WO2007030176A1 - Procede et systeme anti-panne pour refroidisseur cvca & r - Google Patents

Procede et systeme anti-panne pour refroidisseur cvca & r Download PDF

Info

Publication number
WO2007030176A1
WO2007030176A1 PCT/US2006/022716 US2006022716W WO2007030176A1 WO 2007030176 A1 WO2007030176 A1 WO 2007030176A1 US 2006022716 W US2006022716 W US 2006022716W WO 2007030176 A1 WO2007030176 A1 WO 2007030176A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
stage
link
compressor
motor
Prior art date
Application number
PCT/US2006/022716
Other languages
English (en)
Inventor
Harold R. Schnetzka
Ivan Jadric
Original Assignee
Johnson Controls Technology Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/218,757 external-priority patent/US7081734B1/en
Priority claimed from US11/422,668 external-priority patent/US7332885B2/en
Application filed by Johnson Controls Technology Company filed Critical Johnson Controls Technology Company
Publication of WO2007030176A1 publication Critical patent/WO2007030176A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates generally to variable speed drives, and more specifically, to variable speed drives with voltage-sag ride through capability for use in heating, ventilation, air conditioning and refrigeration (HVAC&R) equipment.
  • HVAC&R heating, ventilation, air conditioning and refrigeration
  • U.S. Patent No. 6,686,718 describes various techniques of increasing the ride through capability of a VSD.
  • another possible way of increasing ride-through capability of a VSD is to use an Active Rectifier.
  • Such a rectifier is able to compensate for the variations in the input line voltage, through the use of power devices capable of switching on and off the line currents, together with specialized control methods.
  • the DC link voltage can therefore be kept at a value sufficiently large to prevent VSD shutdowns.
  • This technique is described in Annabelle van ZyI et al., Voltage Sag Ride-Through for Adjustable-Speed Drives with Active Rectifiers, 34 IEEE Transactions on Industry Applications 1270 (1998), which is incorporated herein by reference.
  • Figure 2 illustrates schematically one embodiment of a variable speed drive used in the present invention.
  • Figure 4 illustrates a simplified block diagram of the invention.
  • Figure 5B illustrates a flow diagram of a preferred embodiment of the present invention.
  • FIGs 6 through 9 illustrate portions of the flow diagram shown in Figure 5 A.
  • the AC power source 102 can preferably supply a three phase AC voltage or line voltage of 200 V, 230 V, 380 V, 460 V, or 575 V, at a line frequency of 50 Hz or 60 Hz to the VSD 104 depending on the corresponding AC power grid. It is to be understood that the AC power source 102 can provide any suitable fixed line voltage or fixed line frequency to the VSD 104 depending on the configuration of the AC power grid.
  • a particular site can have multiple AC power grids that can satisfy different line voltage and line frequency requirements. For example, a site may have 230 VAC power grid to handle certain applications and a 460 VAC power grid to handle other applications.
  • control panel 308 can adjust the output voltage and frequency of the VSD 104 to correspond to changing conditions in the refrigeration system, i.e., the control panel 308 can increase or decrease the output voltage and frequency of the VSD 104 in response to increasing or decreasing load conditions on the compressor 302 in order to obtain a desired operating speed of the motor 106 and a desired output load of the compressor 302.
  • the rectifier/converter 202 is a three-phase pulse width modulated boost rectifier having insulated gate bipolar transistors (IGBTs) to provide a boosted DC voltage to the DC link 204 to obtain a maximum RMS output voltage from the VSD 104 greater than the input voltage of the VSD 104.
  • the converter 202 can be a diode or thyristor rectifier, possibly coupled to a boost DC/DC converter to provide a boosted DC voltage to the DC link 204 in order to obtain an output voltage from the VSD 104 greater than the input voltage of the VSD 104.
  • the rectifier/converter 202 may be a passive diode or thyristor rectifier without voltage-boosting capability.
  • the VSD 104 can provide the HVAC&R system with power having about a unity power factor.
  • the ability of the VSD 104 to adjust both the voltage and frequency received by the motor 106 to be higher or lower than the fixed line voltage and fixed line frequency received by the VSD 104 permits the HVAC&R system to be operated on a variety of foreign and domestic power grids without having to alter the motor 106 or the VSD 104 for different power sources.
  • Compressor 302 compresses a refrigerant vapor and delivers the vapor to the condenser 304 through a discharge line.
  • the compressor 302 is preferably a centrifugal compressor, but can be any suitable type of compressor, e.g., screw compressor, reciprocating compressor, etc.
  • the refrigerant vapor delivered by the compressor 302 to the condenser 304 enters into a heat exchange relationship with a fluid, e.g., air or water, and undergoes a phase change to a refrigerant liquid as a result of the heat exchange relationship with the fluid.
  • the condensed liquid refrigerant from condenser 304 flows through an expansion device (not shown) to an evaporator 306.
  • the compressor 302 can include a load-varying device 303 for varying the mechanical load of the compressor 302. hi a centrifugal compressor the load-varying device 303 may be pre-rotation vanes.
  • a load-varying device 303 for varying the mechanical load of the compressor 302.
  • the load-varying device 303 may be pre-rotation vanes.
  • An actuator is used to open the pre-rotation vanes 303 to increase the amount of refrigerant to the compressor 302 and thereby increase the cooling capacity of the system 300.
  • the vapor refrigerant in the evaporator 306 exits the evaporator 306 and returns to the compressor 302 by a suction line to complete the cycle. It is to be understood that any suitable configuration of condenser 304 and evaporator 306 can be used in the system 300, provided that the appropriate phase change of the refrigerant in the condenser 304 and evaporator 306 is obtained.
  • Steps 508a-508c are carried out in Step 508 as illustrated in Fig. 7.
  • the compressor control unit 406 mechanically unloads the compressor in step 508a through actuation of the vanes in a centrifugal compressor, through the actuation of a slide valve in a screw compressor, or by inserting a check valve in the discharge line of a centrifugal compressor or a screw compressor.
  • the stored rotational energy in the motor is conserved for the ride through operation, as described below, and minimal rotational energy is expended to the refrigerant load of the chiller system 300.
  • Steps 510a- 510c are also carried out in step 508.
  • the inverter in step 510a the inverter is striving to regulate the DC link voltage to a nominal value V STPT2 -
  • the value chosen for Vs ⁇ p ⁇ 2 is lower than the value chosen for VTHI- AS an example, if VTHI is 900 V, VSTPT2 may be 850 V.
  • the inverter is operated as a rectifier by the inverter control unit 404.
  • the energy stored in the rotating mass of the motor 106 and compressor 302 flows in the reverse direction from normal motor operation, through the inverter 206 to the DC link 204.
  • the motor 106 and compressor 302 effectively become a generator supplying power to the DC link.
  • step 512 the DC link voltage V D c is being continuously monitored, and if V D c decreases below a predetermined fault threshold voltage VUNDE R (which is lower than V STPT2 ) > a system fault is indicated.
  • VUNDE R which is lower than V STPT2
  • V STPT2 a system fault is indicated.
  • the VSD is immediately shut down in step 514. Otherwise, the system proceeds to step 516, in which the input line voltage V INAC is monitored at the input power source. If V INAC is greater than the predetermined input line threshold voltage V TH _ IN , this indicates that the voltage sag condition no longer exists, and the system proceeds to step 518 to reset the system to normal operation. As shown in Figure 9, steps 518a-518e are carried out in step 518.
  • the boost rectifier's voltage control loop is saturated when operating in current limit (which prevents system instability when both the boost rectifier and the inverter operate in closed loop trying to control DC link voltage), but power continues to flow from the input AC line into the DC link.
  • power is supplied to the DC link stage from both the input voltage source through the converter, and from the load through the inverter, permitting the maximum energy to be retained during the voltage sag and thus maximizing the ride-through capability of the system.
  • the alternate method proceeds to step 512 as described in Figure 5 A above and also shown in Fig. 5B, until reaching step 616.
  • the converter 202 of the VSD 104 may be a passive rectifier - i.e., a diode or thyristor rectifier for converting the AC input power to DC power for the DC link stage. While the method of using a passive rectifier/converter 202 provides less ride through capability than the active rectifier/converter method, there is still an improved ride through achieved as a result of the unloading of the refrigerant load and the regeneration of energy from the motor/compressor load to the DC link 204.
  • a slide valve 303 may be used to vary the load as the pre-rotation vanes 303 do in the centrifugal compressor arrangement.
  • the slide valve 303 is indicated by a broken line to indicate application in screw compressors only.
  • a high-speed actuator for the slide valve 303 is also preferred, to allow the system to respond quickly to a voltage sag. When a voltage sag occurs, mechanical unloading of the compressor is accomplished by closing the pre-rotation vanes 303.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

L'invention concerne un procédé permettant d'engendrer une capacité anti-panne dans un système de refroidisseur. Ce procédé utilise un entraînement à vitesse variable avec un étage de convertisseur actif, un étage de liaison à courant continu et un étage d'inverseur de manière à fournir une fréquence et une tension variables afin d'entraîner au moins moteur. Un moteur à induction est couplé à la sortie de l'étage d'inverseur de manière à entraîner un compresseur dans le système du refroidisseur. Ce procédé anti-panne consiste à faire fonctionner ledit convertisseur actif afin de réguler la tension de liaison c.c. de l'étage de liaison c.c. à un niveau de tension prédéterminé, jusqu'à ce que le courant à travers le convertisseur actif soit égal à une limite de courant prédéterminée, ce qui permet de transférer la régulation de la liaison c.c. vers l'inverseur, une fois atteinte la limite de courant dudit convertisseur. Le compresseur est déchargé et le débit de courant à travers l'inverseur est inversé de manière à maintenir le niveau de tension de l'étage de liaison c.c. Des aubes de prérotation, des robinets à tiroir ou des clapets de non retour sont utilisés pour décharger le compresseur.
PCT/US2006/022716 2005-09-02 2006-06-12 Procede et systeme anti-panne pour refroidisseur cvca & r WO2007030176A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/218,757 US7081734B1 (en) 2005-09-02 2005-09-02 Ride-through method and system for HVACandR chillers
US11/218,757 2005-09-02
US11/422,668 US7332885B2 (en) 2005-09-02 2006-06-07 Ride-through method and system for HVAC&R chillers
US11/422,668 2006-06-07

Publications (1)

Publication Number Publication Date
WO2007030176A1 true WO2007030176A1 (fr) 2007-03-15

Family

ID=37395773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/022716 WO2007030176A1 (fr) 2005-09-02 2006-06-12 Procede et systeme anti-panne pour refroidisseur cvca & r

Country Status (2)

Country Link
TW (1) TWI303691B (fr)
WO (1) WO2007030176A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3339653A1 (fr) * 2016-12-21 2018-06-27 ABB Schweiz AG Commande de compresseur lors de perturbations du système d'alimentation électrique
CN109004883A (zh) * 2018-09-04 2018-12-14 深圳市锐钜科技有限公司 一种小电容电机驱动系统的母线电压低压区控制方法
EP2313674B1 (fr) 2008-07-18 2020-05-13 Flowserve Management Company Actionneur à vitesse variable
EP4105489A1 (fr) * 2021-06-17 2022-12-21 Carrier Corporation Procédé de commande pour compresseur centrifuge et système de climatisation d'air

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030098668A1 (en) * 2001-11-27 2003-05-29 York International Corporation Control loop and method for variable speed drive ride - through capability improvement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030098668A1 (en) * 2001-11-27 2003-05-29 York International Corporation Control loop and method for variable speed drive ride - through capability improvement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNABELLE VAN ZYL ET AL: "Voltage Sag Ride-Through for Adjustable-Speed Drives With Active Rectifiers", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 34, no. 6, December 1998 (1998-12-01), XP011022496, ISSN: 0093-9994 *
ANNETTE VON JOUANNE ET AL: "Assessment of Ride-Through Alternatives for Adjustable-Speed Drives", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 35, no. 4, August 1999 (1999-08-01), XP011022623, ISSN: 0093-9994 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2313674B1 (fr) 2008-07-18 2020-05-13 Flowserve Management Company Actionneur à vitesse variable
EP3339653A1 (fr) * 2016-12-21 2018-06-27 ABB Schweiz AG Commande de compresseur lors de perturbations du système d'alimentation électrique
CN109004883A (zh) * 2018-09-04 2018-12-14 深圳市锐钜科技有限公司 一种小电容电机驱动系统的母线电压低压区控制方法
EP4105489A1 (fr) * 2021-06-17 2022-12-21 Carrier Corporation Procédé de commande pour compresseur centrifuge et système de climatisation d'air

Also Published As

Publication number Publication date
TW200714802A (en) 2007-04-16
TWI303691B (en) 2008-12-01

Similar Documents

Publication Publication Date Title
EP2030313B1 (fr) Système et procédé anti-panne pour refroidisseurs cvc-r
US7081734B1 (en) Ride-through method and system for HVACandR chillers
US7207183B2 (en) System and method for capacity control in a multiple compressor chiller system
EP1743125B1 (fr) Système de commande de démarrage et procédé pour système refroidisseur a multiples compresseurs
US20070151272A1 (en) Electronic control transformer using DC link voltage
JP2008541684A (ja) スイッチド・リラクタンス・モータを備えた冷却器システム用可変速駆動装置
US20050190511A1 (en) Motor disconnect arrangement for a variable speed drive
JP2008541683A (ja) 冷却システム用の可変速駆動
EP1946022B1 (fr) Système et procédé de gestion de la capacité d'un groupe de compresseurs frigorifiques refroidissant un liquide
WO2007030176A1 (fr) Procede et systeme anti-panne pour refroidisseur cvca & r
JP2009095096A (ja) アクティブコンバータ・インバータ装置及びそれを用いた冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06784757

Country of ref document: EP

Kind code of ref document: A1