WO2007032202A1 - Novel compound having two-phase state and process for producing the same - Google Patents

Novel compound having two-phase state and process for producing the same Download PDF

Info

Publication number
WO2007032202A1
WO2007032202A1 PCT/JP2006/316898 JP2006316898W WO2007032202A1 WO 2007032202 A1 WO2007032202 A1 WO 2007032202A1 JP 2006316898 W JP2006316898 W JP 2006316898W WO 2007032202 A1 WO2007032202 A1 WO 2007032202A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
crystal
lithium carboxylate
carboxylate
water
Prior art date
Application number
PCT/JP2006/316898
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Sakaguchi
Akiko Kawai
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2007535415A priority Critical patent/JP4899168B2/en
Publication of WO2007032202A1 publication Critical patent/WO2007032202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation

Definitions

  • the present invention relates to a novel compound having a two-phase state and a method for producing the same, and particularly relates to a novel lithium carboxylate having a two-phase state and a method for producing the same.
  • carboxylic acid metal salts are produced by synthesizing carboxylic acid power, and at the same time, precipitated into powder, lump, or gel, or dried and solidified while volatilizing the solvent. It contains many impurities, and it was impossible to control the crystal form and size. Thus, unlike many other chemical products, carboxylic acid metal salts have only been used for industrial products whose crystal form is unknown. (Refer to Non-Patent Documents 1 to 4.) As a result, carboxylic acid metal salts are amphiphiles due to their molecular structure. It has been limited to a narrow range.
  • lithium carboxylate has been used exclusively for the use of lithium stearate (octadecanoate) having 18 carbon atoms for the reasons described above.
  • the lithium acid was in the form of powder, gel, or lumps whose crystal form was unknown. Therefore, lithium carboxylate with a controlled crystal form is considered to have very unique and unique properties, but its properties are still not fully utilized. Seems to be limited.
  • Non-Patent Document 1 Tokiyuki Yoshida, Shinichi Shindo, Tadayoshi Ogaki, Satoshi Ide, “Characteristics and Applications of Metal Soap”, Koshobo, October 5, 1988
  • Non-Patent Document 2 Arai Yokichi, Matsushima Shozo, "Zanzen Metal Ishibuchi” 3rd edition, Sangyo Tosho Co., Ltd., September 1, 1927
  • Non-Patent Document 3 R'C 'by MEROTRA and R. Bohra, "METAL CARBOXYLATES", ACADEMIC PRESS (1983)
  • Non-Patent Document 4 Claré Markley ( Klare S. Markley), ⁇ Fats and Oils '', A 3 ⁇ 4enes of Monographs Fattty Acids Their and hemistry, Properties, Production, and Uses, Interscience Publishers, Inc., New York (1961), Chapter 8: Salt VIII Salts of Fatty Acids, Klare S. Markley
  • a carboxylic acid metal salt having an unknown crystal form is obtained in the process of obtaining a carboxylic acid metal salt by reacting a carboxylic acid with a metal oxide or a metal hydroxide. It is necessary to dissolve completely in the solvent, and then to precipitate the high purity carboxylic acid metal salt as crystals with decreasing temperature. Furthermore, the solvent used can be easily separated from the precipitated carboxylic acid metal salt crystals, and can be washed by easily dissolving in water or a commonly used organic solvent, or low boiling point so that the crystals do not remain after drying. It is necessary to be. Therefore, it was found that the solvent used for the synthesis of the carboxylic acid metal salt is desirably water-soluble. Furthermore, the obtained high-purity metal carboxylate crystals were analyzed and found to be a compound having a novel two-phase structure.
  • the present invention has been completed based on these findings, (1) a compound having two melting points and having a two-phase state in which a crystalline state and a liquid state coexist at a temperature between both melting points;
  • Lithium atom and oxygen atomic energy Organic oxidation characterized by having a structure formed by chemical bonding of a planar ion crystal composed of an organic group mainly composed of an alkyl chain on both sides of the plane.
  • Carboxylic acid and lithium oxide or lithium hydroxide are heated and dissolved in a mixed solvent of alcohol and water, and then slowly cooled to form plate-like or scaly crystals.
  • the existing lithium carboxylate is dissolved by heating in a mixed solvent of alcohol and water, and then precipitated as plate-like or scaly crystals by slow cooling (1) (2) or (4) provides a method for producing any one of the lithium carboxylate compounds.
  • the physical properties can be systematically changed by systematically changing the alkyl chain length, even with extremely high crystallinity, high purity, constant carbon chain length, and therefore constant physical properties. It is possible to produce a series of lithium carboxylate crystals and various organic lithium oxide compounds. These lithium carboxylate crystals and organic lithium oxide compounds systematically change physical properties such as lubricants, greases, dispersants, water repellents, mold release agents, desiccants, catalysts, stabilizers, and bactericides. Can be used for a wide range of purposes. Further, according to the present invention, it is possible to obtain a very thin, highly insulating flat crystal, and it can be used as various insulating materials as a synthetic mica substitute.
  • the compound of the present invention has a unique two-phase structure, and the low-temperature melting point, the crystallization temperature, and the magnitude of the enthalpy change greatly change depending on whether the number of carbon atoms in the alkyl chain is odd or even.
  • the surface properties can be controlled in a wide temperature range.
  • the alkyl chain arrangement on the surface of the compound of the present invention is stable and orderly, and a much more stable laminated film than a conventional LB film can be produced very easily and with a large amount of force.
  • FIG. 1 The above is a C14Li (lithium tetradecanoate) flake-like crystal obtained by the present invention. 1. Og is a photograph taken with a digital camera. (Microscope) It is a photograph.
  • FIG. 2 The above is a C18Li (lithium octadecanoate) flake-like crystal obtained in the example. 1.
  • Og is a digital camera photo, and below is a SEM (scanning electron microscope) photo magnified 5000 times. It is.
  • FIG. 3 The above is a photograph of a crystal of lithium octadecanoate (Acros) commercially available as a reagent. 1. The bottom is a SEM (scanning electron microscope) magnified 5000 times. It is a photograph.
  • SEM scanning electron microscope
  • FIG. 4 The above is a digital camera photograph of 1.0 g of lithium octadecanoate provided by NOF Corporation, and the bottom is a SEM (scanning electron microscope) photograph magnified 5000 times.
  • FIG. 5 shows the results of single crystal X-ray structural analysis of C14Li (lithium tetradecanoate).
  • FIG. 6 is a diagram showing the results of measuring the low temperature side melting point and the high temperature side melting point for C08Li force C22Li.
  • the lithium carboxylate crystal or organic lithium oxide compound of the present invention comprises, in a mixed solvent of alcohol and water, an organic compound mainly composed of a carboxylic acid or an alkyl chain, and lithium oxide or lithium hydroxide compound. Some are plate-like or scaly crystals which are precipitated after dissolving existing lithium carboxylate.
  • the crystal of the present invention is preferably a crystal having a controlled crystal form.
  • “Crystal with controlled crystal form” means a crystal that has a distinct plate-like or flake-like crystal form rather than a powdery, gel-like, or massive precipitate. Further, it means that 90% by weight or more of lithium carboxylate is contained in the crystal after drying, preferably 95% by weight or more, more preferably 97% by weight or more.
  • a mixed solvent of alcohol and water contains an organic compound mainly composed of a carboxylic acid or an alkyl chain and lithium oxide or lithium hydroxide.
  • the present invention provides a method for producing a lithium carboxylate crystal in which plate-like or scaly crystals are precipitated after dissolution.
  • an alcohol and water mixed solvent (hereinafter referred to as “alcohol Z water mixed solvent”) is used as a solvent.
  • the alcohol is preferably a lower alcohol.
  • concentration of the lower alcohol, and the higher the alcohol concentration the higher the solubility of lithium carboxylate at the same alcohol concentration.
  • the reaction temperature required for complete dissolution varies depending on the carbon chain length of the carboxylic acid and the alcohol concentration in the solvent.
  • the concentration of lithium carboxylate in the solution can be made extremely high by increasing the alcohol concentration in the solvent.
  • the shorter the carbon chain length of lithium carboxylate the more completely it dissolves at a lower temperature.
  • “Complete dissolution” means a dissolved state in which the entire reaction solution is colorless and transparent, and the presence of any crystal precipitates in the solution, the liquid surface, or the inner wall of the container cannot be confirmed with the naked eye.
  • the organic compound mainly composed of the original carboxylic acid or alkyl chain and the lithium oxide or lithium hydroxide salt are obtained.
  • the existing lithium lithium carboxylate The crystals are precipitated by heating in a mixed solvent of lower alcohol and water and completely cooling, followed by cooling. Precipitated crystals can be obtained by simply filtering by a usual method, and further purified crystals can be obtained by washing with water, followed by natural drying at normal pressure, air drying, or vacuum drying.
  • the lithium carboxylate crystal of the present invention produced from carboxylic acid and lithium oxide or lithium hydroxide, or obtained by re-dissolving existing powdered lithium carboxylate is a plate Crystal or scaly crystal.
  • the plate-like crystal means a crystal having a plate-like planar shape after precipitation that can be observed with the naked eye.
  • the thickness of each of the plate-like crystals and the scaly crystals is preferably 0.5 m or less, more preferably 0.1 l ⁇ m or less. In the present invention, they are deposited and formed by overlapping. .
  • the molarity of lithium carboxylate to be dissolved (or carboxylic acid when carboxylic acid and lithium hydroxide or lithium hydroxide is dissolved) and water.
  • the ratio (lithium carboxylate: water) is preferably 1: 1000 to 50: 1000, more preferably 5: 1000 to 30: 1000.
  • the molarity of lithium carboxylate to be dissolved (or carboxylic acid when carboxylic acid and lithium hydroxide or lithium hydroxide is dissolved) and alcohol.
  • the ratio (force lithium rubonic acid: alcohol) is preferably 1: 1 to 1: 400, more preferably 1:10 to 1: 300.
  • the molar ratio of alcohol: water in the alcohol Z water mixed solvent is appropriately changed depending on the type of carboxylic acid, lithium carboxylate and alcohol used.
  • a molar ratio of about twice that of ethanol is required, and in the case of propanol and butanols, the number of moles of 1Z2 to 1Z5 of ethanol is sufficient.
  • the carboxylic acid in the case of the lithium carboxylate used in the present invention is a monocarboxylic acid having a straight chain or a saturated alkyl chain.
  • the carbon number of the carboxylic acid used in the present invention is desirably 1-30. Considering the unpleasant odor peculiar to carboxylic acids having a small number of carbon atoms, corrosiveness, and the difficulty in obtaining carboxylic acids having a large number of carbon atoms, it is more preferably 8-22.
  • octanoic acid nonanoic acid
  • decanoic acid (Puric acid), undecanoic acid, dodecanoic acid (uraric acid), tridecanoic acid, teradecanoic acid (myristic acid), pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, otadecanoic acid (stearic acid), nonadecanoic acid , Araquinic acid, heneicosanoic acid, docosanoic acid
  • the alcohol used as the solvent is preferably methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1 propanol, or t-butanol.
  • ethanol, 1 propanol, and 2-propanol are more preferable.
  • the reaction temperature required to deposit lithium carboxylate after synthesizing or redissolving it as high-purity crystals varies depending on the carbon chain length of the carboxylic acid and the alcohol concentration, but the carbon chain length of the carboxylic acid is short. It is so cold.
  • the weight of crystals obtained using the alcohol concentration required for complete dissolution is 1% to 40% of the total reaction solution, and high-purity crystals are produced to such a high concentration that all the solution solidifies during precipitation. Can do.
  • the reaction temperature is preferably 40 ° C to 170 ° C by adjusting the lithium carboxylate concentration and the alcohol concentration, and taking into consideration the safety of the reaction, the production and handling of the reaction vessel. . From the viewpoint of practicality, the reaction is more preferably carried out in the range of 40 ° C to 150 ° C.
  • carboxylic acid and lithium oxide or lithium hydroxide are put into a mixed solvent of alcohol and water, and stirred while heating so as to be maintained at the above temperature to be completely dissolved.
  • the heating temperature exceeds the boiling point of the mixed solvent of alcohol and water, the above reaction is carried out in a sealed pressure vessel so that the mixed solvent does not evaporate.
  • the reaction vessel and heating method are not particularly limited, but by heating to a predetermined temperature and stirring sufficiently, the precipitated lithium carboxylate crystals, unreacted carboxylic acid, etc.
  • the reaction solution becomes colorless and transparent, confirms that no solid matter or crystals remain on the reaction vessel wall or other attached equipment, and further heats and stirs. It is necessary to continue to completely dissolve the invisible residual crystallites.
  • Alcohol required for complete dissolution Z The concentration of alcohol used as a water mixed solvent is that methanol requires the highest concentration, methanol, ethanol, 2-propanol, 1 propanol, t-butanol, 2-methyl-1 propanol, Effective in the order of 2-butanol and 1-butanol at low concentrations, for example, the concentration of 1-butanol in water required for complete dissolution of lithium octadecanoate at the same temperature is less than 1Z10 of methanol in water. is there.
  • Carboxylic acid (RCOOH) and lithium hydroxide monohydrate (LiOH ⁇ H 0) are used as starting materials.
  • the carboxylic acid is quantitatively changed to lithium carboxylate and no unreacted carboxylic acid remains.
  • Lithium carboxylate having a carbon chain length of 13 or more is practically insoluble in ethanol Z aqueous solution at room temperature, but the carboxylithium group still has hydrophilicity, and the lithium carboxylate crystal is an amphiphilic substance. Therefore, the resulting scaly crystals are almost uniformly dispersed throughout the liquid rather than being precipitated at the bottom of the container. Such a precipitation form is also a standard for knowing that the target scaly crystals are obtained.
  • the obtained crystals can be dried, high-purity and uniform scaly crystals by filtration, washing, dehydration, and vacuum drying using ordinary glass filters, filter paper, and pure water for washing.
  • Mica is known to cleave in a very thin layer due to its crystal structure, and since it has a high aspect ratio, it has long been used as an insulating material. In addition, it has been used as a number of industrial materials due to its excellent properties such as excellent elasticity, heat resistance, and chemical resistance, high dielectric constant, and low thermal expansion coefficient. However, the place and amount of natural production are limited, and the composition, concentration, and distribution of mica contained in the impurities are various, and a uniform product can be obtained according to the application. Difficult is there.
  • the lithium carboxylate crystal of the present invention can be obtained as a very thin plate-like crystal having a side length of several to 30 mm, which approximates a quadrilateral at the time of crystal precipitation. Like the mica, it is cleaved thinner, and each tabular crystal is a laminate of thinner tabular crystals. When observed with a scanning electron microscope, the thickness of each flake is preferably 0.1 ⁇ m or less. In the present invention, a plate-like or scaly crystal is formed in such a state. Furthermore, as a result of X-ray diffraction, the thickness of these plate crystals varies with the length of the alkyl chain of lithium carboxylate. The minimum unit is 2 ⁇ ! It became obvious that the thin pieces of ⁇ 5nm were laminated.
  • the plate-like lithium salt / carboxylate crystal that is more homogeneous and has a higher purity than natural mica.
  • the plate-like or scale-like lithium rubonic acid crystal of the present invention has the physical properties such as the high insulation, elasticity, heat resistance, chemical resistance, high dielectric constant, and low thermal expansion coefficient inherent to the lithium carboxylate crystal. Since it is provided, it can be used as various materials more useful than natural mica.
  • lithium carboxylate is an amphiphilic molecule having a hydrophilic carboxyl group and lithium, and also having an alkyl chain that is both hydrophobic and hydrophobic, it is completely dissolved in an aqueous alcohol solution by heating. After cooling, it precipitates as crystals, but in the present invention, preferably, the precipitated crystals are also uniformly dispersed throughout the reaction solution rather than being precipitated at the bottom of the reaction vessel, resulting in extremely bulky precipitation. . This means that the interaction with water as a solvent is sufficiently large as a very thin, plate-like V or scaly crystal.
  • the lithium carboxylate of the present invention was It was found that um has a bilayer structure in which the alkyl chains are slightly arranged on both sides of an ionic crystal plane structure composed of lithium atoms and oxygen atoms and are regularly arranged.
  • the scaly crystal of the present invention has such a structure in which multiple layers are laminated.
  • This bilayer structure is completely different from conventional amphiphilic compound molecules that form molecular aggregates with the help of water molecules in water to form a lamellar structure.
  • the corresponding part is the macroscopic ionic crystal itself, which is formed by two-dimensional bonding between lithium and oxygen. Therefore, independent of the thermal behavior of the alkyl chain, the crystalline state as an ionic crystal can be maintained at a much higher temperature.
  • the lithium carboxylate of the present invention is in a crystalline state (corresponding to the region indicated as “solid phase” in FIG. 6) at a temperature lower than the low-temperature melting point, both the ionic crystal part and the alkyl chain part. It can be said that it is a true crystal.
  • both the alkyl chain part and the ionic crystal part melt, and the whole is in a liquid state (corresponding to the region indicated as “liquid phase” in FIG. 6). Even if the liquid thus formed is cooled again to a temperature lower than the melting point on the high temperature side, flat and scaly crystals cannot be reproduced.Therefore, macroscopically, the alkyl chains are uniformly and regularly distributed over a large area. The arranged structure cannot be reproduced.
  • the plate-like and scaly crystals are formed again by the method shown in the present invention using such irregular lithium carboxylate as a raw material. It is possible to recreate it.
  • the temperature interval between the low-temperature side melting point and the high-temperature side melting point is very wide in any of the lithium carboxylate crystals. A coexistence state can be realized and it can be used for various industrial applications.
  • the low-temperature melting point of the lithium carboxylate of the present invention varies greatly depending on the carbon chain length, and it differs greatly systematically depending on whether the carbon number is even or odd. It can be used for applications in various temperature ranges.
  • the existing lithium carboxylate crystals are also considered to have partially changed in this way, but the crystal system is not a uniform flat or scaly crystal. It cannot be taken out and cannot be used industrially.
  • the reaction was carried out in the solvent as follows. [0036] Vertical cylindrical pressure-resistant glass containers having an internal volume of 1 L and 2 L were used for the reaction.
  • the reaction vessel is composed of a Teflon ring portion that joins a vessel body and a lid with a glass sheath for temperature measurement, and is tightened with a bolt and a nut to be sealed.
  • the reaction vessel was placed on a hot plate, and a powerful magnet installed in the hot plate was rotated to uniformly stir the reaction solution with a vertical Teflon magnetic stirrer inserted into the vessel.
  • the temperature of the hot plate that heats the reaction vessel from the bottom was set to about 20 ° C higher than the reaction temperature. Furthermore, the outer periphery of the side surface of the reaction vessel was heated by surrounding it with a transparent mantle heater made of glass and incorporating nichrome wire. The temperature of the mantle heater was measured by a thermocouple inserted in the temperature measuring glass sheath and controlled by a controller.
  • reaction solution became colorless and transparent, and that no solids or crystals remained on the inner wall of the glass or the Teflon stirrer. Further, heating and stirring were continued for about 20 minutes to complete the reaction. Dissolved. After confirming complete dissolution, the heater and stirring were stopped and cooled slowly.
  • the produced lithium carboxylate is represented by CXLi (X is an integer).
  • X is the number of carbon atoms, and in the case of 12 carbon atoms lithium dodecanoate, it is expressed as C12Li.
  • the values for the original acid, LiOH.H20, ethanol and water are molar ratios, and the yield is the actual amount obtained after vacuum drying with respect to the charged amount of carboxylic acid.
  • the amount of lithium carboxylate is expressed as a molar ratio.
  • the weight of the precipitated lithium carboxylate crystals is 1Z40 to 1Z3, which is the weight of the reaction solvent combined with ethanol and water. It is dominated by crystals that are solidified in pure white, and the reaction solvent is completely free from wrinkles. However, since the hydrophobicity of the crystal is high, it is not decanted! The crystal and the solvent liquid can be easily separated by filtration.
  • the yield can be reduced by preliminarily lowering the reaction solution or filtrate below room temperature, or by adding water to the reaction solution to relatively reduce the alcohol concentration and then filtering. It can be raised further.
  • the resulting crystals are 99% or higher in purity.
  • the obtained lithium carboxylate crystal is a plate-like crystal in an optical micrograph and an SEM photograph, and one plate-like crystal is thinner, and is in the form of a laminated scale having a thickness of 0.03 to 0.2 m. It was observed to consist of crystals.
  • Figure 1 and Figure 2 show typical examples of the outer shape of the obtained C14Li (lithium tetradecanoate) and C18Li (lithium octadecanoate flaky crystals) and a 500,000 magnification photograph, respectively, using a scanning electron microscope. Show.
  • FIGS. 3 and 4 photographs of commercially available lithium octadecanoate (Acros) and lithium octodecanoate provided by NOF Corporation are shown in FIGS. 3 and 4, respectively.
  • the lithium carboxylate crystal of the present invention is a scaly crystal formed by laminating flat crystals having a very large and large area. Is clearly different.
  • the crystal structure of the lithium carboxylate of the present invention was a typical monoclinic crystal system.
  • the unit molecule of lithium tetradecanoate, CH COOLi which was conventionally considered vaguely, , Instead of assembling and forming monoclinic crystals as molecular aggregates
  • lithium atoms and oxygen atoms form a plate-like ionic crystal with individual molecular forces independent of each other, rather than belonging to individual molecules.
  • This is, for example, a macroscopic ionic crystal in the same meaning as a macroscopic ionic crystal as a whole of a single crystal that is not an aggregate of individual NaCl units.
  • the alkyl chains are arranged in a regular manner with a slight inclination of the alkyl chain on both sides of the lithium crystal and the ion crystal plane composed of oxygen nuclear power.
  • Each thin and flat crystal is alkyl on both sides. Covered with chains.
  • the scaly crystal of the present invention is formed by stacking such planar structures in layers. It was confirmed by scanning electron microscope observation.
  • Such a structure is revealed for the first time by the very thin flat plate-like scale crystals obtained by the method of the present invention, and the strength and characteristics of the crystal structure are sufficiently obtained industrially. It is what makes it available.
  • the zigzag plane partial force lithium atom and the ionic crystal portion composed of oxygen nuclear power at the center of the figure, and the alkyl chains are arranged at regular intervals on the upper and lower sides. Since the alkyl chain is fixed by bonding to the ionic crystal plane and becomes easier to move toward the tip of the chain, the carbon that forms the chain skeleton is shown as a larger ellipse toward the tip.
  • Alkyl chain parts are neatly arranged at low temperatures in the temperature range depending on the length of each carbon chain to form molecular crystals, but as shown in the measurement results with the following differential scanning calorimeter, At temperatures above the melting point, it enters a liquid state. At this time, the ionic crystal part does not change at all, and only the alkyl chain part becomes a liquid, but unlike a normal liquid, it is fixed to the S ion crystal surface at one end, so it fluctuates in the crystal plane. Will be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[PROBLEMS] To provide: a compound or lithium carboxylate which has a two-phase state having a regulated crystal form and which can be used in various applications; and a process for producing the same. [MEANS FOR SOLVING PROBLEMS] A compound which has two melting points and, at a temperature between the two melting points, is in a two-phase state in which a crystalline state coexists with a liquid state; or an organic lithium oxide compound having a structure which comprises a flat ionic crystal constituted of lithium and oxygen and organic groups which each consists mainly of an alkyl chain and are chemically bonded to the crystal; or a lithium carboxylate compound which is a flat or flaky crystal and is obtained by dissolving either a combination of a carboxylic acid and lithium oxide or hydroxide or a lithium carboxylate synthesized beforehand in a mixed solvent comprising an alcohol and water and then causing precipitation. The process for lithium carboxylate compound production comprises heating either a combination of a carboxylic acid and lithium oxide or hydroxide or an existing lithium carboxylate in a mixed solvent comprising an alcohol and water to dissolve them and then gradually cooling the solution to precipitate flat or flaky crystals.

Description

新規な 2相状態を有する化合物及びその製造方法  Novel compound having two-phase state and method for producing the same
技術分野  Technical field
[0001] 本発明は、新規な 2相状態を有する化合物及びその製造方法に関し、特に新規な 2相状態を有するカルボン酸リチウム及びその製造方法に関する。  [0001] The present invention relates to a novel compound having a two-phase state and a method for producing the same, and particularly relates to a novel lithium carboxylate having a two-phase state and a method for producing the same.
背景技術  Background art
[0002] 従来、工業的に生産されたカルボン酸金属塩は、プラスチック、顔料、セメント、铸 物、金属加工、潤滑油、化粧品等の産業分野において、潤滑剤、グリース、分散剤、 撥水剤、離型剤、乾燥剤、触媒、安定剤、殺菌剤等として用いられてきた。  [0002] Conventionally produced industrially produced carboxylic acid metal salts are lubricants, greases, dispersants, water repellents in industrial fields such as plastics, pigments, cements, ceramics, metal processing, lubricating oils and cosmetics. Have been used as release agents, desiccants, catalysts, stabilizers, bactericides, and the like.
[0003] これまで、カルボン酸金属塩は、カルボン酸力 合成されると同時に、粉状、塊状、 もしくはゲル状に析出し、もしくは溶媒を揮発させながら乾燥、固化して製造されるた め、多くの不純物を含み、結晶形態や大きさを制御することは不可能であった。この ように、多くの他の化成品と異なり、カルボン酸金属塩は結晶形態の不明な工業製品 のみが用いられてきた。(非特許文献 1〜4参照。)その結果、カルボン酸金属塩はそ の分子構造上両親媒性物質であることから、多くの工業的用途が考えられるにもか 力わらず実際の用途は狭い範囲に限定されてきた。  [0003] Until now, carboxylic acid metal salts are produced by synthesizing carboxylic acid power, and at the same time, precipitated into powder, lump, or gel, or dried and solidified while volatilizing the solvent. It contains many impurities, and it was impossible to control the crystal form and size. Thus, unlike many other chemical products, carboxylic acid metal salts have only been used for industrial products whose crystal form is unknown. (Refer to Non-Patent Documents 1 to 4.) As a result, carboxylic acid metal salts are amphiphiles due to their molecular structure. It has been limited to a narrow range.
これは、カルボン酸金属塩が両親媒性物質であるにもかかわらず、水への溶解度 が極めて低いことから結晶形態を制御した高純度結晶を得ることが現在まで事実上 不可能であったことに起因する。  This is because, despite the fact that the metal carboxylate is an amphiphile, it has been virtually impossible to obtain high-purity crystals with controlled crystal morphology because of its extremely low solubility in water. caused by.
[0004] カルボン酸金属塩のうち、カルボン酸リチウムに関しては、もっぱら、炭素数 18のス テアリン酸 (ォクタデカン酸)リチウムが用いられてきた力 上記のような理由から、工業 的に生産されたカルボン酸リチウムは、結晶形態の不明な粉状、ゲル状、および塊 状のものであった。そのため、結晶形態の制御されたカルボン酸リチウムは、本来は 極めて優れた、特有の性質を有しているものと考えられるにもかかわらず、その特性 を十分に利用されること無ぐいまだ、用途が限定されているものと思われる。  [0004] Among metal carboxylates, lithium carboxylate has been used exclusively for the use of lithium stearate (octadecanoate) having 18 carbon atoms for the reasons described above. The lithium acid was in the form of powder, gel, or lumps whose crystal form was unknown. Therefore, lithium carboxylate with a controlled crystal form is considered to have very unique and unique properties, but its properties are still not fully utilized. Seems to be limited.
非特許文献 1 :吉田時行、進藤信一、大垣忠義、井出袈裟巿編著、「金属せっけんの 性質と応用」、幸書房、昭和 63年 10月 5日 非特許文献 2 :新井洋吉著、松島正蔵補、「増補 金属石鹼」増補 3版、産業図書株 式会社、昭和 27年 9月 1日 Non-Patent Document 1: Tokiyuki Yoshida, Shinichi Shindo, Tadayoshi Ogaki, Satoshi Ide, “Characteristics and Applications of Metal Soap”, Koshobo, October 5, 1988 Non-Patent Document 2: Arai Yokichi, Matsushima Shozo, "Zanzen Metal Ishibuchi" 3rd edition, Sangyo Tosho Co., Ltd., September 1, 1927
非特許文献 3 :R' C 'メーロトラおよび R'ボーラ(R.C.Mehrotra and R.Bohra)著、「メ タル'カルボキシレーッ(METAL CARBOXYLATES)」、 ACADEMIC PRESS(1983) 非特許文献 4 :クラーレ マークリー(Klare S.Markley)編、「フアツッ'アンド'オイル ス (Fats and Oils)」、 A ¾enes of Monographs Fattty Acids Their し hemistry, Properties, Production, and Uses、 Interscience Publishers, Inc., New York(1961) 、第 8章 ソルッ'ォブ 'フアツティ 'ァシッズ(Chapter VIII Salts of Fatty Acids)、 クラーレ ' S 'マークリー(Klare S.Markley)  Non-Patent Document 3: R'C 'by MEROTRA and R. Bohra, "METAL CARBOXYLATES", ACADEMIC PRESS (1983) Non-Patent Document 4: Claré Markley ( Klare S. Markley), `` Fats and Oils '', A ¾enes of Monographs Fattty Acids Their and hemistry, Properties, Production, and Uses, Interscience Publishers, Inc., New York (1961), Chapter 8: Salt VIII Salts of Fatty Acids, Klare S. Markley
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、カルボン酸リチウムにおいて、結晶形態の制御された高純度結晶を得る と同時にその有機基部分を自在に変更させることにより、従来力 用いられてきた潤 滑剤等の使用温度、粘性等を系統的に変化させて、用途の実際上の可能性を大幅 に拡大すると共に、従来全く考えられな力つた様々な用途に用いることができるカル ボン酸リチウム及びその製造方法を提供することを目的とするものである。 [0005] In the present invention, in lithium carboxylate, a high-purity crystal having a controlled crystal form is obtained, and at the same time, the organic group portion is freely changed, so that the use temperature of a lubricant or the like that has been conventionally used, Systematic changes in viscosity, etc. to greatly expand the practical possibilities of applications, and provide lithium carbonate that can be used for various applications that have never been considered before and a method for producing the same It is for the purpose.
課題を解決するための手段  Means for solving the problem
[0006] 上記の課題を解決するためには、カルボン酸と金属酸化物もしくは金属水酸化物 を反応させてカルボン酸金属塩を得る過程で、もしくは結晶形態の不明なカルボン 酸金属塩を、ー且完全に溶媒中に溶解し、しかる後、温度低下とともに高純度カルボ ン酸金属塩を結晶として析出させることが必要である。さらに、用いる溶媒は、析出し たカルボン酸金属塩結晶と容易に分離し、水または通常用いられる有機溶媒に容易 に溶解することによって洗浄可能であり、もしくは結晶を乾燥した後残存しないよう低 沸点であることが必要である。従って、カルボン酸金属塩の合成に用いる溶媒は水 溶性であることが望ましいという知見を得た。さらに、得られた高純度カルボン酸金属 塩の結晶につ 、て解析を行 、、新規な 2相構造を有する化合物であると 、う知見を 得た。 [0006] In order to solve the above problems, a carboxylic acid metal salt having an unknown crystal form is obtained in the process of obtaining a carboxylic acid metal salt by reacting a carboxylic acid with a metal oxide or a metal hydroxide. It is necessary to dissolve completely in the solvent, and then to precipitate the high purity carboxylic acid metal salt as crystals with decreasing temperature. Furthermore, the solvent used can be easily separated from the precipitated carboxylic acid metal salt crystals, and can be washed by easily dissolving in water or a commonly used organic solvent, or low boiling point so that the crystals do not remain after drying. It is necessary to be. Therefore, it was found that the solvent used for the synthesis of the carboxylic acid metal salt is desirably water-soluble. Furthermore, the obtained high-purity metal carboxylate crystals were analyzed and found to be a compound having a novel two-phase structure.
[0007] 本発明は、これらの知見に基づき完成したものであって、 (1) 2つの融点を有し、両融点の間の温度では、結晶状態と液体状態とが共存する 2 相状態を有することを特徴とする化合物、 [0007] The present invention has been completed based on these findings, (1) a compound having two melting points and having a two-phase state in which a crystalline state and a liquid state coexist at a temperature between both melting points;
(2)リチウム原子と酸素原子力 構成される平面状イオン結晶と、その平面の両側に アルキル鎖を主体とする有機の基が化学結合してなる構造を有していることを特徴と する有機酸化リチウム化合物、  (2) Lithium atom and oxygen atomic energy Organic oxidation characterized by having a structure formed by chemical bonding of a planar ion crystal composed of an organic group mainly composed of an alkyl chain on both sides of the plane. Lithium compounds,
(3)カルボン酸とリチウム酸ィ匕物もしくはリチウム水酸ィ匕物とをアルコールと水の混合 溶媒に溶解させた後、析出させた、板状または鱗片状結晶であることを特徴とする上 記(1)又は(2)のカルボン酸リチウム化合物、  (3) A plate-like or scale-like crystal deposited after dissolving carboxylic acid and lithium oxide or lithium hydroxide in a mixed solvent of alcohol and water. The lithium carboxylate compound of (1) or (2),
(4)既存のカルボン酸リチウムをアルコールと水の混合溶媒に溶解させた後、析出さ せた、板状または鱗片状結晶であることを特徴とする上記(1)又は(2)に記載のカル ボン酸リチウム化合物、  (4) The present invention described in (1) or (2) above, wherein the existing lithium carboxylate is a plate-like or scaly crystal that is precipitated after dissolving in a mixed solvent of alcohol and water. Lithium carbonate compounds,
(5)カルボン酸とリチウム酸ィ匕物もしくはリチウム水酸ィ匕物とを、アルコールと水の混 合溶媒中で加熱して溶解させた後、徐冷することにより板状または鱗片状結晶として 析出させることを特徴とする上記(1)〜(3)の 、ずれかのカルボン酸リチウム化合物 の製造方法、  (5) Carboxylic acid and lithium oxide or lithium hydroxide are heated and dissolved in a mixed solvent of alcohol and water, and then slowly cooled to form plate-like or scaly crystals. (1) to (3) above, wherein any one of the methods for producing a lithium carboxylate compound,
(6)既存のカルボン酸リチウムを、アルコールと水の混合溶媒中で加熱して溶解させ た後、徐冷することにより板状または鱗片状結晶として析出させることを特徴とする上 記(1)、 (2)又は (4)の 、ずれかのカルボン酸リチウム化合物の製造方法、 を提供するものである。  (6) The existing lithium carboxylate is dissolved by heating in a mixed solvent of alcohol and water, and then precipitated as plate-like or scaly crystals by slow cooling (1) (2) or (4) provides a method for producing any one of the lithium carboxylate compounds.
発明の効果 The invention's effect
本発明により、極めて結晶性の高い、高純度の、炭素鎖長の一定した、従って、物 性の一定した、し力も、アルキル鎖長を系統的に変えることによって、物性を系統的 に変えることができる、一連のカルボン酸リチウム結晶更には各種有機酸化リチウム 化合物を製造することが可能となった。これらのカルボン酸リチウム結晶及び有機酸 化リチウム化合物は、潤滑剤、グリース、分散剤、撥水剤、離型剤、乾燥剤、触媒、安 定剤、殺菌剤等の物性を系統的に変化させ、幅広い用途に使用することが出来る。 また、本発明により、極めて薄い、絶縁性の高い、平板状結晶を得ることができ、合 成雲母代替物として、各種絶縁材料としての利用が考えられる。 さらに、本発明の化合物は、特有の 2相構造を有しており、アルキル鎖の炭素数が 奇数か偶数かにより低温側融点、結晶化温度、ェンタルピー変化の大きさが極端に 変化することを利用して、広い温度範囲で、その表面物性を制御することができる。 さらにまた、本発明の化合物の表面のアルキル鎖配列は安定で整然としたものであ つて、従来の LB膜よりはるかに安定な積層膜を極めて容易に、し力も大量に作ること が可能である。 According to the present invention, the physical properties can be systematically changed by systematically changing the alkyl chain length, even with extremely high crystallinity, high purity, constant carbon chain length, and therefore constant physical properties. It is possible to produce a series of lithium carboxylate crystals and various organic lithium oxide compounds. These lithium carboxylate crystals and organic lithium oxide compounds systematically change physical properties such as lubricants, greases, dispersants, water repellents, mold release agents, desiccants, catalysts, stabilizers, and bactericides. Can be used for a wide range of purposes. Further, according to the present invention, it is possible to obtain a very thin, highly insulating flat crystal, and it can be used as various insulating materials as a synthetic mica substitute. Furthermore, the compound of the present invention has a unique two-phase structure, and the low-temperature melting point, the crystallization temperature, and the magnitude of the enthalpy change greatly change depending on whether the number of carbon atoms in the alkyl chain is odd or even. By utilizing this, the surface properties can be controlled in a wide temperature range. Furthermore, the alkyl chain arrangement on the surface of the compound of the present invention is stable and orderly, and a much more stable laminated film than a conventional LB film can be produced very easily and with a large amount of force.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]上は、本発明で得られた C14Li (テトラデカン酸リチウム)の麟片状結晶 1. Ogの ディジタルカメラによる写真であり、下は、 5000倍に拡大した SEM (走査電子顕微鏡) 写真である。  [0009] [Fig. 1] The above is a C14Li (lithium tetradecanoate) flake-like crystal obtained by the present invention. 1. Og is a photograph taken with a digital camera. (Microscope) It is a photograph.
[図 2]上は、実施例で得られた C18Li (ォクタデカン酸リチウム)の麟片状結晶 1. Ogの ディジタルカメラによる写真であり、下は、 5000倍に拡大した SEM (走査電子顕微鏡) 写真である。  [Fig. 2] The above is a C18Li (lithium octadecanoate) flake-like crystal obtained in the example. 1. Og is a digital camera photo, and below is a SEM (scanning electron microscope) photo magnified 5000 times. It is.
[図 3]上は、試薬として市販されているォクタデカン酸リチウム (Acros社製)の結晶 1. Ogのディジタルカメラによる写真であり、下は、 5000倍に拡大した SEM (走査電子顕 微鏡)写真である。  [Fig. 3] The above is a photograph of a crystal of lithium octadecanoate (Acros) commercially available as a reagent. 1. The bottom is a SEM (scanning electron microscope) magnified 5000 times. It is a photograph.
[図 4]上は、 日本油脂株式会社より提供されたォクタデカン酸リチウムの結晶 1. 0gの ディジタルカメラによる写真であり、下は、 5000倍に拡大した SEM (走査電子顕微鏡) 写真である。  [Fig. 4] The above is a digital camera photograph of 1.0 g of lithium octadecanoate provided by NOF Corporation, and the bottom is a SEM (scanning electron microscope) photograph magnified 5000 times.
[図 5]C14Li (テトラデカン酸リチウム)の単結晶 X線構造解析の結果を示す図である。  FIG. 5 shows the results of single crystal X-ray structural analysis of C14Li (lithium tetradecanoate).
[図 6]C08Li力 C22Liについての、低温側融点及び高温側融点を測定した結果を示 す図である。  FIG. 6 is a diagram showing the results of measuring the low temperature side melting point and the high temperature side melting point for C08Li force C22Li.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明のカルボン酸リチウム結晶もしくは有機酸化リチウム化合物は、アルコールと 水の混合溶媒に、カルボン酸もしくはアルキル鎖を主体とする有機化合物とリチウム 酸化物もしくはリチウム水酸ィ匕物とを、ある 、は既存のカルボン酸リチウムを溶解させ た後、析出させた、板状または鱗片状結晶である。本発明の結晶は、好ましくは、結 晶形態の制御された結晶である。なお、本明細書 (特許請求の範囲を含む)中で「結 晶形態の制御された結晶」とは、粉状、ゲル状、塊状沈殿としてではなぐ明確な板 状もしくは麟片状の結晶形態を有して析出する結晶を意味する。さらに、乾燥後の結 晶中に、カルボン酸リチウムを 90重量%以上含むことを意味し、好ましくは 95重量% 以上、さらに好ましくは 97重量%以上含むものである。 [0010] The lithium carboxylate crystal or organic lithium oxide compound of the present invention comprises, in a mixed solvent of alcohol and water, an organic compound mainly composed of a carboxylic acid or an alkyl chain, and lithium oxide or lithium hydroxide compound. Some are plate-like or scaly crystals which are precipitated after dissolving existing lithium carboxylate. The crystal of the present invention is preferably a crystal having a controlled crystal form. In this specification (including claims), “Crystal with controlled crystal form” means a crystal that has a distinct plate-like or flake-like crystal form rather than a powdery, gel-like, or massive precipitate. Further, it means that 90% by weight or more of lithium carboxylate is contained in the crystal after drying, preferably 95% by weight or more, more preferably 97% by weight or more.
[0011] また、本発明は、アルコールと水の混合溶媒に、カルボン酸もしくはアルキル鎖を 主体とする有機化合物とリチウム酸化物もしくはリチウム水酸化物とを、ある!ヽは既存 のカルボン酸リチウムを溶解後、板状または鱗片状結晶を析出させるカルボン酸リチ ゥム結晶の製造方法を提供するものである。 [0011] Further, according to the present invention, a mixed solvent of alcohol and water contains an organic compound mainly composed of a carboxylic acid or an alkyl chain and lithium oxide or lithium hydroxide. The present invention provides a method for producing a lithium carboxylate crystal in which plate-like or scaly crystals are precipitated after dissolution.
通常、アルコールと水の混合溶媒中に、カルボン酸とリチウム酸ィ匕物もしくはリチウ ム水酸化物を加えると、直ちに、室温で、カルボン酸リチウムの結晶が析出する力 こ のようにして得られる結晶は、微粉状、ゲル状、中途半端な鱗片状、不定形等の混合 したものである。  Usually, when carboxylic acid and lithium oxide or lithium hydroxide are added to a mixed solvent of alcohol and water, the force to precipitate lithium carboxylate crystals immediately at room temperature is obtained in this way. The crystal is a mixture of fine powder, gel, half-scaled scale, and irregular shape.
これに対して、本発明の製造方法においては、完全に溶解して反応を行うことが必 要であり、それによつてはじめて本発明の板状または鱗片状カルボン酸リチウム結晶 を得ることができるものである。  On the other hand, in the production method of the present invention, it is necessary to carry out the reaction after completely dissolving, so that the plate-like or scale-like lithium carboxylate crystal of the present invention can be obtained for the first time. It is.
[0012] 本発明においては、溶媒としてアルコールと水混合溶媒 (以下、「アルコール Z水 混合溶媒」という)を用いる。アルコールは低級アルコールであることが好ましぐ低級 アルコールの濃度が高いほど、また、同一アルコール濃度においては、炭素数の大 きなアルコールを用いるほど、カルボン酸リチウムの溶解度が大となる。また、溶解反 応においては、カルボン酸の炭素鎖長及び溶媒中のアルコール濃度に応じて、完全 溶解に必要な反応温度が異なる。また、溶液中のカルボン酸リチウムの濃度は、溶媒 中のアルコール濃度を上げることによって、極めて高濃度にすることが可能である。さ らに、カルボン酸リチウムの炭素鎖長が短いほど、低い温度で完全溶解するものであ る。なお、「完全溶解」とは反応全液が無色透明となり、液中、液面、容器内壁のいず れにも一切の結晶析出物の存在が肉眼で確認できない溶解状態を意味する。 In the present invention, an alcohol and water mixed solvent (hereinafter referred to as “alcohol Z water mixed solvent”) is used as a solvent. The alcohol is preferably a lower alcohol. The higher the concentration of the lower alcohol, and the higher the alcohol concentration, the higher the solubility of lithium carboxylate at the same alcohol concentration. In the dissolution reaction, the reaction temperature required for complete dissolution varies depending on the carbon chain length of the carboxylic acid and the alcohol concentration in the solvent. Further, the concentration of lithium carboxylate in the solution can be made extremely high by increasing the alcohol concentration in the solvent. Furthermore, the shorter the carbon chain length of lithium carboxylate, the more completely it dissolves at a lower temperature. “Complete dissolution” means a dissolved state in which the entire reaction solution is colorless and transparent, and the presence of any crystal precipitates in the solution, the liquid surface, or the inner wall of the container cannot be confirmed with the naked eye.
[0013] 本発明のカルボン酸リチウム結晶もしくは有機酸化リチウム化合物の製造方法では 、好ましくは、元のカルボン酸もしくはアルキル鎖を主体とする有機化合物とリチウム 酸化物もしくはリチウム水酸ィ匕物とを、もしくは既存の粉末状等のカルボン酸リチウム を、低級アルコール z水混合溶媒中で加熱して完全に溶解した後、冷却すること〖こ よって結晶を析出させる。析出した結晶は通常の方法により濾過するのみで高純度 結晶が得られるが、更に、水洗浄後、常圧による自然乾燥、風乾、もしくは真空乾燥 により、一層高純度の結晶とすることができる。 [0013] In the method for producing a lithium carboxylate crystal or an organic lithium oxide compound of the present invention, preferably, the organic compound mainly composed of the original carboxylic acid or alkyl chain and the lithium oxide or lithium hydroxide salt are obtained. Or the existing lithium lithium carboxylate The crystals are precipitated by heating in a mixed solvent of lower alcohol and water and completely cooling, followed by cooling. Precipitated crystals can be obtained by simply filtering by a usual method, and further purified crystals can be obtained by washing with water, followed by natural drying at normal pressure, air drying, or vacuum drying.
[0014] カルボン酸とリチウム酸ィ匕物もしくはリチウム水酸ィ匕物から生成する、もしくは既存の 粉末状等のカルボン酸リチウムを再溶解することによって得られる本発明のカルボン 酸リチウム結晶は板状結晶もしくは鱗片状結晶である。本発明において、板状結晶と は、肉眼で観察できる析出後の平面形状が板状である結晶を意味する。また、板状 結晶及び鱗片状各結晶の厚さは、好ましくは 0. 5 m以下、より好ましくは 0. l ^ m 以下の薄さであり、本発明ではこれらが重なって析出、形成される。  [0014] The lithium carboxylate crystal of the present invention produced from carboxylic acid and lithium oxide or lithium hydroxide, or obtained by re-dissolving existing powdered lithium carboxylate is a plate Crystal or scaly crystal. In the present invention, the plate-like crystal means a crystal having a plate-like planar shape after precipitation that can be observed with the naked eye. Further, the thickness of each of the plate-like crystals and the scaly crystals is preferably 0.5 m or less, more preferably 0.1 l ^ m or less. In the present invention, they are deposited and formed by overlapping. .
[0015] 本発明にお 、て、溶解されるカルボン酸リチウム (カルボン酸とリチウム酸ィ匕物もしく はリチウム水酸ィ匕物とが溶解される場合にはカルボン酸)と水とのモル比(カルボン酸 リチウム:水)は、望ましくは1 : 1000〜50 : 1000、更に望ましくは 5 : 1000〜30 : 1000であ る。 [0015] In the present invention, the molarity of lithium carboxylate to be dissolved (or carboxylic acid when carboxylic acid and lithium hydroxide or lithium hydroxide is dissolved) and water. The ratio (lithium carboxylate: water) is preferably 1: 1000 to 50: 1000, more preferably 5: 1000 to 30: 1000.
[0016] 本発明にお 、て、溶解されるカルボン酸リチウム (カルボン酸とリチウム酸ィ匕物もしく はリチウム水酸ィ匕物とが溶解される場合にはカルボン酸)とアルコールとのモル比(力 ルボン酸リチウム:アルコール)は、望ましくは1 : 1〜1 : 400、更に望ましくは1 : 10〜1 : 3 00である。  [0016] In the present invention, the molarity of lithium carboxylate to be dissolved (or carboxylic acid when carboxylic acid and lithium hydroxide or lithium hydroxide is dissolved) and alcohol. The ratio (force lithium rubonic acid: alcohol) is preferably 1: 1 to 1: 400, more preferably 1:10 to 1: 300.
[0017] また、アルコール Z水混合溶媒のアルコール:水のモル比は用いられる、カルボン 酸、カルボン酸リチウム及びアルコールの種類により適宜変更される力 エタノール: 水で 0 : 1000〜500: 1000力好ましく、 10 : 1000〜300: 1000力さらに好まし!/、。 メタノールの場合には、エタノールの約 2倍のモル比を必要とし、プロパノール、ブタ ノール類では、エタノールの 1Z2〜1Z5のモル数でよい。  [0017] In addition, the molar ratio of alcohol: water in the alcohol Z water mixed solvent is appropriately changed depending on the type of carboxylic acid, lithium carboxylate and alcohol used. Ethanol: water 0: 1000 to 500: 1000 power is preferable , 10: 1000-300: 1000 power is even more preferred! In the case of methanol, a molar ratio of about twice that of ethanol is required, and in the case of propanol and butanols, the number of moles of 1Z2 to 1Z5 of ethanol is sufficient.
[0018] 本発明に用いられるカルボン酸リチウムの場合のカルボン酸は、直鎖、または飽和 アルキル鎖を有するモノカルボン酸であることが更に望まし 、。本発明に用いられる カルボン酸の炭素数は望ましくは 1〜30である。炭素数の少ないカルボン酸特有の 不快臭、及び腐食性、更に、炭素数の大きなカルボン酸の入手困難性、等を考慮す ると、更に望ましくは 8〜22である。より具体的には、オクタン酸、ノナン酸、デカン酸( 力プリン酸)、ゥンデカン酸、ドデカン酸 (ゥラリン酸)、トリデカン酸、テロラデカン酸 (ミ スチリン酸)、ペンタデカン酸、へキサデカン酸 (パルミチン酸)、ヘプタデカン酸、オタ タデカン酸 (ステアリン酸)、ノナデカン酸、ァラキン酸、ヘンエイコサン酸、ドコサン酸[0018] It is further desirable that the carboxylic acid in the case of the lithium carboxylate used in the present invention is a monocarboxylic acid having a straight chain or a saturated alkyl chain. The carbon number of the carboxylic acid used in the present invention is desirably 1-30. Considering the unpleasant odor peculiar to carboxylic acids having a small number of carbon atoms, corrosiveness, and the difficulty in obtaining carboxylic acids having a large number of carbon atoms, it is more preferably 8-22. More specifically, octanoic acid, nonanoic acid, decanoic acid ( (Puric acid), undecanoic acid, dodecanoic acid (uraric acid), tridecanoic acid, teradecanoic acid (myristic acid), pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, otadecanoic acid (stearic acid), nonadecanoic acid , Araquinic acid, heneicosanoic acid, docosanoic acid
(ベヘン酸)などが挙げられる。これらのカルボン酸は 1種単独でも、 2種以上を適宜 組み合わせて使用することもできるが、高純度結晶を得るためには、 1種単独で用い ることが好ましい。 (Behenic acid). These carboxylic acids can be used singly or in combination of two or more, but it is preferable to use one singly to obtain high purity crystals.
[0019] 溶媒として用いるアルコールは、望ましくは、メタノール、エタノール、 1 プロパノー ル、 2—プロパノール、 1ーブタノール、 2—ブタノール、 2—メチルー 1 プロパノール 、 tーブタノールである。人体に対する安全性、取り扱いの容易さ、水への溶解度の 大きなことを考慮すると、更に望ましくは、エタノール、 1 プロパノール、 2—プロパノ ールである。  [0019] The alcohol used as the solvent is preferably methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1 propanol, or t-butanol. In view of safety to the human body, ease of handling, and high solubility in water, ethanol, 1 propanol, and 2-propanol are more preferable.
[0020] カルボン酸リチウムを合成もしくは再溶解後、高純度の結晶として析出させるために 必要な反応温度は、カルボン酸の炭素鎖長、アルコール濃度により異なるが、カルボ ン酸の炭素鎖長が短いほど低温である。また、完全溶解に必要なアルコール濃度を 用いて得られる結晶の重量は、全反応液の 1%〜40%、析出時には全液が白く凝 固する程度の高濃度まで、高純度結晶をつくることができる。反応温度は、カルボン 酸リチウム濃度、及び、アルコール濃度を調整することによって、また、反応の安全性 、反応容器の製造、取り扱いを考慮することによって、望ましくは 40°C〜170°Cであ る。実用性の面から、さらに望ましくは 40°C〜150°Cの範囲で反応を行わせるもので ある。  [0020] The reaction temperature required to deposit lithium carboxylate after synthesizing or redissolving it as high-purity crystals varies depending on the carbon chain length of the carboxylic acid and the alcohol concentration, but the carbon chain length of the carboxylic acid is short. It is so cold. In addition, the weight of crystals obtained using the alcohol concentration required for complete dissolution is 1% to 40% of the total reaction solution, and high-purity crystals are produced to such a high concentration that all the solution solidifies during precipitation. Can do. The reaction temperature is preferably 40 ° C to 170 ° C by adjusting the lithium carboxylate concentration and the alcohol concentration, and taking into consideration the safety of the reaction, the production and handling of the reaction vessel. . From the viewpoint of practicality, the reaction is more preferably carried out in the range of 40 ° C to 150 ° C.
[0021] 具体的には、カルボン酸と酸化リチウムもしくは水酸化リチウムを、アルコールと水 の混合溶媒中に投入し、上記温度に保たれるように加熱しながら攪拌して、完全に 溶解させる。加熱温度が、アルコールと水の混合溶媒の沸点を超える場合には、混 合溶媒が蒸発しな ヽように、上記の反応を密閉された耐圧容器内で行う。  [0021] Specifically, carboxylic acid and lithium oxide or lithium hydroxide are put into a mixed solvent of alcohol and water, and stirred while heating so as to be maintained at the above temperature to be completely dissolved. When the heating temperature exceeds the boiling point of the mixed solvent of alcohol and water, the above reaction is carried out in a sealed pressure vessel so that the mixed solvent does not evaporate.
[0022] 反応容器及び加熱方法は、特に限定されるものではな 、が、所定温度に加熱、十 分に攪拌することによって、ー且析出したカルボン酸リチウムの結晶、未反応カルボ ン酸、その他を完全に溶解し、反応液が無色透明になり、反応容器壁やその他の付 属装置に一切の固形物、結晶類が残存していないことを確認し、さらに加熱、攪拌を 継続して、 目に見えない残存微結晶も完全に溶解させる必要がある。 [0022] The reaction vessel and heating method are not particularly limited, but by heating to a predetermined temperature and stirring sufficiently, the precipitated lithium carboxylate crystals, unreacted carboxylic acid, etc. The reaction solution becomes colorless and transparent, confirms that no solid matter or crystals remain on the reaction vessel wall or other attached equipment, and further heats and stirs. It is necessary to continue to completely dissolve the invisible residual crystallites.
また、反応液中及び反応容器内に不均一な温度分布が無いことが必要である。例 えば、 120°Cで反応を行う場合に、それよりも 2°C程度低温の内壁部分が存在すると 、その箇所に微結晶が出来て成長を開始し、本特許で必要とする鱗片状均一結晶 が得られなくなる。  Further, it is necessary that there is no non-uniform temperature distribution in the reaction solution and in the reaction vessel. For example, when the reaction is carried out at 120 ° C, if there is an inner wall portion that is about 2 ° C lower than that, microcrystals will form at that location and start growing, and the scale-like uniformity required by this patent Crystals cannot be obtained.
[0023] 完全溶解に必要なアルコール Z水混合溶媒として用いられるアルコールの濃度は 、メタノールが最も高濃度を必要とし、メタノール、エタノール、 2—プロパノール、 1 プロパノール、 tーブタノール、 2—メチルー 1 プロパノール、 2—ブタノール、 1ーブ タノールの順に低濃度で有効であり、例えば同一温度でォクタデカン酸リチウムを完 全溶解するのに必要な 1ーブタノールの水に対する濃度は、メタノールの水に対する 濃度の 1Z10以下である。  [0023] Alcohol required for complete dissolution Z The concentration of alcohol used as a water mixed solvent is that methanol requires the highest concentration, methanol, ethanol, 2-propanol, 1 propanol, t-butanol, 2-methyl-1 propanol, Effective in the order of 2-butanol and 1-butanol at low concentrations, for example, the concentration of 1-butanol in water required for complete dissolution of lithium octadecanoate at the same temperature is less than 1Z10 of methanol in water. is there.
[0024] 出発物質としてカルボン酸 (RCOOH)と水酸化リチウム · 1水和物(LiOH · H 0)を用  [0024] Carboxylic acid (RCOOH) and lithium hydroxide monohydrate (LiOH · H 0) are used as starting materials.
2 いる場合には、カルボン酸:水酸化リチゥム' 1水和物のモル比で1 : 1〜1 : 1. 5が好 ましぐ 1 : 1〜1 : 1. 1がさらに好ましい。カルボン酸が定量的にカルボン酸リチウムに 変化し、未反応のカルボン酸が残存しな 、ことが望ま 、。  2 is preferably 1: 1 to 1: 1.5 in terms of a molar ratio of carboxylic acid: lithium hydroxide ′ monohydrate, more preferably 1: 1 to 1: 1. Desirably, the carboxylic acid is quantitatively changed to lithium carboxylate and no unreacted carboxylic acid remains.
[0025] 炭素鎖長 13以上のカルボン酸リチウムは、室温では事実上全くエタノール Z水溶 媒に溶解しないが、依然としてカルボキシリチウム基は親水性を有し、カルボン酸リチ ゥム結晶は両親媒性物質であるので、できた鱗片状結晶は容器の底に沈殿するの ではなぐ液全体にほぼ均一に分散している。このような析出形態も、 目的とする鱗片 状結晶が得られていることを知る目安となる。  [0025] Lithium carboxylate having a carbon chain length of 13 or more is practically insoluble in ethanol Z aqueous solution at room temperature, but the carboxylithium group still has hydrophilicity, and the lithium carboxylate crystal is an amphiphilic substance. Therefore, the resulting scaly crystals are almost uniformly dispersed throughout the liquid rather than being precipitated at the bottom of the container. Such a precipitation form is also a standard for knowing that the target scaly crystals are obtained.
得られた結晶は、通常のガラスフィルター、ろ紙、洗浄用純水を用いて、ろ過、洗浄 、脱水、真空乾燥により、乾燥した高純度、均一な鱗片状結晶を得ることができる。  The obtained crystals can be dried, high-purity and uniform scaly crystals by filtration, washing, dehydration, and vacuum drying using ordinary glass filters, filter paper, and pure water for washing.
[0026] 雲母は、その結晶構造に起因して、非常に薄 ヽ層状にへき開することが知られてお り、高いアスペクト比が得られるために、絶縁材料として、古くから用いられている。更 に、弾力性、耐熱性、耐薬品性に優れていること、誘電率が大きいこと、熱膨張係数 が小さいことなどの特性を生力して、多くの工業材料として用いられてきた。しかしな がら、天然に産出する場所、産出量が限られており、また、その中に含まれる不純物 の組成、濃度、雲母中の分布も様々で、用途に応じた均一のものを得ることが困難で ある。 [0026] Mica is known to cleave in a very thin layer due to its crystal structure, and since it has a high aspect ratio, it has long been used as an insulating material. In addition, it has been used as a number of industrial materials due to its excellent properties such as excellent elasticity, heat resistance, and chemical resistance, high dielectric constant, and low thermal expansion coefficient. However, the place and amount of natural production are limited, and the composition, concentration, and distribution of mica contained in the impurities are various, and a uniform product can be obtained according to the application. Difficult is there.
一方、本発明のカルボン酸リチウム結晶は、結晶析出時は、四辺形に近似して 1辺 の長さが数 mmから 30mmにも及ぶ、極めて薄い平板状の結晶として得ることができ 、これらは、雲母と同様に更に薄くへき開し、夫々の平板状結晶が、さらに薄い平板 状結晶の積層したものである。走査電子顕微鏡による観察で、各薄片の厚みは、好 ましくは 0. 1 μ m以下である。本発明では、このような状態で、板状ないしは鱗片状 の結晶となっている。更に X線回折の結果、これらの板状結晶の厚さは、カルボン酸 リチウムのアルキル鎖の長さにより異なる力 最小単位 2ηπ!〜 5nmの薄片が積層し たものであることが明ら力となった。  On the other hand, the lithium carboxylate crystal of the present invention can be obtained as a very thin plate-like crystal having a side length of several to 30 mm, which approximates a quadrilateral at the time of crystal precipitation. Like the mica, it is cleaved thinner, and each tabular crystal is a laminate of thinner tabular crystals. When observed with a scanning electron microscope, the thickness of each flake is preferably 0.1 μm or less. In the present invention, a plate-like or scaly crystal is formed in such a state. Furthermore, as a result of X-ray diffraction, the thickness of these plate crystals varies with the length of the alkyl chain of lithium carboxylate. The minimum unit is 2ηπ! It became obvious that the thin pieces of ~ 5nm were laminated.
[0027] 本発明によって、天然の雲母より均質で、高純度の板状な!/、しは鱗片状のカルボン 酸リチウム結晶を容易に得ることができる。更に、本発明の板状ないしは鱗片状の力 ルボン酸リチウム結晶は、カルボン酸リチウム結晶が本来有する高絶縁性、弾力性、 耐熱性、耐薬品性、高誘電性、低熱膨張係数等の物性を備えていることから、天然 雲母以上に有用な各種材料として用いることができる。  [0027] According to the present invention, it is possible to easily obtain a plate-like lithium salt / carboxylate crystal that is more homogeneous and has a higher purity than natural mica. Furthermore, the plate-like or scale-like lithium rubonic acid crystal of the present invention has the physical properties such as the high insulation, elasticity, heat resistance, chemical resistance, high dielectric constant, and low thermal expansion coefficient inherent to the lithium carboxylate crystal. Since it is provided, it can be used as various materials more useful than natural mica.
[0028] さらに、カルボン酸リチウムは、親水性であるカルボキシル基及びリチウムを有し、し 力も疎水性であるアルキル鎖をも有する両親媒性分子であるため、加熱によってアル コール水溶液に完全に溶解した後、冷却によって結晶として析出するが、本発明に おいて好ましくは、析出する結晶も、反応容器の底に沈殿するのではなぐ反応液全 体に均一に分散して、極めて嵩高く析出する。このことは、即ち、極めて薄い、板状な V、しは鱗片状結晶として、溶媒である水との相互作用が十分に大き!/、ことを示して!/ヽ る。し力も、疎水性であるアルキル鎖をも有する両親媒性分子であるため、結晶であ るにもかかわらず、界面活性剤としての乳化、分散の働きをすることが可能である。具 体的には、この板状結晶をそのままの状態で、もしくは微細に粉砕することによって、 結晶のまま水中に均一に分散し、各種油を水中に取り込んで混ぜ合わせる、即ち、 乳化材として用いることができる。このような用途は、従来のカルボン酸リチウムでは、 全く考えられな力つたものである。  [0028] Further, since lithium carboxylate is an amphiphilic molecule having a hydrophilic carboxyl group and lithium, and also having an alkyl chain that is both hydrophobic and hydrophobic, it is completely dissolved in an aqueous alcohol solution by heating. After cooling, it precipitates as crystals, but in the present invention, preferably, the precipitated crystals are also uniformly dispersed throughout the reaction solution rather than being precipitated at the bottom of the reaction vessel, resulting in extremely bulky precipitation. . This means that the interaction with water as a solvent is sufficiently large as a very thin, plate-like V or scaly crystal. However, since it is an amphiphilic molecule having an alkyl chain that is hydrophobic, it can emulsify and disperse as a surfactant even though it is a crystal. Specifically, this plate-like crystal is dispersed as it is in water as it is or finely pulverized, and various oils are taken into water and mixed, that is, used as an emulsifier. be able to. Such applications are quite unlikely with conventional lithium carboxylates.
[0029] さらに、本発明の平板又は麟片状のカルボン酸リチウム結晶について X線による単 結晶構造解析を行った結果、後述の実施例に示すとおり、本発明のカルボン酸リチ ゥムは、リチウム原子と酸素原子から構成されるイオン結晶性平面構造の両側に、ァ ルキル鎖が少し傾斜して、規則正しく配列して 、る 2分子膜構造であることが判明し た。本発明の麟片状結晶は、このような構造が、幾重にも積層したものである。 [0029] Furthermore, as a result of single crystal structure analysis by X-ray of the flat or flaky lithium carboxylate crystal of the present invention, as shown in the examples described later, the lithium carboxylate of the present invention was It was found that um has a bilayer structure in which the alkyl chains are slightly arranged on both sides of an ionic crystal plane structure composed of lithium atoms and oxygen atoms and are regularly arranged. The scaly crystal of the present invention has such a structure in which multiple layers are laminated.
この 2分子膜構造は、従来の両親媒性化合物分子が水中で水分子の助けを借りな がら分子集合体を形成してラメラ構造を作っているのとは全く異なり、結晶の親水性 基の相当する部分は、リチウムと酸素が互いに 2次元的結合をすることによって構成 された巨視的なイオン結晶そのものである。したがって、アルキル鎖の熱挙動とは独 立に、はるかに高温までイオン結晶としての結晶状態を保つことができる。  This bilayer structure is completely different from conventional amphiphilic compound molecules that form molecular aggregates with the help of water molecules in water to form a lamellar structure. The corresponding part is the macroscopic ionic crystal itself, which is formed by two-dimensional bonding between lithium and oxygen. Therefore, independent of the thermal behavior of the alkyl chain, the crystalline state as an ionic crystal can be maintained at a much higher temperature.
このことは、後述する実施例にも示したとおり、本発明のカルボン酸リチウム結晶に ついて、温度可変光学顕微鏡による観察及び示差走査熱量測定装置を用いた測定 を行った結果からも明らかである。  This is also apparent from the results of observation with a variable temperature optical microscope and measurement using a differential scanning calorimeter with respect to the lithium carboxylate crystal of the present invention, as shown in the examples described later.
すなわち、本発明のカルボン酸リチウムは、低温側融点よりも低温では、イオン結晶 部分も、アルキル鎖部分も、両方とも結晶状態(図 6において、「固相」と記載した領 域に相当)なので、真の結晶と言うことができる。  That is, the lithium carboxylate of the present invention is in a crystalline state (corresponding to the region indicated as “solid phase” in FIG. 6) at a temperature lower than the low-temperature melting point, both the ionic crystal part and the alkyl chain part. It can be said that it is a true crystal.
また、低温側融点以上の温度になると、イオン結晶部分は何等変化することなぐァ ルキル鎖部分のみが融解して液体状態になり、低温側融点と高温側融点の間の温 度範囲では、イオン結晶部分とアルキル鎖の液体部分とが、ひとつの結晶の中で共 存している(図 6において、「2相共存」と記載した領域に相当)ことになる。このような 2 相共存状態は、純粋な化合物の状態そのものとして得られるので、長時間、極めて 安定で、且つ低温側融点以下に温度を下げると完全に元の結晶状態に戻り、再度 低温側融点以上にすると完全に 2相状態に戻る。すなわち、この 2つの状態は繰り返 し再現可能である。このような安定性は、従来のラメラ層ゃ LB膜等の人工的な累積 膜と本質的に異なるものである。  In addition, when the temperature is higher than the low-temperature melting point, only the alkyl chain part that does not change anything melts into a liquid state, and in the temperature range between the low-temperature melting point and the high-temperature melting point, The crystal part and the liquid part of the alkyl chain coexist in one crystal (corresponding to the region described as “two-phase coexistence” in FIG. 6). Such a two-phase coexistence state is obtained as a pure compound itself, so it is very stable for a long time, and when the temperature is lowered below the melting point on the low temperature side, it completely returns to the original crystalline state, and again the melting point on the low temperature side This will completely return to the two-phase state. In other words, these two states can be repeated repeatedly. Such stability is essentially different from that of artificial laminated films such as conventional lamella layers and LB films.
さらに高温側融点以上の温度に加熱すると、アルキル鎖部分も、イオン結晶部分も 共に融解し、全体が液体状態(図 6において、「液相」と記載した領域に相当)となる。 このようになった液体を再度高温側融点以下の温度に冷却しても、平板状、鱗片状 結晶を再現することはできず、従って、巨視的に、広い面積にわたってアルキル鎖の 一様に規則正しく配列した構造を再現することはできない。但し、この場合にも、元の カルボン酸リチウム自身が分解するわけではなぐ巨視的な配列構造が失われるだ けなので、このような不規則なカルボン酸リチウムを原料として、本発明に示した方法 で再度平板状、鱗片状結晶を作り直すことは可能である。 When heated to a temperature higher than the melting point on the high temperature side, both the alkyl chain part and the ionic crystal part melt, and the whole is in a liquid state (corresponding to the region indicated as “liquid phase” in FIG. 6). Even if the liquid thus formed is cooled again to a temperature lower than the melting point on the high temperature side, flat and scaly crystals cannot be reproduced.Therefore, macroscopically, the alkyl chains are uniformly and regularly distributed over a large area. The arranged structure cannot be reproduced. However, even in this case, the original Since the macroscopic arrangement structure is not lost because the lithium carboxylate itself is not decomposed, the plate-like and scaly crystals are formed again by the method shown in the present invention using such irregular lithium carboxylate as a raw material. It is possible to recreate it.
[0031] 本発明のカルボン酸リチウムにお 、て、低温側融点と高温側融点の温度間隔は、 何れのカルボン酸リチウム結晶においても、極めて広いので、広い温度範囲で、結晶 部分と液体部分の共存状態を実現することが出来、種種の工業的な用途に用いるこ とが出来る。  [0031] In the lithium carboxylate of the present invention, the temperature interval between the low-temperature side melting point and the high-temperature side melting point is very wide in any of the lithium carboxylate crystals. A coexistence state can be realized and it can be used for various industrial applications.
また、本発明のカルボン酸リチウムは、その炭素鎖長によって、低温側融点は大きく 変化し、しかも、炭素数が偶数か奇数かによつて大きく系統的に異なるものであり、こ れらの特徴を生力して、種々の温度範囲での用途に用いることが可能である。  In addition, the low-temperature melting point of the lithium carboxylate of the present invention varies greatly depending on the carbon chain length, and it differs greatly systematically depending on whether the carbon number is even or odd. It can be used for applications in various temperature ranges.
[0032] 本発明のカルボン酸リチウムような単純な化合物における結晶部分と液体部分の 共存は、本発明において初めて見出されたもので、従来報告されているような液晶や 柔粘性結晶で見られる中間相 (メソフェーズ)とは、本質的に異なるものである。  [0032] Coexistence of a crystal part and a liquid part in a simple compound such as lithium carboxylate of the present invention was first found in the present invention, and can be found in liquid crystals and plastic crystals as reported previously. It is essentially different from the mesophase.
既存のカルボン酸リチウム結晶も、部分的にはこのような変化をしているものと思わ れるが、結晶系が一様な平板状、鱗片状結晶ではないので、このような状態をはっき りと取り出すことも出来ないし、工業的に利用することもできない。  The existing lithium carboxylate crystals are also considered to have partially changed in this way, but the crystal system is not a uniform flat or scaly crystal. It cannot be taken out and cannot be used industrially.
[0033] また、従来より、界面活性剤、各種両新媒性ィ匕合物を一層に並べたり、層状に配列 して、アルキル鎖の構造体を作る試み等が多くなされている力 何れも不安定で、満 足のいく結果は得られていないが、本発明によるアルキル鎖の層状構造は、そのよう なアルキル鎖の高度な配列を、結晶の形で、極めて整然と、大面積で実現するもの で、多方面の工業的な利用の基礎をなすものである。  [0033] In addition, there have been many attempts to produce an alkyl chain structure by arranging a surfactant and various amphiphilic compounds in a single layer or arranging them in layers. Although unstable and not satisfactory, the layered structure of alkyl chains according to the present invention realizes such a high degree of arrangement of alkyl chains in the form of crystals in a very orderly and large area. Therefore, it forms the basis for various industrial uses.
実施例  Example
[0034] 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定さ れるものではない。  Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
[0035] 表 1に示す反応条件で、炭素数 8(オクタン酸)力も炭素数 22(ドコサン酸)までのカル ボン酸 (RCOOH)を出発物質 (表 1では元の酸と表記)として、若干過剰量の水酸化リ チウム · 1水和物(LiOH.H 0)をカ卩え、エチルアルコール (EtOH)と水(H 0)の混合  [0035] Under the reaction conditions shown in Table 1, carbonic acid (RCOOH) having a carbon number of 8 (octanoic acid) and a carbon number of up to 22 (docosanoic acid) was used as a starting material (indicated as the original acid in Table 1). Add an excess of lithium hydroxide monohydrate (LiOH.H 0) and mix ethyl alcohol (EtOH) and water (H 0).
2 2  twenty two
溶媒中で、次のようにして反応を行った。 [0036] 反応には、内容量 1L及び 2Lの縦型円筒状耐圧ガラス容器を用いた。 該反応容器は、容器本体と温度測定用ガラスシースのついたふたとを接合し、ボル ト、ナットで締め付けて密閉するテフロン製リング部分より構成される。 The reaction was carried out in the solvent as follows. [0036] Vertical cylindrical pressure-resistant glass containers having an internal volume of 1 L and 2 L were used for the reaction. The reaction vessel is composed of a Teflon ring portion that joins a vessel body and a lid with a glass sheath for temperature measurement, and is tightened with a bolt and a nut to be sealed.
該反応容器をホットプレート上に設置し、ホットプレート内に設置してある強力な磁 石を回転することにより、容器内に挿入した縦型テフロン製マグネティックスターラー で、反応液を均一に攪拌した。  The reaction vessel was placed on a hot plate, and a powerful magnet installed in the hot plate was rotated to uniformly stir the reaction solution with a vertical Teflon magnetic stirrer inserted into the vessel.
反応容器を底から加熱するホットプレートの温度は、反応温度よりも 20°C程度高く 設定した。更に、反応容器の側面外周を、ガラス製、ニクロム線を組み込んだ透明マ ントルヒータで囲み、加熱した。マントルヒータの温度は、温度測定用ガラスシース内 に挿入した熱電対により測定し、コントローラにより制御した。  The temperature of the hot plate that heats the reaction vessel from the bottom was set to about 20 ° C higher than the reaction temperature. Furthermore, the outer periphery of the side surface of the reaction vessel was heated by surrounding it with a transparent mantle heater made of glass and incorporating nichrome wire. The temperature of the mantle heater was measured by a thermocouple inserted in the temperature measuring glass sheath and controlled by a controller.
[0037] 反応液が無色透明になり、ガラス内壁、テフロンスターラーにも、一切の固形物、結 晶類が残存していないことを確認し、さらに 20分程度加熱、攪拌を継続して完全に 溶解させた。完全溶解確認後、ヒーター及び攪拌を停止し徐冷した。  [0037] It was confirmed that the reaction solution became colorless and transparent, and that no solids or crystals remained on the inner wall of the glass or the Teflon stirrer. Further, heating and stirring were continued for about 20 minutes to complete the reaction. Dissolved. After confirming complete dissolution, the heater and stirring were stopped and cooled slowly.
生成するカルボン酸リチウムの炭素鎖長により異なる力 数 °Cから 20°C程度の過冷 却の後、鱗片状結晶が析出した。  Scale-like crystals were precipitated after supercooling at a power of approximately 20 ° C to 20 ° C, depending on the carbon chain length of the lithium carboxylate produced.
[0038] 原液をろ過した後、水洗浄及びろ過を 2回繰り返し、真空乾燥して、夫々の炭素数 のカルボン酸リチウム結晶を製造した。なお表 1中で、製造したカルボン酸リチウムは CXLi (Xは整数)で表記した。ここで、 Xは炭素数であり、炭素数 12のドデカン酸リチウ ムならば、 C12Liと表記している。また、表 1で、元の酸、 LiOH.H20、エタノールおよ び水の各々数値はモル比であり、収率は、カルボン酸の仕込み量に対して、真空乾 燥後得られた実際のカルボン酸リチウム量を、モル比であらわしたものである。  [0038] After the stock solution was filtered, washing with water and filtration were repeated twice, followed by vacuum drying to produce each carbon number lithium carboxylate crystal. In Table 1, the produced lithium carboxylate is represented by CXLi (X is an integer). Here, X is the number of carbon atoms, and in the case of 12 carbon atoms lithium dodecanoate, it is expressed as C12Li. In Table 1, the values for the original acid, LiOH.H20, ethanol and water are molar ratios, and the yield is the actual amount obtained after vacuum drying with respect to the charged amount of carboxylic acid. The amount of lithium carboxylate is expressed as a molar ratio.
[0039] [表 1] 耐圧 1 L容器 [0039] [Table 1] Pressure resistant 1 L container
カルボン酸リチウム 元の酸 LiOH- H20 エタノール 水 反応温度 反応時間 純度 収率 Lithium carboxylate Original acid LiOH- H 2 0 Ethanol Water Reaction temperature Reaction time Purity Yield
(モル比) (モル比) (モル比) (モル比) (°C) (時間) (%) ( ) (Molar ratio) (Molar ratio) (Molar ratio) (Molar ratio) (° C) (Time) (%) ()
C08U 10 1 1 100 1000 60 2 99«以上 89.4C08U 10 1 1 100 1000 60 2 99 «or more 89.4
C09Li 10 1 1 100 1000 80 4.5 99%以上 76.5C09Li 10 1 1 100 1000 80 4.5 99% or more 76.5
C10Li 30 33 100 1000 80 3 99%以上 91.9C10Li 30 33 100 1000 80 3 99% or more 91.9
C1 1 Li 5 5.5 100 1000 70 1 99%以上 50.0C1 1 Li 5 5.5 100 1000 70 1 99% or more 50.0
C12Li 5 5.5 100 1000 70 1.5 99%以上 60.8C12Li 5 5.5 100 1000 70 1.5 99% or more 60.8
C13Li 5 5.5 100 1000 80 1 99%以上 93.5C13Li 5 5.5 100 1000 80 1 99% or more 93.5
CHLi 10 1 1 100 1000 95 2 99%以上 97.3CHLi 10 1 1 100 1000 95 2 99% or more 97.3
C15Li 5 5 200 1000 85 2 99%以上 97.5C15Li 5 5 200 1000 85 2 99% or more 97.5
C16Li 10 1 1 150 1000 100 2.5 以上 90.3C16Li 10 1 1 150 1000 100 2.5 or more 90.3
C17Li 10 1 1 200 1000 105 5 9994以上 99.0C17Li 10 1 1 200 1000 105 5 9994 or higher 99.0
C18Li 2 2 300 1000 90 3.5 9994以上 92.4C18Li 2 2 300 1000 90 3.5 9994 or higher 92.4
C19Li 5 5.5 200 1000 1 10 3 99%以上 98.5C19Li 5 5.5 200 1000 1 10 3 99% or more 98.5
C20Li 5 5.5 200 1000 1 10 2 99%以上 99.5C20Li 5 5.5 200 1000 1 10 2 99% or more 99.5
C21 Li 5 5.5 200 1000 120 2.5 99X以上 98.7C21 Li 5 5.5 200 1000 120 2.5 99X or more 98.7
C22Li 5 5.5 200 1000 120 4.5 99%以上 98.3 C22Li 5 5.5 200 1000 120 4.5 99% or more 98.3
[0040] 表 1の各例の場合、析出するカルボン酸リチウム結晶の重量は、エタノールと水を 合わせた反応溶媒の重量の 1Z40から 1Z3である力 いずれも極めて嵩高い結晶 なので、反応容器内は真白に凝固した結晶で占められ、反応溶媒が外見からでは全 くわ力もない状態である。し力しながら、結晶の疎水性が高いため、デカンテーシヨン な!、しはろ過によって容易に結晶と溶媒液とを分離することができる。 [0040] In each case of Table 1, the weight of the precipitated lithium carboxylate crystals is 1Z40 to 1Z3, which is the weight of the reaction solvent combined with ethanol and water. It is dominated by crystals that are solidified in pure white, and the reaction solvent is completely free from wrinkles. However, since the hydrophobicity of the crystal is high, it is not decanted! The crystal and the solvent liquid can be easily separated by filtration.
[0041] C08Li〜C14Liの比較的アルキル鎖の短いカルボン酸リチウムの場合には、ろ過の 際に泡が生じ、相対的に水及びアルコールへの溶解度が若干上るため、収率が幾 分低下する。こうした場合には、反応液ないしはろ液を予め室温よりも低くすることに よって、もしくは、反応液に水を加えてアルコール濃度を相対的に低下させた後、ろ 過することによって、収率を更に上げることができる。  [0041] In the case of lithium carboxylates having a relatively short alkyl chain such as C08Li to C14Li, bubbles are produced during filtration, and the solubility in water and alcohol is slightly increased, so the yield is somewhat reduced. . In such a case, the yield can be reduced by preliminarily lowering the reaction solution or filtrate below room temperature, or by adding water to the reaction solution to relatively reduce the alcohol concentration and then filtering. It can be raised further.
いずれの場合にも得られる結晶は 99%以上の高純度である。  In either case, the resulting crystals are 99% or higher in purity.
[0042] 得られたカルボン酸リチウム結晶は、光学顕微鏡写真および SEM写真で、板状結 晶であり、さらに 1つの板状結晶は更に薄い 0. 03〜0. 2 m厚の積層した鱗片状 結晶からなることが観察された。得られた C14Li (テトラデカン酸リチウム)及び C18Li ( ォクタデカン酸リチウム麟片状結晶の 1. Ogの外形写真と、走査電子顕微鏡による 50 00倍の拡大写真の典型例を、それぞれ図 1及び図 2に示す。  [0042] The obtained lithium carboxylate crystal is a plate-like crystal in an optical micrograph and an SEM photograph, and one plate-like crystal is thinner, and is in the form of a laminated scale having a thickness of 0.03 to 0.2 m. It was observed to consist of crystals. Figure 1 and Figure 2 show typical examples of the outer shape of the obtained C14Li (lithium tetradecanoate) and C18Li (lithium octadecanoate flaky crystals) and a 500,000 magnification photograph, respectively, using a scanning electron microscope. Show.
比較のために、同一条件で撮影した市販のォクタデカン酸リチウム (Acros社製)及 び日本油脂株式会社提供のォクタデカン酸リチウムの写真をそれぞれ図 3及び図 4 に示す。 これらの写真からわ力るように、本発明のカルボン酸リチウム結晶は、何れも極めて 嵩高ぐ広い面積を有する平板状結晶が積層した麟片状結晶であり、従来品のカル ボン酸リチウム結晶とは明らかに異なるものである。 For comparison, photographs of commercially available lithium octadecanoate (Acros) and lithium octodecanoate provided by NOF Corporation are shown in FIGS. 3 and 4, respectively. As can be seen from these photographs, the lithium carboxylate crystal of the present invention is a scaly crystal formed by laminating flat crystals having a very large and large area. Is clearly different.
[0043] 実施例で得られた C14Liについて、 X線による単結晶構造解析を行った。 [0043] C14Li obtained in the examples was subjected to X-ray single crystal structure analysis.
その結果を、図 5及び表 2に示す。  The results are shown in FIG.
[0044] [表 2] [0044] [Table 2]
C14Li単結晶構造解析結果 C14Li single crystal structure analysis results
a軸の長さ 3.3460 nm  a-axis length 3.3460 nm
b軸の長さ 0.4906 nm  b-axis length 0.4906 nm
c軸の長さ 0.9043 nm  c-axis length 0.9043 nm
Οίの角度 90度  Οί angle 90 degrees
の角度 97.743度  Angle of 97.743 degrees
丫の角度 90度  角度 angle 90 degrees
空間群 P21 Zc  Space group P21 Zc
最終 R値 0.064  Final R value 0.064
[0045] 構造解析の結果、本発明のカルボン酸リチウムの結晶構造は、典型的な単斜晶系 であったが、従来漠然と考えられていたような、テトラデカン酸リチウムの単位分子、 C H COOLiが、集合して、分子集合体として単斜晶系の結晶を形成するのではなく[0045] As a result of structural analysis, the crystal structure of the lithium carboxylate of the present invention was a typical monoclinic crystal system. However, the unit molecule of lithium tetradecanoate, CH COOLi, which was conventionally considered vaguely, , Instead of assembling and forming monoclinic crystals as molecular aggregates
13 17 13 17
リチウム原子と酸素原子から構成される平面構造部分を有する、巨視的なイオン結 晶そのものであった。  It was a macroscopic ionic crystal with a planar structure composed of lithium and oxygen atoms.
即ち、リチウム原子と酸素原子は、個々の分子に帰属するというよりも、全体として、 個々の分子力も独立した平板状イオン結晶を形成している。これは、例えば、食塩( NaCl)の結晶力 個々の NaCl単位の集合体ではなぐ一個の結晶全体として、巨視 的なイオン結晶であるのと同じ意味で、巨視的なイオン結晶である。  That is, lithium atoms and oxygen atoms form a plate-like ionic crystal with individual molecular forces independent of each other, rather than belonging to individual molecules. This is, for example, a macroscopic ionic crystal in the same meaning as a macroscopic ionic crystal as a whole of a single crystal that is not an aggregate of individual NaCl units.
本発明のカルボン酸リチウムは、このリチウム原子と酸素原子力 構成されるイオン 結晶平面の両側に、アルキル鎖が少し傾斜して、規則正しく配列しており、それぞれ の薄 、平板状結晶は、両面がアルキル鎖で覆われて 、る。  In the lithium carboxylate of the present invention, the alkyl chains are arranged in a regular manner with a slight inclination of the alkyl chain on both sides of the lithium crystal and the ion crystal plane composed of oxygen nuclear power. Each thin and flat crystal is alkyl on both sides. Covered with chains.
前記の本発明の麟片状結晶は、このような平面状構造が幾重にも積層してなるもの であることを、走査電子顕微鏡観察により確認した。 The scaly crystal of the present invention is formed by stacking such planar structures in layers. It was confirmed by scanning electron microscope observation.
このような構造は、本発明の方法によって得られた、極めて薄い平板の積相した鱗 片状結晶によって、初めて明らかになり、し力も、その結晶構造の特徴を、工業的に も、十分に利用可能にするものである。  Such a structure is revealed for the first time by the very thin flat plate-like scale crystals obtained by the method of the present invention, and the strength and characteristics of the crystal structure are sufficiently obtained industrially. It is what makes it available.
[0046] 図 5において、図の中央の、ジグザグ平面部分力 リチウム原子と酸素原子力 構 成されるイオン結晶部分で、その上下両側に一定間隔で並んでいるのが、アルキル 鎖である。アルキル鎖は、イオン結晶平面に結合することによって固定され、鎖の先 端に行くほど動きやすくなつているので、鎖の骨格を成す炭素は、先端に行くほど大 きな楕円で示してある。 In FIG. 5, the zigzag plane partial force lithium atom and the ionic crystal portion composed of oxygen nuclear power at the center of the figure, and the alkyl chains are arranged at regular intervals on the upper and lower sides. Since the alkyl chain is fixed by bonding to the ionic crystal plane and becomes easier to move toward the tip of the chain, the carbon that forms the chain skeleton is shown as a larger ellipse toward the tip.
アルキル鎖部分は、それぞれの炭素鎖長に依存する温度範囲で、低温では綺麗 に配列して分子結晶を形成しているが、以下の示差走査熱量測定装置による測定 結果に示すように、低温側融点を超える温度では、液体状態になる。この時、イオン 結晶部分は何等変化せず、アルキル鎖部分のみが液体となるが、通常の液体とは異 なり、一端力 Sイオン結晶面に固定されているので、その結晶平面状で揺らいでいるこ とになる。  Alkyl chain parts are neatly arranged at low temperatures in the temperature range depending on the length of each carbon chain to form molecular crystals, but as shown in the measurement results with the following differential scanning calorimeter, At temperatures above the melting point, it enters a liquid state. At this time, the ionic crystal part does not change at all, and only the alkyl chain part becomes a liquid, but unlike a normal liquid, it is fixed to the S ion crystal surface at one end, so it fluctuates in the crystal plane. Will be.
[0047] 得られたカルボン酸リチウム結晶について、示差走査熱量測定装置による測定を 行った。結果を、表 3及び図 6に示す。  [0047] The obtained lithium carboxylate crystal was measured with a differential scanning calorimeter. The results are shown in Table 3 and FIG.
[0048] [表 3] [0048] [Table 3]
Figure imgf000016_0001
表 3及び図 6から明らかなように、 C08Liから C22Liまでのすべてについて、低温側 と高温側とに明確な 2つの融点を有していた。また表 3に示した融点は、カルボン酸リ チウム結晶の一部分 (アルキル鎖の部分)が融解するに過ぎず、結晶全体の融点は、 温度可変光学顕微鏡による観察及び示差走査熱量測定装置を用いた測定により、 何れも 250°C近辺にあることも解った。更に、表 3及び図 6に示した結果から明らかな ように、一般に、奇数炭素数のカルボン酸リチウム結晶の融点、融解ェンタルピーの 方が、隣接する偶数炭素数のカルボン酸リチウム結晶の融点、融解ェンタルピーより も、はるかに大きな値を示す。即ち、結晶の配向性が、奇数カルボン酸リチウム結晶 の方が、大きい。このようなことは、従来、全く知られていな力つたことで、このように、 系統的に、炭素鎖長の異なるカルボン酸リチウム結晶を合成して、初めて明らかにな つたことである。
Figure imgf000016_0001
As is clear from Table 3 and Fig. 6, all of C08Li to C22Li had two distinct melting points on the low temperature side and the high temperature side. The melting point shown in Table 3 is only a part of the lithium carboxylate crystal (alkyl chain part) melting, and the melting point of the whole crystal was observed with a variable temperature optical microscope and using a differential scanning calorimeter. From the measurements, it was found that both were near 250 ° C. Further, as is apparent from the results shown in Table 3 and FIG. 6, in general, the melting point and melting enthalpy of the lithium carboxylate crystal having an odd number of carbon atoms are higher than the melting point and melting point of the adjacent lithium carbonate carboxylate having an even number of carbon atoms. It is much larger than enthalpy. That is, the crystal orientation is larger in the odd-numbered lithium carboxylate crystal. This is what has become clear for the first time by synthesizing lithium carboxylate crystals with different carbon chain lengths systematically in this way, because of the power that has never been known before.
このような物性の違いを利用することによって、潤滑剤、グリース、分散剤、撥水剤、 離型剤、乾燥剤、触媒、安定剤、殺菌剤、各種絶縁材料等の物性を系統的に変化さ せ、幅広い用途に使用することが出来る。  Utilizing these differences in physical properties systematically changes the physical properties of lubricants, greases, dispersants, water repellents, mold release agents, desiccants, catalysts, stabilizers, bactericides, and various insulating materials. It can be used for a wide range of purposes.

Claims

請求の範囲 The scope of the claims
[1] 2つの融点を有し、両融点の間の温度では、結晶状態と液体状態とが共存する 2相 状態を有することを特徴とする化合物。  [1] A compound having two melting points and having a two-phase state in which a crystalline state and a liquid state coexist at a temperature between both melting points.
[2] リチウム原子と酸素原子力 構成される平面状イオン結晶と、その平面の両側にァ ルキル鎖を主体とする有機の基が化学結合してなる構造を有していることを特徴とす る有機酸化リチウム化合物。 [2] It is characterized by having a structure in which a planar ionic crystal composed of lithium atoms and oxygen nuclear power and an organic group mainly composed of an alkyl chain are chemically bonded to both sides of the plane. Organic lithium oxide compounds.
[3] カルボン酸とリチウム酸ィ匕物もしくはリチウム水酸ィ匕物とをアルコールと水の混合溶 媒に溶解させた後、析出させた、板状または鱗片状結晶であることを特徴とする請求 項 1又は請求項 2に記載のカルボン酸リチウム化合物。 [3] A plate-like or scaly crystal which is precipitated after dissolving carboxylic acid and lithium oxide or lithium hydroxide in a mixed solvent of alcohol and water. The lithium carboxylate compound according to claim 1 or 2.
[4] 既存のカルボン酸リチウムをアルコールと水の混合溶媒に溶解させた後、析出させ た、板状または鱗片状結晶であることを特徴とする請求項 1又は 2に記載のカルボン 酸リチウム化合物。 [4] The lithium carboxylate compound according to claim 1 or 2, wherein the lithium carboxylate is a plate-like or scaly crystal which is precipitated after dissolving the existing lithium carboxylate in a mixed solvent of alcohol and water. .
[5] カルボン酸とリチウム酸ィ匕物もしくはリチウム水酸ィ匕物とを、アルコールと水の混合 溶媒中で加熱して溶解させた後、徐冷することにより板状または鱗片状結晶として析 出させることを特徴とする請求項 1〜3のいずれか一項に記載のカルボン酸リチウム 化合物の製造方法。  [5] Carboxylic acid and lithium oxide compound or lithium hydroxide compound are dissolved in a mixed solvent of alcohol and water by heating and then slowly cooled to precipitate as plate-like or scaly crystals. The method for producing a lithium carboxylate compound according to any one of claims 1 to 3, wherein the lithium carboxylate compound is produced.
[6] 既存のカルボン酸リチウムを、アルコールと水の混合溶媒中で加熱して溶解させた 後、徐冷することにより板状または鱗片状結晶として析出させることを特徴とする請求 項 1、 2又は 4のいずれか一項に記載のカルボン酸リチウム化合物の製造方法。  [6] The existing lithium carboxylate is dissolved by heating in a mixed solvent of alcohol and water, and then slowly cooling to precipitate it as plate-like or scaly crystals. Or 5. The method for producing a lithium carboxylate compound according to any one of 4 above.
PCT/JP2006/316898 2005-09-12 2006-08-28 Novel compound having two-phase state and process for producing the same WO2007032202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535415A JP4899168B2 (en) 2005-09-12 2006-08-28 Lithium carboxylate crystal and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-264400 2005-09-12
JP2005264400 2005-09-12

Publications (1)

Publication Number Publication Date
WO2007032202A1 true WO2007032202A1 (en) 2007-03-22

Family

ID=37864799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316898 WO2007032202A1 (en) 2005-09-12 2006-08-28 Novel compound having two-phase state and process for producing the same

Country Status (2)

Country Link
JP (1) JP4899168B2 (en)
WO (1) WO2007032202A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366447A (en) * 2020-04-20 2020-07-03 广州机械科学研究院有限公司 Method for rapidly dissolving lithium-based lubricating grease

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068105A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology High-purity crystal of lithium carboxylate and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068105A (en) * 2003-08-27 2005-03-17 National Institute Of Advanced Industrial & Technology High-purity crystal of lithium carboxylate and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111366447A (en) * 2020-04-20 2020-07-03 广州机械科学研究院有限公司 Method for rapidly dissolving lithium-based lubricating grease

Also Published As

Publication number Publication date
JP4899168B2 (en) 2012-03-21
JPWO2007032202A1 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Shandilya et al. Hydrothermal technology for smart materials
Garnweitner et al. Large‐Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in Organic–Inorganic Nanocomposites for Efficient Volume Holography
Xu et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology
Kim et al. Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder
Sajjia et al. Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization
Taguchi et al. Supercritical hydrothermal synthesis of hydrophilic polymer-modified water-dispersible CeO 2 nanoparticles
Shinde et al. A solution chemistry approach for the selective formation of ultralong nanowire bundles of crystalline Cd (OH) 2 on substrates
Fathy et al. Influence of calcination temperatures on the formation of anatase TiO 2 nano rods with a polyol-mediated solvothermal method
Xi et al. Selected-control synthesis of PbO2 submicrometer-sized hollow spheres and Pb3O4 microtubes
Zhao et al. Synthesis and characterization of CaTiO 3 particles with controlled shape and size
Di et al. Influence of precursor Bi3+/Fe3+ ion concentration on hydrothermal synthesis of BiFeO3 crystallites
Yuan et al. Sol–gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template
Maurya et al. Nanostructured lead-free ferroelectric Na 0.5 Bi 0.5 TiO 3–BaTiO 3 whiskers: synthesis mechanism and structure
Lu et al. Glycothermal preparation of potassium niobate ceramic particles under supercritical conditions
Qiao et al. Coordination polymer route to wurtzite ZnS and CdS nanorods
Saini et al. Phase modulation in nanocrystalline vanadium di-oxide (VO2) nanostructures using citric acid via one pot hydrothermal method
Chen et al. Morphology control of MnWO 4 nanocrystals by a solvothermal route
Khani et al. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
Qi et al. Short-range dissolution–precipitation crystallization of hydrothermal barium titanate
AU2022263077A1 (en) Preparation method for nano titanate, nano titanic acid, and nano tio2, and a use thereof
Xu et al. Preparation of shape controlled SrTiO3 crystallites by sol–gel-hydrothermal method
Chen et al. A postsynthetic ion exchange method for tunable doping of hydroxyapatite nanocrystals
Seeharaj et al. Barium zirconate titanate nanoparticles synthesized by the sonochemical method
Nakashima et al. Low-temperature synthesis of SrZrO3 nanocubes by the composite-hydroxide-mediated approach
Peng et al. Preparation of BaTiO3 nanoparticles in aqueous solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535415

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783127

Country of ref document: EP

Kind code of ref document: A1