WO2007030851A1 - Introduction of solar heating energy for desalinating sea water - Google Patents

Introduction of solar heating energy for desalinating sea water Download PDF

Info

Publication number
WO2007030851A1
WO2007030851A1 PCT/AT2006/000378 AT2006000378W WO2007030851A1 WO 2007030851 A1 WO2007030851 A1 WO 2007030851A1 AT 2006000378 W AT2006000378 W AT 2006000378W WO 2007030851 A1 WO2007030851 A1 WO 2007030851A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillate
msf
med
plant according
distillation
Prior art date
Application number
PCT/AT2006/000378
Other languages
German (de)
French (fr)
Inventor
Martin Hadlauer
Original Assignee
Martin Hadlauer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin Hadlauer filed Critical Martin Hadlauer
Publication of WO2007030851A1 publication Critical patent/WO2007030851A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the present invention relates to a special method for thermal heat input via solar panels in plants for the production of industrial and drinking water by means of a multi-stage distillation process according to the MSF (Mufti Stage Flash) or MED (Multi Effect Distillation) principle.
  • MSF Mofti Stage Flash
  • MED Multi Effect Distillation
  • Generic systems can also be operated via thermal energy from solar systems.
  • solar-powered systems a reheating of the seawater after exiting the preheating column usually takes place via coupler-type heat exchangers with media separation between the seawater circuit and the collector circuit.
  • this heat exchanger is loaded on the secondary side of heavy deposits and thus maintenance-intensive.
  • an attempt is made to use directly with seawater flowed through collectors. This results in the savings of the heat exchanger between seawater and collector cycle, but shifts the problem of corrosion and deposits on collectors and buffer memory.
  • the temperature of the incoming seawater from the preheating column is too high to still achieve efficient heat dissipation or the desired cooling target. This is especially true for the use of novel hybrid collectors for electricity and heat.
  • the return temperature of the inflowing cooling medium should be substantially lower than the operating temperature of the uppermost preheating chamber. By keeping the return temperature low also results in the Advantage that buffer memory to compensate for the load fluctuations can be designed to be relatively small, since due to the difference of supply to return temperature, a higher energy storage potential is given.
  • the object of the present invention is now to eliminate the risk of corrosion and deposits in the collector circuit, without interposing a heat exchanger with media separation between primary and secondary circuit.
  • the development of special materials for collectors and buffer storage is not discussed, but a process engineering solution for avoiding direct contact of seawater in the collectors is offered.
  • Another key objective is to keep the return temperature to the collectors low.
  • distillate is removed from the preheating, passed through the (the) heat exchanger of the heater (s) and then returned to the distillate cycle of the preheating.
  • the distillate recycling takes place either via a separate expansion chamber, or directly into one of the condensation stages of the preheating column.
  • Crucial for the process engineering function is the admixture in the distillate stream of the preheating and not in the seawater cycle.
  • the basic version is to operate a system exclusively via thermal heat from thermal collectors.
  • Distillate according to the invention is removed from the distillation column, heated in the collectors to about 115 to 165 0 C and then introduced into a flash chamber with steam supply to the seawater circuit.
  • This expansion chamber may be either the uppermost chamber of the preheating column, but may also be an outboard vapor deposition chamber via which the condensate is indirectly directed further into the uppermost chamber of the preheating column.
  • the attachment of an external chamber fulfills the purpose of a small buffer memory to adjust load fluctuations from the collector circuit accordingly. Pressure equal to the outer distillate buffer, a chamber for the introduction of seawater and steam is connected upstream of the expansion chambers for seawater evaporation.
  • the steam from the flash evaporation serves for the residual heating of the seawater emerging from the preheating column, which is then passed in descending order through the individual pressure stages of the flash evaporation.
  • a correspondingly large buffer memory is to be provided in the collector circuit, regardless of the buffer volume of the preheating column. The greater the difference between flow temperature and return temperature in the collector circuit, the smaller this buffer memory can be designed. Both from this point of view and the endeavor to keep the average collector temperature as low as possible, the distillate for the collector circuit from the bottom of the preheating column, or after emerging from the lowest stage recommended.
  • An extended variant provides for connecting hybrid collectors in addition to the thermal collectors. These are tracked collectors with cooled solar cells, which are acted upon by mirrors with high radiation intensity.
  • the hybrid collectors have a supporting effect on the distillation of distillate during the day, but are mainly used to generate electricity. In symbiosis with the desalination plant these collectors can be flowed through with deposit-free distillate at a low return temperature. Depending on the feed temperature (70-100 0 C), the distillate at the corresponding temperature level of the Voreriermkolonne is recycled to the distillate stream.
  • This invention interconnection makes it possible to use hybrid collectors for industrial purposes. As a result, hydrogen can be generated via the solar power generated by these collectors.
  • thermal collectors instead of the thermal collectors use a compressor system for the base load.
  • steam is removed from the distillation column and brought via the compressor unit in the chamber for residual heating of the preheated seawater.
  • the hybrid collectors can now be integrated in the manner according to the invention.
  • this concept is ideal for retrofitting existing compressor-driven systems that operate according to a staged distillation process. Large buffer tanks are not necessary because the system can be kept in continuous operation via the compressor unit in a kind of base load.
  • the invention does not relate exclusively to the above-mentioned variants, but to all possible combinations resulting from these variants.
  • the use of the inventive method of distillate removal from the preheating, heating via one or more heaters and return to the distillate of the preheating, is limited not only to distillation plants of seawater, but also to plants for the distillation of brackish water and biologically and chemically contaminated water for custom - and drinking water production.
  • Fig. 1 is a schematic representation of an MSF-MED distillation plant with several heating connections in accordance with the usual state of the art, and a connection of collectors according to the interconnection of the invention.
  • FIG. 2 shows two calculations of an MSF distillate column, one for seawater heating via a heating device 3 and the other for distillate heating with removal from the lowest stage and heating via a heating device 1.
  • Fig. 3 is a schematic representation of an MSF distillation plant with heat supply via solar panels according to the general state of the art.
  • Fig. 4 is a schematic representation of an MSF distillation plant with the inventive connection of thermal collectors.
  • Fig. 5 is a schematic representation of an MSF distillation plant, with the inventive connection of thermal collectors and hybrid collectors.
  • Fig. 6 is a schematic representation of an MSF distillation plant with steam supply via a compressor system and a connection of hybrid collectors.
  • Fig. 1 shows a schematic representation of a MSF-MED distillation plant with several heating connections 13, 3 according to the usual state of the art, and a connection of panels 1 according to the interconnection of the invention.
  • the different methods for heating heat input are purely for comparison purposes and are not usually united in a single system.
  • a MED process can be activated via film evaporation equipment.
  • the MED vaporization is put into operation via the compressor 12 and overlaps the normal MSF process.
  • the MSF process can now be operated independently via different possibilities of energy input.
  • Variant a is usually branched off when coupled to thermal power plants with a favorable possibility of process steam. Regardless of these couplings, process steam can also be taken from the MSF column. For this purpose, a further evaporation stage is provided after the lowest condensation stage. The vapor deposited in this stage is now compressed and introduced as process steam 13 in the uppermost stage. Basically, this plant is driven by technical work by compressors.
  • Variant b is a typical application for heat input via thermal collectors. Basically, three options should be set forth with the heater 3. On the one hand, this can be a heat exchanger with primary-side connection of a closed collector circuit, - on the other hand, an open collector circuit with direct seawater flow. In both cases, as mentioned above, relatively high heating temperatures are present, whereby problems with deposits from the seawater are to be expected.
  • Variation c represents the interconnection according to the invention for heat input via collectors 1.
  • the condensate can be taken from the uppermost stage of the preheating column 6 and returned to this stage after heating in the collectors 1.
  • the temperature in the collectors is about the same as in the case of heating with direct seawater flow, but the problem with the deposits is solved.
  • the distillate yield 14 is lower by the proportion of condensate vaporized in the introduction into the first (uppermost) stage than in variant b. At 20 MSF levels, a distillate loss of 12% is expected. This loss is measured against the savings on maintenance quite economically justifiable.
  • the distillate yield 14 decreases in Relative to the heat energy input accordingly.
  • the exact behavior can not be estimated easily, but can only be determined by a calculation.
  • the distillate removal at the lowest point at the exit from the preheating column 6 still achieves a very high desalting performance. The explanation is given based on the following calculation results.
  • FIG. 2 shows two computations of an MSF distillate column with distillate heating via a heating device 1, on the one hand a variant A with distillate removal from the uppermost stage, and on the other hand a variant B with distillate removal from the lowest stage.
  • a seawater temperature of 85 ° C is used in both cases.
  • the supply of sea water in the Vormérmkolonne 6 occurs by definition at a temperature of 25 0 C.
  • the heating is carried out of the distillate in the heater 1 to a predetermined temperature of 120 ° C.
  • the distillate yield 14 is kept constant, a comparison of the heat to be supplied via the heating device 1 is made. As you can see, the efficiency of distillate extraction drops from variant A to variant B in about 100% to 66%.
  • efficiency is understood to mean the amount of distillate obtained in relation to the heat energy introduced.
  • An essential aspect, that still a comparatively high efficiency of 66% is achieved, is explained by the fact that due to the differently sized countercurrent mass flows in the heat exchangers, less steam is needed for the residual heating of the seawater 2, since the preheating to a comparatively higher temperature ( 81 0 C instead of 79 ° C) takes place. Which removal height is chosen depends on the collector behavior. High-quality thermal collectors can be coupled most efficiently to Variant A - Hybrid collectors with cooled solar cells according to Variant B. In general, there is a wide range of options for interconnecting different collector types in parallel and in series. It should also be borne in mind that with the integration of buffer storage for the night, the volume for variant B is about half as large as for variant A.
  • the prior art shown in Fig. 3 is a well-known process of MSF (Multi Stage Flash) distillation equipment for recovering service water according to a thermal process.
  • the heat from the collector 1 is passed from a buffer memory 4 via a heat exchanger 3 to the preheated seawater 2.
  • FIG. 4 shows a schematic representation of an MSF distillation plant with the inventive connection of thermal collectors 1.
  • the removal of distillate 5_1 from the preheating column 6 for the collector circuit is carried out at a medium stage temperature.
  • the return of the heated distillate 5_2 to the preheating column 6 takes place via an upstream expansion chamber 7 with steam supply line 8 into a condensation chamber 9 for residual heating of the seawater.
  • the interposition of a buffer memory 4 ensures that the system can be kept in operation day and night. Apart from the pumps, the system is only driven thermally.
  • FIG. 5 shows a schematic representation of an MSF distillation plant, with the inventive connection of thermal collectors 1 and hybrid collectors 10.
  • the distillate decoupling 5_1 for both collector circuits takes place at the exit from the preheating column 6.
  • the thermal collectors 1 From the thermal collectors 1, the heated distillate via a buffer memory 4 introduced into the expansion chamber 7.
  • the hybrid collectors 10 pass the heated distillate 5_2 directly into one of the upper stages of the preheating column 6.
  • the distillate introduction is variably selectable in that stage in which approximately the temperature of the supplied distillate (5_2) prevails. Apart from the pumps, the system is only driven thermally.
  • FIG. 6 shows a schematic representation of an MSF distillation plant which is operated in the base load via a compressor installation 11.
  • the connection of the hybrid collectors 10 is used primarily for power generation.
  • the distillate 5_1 is withdrawn on leaving the preheating column and, after being heated by the hybrid collectors 10, is returned to one of the upper stages of the preheating column 6. Due to the low feed temperature, the hybrid collectors 11 can not independently operate the MWE plant without compressor assistance, but make a significant contribution to increasing the distillate output.
  • FIG. 7 shows a representation of a hybrid collector in the middle section.
  • a large part of the radiation is conducted via the mirror 15 onto a cooled solar cell module 16.
  • the radiation reflected at the solar cells is absorbed in the thermal absorber 17.
  • the temperature of the incoming cooling medium in this case distillate from the preheating column, must be kept low.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Disclosed is a sea water desalination system for producing service water and drinking water by means of a multistage distillation process, i.e. multistage flash (MSF) or multi-effect distillation (MED), while feeding heating energy. The inventive sea water desalination system is characterized in that distillate (5_1) is removed from the preheating column (6), is heated via one or several heating devices (1), and is then recirculated into the distillation circuit of the preheating column (6). The heated distillate (5_2) is recirculated via a chamber that is mounted upstream (7) while vapor is transferred (8) into a chamber (9) in order to finish heating the sea water.

Description

Solare Heizwärmeeinbringung zur Meerwasserentsalzung Solar thermal heat input for seawater desalination
Die vorliegende Erfindung betrifft eine spezielle Methode zur Heizwärmeeinbringung über Sonnenkollektoren bei Anlagen zur Gewinnung von Brauch- und Trinkwasser mittels eines mehrstufigen Destillationsverfahrens nach dem MSF (Mufti Stage Flash) oder MED (Multi Effect Distillation) Prinzip.The present invention relates to a special method for thermal heat input via solar panels in plants for the production of industrial and drinking water by means of a multi-stage distillation process according to the MSF (Mufti Stage Flash) or MED (Multi Effect Distillation) principle.
Anlagen nach dem MSF oder MED Prinzip arbeiten mit hoher Wärmerückgewinnung, indem das zuströmende Meerwasser in Serie über die Wärmetauscher der einzelnen Stufen zur Kondensatverflüssigung geleitet wird, wobei nach Austritt aus der obersten Stufe eine Nachheizung im Ausmaß von etwa ein bis zwei Stufentemperaturintervallen erfolgt, oder, indem Prozessdampf in die erste Entspannungsstufe eingeleitet wird. In der Patentschrift DE 3239 816 A1 wird ein entsprechender Prozess mit den Einrichtungen zur Film- und Unterdruckverdampfung sowie den Einrichtungen zur Rückkondensation genau beschrieben. Die Heizwärmezufuhr erfolgt, ohne hierbei auf die Erzeugung genauer einzugehen, über Prozessdampfeinleitung in die oberste Stufe.Systems based on the MSF or MED principle operate with high heat recovery by passing the inflowing seawater in series through the heat exchangers of the individual stages for condensate liquefaction, with afterheating in the amount of approximately one or two stage temperature intervals after leaving the topmost stage, or by introducing process steam into the first expansion stage. In the patent DE 3239 816 A1, a corresponding process with the devices for film and vacuum evaporation and the means for recondensation is described in detail. The heating heat is supplied, without going into the generation of more detail, via process steam introduction in the top step.
Gattungsgemäße Anlagen können auch über thermische Energie aus Solaranlagen betrieben werden. Bei solargetriebenen Anlagen erfolgt zumeist eine Nacherwärmung des Meerwassers nach Austritt aus der Vorwärmkolonne über kuperative Wärmetauscher mit Medientrennung zwischen Meerwasserkreis und Kollektorkreis. Dieser Wärmetauscher ist jedoch sekundärseitig von starken Ablagerungen belastet und somit wartungsintensiv. Um die Kollektortemperaturen so niedrig als möglich zu halten, wird versucht, direkt mit Meerwasser durchströmte Kollektoren einzusetzen. Dies führt zur Ersparnis des Wärmetauschers zwischen Meerwasser- und Kollektorkreislauf, verlagert jedoch das Problem der Korrosion und Ablagerungen auf Kollektoren und Pufferspeicher. Durch die Entwicklung von entsprechenden Kollektormaterialien aus Kunststoffen und Verbundwerkstoffen wird versucht das Problem der Korrosion und der Ablagerungen zu minimieren und somit einen wirtschaftlichen Einsatz von Sonnenenergie zu ermöglichen. Für viele Wärmeabgabesysteme wie zum Beispiel Sonnenkollektoren oder Kühlkreise von wärmetechnischen Anlagen ist jedoch die Temperatur des zuströmenden Meerwassers aus der Vorwärmkolonne zu hoch, um noch eine effiziente Wärmeabgabe bzw. das gewünschte Kühlziel zu erreichen. Dies gilt vor allem für den Einsatz von neuartigen Hybridkollektoren zur Strom und Wärmegewinnung. Um eine entsprechende Kühlung der Solarzellen zu gewährleisten sollte die Rücklauftemperatur des zuströmenden Kühlmediums wesentlich unter der Betriebstemperatur der obersten Vorwärmkammer liegen. Durch Niedrighalten der Rücklauftemperatur ergibt sich zudem der Vorteil, dass Pufferspeicher zum Ausgleich der Lastschwankungen relativ klein ausgelegt werden können, da aufgrund der Differenz von Vor- zu Rücklauftemperatur ein höheres Energiespeicherpotential gegeben ist.Generic systems can also be operated via thermal energy from solar systems. In solar-powered systems, a reheating of the seawater after exiting the preheating column usually takes place via coupler-type heat exchangers with media separation between the seawater circuit and the collector circuit. However, this heat exchanger is loaded on the secondary side of heavy deposits and thus maintenance-intensive. In order to keep the collector temperatures as low as possible, an attempt is made to use directly with seawater flowed through collectors. This results in the savings of the heat exchanger between seawater and collector cycle, but shifts the problem of corrosion and deposits on collectors and buffer memory. Through the development of appropriate collector materials made of plastics and composite materials, attempts are being made to minimize the problem of corrosion and deposits, and thus to enable economical use of solar energy. However, for many heat delivery systems such as solar panels or cooling circuits of heat engineering plants, the temperature of the incoming seawater from the preheating column is too high to still achieve efficient heat dissipation or the desired cooling target. This is especially true for the use of novel hybrid collectors for electricity and heat. In order to ensure appropriate cooling of the solar cells, the return temperature of the inflowing cooling medium should be substantially lower than the operating temperature of the uppermost preheating chamber. By keeping the return temperature low also results in the Advantage that buffer memory to compensate for the load fluctuations can be designed to be relatively small, since due to the difference of supply to return temperature, a higher energy storage potential is given.
Aufgabe der vorliegenden Erfindung ist es nun, die Gefahr der Korrosion und der Ablagerungen im Kollektorkreis zu beseitigen, ohne einen Wärmetauscher mit Medien- trennung zwischen Primär- und Sekundärkreislauf zwischenzuschalten. Im Gegensatz zur oben angeführten Lösungsvariante wird nicht auf die Entwicklung von besonderen Materialen für Kollektoren und Pufferspeicher eingegangen, sondern eine prozesstechnische Lösung zur Vermeidung des Direktkontaktes von Meerwasser in den Kollektoren angeboten. Ein weiteres wesentliches Ziel ist es, die Rücklauftemperatur zu den Kollektoren niedrig zu halten.The object of the present invention is now to eliminate the risk of corrosion and deposits in the collector circuit, without interposing a heat exchanger with media separation between primary and secondary circuit. In contrast to the above-mentioned solution variant, the development of special materials for collectors and buffer storage is not discussed, but a process engineering solution for avoiding direct contact of seawater in the collectors is offered. Another key objective is to keep the return temperature to the collectors low.
Dies wird erfindungsgemäß durch eine Anlage gemäß den Kennzeichen des Anspruches 1 erreicht. Dabei wird Destillat aus der Vorwärmkolonne entnommen, durch den(die) Wärmetauscher der Heizeinrichtung(en) geleitet und anschließend in den Destillatkreislauf der Vorwärmkolonne rückgeführt. Die Destillatrückführung erfolgt dabei entweder über eine separate Entspannungskammer, oder direkt in eine der Kondensationsstufen der Vorwärmkolonne. Entscheidend für die prozesstechnische Funktion ist die Zumischung in den Destillatstrom der Vorwärmkolonne und nicht in den Meerwasserkreislauf.This is inventively achieved by a system according to the characterizing part of claim 1. In this case, distillate is removed from the preheating, passed through the (the) heat exchanger of the heater (s) and then returned to the distillate cycle of the preheating. The distillate recycling takes place either via a separate expansion chamber, or directly into one of the condensation stages of the preheating column. Crucial for the process engineering function is the admixture in the distillate stream of the preheating and not in the seawater cycle.
Mit dieser Verschaltung ist es möglich, MWE- Anlagen ausschließlich über Heizwärme zu betreiben, die Rücklauftemperaturen zu den Kollektoren niedrig zu halten und diese mit ablagerungsfreiem Destillat zu durchströmen. Je nach Belieben sind verschiedenste Kombinationen mit mehreren Heizwärmeanbindungen mit unterschiedlichen Destillatentnahmen und Rückführungen, sowie Einbindungen von Kompressoranlagen möglich. Vorteilhafte Ausführungen sind im Hauptanspruch und in den Unteransprüchen gekennzeichnet.With this interconnection, it is possible to operate MWE systems exclusively via heating heat, to keep the return temperatures to the collectors low and to flow them through with deposit-free distillate. Depending on your preference, a wide range of combinations is possible with several heating system connections with different distillate withdrawals and returns, as well as the integration of compressor systems. Advantageous embodiments are characterized in the main claim and in the subclaims.
Die Grundvariante sieht vor, eine Anlage ausschließlich über Heizwärme aus thermischen Kollektoren zu betreiben. Dabei wird erfindungsgemäß Destillat aus der Destillationskolonne entnommen, in den Kollektoren auf etwa 115 bis 165 0C erwärmt und anschließend in eine Entspannungskammer mit Dampfzuleitung zum Meerwasserkreis eingeleitet. Diese Entspannungskammer kann entweder die oberste Kammer der Vorwärmkolonne sein, kann aber auch eine außerhalb gelegene Kammer zur Dampfabscheidung sein, über welche das Kondensat indirekt weiter in die oberste Kammer der Vorwärmkolonne geleitet wird. Die Anbringung einer außenliegenden Kammer erfüllt den Zweck eines kleinen Pufferspeichers um Lastschwankungen vom Kollektorkreis entsprechend einregeln zu können. Druckgleich zum außenliegenden Destillatpuffer ist den Entspannungskammern zur Meerwasserverdampfung eine Kammer zur Einbringung von Meerwasser und Dampf vorgeschaltet. Der Dampf aus der Entspannungsverdampfung dient zur Resterwärmung des aus der Vorwärmkolonne austretenden Meerwassers, welches anschließend in fallender Reihenfolge durch die einzelnen Druckstufen der Entspannungsverdampfung geleitet wird. Um die Anlage auch während der Nachtzeit durchgehend betreiben zu können, ist unabhängig vom Puffervolumen der Vorwärmkolonne ein entsprechend großer Pufferspeicher im Kollektorkreis vorzusehen. Je größer die Differenz von Vorlauftemperatur zu Rücklauftemperatur im Kollektorkreis ist, desto kleiner kann dieser Pufferspeicher ausgelegt werden. Sowohl aus dieser Sicht als auch dem Bestreben, die mittlere Kollektortemperatur möglichst niedrig zu halten, empfiehlt sich das Destillat für den Kollektorkreis aus dem unteren Bereich der Vorwärmkolonne, beziehungsweise nach Austritt aus der untersten Stufe zu entnehmen.The basic version is to operate a system exclusively via thermal heat from thermal collectors. Distillate according to the invention is removed from the distillation column, heated in the collectors to about 115 to 165 0 C and then introduced into a flash chamber with steam supply to the seawater circuit. This expansion chamber may be either the uppermost chamber of the preheating column, but may also be an outboard vapor deposition chamber via which the condensate is indirectly directed further into the uppermost chamber of the preheating column. The attachment of an external chamber fulfills the purpose of a small buffer memory to adjust load fluctuations from the collector circuit accordingly. Pressure equal to the outer distillate buffer, a chamber for the introduction of seawater and steam is connected upstream of the expansion chambers for seawater evaporation. The steam from the flash evaporation serves for the residual heating of the seawater emerging from the preheating column, which is then passed in descending order through the individual pressure stages of the flash evaporation. In order to be able to operate the system continuously during the night, a correspondingly large buffer memory is to be provided in the collector circuit, regardless of the buffer volume of the preheating column. The greater the difference between flow temperature and return temperature in the collector circuit, the smaller this buffer memory can be designed. Both from this point of view and the endeavor to keep the average collector temperature as low as possible, the distillate for the collector circuit from the bottom of the preheating column, or after emerging from the lowest stage recommended.
Eine erweiterte Variante sieht vor, zusätzlich zu den thermischen Kollektoren Hybridkollektoren anzubinden. Dies sind nachgeführte Kollektoren mit gekühlten Solarzellen, welche über Spiegel mit hoher Strahlungsintensität beaufschlagt werden. Die Hybridkollektoren wirken über die Tageszeit unterstützend zur Destillatgewinnung, dienen jedoch vorwiegend der Stromerzeugung. In Symbiose mit der Entsalzungsanlage können diese Kollektoren mit ablagerungsfreiem Destillat bei niedriger Rücklauftemperatur durchströmt werden. Je nach Einspeisetemperatur (70 - 100 0C) wird das Destillat an der entsprechenden Temperaturstufe der Vorwärmkolonne in den Destillatstrom rückgeführt. Diese erfindungsgemäß Verschaltung macht es möglich, Hybridkollektoren für industrielle Zwecke zu verwenden. Über den mit diesen Kollektoren erzeugten Solarstrom kann in weiterer Folge Wasserstoff erzeugt werden.An extended variant provides for connecting hybrid collectors in addition to the thermal collectors. These are tracked collectors with cooled solar cells, which are acted upon by mirrors with high radiation intensity. The hybrid collectors have a supporting effect on the distillation of distillate during the day, but are mainly used to generate electricity. In symbiosis with the desalination plant these collectors can be flowed through with deposit-free distillate at a low return temperature. Depending on the feed temperature (70-100 0 C), the distillate at the corresponding temperature level of the Vorwärmkolonne is recycled to the distillate stream. This invention interconnection makes it possible to use hybrid collectors for industrial purposes. As a result, hydrogen can be generated via the solar power generated by these collectors.
Eine weitere Variante sieht darüber hinaus vor, anstatt der thermischen Kollektoren eine Kompressoranlage für die Grundlast einzusetzen. Dabei wird Dampf aus der Destillationskolonne entnommen und über die Kompressoreinheit in die Kammer zur Resterwärmung des vorgewärmten Meerwassers gebracht. Die Hybridkollektoren können nun in der erfindungsgemäßen Weise eingebunden werden. Dieses Konzept ist zum Beispiel ideal zur Nachrüstung von bereits bestehenden kompressorgetriebenen Anlagen, welche nach einem stufenweisen Destillationsverfahren funktionieren, geeignet. Große Pufferspeicher sind nicht notwendig, da die Anlage in einer Art Grundlast durchgehend über die Kompressoreinheit in Betrieb gehalten werden kann. Bei Großanlagen ist vorstellbar, die Kompressoreinheit direkt über eine Gasturbinenanlage zu betreiben, und Kühl- als auch Abwärme über destillatdurch- strömte Wärmetauscher entsprechend der erfindungsgemäßen Verschaltung in die MWE- Anlage einzubringen.Another variant also provides, instead of the thermal collectors use a compressor system for the base load. In this case, steam is removed from the distillation column and brought via the compressor unit in the chamber for residual heating of the preheated seawater. The hybrid collectors can now be integrated in the manner according to the invention. For example, this concept is ideal for retrofitting existing compressor-driven systems that operate according to a staged distillation process. Large buffer tanks are not necessary because the system can be kept in continuous operation via the compressor unit in a kind of base load. In the case of large-scale plants, it is conceivable to operate the compressor unit directly via a gas turbine plant, and cooling and waste heat are distilled off via a gas turbine. flowed heat exchanger according to the interconnection of the invention in the MWE plant bring.
Die Erfindung bezieht sich nicht ausschließlich auf die oben angeführten Varianten, sondern auf alle möglichen Kombinationen die sich aus diesen Varianten ergeben. Der Einsatz des erfindungsgemäßen Verfahrens der Destillatentnahme aus der Vorwärmkolonne, Erwärmung über ein oder mehrere Heizeinrichtungen sowie Rückführung in den Destillatkreislauf der Vorwärmkolonne, beschränkt sich nicht nur auf Destillationsanlagen von Meerwasser, sondern auch auf Anlagen zur Destillation von Brackwasser und biologisch und chemisch verunreinigtem Wasser zur Brauch- und Trinkwassergewinnung.The invention does not relate exclusively to the above-mentioned variants, but to all possible combinations resulting from these variants. The use of the inventive method of distillate removal from the preheating, heating via one or more heaters and return to the distillate of the preheating, is limited not only to distillation plants of seawater, but also to plants for the distillation of brackish water and biologically and chemically contaminated water for custom - and drinking water production.
Weitere Merkmale und Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung. Dabei zeigt:Further features and details of the present invention will become apparent from the following description of the figures. Showing:
Fig. 1 eine schematische Darstellung einer MSF-MED Destillationsanlage mit mehreren Heizwärmeanbindungen gemäß dem üblichen Stand der Technik, sowie einer Anbindung von Kollektoren gemäß der erfindungsgemäßen Verschaltung.Fig. 1 is a schematic representation of an MSF-MED distillation plant with several heating connections in accordance with the usual state of the art, and a connection of collectors according to the interconnection of the invention.
Fig. 2 zwei Durchrechnungen einer MSF- Destillatkolonne, zum einem bei Meerwasserbeheizung über eine Heizeinrichtung 3 und zum anderem bei Destillatbeheizung mit Entnahme aus der untersten Stufe und Beheizung über eine Heizeinrichtung 1.2 shows two calculations of an MSF distillate column, one for seawater heating via a heating device 3 and the other for distillate heating with removal from the lowest stage and heating via a heating device 1.
Fig. 3 eine schematische Darstellung einer MSF- Destillationsanlage mit Wärmezufuhr über Sonnenkollektoren nach dem allgemeinen Stand der Technik.Fig. 3 is a schematic representation of an MSF distillation plant with heat supply via solar panels according to the general state of the art.
Fig. 4 eine schematische Darstellung einer MSF- Destillationsanlage mit der erfindungsgemäßen Anbindung von thermische Kollektoren.Fig. 4 is a schematic representation of an MSF distillation plant with the inventive connection of thermal collectors.
Fig. 5 eine schematische Darstellung einer MSF- Destillationsanlage, mit der erfindungsgemäßen Anbindung von thermischen Kollektoren und Hybridkollektoren.Fig. 5 is a schematic representation of an MSF distillation plant, with the inventive connection of thermal collectors and hybrid collectors.
Fig. 6 eine schematische Darstellung einer MSF- Destillationsanlage mit Dampfzufuhr über eine Kompressoranlage sowie einer Anbindung von Hybridkollektoren.Fig. 6 is a schematic representation of an MSF distillation plant with steam supply via a compressor system and a connection of hybrid collectors.
Fig. 7 eine Darstellung eines Hybridkollektors im Mittenschnitt.7 is an illustration of a hybrid collector in the middle section.
Fig. 1 zeigt eine schematische Darstellung einer MSF-MED Destillationsanlage mit mehreren Heizwärmeanbindungen 13, 3 gemäß dem üblichen Stand der Technik, sowie einer Anbindung von Kollektoren 1 gemäß der erfindungsgemäßen Verschaltung. Die unterschiedlichen Methoden zur Heizwärmeeinbringung werden rein zu Vergleichszwecken angeführt und sind üblicher weise nicht in einer einzigen Anlage vereint. Im oberen Bereich ist ein MED- Prozess über Filmverdampfungseinrichtungen zuschaltbar. Die MED- Verdampfung wird über den Kompressor 12 in Betrieb gesetzt und überlagert sich dem normalem MSF- Prozess. Der MSF- Prozess kann nun über unterschiedliche Möglichkeiten der Energieeinbringung eigenständig betrieben werden. Diese sind wie folgt :Fig. 1 shows a schematic representation of a MSF-MED distillation plant with several heating connections 13, 3 according to the usual state of the art, and a connection of panels 1 according to the interconnection of the invention. The different methods for heating heat input are purely for comparison purposes and are not usually united in a single system. In the upper area is a MED process can be activated via film evaporation equipment. The MED vaporization is put into operation via the compressor 12 and overlaps the normal MSF process. The MSF process can now be operated independently via different possibilities of energy input. These are as follows:
a) Heizwärme wird über Prozessdampf 13 in die oberste Stufe der Destillatkolonne eingebracht. b) Das vorgewärmte Meerwasser 2 wird über eine Heizeinrichtung 3 erwärmt. c) Destillat wird erfindungsgemäß aus der Vorwärmkolonne 6 entnommen und in die oberste Stufe rückgeführt.a) heating heat is introduced via process steam 13 in the uppermost stage of the distillate. b) The preheated seawater 2 is heated by a heater 3. c) Distillate is removed according to the invention from the preheating column 6 and recycled to the uppermost stage.
Variante a ist meist bei Ankopplung an thermische Kraftwerksanlagen mit günstiger Möglichkeit Prozessdampf abzuzweigen in Anwendung. Unabhängig von diesen Ankopplungen kann Prozessdampf auch aus der MSF- Kolonne entnommen werden. Hierzu wird nach der untersten Kondensationsstufe eine weitere Verdampfungsstufe vorgesehen. Der in dieser Stufe abgeschiedene Dampf wird nun komprimiert und als Prozessdampf 13 in die oberste Stufe eingebracht. Im Grunde wird diese Anlage über technische Arbeit von Kompressoren getrieben.Variant a is usually branched off when coupled to thermal power plants with a favorable possibility of process steam. Regardless of these couplings, process steam can also be taken from the MSF column. For this purpose, a further evaporation stage is provided after the lowest condensation stage. The vapor deposited in this stage is now compressed and introduced as process steam 13 in the uppermost stage. Basically, this plant is driven by technical work by compressors.
Variante b ist eine typische Anwendung für Heizwärmeeinbringung über thermische Kollektoren. Im Grunde sollen mit der Heizeinrichtung 3 zwei Möglichkeiten dargelegt werden. Zum einem kann dies ist einen Wärmetauscher mit primärseitiger Anbindung eines geschlossenen Kollektorkreises darstellen, - zum anderen einen offenen Kollektorkreis mit direkter Meerwasserdurchströmung. In beiden Fällen liegen wie eingangs erwähnt relativ hohe Heiztemperaturen vor, wobei Probleme mit Ablagerungen aus dem Meerwasser zu erwarten sind.Variant b is a typical application for heat input via thermal collectors. Basically, three options should be set forth with the heater 3. On the one hand, this can be a heat exchanger with primary-side connection of a closed collector circuit, - on the other hand, an open collector circuit with direct seawater flow. In both cases, as mentioned above, relatively high heating temperatures are present, whereby problems with deposits from the seawater are to be expected.
Variante c stellt die erfindungsgemäße Verschaltung zur Wärmeeinbringung über Kollektoren 1 dar. Im Grenzfall kann das Kondensat aus der obersten Stufe der Vorwärmkolonne 6 entnommen werden und nach der Beheizung in den Kollektoren 1 wieder in diese Stufe rückgeführt werden. In diesem Fall ist die Temperatur in den Kollektoren in etwa gleich hoch wie bei Beheizung mit direkter Meerwasserdurchströmung, - das Problem mit den Ablagerungen ist allerdings gelöst. Die Destillatausbeute 14 ist um den Anteil des bei der Einleitung in die erste (oberste) Stufe verdampften Kondensats geringer als bei Variante b. Bei 20 MSF- Stufen ist in etwa mit einem Destillatverlust von 12% zu rechnen. Dieser Verlust ist gemessen an den Einsparungen an Wartungsarbeiten durchaus wirtschaftlich vertretbar. Bei einer Destillatentnahme 5_1 aus einer niedrigeren Stufe sinkt die Destillatausbeute 14 im Verhältnis zur Heizenergieeinbringung entsprechend ab. Das genaue Verhalten lässt sich nicht ohne weiteres abschätzen, sondern kann ausschließlich über eine Durchrechnung festgestellt werden. Wie sich dabei zeigt, wird durch die Destillatentnahme an unterster Stelle beim Ausgang aus der Vorwärmkolonne 6 noch immer eine sehr hohe Entsalzungsleistung erreicht. Die Erklärung dazu wird anhand der nachfolgenden Berechnungsergebnisse gegeben.Variation c represents the interconnection according to the invention for heat input via collectors 1. In the limiting case, the condensate can be taken from the uppermost stage of the preheating column 6 and returned to this stage after heating in the collectors 1. In this case, the temperature in the collectors is about the same as in the case of heating with direct seawater flow, but the problem with the deposits is solved. The distillate yield 14 is lower by the proportion of condensate vaporized in the introduction into the first (uppermost) stage than in variant b. At 20 MSF levels, a distillate loss of 12% is expected. This loss is measured against the savings on maintenance quite economically justifiable. In a distillate removal 5_1 from a lower stage, the distillate yield 14 decreases in Relative to the heat energy input accordingly. The exact behavior can not be estimated easily, but can only be determined by a calculation. As it turns out, the distillate removal at the lowest point at the exit from the preheating column 6 still achieves a very high desalting performance. The explanation is given based on the following calculation results.
Fig. 2 zeigt zwei Durchrechnungen einer MSF- Destillatkolonne mit Destillatbeheizung über eine Heizeinrichtung 1 , - zum einem eine Variante A mit Destillatentnahme aus der obersten Stufe, und zum anderen eine Variante B mit Destillatentnahme aus der untersten Stufe. Für die oberste Stufe wird in beiden Fällen eine Meerwassertemperatur von 85°C angesetzt. Die Zufuhr des Meerwassers in die Vorwärmkolonne 6 erfolgt definitionsgemäß bei einer Temperatur von 250C. In Beiden Fällen erfolgt die Erwärmung des Destillats in der Heizeinrichtung 1 auf eine vorgegebene Temperatur von 120°C. Bei konstant gehaltenem Destillatertrag 14 wird nun ein Vergleich der zuzuführenden Wärme über die Heizeinrichtung 1 vorgenommen. Wie man ersieht, sinkt von Variante A zu Variante B die Effizienz der Destillatgewinnung in etwa von 100 auf 66% ab. Unter Effizienz wird in diesem Sinne die gewonnene Destillatmenge im Verhältnis zur eingebrachten Heizenergie verstanden. Ein wesentlicher Aspekt, dass hierbei noch eine vergleichsweise hohe Effizienz von 66% erreicht wird, erklärt sich dadurch, dass aufgrund der unterschiedlich großen gegenläufigen Massenströme in den Wärmetauschern weniger Dampf zur Resterwärmung des Meerwassers 2 benötigt wird, da die Vorwärmung auf eine vergleichsweise höhere Temperatur (810C statt 79°C) erfolgt. Welche Entnahmehöhe nun gewählt wird hängt grundsätzlich vom Kollektorverhalten ab. Hochwertige thermische Kollektoren sind am effizientesten nach Variante A anzukoppeln, - Hybridkollektoren mit gekühlten Solarzellen nach Variante B. Im Allgemeinen gibt es hier eine Vielfalt an Möglichkeiten unterschiedliche Kollektortypen parallel und seriell zu verschalten. Zu Berücksichtigen ist auch, dass bei Einbindung von Pufferspeichern für die Nachtzeit das Volumen bei Variante B in etwa halb so groß zu dimensionieren ist als bei Variante A.2 shows two computations of an MSF distillate column with distillate heating via a heating device 1, on the one hand a variant A with distillate removal from the uppermost stage, and on the other hand a variant B with distillate removal from the lowest stage. For the uppermost stage, a seawater temperature of 85 ° C is used in both cases. The supply of sea water in the Vorwärmkolonne 6 occurs by definition at a temperature of 25 0 C. In both cases, the heating is carried out of the distillate in the heater 1 to a predetermined temperature of 120 ° C. When the distillate yield 14 is kept constant, a comparison of the heat to be supplied via the heating device 1 is made. As you can see, the efficiency of distillate extraction drops from variant A to variant B in about 100% to 66%. In this sense, efficiency is understood to mean the amount of distillate obtained in relation to the heat energy introduced. An essential aspect, that still a comparatively high efficiency of 66% is achieved, is explained by the fact that due to the differently sized countercurrent mass flows in the heat exchangers, less steam is needed for the residual heating of the seawater 2, since the preheating to a comparatively higher temperature ( 81 0 C instead of 79 ° C) takes place. Which removal height is chosen depends on the collector behavior. High-quality thermal collectors can be coupled most efficiently to Variant A - Hybrid collectors with cooled solar cells according to Variant B. In general, there is a wide range of options for interconnecting different collector types in parallel and in series. It should also be borne in mind that with the integration of buffer storage for the night, the volume for variant B is about half as large as for variant A.
Der in Fig.3 dargestellte Stand der Technik ist ein allgemein bekannter Prozeß einer MSF- (Multi Stage Flash) Destillationsanlage zur Gewinnung von Brauch- bzw. Trinkwasser nach einem thermischen Verfahren. Die Wärme aus dem Kollektoren 1 wird von einem Pufferspeicher 4 über einen Wärmetauscher 3 an das vorgewärmte Meerwasser 2 weitergegeben.The prior art shown in Fig. 3 is a well-known process of MSF (Multi Stage Flash) distillation equipment for recovering service water according to a thermal process. The heat from the collector 1 is passed from a buffer memory 4 via a heat exchanger 3 to the preheated seawater 2.
Fig. 4 zeigt eine schematische Darstellung einer MSF- Destillationsanlage mit der erfindungsgemäßen Anbindung von thermischen Kollektoren 1. Die Entnahme von Destillat 5_1 aus der Vorwärmkolonne 6 für den Kollektorkreis erfolgt bei einer mittleren Stufentemperatur. Die Rückgabe des erhitzten Destillats 5_2 an die Vorwärmkolonne 6 erfolgt über eine vorgelagerte Entspannungskammer 7 mit Dampfzuleitung 8 in eine Kondensationskammer 9 zur Resterwärmung des Meerwassers. Durch Zwischenschaltung eines Pufferspeichers 4 wird sichergestellt, dass die Anlage Tag- und Nacht in Betrieb gehalten werden kann. Abgesehen von den Pumpen wird die Anlage ausschließlich thermisch getrieben.4 shows a schematic representation of an MSF distillation plant with the inventive connection of thermal collectors 1. The removal of distillate 5_1 from the preheating column 6 for the collector circuit is carried out at a medium stage temperature. The return of the heated distillate 5_2 to the preheating column 6 takes place via an upstream expansion chamber 7 with steam supply line 8 into a condensation chamber 9 for residual heating of the seawater. The interposition of a buffer memory 4 ensures that the system can be kept in operation day and night. Apart from the pumps, the system is only driven thermally.
Fig. 5 zeigt eine schematische Darstellung einer MSF- Destillationsanlage, mit der erfindungsgemäßen Anbindung von thermischen Kollektoren 1 und Hybridkollektoren 10. Die Destillatauskopplung 5_1 für beide Kollektorkreise erfolgt bei Austritt aus der Vorwärmkolonne 6. Von den thermischen Kollektoren 1 wird das erhitzte Destillat über einen Pufferspeicher 4 in die Entspannungskammer 7 eingebracht. Die Hybridkollektoren 10 geben das erwärmte Destillat 5_2 direkt in eine der oberen Stufen der Vorwärmkolonne 6 weiter. Im Idealfall erfolgt die Destillateinleitung variabel wählbar in jene Stufe, in welcher ungefähr die Temperatur des zugeführten Destillats (5_2) vorherrscht. Abgesehen von den Pumpen wird die Anlage ausschließlich thermisch getrieben.5 shows a schematic representation of an MSF distillation plant, with the inventive connection of thermal collectors 1 and hybrid collectors 10. The distillate decoupling 5_1 for both collector circuits takes place at the exit from the preheating column 6. From the thermal collectors 1, the heated distillate via a buffer memory 4 introduced into the expansion chamber 7. The hybrid collectors 10 pass the heated distillate 5_2 directly into one of the upper stages of the preheating column 6. Ideally, the distillate introduction is variably selectable in that stage in which approximately the temperature of the supplied distillate (5_2) prevails. Apart from the pumps, the system is only driven thermally.
Fig. 6 zeigt eine schematische Darstellung einer MSF- Destillationsanlage, welche in der Grundlast über eine Kompressoranlage 11 betrieben wird. Die Anbindung der Hybridkollektoren 10 dient vorwiegend der Stromerzeugung. Erfindungsgemäß wird das Destillat 5_1 bei Austritt aus der Vorwärmkolonne entnommen und nach Erwärmung durch die Hybridkollektoren 10 in eine der oberen Stufen der Vorwärmkolonne 6 rückgeleitet. Die Hybridkollektoren 11 können aufgrund der niederen Einspeisetemperatur die MWE- Anlage ohne Kompressorunterstützung nicht eigenständig in Betrieb halten, leisten jedoch einen wesentlichen Beitrag zur Erhöhung des Destillatausstoßes.FIG. 6 shows a schematic representation of an MSF distillation plant which is operated in the base load via a compressor installation 11. The connection of the hybrid collectors 10 is used primarily for power generation. According to the invention, the distillate 5_1 is withdrawn on leaving the preheating column and, after being heated by the hybrid collectors 10, is returned to one of the upper stages of the preheating column 6. Due to the low feed temperature, the hybrid collectors 11 can not independently operate the MWE plant without compressor assistance, but make a significant contribution to increasing the distillate output.
Fig. 7. zeigt eine Darstellung eines Hybridkollektors im Mittenschnitt. Ein Großteil der Strahlung wird über den Spiegel 15 auf ein gekühltes Solarzellenmodul 16 geleitet. Die an den Solarzellen reflektierte Strahlung wird im thermischen Absorber 17 aufgenommen. Um die Solarzellen ausreichend zu kühlen, muss die Temperatur des zuströmenden Kühlmediums, in diesem Fall Destillat aus der Vorwärmkolonne, niedrig gehalten werden.7 shows a representation of a hybrid collector in the middle section. A large part of the radiation is conducted via the mirror 15 onto a cooled solar cell module 16. The radiation reflected at the solar cells is absorbed in the thermal absorber 17. In order to cool the solar cells sufficiently, the temperature of the incoming cooling medium, in this case distillate from the preheating column, must be kept low.
Bei den in allen Figuren schematisch dargestellten erfindungsgemäßen Merkmalen ist darauf hinzuweisen, daß die einzelnen Bauteile sowie Zuleitungen in allen verschiedenen Ausführungsvarianten und Materialien gefertigt sein können. In the features of the invention shown schematically in all figures, it should be noted that the individual components and leads can be made in all different variants and materials.

Claims

Patentansprüche claims
1. Destillationsanlage nach dem MSF- (Multi Stage Flash) oder MED- (Multi Effect Distillation) Verfahren mit solarer Heizwärmeeinbringung, dadurch gekennzeichnet, dass Destillat (5_1) aus der Vorwärmkolonne (6) entnommen wird, über ein oder mehrere Heizeinrichtungen (1 , 10, ... ) erwärmt wird, und anschließend in den Destillatkreislauf der Vorwärmkolonne (6) rückgeführt wird.1. Distillation plant according to the MSF (Multi Stage Flash) or MED (Multi Effect Distillation) method with solar thermal heat input, characterized in that distillate (5_1) is removed from the preheating column (6), via one or more heating devices (1, 10, ...) is heated, and then returned to the distillate cycle of the preheating column (6).
2. MSF/MED- Destillationsanlage nach Anspruch 1 , dadurch gekennzeichnet, dass die Rückführung des erhitzten Destillats (5_2) über eine vorgelagerte Kammer (7) mit Dampfüberleitung (8) in eine Kammer (9) zur Resterwärmung des Meerwassers erfolgt.2. MSF / MED distillation plant according to claim 1, characterized in that the return of the heated distillate (5_2) takes place via an upstream chamber (7) with vapor transfer line (8) into a chamber (9) for rest warming of the seawater.
3. MSF/MED- Destillationsanlage nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Destillatentnahme (5_1) nach Austritt aus der Vorwärmkolonne (6) erfolgt.3. MSF / MED distillation plant according to one of claims 1 to 2, characterized in that the distillate removal (5_1) after exiting the preheating column (6).
4. MSF/MED- Destillationsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Einleitung des Destillats (5_2) variabel schaltbar in unterschiedliche Stufen der Vorwärmkolonne (6) erfolgt.4. MSF / MED distillation plant according to one of claims 1 to 3, characterized in that the introduction of the distillate (5_2) is variably switchable in different stages of the preheating column (6).
5. MSF/MED- Destillationsanlage nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mehrere Kreisläufe zur Destillaterwärmung mit unterschiedlichen Entnahme- und Rückgabestellen von und zu der Vorwärmkolonne (6) angekoppelt sind.5. MSF / MED distillation plant according to one of claims 1 to 4, characterized in that a plurality of circuits for distillate heating with different removal and return points from and to the preheating column (6) are coupled.
6. MSF/MED- Destillationsanlage nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Kompressoreinheit (11) zur Aufrechterhaltung der Grundlast angekoppelt ist.6. MSF / MED distillation plant according to one of claims 1 to 5, characterized in that a compressor unit (11) is coupled to maintain the base load.
7. MSF/MED- Destillationsanlage nach den Ansprüchen 1 und 6, dadurch gekennzeichnet, dass Hybridkollektoren (10) ohne einen Pufferspeicher (4) vorzusehen an die Destillationsanlage angekoppelt werden. 7. MSF / MED distillation plant according to claims 1 and 6, characterized in that hybrid collectors (10) without a buffer memory (4) to be coupled to the distillation unit.
PCT/AT2006/000378 2005-09-15 2006-09-13 Introduction of solar heating energy for desalinating sea water WO2007030851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1523/2005 2005-09-15
AT0152305A AT502797B1 (en) 2005-09-15 2005-09-15 SOLAR HEATING SYSTEM FOR SEAWATER DESALINATION

Publications (1)

Publication Number Publication Date
WO2007030851A1 true WO2007030851A1 (en) 2007-03-22

Family

ID=37635647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2006/000378 WO2007030851A1 (en) 2005-09-15 2006-09-13 Introduction of solar heating energy for desalinating sea water

Country Status (2)

Country Link
AT (1) AT502797B1 (en)
WO (1) WO2007030851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070929A (en) * 1999-09-07 2001-03-21 Kawasaki Heavy Ind Ltd Solar heat-photocell hybrid type desalination apparatus
WO2002032813A1 (en) * 2000-10-21 2002-04-25 Pb Power Ltd. Process and plant for multi-stage flash desalination of water
AT412274B (en) * 2003-07-21 2004-12-27 Martin Dipl Ing Hadlauer Seawater desalination plant, with multi-stage distillation, has heat fed from a collector circuit to a relief evaporation unit where vapor is taken off and replaced by distilled water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3239816A1 (en) * 1982-05-24 1983-11-24 Dvt Deutsch Verfahrenstech METHOD FOR DISTILLING SEAWATER FROM SEAWATER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070929A (en) * 1999-09-07 2001-03-21 Kawasaki Heavy Ind Ltd Solar heat-photocell hybrid type desalination apparatus
WO2002032813A1 (en) * 2000-10-21 2002-04-25 Pb Power Ltd. Process and plant for multi-stage flash desalination of water
AT412274B (en) * 2003-07-21 2004-12-27 Martin Dipl Ing Hadlauer Seawater desalination plant, with multi-stage distillation, has heat fed from a collector circuit to a relief evaporation unit where vapor is taken off and replaced by distilled water

Also Published As

Publication number Publication date
AT502797B1 (en) 2007-06-15
AT502797A4 (en) 2007-06-15

Similar Documents

Publication Publication Date Title
DE102009007915B4 (en) Process for desalting saline water
CN101417209B (en) Energy-saving pressure-reduction distillation device and method
EP1385592A1 (en) Evaporation method for the production of clean drinking water and high-percentage brine from untreated water containing salt
US10092851B2 (en) System and method for water treatment
US20200001197A1 (en) Stacked type falling film evaporator, zero liquid discharge system comprising the same, and zero liquid discharging method using the same
US6551466B1 (en) Multiple effect distillation process with reduced fouling
Darwish et al. Energy consumption in equivalent work by different desalting methods: case study for Kuwait
DE602005005204T2 (en) MSF DISTILLATED SEALING METHOD AND DEVICE THEREFOR
CN105163825A (en) Produced water treatment process at crude oil and natural gas processing facilities
EP1791790A1 (en) Seawater desalination plant
EP2464603B1 (en) Method and device for desalinating sea water
US11465924B2 (en) Hybrid process and system for recovering water
Seigworth et al. Case study: Integrating membrane processes with evaporation to achieve economical zero liquid discharge at the Doswell Combined Cycle Facility
Helal Hybridization—a new trend in desalination
Awerbuch Desalination technology: An overview
AT502797B1 (en) SOLAR HEATING SYSTEM FOR SEAWATER DESALINATION
AT412274B (en) Seawater desalination plant, with multi-stage distillation, has heat fed from a collector circuit to a relief evaporation unit where vapor is taken off and replaced by distilled water
DE102009031246A1 (en) System for the desalination of seawater, comprises an evaporation body, a first line system, which guides salt-containing raw water to the evaporation body, a heater arranged to the evaporation body, and a second line system
US3391062A (en) Recirculating multistage flash evaporator apparatus and method
DE102006060250A1 (en) Method and apparatus for steam generation in steam power plants, in which cold condensate and / or combustion air is preheated prior to steam generation
Lawal et al. Integration of a MSF desalination system with a HDH system for brine recovery. Sustainability. 2021; 13: 3506
Xu et al. Solar Thermal‐Driven Desalination Pursuing Products of Pure Water and Salts and Leaving Minimum Impact to Environment
DE102013016626B4 (en) Apparatus and method for the treatment of liquids
WO2008034798A1 (en) Process and apparatus for generating cooling energy in a polycondensation process
WO2019219472A1 (en) Combined use of waste heat and waste water/sols for the production of drinking water in combined-cycle power plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06774776

Country of ref document: EP

Kind code of ref document: A1