amplification of the excitation light ¾ack ASE, and the conversion efficiency as high as the C-band EDFA cannot be obtained. .
[0010] なお、後方励起における反転分布率は、前方励起と逆の状態となる。  [0010] Note that the inversion distribution ratio in the backward excitation is in a state opposite to that in the forward excitation.
[0011] 上述したような Lバンド特有の効率劣化を抑える方法として、例えば、特許文献 1及 び 2に開示された技術がある。特許文献 1では、 Lバンド EDFAにおいて、 0. 98 m の励起光で増幅される Cバンド EDF中の光信号及び ASEに含まれる特定波長 (Cバ ンドの中の最高効率の 1. 55 m)を増幅し、この増幅光をタップ結合器や Lバンド光 信号の励起光として使用する構成を開示して 、る。 [0011] As a method for suppressing the efficiency degradation peculiar to the L band as described above, for example, there are techniques disclosed in Patent Documents 1 and 2. In Patent Document 1, in the L-band EDFA, the optical signal in the C-band EDF amplified by 0.98 m excitation light and the specific wavelength included in the ASE (the highest efficiency in the C-band is 1.55 m) A configuration in which this amplified light is used as a tap coupler or pumping light for an L-band optical signal is disclosed.
[0012] し力しながら、特許文献 1に開示された技術には以下の問題がある。第 1に、 Cバン ド EDFは、 Lバンド信号光をほとんど増幅しない。このため、 Cバンド EDFと Lバンド E DFとの間に配置されるタップ結合器やフィルタ、発振を防ぐためのアイソレータのよう な光部品によるロスとほぼ等価量だけ、 EDFA全体の NF(Noise Figure :雑音指数) が劣化してしまう。第 2に、 Cバンド ASEを発生させる第 1の EDFと Lバンド帯増幅の 第 2の EDFとの 2つの EDFが必要である。これは、コスト上昇を招来する。 However, the technique disclosed in Patent Document 1 has the following problems. First, C van EDF hardly amplifies L-band signal light. For this reason, the overall EDFA NF (Noise Figure) is almost equivalent to the loss caused by optical components such as tap couplers and filters placed between C-band EDF and L-band EDF, and isolators to prevent oscillation. : Noise figure) will deteriorate. Second, two EDFs are required: a first EDF that generates C-band ASE and a second EDF with L-band amplification. This leads to an increase in cost.
[0013] 特許文献 2では、 Cバンド EDFから出力される 0. 98 mの残留励起光と 1. 55 m帯の ASEをサーキユレータを用いて、 Lバンド EDFの励起光に用いる方法が開示 されている。 [0013] Patent Document 2 discloses a method of using 0.98 m residual pumping light output from C-band EDF and 1.55 m band ASE as excitation light for L-band EDF using a circulator. Yes.
[0014] し力しながら、特許文献 2に開示された技術には次の問題がある。第 1に、信号光を 増幅する Lバンド EDFが後方励起になる。このため、 NFを決定する入り口の反転分 布率が非常に下がってしまい、 NF劣化が激しくなると考えられる。第 2に、サーキユレ ータという特殊な部品が必要である。さらに、特許文献 1の技術と同様に、 Cバンド A SEを発生させる第 1の EDFと Lバンド帯増幅の第 2の EDFとの 2つの EDFが必要で ある。  However, the technique disclosed in Patent Document 2 has the following problems. First, the L-band EDF that amplifies the signal light is backward pumped. For this reason, the inversion distribution rate at the entrance to determine NF is greatly reduced, and it is thought that NF degradation will become severe. Second, a special part called a circuit is required. Furthermore, as in the technique of Patent Document 1, two EDFs are required, a first EDF that generates C-band ASE and a second EDF for L-band amplification.
特許文献 1:特開 2003 - 243755号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-243755
特許文献 2 :特開 2002— 94158号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-94158
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] 本発明の目的は、コストの上昇を抑えつつ効率向上を図ることができる Lバンド用の 光増幅器を提供することである。 [0015] An object of the present invention is to provide an L-band optical amplifier capable of improving efficiency while suppressing an increase in cost.
課題を解決するための手段  Means for solving the problem
[0016] 本発明は、上記目的を達成するため、以下の構成を採用する。 The present invention employs the following configuration in order to achieve the above object.
[0017] 即ち、本発明は、入射端及び出射端を有し、前記入射端に Lバンド信号光が入射 される希土類元素添加光増幅媒体と、 That is, the present invention includes a rare earth element-doped optical amplification medium having an incident end and an output end, and an L-band signal light is incident on the incident end.
前記希土類元素添加光増幅媒体を励起する第 1の光を発生する第 1光源と、 前記希土類元素添加光増幅媒体における放射を促進する第 2の光を発生する第 2 光源と、  A first light source that generates first light for exciting the rare earth element-doped optical amplification medium; a second light source that generates second light that promotes radiation in the rare earth element-doped optical amplification medium;
前記第 1及び第 2光源からの前記第 1及び第 2の光を合波する合波器と、 前記合波器で合波された光を前記入射端又は前記出射端に供給する供給部と、 を含む光増幅器である。 A multiplexer that multiplexes the first and second lights from the first and second light sources; And a supply unit that supplies the light combined by the multiplexer to the incident end or the output end.
[0018] 好ましくは、本発明に係る光増幅器は、前記供給部は、前記合波器で合波された 光を前記入射端に供給し、  Preferably, in the optical amplifier according to the present invention, the supply unit supplies the light combined by the multiplexer to the incident end,
前記第 1の光を発生する第 3光源と、  A third light source for generating the first light;
前記第 2の光を発生する第 4光源と、  A fourth light source for generating the second light;
前記第 3及び第 4光源からの前記第 1及び第 2の光を合波する第 2合波器と、 前記第 2の合波器で合波された光を前記出射端に供給する第 2供給部とをさらに 含む。  A second multiplexer that combines the first and second lights from the third and fourth light sources; and a second multiplexer that supplies the light combined by the second multiplexer to the emission end. And a supply unit.
[0019] 好ましくは、本発明に係る光増幅器において、前記第 1の光は Cバンド波長より短 い波長を有し、  Preferably, in the optical amplifier according to the present invention, the first light has a wavelength shorter than a C-band wavelength,
前記第 2の光は、前記第 1の光より長ぐ且つ Lバンドより短い波長を有する。  The second light has a wavelength longer than the first light and shorter than the L band.
[0020] また、好ましくは、本発明に係る光増幅器にお!、て、前記第 2の光は、前記希土類 元素添加増幅媒体における放射ピーク付近の波長を有する。 [0020] Preferably, in the optical amplifier according to the present invention, the second light has a wavelength near a radiation peak in the rare earth element-doped amplification medium.
[0021] また、好ましくは、本発明に係る光増幅器において、前記第 2の光の波長は、約 1. [0021] Preferably, in the optical amplifier according to the present invention, the wavelength of the second light is about 1.
49〜: L 55 mである。さら〖こ好ましくは、約 1. 53 mである。  49-: L 55 m. More preferably, it is about 1.53 m.
[0022] また、好ましくは、本発明に係る光増幅器において、前記第 2の光のパワーは、約[0022] Preferably, in the optical amplifier according to the present invention, the power of the second light is about
— 30〜20dBmである。 — 30-20dBm.
[0023] また、好ましくは、本発明に係る光増幅器において、前記第 2の光と前記第 1の光と のパワー比は、約— 50〜OdBである。  [0023] Preferably, in the optical amplifier according to the present invention, a power ratio between the second light and the first light is about -50 to OdB.
[0024] また、本発明に係る光増幅器の希土類元素添加光増幅媒体は、エルビウムドープ ファイバ、又はエルビウムドープ光導波路である。 [0024] The rare earth element-doped optical amplifying medium of the optical amplifier according to the present invention is an erbium-doped fiber or an erbium-doped optical waveguide.
発明の効果  The invention's effect
[0025] 本発明によれば、コストの上昇を抑えつつ効率向上を図ることができる Lバンド用の 光増幅器を提供することができる。  [0025] According to the present invention, it is possible to provide an L-band optical amplifier capable of improving efficiency while suppressing an increase in cost.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]図 1は、従来における EDFAの構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a conventional EDFA.
[図 2]図 2は、 EDFの単位長さあたりの利得係数に関する波長特性を反転分布率 (t =0. 0〜1. 0)について示した図である。 [Figure 2] Figure 2 shows the wavelength distribution of the gain coefficient per unit length of EDF and the inversion distribution ratio (t = 0 to 1.0).
[図 3]図 3は、 Cバンド及び Lバンドの利得帯域を示す図である。  FIG. 3 is a diagram showing gain bands of C band and L band.
[図 4]図 4は、本発明に係る光増幅器の実施形態の構成例を示す図である。  FIG. 4 is a diagram showing a configuration example of an embodiment of an optical amplifier according to the present invention.
[図 5]図 5は、波長と EDFの吸収 Z放射との関係を示すグラフである。  [FIG. 5] FIG. 5 is a graph showing the relationship between wavelength and absorbed Z radiation of EDF.
[図 6]図 6は、 EDF長と反転分布率との関係を示すグラフである。  FIG. 6 is a graph showing the relationship between EDF length and population inversion rate.
[図 7]図 7は、 EDFの入射端における波長と back ASEとの関係を示すグラフである。  FIG. 7 is a graph showing the relationship between the wavelength at the incident end of the EDF and the back ASE.
[図 8]図 7は、波長と利得との関係を示すグラフである。  FIG. 8 is a graph showing the relationship between wavelength and gain.
[図 9]図 8は、実施例と比較例 1及び 2との特性をまとめた表である。  FIG. 8 is a table summarizing the characteristics of Examples and Comparative Examples 1 and 2.
[図 10]図 9は、第 2の励起光として採り得る波長を示すグラフである。  FIG. 9 is a graph showing wavelengths that can be taken as second excitation light.
[図 11]図 11は、第 2の励起光パワーとして採り得る範囲を示すグラフである。  FIG. 11 is a graph showing a range that can be taken as the second pumping light power.
[図 12]図 12は、第 1の励起光と第 2の励起光とのパワー比として採り得る範囲を示す グラフである。  FIG. 12 is a graph showing a range that can be taken as a power ratio between the first excitation light and the second excitation light.
[図 13]図 13は、実施形態の変形例を示す図であり、本発明を後方励起 EDFAに適 用した場合の構成例を示す。  FIG. 13 is a diagram showing a modification of the embodiment, and shows a configuration example when the present invention is applied to a backward excitation EDFA.
[図 14]図 14は、実施形態の変形例を示す図であり、本発明を双方向励起 EDFAに 適用した場合の構成例を示す。  FIG. 14 is a diagram showing a modification of the embodiment, and shows a configuration example when the present invention is applied to a bidirectional excitation EDFA.
符号の説明  Explanation of symbols
[0027] 10 · · ·エルビウムドープ光ファイバ増幅器 (EDFA)  [0027] 10 · · · Erbium-doped fiber amplifier (EDFA)
11 · · 'エルビウムドープファイバ (EDF)  11 · · 'Erbium-doped fiber (EDF)
12,12Α· · ·第 1光源  12,12Α · · · First light source
12Β· · ·第 3光源  12Β · · · 3rd light source
13,13Α…第 2光源  13,13Α… Second light source
13Β· · ·第 4光源  13Β · · · 4th light source
14,14Α,15, 15Α· · ·合波器  14,14Α, 15,15Α
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、図面を参照して本発明の実施形態について説明する。実施形態における構 成は例示であり、本発明は、実施形態の構成に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configuration in the embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.
[0029] 〈光増幅器の構成〉 図 4は、本発明に係る光増幅器の実施形態 (構成例)を示す図である。図 4には、光 増幅器として、前方励起により Lバンド信号光を増幅する EDFAが示されて 、る。 <Configuration of optical amplifier> FIG. 4 is a diagram showing an embodiment (configuration example) of an optical amplifier according to the present invention. Fig. 4 shows an EDFA that amplifies L-band signal light by forward pumping as an optical amplifier.
[0030] 図 4にお ヽて、 EDFA10は、入射端と出射端とを有する希土類元素添加光増幅媒 体としての EDF11と、第 1光源 12と、第 2光源 13と、第 1光源 12及び第 2光源 13か らの 2波長を合波する合波器 13と、 Lバンドの信号光と合波器 13からの合波光とを合 波し、 EDF15の入射端に送る供給部としての合波器 15とからなる。  In FIG. 4, the EDFA 10 includes an EDF 11 as a rare earth element-doped optical amplification medium having an incident end and an output end, a first light source 12, a second light source 13, a first light source 12, and A multiplexer 13 that multiplexes two wavelengths from the second light source 13, a L-band signal light, and a multiplexed light from the multiplexer 13, and combines them as a supply unit that is sent to the incident end of the EDF 15. It consists of waver 15.
[0031] EDF11は、 Lバンド増幅用の EDFであり、 Lバンド信号光の利得が所定値 (例えば 14dB)以上得られるような、 Cバンド用 EDFに比べて十分長!、EDF長を有する。  [0031] The EDF 11 is an EDF for L-band amplification, and has an EDF length that is sufficiently longer than the C-band EDF so that the gain of the L-band signal light can be obtained at a predetermined value (for example, 14 dB) or more.
[0032] 第 1光源 12は、例えば、半導体レーザ (LD)を用いて構成される。第 1光源 12は、 E DFを励起する第 1の光を発する。即ち、第 1光源は、 Lバンド信号光に対する励起光 (ポンプ光)として、 Cバンドより短い波長を有する励起光を発生する。第 1光源 12とし て、例えば、 Lバンドの励起光源として使用される、汎用の 0. 81, 0. 08又は 1. 48 m帯の励起光 (第 1の光)を発する励起 LDを適用することができる。  The first light source 12 is configured using, for example, a semiconductor laser (LD). The first light source 12 emits first light that excites EDF. That is, the first light source generates pumping light having a wavelength shorter than the C band as pumping light (pump light) for the L band signal light. As the first light source 12, for example, a general-purpose 0.88, 0.88 or 1.48 m band excitation light (first light) used as an L-band excitation light source is applied. be able to.
[0033] 第 2光源 13は、例えば、 LDを用いて構成される。第 2光源 13は、 EDF11における 放射を促進する波長の光 (第 2の光)を発する。第 2光源 13は、第 2の光として、第 1光 源 12から出力される励起光の波長よりも長く且つ Lバンドより短い波長の光を発生す る。第 2の光の波長は、例えば、 EDF11の放射ピーク付近となるように設定される。  [0033] The second light source 13 is configured using, for example, an LD. The second light source 13 emits light having a wavelength that promotes radiation in the EDF 11 (second light). The second light source 13 generates, as the second light, light having a wavelength longer than the wavelength of the excitation light output from the first light source 12 and shorter than the L band. For example, the wavelength of the second light is set to be near the radiation peak of EDF11.
[0034] 図 5は、波長と EDFの吸収 Z放射との関係を示すグラフである。図 5において、下 側のグラフは、 EDFの励起光 (例えば、 0. 98 /z m)が入射されていない場合における EDFでの吸収特性を示し、上側のグラフは、励起光が EDFに入射されている場合に おける EDFの放射特性を示す。  FIG. 5 is a graph showing the relationship between the wavelength and the absorbed Z radiation of EDF. In Fig. 5, the lower graph shows the absorption characteristics of EDF when EDF excitation light (for example, 0.98 / zm) is not incident, and the upper graph shows the excitation light incident on EDF. Shows the radiation characteristics of EDF.
[0035] ここでは、上側のグラフに着目し、このグラフ中のピーク (放射ピーク)付近の波長が 、第 2の光の波長として設定される。図 5に示す例では、 1530nm付近 (約 1. 53 ^ m) の波長が、第 2の光の波長として設定される。第 2光源 13として、所望の波長を有す る第 2の光を発生する lmW級の低出力の LDを適用することができる。  Here, focusing on the upper graph, the wavelength near the peak (radiation peak) in this graph is set as the wavelength of the second light. In the example shown in Fig. 5, the wavelength around 1530 nm (about 1.53 ^ m) is set as the wavelength of the second light. As the second light source 13, an lmW class low output LD that generates the second light having a desired wavelength can be used.
[0036] 合波器 14及び 15として、例えば WDM光ファイバ力ブラが適用される。合波器 14 は、第 1光源 12からの第 1の光 (励起光)と、第 2光源 13からの第 2の光 (「放射促進光 」と呼ぶ)とを合波し、合波器 15に送る。合波器 15には、 1波又は波長多重された Lバ ンド信号光が入射される。合波器 15は、 Lバンド信号光と合波器 14で合波された光 とを合波し、 EDF11の入射端に入射する。 [0036] As the multiplexers 14 and 15, for example, a WDM optical fiber force bra is applied. The multiplexer 14 multiplexes the first light (excitation light) from the first light source 12 and the second light (referred to as “radiation promoting light”) from the second light source 13, Send to 15. The multiplexer 15 has one wave or wavelength multiplexed L-bar. Signal light is incident. The multiplexer 15 combines the L-band signal light and the light combined by the multiplexer 14 and enters the incident end of the EDF 11.
[0037] 〈光増幅器の作用効果〉  <Operational effect of optical amplifier>
図 4に示す光増幅器 (EDFA10)によると、第 1光源 12からの第 1の光 (EDF11の励 起光 (吸収 (反転分布上昇)を生じさせる光:例えば 0. 98 /ζ πι》と、第 2光源 13からの 第 2の光 (EDF11の放射ピーク付近の波長 (約 1. 53 m)を有する光 (放射促進光( 放射誘発光))が、合波器 14で合波される。合波器 14で合波された光は、合波器 15 で Lバンド信号光と合波され、 EDF11の入射端に入射される。  According to the optical amplifier (EDFA10) shown in FIG. 4, the first light from the first light source 12 (light that generates excitation light of EDF11 (absorption (increased inversion distribution rise): for example, 0.98 / ζ πι)), The second light from the second light source 13 (light having a wavelength in the vicinity of the emission peak of EDF 11 (about 1.53 m) (radiation-promoting light (radiation-induced light)) is multiplexed by the multiplexer 14. The light combined by the multiplexer 14 is combined with the L-band signal light by the multiplexer 15 and is incident on the incident end of the EDF 11.
[0038] 放射促進光 (第 2の光)の波長として、図 5に示すように、 EDF11において最も高い 放射特性を持つ波長が選択される。この波長は、 EDF11での放射を引き起こす (誘 発する)要因として最も有効に作用し、図 6に示したような、 EDF11の入口付近 (2〜6 m、さらに詳細には 5m付近)における反転分布の上昇が抑えられる。反転分布の上 昇が抑えられることは、 5m付近での ASEの発生が抑えられることを意味する。これに より、入り口方向に進行し、励起光により増幅され入り口端力 放射される back ASE の発生が抑えられる。これによつて、励起光 (第 1の光)が、 back ASEの増幅に使用さ れることなぐ効率的に Lバンド信号光の増幅に使用される。従って、 EDFAとしての 変換効率 (増幅効率)が向上する。  [0038] As shown in FIG. 5, the wavelength having the highest radiation characteristic is selected as the wavelength of the radiation promoting light (second light). This wavelength is the most effective factor that causes (or induces) radiation in EDF11, and the inversion distribution near the EDF11 entrance (2-6 m, more specifically around 5 m), as shown in Figure 6. Rise is suppressed. Suppressing the rise of the population inversion means that the generation of ASE near 5m is suppressed. This suppresses the generation of back ASE that travels in the direction of the entrance and is amplified by the excitation light and radiated at the entrance edge. As a result, the excitation light (first light) can be efficiently used to amplify the L-band signal light without being used to amplify the back ASE. Therefore, the conversion efficiency (amplification efficiency) of EDFA is improved.
[0039] また、 EDFA10は、従来の EDFAの構成に、低出力の LD (第 2光源 13)と、合波器 14とを追加することで構成することができる。このため、低コストで効率向上を図ること ができる。  [0039] The EDFA 10 can be configured by adding a low-power LD (second light source 13) and a multiplexer 14 to the configuration of the conventional EDFA. Therefore, efficiency can be improved at low cost.
[0040] なお、上述した第 1及び第 2の光は、共に信号光の増幅に寄与する光という意味で [0040] It should be noted that the first and second lights described above both mean light that contributes to amplification of signal light.
、「第 1の励起光」及び「第 2の励起光」と呼ぶこともできる。 , “First excitation light” and “second excitation light”.
[0041] 〈実施例〉 <Example>
次に、図 4に示したような構成を持つ EDFA10の実施例について説明する。実施 例では、 EDF11として、 28. 5mの長さを有する EDFを適用した。  Next, an embodiment of the EDFA 10 having the configuration shown in FIG. 4 will be described. In the examples, EDF having a length of 28.5 m was applied as EDF11.
[0042] また、 EDFA10で増幅される Lバンド信号光として、 1577. 03nm〜1603. 17nm までの 100GHz間隔の 32波 (チャネル)であって、—20dBmZchの光を適用した。ま た、第 1光源 12として、 0. 98 m, 130mWの光を出力する励起 LDを適用した。 [0043] EDF放射ピーク波長は、エルビウム (Er)とともにドープされる材料 (A1等)に左右され る。この実施例で適用される EDF11の放射ピーク波長は 1. 53 /z mであった。このた め、 1. 53 /z mの光 (放射促進光)を出力する LDを第 2光源 13として適用した。また、 放射促進光のパワーは lmWとした。 [0042] In addition, as the L-band signal light amplified by the EDFA 10, 32 waves (channels) at intervals of 100 GHz from 1577.03 nm to 1603.17 nm, and light of -20 dBmZch was applied. As the first light source 12, a pumping LD that outputs 0.98 m and 130 mW light was used. [0043] The EDF emission peak wavelength depends on the material doped with erbium (Er) (such as A1). The emission peak wavelength of EDF11 applied in this example was 1.53 / zm. For this reason, an LD that outputs 1.53 / zm light (radiation promoting light) was used as the second light source 13. The power of radiation promotion light was lmW.
[0044] 図 6は、実施例について測定した EDF長と反転分布率との関係を示すグラフである 。図 7は、実施例について測定した波長と backASEとの関係を示すグラフである。図 8は、実施例につ!、て測定した波長と利得との関係を示すグラフである。  [0044] FIG. 6 is a graph showing the relationship between the EDF length measured for the example and the population inversion ratio. FIG. 7 is a graph showing the relationship between the wavelength and backASE measured for the example. FIG. 8 is a graph showing the relationship between the wavelength and gain measured for the example.
[0045] 図 6及び図 7には、実施例と比較すべき例として、比較例 1に対する測定結果が示 され、図 8には、実施例と比較すべき例として、比較例 2の測定結果が示されている。 図 9は、(2)実施例,(1)比較例 1及び (3)比較例 2の測定結果をまとめた表である。比 較例 1及び比較例 2の詳細は次の通りである。  FIG. 6 and FIG. 7 show the measurement results for Comparative Example 1 as an example to be compared with the Example, and FIG. 8 shows the measurement results for Comparative Example 2 as an example to be compared with the Example. It is shown. FIG. 9 is a table summarizing the measurement results of (2) Examples, (1) Comparative Example 1 and (3) Comparative Example 2. Details of Comparative Example 1 and Comparative Example 2 are as follows.
[0046] 《比較例 1》 比較例 1として、図 1に示したような構成を持つ EDFAを用意し、 0. 98  << Comparative Example 1 >> As Comparative Example 1, an EDFA having the configuration shown in FIG.
^ m, 130mWの励起光のみが EDF11に入射される (1. 53 mが入射されない)よ うにした。この入射光に係る条件を除く条件は、実施例と同じである。  Only the excitation light of ^ m, 130mW is incident on EDF11 (1.53m is not incident). Conditions other than the conditions relating to the incident light are the same as in the example.
[0047] 《比較例 2》 比較例 2として、比較例 1の構成にカ卩えて、さらに、 Cバンドの 5nm間 隔 5波からなる励起光力 ¾DF11の入射端に入射されるようにした。この励起光は、 C バンド帯全体に広がる ASEを EDFの励起に用いる場合を想定したものである。入射 光に係る条件を除く条件は、実施例と同じである。  << Comparative Example 2 >> As Comparative Example 2, in addition to the configuration of Comparative Example 1, an excitation light force consisting of 5 C-band 5 nm-spacing 5 waves was made incident on the incident end of DF11. This excitation light is assumed to use ASE that spreads over the entire C band for excitation of EDF. Conditions other than those relating to incident light are the same as in the example.
[0048] 図 6は、実施例及び比較例 1に係る光が入射された場合における測定結果を示し ている。図 6に示すように、比較例 1(従来の EDFA)では、 EDF11の入口付近 (約 2 〜6mの部分)の反転分布率が盛り上がり、その後、出力端に向力つて徐々に反転分 布率が低下する。この盛り上がり部分は、図 7に示すように、励起効率の悪化を招来 する Cバンド帯域 (ピーク:約 1530nm)の backASEとして、 EDF11の入射端に現れ る。  FIG. 6 shows the measurement results when the light according to the example and the comparative example 1 is incident. As shown in Fig. 6, in Comparative Example 1 (conventional EDFA), the inversion distribution rate near the EDF11 entrance (about 2 to 6 m) rises, and then the inversion distribution rate gradually increases toward the output end. Decreases. As shown in Fig. 7, this rising part appears at the incident end of EDF11 as a backASE in the C-band (peak: about 1530 nm) that causes deterioration of the excitation efficiency.
[0049] これに対し、実施例では、図 6に示すように、比較例 1に存在した入口付近の盛り上 力 Sり部分が消えて、反転分布率 0, 5付近で平坦となっている。このように、盛り上がり 部分が消えることで、図 7に示すように、比較例 1に存在する約 1530nmを中心とした backASEが低下している。従って、実施例は、 EDFの入口付近の反転分布率の改 善を図り、効率に悪影響を及ぼす backASEの発生を抑えることがわかる。 On the other hand, in the example, as shown in FIG. 6, the portion of the rising force S near the entrance that existed in Comparative Example 1 disappears, and is flat near the inversion distribution ratios 0 and 5. . As shown in FIG. 7, the backASE centered at about 1530 nm, which is present in Comparative Example 1, is reduced due to the disappearance of the rising portion. Therefore, in the example, the inversion distribution ratio near the EDF entrance is improved. It can be seen that the occurrence of backASE that adversely affects efficiency is suppressed.
[0050] また、図 9に示した (2)実施例と (1)比較例 1との NFの差分 ((2)— (1》を参照すると、 実施例による NFの劣化は 0. 2dBであり、 NFの劣化が十分に小さいことがわかる。こ のように、本発明によれば、 NFの劣化を抑えた効率向上を図ることができる。  [0050] Also, referring to (2)-(1), the difference in NF between (2) Example and (1) Comparative Example 1 shown in FIG. Thus, it can be seen that the degradation of NF is sufficiently small.As described above, according to the present invention, it is possible to improve the efficiency while suppressing the degradation of NF.
[0051] また、図 9によれば、実施例で放射促進光 (1. 53 μ m)を追加したことによって、変 換効率が約 4dB(4. 2dB)改善されて 、ることがわ力る。  [0051] Also, according to FIG. 9, the addition of radiation promoting light (1.53 μm) in the example improves the conversion efficiency by about 4 dB (4.2 dB), indicating that The
[0052] 図 8は、実施例と比較例 2との比較を示す。この比較に際して、比較例 2で使用され る ASE(Cバンド 7波)と、実施例における放射促進光 (1. 53 m)のトータルパワーは lmWに揃えた。実施例と比較例 2との変換効率に対する比較を図 9に示す。  FIG. 8 shows a comparison between Example and Comparative Example 2. In this comparison, the total power of the ASE (C band 7 waves) used in Comparative Example 2 and the radiation promoting light (1.53 m) in the example was set to lmW. A comparison of the conversion efficiency between Example and Comparative Example 2 is shown in FIG.
[0053] 図 9に示すように、比較例 2による変換効率は、 9. 5dBであり、比較例 1と同じ結 果を示した。即ち、 ASEでは、効率改善が図られないことがわかる。これは、図 8に示 すように、 0. 98 mの励起光パワーが Cバンドの長波長帯の励起光の増幅に使わ れてしまうためである。  As shown in FIG. 9, the conversion efficiency in Comparative Example 2 was 9.5 dB, showing the same result as in Comparative Example 1. In other words, ASE does not improve efficiency. This is because, as shown in Fig. 8, the pump light power of 0.98 m is used to amplify the pump light in the C-band long wavelength band.
[0054] 図 10は、励起波長 (第 2の光の波長)と、変換効率と、 EDF放射係数との関係を示 すグラフである。図 10において、変換効率と波長との関係を示すグラフに着目する。 すると、 1490nm〜1550nm (約 1. 49~1. 55 m)の波長帯域で、比較例 1及び 2 よりも高 、変換効率が得られることがわかる。  FIG. 10 is a graph showing the relationship between the excitation wavelength (second light wavelength), the conversion efficiency, and the EDF radiation coefficient. In Fig. 10, we focus on the graph showing the relationship between conversion efficiency and wavelength. As a result, it can be seen that conversion efficiency is higher than those of Comparative Examples 1 and 2 in the wavelength band of 1490 nm to 1550 nm (about 1.49 to 1.55 m).
[0055] また、図 10では、波長 1532nm (約 1. 53 μ m)で、変換効率がピークとなっている。  In FIG. 10, the conversion efficiency has a peak at a wavelength of 1532 nm (about 1.53 μm).
図 10に示した EDF放射係数のグラフのピークと符号する。即ち、 EDFの放射ピーク で変換効率が最大になることを示す。従って、本発明では、第 2の光 (放射促進光)と して、放射ピークの波長を選択するのが最も好ましぐ放射ピーク付近の波長 (例えば 、 1. 53 m付近)を選択するのが次に好ましい。また、 1. 53 m付近の波長を選択 することは、比較例 2との比較結果に鑑み、 0. 98 mの励起光を効率的に使用する 観点からも好ましい。  This is referred to as the peak of the EDF radiation coefficient graph shown in Figure 10. In other words, the conversion efficiency is maximized at the EDF radiation peak. Therefore, in the present invention, as the second light (radiation promoting light), the wavelength near the radiation peak (for example, around 1.53 m) is most preferably selected as the wavelength of the radiation peak. Is next preferred. In addition, selecting a wavelength near 1.53 m is preferable from the viewpoint of efficiently using excitation light of 0.98 m in view of the comparison result with Comparative Example 2.
[0056] もっとも、効率を改善するという観点からは、放射ピークを中心とした所定範囲から 第 2の光の波長を選択することもできる。図 10に示す例では、ピーク波長 (1532nm: —5. 3dB)力も変換効率が ldB, 2dB, 3dBそれぞれ低下したときの波長帯域は、 1 523〜1542應(約1. 52~1. 54 μ m), 1518〜1545應(約1. 51〜: L 54 μ m), 1512〜1548nm (約 1. 51〜: L 55 /z m)であった。これらの範囲中の 1波長を、第 2 の光として選択することもできる。 However, from the viewpoint of improving efficiency, the wavelength of the second light can be selected from a predetermined range centered on the radiation peak. In the example shown in Fig. 10, the peak wavelength (1532nm: -5.3dB) force is also reduced when the conversion efficiency decreases by ldB, 2dB, and 3dB. m), 1518-1545 (approximately 1.51-: L 54 μm), It was 1512-1548 nm (about 1.51-: L55 / zm). One wavelength in these ranges can also be selected as the second light.
[0057] 図 11は、 1. 53 /z m励起光 (第 2の光)のパワーと変換効率との関係を示すグラフで ある。図 11において、最も良い変換効率を得る観点からは、変換効率がピークに達 したときのパワーである 7dBmを光パワーとして選択することができる。  FIG. 11 is a graph showing the relationship between the power of 1.53 / z m pumping light (second light) and the conversion efficiency. In FIG. 11, from the viewpoint of obtaining the best conversion efficiency, 7 dBm, which is the power when the conversion efficiency reaches the peak, can be selected as the optical power.
[0058] また、変換効率改善という観点からは、第 2の光のパワーは、図 11に示すように、約 — 30〜20dBm力も選択することができる。さらに、図 11において、変換効率のピー タカら ldB, 2dB, 3dBそれぞれ低下した場合における光パワーの範囲は、ー10〜1 7dBm, 19〜20dBm, — 25〜22dBmであった。第 2の光のパワーは、これらの 範囲の 、ずれかから選択することも可能である。  [0058] Further, from the viewpoint of improving the conversion efficiency, the power of the second light can be selected as about -30 to 20 dBm as shown in FIG. Furthermore, in FIG. 11, the optical power ranges when the conversion efficiency is reduced by 1 dB, 2 dB, and 3 dB are −10 to 17 dBm, 19 to 20 dBm, and −25 to 22 dBm. The power of the second light can be selected from any of these ranges.
[0059] 図 12は、第 2の光 (1. 53 μ m)と第 1の光 (0. 98 μ m)とのパワー比を示すグラフで ある。図 12において、最も良い変換効率を得る観点からは、変換効率がピークに達 したときのパワー比である 1 ldBを選択することができる。  FIG. 12 is a graph showing the power ratio between the second light (1.53 μm) and the first light (0.98 μm). In Fig. 12, from the viewpoint of obtaining the best conversion efficiency, 1 ldB, which is the power ratio when the conversion efficiency reaches its peak, can be selected.
[0060] また、変換効率改善という観点からは、パワー比は、図 12に示すように、約— 50〜 OdB力も選択することができる。さらに、図 12において、変換効率のピークから ldB, 2dB, 3dBそれぞれ低下した場合における光パワーの範囲は、—32〜— 6dB, —4 0〜一 ldB, — 47〜0dBであった。パワー比は、これらの範囲のいずれ力から選択 することも可會である。  [0060] From the viewpoint of improving the conversion efficiency, as the power ratio, as shown in FIG. 12, an approximately -50 to OdB force can be selected. Further, in FIG. 12, the optical power ranges when −1 dB, 2 dB, and 3 dB respectively decrease from the peak conversion efficiency were −32 to −6 dB, −40 to 1 ldB, and −47 to 0 dB. The power ratio can be selected from any force in these ranges.
[0061] ぐ変形例〉  [0061] Modified Examples>
図 4には、前方励起を行う EDFA10を示した。もっとも、本発明は、後方励起や双 方向励起を行う EDFAについても適用可能である。図 13は、後方励起を行う EDFA 10Aの構成例を示す図であり、図 14は、双方向励起を行う EDFA10Bの構成例を 示す図である。  Figure 4 shows the EDFA10 with forward excitation. However, the present invention can also be applied to an EDFA that performs backward excitation or bidirectional excitation. FIG. 13 is a diagram illustrating a configuration example of the EDFA 10A that performs backward excitation, and FIG. 14 is a diagram illustrating a configuration example of the EDFA 10B that performs bidirectional excitation.
[0062] 図 13において、 EDFA10Aは、第 1の光を発する第 1光源 12Aと、第 2の光を発す る第 2光源 13Aと、第 1の光と第 2の光とを合波する合波器 14Aと、合波された光を E DF11の出力端に送る供給部としての合波器 15Aとを有している。これらの構成要素 は、図 4に示した構成要素と同様のものを適用することが可能である。  [0062] In FIG. 13, an EDFA 10A combines a first light source 12A that emits first light, a second light source 13A that emits second light, and a first light and a second light. A multiplexer 14A and a multiplexer 15A as a supply unit for sending the combined light to the output end of the EDF 11 are provided. The same components as those shown in Fig. 4 can be applied.
[0063] また、図 14において、 EDFA10Bは、図 4に示した前方励起に係る構成と、図 13に 示した後方励起に係る構成との双方を備えている。即ち、 EDFA10Bは、図 4に示し た構成に加えて、第 1の光を発生する第 3光源 12Bと、第 2の光を発生する第 4光源 1 3Bと、第 1及び第 2の光を合波する第 2合波器としての合波器 14Bと、合波器 14Bで 合波された光を EDF11の出射端に供給する第 2供給部としての合波器 15Bとを備 えている。 [0063] Also, in FIG. 14, the EDFA 10B includes a configuration related to forward excitation shown in FIG. And the configuration related to the backward pumping shown. In other words, in addition to the configuration shown in FIG. 4, the EDFA 10B transmits the third light source 12B that generates the first light, the fourth light source 13B that generates the second light, and the first and second lights. A multiplexer 14B as a second multiplexer for multiplexing and a multiplexer 15B as a second supply unit for supplying the light combined by the multiplexer 14B to the emission end of the EDF 11 are provided.
[0064] 図 13及び図 14に示した構成要素は、図 4に示した構成要素 (第 1光源 12,第 2光 源 13,合波器 14及び 15)と同様のものを適用できる。このため、各構成要素の説明 は省略する。  The components shown in FIGS. 13 and 14 can be the same as the components shown in FIG. 4 (first light source 12, second light source 13, multiplexers 14 and 15). Therefore, description of each component is omitted.
[0065] また、本実施形態では、希土類元素添加光増幅媒体として、 EDFを適用した例を 示した。 EDFの代わりに、エルビウムがドープされた光導波路を適用することも可能 である。  Further, in the present embodiment, an example in which EDF is applied as a rare earth element-doped optical amplification medium has been described. Instead of EDF, it is also possible to apply an optical waveguide doped with erbium.
[0066] また、本実施形態では、希土類元素としてエルビウムが適用された光増幅器にっ ヽ て説明した。しかし、本発明は、エルビウムと異なる希土類元素 (例えば、プラセォジ ゥム,ツリウム)がドープされた増幅媒体を用いた光増幅器に対して適用することが考 えられる。  [0066] In the present embodiment, the optical amplifier to which erbium is applied as the rare earth element has been described. However, it is conceivable that the present invention is applied to an optical amplifier using an amplification medium doped with a rare earth element different from erbium (for example, prasedium or thulium).

Claims

請求の範囲 The scope of the claims
[1] 入射端及び出射端を有し、前記入射端に Lバンド信号光が入射される希土類元素 添加光増幅媒体と、  [1] A rare earth element-doped optical amplifying medium having an incident end and an output end, and an L-band signal light is incident on the incident end;
前記希土類元素添加光増幅媒体を励起する第 1の光を発生する第 1光源と、 前記希土類元素添加光増幅媒体における放射を促進する第 2の光を発生する第 2 光源と、  A first light source that generates first light for exciting the rare earth element-doped optical amplification medium; a second light source that generates second light that promotes radiation in the rare earth element-doped optical amplification medium;
前記第 1及び第 2光源からの前記第 1及び第 2の光を合波する合波器と、 前記合波器で合波された光を前記入射端又は前記出射端に供給する供給部と、 を含む光増幅器。  A multiplexer that combines the first and second lights from the first and second light sources, and a supply unit that supplies the light combined by the multiplexer to the incident end or the exit end; And an optical amplifier.
[2] 前記供給部は、前記合波器で合波された光を前記入射端に供給し、  [2] The supply unit supplies the light combined by the multiplexer to the incident end,
前記第 1の光を発生する第 3光源と、  A third light source for generating the first light;
前記第 2の光を発生する第 4光源と、  A fourth light source for generating the second light;
前記第 3及び第 4光源からの前記第 1及び第 2の光を合波する第 2合波器と、 前記第 2の合波器で合波された光を前記出射端に供給する第 2供給部と をさらに含む請求項 1記載の光増幅器。  A second multiplexer that combines the first and second lights from the third and fourth light sources; and a second multiplexer that supplies the light combined by the second multiplexer to the emission end. The optical amplifier according to claim 1, further comprising: a supply unit.
[3] 前記第 1の光は Cバンド波長より短い波長を有し、 [3] The first light has a wavelength shorter than the C-band wavelength,
前記第 2の光は、前記第 1の光より長ぐ且つ Lバンドより短い波長を有する 請求項 1又は 2記載の光増幅器。  The optical amplifier according to claim 1 or 2, wherein the second light has a wavelength longer than the first light and shorter than the L band.
[4] 前記第 2の光は、前記希土類元素添加増幅媒体における放射ピーク付近の波長を 有する [4] The second light has a wavelength near a radiation peak in the rare earth element-doped amplification medium.
請求項 1〜3のいずれかに記載の光増幅器。  The optical amplifier according to claim 1.
[5] 前記第 2の光の波長は、約 1. 49〜: L 55 mである [5] The wavelength of the second light is about 1.49-: L 55 m
請求項 1〜4のいずれかに記載の光増幅器。  The optical amplifier according to claim 1.
[6] 前記第 2の光のパワーは、約 30〜20dBmである [6] The power of the second light is about 30 to 20 dBm.
請求項 1〜5のいずれかに記載の光増幅器。  The optical amplifier according to claim 1.
[7] 前記第 2の光と前記第 1の光とのパワー比は、約— 50〜OdBである [7] The power ratio between the second light and the first light is about −50 to OdB.
請求項 1〜6のいずれかに記載の光増幅器。  The optical amplifier according to claim 1.
[8] 前記希土類元素添加光増幅媒体は、エルビウムドープファイバである 請求項 1〜7のいずれかに記載の光増幅器。 [8] The rare earth element-doped optical amplification medium is an erbium-doped fiber. The optical amplifier according to claim 1.
[9] 前記希土類元素添加光増幅媒体は、エルビウムドープ光導波路である 請求項 1〜7のいずれかに記載の光増幅器。 [9] The optical amplifier according to any one of [1] to [7], wherein the rare earth element-doped optical amplification medium is an erbium-doped optical waveguide.
PCT/JP2005/017620 2005-09-26 2005-09-26 Optical amplifier WO2007034563A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/017620 WO2007034563A1 (en) 2005-09-26 2005-09-26 Optical amplifier
JP2007536380A JPWO2007034563A1 (en) 2005-09-26 2005-09-26 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/017620 WO2007034563A1 (en) 2005-09-26 2005-09-26 Optical amplifier

Publications (1)

Publication Number Publication Date
WO2007034563A1 true WO2007034563A1 (en) 2007-03-29

Family

ID=37888624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017620 WO2007034563A1 (en) 2005-09-26 2005-09-26 Optical amplifier

Country Status (2)

Country Link
JP (1) JPWO2007034563A1 (en)
WO (1) WO2007034563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071306A1 (en) * 2021-10-28 2023-05-04 华为技术有限公司 Amplifier and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHANG Y ET AL: "L-Band EDFA Efficiency Enhancement and Dynamic Range Extension by C-Band Laser Injection.", PROCEEDINGS OF SPIE., vol. 4581, 12 November 2001 (2001-11-12), pages 164 - 169, XP002993885 *
ZHANG Y ET AL: "Wavelength and Power Dependence of Injected C-Band Laser on Pump Conversion Efficiency of L-Band EDFA.", IEEE PHOTONICS TECHNOLOGY LETTERS., vol. 14, no. 3, March 2002 (2002-03-01), pages 290 - 292, XP001122914 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023071306A1 (en) * 2021-10-28 2023-05-04 华为技术有限公司 Amplifier and system

Also Published As

Publication number Publication date
JPWO2007034563A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
US6437907B1 (en) Wide-band optical fiber amplifier and amplifying method thereof
EP1263096B1 (en) Improved wide band erbium-doped fiber amplifier (EDFA)
US7085039B2 (en) Hybrid Raman/erbium-doped fiber amplifier and transmission system with dispersion map
JP4046506B2 (en) Broadband erbium-doped fiber amplifier
US7508575B2 (en) Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers
EP1073166A2 (en) L-band optical fiber amplifier using feedback loop
US6476960B1 (en) Thulium doped fiber amplifier pumping scheme
JP2001313433A (en) Optical amplifier and method for optical amplification
US6903868B2 (en) Wideband erbium doped fiber amplifier capable of minimizing band crosstalk
US20030035204A1 (en) Two-stage L-band erbium-doped fiber amplifier and method thereof
US7079313B2 (en) Optical amplifying apparatus which routes pumping light to a raman amplification medium and a rare-earth-doped optical amplification medium
US6781748B2 (en) Long wavelength optical amplifier
US6466363B1 (en) Broadband amplification with first and second amplifiers having different pump wavelength requirements
WO2007034563A1 (en) Optical amplifier
EP1087550A1 (en) Method and device for providing optical amplification
JP2002252399A (en) Optical amplifier
JP2003270684A (en) Dispersion-compensated raman optical fiber amplifier
JP4095159B2 (en) Optical communication system and optical amplification system
WO2004075364A1 (en) Optical amplifier employing delay phase matching fiber
Chung et al. A low-noise L-band EDFA with a 1500-nm Raman-pumped dispersion-compensating fiber section
Harun et al. Gain control in S-band erbium-doped fiber amplifier using a fiber bragg grating
JP2001274494A (en) Optical amplification device
US20040196535A1 (en) Long wavelength optical amplifier with C-band seed
JPH11238931A (en) Optical amplifier
KR20040026396A (en) Band selectable Optical Amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007536380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05785849

Country of ref document: EP

Kind code of ref document: A1