WO2007032526A1 - Organic electroluminescent display panel - Google Patents

Organic electroluminescent display panel Download PDF

Info

Publication number
WO2007032526A1
WO2007032526A1 PCT/JP2006/318469 JP2006318469W WO2007032526A1 WO 2007032526 A1 WO2007032526 A1 WO 2007032526A1 JP 2006318469 W JP2006318469 W JP 2006318469W WO 2007032526 A1 WO2007032526 A1 WO 2007032526A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
material film
display panel
inorganic material
layer
Prior art date
Application number
PCT/JP2006/318469
Other languages
French (fr)
Japanese (ja)
Inventor
Ayako Yoshida
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007032526A1 publication Critical patent/WO2007032526A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the present invention relates to an organic electroluminescence display panel.
  • an organic electroluminescence display panel (hereinafter referred to as an organic EL display panel) using an organic light emitting material having an electroluminescence property as an emission source is known.
  • the organic EL display panel supports an organic electroluminescent element (hereinafter referred to as an organic EL element) in which an organic functional layer having an optical function is sandwiched between an anode and a cathode, and the organic EL element.
  • an organic EL element organic electroluminescent element
  • an organic functional layer having an optical function is sandwiched between an anode and a cathode, and the organic EL element.
  • a plurality of organic EL elements on the substrate for example, a matrix ⁇ ! It is lined up with a dog.
  • the anode is made of a material having a high work function such as indium tin oxide (ITO).
  • the cathode is formed using a material having a low work function, that is, ⁇ based on alkali metal and alkaline earth metal.
  • the organic functional layer includes functional layers such as a hole injection layer, a positive LH5 transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the organic functional layer is, for example, a single layer made of an organic compound material and having only a light emitting layer, or a three-layer structure of an organic hole transport layer, a light emitting layer, and an organic electron transport layer, or an organic hole transport layer and a light emitting layer.
  • a two-layer structure of layers, and a laminate in which an electron or hole injection layer or a carrier block layer is inserted between these appropriate layers can be obtained.
  • an organic EL device having such a configuration, when as is applied between the anode and the cathode, holes and Electrons are injected into the organic functional layer, and these recombine in the light emitting layer to emit light. Such light is emitted to the outside through a substrate or the like.
  • red (R), green (G), and blue (B) light emission vectors emitted from organic EL elements have a wide peak width (especially the red spectrum).
  • display panels it was difficult to improve color reproducibility using only the light emission spectra of the organic light emitting materials of each color.
  • Such an organic EL device has a first electrode made of a light reflecting material such as platinum (P t), gold 1 (A u) or the like on the substrate, a semi-functional layer such as an organic functional layer, magnesium, silver, or an alloy thereof.
  • the transparent reflective layer and the second electrode are stacked in sequence.
  • the resonator structure includes a first electrode, an organic functional layer, and a translucent reflective layer, and an organic function) is a resonance part.
  • a resonating section is configured to act as a filter by setting the thickness of the organic functional layer to a predetermined condition, and is configured to cause multiple interference in the vicinity of the wavelength ⁇ of light to be extracted.
  • the thickness of the resonance part to be a filter must be set for each color to be extracted.
  • the thickness of the organic functional layer is adjusted to the desired wavelength of light so that the peak of the wavelength of light to be extracted matches the peak of interference. Must be set.
  • the thickness of the organic functional layer that is optimal for the extracted light does not match the thickness of the organic functional layer in which the electrical characteristics (such as electron and hole injection efficiency) of the organic EL element are optimal. A situation may occur.
  • the distance of the resonance part that is, the thickness of the organic functional layer
  • Spectral characteristics may change, and the emission intensity of light of a desired wavelength may be reduced.
  • wet processing it is difficult to control the thickness of the thin film by wet processing compared to dry processing such as vapor deposition. Changes in characteristics are likely to occur.
  • the object of the present invention is to provide means for solving various problems mentioned above as an example.
  • An organic EL display panel comprises an organic EL element comprising an organic functional layer including a light emitting layer that emits light of wavelength ⁇ , and first and second display electrodes sandwiching the organic functional layer, and the organic EL element.
  • An organic tanned display panel having a substrate and a composite layer comprising an inorganic material film and an organic material film provided between the substrate and the organic EL element, the organic material film The refractive index of the organic material film is smaller than the refractive index of the inorganic material film, and the optical distance L of the organic material film is
  • FWHM refers to the full width at half maximum of the emission spectrum.
  • An organic EL display panel comprises an organic EL element comprising an organic functional layer including a light emitting layer that emits light of wavelength ⁇ , and first and second display electrodes sandwiching the organic functional layer, and the organic EL element.
  • An organic EL display panel having a substrate, wherein the organic EL element is sealed by the substrate and a composite layer composed of an inorganic material film and an organic material film, and the organic material film The refractive index of the organic material film is smaller than the refractive index of the inorganic material film, and the optical distance of the organic material film is
  • PL refers to the emission spectrum of the organic light-emitting material contained in the light-emitting layer
  • FWHM refers to the half-value width of the light-emitting spectrum.
  • FIG. 1 is a cross-sectional view of an organic EL display panel according to the present invention.
  • Figure 2 shows the interference spectrum of the composite layer in the organic EL display panel according to the present invention (Figure 2 (a)), the internal emission spectrum of the organic EL element ( Figure 2 (b)), and the spectrum of the emitted light ( Figure 2 (c)).
  • Figure 2 (a) shows the interference spectrum of the composite layer in the organic EL display panel according to the present invention
  • Figure 2 (b) shows the internal emission spectrum of the organic EL element
  • Figure 2 (c) the spectrum of the emitted light
  • Fig. 3 is a chromaticity diagram of an organic EL display panel.
  • FIG. 4 is a schematic cross-sectional view of a modification of the organic EL display panel according to the present invention.
  • the organic EL display panel 1 has a substrate 2 and one of both main surfaces of the substrate 2. And a first inorganic material film 3 provided on the main surface.
  • the substrate 2 is made of a resin substrate made of a resin material such as polycarbonate PC) or a glass substrate.
  • the first inorganic material film 3 is made of an inorganic material such as silicon oxide (S i 0 2 ), silicon nitride (S i N x ), silicon nitride oxide (S i ON), and aluminum oxide (A 1 2 0 3 ). It has a light transmission property that turns the light in the visible light region.
  • An organic material film 4 is provided on the first inorganic material film 3.
  • the organic material film 4 is made of a resin material such as a thermosetting resin or an ultraviolet curable resin.
  • the refractive index of the organic material film 4 is smaller than the refractive index of the first inorganic material film 3.
  • the organic material film 4 may be a functional layer such as a color conversion layer (CCM layer) or a color filter layer. .
  • the organic material film 4 is formed using a wet coating method such as a spin coating method!
  • a wet coating method such as a spin coating method
  • a liquid thermosetting resin or ultraviolet curable resin before curing is disposed on the first inorganic material film by using a spin coating method, and then the uncured resin film. It is also possible to cure and form an organic material film.
  • the organic material film includes a koto film formed by a wet method, and is close to an inorganic material, that is, a material soluble in an organic solvent such as polysilazane and silica particles used in a sol-gel method.
  • an inorganic material that is, a material soluble in an organic solvent such as polysilazane and silica particles used in a sol-gel method.
  • a film made of a mixed material in which inorganic particles such as the above are mixed and dispersed in a resin material is also included.
  • a second inorganic material film 5 having substantially the same configuration as the first inorganic material film 3 described above is provided. That is, the organic material film 4 is sandwiched between the first and second inorganic material films 3 and 5, and the composite layer 6 is formed by the first and second inorganic material films 3 and 5 and the organic material film 4 having such a configuration. Is formed.
  • an organic EL element 10 is provided in which an organic functional layer 8 including the second display electrode 9 and the second display electrode 9 are sequentially formed.
  • the organic functional layer 8 is made of an organic compound material and includes a light emitting layer (not shown) that emits light having a wavelength ⁇ .
  • the organic functional layer 8 is a hole injection layer made of copper phthalocyanine.
  • Ding PD triphenylamine derivative
  • AI q 3 aluminum chelate complex
  • Lithium oxide electricity It is good also as a laminated body which consists of a child injection layer (not shown).
  • the second display electrode 9 is made of a metal material such as aluminum (AI).
  • the light emitted from the organic functional layer 8 of the organic EL element 10 having such a configuration is emitted to the outside through the substrate 2.
  • the organic EL element 10 may be covered and sealed with a member that does not allow gas such as oxygen and moisture to escape, that is, a so-called gas barrier property.
  • a member that does not allow gas such as oxygen and moisture to escape that is, a so-called gas barrier property.
  • a sealing film made of an inorganic material such as silicon oxide, silicon nitride, silicon nitride silicon oxide, or a can-sealed plate made of glass or metal having a recess.
  • the composite layer 6 has a structure in which the low refractive index organic material film 4 is sandwiched between the first and second inorganic material films 3 and 5 having a high refractive index.
  • the composite layer 6 acts as an interference filter in which the light emitted from the organic functional layer 8 interferes while reflecting between the first and second inorganic material films 3 and 5. That is,
  • the organic EL display panel 1 has a structure in which an interference filter layer is formed outside the organic EL element ⁇ 0. Note that, in order to simplify the explanation, one organic EL element is shown in FIG.
  • the organic EL display panel is formed with multiple organic EL elements. May be.
  • the plurality of organic EL elements may be arranged in a matrix, for example, on the substrate. '
  • the organic material display 4 will be described in more detail by taking the single-layer organic display panel 1 in which the organic material film 4 is made of a single organic material as an example.
  • is the wavelength of the light to be extracted
  • d is the thickness of the organic material film 4
  • n is the refractive index of the organic material film 4.
  • the interval between wavelengths to be intensified ( ⁇ ) is ⁇ (m) when the order is m, and ⁇ (m + 1) when the order is (m + 1).
  • FWHM the full width at half maximum of the emission spectrum.
  • PL refers to the emission spectrum of the organic light-emitting material contained in the light-emitting layer
  • FWHM refers to the half-value width of the emission spectrum.
  • PL a plurality of interference fringes' peaks appear in the composite layer.
  • the interference peak of the light strengthening in the organic material film 4 is set to appear at least three including the peak at the wavelength ( ⁇ ) of the light to be extracted. . That is,
  • the central interference peak among the three interference peaks that is, the peak at the wavelength ⁇ of the light to be extracted (see Fig. 2 (a)) and the internal emission of the light emitted from the organic EL element
  • the spectrum peak can almost coincide. Therefore, due to multiple interference in the composite layer, the spectrum of the light emitted through the substrate emitted from the panel becomes a spectrum having a peak at or near the wavelength ⁇ of the light to be extracted. ( Figure 2 (c)).
  • it is difficult to control the film thickness of the organic material film and it is difficult to strictly control the thickness of the organic material film, particularly when the organic material film is produced by a wet process such as a spin-collision method. .
  • the organic material film tends to be easily deviated from the predetermined flUl, and accordingly, the peak position of the interference spectrum is easily shifted from the intended position.
  • the organic material film is thin, the number of peaks in the interference spectrum is small and the interval between peaks is wide.
  • the organic material film is thin ( ⁇ 2 / L> FWH M (PL))
  • the spectrum of the light emitted from the substrate is the emission intensity at and around the intended wavelength ⁇ .
  • the interference filter has a high wave selectivity, so the peak width of the light ffiii of the composite layer is narrower than before. As a result, it is emitted from the display channel. The angle dependence of the emission spectrum of the emitted light is increased. In other words, the organic EL display panel color reproduction range H is ensured only in a narrow viewing angle range.
  • the wavelength selectivity of the interference filter is slowed down, it is possible to obtain a light with a professional spectrum almost in line with the internal emission spectrum from the organic EL device. As a result, the angle dependency of chromaticity is reduced, and the color reproducibility of the OLED display panel can be maintained over a wide viewing angle.
  • the display surface of the OLED display panel is placed in front and viewed vertically (in this case, the viewing angle is set to 0 degrees)
  • the green (G) emission is changed from 0 degrees to 60 degrees.
  • the observation angle is changed in 5 degree increments, compared to the case of setting>HWH> FWH (PL) (Fig.
  • the range of change in chromaticity is narrower when set to Fig. 3 (b)).
  • the thickness of the organic material film as described above may be set for each color of red (R), green (G), and blue (B).
  • the thickness of the corresponding organic material film may be set for each organic light emitting element that emits RGB light.
  • the film thickness of the organic material film may be determined in consideration of a phase shift generated when light is reflected at the interface between the organic material film and the inorganic material film, that is, a phase shift.
  • the optical distance L of the organic material film in the composite layer as described above can be obtained by satisfying the condition of the above formula (6). It is more preferable to set it sufficiently smaller than the half width of the light emission spectrum of the light emitting material to be used. For example, the optical distance of the organic material film is
  • such a composite layer is effective in that the wavelength of each RGB color can be adjusted with one composite layer, particularly when the organic EL element emits white light and is set to the condition of the above formula (7). It turns out that there is.
  • the composite layer has an organic material film on a substrate 2 made of glass as shown in FIG. 4, for example, in addition to a three-layer structure in which an organic material film is sandwiched between inorganic material films.
  • the material film 4 is provided directly (this may be a two-layer structure in which the inorganic material film 5 is disposed on the organic material film 4.
  • the composite layer may have a gas barrier property and may function as a gas barrier film. Therefore, even if the configuration of the organic EL display panel is simple, desired emission characteristics can be obtained while extending the emission lifetime of the organic EL element.
  • the composite layer has a composite structure (high fabrication) using an inorganic material film and an organic material film
  • the composite layer can have a good gas barrier property. That is, a minute defect called a pinhole is likely to occur in the inorganic material film, and moisture and the like are easily transmitted through the pinhole.
  • the pinhole is formed by providing an organic material film on the inorganic material film. It can be filled with an organic material to prevent such moisture from entering.
  • the resin substrate may be a flexible film.
  • a flexible organic EL display panel that is thin and light and has a wide viewing angle range can be obtained.
  • the organic material film is described as being made of a single organic material thin film, but is not limited thereto.
  • the organic material film may be formed by sequentially stacking a plurality of organic thin films, or these organic thin films may be made of different materials.
  • the composite layer may have any number of layers as long as organic material films and inorganic material films are alternately laminated. Furthermore, although not shown, a conversion layer (C CM layer) is formed between the substrate and the composite layer.
  • C CM layer conversion layer
  • the organic EL surface panel is a method of extracting light to the outside through the substrate, which is a so-called “bomission type panel”, but is not limited to this.
  • a so-called top emission type panel may be used in which light is extracted from the opposite side.
  • the top emission type panel includes an organic EL element including an organic functional layer including a light emitting layer that emits light having a wavelength ⁇ , and first and second display electrodes sandwiching the organic functional layer, and the organic EL element. And a substrate to be carried.
  • the organic EL element includes the substrate and an inorganic material. It is sealed with a composite layer made of a film and an organic material film.
  • the composite layer has substantially the same structure as that of the above-described embodiment.
  • the refractive index of the organic material film in the composite layer is smaller than the refractive index of the inorganic material film, and the optical distance L of the organic material film is
  • the composite layer 6 has a refractive index smaller than those of the first and second inorganic material films 3 and 5 and the first inorganic material films 3 and 5, and The case where the organic material film 4 is arranged has been described.
  • the intermediate film 4 disposed between the first and second inorganic material films 3 and 5 may be made of an inorganic material. That is, in the composite layer 6, a film (inorganic material film) 4 made of an inorganic material having a refractive index smaller than that of the inorganic material films 3 and 5 may be arranged between the inorganic material films 3 and 5.
  • the composite layer 6 is configured so that L satisfies the above formula (6). Furthermore, it is more preferable that the composite layer 6 is configured to satisfy the above formula (7).
  • the inorganic material B ⁇ 4 is made of silicon oxide (S i 0 2 ), silicon nitride (S i N x ), silicon nitride oxide (S i ON), aluminum oxide (A l 2 0 3 ), etc.
  • An inorganic material that can be used for Jlii light in the visible light region can be used.
  • the inorganic material film 4 can be formed by a method such as vapor deposition, CVD, sputtering, or IP. A method capable of forming a film with less stress is preferable. Especially in the case of the CVD method, the stress of the film to be formed can be controlled and it is easy to form a thick film. preferable.
  • the film formed by the CVD method has excellent coverage performance, a composite layer 6 having excellent barrier performance can be formed.
  • the film can be formed by a wet-co-firing type forming method such as sol-gel or polysilazane.

Abstract

This invention provides an organic electroluminescent display panel comprising an organic EL element and a substrate supporting the organic EL element, the organic EL element comprising an organic functional layer including a luminescent layer, which emits λ-wavelength light, and first and second display electrodes holding the organic functional layer therebetween. A composite layer comprising an inorganic material film and an organic material film is provided between the substrate and the organic EL element. The refractive index of the organic material film is smaller than that of the refractive index of the inorganic material film. The optical distance L of the organic material film satisfies the following formula: [Mathematical formula 1] λ2/L ≤ FWHM(PL) wherein PL represents a luminescence spectrum of an organic luminescent material contained in the luminescent layer; and FWHM represents the half value width of the luminescence spectrum.

Description

明細書 有機エレク卜ロルミネセンス表示パネル 技術分野  Description Organic electroluminescence display panel Technical Field
本発明は、 有機エレクトロルミネセンス表示パネルに関する。  The present invention relates to an organic electroluminescence display panel.
【従来技術】  [Prior art]
従来、 エレクト口ルミネセンス特性を有する有機発光材料を発光源とする有機ェレク卜 ロルミネセンス表示パネル (以下有機 Eし表示パネルと称する) が知られている。 該有機 E L表示パネルは、 光機能を備えた有機機能層が陽極および陰極によって挟持されて形 成されている有機エレクトロルミネセンス素子 (以下有機 E L素子と称する) と、 該有機 E L素子を支持している基板と、 を含んでおり、 該基板上に複数の該有機 E L素子が例え ばマ卜リックス^!犬に並べられている。  Conventionally, an organic electroluminescence display panel (hereinafter referred to as an organic EL display panel) using an organic light emitting material having an electroluminescence property as an emission source is known. The organic EL display panel supports an organic electroluminescent element (hereinafter referred to as an organic EL element) in which an organic functional layer having an optical function is sandwiched between an anode and a cathode, and the organic EL element. And a plurality of organic EL elements on the substrate, for example, a matrix ^! It is lined up with a dog.
陽極は、 インジウム錫酸化物 ( I T O) などの仕事関数 大きい材料からなっている。 陰極は、 仕事関数が小さい材料、 すなわちアルカリ金属およびアルカリ土類金属をベース とした^などを用いて形成されている。  The anode is made of a material having a high work function such as indium tin oxide (ITO). The cathode is formed using a material having a low work function, that is, ^ based on alkali metal and alkaline earth metal.
. 有機機能層は、 正孔注入層、 正子 LH5送層、 発光層、 電子輸送層、 電子注入層などの機能 層を含む。 該有機機能層は、 例えば有機化合物材料からなり発光機能を有する発光層のみ の単一層、 あるいは有機正孔輸送層、 発光層および有機電子輸送層の 3層構造、 又は有機 正孔輸送層及び発光層の 2層構造、 さらにこれらの適切な層間に電子或いは正孔の注入層 やキャリアブロック層を挿入した積層体とすることができる。  The organic functional layer includes functional layers such as a hole injection layer, a positive LH5 transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. The organic functional layer is, for example, a single layer made of an organic compound material and having only a light emitting layer, or a three-layer structure of an organic hole transport layer, a light emitting layer, and an organic electron transport layer, or an organic hole transport layer and a light emitting layer. A two-layer structure of layers, and a laminate in which an electron or hole injection layer or a carrier block layer is inserted between these appropriate layers can be obtained.
かかる構成の有機 Eし素子において、 陽極および陰極間に asを印加すると、 正孔およ び電子が有機機能層へと注入されて、 これらが発光層にて再結合して発光するのである。 かかる光は、 基板等を介して外部に放出されている。 In an organic EL device having such a configuration, when as is applied between the anode and the cathode, holes and Electrons are injected into the organic functional layer, and these recombine in the light emitting layer to emit light. Such light is emitted to the outside through a substrate or the like.
一般的に、 有機 E L素子が発する赤色 ( R ) 、 緑色 (G) 、 青色 (B) の各色の発光ス ベクトルはピーク幅が広い (特に赤色のスペクトル) ことから、 上記の如き構成の有機 E L表示パネルにおいて、 各色の有機発光材料がもつ発光スぺクトルのみで色再現性を高め ることは難しかった。  In general, red (R), green (G), and blue (B) light emission vectors emitted from organic EL elements have a wide peak width (especially the red spectrum). In display panels, it was difficult to improve color reproducibility using only the light emission spectra of the organic light emitting materials of each color.
そこで、 有機 E L素子内に共振器構造を形成する技術が鶴されている (例えば、 特許 文献 1 :国際公開第 0 1 / 3 9 5 5 4号パンフレツ卜参照) 。 かかる有機 E L素子は、 基 板上に、 下層から白金(P t ) 、 金1 (A u ) 等の光反射材料からなる第 1電極、 有機機能 層、 マグネシウム、 銀およびこれらの合金などの半透明反射層、 第 2竃極が順次積層され た構成になっている。 共振器構造は、 第 1電極と有機機能層と半透明反射層とによって構 成され、 有機機能) ίが共振部となっている。 かかる共振部は、 有機機能層の厚さを所定の 条件に設定してフィルタとして作用させており、 取り出したい光の波長 λの近傍におい て多重干渉を生じさせる構成となっている。 Therefore, a technique for forming a resonator structure in an organic EL element is being squeezed (for example, see Patent Document 1: International Publication No. 0 1/395 5 4 Pamphlet IV). Such an organic EL device has a first electrode made of a light reflecting material such as platinum (P t), gold 1 (A u) or the like on the substrate, a semi-functional layer such as an organic functional layer, magnesium, silver, or an alloy thereof. The transparent reflective layer and the second electrode are stacked in sequence. The resonator structure includes a first electrode, an organic functional layer, and a translucent reflective layer, and an organic function) is a resonance part. Such a resonating section is configured to act as a filter by setting the thickness of the organic functional layer to a predetermined condition, and is configured to cause multiple interference in the vicinity of the wavelength λ of light to be extracted.
ところが、 上記の如き構成による有機 E L素子において、 フィルタとなる共振部の厚さ は取り出したい色ごとに設定しなければならない。 すなわち、 有機 E L素子に共振器構造 を導入す.るには、 取り出したい光の波長のピークと干渉のピークとを合わせるように有機 機能層の厚さを、 所望の光の波長に対してそれぞれ設定されなければならない。  However, in the organic EL element having the above-described configuration, the thickness of the resonance part to be a filter must be set for each color to be extracted. In other words, in order to introduce a resonator structure into an organic EL element, the thickness of the organic functional layer is adjusted to the desired wavelength of light so that the peak of the wavelength of light to be extracted matches the peak of interference. Must be set.
その結果、 取り出し光に対して最適な有機機能層の厚さは、 有機 E L素子の電気的特性 (電子および正孔の注入効率等) が最適な状態の有機機能層の厚さとは一致しないという 状況が発生するおそれがある。  As a result, the thickness of the organic functional layer that is optimal for the extracted light does not match the thickness of the organic functional layer in which the electrical characteristics (such as electron and hole injection efficiency) of the organic EL element are optimal. A situation may occur.
また、 共振部の距離、 すなわち有機機能層の厚さを厳密に設定なければ、 共振器におけ るスぺクトル特性が変化してしまい、 所望の波長の光の発光強度が低下してしまうおそれ がある。 特に、 有機機能層がゥエツト処理で作製される場合において、 ゥエツ卜処理によ リ薄膜の厚さを制御することは蒸着等のドライ処理に比べて困難であることから、 かかる スぺク卜ル特性の変化が発生し易い。 If the distance of the resonance part, that is, the thickness of the organic functional layer is not set precisely, Spectral characteristics may change, and the emission intensity of light of a desired wavelength may be reduced. In particular, when the organic functional layer is manufactured by wet processing, it is difficult to control the thickness of the thin film by wet processing compared to dry processing such as vapor deposition. Changes in characteristics are likely to occur.
これらを回避するために、 弓 I用: 3t献 1において有機機肯¾1の厚さを大とすることが ¾1¾ されている。 しかしながら、 有機機肯瞻の厚さが大となることによって、 電気的特性が低 下してしまい好ましくない。  In order to avoid these problems, it has been proposed to increase the thickness of the organic machine 1 for the bow I: 3 ton 1. However, when the thickness of the organic machine is increased, the electrical characteristics deteriorate, which is not preferable.
さらに、 有機 E L素子において共振部の 離の調整が厳密に行われたとしても、 基板等 に設けられた T F Tやガスバリア層などの外咅購造体によリ.、 有機 E L素子からのスぺク 卜ル特性と表示バネルから放出される光のスペクトル特性 は一致しないことが判った。 発明の開示  Furthermore, even if the separation of the resonance part in the organic EL element is strictly adjusted, it is possible to use a TFT or gas barrier layer provided on the substrate, etc. It was found that the cool characteristics and the spectral characteristics of the light emitted from the display panel do not match. Disclosure of the invention
本発明は、 上記した問題が 1例.として挙げられる諸問題を解決する手段を提供すること を目的とする。  The object of the present invention is to provide means for solving various problems mentioned above as an example.
本発明による有機 E L表示パネルは、 波長 λの光を発する発光層を含む有機機能層と該 有機機能層を挟持する第 1及び第 2表示電極とからなる有機 E L素子と、 該有機 E L素子 を担持している基板と、 を有する有機 Εし表示パネルであって、 該基板と該有機 E L素子 との間に無機材料膜および有機材料膜からなる複合層が設けられており、 該有機材料膜の 屈折率は該無機材料膜の屈折率に比べて小であり、 該有機材料膜の光学的距離 Lは、 【数 1】  An organic EL display panel according to the present invention comprises an organic EL element comprising an organic functional layer including a light emitting layer that emits light of wavelength λ, and first and second display electrodes sandwiching the organic functional layer, and the organic EL element. An organic tanned display panel having a substrate and a composite layer comprising an inorganic material film and an organic material film provided between the substrate and the organic EL element, the organic material film The refractive index of the organic material film is smaller than the refractive index of the inorganic material film, and the optical distance L of the organic material film is
― ≤ F WH M ( P L )  ― ≤ F WH M (P L)
を満たして t、ることを特徴とする。 It is characterized by satisfying t.
(ここで、 上記式において、 P Lとは該発光層に含まれる有機発光材料の発光スペクトル をいい、 FWHMとは該発光スペクトルの半値幅をいう。 ) (Where, in the above formula, PL is the emission spectrum of the organic light emitting material contained in the light emitting layer) FWHM refers to the full width at half maximum of the emission spectrum. )
本発明による有機 E L表示パネルは、 波長 λの光を発する発光層を含む有機機能層と該 有機機能層を挟持する第 1及び第 2表示電極とからなる有機 E L素子と、 該有機 E L素子 を担持している基板と、 を有する有機 EL表示パネルであって、 該有機 EL素子は該基板 と無機材料膜および有機材料膜からなる複合層とによつて封止されており、 該有機材料膜 の屈折率は該無機材料膜の屈折率に比べて小であり、 該有機材料膜の光学的距離しは、 【数 2】  An organic EL display panel according to the present invention comprises an organic EL element comprising an organic functional layer including a light emitting layer that emits light of wavelength λ, and first and second display electrodes sandwiching the organic functional layer, and the organic EL element. An organic EL display panel having a substrate, wherein the organic EL element is sealed by the substrate and a composite layer composed of an inorganic material film and an organic material film, and the organic material film The refractive index of the organic material film is smaller than the refractive index of the inorganic material film, and the optical distance of the organic material film is
入 2  ON 2
≤ FWHM (PL)  ≤ FWHM (PL)
を満たしていることを特徴とする。 It is characterized by satisfying.
(ここで、 上記式において、 PLとは該発光層に含まれる 機発光材料の発光スペクトル をいい、 FWHMとは該発光スぺク卜ルの半値幅をいう。 )  (Here, in the above formula, PL refers to the emission spectrum of the organic light-emitting material contained in the light-emitting layer, and FWHM refers to the half-value width of the light-emitting spectrum.)
図面の簡単な説明 Brief Description of Drawings
図 1は、 本発明による有機 E L表示パネルの霞断面図である。  FIG. 1 is a cross-sectional view of an organic EL display panel according to the present invention.
図 2は、 本発明による有機 EL表示パネルにおける複合層の干渉スペクトル (図 2 (a) ) 、 有機 EL素子の内部発光スペクトル (図 2 (b) ) および出射光のスペクトル (図 2 (c) )を示す線図である。  Figure 2 shows the interference spectrum of the composite layer in the organic EL display panel according to the present invention (Figure 2 (a)), the internal emission spectrum of the organic EL element (Figure 2 (b)), and the spectrum of the emitted light (Figure 2 (c)). FIG.
図 3は、 有機 EL表示パネルの色度図である。  Fig. 3 is a chromaticity diagram of an organic EL display panel.
図 4は、 本発明による有機 E L表示パネルの変形例の概略断面図である。  FIG. 4 is a schematic cross-sectional view of a modification of the organic EL display panel according to the present invention.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明による有機 EL表示パネルおよびその製造方法を、 添付図面を参照しつつ 詳細に説明する。  Hereinafter, an organic EL display panel and a manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings.
有機 EL表示パネル 1は、 例えば図 1に示す如く、 基板 2と、 基板 2の両主面のうち一 方の主面に設けられている第 1の無機材料膜 3と、 を有する。 基板 2は、 ポリカーボネー ト P C) 等の樹脂材料からなる樹脂基板若しくはガラス基板からなる。 第 1の無機材料 膜 3は、 酸化シリコン (S i 02) 、 窒化シリコン (S i Nx) 、 窒化酸化シリコン (S i O N) 、 酸化アルミニウム (A 1 203) などの無機材料からなる可視光領域の光を翻せ しめる光透過性を有する。 For example, as shown in FIG. 1, the organic EL display panel 1 has a substrate 2 and one of both main surfaces of the substrate 2. And a first inorganic material film 3 provided on the main surface. The substrate 2 is made of a resin substrate made of a resin material such as polycarbonate PC) or a glass substrate. The first inorganic material film 3 is made of an inorganic material such as silicon oxide (S i 0 2 ), silicon nitride (S i N x ), silicon nitride oxide (S i ON), and aluminum oxide (A 1 2 0 3 ). It has a light transmission property that turns the light in the visible light region.
第 1の無機材料膜 3上には有機材料膜 4が設けられている。 有機材料膜 4は、 熱硬化性 樹脂、 紫外線硬化性樹脂等の樹脂材料からなる。 有機材料膜 4の屈折率は第 1の無機材料 膜 3の屈折率に比べて小となっている。 また、 有機材料膜 4は、 色変換層 (C C M層) 、 カラーフィルタ層などの機能層であることとしても良い。 .  An organic material film 4 is provided on the first inorganic material film 3. The organic material film 4 is made of a resin material such as a thermosetting resin or an ultraviolet curable resin. The refractive index of the organic material film 4 is smaller than the refractive index of the first inorganic material film 3. The organic material film 4 may be a functional layer such as a color conversion layer (CCM layer) or a color filter layer. .
有機材料膜 4は、 スピンコート法などのゥエツ卜法を用いて成膜す!)こととしても良い 0 ウエット法を用いる場合、 硬化前の液状の熱硬化性樹脂若しくは紫外線硬化性樹脂をス ピンコート法を用いて第 1の無機材料膜上に配した後、 当該未硬化樹脂膜を硬化せしめて 、 有機材料膜を形成することとしても良い。 The organic material film 4 is formed using a wet coating method such as a spin coating method! In the case of using the 0 wet method, a liquid thermosetting resin or ultraviolet curable resin before curing is disposed on the first inorganic material film by using a spin coating method, and then the uncured resin film. It is also possible to cure and form an organic material film.
なお、 有機材料膜には、 ウエット法によって成膜される琴膜が含まれ、 無機材料に近い もの、 すなわち、 ポリシラザン等の有機溶媒に可溶の材料およびゾル ·ゲル法に使用され るシリカ粒子等の無機粒子を樹脂材料に混合して分散した混合材料などからなる膜も含ま れる。  The organic material film includes a koto film formed by a wet method, and is close to an inorganic material, that is, a material soluble in an organic solvent such as polysilazane and silica particles used in a sol-gel method. A film made of a mixed material in which inorganic particles such as the above are mixed and dispersed in a resin material is also included.
かかる有機材料膜 4の上には、 上述した第 1の無機材料膜 3とほぼ同様の構成の第 2の 無機材料膜 5が設けられている。 すなわち、 有機材料膜 4は第 1および第 2の無機材料膜 3, 5によって挟持されており、 かかる構成の第 1および第 2の無機材料膜 3, 5および 有機材料膜 4によって複合層 6が形成されている。  On the organic material film 4, a second inorganic material film 5 having substantially the same configuration as the first inorganic material film 3 described above is provided. That is, the organic material film 4 is sandwiched between the first and second inorganic material films 3 and 5, and the composite layer 6 is formed by the first and second inorganic material films 3 and 5 and the organic material film 4 having such a configuration. Is formed.
第 2の無機材料膜 5の上に、 第 1表示電極 7と有機化合物からなりかつ発光層 (図示せ ず) を含む有機機能層 8と第 2表示電極 9とが順に形成されて構成されている有機 E L素 子 1 0が設けられている。 On the second inorganic material film 5, the first display electrode 7 and an organic compound and a light emitting layer (not shown) An organic EL element 10 is provided in which an organic functional layer 8 including the second display electrode 9 and the second display electrode 9 are sequentially formed.
第 1表示電極 7は、 例えばインジウム錫酸化物 ( I T O) 、 インジウム醒酸化物 ( I Z O) 等の導電性材料からなる。  The first display electrode 7 is made of a conductive material such as, for example, indium tin oxide (ITO), indium aluminating oxide (IZO), or the like.
有機機能層 8は、 有機化合物材料からなりかつ少なくとも波長 λの光を発する発光層 ( 図示せず) を含んでいる。 例えば有機機能層 8は、 銅フタロシアニンからなる正孔注入層 The organic functional layer 8 is made of an organic compound material and includes a light emitting layer (not shown) that emits light having a wavelength λ. For example, the organic functional layer 8 is a hole injection layer made of copper phthalocyanine.
(図示せず) 、 丁 P D (トリフエニルァミン誘導体) からなる正子 Ιϋ送層 (図示せず) 、 A I q 3 (アルミキレー卜錯体) からなる発光層 (図示せず) 、 酸化リチウムからなる電 子注入層 (図示せず) からなる積層体であることとしても良い。 (Not shown), Ding PD (triphenylamine derivative) made of proton transport layer (not shown), AI q 3 (aluminum chelate complex) light emitting layer (not shown), Lithium oxide electricity It is good also as a laminated body which consists of a child injection layer (not shown).
第 2表示電極 9は、 例えばアルミニウム (A I ) などの金属材料からなる。 かかる構成 の有機 E L素子 1 0の有機機能層 8から発せられた光は、 基板 2を介して外部に出射され る。 なお、 図示しないものの有機 E L素子 1 0は、 酸素等の気体および水分を^ ϋさせな い特性、 いわゆるガスバリア性を有する部材で覆って封止することとしても良い。 かかる 部材としては、 例え (ま'、 酸化シリコン、 窒化シリコン、 窒ィ匕酸化シリコンなどの無機材料 からなる封止膜又は凹部を備えたガラスまたは金属からなる缶封止皿状板が挙げられる。 上記の如き構成の有機 Ε L表示パネル 1において、 複合層 6は屈折率の低 tゝ有機材料膜 4を屈折率の高い第 1および第 2の無機材料膜 3, 5で挟持する構造となっている。 かか る複合層 6は、 有機機能層 8から発せられた光が第 1および第 2の無機材料膜 3, 5間を 反射しながら干渉する干渉フィル夕して作用する。 すなわち、 上記有機 E L表示パネル 1 は、 有機 E L素子 Ί 0の外部に干渉フィル夕が形成されている構造となっている。 なお、 図 1には、 説明を簡単にするために、 1つの有機 E L素子が設けられている有機 E L表示 パネルが示されているものの、 有機 E L表示パネルには複数の有機 E L素子が形成されて いても良い。 複数の有機 EL素子は、 基板上に例えばマトリックス状に並べられているこ ととしても良い。 ' The second display electrode 9 is made of a metal material such as aluminum (AI). The light emitted from the organic functional layer 8 of the organic EL element 10 having such a configuration is emitted to the outside through the substrate 2. Although not shown, the organic EL element 10 may be covered and sealed with a member that does not allow gas such as oxygen and moisture to escape, that is, a so-called gas barrier property. Examples of such a member include a sealing film made of an inorganic material such as silicon oxide, silicon nitride, silicon nitride silicon oxide, or a can-sealed plate made of glass or metal having a recess. In the organic L display panel 1 having the above-described configuration, the composite layer 6 has a structure in which the low refractive index organic material film 4 is sandwiched between the first and second inorganic material films 3 and 5 having a high refractive index. The composite layer 6 acts as an interference filter in which the light emitted from the organic functional layer 8 interferes while reflecting between the first and second inorganic material films 3 and 5. That is, The organic EL display panel 1 has a structure in which an interference filter layer is formed outside the organic EL element Ί 0. Note that, in order to simplify the explanation, one organic EL element is shown in FIG. An organic EL display panel with a The organic EL display panel is formed with multiple organic EL elements. May be. The plurality of organic EL elements may be arranged in a matrix, for example, on the substrate. '
上記の如き有機 EL表示パネル 1において、 有機材料膜 4が単一の有機材料からなる単 一層構造の有機 Eし表示パネル 1を例にしてより詳細に説明する。 有機 E L素子から発せ られた光のうち取リ'出したい光の波長を λとし、 有機材料膜 4の厚さを d、 有機材料膜 4 の屈折率を nとする。 また、 有機材料膜 4の光学的な厚さ、 すなわち光学的距離を Lとす ると、  In the organic EL display panel 1 as described above, the organic material display 4 will be described in more detail by taking the single-layer organic display panel 1 in which the organic material film 4 is made of a single organic material as an example. Of the light emitted from the organic EL element, λ is the wavelength of the light to be extracted, d is the thickness of the organic material film 4, and n is the refractive index of the organic material film 4. Further, when the optical thickness of the organic material film 4, that is, the optical distance is L,
【数 3】  [Equation 3]
L = n Xd · · '式 (l) L = n Xd · · 'formula (l)
として表される。 Represented as:
ここで、 有機材料膜 4において光が強め合う条件は、  Here, the conditions under which light intensifies in the organic material film 4 are:
【数 4】  [Equation 4]
πιλ = 2 nd (mは整数〉 · · ·式 (2) となる。  πιλ = 2 nd (m is an integer) · · · · (2)
また、 強め合う波長どうしの間隔 (Δλ) は、 次数が mである場合の波長を λ (m) と し、 次数が (m+1 ) である場合の波長を λ (m+1) とすると、
Figure imgf000009_0001
In addition, the interval between wavelengths to be intensified (Δλ) is λ (m) when the order is m, and λ (m + 1) when the order is (m + 1). ,
Figure imgf000009_0001
2nd  2nd
. . .式 (3)  Formula (3)
となる Become
式 (3) に m 2ndZXを代入すると、  Substituting m 2ndZX into equation (3),
【数 6】  [Equation 6]
• ·式(4) となる。 • Formula (4) It becomes.
ごこで、 発光スペクトルの半値幅を FWHM (PL) とする。 (なお、 PLとは発光層 に含まれる有機発光材料の発光スぺクトルをいい、 FWHMとは発光スぺクトルの半値幅 をいう。 ) この有機発光材料の発光スペクトルの半値幅 FWHM (P L) 内に複合層にお ける干渉フリンジの'ピークが複数出現するように設定されていることが好ましい。 例えば 、 図 2に示す如く、 有機材料膜 4にて強め合う光の干渉ピークが、 取り出したい光の波長 (λ) におけるピークを含めて少なくとも 3つ出現するように設定されていることが好ま しい。 すなわち、  Here, the full width at half maximum of the emission spectrum is FWHM (PL). (Note that PL refers to the emission spectrum of the organic light-emitting material contained in the light-emitting layer, and FWHM refers to the half-value width of the emission spectrum.) FWHM (PL) It is preferable that a plurality of interference fringes' peaks appear in the composite layer. For example, as shown in FIG. 2, it is preferable that the interference peak of the light strengthening in the organic material film 4 is set to appear at least three including the peak at the wavelength (λ) of the light to be extracted. . That is,
【数 7】  [Equation 7]
厶 λ ≤ FWHM (PL) · , ·式 (5)  厶 λ ≤ FWHM (PL) ·, · (5)
であることが好ましい。 ここで式 (4) を代入して変換すると、 It is preferable that Here, when substituting Equation (4) and converting,
【数 8】  [Equation 8]
≤ FWHM (PL) · ·. ·式 (6)  ≤ FWHM (PL) · · · · Equation (6)
となり、 かかる条件を満たす複合層が好ましい。 Therefore, a composite layer satisfying such conditions is preferable.
上記の如き設定によれば、 3つの干渉ピークのうちの中心の干渉ピーク、 すなわち取り 出したい光の波長 λにおけるピーク (図 2 (a) 参照) と有機 EL素子から発せられた光 の内部発光スペクトルのピーク (図 2 (b)参照) とがほぼ一致し得るようになる。 従つ て、 複合層における多重干渉によって、 パネルから放出される基板を介して出射される光 のスぺク卜ルは取り出したい光の波長 λ若しくはその近傍においてピークを有するスぺク トルとなる (図 2 (c) ) 。  According to the above settings, the central interference peak among the three interference peaks, that is, the peak at the wavelength λ of the light to be extracted (see Fig. 2 (a)) and the internal emission of the light emitted from the organic EL element The spectrum peak (see Fig. 2 (b)) can almost coincide. Therefore, due to multiple interference in the composite layer, the spectrum of the light emitted through the substrate emitted from the panel becomes a spectrum having a peak at or near the wavelength λ of the light to be extracted. (Figure 2 (c)).
なお、 λ2/Ι_ > FWHM (PL) の場合、 特にし = λΖ2に設定して有機材料膜 を作製しても、 干渉スペクトルは、 取り出し波長 λにおいてピークを呈する。 しかしなが ら、 有機材料膜の膜厚を制御することは製造上難しく、 特にスピンコ一卜法等のウエット 処理によって有機材料膜を作製する場合において、 有機材料膜の厚さの厳密な制御が困難 である。 従って、 有機材料膜は所定の flUlからずれ易い傾向にあり、 これに伴って干渉ス ぺクトルのピーク位置も企図した位置から偏移し易い。 さらに、 有機材料膜が薄い場合に おける干渉スぺクトルのピーク数は少なくかつピーク間の間隔は広くなつている。 これら の結果、 有機材料膜の膜厚が薄い場合 (λ 2/ L > FWH M (P L) ) 、 基板から出. 射された光のスぺクトルは、 企図した波長 λおよびその近傍において発光強度が低下して 、 基板から外部に出射する出射光のピーク位置がシフ卜する傾向が強い。 In the case of λ 2 / Ι_> FWHM (PL), the interference spectrum shows a peak at the extraction wavelength λ even if the organic material film is manufactured with setting = λΖ2. However, Therefore, it is difficult to control the film thickness of the organic material film, and it is difficult to strictly control the thickness of the organic material film, particularly when the organic material film is produced by a wet process such as a spin-collision method. . Accordingly, the organic material film tends to be easily deviated from the predetermined flUl, and accordingly, the peak position of the interference spectrum is easily shifted from the intended position. Furthermore, when the organic material film is thin, the number of peaks in the interference spectrum is small and the interval between peaks is wide. As a result, when the organic material film is thin (λ 2 / L> FWH M (PL)), the spectrum of the light emitted from the substrate is the emission intensity at and around the intended wavelength λ. There is a strong tendency to shift the peak position of outgoing light emitted from the substrate to the outside.
また、 有機材料膜の膜厚が薄い場合における干渉フィルタは波: Μ択性が高い故、 複合 層を ffiiiした光のピーク幅は顯前に比べて狭くなリ、 結果的に表示 ネルから出射され る光の発光スペクトルの角度依存性が高くなる。 すなわち、 有機 E L表示パネル 色再現 範 Hば、 視角が狭い範囲においてのみ確保されることとなる。  In addition, when the organic material film is thin, the interference filter has a high wave selectivity, so the peak width of the light ffiii of the composite layer is narrower than before. As a result, it is emitted from the display channel. The angle dependence of the emission spectrum of the emitted light is increased. In other words, the organic EL display panel color reproduction range H is ensured only in a narrow viewing angle range.
一方、 上記式 ( 6 ) の条件を満たすことによって、 上記の如き影響が低減して、 所望の 特性が得られることが判った すなわち、 有機材料膜の J^を大とすることで、 多重干渉 により干渉スペクトルに多数のピークが出現し、 これによつて出射光のピーク位置のシフ 卜への影響を低減することができる。 また、 各ピークの半値幅は狭いものの隣り合うピー ク同士の間隔が狭くなつてピーク間の波長の光も透過するようになり、 企図する取り出し 波長からピークの位置が多少ずれても、 企図した波長 λおよびその近傍において発光強度 が大幅に低下することは回避される。  On the other hand, it has been found that satisfying the condition of the above formula (6) reduces the above-mentioned influence and obtains desired characteristics. That is, by increasing J ^ of the organic material film, multiple interference is obtained. As a result, a number of peaks appear in the interference spectrum, and this can reduce the influence of the peak position of the emitted light on the shift. In addition, although the half-value width of each peak is narrow, the distance between adjacent peaks is narrowed so that light of the wavelength between peaks can be transmitted, and even if the peak position slightly deviates from the intended extraction wavelength, It is avoided that the emission intensity significantly decreases at the wavelength λ and in the vicinity thereof.
さらに、 干渉フィル夕の波長選択性が鈍化することによって、 有機 E L素子からの内部 発光スペクトルにほぼ沿った、 プロ一ドなスペクトルの光が得られる。 この結果、 色度の 角度依存性が低下して、 有機 E L表示パネルの色再現性を広い視角で維持することができ る。 例えば図 3に示す如く、 有機 E L表示パネルの表示面を正面に据えて垂直に見たとき (かかる場合を視角 0度と設定する) における緑色 (G) 発光を、 0度から 6 0度にわた つて 5度刻みで視角を変化させて観察した場合において、 久ゾし > FWH ( P L ) に設定した場合に比べて (図 3 ( a ) ) 、 A 2/ L ≤ FWH M ( P L) (図 3 ( b ) ) に設定した方が色度の変化の範囲が狭くなる。 すなわち、 有機材料膜の膜厚を大とす ることによって有機 E L素子から発せられる光のスぺクトルに対する角度依存性が低減し 、 広い視角において十分な色再現範囲を有する有機 Eし表示パネルを得ることができる。 なお、 上記の如き有機材料膜の厚さは、 赤色 (R) 緑色 (G) 青色 (B ) それぞれの色 に対して設定することとしても良い。 すなわち、 R G Bのそれぞれの光を発する有機 Eし 素子ごとに、 対応する有機材料膜の厚きを設定することとしても良い。 また、 有機材料膜 の膜厚は、 光が有機材料膜と無機材料膜との界面において反射する際に発生する位相のず れ、 すなわち位相シフトを考慮して決定することとしても良い。 . 上記の如き複合層にお Lゝて有機材料膜の光学的距離 Lは、 上記式 ( 6 )の条件を満たすこ とによって^ I子な特' I生が得られるものの、 ぇゾしを使用する発光材料の発光スぺ トル の半値幅よりも十分小さく設定することがより好ましい。 例えば、 有機材料膜の光学的距 離しが、 In addition, since the wavelength selectivity of the interference filter is slowed down, it is possible to obtain a light with a professional spectrum almost in line with the internal emission spectrum from the organic EL device. As a result, the angle dependency of chromaticity is reduced, and the color reproducibility of the OLED display panel can be maintained over a wide viewing angle. The For example, as shown in Fig. 3, when the display surface of the OLED display panel is placed in front and viewed vertically (in this case, the viewing angle is set to 0 degrees), the green (G) emission is changed from 0 degrees to 60 degrees. When the observation angle is changed in 5 degree increments, compared to the case of setting>HWH> FWH (PL) (Fig. 3 (a)), A 2 / L ≤ FWH M (PL) ( The range of change in chromaticity is narrower when set to Fig. 3 (b)). In other words, by increasing the film thickness of the organic material film, the angle dependency of the light emitted from the organic EL element on the spectrum is reduced, and an organic display panel having a sufficient color reproduction range over a wide viewing angle can be obtained. Obtainable. The thickness of the organic material film as described above may be set for each color of red (R), green (G), and blue (B). In other words, the thickness of the corresponding organic material film may be set for each organic light emitting element that emits RGB light. The film thickness of the organic material film may be determined in consideration of a phase shift generated when light is reflected at the interface between the organic material film and the inorganic material film, that is, a phase shift. The optical distance L of the organic material film in the composite layer as described above can be obtained by satisfying the condition of the above formula (6). It is more preferable to set it sufficiently smaller than the half width of the light emission spectrum of the light emitting material to be used. For example, the optical distance of the organic material film is
【 】 []
λ2 く FWHM (P L) マ、 λ 2 FWHM (PL)
Γ 3 · · , ( ? ) Γ 3 ... (?)
を満たすこととレても良い。 上記式 ( 7 ) を満たして有機材料膜における光の光路長を長 く設定することによって、 可視光の波長帯域に亘ってよリ多数の干渉ピークが観察される ようになる。 かかる干渉スペクトルを有する干渉フィル夕は、 8。8のぃずれか1っの色 (例えば緑色) に対して有機材料膜の厚さを設定したとしても、 その他の色の波長領域に おいても多重干渉して、 所望の波長特性に近いスぺク卜ルを有する光を出射することがで きる。 すなわち、 R G Bの色ごとに ¾機材料膜の膜厚を設定することを省略して、 R G B に対して共通の有機材料膜を備えた複合層を提供することができるようになり、 製造工程 を簡素化することができる。 特に、 有機 E L素子がマ卜リックス状に配置されたフルカラ —有機 E L表示パネルを作製する際に有効である。 You may meet and meet. By satisfying the above equation (7) and setting the optical path length of light in the organic material film to be long, a large number of interference peaks can be observed over the wavelength band of visible light. Even if the thickness of the organic material film is set for one of the eight colors (for example, green), the interference filter having such an interference spectrum is in the wavelength region of other colors. However, it is possible to emit light having a spectrum close to a desired wavelength characteristic due to multiple interference. That is, it is possible to provide a composite layer having a common organic material film for RGB by omitting setting the film thickness of each material color for each RGB color. It can be simplified. This is particularly effective when manufacturing full-color organic EL display panels with organic EL elements arranged in a matrix.
また、 かかる複合層は、 特に、 有機 E L素子が白色発光する場合において、 上記式 (7 ) の条件に設定すると、 1つの複合層で R G B各色の波長の調整を行うことができる点で 有効であることが判った。  In addition, such a composite layer is effective in that the wavelength of each RGB color can be adjusted with one composite layer, particularly when the organic EL element emits white light and is set to the condition of the above formula (7). It turns out that there is.
なお、 基板がガラス基板からなる場合、 複合層は、 有機材料膜が無機材料膜によって挟 持されている 3層構造の他に、 例えば図 4に示す如ぐ ガラスからなる基板 2上に有機材 料膜' 4を直接設けさら (こ有機材料膜 4上に無機材料膜 5を配する 2層構造としても良い。 ところで、 有機 E L素子ば、 酸素等のガスおよび水分に接するといわゆるダークスポッ 卜と称される発光不良を生じ易い。 特に、 基板が樹脂基板である場合において樹脂材料は ガスおよび水分を透過させ易いことから、 有機 E L素子が樹脂基板に担持されている場合 において、 ガスバリア性を備えたガスバリア膜が基板上に設けられている。 そこで、 複合 層がガスバリア性を有し、 ガスバリア膜として作用することとしても良い。 複合層がガス ノ リア性を備えることによって、 有機 E L表示パネルの構成が単純であっても有機 E L素 子の発光寿命を長くしつつ所望の発光特性を得ることができる。  When the substrate is made of a glass substrate, the composite layer has an organic material film on a substrate 2 made of glass as shown in FIG. 4, for example, in addition to a three-layer structure in which an organic material film is sandwiched between inorganic material films. The material film 4 is provided directly (this may be a two-layer structure in which the inorganic material film 5 is disposed on the organic material film 4. By the way, in the case of an organic EL device, when it comes into contact with oxygen and other gases and moisture, a so-called dark spot is formed. In particular, when the substrate is a resin substrate, the resin material easily allows gas and moisture to pass therethrough, so that it has a gas barrier property when the organic EL element is supported on the resin substrate. Therefore, the composite layer may have a gas barrier property and may function as a gas barrier film. Therefore, even if the configuration of the organic EL display panel is simple, desired emission characteristics can be obtained while extending the emission lifetime of the organic EL element.
なお複合層が無機材料膜と有機材料膜とを用いた複合構造 (ハイプリッ卜搆造) である ことから、 複合層は良好なガスバリア性を有することができる。 すなわち、 無機材料膜に は、 ピンホールと称される微小の欠陥が発生し易く、 かかるピンホールを介して水分等が 透過しやすい。 しカゝし、 無機材料膜上に有機材料膜を設けることによって、 ピンホールを 有機材料によつて埋めて、 かかる水分等の侵入を防ぐことができる。 In addition, since the composite layer has a composite structure (high fabrication) using an inorganic material film and an organic material film, the composite layer can have a good gas barrier property. That is, a minute defect called a pinhole is likely to occur in the inorganic material film, and moisture and the like are easily transmitted through the pinhole. The pinhole is formed by providing an organic material film on the inorganic material film. It can be filled with an organic material to prevent such moisture from entering.
さらにまた、 樹脂基板は可撓性を有するフイルムとしても良い。.基板を可撓性とするこ とによって、 薄くて軽く、 しかも視角範囲が広い屈曲自在な有機 E L表示パネルが得られ る。  Furthermore, the resin substrate may be a flexible film. By making the substrate flexible, a flexible organic EL display panel that is thin and light and has a wide viewing angle range can be obtained.
なお、 上記実施例において、 有機材料膜は単一の有機材料の薄膜からなる場合について 説明したもののこれに限定されない。 例えば有機材料膜は、 複数の有機薄膜が順に積み重 なって形成されていることとしても良く、 これらの有機薄膜がそれぞれ異なる材料からな ることとしても良い。  In the above embodiment, the organic material film is described as being made of a single organic material thin film, but is not limited thereto. For example, the organic material film may be formed by sequentially stacking a plurality of organic thin films, or these organic thin films may be made of different materials.
また、 複合層は、 有機材料膜と無機材料膜とが交互に積層されていれば良ぐ 何層であ つても良い。 さらにまた、 図示しないものの、 基板と複合層との間に 変換層 (C C M層 The composite layer may have any number of layers as long as organic material films and inorganic material films are alternately laminated. Furthermore, although not shown, a conversion layer (C CM layer) is formed between the substrate and the composite layer.
) 、 カラーフィルタ層、 平滑 iUiを設けても良い。 ) A color filter layer and a smooth iUi may be provided.
以上のように、 有機 E L素子の外部に干渉フィルタ構造を設けることによって、 有機 E L素子の電気的特性に影響を与えることなく、 所望のピークスぺクトルを有する光を取り 出すことができる。  As described above, by providing an interference filter structure outside the organic EL element, light having a desired peak spectrum can be extracted without affecting the electrical characteristics of the organic EL element.
また、 干渉領域となる有機材料膜の作製においてスピンコート法などのゥエツト法を採 用することができる。 この結果、 作製時間の短縮、 コス卜削減等を図ることができる。 なお、 上記実施例において、 有機 E L表 \°ネルは、 基板を介して外部に光を取り出す 方式、 いわゆるボ卜厶ェミッション型パネルとしているもののこれに限定されず、 基板を 介さないで基板と反対側から光を取り出す方式、 いわゆるトップェミッション型パネルで あっても良い。 このトップェミッション型パネルは、 波長 λの光を発する発光層を含む有 機機能層と該有機機能層を挟持する第 1及び第 2表示電極とからなる有機 E L素子と、 該 有機 E L素子を担持している基板と、 を有している。 該有機 E L素子は該基板と無機材料 膜および有機材料膜からなる複合層とによって封止されている。 該複合層の構成は上記し た実施例とほぼ同様の構成を有している。 該複合層における該有機材料膜の屈折率は該無 機材料膜の屈折率に比べて小であリ、 該有機材料膜の光学的距離 Lは、 In addition, a wet method such as a spin coating method can be employed in the production of an organic material film that becomes an interference region. As a result, the production time can be shortened and the cost can be reduced. In the above embodiment, the organic EL surface panel is a method of extracting light to the outside through the substrate, which is a so-called “bomission type panel”, but is not limited to this. A so-called top emission type panel may be used in which light is extracted from the opposite side. The top emission type panel includes an organic EL element including an organic functional layer including a light emitting layer that emits light having a wavelength λ, and first and second display electrodes sandwiching the organic functional layer, and the organic EL element. And a substrate to be carried. The organic EL element includes the substrate and an inorganic material. It is sealed with a composite layer made of a film and an organic material film. The composite layer has substantially the same structure as that of the above-described embodiment. The refractive index of the organic material film in the composite layer is smaller than the refractive index of the inorganic material film, and the optical distance L of the organic material film is
【数 1 0】  [Equation 1 0]
― ≤ F WHM ( P L ) · · ·式 (8 )  ― ≤ F WHM (PL) · · · · · (8)
を満たしていることが好ましい。 Is preferably satisfied.
なお、 上記した実施例においては、 複合層 6が第 1および第 2の無機材料膜 3 , 5及び 当 1無機材料膜 3, 5よりも屈折率が小さく、 当該無機材料膜 3, 5間に配された有機材 料膜 4から構成されている場合について説明した。 しかしながら、 第 1および第 2の無機 材料膜 3, 5間に配される中間膜 4は無機材料からなっていてもよい。 すなわち、 複合層 6において、 当該無機材料膜 3, 5よりも屈折率がより小さな無機材料からなる膜 (無機 材料膜) 4が無機材料膜 3, 5間に配された構成としてもよい。  In the above-described embodiment, the composite layer 6 has a refractive index smaller than those of the first and second inorganic material films 3 and 5 and the first inorganic material films 3 and 5, and The case where the organic material film 4 is arranged has been described. However, the intermediate film 4 disposed between the first and second inorganic material films 3 and 5 may be made of an inorganic material. That is, in the composite layer 6, a film (inorganic material film) 4 made of an inorganic material having a refractive index smaller than that of the inorganic material films 3 and 5 may be arranged between the inorganic material films 3 and 5.
この場合、 上記した実施例と同様に、 無機材料膜 4の厚さを d、 無機材料膜 4の屈折率 を nとしたとき、 無機材料膜 4の光学的な厚さ (すなわち、 光学的距離) Lが上記した式 ( 6 ) を満たすように複合層 6が構成されていることが好ましい。 さらには、 上記した式 ( 7 ) を満たすように複合層 6が構成されていることがより好ましい。  In this case, similarly to the above-described embodiment, when the thickness of the inorganic material film 4 is d and the refractive index of the inorganic material film 4 is n, the optical thickness of the inorganic material film 4 (that is, the optical distance) It is preferable that the composite layer 6 is configured so that L satisfies the above formula (6). Furthermore, it is more preferable that the composite layer 6 is configured to satisfy the above formula (7).
無機材料 B奠 4は、 前述したように、 酸化シリコン (S i 02) 、 窒化シリコン (S i N x) 、 窒化酸化シリコン (S i O N) 、 酸化アルミニウム (A l 203)などの無機材料であ つて、 可視光領域の光を Jliiする材料を用いることができる。 また、 無機材料膜 4は、 蒸 着、 C V D、 スパッタ法、 I P等の方法により成膜することができる。 なお、 応力の少な い膜を形成することができる方法が好ましい。 特に、 C V D法の場合では、 形成される膜 の応力をコントロールすることができると共に、 厚い膜を形成することも容易であるので 好ましい。 また、 C V D法による膜はカバレッジ性能にも優れているため、 バリア性能に 優れた複合層 6を形成することができる。 あるいは、 ゾル 'ゲル、 ポリシラザン等のゥェ ットコ一卜焼成タイプの形成方法により成膜することもできる。 As described above, the inorganic material B 奠 4 is made of silicon oxide (S i 0 2 ), silicon nitride (S i N x ), silicon nitride oxide (S i ON), aluminum oxide (A l 2 0 3 ), etc. An inorganic material that can be used for Jlii light in the visible light region can be used. The inorganic material film 4 can be formed by a method such as vapor deposition, CVD, sputtering, or IP. A method capable of forming a film with less stress is preferable. Especially in the case of the CVD method, the stress of the film to be formed can be controlled and it is easy to form a thick film. preferable. In addition, since the film formed by the CVD method has excellent coverage performance, a composite layer 6 having excellent barrier performance can be formed. Alternatively, the film can be formed by a wet-co-firing type forming method such as sol-gel or polysilazane.

Claims

請求の範囲 The scope of the claims
1. 波長 λの光を発する発光層を含む有機機能層と前記有機機能層を挟持する第 1及び第 2表示電極とからなる有機エレク卜ロルミネセンス素子と、 前記有機エレクトロルミネセ ンス素子を担持している基板と、 を有する有機エレク卜ロルミネセンス表 \°ネルであつ て、  1. an organic electroluminescent element comprising an organic functional layer including a light emitting layer that emits light of wavelength λ, and first and second display electrodes sandwiching the organic functional layer; and carrying the organic electroluminescent element. And an organic electroluminescence table having a substrate, and
前言 Ε»板と前記有機ェレクトロルミネセンス素子との間 無機材料膜および有機材料膜 からなる複合層が設けられておリ、  Foreword Ε »A composite layer composed of an inorganic material film and an organic material film is provided between the plate and the organic electroluminescent element.
前記有機材料膜の屈折率は前記無機材料膜の屈折率に比べて小であリ、  The refractive index of the organic material film is smaller than the refractive index of the inorganic material film,
前記有機材料膜の光学的距離しは、  The optical distance of the organic material film is
【数 1】
Figure imgf000017_0001
[Equation 1]
Figure imgf000017_0001
を満たしていることを特徴とす ¾有機エレクトロルミネセンス表示パネル。 ¾Organic electroluminescence display panel.
(ここで、 上記式において、 PLとは前記発光層に含まれる有機発光材料の発光スぺク卜 ルをいい、 FWHMとは前記発光スペクトルの半値幅をいう。 )  (Here, in the above formula, PL refers to the light emission spectrum of the organic light emitting material contained in the light emitting layer, and FWHM refers to the half width of the emission spectrum.)
2. 前記有機材料膜の光学的距離 !_は、 2. The optical distance! _ Of the organic material film is
【数 2】  [Equation 2]
52  52
—— ≤ FWHM (PL)  —— ≤ FWHM (PL)
を満たしていることを特徴とする請求項 1記載の有機エレク卜ロルミネセンス表示パネル 3. 前言 5¾板は樹脂基板からなり、 The organic electroluminescence display panel according to claim 1, wherein the board is made of a resin substrate.
前記複合層は前記有機材料膜が前記無機材料膜によって挟持されていることを特徴とす る請求項 1または 2に記載の有機エレクトロルミネセンス表示パネル。 3. The organic electroluminescence display panel according to claim 1, wherein the organic material film is sandwiched between the inorganic material films in the composite layer.
4. 前言 B»板はガラス基板からなることを特徴とする請求項 1または 2に記載の有機エレ クドロルミネセンス表示パネル。 4. The organic electroluminescence display panel according to claim 1 or 2, wherein the B >> plate is made of a glass substrate.
5. 前記複合層はガスバリア性を有することを特徴とする請求項 1または 2に記載の有機 エレクトロルミネセンス表示パネル。  5. The organic electroluminescence display panel according to claim 1, wherein the composite layer has a gas barrier property.
6 · 波長 λの光を発する発光層を含む有機機能層と前記有機機能層を挟持する第 1及び 第 2表示電極とからなる有機エレクトロルミネセンス素子と、 前記有機エレクトロルミネ センス素子を担持している基板と、 を有する有機エレクトロルミネセンス表示パネルであ つて 前記有機エレクトロルミネセンス素子は前記基板と無機材料膜および有機材料膜からな る複合層とによって封止されており、  6 · an organic electroluminescent element comprising an organic functional layer including a light emitting layer emitting light of wavelength λ and the first and second display electrodes sandwiching the organic functional layer; and carrying the organic electroluminescent element An organic electroluminescence display panel, wherein the organic electroluminescence element is sealed by the substrate and a composite layer comprising an inorganic material film and an organic material film,
前記有機材料膜の屈折率は前記無機材料膜の屈折率に比べて小でぁリ、  The refractive index of the organic material film is smaller than the refractive index of the inorganic material film,
• 前記有機材料膜の光学的距離しは、 • The optical distance of the organic material film is
【数 3】  [Equation 3]
λ2 ' ' ' ' λ 2 ''''
― ≤ FWHM (PL)  ― ≤ FWHM (PL)
を満たしていることを特徴とする有機エレクトロルミネセンス表 ネル。  An organic electroluminescence panel characterized by satisfying the requirements.
(ここで、 上記式において、 PLとは前記発光層に含まれる有機発光材料の発光スぺク卜 ルをいい、 FWHMとは前記発光スペクトルの半値幅をいう。 )  (Here, in the above formula, PL refers to the light emission spectrum of the organic light emitting material contained in the light emitting layer, and FWHM refers to the half width of the emission spectrum.)
7 · 前記有機材料膜の光学的距離 Lは、  7The optical distance L of the organic material film is
【数 4】 [Equation 4]
_ ≤ FWHM (PL) を満たしていることを特徴とする請求項 6記載の有機ェレクトロソレミネセンス表示パネル 7. The organic electroluminescence display panel according to claim 6, wherein _ ≤ FWHM (PL) is satisfied.
8. 前記複合層は 記有機材料膜が前記無機材料膜によって挟持されていることを特徴と する請求項 6または 7に記載の有機工レク卜口ルミネセンス表示パネル。 8. The organic engineering light emitting luminescence display panel according to claim 6 or 7, wherein the organic material film is sandwiched between the inorganic material films in the composite layer.
9. 前記複合層はガスバリァ性を有することを特徴とする請求項 6または 7に記載の有機 エレク卜ロルミネセンス表示パネル。  9. The organic electroluminescence display panel according to claim 6, wherein the composite layer has a gas barrier property.
1 0. 波長 λの光を発する発光層を含む有機機能層と前記有機機能層を挟持する第 1及 び第 2表示電極とからなる有機エレクトロルミネセンス素子と、 前記有機エレク卜口ルミ ネセンス素子を担持している基板と、 を有する有機エレク卜口ルミネセンス表^ Λネルで あって 前記基板と前記有機エレクトロルミネセンス素子との間に第 1及び第 2の無機材料膜お よび第 3の無機材料膜からなる複合層が設けられており、  10. An organic electroluminescent device comprising an organic functional layer including a light emitting layer that emits light having a wavelength λ, and first and second display electrodes sandwiching the organic functional layer, and the organic electroluminescent device And an organic electroluminescent luminescence table having a first and second inorganic material film and a third organic material between the substrate and the organic electroluminescent element. A composite layer made of an inorganic material film is provided,
前記第 3の無機材料膜の屈折率は前記第 1及び第 2の無機材料膜の屈折率に比べて小で ぁリ、  The refractive index of the third inorganic material film is smaller than the refractive index of the first and second inorganic material films.
前記第 3の無機材料膜の光学的距離 Lは、  The optical distance L of the third inorganic material film is
【数 5】
Figure imgf000019_0001
[Equation 5]
Figure imgf000019_0001
を満たして t、ることを特徴とする有機ェレク卜口ルミネセンス表示パネル。 An organic electroluminescent luminescence display panel characterized by satisfying T.
(ここで、 上記式において、 P Lとは前記発光層に含まれる有機発光材料の発光スぺク卜 ルをいい、 FWH Mとは前記発光スペクトルの半値幅をいう。 )  (Here, in the above formula, P L refers to the light emission spectrum of the organic light emitting material contained in the light emitting layer, and FWH M refers to the half width of the emission spectrum.)
1 1 . 前記第 3の無機材料膜の光学的距離 Lは、  1 1. The optical distance L of the third inorganic material film is:
【数 6】  [Equation 6]
3 λ2 3 λ 2
F WHM ( P L ) を^たしていることを特徴とする請求項 1記載の有機エレクトロルミネセンス表示パネル F WHM (PL) The organic electroluminescence display panel according to claim 1, wherein
PCT/JP2006/318469 2005-09-15 2006-09-12 Organic electroluminescent display panel WO2007032526A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-268973 2005-09-15
JP2005268973 2005-09-15

Publications (1)

Publication Number Publication Date
WO2007032526A1 true WO2007032526A1 (en) 2007-03-22

Family

ID=37865104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318469 WO2007032526A1 (en) 2005-09-15 2006-09-12 Organic electroluminescent display panel

Country Status (2)

Country Link
TW (1) TW200721904A (en)
WO (1) WO2007032526A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250786A (en) * 1995-01-10 1996-09-27 Hitachi Ltd Light emitting element having multiple resonance structure
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2002100469A (en) * 2000-09-25 2002-04-05 Pioneer Electronic Corp Organic electroluminescence display panel
JP2004253390A (en) * 2003-02-18 2004-09-09 Eastman Kodak Co Color organic light-emitting display
JP2005123012A (en) * 2003-10-16 2005-05-12 Pioneer Electronic Corp Organic electroluminescent display panel, and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250786A (en) * 1995-01-10 1996-09-27 Hitachi Ltd Light emitting element having multiple resonance structure
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
WO2001039554A1 (en) * 1999-11-22 2001-05-31 Sony Corporation Display device
JP2002100469A (en) * 2000-09-25 2002-04-05 Pioneer Electronic Corp Organic electroluminescence display panel
JP2004253390A (en) * 2003-02-18 2004-09-09 Eastman Kodak Co Color organic light-emitting display
JP2005123012A (en) * 2003-10-16 2005-05-12 Pioneer Electronic Corp Organic electroluminescent display panel, and method of manufacturing the same

Also Published As

Publication number Publication date
TW200721904A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
US8022620B2 (en) Display device for improving chromatic purity
KR101056679B1 (en) Organic light emitting device and display device
US7508005B2 (en) Light emitting display apparatus with slight color shifting
US7923920B2 (en) Organic light-emitting elements of LED with light reflection layers in each spaced on opposite sides of transparent conductive layer
JP5241128B2 (en) Multicolor display device
US7554259B2 (en) Light emitting display apparatus having excellent color reproducibility
US9252194B2 (en) Display device having a reflection of light reducing multilayer
US9111882B1 (en) Organic light emitting device and fabricating method thereof
JP2011096678A (en) Multiple wavelength light-emitting element, display device, and electronic equipment
US20100327304A1 (en) Organic el device and design method thereof
JP2011018451A (en) Light-emitting display apparatus
JP5963458B2 (en) LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, AND IMAGING DEVICE
KR101735885B1 (en) Light emitting element, display apparatus, and lighting apparatus
KR20140145983A (en) Light-emitting device, display apparatus, and illumination apparatus
US20130032841A1 (en) Light-Emitting Device and Lighting Device
US8188500B2 (en) Organic light-emitting element and light-emitting device using the same
JP2005209421A (en) Method for manufacturing display device and display device
US20050046336A1 (en) Light emitting device
JP2012054091A (en) Multicolor display device
JP2004079421A (en) Organic el element
JP2013058446A (en) Display device
JP2010080117A (en) Light emitting element, and display device
WO2007032526A1 (en) Organic electroluminescent display panel
JP4438364B2 (en) Organic light emitting device and display device
JP2003017274A (en) Organic el element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP