WO2007029736A1 - Porous iron powder, process for producing the same and radio wave absorber - Google Patents

Porous iron powder, process for producing the same and radio wave absorber Download PDF

Info

Publication number
WO2007029736A1
WO2007029736A1 PCT/JP2006/317645 JP2006317645W WO2007029736A1 WO 2007029736 A1 WO2007029736 A1 WO 2007029736A1 JP 2006317645 W JP2006317645 W JP 2006317645W WO 2007029736 A1 WO2007029736 A1 WO 2007029736A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron powder
magnetite
porous iron
powder
alloy
Prior art date
Application number
PCT/JP2006/317645
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ohrai
Hideo Yokoi
Akio Haruta
Kazuhiko Yamamoto
Ken-Ichi Machida
Masahiro Itoh
Original Assignee
Santoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005294161A external-priority patent/JP5148824B2/en
Priority claimed from JP2005294141A external-priority patent/JP5299983B2/en
Application filed by Santoku Corporation filed Critical Santoku Corporation
Priority to CN200680032664.XA priority Critical patent/CN101257989B/en
Publication of WO2007029736A1 publication Critical patent/WO2007029736A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Definitions

  • Porous iron powder Porous iron powder, method for producing the same, and radio wave absorber
  • the present invention relates to a radio wave absorber having excellent radio wave absorption characteristics, a porous iron powder that can be used for soil improvement, a method for producing the same, and a radio wave absorber using the same.
  • magnetic materials such as ferrite, pure iron, sendust, and rare earth magnets are known as electromagnetic wave absorbers effective in the band of several tens of MHz to 1 GHz.
  • electromagnetic wave absorbers effective in the band of several tens of MHz to 1 GHz.
  • attempts have been made to devise the aspect ratio of the magnetic material and to add special elements.
  • pure iron, sendust, etc. which are made into fine particles by the atomizing method and then processed into a flat body using an attritor or the like, are commercially available.
  • Japanese Patent Application Laid-Open No. 2005-5286 discloses a method of manufacturing a rare earth-transition metal-based scrap force electromagnetic wave absorbing magnetic material generated when a rare earth magnet is manufactured or discarded. Specifically, the heat treatment in a temperature range where only the rare earth element is oxidized and the other elements are not oxidized, that is, the so-called disproportionation reaction treatment is performed, so that the transition metal magnetic particles and the rare earth oxide particles are mixed.
  • a method for producing a magnetic powder for electromagnetic wave absorption comprising a composite is shown! The electromagnetic wave absorbing magnetic powder produced by this method has a large amount of rare earth elements, and thus has a problem related to the effective use of rare earths. That's not enough.
  • JP-A-7-54106 discloses Nd and B Nd—Fe—B permanent magnets containing 1 to 10 at% of each are disclosed. However, this document does not describe the electromagnetic wave absorption performance and use of such a magnet material as an electromagnetic wave absorber.
  • Japanese Patent Application Laid-Open No. 11-354973 describes an electromagnetic wave absorber using an Fe-based flat nanocrystalline soft magnetic powder.
  • the magnetic powder preferably has a thickness of 3 m or less and an average particle size of 20 to 50 m, a flat shape is essential, and it is important to electrically insulate the powder particles. It has been shown.
  • nanocrystalline soft magnetic powder can be obtained by producing amorphous alloy powder by water atomization method and generating a 10 nm microstructure by heat treatment.
  • carbo iron is excellent as a magnetic material for radio wave absorption with high permeability.
  • the carbo iron has only a radio wave absorption characteristic up to around 1 GHz, has a spherical shape, and has a narrow particle size distribution and a small particle size.
  • ultrafine pure iron powder with an average particle size of 1 m or less was developed and reported to exhibit excellent radio wave absorption characteristics. Such powders have a reflection loss of over 35 dB in the 9 GHz frequency band, and the plate thickness at that time is as large as 3 mm.
  • the above-mentioned magnetic powder is blended and kneaded with an epoxy resin binder or the like at a certain ratio, formed into a sheet or board having a predetermined thickness using a metal plate or the like as a substrate, and used as a radio wave absorber.
  • the resonance frequency at which radio waves are best absorbed depends on the thickness of the radio wave absorber, and the thickness of the radio wave absorber is adjusted according to the desired radio wave frequency.
  • Examples of such an electromagnetic wave absorber include a bright sintered body, a bright rubber composite, a flat pure iron-containing resin, a flat sendust-containing resin, and a carbo iron rubber composite.
  • the iron powder as the magnetic powder can be used as a soil conditioner.
  • Fe ions dissolve out in wet soil, react with organic halogen compounds such as tetrachloroethylene in the Fe ion force, and decompose into organic substances such as ethylene and halogens to make them harmless. be able to.
  • Japanese Patent Application Laid-Open No. 2000-80401 proposes iron powder containing one or more of P, S, and B as iron powder for harmful substance removal treatment.
  • the iron powder has a specific surface area of 0.01 to 1.0 m 2 Zg.
  • the particle size is preferably in the range of 1 to 1000 ⁇ m! /
  • iron powder is added to wastewater containing phosphorus compounds, and iron ions eluted from the iron powder react with phosphate ions to drain the phosphorus compounds. It is described that it can be removed from inside.
  • An object of the present invention is a porous iron that has excellent radio wave absorption performance, can be used as a radio wave absorber and a soil conditioner, and is also excellent in compatibility with scabbage during production of the radio wave absorber.
  • An object of the present invention is to provide a powder, and a magnetite powder that can be used as a raw material for the porous iron powder, and a production method that can efficiently produce these.
  • Another object of the present invention is to use porous iron powder that has excellent radio wave absorption performance and can be used for radio wave absorbers and soil conditioners, and is used for transmission and reception of general-purpose portable electronic devices.
  • An object of the present invention is to provide a radio wave absorber capable of effectively absorbing radio waves in the GHz band or the like even in a thin form.
  • the composition is mainly composed of iron, the specific surface area is 4 m 2 Zg or more, the average particle size is 2 to 90 / zm, and a peak derived from a-Fe is confirmed by X-ray diffraction.
  • a porous iron powder is provided.
  • the electromagnetic wave absorber containing the said porous iron powder is provided.
  • a method for producing porous iron powder hereinafter referred to as method (1)
  • method (1) a method for producing porous iron powder in which a peak derived from oc Fe can be confirmed by diffraction.
  • a step (2A) of preparing an Fe-M-containing alloy containing iron as a main component containing an arbitrary M element, and the M-element from the Fe-M-containing alloy are prepared.
  • a method (hereinafter referred to as method (2)) is provided.
  • a step (3A) of preparing an Fe-M-containing alloy mainly containing iron containing any M element, and an intermediate magnetite solid matter mainly containing magnetite A step of immersing the Fe-M containing alloy in an alkaline solution (3B-1) and a step of immersing the intermediate magnetite solid in an acid solution to elute M element and obtain a magnetite powder (3B-2)
  • a step (3C) of reducing the magnetite powder a method for producing a porous iron powder (hereinafter referred to as method (3)) in which a peak derived from a Fe can be confirmed by X-ray diffraction is provided.
  • method (3) a method for producing a porous iron powder
  • a magnetite powder having a specific surface area of 4 m 2 Zg or more and an average particle size of 2 to 90 / ⁇ ⁇ is provided.
  • a method for producing a magnetite powder comprising the step (3-2).
  • FIG. 1 is a copy of the SEM image of the surface of the porous iron powder prepared in Example 1-1.
  • FIG. 2 is a graph showing the radio wave absorption characteristics of a radio wave absorber manufactured using the porous iron powder prepared in Example 11 1.
  • FIG. 3 is a diagram showing the radio wave absorption characteristics of a radio wave absorber manufactured using the flattened atomized iron powder prepared in Comparative Example 11.
  • FIG. 4 is a view showing an X-ray diffraction spectrum of magnetite powder obtained by heating to 300 ° C. in Production Example 2.
  • FIG. 5 X-ray diffraction spectrum of magnetite powder obtained by heating to 400 ° C in Production Example 2.
  • FIG. 6 is a graph showing the relationship between the specific surface area of the magnetite powder prepared in Production Example 2 and the heating temperature, and the relationship between the average particle size and the heating temperature.
  • the porous iron powder of the present invention has a plurality of pores and a large specific surface area. Therefore, it is extremely effective for decomposing organic halogen compounds in a wet state, and is useful as a purification agent for contaminated soil and waste water.
  • the specific surface area of the porous iron powder of the present invention is 4 m 2 Zg or more, preferably 5 m 2 Zg or more, more preferably 8 m 2 / g or more, and the upper limit is not particularly limited, but is usually about 30 m 2 / g. It is.
  • the specific surface area is a value measured by a BET method using nitrogen gas. If the specific surface area is less than 4 m 2 Zg, the eddy current increases and the desired radio wave absorption performance cannot be obtained.
  • the porous iron powder of the present invention has an average particle size of 2 to 90 ⁇ m, preferably 5 to 15 ⁇ m.
  • the average particle diameter is a value of D50 measured by a laser diffraction method. If the D50 force is less than ⁇ / zm, it becomes difficult to mix with the resin when preparing the radio wave absorber. On the other hand, if the D50 is greater than 90 m, the filling rate of the radio wave absorber decreases and the radio wave absorber Performance decreases.
  • the porous iron powder of the present invention has specific characteristics such as the above-mentioned specific surface area and average particle diameter, and the composition contains iron as a main component, preferably 85 at% or more. Contains components other than Fe for the purpose of improving various properties in each application of porous iron powder and, regardless of whether or not there is a purpose, the use of porous iron powder in each application is not hindered. It can be done.
  • the rare earth-iron alloy scrap described later when used as a raw material for producing the porous iron powder of the present invention, it is derived from the raw material, for example, a rare earth element including Y, B, It can contain at least one element of C, N, Co, Al, Cu, Ga, Ti, Zr, Nb, V, Cr, Mo, Mn, Ni, Si, Mg, and Ca.
  • the content of elements other than iron is usually 15 at% or less, preferably 0.01 to 15 at%. If the content is less than 0.01 at%, the effect of inclusion is insufficient. If the content is more than 15 at%, the radio wave absorption characteristics may be deteriorated and the economy may be further deteriorated when a radio wave absorber is formed.
  • the porous iron powder of the present invention When used for a radio wave absorber, the iron particles in the surface layer portion may generate eddy currents, which may reduce radio wave absorption performance. In order to suppress the occurrence and make it difficult to ignite and facilitate handling, it is preferable that a part or all of the porous surface layer is oxidized and an oxide exists in the surface layer.
  • the inclusion of these is preferable because an oxide layer is easily formed on the surface layer portion of the porous iron powder.
  • the inclusion of 5 at% of a rare earth element is preferable from the viewpoint of easy formation of the oxide layer.
  • the rare earth element preferably contains Nd, Pr, Tb, Dy.
  • pure iron has a high magnetic permeability and is excellent as a magnetic material for electromagnetic wave absorption. By adding at least one element such as Co, Al, Si, Ni, etc., high permeability can be achieved. Therefore, the porous iron powder of the present invention preferably contains at least one of these elements.
  • the porous iron powder of the present invention is porous having a plurality of pores, and the average pore diameter of the porous iron powder is usually lOOnm or less, preferably from the viewpoint of further increasing the skin effect. 50 nm or less, most preferably 20 or less.
  • the lower limit is not particularly limited, but is usually about 5 nm.
  • the pore volume of the porous iron powder of the present invention is usually greater than or equal to O.OlmlZg, preferably in order to allow a large amount of air to be contained inside the particles and to enable light weight when used as a radio wave absorber. It is 0.02mlZg or more.
  • the upper limit of the pore volume is not particularly limited, but is usually about O.lOmlZg.
  • the average pore diameter and pore volume are values obtained by a nitrogen adsorption method.
  • porous iron powder of the present invention a peak derived from ex Fe having a radio wave absorption action can be confirmed by X-ray diffraction.
  • the porous iron powder of the present invention can be obtained, for example, by the method (13) of the present invention, or a hydroxide or carbonate obtained by precipitation using a solution containing Fe ions as a raw material. It can also be obtained by oxidation and reduction of Fe salts such as
  • the element M in the Fe—M-containing alloy must be capable of eluting into the acid solution in the process described below.
  • the M element include at least one element of rare earth elements including Y, alkaline earth metals, P, C, S, Al, Ti, Si, Mn, Co, B, Cu, and Ga. It is done.
  • the Fe-M-containing alloy can contain various elements other than the above M element and Fe within the range of improving the various characteristics of the porous iron powder to be finally obtained, or without impairing the characteristics. Also good.
  • the content of each element is not particularly limited, but the content of Fe is usually about 50 to 99 at%, and the content of M element is usually 1 to 50 at%
  • the Fe-M-containing alloy is obtained by, for example, dissolving M element, Fe prepared as a raw material so as to have a predetermined composition, a single metal of other elements if necessary, and a raw material alloy, and then solidifying. It is done.
  • the melting can be performed by, for example, a high frequency melting method, an arc melting method, or the like.
  • the solidification can be performed by, for example, a molding method, an atomizing method, a strip casting method, or the like.
  • Fe-M-containing alloys are several mm or less in advance and preferably about 0.1 mm or less in advance for the purpose of improving the work efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to pulverize it.
  • Fe-M-containing alloy examples include rare earth-iron-boron-based permanent magnet alloys, rare-earth-iron-iron-based permanent magnet alloys, rare-earth-iron-iron alloys widely used in industry.
  • Alloys for magnetic refrigeration materials include, but are not limited to, alloy scrap generated by cutting, grinding and polishing of unnecessary parts when processing into magnets, magnetic refrigeration materials, etc. (hereinafter referred to as rare earth-iron) Alloy scrap).
  • rare earth element mainly corresponds to the M element.
  • the Fe—M-containing alloy force prepared in the step (1A) is eluted to obtain an Fe-containing solid material containing Fe as a main component.
  • a step (1B) of immersing the alloy containing in an acid solution examples include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and mixed acids thereof.
  • the concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZl.
  • the amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of the M element in the Fe—M containing alloy.
  • the reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher.
  • the reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
  • an Fe-containing solid material having a large specific surface area can be obtained by selectively eluting the element M.
  • Part or all of Fe in the Fe-containing solid is in the form of an oxide and Z or hydroxide.
  • a part of the M element can remain and a part of the Fe element can be eluted.
  • the Fe-containing solid can be filtered off from the acid solution and washed if necessary.
  • the resulting Fe-containing solid is mainly composed of Fe hydroxide and oxide, partially remaining M element and other element oxide and hydroxide, Fe, partially remaining M element and It contains compounds such as other elements and acid anions used, and water such as hydration water and adhesion water.
  • the porous iron powder finally obtained when the Fe-M-containing alloy prepared in the step (1A) is, for example, a rare earth-iron-boron based permanent magnet alloy and hydrochloric acid is used as the acid solution. May contain rare earth oxysalts. Rare earth oxysalts have the property of lack of hygroscopicity and therefore low solubility in water. Unlike the rare earth oxides disclosed in JP-A-2005-5286, such rare earth oxysalts do not exhibit the drawback of forming hydroxides due to moisture absorption.
  • the element M is selectively eluted by oxidizing the immersed Fe-M-containing alloy and oxidizing Fe in an acid solution. It is preferable to use a product or a hydroxide.
  • the oxidation is performed by, for example, a method in which an Fe—M-containing alloy is fired in the air in advance, or a method in which a Fe-M-containing alloy is dispersed in water or the like and a gas containing oxygen such as air is blown in. be able to.
  • the method (1) of the present invention comprises a porous iron powder, preferably a peak derived from ex-Fe, which can be confirmed by X-ray diffraction by performing the step (1C) of reducing the Fe-containing solid.
  • the porous iron powder of the present invention is obtained.
  • the reduction can be performed, for example, in an atmosphere containing 3 vol% or more of hydrogen.
  • it can be carried out by heat treatment at a temperature of 300 ° C. or higher for 1 minute to 100 hours in a reducing atmosphere containing 5 vol% or more of hydrogen.
  • an oxide layer may be formed on the surface layer of the porous iron powder.
  • the disproportionation reaction treatment is performed under the conditions that only the rare earth elements are oxidized and the other elements are not oxidized. It can also be done.
  • the method (1) of the present invention preferably includes a step of heating to dry or oxidize the Fe-containing solid after step (1B) and before step (1C) U, .
  • the above-mentioned Fe-containing solid contains water such as hydration water and adhesion water. Since the specific surface area may be reduced in the reduction of the step (1C) when the moisture content is too much, it is preferable to perform the heating step.
  • the heating step can be performed by appropriately setting the temperature and time according to the properties of the Fe-containing solid material.
  • the Fe-containing solid when it contains a hydroxide, it can be heated and oxidized by setting the temperature and time appropriately. Heating and acidification can be performed in the atmosphere by a known method.
  • the element M eluted in step (1B) of the method (1) of the present invention can be recovered and reused by a known precipitation fractionation method, solvent extraction method, etc., and in particular, Fe-M When rare earth ferrous alloy scrap is used as the alloy, effective metals such as rare earth elements can be recovered.
  • the method (2) of the present invention includes a step (2A) of preparing an Fe-M-containing alloy mainly composed of iron containing any M element.
  • the step (2A) can be performed in the same manner as the step (1A) in the method (1) described above.
  • the Fe-M-containing alloy is previously several mm or less, preferably 0.1 mm, for the purpose of increasing the working efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to grind to the following extent.
  • a heat treatment step can be performed in consideration of the characteristics of the finally obtained porous iron powder.
  • the heat treatment conditions are, for example, the power that can be implemented in the range of heating temperature 500 to 1200 ° C, heating time 1 minute to 24 hours Depending on the case, heat treatment outside this range can be performed.
  • the Fe—M-containing alloying force M prepared in the step (2A) is eluted to obtain an Fe hydroxide-containing solid material mainly composed of Fe hydroxide.
  • the step (2B-1) of immersing the Fe—M-containing alloy in an acid solution is included.
  • Examples of the acid solution used in the step (2B-1) include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, or a mixed acid thereof.
  • the concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZ1.
  • the amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of M element in the Fe—M containing alloy.
  • the reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher.
  • the reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
  • step (2B-1) by selectively eluting the element M, an Fe hydroxide-containing solid having a large specific surface area and containing Fe hydroxide as a main component can be obtained.
  • Fe hydroxide as a main component means that when an X-ray diffraction spectrum is measured, a diffraction peak derived from Fe hydroxide is observed as a main peak.
  • the Fe hydroxide-containing solid by appropriately controlling the above immersion conditions and the like, a part of the M element can remain and a part of the Fe element can be eluted.
  • the Fe-containing solid can be filtered off from the acid solution and washed as necessary.
  • the method (2) of the present invention includes a step (2B-2) of immersing the Fe hydroxide-containing solid in an alkaline solution in order to obtain magnetite powder.
  • Examples of the alkali solution used in the step (2B-2) include an aqueous solution of an alkali metal salt, an aqueous ammonia solution or an aqueous ammonium salt solution.
  • alkali metal salt examples include hydroxides or carbonates of alkali metals such as sodium, potassium, and lithium. From the viewpoint of reactivity, lithium hydroxide, potassium hydroxide, and hydroxide Hydroxide such as sodium is desirable.
  • ammonium salt examples include ammonium carbonate, sodium carbonate, and sodium hydrogen carbonate.
  • Conditions for immersing in an alkaline solution to obtain magnetite powder in step (2B-2) Varies depending on the composition of the Fe hydroxide-containing solid, the shape of the Fe hydroxide-containing solid, etc.Type of alkali solution used, concentration of alkali solution, amount of alkali solution used, reaction temperature, reaction time, etc. Can be appropriately determined so that a magnetite powder can be obtained by a reaction by immersion in an alkaline solution.
  • the concentration of the alkaline solution is, for example, 0.1 to 10 molZl, preferably 1 to 5 molZl.
  • the amount of the alkaline solution used is, for example, 0.1 to 10 times the number of moles of Fe element in the Fe—M-containing alloy.
  • the reaction temperature is, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher.
  • the reaction time is 1 to 100 hours, preferably 10 to 24 hours.
  • the reaction by immersion in an alkaline solution is efficiently promoted by carrying out the reaction under pressure using a reaction vessel that can be pressurized to atmospheric pressure or higher.
  • the reaction can also be accelerated by blowing oxygen-containing gas into the alkaline solution.
  • the magnetite powder obtained in the step (2B-2) is filtered off from the reaction solution, and can be washed if necessary.
  • Magnetite powder is mainly composed of Fe oxides, some remaining M elements, other elements, oxides and hydroxides, and some remaining M elements and other elements. And water such as hydration water and adhesion water
  • the method (2) of the present invention includes a step (2C) of reducing the magnetite powder prepared in the step (2B-2).
  • the target porous iron powder can be obtained by performing the reduction in the step (2C) in the same manner as in the step (1C) in the above-described method (1) of the present invention.
  • a drying step of heating the magnetite powder prepared in the step (2B-2) to a temperature of 400 ° C or lower can be performed.
  • the drying step can be performed in an atmosphere containing oxygen or an inert gas atmosphere.
  • the drying temperature exceeds 400 ° C, part of the magnetite becomes hematite.
  • the magnetite powder used in the step (2C) may contain hematite, but hematite generates a large amount of water vapor by the reduction treatment in the step (2C), and the treatment requires extra cost. Therefore, it is better to produce less hematite.
  • the drying temperature is preferably 400 ° C or less.
  • the method (3) of the present invention includes a step (3A) of preparing an Fe-M-containing alloy mainly containing iron containing any M element.
  • the step (3A) can be performed in the same manner as the step (1A) in the method (1) described above. However, in the method (3), since it is necessary to obtain an intermediate magnetite solid in the next step, it is not preferable to perform the above oxidation treatment after the step (3A) and before the next step.
  • the Fe-M-containing alloy is previously several mm or less, preferably 0.1 mm, for the purpose of increasing the working efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to grind to the following extent.
  • a heat treatment step can be performed in consideration of the characteristics of the finally obtained porous iron powder.
  • the heat treatment conditions are, for example, a force that can be carried out within a heating temperature range of 500 to 1200 ° C. and a heating time range of 1 minute to 24 hours.
  • the method (3) of the present invention includes a step of immersing the Fe-M-containing alloy prepared in step (3A) in an alkaline solution in order to obtain an intermediate magnetite solid containing magnetite as a main component. Includes (3 B— 1).
  • having magnetite as the main component means that when an X-ray diffraction spectrum is measured, a diffraction peak derived from magnetite is observed as a main peak.
  • Examples of the alkali solution used in the step (3B-1) include an aqueous solution of an alkali metal salt, an aqueous ammonia solution, or an aqueous ammonium salt solution.
  • alkali metal salt examples include hydroxides or carbonates of alkali metals such as sodium, potassium, and lithium. From the viewpoint of reactivity, lithium hydroxide, potassium hydroxide, and hydroxide Hydroxide such as sodium is desirable.
  • ammonium salt examples include ammonium carbonate, sodium carbonate, sodium hydrogen carbonate and the like.
  • conditions for immersing in an alkaline solution for obtaining an intermediate magnetite solid vary depending on the composition of the Fe-M-containing alloy, the shape of the Fe-M-containing alloy, etc.
  • the type of the alkali solution, the concentration of the alkali solution, the amount of the alkali solution used, the reaction temperature, the reaction time, and the like can be appropriately determined so that an intermediate magnetite solid can be obtained by the reaction by immersion in the alkali solution.
  • the concentration of the alkaline solution is, for example, 0.1 to 10 molZl, preferably 1 to 5 molZl.
  • the amount of the alkaline solution used is, for example, 0.1 to 10 times the number of moles of Fe element in the Fe—M-containing alloy.
  • the reaction temperature is, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher.
  • the reaction time is 1 to 100 hours, preferably 10 to 24 hours.
  • the reaction by immersion in an alkaline solution is efficiently promoted by carrying out the reaction under pressure using a reaction vessel that can be pressurized to atmospheric pressure or higher.
  • the reaction can also be accelerated by blowing oxygen-containing gas into the alkaline solution.
  • the intermediate magnetite solid obtained in the step (3B-1) is separated from the reaction solution by filtration and can be washed if necessary.
  • part of the M element in the Fe-M containing alloy and contained elements other than Fe may be dissolved depending on the immersion conditions in the alkaline solution.
  • the method (3) of the present invention comprises a step (3B—) for eluting M element and obtaining magnetite powder.
  • Examples of the acid solution used in the step (3B-2) include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, or a mixed acid thereof.
  • the concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZ1.
  • the amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of M element in the Fe—M containing alloy.
  • the reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher.
  • the reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
  • reaction by dipping in the step (3B-2) is effectively promoted by blowing a gas containing oxygen into the acid solution.
  • the conditions for immersing in the acid solution for obtaining the magnetite powder vary depending on the yarn of the intermediate magnetite solid, the shape of the intermediate magnetite solid, etc.
  • the type, acid concentration, amount of acid solution used, reaction temperature, reaction time, and the like can be appropriately determined so as to obtain a magnetite powder.
  • M element In order to selectively elute M element, it can be controlled in the pH range where only M element elutes. By selectively eluting the element M, a magnetite powder mainly composed of Fe having a large specific surface area can be obtained. By appropriately controlling the conditions, a part of the M element may remain or a part of the Fe element may be eluted. [0042]
  • the magnetite powder obtained in the step (3B-2) is filtered off from the reaction solution, and can be washed if necessary.
  • the obtained magnetite powder is mainly composed of Fe oxide, oxides or hydroxides of partially remaining M elements and other elements, and partially used M elements and other elements. Contains a compound with an anion, and water such as hydration water and adhesion water.
  • the method (3) of the present invention includes a step (3C) of reducing the magnetite powder prepared in the step (3B-2).
  • the target porous iron powder can be obtained by performing the reduction in the step (3C) in the same manner as in the step (1C) in the above-described method (1) of the present invention.
  • a drying step of heating the magnetite powder prepared in the step (3B-2) to a temperature of 400 ° C or lower can be performed as necessary.
  • the drying step can be performed in an atmosphere containing oxygen or an inert gas atmosphere.
  • the drying temperature exceeds 400 ° C, part of the magnetite becomes hematite.
  • the magnetite powder used in the step (3C) may contain hematite, but hematite generates a large amount of water vapor by the reduction treatment in the step (3C), and the treatment requires extra cost. Therefore, it is better to produce less hematite.
  • the drying temperature is preferably 400 ° C or less.
  • the element M eluted in the step (2B-1) in the method (2) of the present invention or the step (3B-2) in the method (3) of the present invention is a known precipitation fractionation method, solvent extraction method, etc. It is possible to effectively use effective metals such as rare earth elements by collecting and reusing at
  • the magnetite powder or porous iron powder obtained can contain a rare earth element.
  • Such porous iron powder does not easily ignite even when it comes into contact with air, because rare earth oxides are present on the surface layer.
  • the magnetite powder obtained by the step (2B-2) in the method (2) of the present invention or the step (3B-2) in the method (3) of the present invention has a plurality of pores and has a large ratio. Has a surface area. Therefore, it is extremely effective for decomposing organic halogen compounds in a wet state, and is useful as a purification agent for contaminated soil and wastewater.
  • the specific surface area of the magnetite powder is 4 m 2 / g or more, preferably 5 m 2 / g or more, more preferably 8 m 2 / g or more.
  • the upper limit is not particularly limited, but is usually about 50 m 2 / g. is there.
  • the specific surface area is a value measured by a BET method using nitrogen gas. If the specific surface area is less than 4 m 2 Z g, the eddy current increases and the desired radio wave absorption performance may not be obtained.
  • the magnetite powder has an average particle size of 2 to 90 ⁇ m, preferably 5 to 15 ⁇ m.
  • the average particle diameter is a value of D50 measured by a laser diffraction method. If it is less than D50 force ⁇ / z m, the finally obtained porous iron powder may be easily ignited. On the other hand, if the D50 force is greater than ⁇ O / zm, the filling rate of the finally obtained porous iron powder in the radio wave absorber may be reduced, and the radio wave absorption performance may be reduced.
  • the magnetite powder has characteristics of a shape typified by the above-mentioned specific surface area and average particle diameter, and the composition is such that the remaining components excluding oxygen are mainly composed of iron, preferably 85at. It contains more than% and can contain components other than Fe.
  • rare earth-iron alloy scrap when rare earth-iron alloy scrap is used as a raw material, for example, rare earth elements including Y, B, C, N, Co, Al, Cu, Ga, Ti, Zr, Nb , V, Cr, Mo, Mn, Ni, Si, Mg and Ca can be contained.
  • the content of elements other than iron is usually 15 at% or less, preferably 0.01 to 15 at%. If the content is less than 0.01 at%, the effect of inclusion is insufficient, and if the content is more than 15 at%, the radio wave absorption characteristics of the radio wave absorber may be lowered, and further, the economic efficiency may be lowered.
  • rare earth elements including Y, Al, Ti, Si, V, Cr, Nb, Zr, Mg, or Mn have an affinity for oxygen. Is larger than Fe, and inclusion of these is preferable because an oxide layer can be easily formed on the surface layer portion of the finally obtained porous iron powder.
  • the rare earth element preferably contains Nd, Pr, Tb, Dy.
  • pure iron has a high magnetic permeability and is excellent as a magnetic substance for electromagnetic wave absorption. By including at least one element such as Co, Al, Si, Ni, etc., a higher magnetic permeability can be achieved.
  • the radio wave absorber of the present invention contains the above-described porous iron powder of the present invention.
  • the radio wave absorber can be produced by mixing and kneading and heating the resin and the porous iron powder of the present invention. Manufacturing conditions The conditions can be appropriately selected according to a known method.
  • the radio wave absorber of the present invention preferably contains as much of the porous iron powder of the present invention as possible in order to improve the absorption performance of electromagnetic waves and the like in the lGHz to 20 GHz band. Preferably, it is 50% by weight or more. If the content of porous iron powder is too high, it will be difficult to form a radio wave absorber, so it is usually 95% by weight or less. Further, in order to obtain a desired radio wave absorption characteristic, other magnetic powder can be contained.
  • a flattened porous iron powder can be contained in the radio wave absorber in accordance with the desired radio wave absorption characteristics.
  • the porous iron powder of the present invention can easily increase the aspect ratio when the processing pressure in the flat wrinkle treatment is small.
  • the porous iron powder of the present invention combined with the skin effect of the magnetic material itself, increases the path length of the current flowing on the surface, so that eddy current loss can be suppressed, and the adhesion to the resin is improved. Compression deformation resistance can be reduced. Therefore, for example, it has excellent radio wave absorption characteristics in a high frequency region of 1 to 20 GHz, particularly in a band of 10 GHz or more, and is extremely effective in reducing radio wave interference in this region. In addition, it is extremely effective for decomposing organic halogen compounds.
  • the above-described magnetite powder obtained in the method (2) or method (3) of the present invention contains M element, so that it can be used as a raw material for porous iron powder having low ignitability even after reduction treatment. It is effective as a soil conditioner.
  • the solid matter remaining in the slurry is filtered with a Nuts filter, and the resulting solid matter is washed by a decantation method. Purified. Next, after this solid was heated in the atmosphere at 400 ° C. for 5 hours, it was confirmed by an X-ray diffractometer (XRD) that it also mainly became acidic. Thereafter, a porous iron powder was prepared by heating at 600 ° C. for 4 hours in an atmosphere of 100% hydrogen.
  • XRD X-ray diffractometer
  • Fig. 1 shows a copy of the SEM image of the surface of the obtained porous iron powder.
  • the obtained porous iron powder and epoxy resin were mixed at a weight ratio of 65:35, and then formed into a disk shape.
  • the obtained molded product was heated at 130 ° C. for 30 minutes, and further cured at 180 ° C. to prepare a sample for measuring radio wave absorption characteristics.
  • the sample was formed into a donut shape with an outer diameter of 7.00 ⁇ ⁇ and an inner diameter of 3.04 ⁇ ⁇ using an ultrasonic machine, and then attached to a measurement probe.
  • S 11 in the sample thickness direction The frequency dependence of was measured. The result is shown in figure 2.
  • Example 1-1 The same measurement as in Example 1-1 was performed on a commercially available flattened atomized iron powder having a particle size of 5 ⁇ m. The results are shown in Table 1. The radio wave absorption characteristics were also prepared and measured in the same manner as in Example 1-1. The results are shown in Figure 3.
  • the sample of Comparative Example 1-1 was strong enough to show no absorption characteristics exceeding -20dB above 10GHz.
  • radio wave absorption exceeding 20 dB was observed even in the region exceeding 10 GHz, and characteristics exceeding 20 dB were observed near 13 GHz, and the plate thickness at that time was as small as 1.5 mm. .
  • Porous iron powder was obtained in the same manner as in Example 1-1 except that the alloy composition was changed to 10 at% Misch metal and the remaining Fe. As a result of analysis by ICP, the composition of the obtained porous iron powder is The total amount of iron was l.7at%, and the balance was Fe. A peak derived from a-Fe was confirmed by X-ray diffraction. Further, the same measurements as in Example 1-1 were performed. The results are shown in Table 1.
  • radio wave absorption characteristics a sample was prepared and measured in the same manner as in Example 1-1, and radio wave absorption characteristics exceeding -20 dB were obtained in the region of 1 to 20 GHz. Furthermore, when the sample after measurement of the radio wave absorption characteristics was exposed for 1 hour in an environment of 80% humidity and 40 ° C, and the state of igniting was examined, no soot was found.
  • Porous iron powder was obtained in the same manner as in Example 12 except that the conditions were changed so as to reduce the elution of misch metal.
  • the composition of the obtained porous iron powder was a total amount of 1.5% by weight of the misty metal, and the balance was Fe. Peaks derived from a-Fe were confirmed by X-ray diffraction. Further, the same measurements as in Example 1-1 were performed. The results are shown in Table 1.
  • Example 1-1 a sample was prepared and measured in the same manner as in Example 1-1.
  • the force with which a radio wave absorption characteristic exceeding 20 dB was obtained in the region of 1 to 20 GHz was slightly compared with Example 1-2. Absorption was small. Further, when an exposure test was conducted in the same manner as in Example 2, soot was confirmed. Thus, it was found that when the porous iron powder has a high rare earth content, the radio wave absorption characteristics and corrosion resistance may be slightly inferior.
  • the raw materials blended so as to have a composition of 12.9Nd-0.5Co-6.0B-80.6Fe were melted in a high-frequency melting furnace in an argon atmosphere, and an alloy ribbon having a thickness of about 0.6 mm was obtained by strip casting.
  • the ribbon was pulverized to obtain an alloy powder having an average particle size of about 15 m.
  • 500 g of the powder was mixed with 1000 ml of pure water to obtain an alloy slurry. Stir the slurry, add 5 molZl of nitric acid solution while blowing 300 ml of air per minute, and control the amount of air blown and the rate of charging nitric acid solution so that it does not exceed 60 ° C, and pH 5. When 5 is reached, throw the nitric acid solution.
  • the mixture was stirred while blowing air for 2 hours.
  • the total amount of nitric acid solution was 1600 ml.
  • the obtained solution was filtered with a Nucci filter, and the precipitate and the solution were separated.
  • As a result of measuring the X-ray diffraction spectrum of the precipitate it was mainly composed of ferric hydroxide.
  • the precipitate was mixed with 1000 ml of pure water to form a slurry.
  • 1600 ml of a 5 molZl sodium hydroxide aqueous solution was added while stirring, and the reaction was stirred at 150 ° C. for 10 hours.
  • the solid matter remaining in the slurry was filtered with a Nutsche filter to obtain a magnetite powder.
  • the obtained magnetite powder was washed by a decantation method. ICP analysis of the magnetite powder revealed that the composition was 1.62Nd—0.70CO—0.84 B—96.84Fe.
  • the magnetite was heated at 300 ° C. in the atmosphere for 5 hours.
  • the magnetite powder after heating was measured for specific surface area by BET method and D50 by laser diffraction method. As a result, the BET value was 20.5 m 2 / g and the average particle size was 17.5 m.
  • the raw material with a composition of 10.9Nd— 3.10Dy— 0.50Co— 6.10B— 79.4Fe was melted in an argon atmosphere in a high-frequency melting furnace, and an alloy ribbon with a thickness of approximately 0.4 mm was formed by strip casting. Obtained.
  • the alloy ribbon was pulverized to obtain an alloy powder having an average particle size of about 10 m.
  • 500 g of the powder was mixed with 1000 ml of pure water to obtain an alloy slurry.
  • the slurry was stirred, and 2500 ml of a 2 mol Zl aqueous sodium hydroxide solution was added while blowing 300 ml of air per minute, and the temperature was raised to 60 ° C., followed by stirring for 24 hours.
  • the obtained solution was filtered with a Nutsche filter to separate the precipitate from the solution.
  • the precipitate was mixed with 1000 ml of pure water to form a slurry. 1500 ml of 5 mol / l hydrochloric acid solution was added to the slurry. The slurry temperature was kept at 60 ° C. After sufficiently proceeding with the reaction, the solid matter remaining in the slurry was filtered with a Nutsche filter to obtain magnetite powder. The obtained magnetite powder was washed by a decantation method. ICP analysis of the magnetite powder revealed that the composition was 1.41Nd—0.45Dy-0.72Co—0.70B—96.7Fe.
  • the magnetite powder was divided into seven equal parts and heated in air at 100, 200, 300, 400, 500, 600, and 700 ° C. for 5 hours, respectively.
  • the magnetite powder after heating was measured for specific surface area by BET method and D50 by laser diffraction method.
  • Figures 4 and 5 show 300 ° C and 400 ° C respectively.
  • An X-ray diffraction spectrum of magnetite powder obtained by heating is shown. When heated below 400 ° C, the only oxide is magnetite, but when heated above 400 ° C, hematite is precipitated.
  • the specific surface area is significantly reduced by heating at 300 ° C or higher, and at 600 ° C it is 4m 2 Zg or lower. Therefore, it can be seen that heating at 600 ° C or lower is necessary to obtain a specific surface area of 4 m 2 Zg or higher. From the relationship between the average particle size and the heating temperature shown in Fig. 6, the average particle size tends to be slightly smaller as the heating temperature increases.
  • Magnetite was produced in the same manner as in Production Example 1 except that the alloy composition was 10.8 at%, the balance was Fe, and the particle size after grinding was 24.2 m. As a result of analyzing the composition by ICP, the total amount of misty metal was 1.3at% and the balance was Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 25.5 m 2 / g and the average particle size was 15.8 m. The X-ray diffraction revealed that hematite peaks could not be confirmed.
  • Magnetite was produced in the same manner as in Production Example 3, except that the alloy composition was 8.5 at%, the remaining Fe, and the particle size after grinding was 23.8 m. As a result of analyzing the composition by ICP, the total amount of misty metal was 1.1 atomic% and the balance was Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.5 m 2 Zg and the average particle size was 16.8 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
  • Magnetite was produced in the same manner as in Production Example 1 except that 1600 ml of 5 mol Zl aqueous sodium hydroxide solution was changed to 4000 ml of 3 mol Zl ammonium bicarbonate aqueous solution.
  • the composition was analyzed by ICP. As a result, it was 1.54Nd—0.65Co—1.45B—96.36Fe.
  • the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 19.3 m 2 / g and the average particle size was 18.3 m. Hematite peaks were not confirmed by X-ray diffraction.
  • Magnetite was produced in the same manner as in Production Example 1 except that 1600 ml of 5 molZl sodium hydroxide aqueous solution was changed to 4000 ml of 3 molZl potassium hydroxide aqueous solution. Analyzing composition by ICP As a result, it was 1.38Nd—0.70Co—0.43B—97.49Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 15.3 m 2 / g and the average particle size was 14.1 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
  • Magnetite was produced in the same manner as in Production Example 2 except that 2500 ml of 2 molZl aqueous sodium hydroxide solution was changed to 4000 ml of 3 molZl aqueous ammonium hydrogen carbonate solution. The obtained magnetite powder was heated at 300 ° C for 5 hours. The composition was analyzed by ICP and found to be 1.22Nd-0.3 IDy- 0.99Co- 2.8B- 94.68Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 18.3 m 2 / g and the average particle size was 20.1 m. The X-ray diffraction revealed that hematite peaks could not be confirmed.
  • Magnetite was produced in the same manner as in Production Example 2, except that 2500 ml of a 2 mol Zl aqueous sodium hydroxide solution was changed to 4000 ml of a 3 mol Zl aqueous potassium hydroxide solution.
  • the obtained magnetite powder was heated at 300 ° C for 5 hours.
  • the composition of the obtained magnetite powder was 1.33Nd—0.50Dy—0.67Co—0.50B—97.00Fe.
  • the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.6 m 2 Zg and the average particle size was 16.5 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
  • Magnetite was produced in the same manner as in Production Example 2, except that 1500 ml of 5 mol Zl hydrochloric acid solution was changed to 3000 ml of 2 mol Zl nitric acid solution.
  • the obtained magnetite powder was heated at 300 ° C for 5 hours.
  • the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 22.6 m 2 / g and the average particle diameter was 17.2 m.
  • Hematite peak could not be confirmed by X-ray diffraction o
  • Magnetite was produced in the same manner as in Production Example 2 except that 2500 ml of 2 molZl sodium hydroxide aqueous solution was changed to 4000 ml of 3 molZl potassium hydroxide aqueous solution and 1500 ml of 5 molZl hydrochloric acid solution was changed to 2000 ml of nitric acid solution of ImolZl.
  • the obtained magnetite powder is heated at 300 ° C for 5 Heated for hours.
  • ICP As a result of analyzing the composition by ICP, it was 1.56Nd—0.53Dy—0.69Co—0.47B—96.75Fe.
  • the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.6 m 2 Zg and the average particle size was 15.4 m. Hematite peaks were also confirmed by X-ray diffraction.
  • a commercially available magnetite powder for toner having an average particle size of 0.30 m and a specific surface area of 8.5 m 2 / g was heated in a 100% hydrogen atmosphere at a temperature of 600 ° C. for 4 hours. When reduced iron powder was taken out into the atmosphere, it ignited.
  • the filtrate obtained when the magnetite was filtered was stirred, and an acidic ammonium fluoride 200 g ZL solution was added to precipitate the rare earth fluoride.
  • the precipitate was filtered and washed to obtain a rare earth fluoride.
  • the filtrate obtained by filtering the precipitate of the rare earth fluoride was stirred, and 5 mol Zl of aqueous sodium hydroxide solution was added to precipitate cobalt hydroxide. The precipitate was filtered and washed to obtain cobalt hydroxide.
  • rare earth-iron-iron alloy scrap is used as a raw material, it is possible to recover useful metals such as rare earth elements and cobalt other than iron.
  • the magnetite powders obtained in Production Examples 1 and 3 to 11 were heated in the atmosphere of 100% hydrogen at a temperature of 600 ° C. for 4 hours in the same manner as in Example 11.
  • the resulting porous iron powder is checked for the presence of iron oxide by XRD and the presence or absence of acid oxides on the surface by EPMA, specific surface area by BET method, D50 by laser diffraction method, and average fineness by nitrogen adsorption method.
  • the pore diameter and pore volume were measured. The results are shown in Table 2.
  • the radio wave absorption characteristics were also the same as in Example 1-1. An electromagnetic wave absorption characteristic exceeding 1-20 dB was obtained in the above region.
  • Example 2-1 No Yes 12.1 8.9 10.3 0.033
  • Example 2-2 Yes 15.3 8.0 13.4 0.032
  • Example 2-3 No Yes 17.5 8.7 16.5 0.047
  • Example 2-4 Yes 16.4 9.2 13.4 0.054
  • Example 2-5 Yes 9.7 7.1 14.6 0.035
  • Example 2 — 10 No Yes 11.5 4.7 15.5 0.042

Abstract

A porous iron powder that excels in the radio wave absorption performance in 1-20 GHz high-frequency region, being highly effective in reduction of radio disturbance in this region; and a process for producing the same. There is provided a porous iron powder composed mainly of iron which has a specific surface area as large as 4 m2/g or more and an average particle diameter of 2 to 90 μm and has a peak ascribed to α-Fe confirmed by X-ray diffractometry. This porous iron powder can be obtained by, for example, a method including immersing an alloy composed mainly of iron in an acid solution to thereby leach specified elements and reducing the remaining solid matter.

Description

明 細 書  Specification
多孔質鉄粉、その製造方法及び電波吸収体  Porous iron powder, method for producing the same, and radio wave absorber
技術分野  Technical field
[0001] 本発明は、優れた電波吸収特性を有する電波吸収体や、土壌改良等に利用可能 な多孔質鉄粉、その製造方法及びそれを用いた電波吸収体に関する。  The present invention relates to a radio wave absorber having excellent radio wave absorption characteristics, a porous iron powder that can be used for soil improvement, a method for producing the same, and a radio wave absorber using the same.
背景技術  Background art
[0002] 近年、小型の携帯機器の開発や、その高機能化が急速に図られ、更に、高速大容 量情報の伝送の必要性から、利用周波数領域が GHz帯域まで拡大している。特殊な 用途に限られていた携帯機器も一層の小型化と低価格ィ匕により、汎用機器として一 般に携帯されるようになり、従来にも増して電波の空間への放射が拡大している。こ の外部に放射された電波は電子回路等に誤動作を生じさせるため、深刻な問題とな つている。この問題を解決するために、外部力も飛来する電波及び機器内の電子部 品から発生する電波を吸収するために種々の電波吸収体が開発されている。  [0002] In recent years, the development of small portable devices and the enhancement of their functions have been rapidly progressed, and the use frequency range has been expanded to the GHz band due to the necessity of transmitting high-speed and large-capacity information. Mobile devices, which were limited to special applications, are now generally carried as general-purpose devices due to further downsizing and low cost, and the radiation of radio waves into the space has increased compared to conventional devices. Yes. The radio waves radiated to the outside cause malfunctions in electronic circuits, and are becoming serious problems. In order to solve this problem, various radio wave absorbers have been developed to absorb radio waves that also come from external forces and radio waves generated from electronic components in the equipment.
数 10MHz〜lGHz帯域において有効な電波吸収体としては、例えば、フェライト、純 鉄、センダスト、希土類磁石等の磁性体が知られている。該磁性体の電波吸収性能 を、より高い周波数領域まであげるために、磁性体のアスペクト比の工夫や特殊元素 の添カ卩が試みられている。例えば、純鉄、センダスト等をアトマイズ法で微細粒とした 後、アトライタ等を用いて偏平体に加工したものが市販されている。  For example, magnetic materials such as ferrite, pure iron, sendust, and rare earth magnets are known as electromagnetic wave absorbers effective in the band of several tens of MHz to 1 GHz. In order to increase the electromagnetic wave absorption performance of the magnetic material to a higher frequency range, attempts have been made to devise the aspect ratio of the magnetic material and to add special elements. For example, pure iron, sendust, etc., which are made into fine particles by the atomizing method and then processed into a flat body using an attritor or the like, are commercially available.
[0003] 特開 2005— 5286号公報には、希土類磁石の製造ないし廃却に伴い発生する希土 類 遷移金属系スクラップ力 電波吸収用磁性体を製造する方法が開示されている 。具体的には、希土類元素のみを酸ィ匕し、他の元素は酸化しない温度域で熱処理、 所謂、不均化反応処理をすることによって、遷移金属系磁性粒子と希土類酸化物粒 子との複合体からなる電波吸収用磁性体粉末を製造する方法が示されて!/ヽる。該方 法で製造した電波吸収用磁性体粉末は、希土類元素の含有量が多いので、希土類 の有効利用に係る問題があり、更には、電波吸収を担う a Feの割合が少なぐその 性能が充分とは言えない。  [0003] Japanese Patent Application Laid-Open No. 2005-5286 discloses a method of manufacturing a rare earth-transition metal-based scrap force electromagnetic wave absorbing magnetic material generated when a rare earth magnet is manufactured or discarded. Specifically, the heat treatment in a temperature range where only the rare earth element is oxidized and the other elements are not oxidized, that is, the so-called disproportionation reaction treatment is performed, so that the transition metal magnetic particles and the rare earth oxide particles are mixed. A method for producing a magnetic powder for electromagnetic wave absorption comprising a composite is shown! The electromagnetic wave absorbing magnetic powder produced by this method has a large amount of rare earth elements, and thus has a problem related to the effective use of rare earths. That's not enough.
希土類元素の添カ卩量の少ない磁石として、特開平 7— 54106号公報には、 Nd及び B をそれぞれ l〜10at%含有する Nd— Fe— B系永久磁石が開示されている。し力し、該 文献には、このような磁石材料の電波吸収性能及び電波吸収体としての使用につい ては記載がない。 As a magnet with a small amount of rare earth element additive, JP-A-7-54106 discloses Nd and B Nd—Fe—B permanent magnets containing 1 to 10 at% of each are disclosed. However, this document does not describe the electromagnetic wave absorption performance and use of such a magnet material as an electromagnetic wave absorber.
特開平 11— 354973号公報には、 Fe基扁平状ナノ結晶軟磁性体粉末を用いた電磁 波吸収体が記載されている。該磁性体粉末は、厚さ 3 m以下、平均粒径 20〜50 m であることが好ましいこと、扁平形状が必須であること、更に、粉末粒子間を電気的に 絶縁することが重要であることが示されている。また、水アトマイズ法でアモルファス合 金粉末を作製し、熱処理によって 10nmの微細組織を生成させることにより、ナノ結晶 軟磁性体粉末が得られることが示されて 、る。  Japanese Patent Application Laid-Open No. 11-354973 describes an electromagnetic wave absorber using an Fe-based flat nanocrystalline soft magnetic powder. The magnetic powder preferably has a thickness of 3 m or less and an average particle size of 20 to 50 m, a flat shape is essential, and it is important to electrically insulate the powder particles. It has been shown. In addition, it is shown that nanocrystalline soft magnetic powder can be obtained by producing amorphous alloy powder by water atomization method and generating a 10 nm microstructure by heat treatment.
また、カルボ-ル鉄は、透磁率が高ぐ電波吸収用磁性材料として優れていること が知られている。し力し、該カルボ-ル鉄は、 1GHz近辺までの電波吸収特性しか示 さず、形状が球状であり、更に粒度分布が狭ぐ粒径が小さいために榭脂等との混合 による高密度化が難しいという欠点がある。最近、平均粒径が 1 m以下の超微粒純 鉄粉末が開発され、優れた電波吸収特性を示すことが報告されている。このような粉 末は、 9GHzの周波数帯において反射損失は— 35dBを超える力 その時の板厚が 3 mmと大き 、ため、小型機器用の電波吸収体として適さな!/、。  In addition, it is known that carbo iron is excellent as a magnetic material for radio wave absorption with high permeability. However, the carbo iron has only a radio wave absorption characteristic up to around 1 GHz, has a spherical shape, and has a narrow particle size distribution and a small particle size. There is a drawback that it is difficult to make. Recently, ultrafine pure iron powder with an average particle size of 1 m or less was developed and reported to exhibit excellent radio wave absorption characteristics. Such powders have a reflection loss of over 35 dB in the 9 GHz frequency band, and the plate thickness at that time is as large as 3 mm.
上述の磁性体粉末は、エポキシ榭脂バインダー等と一定の割合で配合して混練し 、金属板等を基板として所定の厚さのシートあるいはボード状に成形し、電波吸収体 として使用される。電波が最も良好に吸収される共鳴周波数は、電波吸収体の板厚 に依存し、所望の電波の周波数に合わせて電波吸収体の厚さが調整される。このよ うな電波吸収体としては、例えば、フ ライト焼結体、フ ライトゴム複合体、偏平純鉄 含有榭脂、偏平センダスト含有榭脂、カルボ-ル鉄ゴム複合体がある。  The above-mentioned magnetic powder is blended and kneaded with an epoxy resin binder or the like at a certain ratio, formed into a sheet or board having a predetermined thickness using a metal plate or the like as a substrate, and used as a radio wave absorber. The resonance frequency at which radio waves are best absorbed depends on the thickness of the radio wave absorber, and the thickness of the radio wave absorber is adjusted according to the desired radio wave frequency. Examples of such an electromagnetic wave absorber include a bright sintered body, a bright rubber composite, a flat pure iron-containing resin, a flat sendust-containing resin, and a carbo iron rubber composite.
ところで、上記磁性体粉末としての鉄粉は、土壌改良剤としても使用できることが知 られている。鉄粉は、湿潤状態の土壌中において、 Feイオンが溶け出し、該 Feイオン 力 土壌中のテトラクロロエチレン等の有機ハロゲンィ匕合物と反応して、エチレン等の 有機物とハロゲンに分解し、無害化することができる。  Incidentally, it is known that the iron powder as the magnetic powder can be used as a soil conditioner. In iron powder, Fe ions dissolve out in wet soil, react with organic halogen compounds such as tetrachloroethylene in the Fe ion force, and decompose into organic substances such as ethylene and halogens to make them harmless. be able to.
例えば、特開 2000— 80401号公報には、有害物除去処理用鉄粉として、 P、 S、 Bの 一種以上を含有する鉄粉が提案されている。該鉄粉は、比表面積が 0.01〜1.0m2Zg 、粒子径が 1〜1000 μ mの範囲が好まし!/、とされて!/、る。 For example, Japanese Patent Application Laid-Open No. 2000-80401 proposes iron powder containing one or more of P, S, and B as iron powder for harmful substance removal treatment. The iron powder has a specific surface area of 0.01 to 1.0 m 2 Zg. The particle size is preferably in the range of 1 to 1000 μm! /
特開昭 57— 4288号公報には、鉄粉をリンィ匕合物が含まれる排水に添加し、鉄粉か ら溶出した鉄イオンとリン酸イオンとを反応させて、リンィ匕合物を排水中から除去でき ることが記載されている。  In JP-A-57-4288, iron powder is added to wastewater containing phosphorus compounds, and iron ions eluted from the iron powder react with phosphate ions to drain the phosphorus compounds. It is described that it can be removed from inside.
近年、土壌改良剤や電波吸収体に広く使用できる材料が種々提案されているが、 その性能は未だ満足しうるものとは言えない。  In recent years, various materials that can be widely used for soil conditioners and radio wave absorbers have been proposed, but their performance is still not satisfactory.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の目的は、優れた電波吸収性能を有し、電波吸収体や土壌改良剤に利用 可能であり、電波吸収体の製造時における榭脂とのなじみにも優れた多孔質鉄粉、 及び該多孔質鉄粉の原料等に使用可能なマグネタイト粉体、更にはこれらを効率的 に製造しうる製造方法を提供することにある。 [0005] An object of the present invention is a porous iron that has excellent radio wave absorption performance, can be used as a radio wave absorber and a soil conditioner, and is also excellent in compatibility with scabbage during production of the radio wave absorber. An object of the present invention is to provide a powder, and a magnetite powder that can be used as a raw material for the porous iron powder, and a production method that can efficiently produce these.
本発明の別の目的は、優れた電波吸収性能を有し、電波吸収体や土壌改良剤に 利用可能な多孔質鉄粉を用い、汎用の携帯電子機器の送受信に使用される、 1〜20 GHz帯域等の電波を、薄い形態であっても有効に吸収することが可能な電波吸収体 を提供することにある。  Another object of the present invention is to use porous iron powder that has excellent radio wave absorption performance and can be used for radio wave absorbers and soil conditioners, and is used for transmission and reception of general-purpose portable electronic devices. An object of the present invention is to provide a radio wave absorber capable of effectively absorbing radio waves in the GHz band or the like even in a thin form.
課題を解決するための手段  Means for solving the problem
[0006] 本発明によれば、組成が鉄を主成分とし、比表面積が 4m2Zg以上、平均粒子径が 2〜90 /z mであり、 X線回折により a—Feに由来するピークが確認できる多孔質鉄粉 が提供される。 [0006] According to the present invention, the composition is mainly composed of iron, the specific surface area is 4 m 2 Zg or more, the average particle size is 2 to 90 / zm, and a peak derived from a-Fe is confirmed by X-ray diffraction. A porous iron powder is provided.
また本発明によれば、上記多孔質鉄粉を含む電波吸収体が提供される。 更に本発明によれば、任意の M元素を含有する鉄を主成分とする Fe— M含有合金 を準備する工程 (1A)と、該 Fe— M含有合金カゝら M元素を溶出し、 Feを主成分とする Fe 含有固形物を得るために、該 Fe— M含有合金を酸溶液に浸漬する工程 (1B)と、該 Fe 含有固形物を還元する工程 (1C)とを含む、 X線回折により oc Feに由来するピーク が確認できる、多孔質鉄粉の製造方法 (以下、方法 (1)という)が提供される。  Moreover, according to this invention, the electromagnetic wave absorber containing the said porous iron powder is provided. Further, according to the present invention, the step (1A) of preparing an Fe—M-containing alloy containing iron containing any M element as a main component, and eluting the M element from the Fe—M-containing alloy, A step (1B) of immersing the Fe—M-containing alloy in an acid solution and a step (1C) of reducing the Fe-containing solid matter to obtain an Fe-containing solid matter comprising, as a main component, an X-ray Provided is a method for producing porous iron powder (hereinafter referred to as method (1)) in which a peak derived from oc Fe can be confirmed by diffraction.
[0007] 更にまた本発明によれば、任意の M元素を含有する鉄を主成分とする Fe— M含有 合金を準備する工程 (2A)と、該 Fe— M含有合金カゝら M元素を溶出し、 Fe水酸化物を 主成分とする Fe水酸化物含有固形物を得るために、該 Fe— M含有合金を酸溶液に 浸漬する工程 (2B— 1)と、マグネタイト粉末を得るために、該 Fe水酸化物含有固形物 をアルカリ溶液に浸漬する工程 (2B— 2)と、該マグネタイト粉末を還元する工程 (2C)と を含む、 X線回折により oc—Feに由来するピークが確認できる、多孔質鉄粉の製造 方法 (以下、方法 (2)という)が提供される。 [0007] Furthermore, according to the present invention, a step (2A) of preparing an Fe-M-containing alloy containing iron as a main component containing an arbitrary M element, and the M-element from the Fe-M-containing alloy are prepared. The Fe hydroxide A step (2B-1) of immersing the Fe-M-containing alloy in an acid solution to obtain a Fe hydroxide-containing solid as a main component, and a Fe hydroxide-containing solid to obtain a magnetite powder Of porous iron powder in which a peak derived from oc-Fe can be confirmed by X-ray diffraction, comprising a step of immersing an object in an alkaline solution (2B-2) and a step of reducing the magnetite powder (2C) A method (hereinafter referred to as method (2)) is provided.
また本発明によれば、任意の M元素を含有する鉄を主成分とする Fe— M含有合金 を準備する工程 (3A)と、マグネタイトを主成分とする中間マグネタイト固形物を得るた めに、該 Fe— M含有合金をアルカリ溶液に浸漬する工程 (3B— 1)と、 M元素を溶出さ せ、マグネタイト粉末を得るために、該中間マグネタイト固形物を酸溶液に浸漬する 工程 (3B— 2)と、該マグネタイト粉末を還元する工程 (3C)とを含む、 X線回折により a Feに由来するピークが確認できる、多孔質鉄粉の製造方法 (以下、方法 (3)という) が提供される。  Further, according to the present invention, in order to obtain a step (3A) of preparing an Fe-M-containing alloy mainly containing iron containing any M element, and an intermediate magnetite solid matter mainly containing magnetite, A step of immersing the Fe-M containing alloy in an alkaline solution (3B-1) and a step of immersing the intermediate magnetite solid in an acid solution to elute M element and obtain a magnetite powder (3B-2) And a step (3C) of reducing the magnetite powder, a method for producing a porous iron powder (hereinafter referred to as method (3)) in which a peak derived from a Fe can be confirmed by X-ray diffraction is provided. The
[0008] 更に本発明によれば、電波吸収体を製造するための上記多孔質鉄粉の使用が提 供される。  [0008] Furthermore, according to the present invention, use of the porous iron powder for producing a radio wave absorber is provided.
更にまた本発明によれば、比表面積が 4m2Zg以上、平均粒子径が 2〜90 /ζ πιであ るマグネタイト粉末が提供される。 Furthermore, according to the present invention, a magnetite powder having a specific surface area of 4 m 2 Zg or more and an average particle size of 2 to 90 / ζ πι is provided.
また本発明によれば、上記工程 (2Α)と、工程 (2Β— 1)と、工程 (2Β— 2)とを含むカゝ、上 記工程 (3Α)と、工程 (3Β— 1)と、工程 (3Β— 2)とを含む、マグネタイト粉末の製造方法 が提供される。  Further, according to the present invention, the above step (2 (), the step (2Β-1), the step (2Β-2), the above step (3Α), the step (3Β-1), There is provided a method for producing a magnetite powder, comprising the step (3-2).
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]実施例 1— 1で調製した多孔質鉄粉の表面の SEM像の写しである。 [0009] FIG. 1 is a copy of the SEM image of the surface of the porous iron powder prepared in Example 1-1.
[図 2]実施例 1 1で調製した多孔質鉄粉を用いて製造した電波吸収体の電波吸収 特性を示す図である。  FIG. 2 is a graph showing the radio wave absorption characteristics of a radio wave absorber manufactured using the porous iron powder prepared in Example 11 1.
[図 3]比較例 1 1で調製した扁平ィ匕したアトマイズ鉄粉を用いて製造した電波吸収 体の電波吸収特性を示す図である。  FIG. 3 is a diagram showing the radio wave absorption characteristics of a radio wave absorber manufactured using the flattened atomized iron powder prepared in Comparative Example 11.
[図 4]製造例 2において 300°Cに加熱して得られたマグネタイト粉末の X線回折スぺク トルを示す図である。  FIG. 4 is a view showing an X-ray diffraction spectrum of magnetite powder obtained by heating to 300 ° C. in Production Example 2.
[図 5]製造例 2において 400°Cに加熱して得られたマグネタイト粉末の X線回折スぺク トルを示す図である。 [Fig. 5] X-ray diffraction spectrum of magnetite powder obtained by heating to 400 ° C in Production Example 2. FIG.
[図 6]製造例 2において調製したマグネタイト粉末の比表面積と加熱温度の関係及び 平均粒子径と加熱温度の関係を表すグラフである。  FIG. 6 is a graph showing the relationship between the specific surface area of the magnetite powder prepared in Production Example 2 and the heating temperature, and the relationship between the average particle size and the heating temperature.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明を更に詳細に説明する。  [0010] Hereinafter, the present invention will be described in more detail.
本発明の多孔質鉄粉は、複数の細孔を有し、且つ大きな比表面積を有する。この ため、湿潤状態において有機ハロゲンィ匕合物を分解するのに極めて有効であり、汚 染土壌、排水の浄化剤として有用である。  The porous iron powder of the present invention has a plurality of pores and a large specific surface area. Therefore, it is extremely effective for decomposing organic halogen compounds in a wet state, and is useful as a purification agent for contaminated soil and waste water.
本発明の多孔質鉄粉の該比表面積は、 4m2Zg以上、好ましくは 5m2Zg以上、更に 好ましくは 8m2/g以上であり、その上限は特に限定されないが、通常 30m2/g程度で ある。該比表面積は、窒素ガスを用いた BET法で測定した値である。比表面積が 4m2 Zgより小さいと、渦電流が大きくなり、所望の電波吸収性能が得られない。 The specific surface area of the porous iron powder of the present invention is 4 m 2 Zg or more, preferably 5 m 2 Zg or more, more preferably 8 m 2 / g or more, and the upper limit is not particularly limited, but is usually about 30 m 2 / g. It is. The specific surface area is a value measured by a BET method using nitrogen gas. If the specific surface area is less than 4 m 2 Zg, the eddy current increases and the desired radio wave absorption performance cannot be obtained.
[0011] 本発明の多孔質鉄粉の平均粒子径は、 2〜90 μ m、好ましくは 5〜15 μ mである。該 平均粒子径は、レーザー回折法で測定した D50の値である。 D50力 ^ /z mより小さいと 、電波吸収体を調製する際において、榭脂との混合が困難になり、一方、 D50が 90 mより大きいと電波吸収体への充填率が低下し、電波吸収性能が低下する。  [0011] The porous iron powder of the present invention has an average particle size of 2 to 90 μm, preferably 5 to 15 μm. The average particle diameter is a value of D50 measured by a laser diffraction method. If the D50 force is less than ^ / zm, it becomes difficult to mix with the resin when preparing the radio wave absorber. On the other hand, if the D50 is greater than 90 m, the filling rate of the radio wave absorber decreases and the radio wave absorber Performance decreases.
[0012] 本発明の多孔質鉄粉は、上述の比表面積及び平均粒子径に代表される形状の特 異性を有し、その組成は、鉄を主成分、好ましくは 85at%以上含む。多孔質鉄粉の各 々の用途における種々の特性を向上させる目的で、また、目的の有無に拘らず、多 孔質鉄粉の各々の用途における使用を妨げない範囲で Fe以外の成分を含有するこ とがでさる。  [0012] The porous iron powder of the present invention has specific characteristics such as the above-mentioned specific surface area and average particle diameter, and the composition contains iron as a main component, preferably 85 at% or more. Contains components other than Fe for the purpose of improving various properties in each application of porous iron powder and, regardless of whether or not there is a purpose, the use of porous iron powder in each application is not hindered. It can be done.
Fe以外の成分としては、本発明の多孔質鉄粉を製造するために、後述する希土類 —鉄合金スクラップを原料として用いる場合、原料に由来する、例えば、 Yを含む希 土類元素、 B、 C、 N、 Co、 Al、 Cu、 Ga、 Ti、 Zr、 Nb、 V、 Cr、 Mo、 Mn、 Ni、 Si、 Mg及び C aの少なくとも 1種の元素を含有することができる。該鉄以外の元素の含有量は、通常 15at%以下、好ましくは 0.01〜15at%である。該含有量が、 0.01at%未満では含有す る効果が十分でなぐ 15at%より多いと電波吸収体とした際に、電波吸収特性が低下 し、更には経済性が低下する恐れがある。 [0013] 本発明の多孔質鉄粉は、電波吸収体に用いる場合等において、表層部の鉄の粒 子が渦電流を発生させ、電波吸収性能が低下する恐れがあるので、該渦電流の発 生を抑制し、また発火し難くして取扱いを容易とするために、多孔質の表層部の一部 若しくは全部が酸化され、表層部に酸化物が存在して ヽることが好ま ヽ。 As components other than Fe, when the rare earth-iron alloy scrap described later is used as a raw material for producing the porous iron powder of the present invention, it is derived from the raw material, for example, a rare earth element including Y, B, It can contain at least one element of C, N, Co, Al, Cu, Ga, Ti, Zr, Nb, V, Cr, Mo, Mn, Ni, Si, Mg, and Ca. The content of elements other than iron is usually 15 at% or less, preferably 0.01 to 15 at%. If the content is less than 0.01 at%, the effect of inclusion is insufficient. If the content is more than 15 at%, the radio wave absorption characteristics may be deteriorated and the economy may be further deteriorated when a radio wave absorber is formed. [0013] When the porous iron powder of the present invention is used for a radio wave absorber, the iron particles in the surface layer portion may generate eddy currents, which may reduce radio wave absorption performance. In order to suppress the occurrence and make it difficult to ignite and facilitate handling, it is preferable that a part or all of the porous surface layer is oxidized and an oxide exists in the surface layer.
本発明の多孔質鉄粉の組成において、上記 Fe以外の元素のうち、 Yを含む希土類 元素、 Al、 Ti、 Si、 V、 Cr、 Nb、 Zr、 Mg又は Mnは、酸素との親和力が Feよりも大きいた め、これらを含ませることによって、多孔質鉄粉の表層部に酸化物層を形成し易いの で好ましい。特に希土類元素を l 5at%含有させることが該酸ィ匕物層の形成のし易 さの点で好ましい。希土類元素としては、 Nd、 Pr、 Tb、 Dyを含むことが好ましい。また 、純鉄は透磁率が大きぐ電波吸収用磁性体として優れている力 Co、 Al、 Si、 Ni等 の少なくとも 1種の元素を含有させることによって、更に高透磁率ィ匕が図れる。従って 、本発明の多孔質鉄粉は、これら元素の少なくとも 1種を含むことが好ましい。  In the composition of the porous iron powder of the present invention, among the elements other than Fe, rare earth elements including Y, Al, Ti, Si, V, Cr, Nb, Zr, Mg or Mn have an affinity for oxygen of Fe. Therefore, the inclusion of these is preferable because an oxide layer is easily formed on the surface layer portion of the porous iron powder. In particular, the inclusion of 5 at% of a rare earth element is preferable from the viewpoint of easy formation of the oxide layer. The rare earth element preferably contains Nd, Pr, Tb, Dy. In addition, pure iron has a high magnetic permeability and is excellent as a magnetic material for electromagnetic wave absorption. By adding at least one element such as Co, Al, Si, Ni, etc., high permeability can be achieved. Therefore, the porous iron powder of the present invention preferably contains at least one of these elements.
[0014] 本発明の多孔質鉄粉は、複数の細孔を有する多孔質であって、該多孔質鉄粉の 平均細孔径は、表皮効果が更に大きくなる点から、通常 lOOnm以下、好ましくは 50nm 以下、最も好ましくは 20 以下である。その下限は特に限定されないが、通常 5nm程 度である。  [0014] The porous iron powder of the present invention is porous having a plurality of pores, and the average pore diameter of the porous iron powder is usually lOOnm or less, preferably from the viewpoint of further increasing the skin effect. 50 nm or less, most preferably 20 or less. The lower limit is not particularly limited, but is usually about 5 nm.
本発明の多孔質鉄粉の細孔容積は、粒子内部に空気を多く含有させることができ 、電波吸収体とした際の軽量ィ匕を可能とするために、通常 O.OlmlZg以上、好ましくは 0.02mlZg以上である。該細孔容積の上限は特に限定されないが、通常 O.lOmlZg程 度である。  The pore volume of the porous iron powder of the present invention is usually greater than or equal to O.OlmlZg, preferably in order to allow a large amount of air to be contained inside the particles and to enable light weight when used as a radio wave absorber. It is 0.02mlZg or more. The upper limit of the pore volume is not particularly limited, but is usually about O.lOmlZg.
本発明において、上記平均細孔径及び細孔容積は、窒素吸着法により求めた値で ある。  In the present invention, the average pore diameter and pore volume are values obtained by a nitrogen adsorption method.
本発明の多孔質鉄粉は、 X線回折により、電波吸収作用を有する ex Feに由来す るピークが確認できる。  In the porous iron powder of the present invention, a peak derived from ex Fe having a radio wave absorption action can be confirmed by X-ray diffraction.
[0015] 本発明の多孔質鉄粉は、例えば、本発明の方法 (1 3)により得ることができる他、 Feイオンを含有する溶液を原料として、沈澱法により得た水酸化物、炭酸塩等の Fe 塩を酸化、還元する方法によっても得られる。  [0015] The porous iron powder of the present invention can be obtained, for example, by the method (13) of the present invention, or a hydroxide or carbonate obtained by precipitation using a solution containing Fe ions as a raw material. It can also be obtained by oxidation and reduction of Fe salts such as
[0016] 本発明の方法 (1)では、任意の M元素を含有する鉄を主成分とする Fe— M含有合金 を準備する工程 (1A)を含む。 [0016] In the method (1) of the present invention, an Fe-M-containing alloy mainly containing iron containing any M element Including the step (1A) of preparing
Fe— M含有合金における M元素は、後述する工程において酸溶液に溶出しうるも のでなければならない。該 M元素としては、例えば、 Yを含む希土類元素、アルカリ土 類金属、 P、 C、 S、 Al、 Ti、 Si、 Mn、 Co、 B、 Cu及び Gaの少なくとも 1種以上の元素が挙 げられる。  The element M in the Fe—M-containing alloy must be capable of eluting into the acid solution in the process described below. Examples of the M element include at least one element of rare earth elements including Y, alkaline earth metals, P, C, S, Al, Ti, Si, Mn, Co, B, Cu, and Ga. It is done.
Fe— M含有合金は、最終的に得られる多孔質鉄粉の種々の特性を向上する目的、 または特性を阻害しな 、範囲で、上記 M元素及び Fe以外の他の元素を含んで ヽても 良い。  The Fe-M-containing alloy can contain various elements other than the above M element and Fe within the range of improving the various characteristics of the porous iron powder to be finally obtained, or without impairing the characteristics. Also good.
Fe— M含有合金において、各元素の含有割合は特に限定されないが、 Feの含有 割合は、通常、 50〜99at%程度であり、 M元素の含有割合は、通常 l〜50at%である  In Fe-M containing alloys, the content of each element is not particularly limited, but the content of Fe is usually about 50 to 99 at%, and the content of M element is usually 1 to 50 at%
[0017] Fe— M含有合金は、例えば、所定の組成となるように原料として準備した M元素、 F e、必要によりその他の元素の単金属、原料合金を溶解した後、凝固させることにより 得られる。 [0017] The Fe-M-containing alloy is obtained by, for example, dissolving M element, Fe prepared as a raw material so as to have a predetermined composition, a single metal of other elements if necessary, and a raw material alloy, and then solidifying. It is done.
前記溶解は、例えば、高周波溶解法、アーク溶解法等により実施できる。また、前 記凝固は、例えば、モールド法、アトマイズ法、ストリップキャスト法等に実施できる。  The melting can be performed by, for example, a high frequency melting method, an arc melting method, or the like. The solidification can be performed by, for example, a molding method, an atomizing method, a strip casting method, or the like.
Fe— M含有合金は、次工程以降における作業効率を上げること、最終的に得られ る多孔質鉄粉の粒子径を調整することを目的に、予め、数 mm以下、好ましくは 0.1mm 以下程度に粉砕しておくことが有効である。  Fe-M-containing alloys are several mm or less in advance and preferably about 0.1 mm or less in advance for the purpose of improving the work efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to pulverize it.
[0018] Fe— M含有合金としては、例えば、工業的に広く用いられている希土類一鉄一ホウ 素系の永久磁石用合金、希土類一鉄 窒素系の永久磁石用合金、希土類一鉄 ケィ素系の磁気冷凍材料用合金が挙げられるがこれらに限定されず、磁石、磁気冷 凍材料等に加工する際の、不要部の切除、研削、研磨で発生した合金屑等 (以下、 希土類—鉄合金スクラップという)を用いることができる。これらの場合、主に希土類元 素が M元素に相当する。 [0018] Examples of the Fe-M-containing alloy include rare earth-iron-boron-based permanent magnet alloys, rare-earth-iron-iron-based permanent magnet alloys, rare-earth-iron-iron alloys widely used in industry. Alloys for magnetic refrigeration materials include, but are not limited to, alloy scrap generated by cutting, grinding and polishing of unnecessary parts when processing into magnets, magnetic refrigeration materials, etc. (hereinafter referred to as rare earth-iron) Alloy scrap). In these cases, the rare earth element mainly corresponds to the M element.
[0019] 本発明の方法 (1)では、工程 (1A)で準備した Fe— M含有合金力 M元素を溶出し、 Feを主成分とする Fe含有固形物を得るために、該 Fe— M含有合金を酸溶液に浸漬 する工程 (1B)を含む。 工程 (IB)に用いる酸溶液としては、例えば、塩酸、硝酸、硫酸、フッ酸又はそれらの 混酸が挙げられる。酸溶液の濃度は、通常 0.1〜10molZl、好ましくは l〜5molZlで ある。酸溶液の使用量は、例えば、 Fe— M含有合金中の M元素のモル数の 0.1〜10 倍量である。反応温度は、通常 30°C以上、好ましくは 40°C以上、より好ましくは 60°C 以上である。反応時間は通常 1〜100時間、好ましくは 10〜24時間である。 In the method (1) of the present invention, the Fe—M-containing alloy force prepared in the step (1A) is eluted to obtain an Fe-containing solid material containing Fe as a main component. A step (1B) of immersing the alloy containing in an acid solution. Examples of the acid solution used in step (IB) include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and mixed acids thereof. The concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZl. The amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of the M element in the Fe—M containing alloy. The reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher. The reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
[0020] 工程 (1B)において、 M元素を選択的に溶出させることにより、比表面積の大きい Fe 含有固形物を得ることができる。該 Fe含有固形物中の Feの一部又は全部は、酸ィ匕物 及び Z又は水酸化物の状態である。また、上記浸漬条件等を適宜制御することによ り、 M元素の一部を残存させ、また Fe元素の一部を溶出させることもできる。 Fe含有固 形物は、酸溶液から濾別し、必要に応じて洗浄することができる。  [0020] In the step (1B), an Fe-containing solid material having a large specific surface area can be obtained by selectively eluting the element M. Part or all of Fe in the Fe-containing solid is in the form of an oxide and Z or hydroxide. In addition, by appropriately controlling the above immersion conditions and the like, a part of the M element can remain and a part of the Fe element can be eluted. The Fe-containing solid can be filtered off from the acid solution and washed if necessary.
[0021] 得られる Fe含有固形物は、主に Feの水酸化物や酸化物、一部残存した M元素及 びその他の元素の酸化物や水酸化物、 Fe、一部残存した M元素及びその他の元素 と用いた酸の陰イオンとの化合物、更には水和水、付着水等の水分を含有する。 工程 (1A)で準備する Fe— M含有合金が、例えば、希土類—鉄—ホウ素系の永久磁 石用合金であり、前記酸溶液として塩酸を用いた場合、最終的に得られる多孔質鉄 粉に希土類のォキシ塩ィ匕物を含有させることができる。希土類ォキシ塩ィ匕物は、吸 湿性がなぐ従って水への溶解度が低いという性質を有する。このような希土類のォ キシ塩ィ匕物は、特開 2005— 5286号公報に開示されている希土類酸ィ匕物と異なり、吸 湿による水酸ィ匕物形成が生じるといった欠点を示さない。  [0021] The resulting Fe-containing solid is mainly composed of Fe hydroxide and oxide, partially remaining M element and other element oxide and hydroxide, Fe, partially remaining M element and It contains compounds such as other elements and acid anions used, and water such as hydration water and adhesion water. The porous iron powder finally obtained when the Fe-M-containing alloy prepared in the step (1A) is, for example, a rare earth-iron-boron based permanent magnet alloy and hydrochloric acid is used as the acid solution. May contain rare earth oxysalts. Rare earth oxysalts have the property of lack of hygroscopicity and therefore low solubility in water. Unlike the rare earth oxides disclosed in JP-A-2005-5286, such rare earth oxysalts do not exhibit the drawback of forming hydroxides due to moisture absorption.
[0022] Fe— M含有合金を酸溶液に浸漬するにあたって、 M元素を選択的に溶出させるに は、浸漬する Fe— M含有合金を酸ィ匕して、 Feを酸溶液に難溶な酸化物又は水酸ィ匕 物とすることが好ましい。該酸化は、例えば、 Fe— M含有合金を、予め大気中で焼成 する方法、 Fe— M含有合金を水等に分散させたスラリーとし、空気等の酸素を含有す るガスを吹き込む方法により行うことができる。  [0022] When the Fe-M-containing alloy is immersed in an acid solution, the element M is selectively eluted by oxidizing the immersed Fe-M-containing alloy and oxidizing Fe in an acid solution. It is preferable to use a product or a hydroxide. The oxidation is performed by, for example, a method in which an Fe—M-containing alloy is fired in the air in advance, or a method in which a Fe-M-containing alloy is dispersed in water or the like and a gas containing oxygen such as air is blown in. be able to.
[0023] 本発明の方法 (1)は、 Fe含有固形物を還元する工程 (1C)を行うことにより、 X線回折 により ex—Feに由来するピークが確認できる、多孔質鉄粉、好ましくは前述の本発明 の多孔質鉄粉が得られる。  [0023] The method (1) of the present invention comprises a porous iron powder, preferably a peak derived from ex-Fe, which can be confirmed by X-ray diffraction by performing the step (1C) of reducing the Fe-containing solid. The porous iron powder of the present invention is obtained.
工程 (1C)において還元は、例えば、水素を 3vol%以上含有する雰囲気で実施でき 、好ましくは水素を 5vol%以上含む還元性雰囲気中、 300°C以上の温度で、 1分〜 10 0時間の熱処理することにより行うことができる。 In step (1C), the reduction can be performed, for example, in an atmosphere containing 3 vol% or more of hydrogen. Preferably, it can be carried out by heat treatment at a temperature of 300 ° C. or higher for 1 minute to 100 hours in a reducing atmosphere containing 5 vol% or more of hydrogen.
該還元の後、必要に応じ、多孔質鉄粉の表層部に酸ィ匕物層を形成してもよい。上 述のように酸素との親和力が大き 、希土類元素等を含有して 、る場合は、希土類元 素のみを酸ィ匕し、他の元素は酸化しな 、条件で不均化反応処理を行うこともできる。  After the reduction, if necessary, an oxide layer may be formed on the surface layer of the porous iron powder. As described above, when it has a high affinity for oxygen and contains rare earth elements, etc., the disproportionation reaction treatment is performed under the conditions that only the rare earth elements are oxidized and the other elements are not oxidized. It can also be done.
[0024] 本発明の方法 (1)においては、工程 (1B)の後、工程 (1C)の前に、 Fe含有固形物を乾 燥又は酸化させるために加熱する工程を含むことが好ま U、。上述の Fe含有固形物 は、水和水、付着水等の水分を含有する。含有する水分が多すぎると工程 (1C)の還 元において、比表面積が小さくなることがあるので、上記加熱工程を行うことが好まし い。該加熱工程は、 Fe含有固形物の性状に応じて、適宜、温度、時間を設定して行 うことができる。 [0024] The method (1) of the present invention preferably includes a step of heating to dry or oxidize the Fe-containing solid after step (1B) and before step (1C) U, . The above-mentioned Fe-containing solid contains water such as hydration water and adhesion water. Since the specific surface area may be reduced in the reduction of the step (1C) when the moisture content is too much, it is preferable to perform the heating step. The heating step can be performed by appropriately setting the temperature and time according to the properties of the Fe-containing solid material.
また Fe含有固形物が、水酸化物を含む場合も、適宜、温度、時間を設定して加熱 し、酸ィ匕させることができる。加熱、酸ィ匕は公知の方法により大気中で行うことができ る。  Also, when the Fe-containing solid contains a hydroxide, it can be heated and oxidized by setting the temperature and time appropriately. Heating and acidification can be performed in the atmosphere by a known method.
[0025] 本発明の方法 (1)における工程 (1B)において、溶出される M元素は、公知の沈澱分 別法や溶媒抽出法等で回収 ·再利用することができ、特に、 Fe— M含有合金として希 土類一鉄合金スクラップを用いた場合、希土類元素等の有効金属を回収することも できる。  [0025] The element M eluted in step (1B) of the method (1) of the present invention can be recovered and reused by a known precipitation fractionation method, solvent extraction method, etc., and in particular, Fe-M When rare earth ferrous alloy scrap is used as the alloy, effective metals such as rare earth elements can be recovered.
[0026] 本発明の方法 (2)は、任意の M元素を含有する鉄を主成分とする Fe— M含有合金を 準備する工程 (2A)を含む。該工程 (2A)は、上述の方法 (1)における工程 (1A)と同様に 行うことができる。しかし、方法 (2)では、次工程において Fe水酸ィ匕物含有固形物を得 る必要があるので、工程 (2A)の後、次工程の前に、上述の酸化処理を行うことは好ま しくない。  [0026] The method (2) of the present invention includes a step (2A) of preparing an Fe-M-containing alloy mainly composed of iron containing any M element. The step (2A) can be performed in the same manner as the step (1A) in the method (1) described above. However, in the method (2), since it is necessary to obtain an Fe hydroxide-containing solid in the next step, it is preferable to perform the above oxidation treatment after the step (2A) and before the next step. It ’s not good.
また、 Fe— M含有合金は、次工程以降における作業効率を上げること、最終的に得 られる多孔質鉄粉の粒子径を調整することを目的に、予め、数 mm以下、好ましくは 0. lmm以下程度に粉砕しておくことが有効である。該粉砕工程の前に、最終的に得ら れる多孔質鉄粉の特性を考慮して熱処理工程を行うこともできる。熱処理条件は、例 えば、加熱温度 500〜1200°C、加熱時間 1分〜 24時間の範囲で実施できる力 必要 に応じてこの範囲以外の熱処理を行うこともできる。 In addition, the Fe-M-containing alloy is previously several mm or less, preferably 0.1 mm, for the purpose of increasing the working efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to grind to the following extent. Prior to the pulverization step, a heat treatment step can be performed in consideration of the characteristics of the finally obtained porous iron powder. The heat treatment conditions are, for example, the power that can be implemented in the range of heating temperature 500 to 1200 ° C, heating time 1 minute to 24 hours Depending on the case, heat treatment outside this range can be performed.
[0027] 本発明の方法 (2)は、工程 (2A)で準備した Fe— M含有合金力 M元素を溶出し、 Fe 水酸化物を主成分とする Fe水酸化物含有固形物を得るために、該 Fe— M含有合金 を酸溶液に浸漬する工程 (2B— 1)を含む。 [0027] In the method (2) of the present invention, the Fe—M-containing alloying force M prepared in the step (2A) is eluted to obtain an Fe hydroxide-containing solid material mainly composed of Fe hydroxide. The step (2B-1) of immersing the Fe—M-containing alloy in an acid solution is included.
工程 (2B— 1)に用いる酸溶液としては、例えば、塩酸、硝酸、硫酸、フッ酸又はそれ らの混酸が挙げられる。酸溶液の濃度は、通常 0.1〜10molZl、好ましくは l〜5molZ 1である。酸溶液の使用量は、例えば、 Fe— M含有合金中の M元素のモル数の 0.1〜1 0倍量である。反応温度は、通常 30°C以上、好ましくは 40°C以上、より好ましくは 60°C 以上である。反応時間は通常 1〜100時間、好ましくは 10〜24時間である。  Examples of the acid solution used in the step (2B-1) include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, or a mixed acid thereof. The concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZ1. The amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of M element in the Fe—M containing alloy. The reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher. The reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
[0028] 工程 (2B— 1)における浸漬による反応は、酸素を含有するガスを酸溶液中に吹き込 むことにより効果的に促進される。 [0028] The reaction by immersion in the step (2B-1) is effectively promoted by blowing a gas containing oxygen into the acid solution.
工程 (2B— 1)において、 M元素を選択的に溶出させることにより、比表面積の大きい 、 Fe水酸化物を主成分とする Fe水酸化物含有固形物を得ることができる。  In the step (2B-1), by selectively eluting the element M, an Fe hydroxide-containing solid having a large specific surface area and containing Fe hydroxide as a main component can be obtained.
Fe水酸化物を主成分とするとは、 X線回折スペクトルを測定した際、 Fe水酸化物に 由来する回折ピークが主要なピークとして観察されることを意味する。  “Fe hydroxide as a main component” means that when an X-ray diffraction spectrum is measured, a diffraction peak derived from Fe hydroxide is observed as a main peak.
[0029] 前記 Fe水酸化物含有固形物は、上記浸漬条件等を適宜制御することにより、 M元 素の一部を残存させ、また Fe元素の一部を溶出させることもできる。 Fe含有固形物は 、酸溶液から濾別し、必要に応じて洗浄することができる。 [0029] In the Fe hydroxide-containing solid, by appropriately controlling the above immersion conditions and the like, a part of the M element can remain and a part of the Fe element can be eluted. The Fe-containing solid can be filtered off from the acid solution and washed as necessary.
[0030] 本発明の方法 (2)は、マグネタイト粉末を得るために、該 Fe水酸化物含有固形物を アルカリ溶液に浸漬する工程 (2B— 2)を含む。 [0030] The method (2) of the present invention includes a step (2B-2) of immersing the Fe hydroxide-containing solid in an alkaline solution in order to obtain magnetite powder.
工程 (2B— 2)に用いるアルカリ溶液としては、例えば、アルカリ金属塩の水溶液、ァ ンモユア水溶液又はアンモ-ゥム塩水溶液等が挙げられる。  Examples of the alkali solution used in the step (2B-2) include an aqueous solution of an alkali metal salt, an aqueous ammonia solution or an aqueous ammonium salt solution.
前記アルカリ金属塩としては、例えば、ナトリウム、カリウム、リチウム等のアルカリ金 属の、水酸化物若しくは炭酸塩が挙げられ、特に反応性の点から水酸化リチウム、水 酸ィ匕カリウム、水酸ィ匕ナトリウム等の水酸ィ匕物が望ま 、。  Examples of the alkali metal salt include hydroxides or carbonates of alkali metals such as sodium, potassium, and lithium. From the viewpoint of reactivity, lithium hydroxide, potassium hydroxide, and hydroxide Hydroxide such as sodium is desirable.
前記アンモ-ゥム塩としては、例えば、炭酸アンモ-ゥム、炭酸ナトリウム、炭酸水素 ナトリウムが挙げられる。  Examples of the ammonium salt include ammonium carbonate, sodium carbonate, and sodium hydrogen carbonate.
[0031] 工程 (2B— 2)において、マグネタイト粉末を得るためのアルカリ溶液に浸漬する条件 は、 Fe水酸化物含有固形物の組成、 Fe水酸化物含有固形物の形状等により異なる 力 使用するアルカリ溶液の種類、アルカリ溶液の濃度、アルカリ溶液の使用量、反 応温度、反応時間等を、アルカリ溶液への浸漬による反応によって、マグネタイト粉 末が得られるように適宜決定することができる。 [0031] Conditions for immersing in an alkaline solution to obtain magnetite powder in step (2B-2) Varies depending on the composition of the Fe hydroxide-containing solid, the shape of the Fe hydroxide-containing solid, etc.Type of alkali solution used, concentration of alkali solution, amount of alkali solution used, reaction temperature, reaction time, etc. Can be appropriately determined so that a magnetite powder can be obtained by a reaction by immersion in an alkaline solution.
前記アルカリ溶液の濃度は、例えば、 0.1〜10molZl、好ましくは l〜5molZlである 。アルカリ溶液の使用量は、例えば、 Fe— M含有合金における Fe元素のモル数の 0.1 〜10倍量である。反応温度は、例えば、 30°C以上、好ましくは 40°C以上、より好ましく は 60°C以上である。反応時間は、 1〜100時間、好ましくは 10〜24時間である。  The concentration of the alkaline solution is, for example, 0.1 to 10 molZl, preferably 1 to 5 molZl. The amount of the alkaline solution used is, for example, 0.1 to 10 times the number of moles of Fe element in the Fe—M-containing alloy. The reaction temperature is, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher. The reaction time is 1 to 100 hours, preferably 10 to 24 hours.
アルカリ溶液への浸漬による反応は、大気圧以上に加圧できる反応容器を用いて 加圧下に行うことによって効率的に促進される。また、酸素を含有するガスをアルカリ 溶液中に吹き込むことによつても反応が促進される。  The reaction by immersion in an alkaline solution is efficiently promoted by carrying out the reaction under pressure using a reaction vessel that can be pressurized to atmospheric pressure or higher. The reaction can also be accelerated by blowing oxygen-containing gas into the alkaline solution.
[0032] 工程 (2B— 2)により得られるマグネタイト粉末は、反応溶液から濾別され、必要に応 じて洗浄することができる。マグネタイト粉末は、主に Fe酸ィ匕物、及び一部残存した M 元素、その他の元素の、酸化物や水酸化物、及び一部残存した M元素やその他の 元素と用いた酸の陰イオンとの化合物、並びに水和水、付着水等の水分を含有する [0032] The magnetite powder obtained in the step (2B-2) is filtered off from the reaction solution, and can be washed if necessary. Magnetite powder is mainly composed of Fe oxides, some remaining M elements, other elements, oxides and hydroxides, and some remaining M elements and other elements. And water such as hydration water and adhesion water
[0033] 本発明の方法 (2)においては、工程 (2B— 2)で調製したマグネタイト粉末を還元する 工程 (2C)を含む。 [0033] The method (2) of the present invention includes a step (2C) of reducing the magnetite powder prepared in the step (2B-2).
工程 (2C)における還元は、上述の本発明の方法 (1)における工程 (1C)と同様に行う ことで、目的の多孔質鉄粉を得ることができる。  The target porous iron powder can be obtained by performing the reduction in the step (2C) in the same manner as in the step (1C) in the above-described method (1) of the present invention.
[0034] 工程 (2C)を実施するにあたり、必要に応じて、工程 (2B— 2)で調製したマグネタイト 粉末を 400°C以下の温度に加熱する乾燥工程を行うことができる。 [0034] In carrying out the step (2C), if necessary, a drying step of heating the magnetite powder prepared in the step (2B-2) to a temperature of 400 ° C or lower can be performed.
該乾燥工程は、酸素を含む雰囲気でも不活性ガス雰囲気でも行うことができる。乾 燥温度が 400°Cを越えるとマグネタイトの一部がへマタイトになる。  The drying step can be performed in an atmosphere containing oxygen or an inert gas atmosphere. When the drying temperature exceeds 400 ° C, part of the magnetite becomes hematite.
工程 (2C)に用いるマグネタイト粉末は、へマタイトを含有してもよいが、へマタイトは 、工程 (2C)における還元処理により水蒸気を多く発生させ、その処理に余計なコスト がかかる。従って、へマタイトの生成は少ない方が良ぐ乾燥温度は 400°C以下が好 ましい。 [0035] 本発明の方法 (3)は、任意の M元素を含有する鉄を主成分とする Fe— M含有合金を 準備する工程 (3A)を含む。該工程 (3A)は、上述の方法 (1)における工程 (1A)と同様に 行うことができる。しかし、方法 (3)では、次工程において中間マグネタイト固形物を得 る必要があるので、工程 (3A)の後、次工程の前に、上述の酸化処理を行うことは好ま しくない。 The magnetite powder used in the step (2C) may contain hematite, but hematite generates a large amount of water vapor by the reduction treatment in the step (2C), and the treatment requires extra cost. Therefore, it is better to produce less hematite. The drying temperature is preferably 400 ° C or less. [0035] The method (3) of the present invention includes a step (3A) of preparing an Fe-M-containing alloy mainly containing iron containing any M element. The step (3A) can be performed in the same manner as the step (1A) in the method (1) described above. However, in the method (3), since it is necessary to obtain an intermediate magnetite solid in the next step, it is not preferable to perform the above oxidation treatment after the step (3A) and before the next step.
また、 Fe— M含有合金は、次工程以降における作業効率を上げること、最終的に得 られる多孔質鉄粉の粒子径を調整することを目的に、予め、数 mm以下、好ましくは 0. lmm以下程度に粉砕しておくことが有効である。該粉砕工程の前に、最終的に得ら れる多孔質鉄粉の特性を考慮して熱処理工程を行うこともできる。熱処理条件は、例 えば、加熱温度 500〜1200°C、加熱時間 1分〜 24時間の範囲で実施できる力 必要 に応じてこの範囲以外の熱処理を行うこともできる。  In addition, the Fe-M-containing alloy is previously several mm or less, preferably 0.1 mm, for the purpose of increasing the working efficiency in the subsequent steps and adjusting the particle diameter of the finally obtained porous iron powder. It is effective to grind to the following extent. Prior to the pulverization step, a heat treatment step can be performed in consideration of the characteristics of the finally obtained porous iron powder. The heat treatment conditions are, for example, a force that can be carried out within a heating temperature range of 500 to 1200 ° C. and a heating time range of 1 minute to 24 hours.
[0036] 本発明の方法 (3)は、マグネタイトを主成分とする中間マグネタイト固形物を得るた めに、工程 (3A)にお 、て準備した Fe— M含有合金をアルカリ溶液に浸漬する工程 (3 B— 1)を含む。 [0036] The method (3) of the present invention includes a step of immersing the Fe-M-containing alloy prepared in step (3A) in an alkaline solution in order to obtain an intermediate magnetite solid containing magnetite as a main component. Includes (3 B— 1).
ここで、マグネタイトを主成分とするとは、 X線回折スペクトルを測定した際、マグネタ イトに由来する回折ピークが主要なピークとして観察されることを意味する。  Here, having magnetite as the main component means that when an X-ray diffraction spectrum is measured, a diffraction peak derived from magnetite is observed as a main peak.
[0037] 工程 (3B— 1)に用いるアルカリ溶液としては、例えば、アルカリ金属塩の水溶液、ァ ンモユア水溶液又はアンモ-ゥム塩水溶液が挙げられる。 [0037] Examples of the alkali solution used in the step (3B-1) include an aqueous solution of an alkali metal salt, an aqueous ammonia solution, or an aqueous ammonium salt solution.
前記アルカリ金属塩としては、例えば、ナトリウム、カリウム、リチウム等のアルカリ金 属の、水酸化物若しくは炭酸塩が挙げられ、特に反応性の点から水酸化リチウム、水 酸ィ匕カリウム、水酸ィ匕ナトリウム等の水酸ィ匕物が望ま 、。  Examples of the alkali metal salt include hydroxides or carbonates of alkali metals such as sodium, potassium, and lithium. From the viewpoint of reactivity, lithium hydroxide, potassium hydroxide, and hydroxide Hydroxide such as sodium is desirable.
前記アンモ-ゥム塩としては、例えば、炭酸アンモ-ゥム、炭酸ナトリウム、炭酸水素 ナトリウム等が挙げられる。  Examples of the ammonium salt include ammonium carbonate, sodium carbonate, sodium hydrogen carbonate and the like.
[0038] 工程 (3B— 1)において、中間マグネタイト固形物を得るためのアルカリ溶液に浸漬 する条件は、 Fe— M含有合金の組成、 Fe— M含有合金の形状等により異なるが、使 用するアルカリ溶液の種類、アルカリ溶液の濃度、アルカリ溶液の使用量、反応温度 、反応時間等を、アルカリ溶液への浸漬による反応によって中間マグネタイト固形物 が得られるように適宜決定することができる。 前記アルカリ溶液の濃度は、例えば、 0.1〜10molZl、好ましくは l〜5molZlである 。アルカリ溶液の使用量は、例えば、 Fe— M含有合金中における Fe元素のモル数の 0.1〜10倍量である。反応温度は、例えば、 30°C以上、好ましくは 40°C以上、より好ま しくは 60°C以上である。反応時間は、 1〜100時間、好ましくは 10〜24時間である。 アルカリ溶液への浸漬による反応は、大気圧以上に加圧できる反応容器を用いて 加圧下に行うことによって効率的に促進される。また、酸素を含有するガスをアルカリ 溶液中に吹き込むことによつても反応が促進される。 [0038] In the step (3B-1), conditions for immersing in an alkaline solution for obtaining an intermediate magnetite solid vary depending on the composition of the Fe-M-containing alloy, the shape of the Fe-M-containing alloy, etc. The type of the alkali solution, the concentration of the alkali solution, the amount of the alkali solution used, the reaction temperature, the reaction time, and the like can be appropriately determined so that an intermediate magnetite solid can be obtained by the reaction by immersion in the alkali solution. The concentration of the alkaline solution is, for example, 0.1 to 10 molZl, preferably 1 to 5 molZl. The amount of the alkaline solution used is, for example, 0.1 to 10 times the number of moles of Fe element in the Fe—M-containing alloy. The reaction temperature is, for example, 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher. The reaction time is 1 to 100 hours, preferably 10 to 24 hours. The reaction by immersion in an alkaline solution is efficiently promoted by carrying out the reaction under pressure using a reaction vessel that can be pressurized to atmospheric pressure or higher. The reaction can also be accelerated by blowing oxygen-containing gas into the alkaline solution.
[0039] 工程 (3B— 1)により得られる中間マグネタイト固形物は、反応溶液から濾別され、必 要に応じて洗浄することができる。工程 (3B— 1)においては、アルカリ溶液への浸漬 条件によって、 Fe— M含有合金における M元素の一部及び Fe以外の含有元素が溶 出する場合がある。 [0039] The intermediate magnetite solid obtained in the step (3B-1) is separated from the reaction solution by filtration and can be washed if necessary. In the step (3B-1), part of the M element in the Fe-M containing alloy and contained elements other than Fe may be dissolved depending on the immersion conditions in the alkaline solution.
[0040] 本発明の方法 (3)は、 M元素を溶出させ、マグネタイト粉末を得るために、工程 (3B—  [0040] The method (3) of the present invention comprises a step (3B—) for eluting M element and obtaining magnetite powder.
1)で調製した中間マグネタイト固形物を酸溶液に浸漬する工程 (3B— 2)を含む。  A step (3B-2) of immersing the intermediate magnetite solid material prepared in 1) in an acid solution.
工程 (3B— 2)に用いる酸溶液としては、例えば、塩酸、硝酸、硫酸、フッ酸又はそれ らの混酸が挙げられる。酸溶液の濃度は、通常 0.1〜10molZl、好ましくは l〜5molZ 1である。酸溶液の使用量は、例えば、 Fe— M含有合金中の M元素のモル数の 0.1〜1 0倍量である。反応温度は、通常 30°C以上、好ましくは 40°C以上、より好ましくは 60°C 以上である。反応時間は通常 1〜100時間、好ましくは 10〜24時間である。  Examples of the acid solution used in the step (3B-2) include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, or a mixed acid thereof. The concentration of the acid solution is usually 0.1 to 10 molZl, preferably 1 to 5 molZ1. The amount of the acid solution used is, for example, 0.1 to 10 times the number of moles of M element in the Fe—M containing alloy. The reaction temperature is usually 30 ° C or higher, preferably 40 ° C or higher, more preferably 60 ° C or higher. The reaction time is usually 1 to 100 hours, preferably 10 to 24 hours.
[0041] 工程 (3B— 2)における浸漬による反応は、酸素を含有するガスを酸溶液中に吹き込 むことにより効果的に促進される。  [0041] The reaction by dipping in the step (3B-2) is effectively promoted by blowing a gas containing oxygen into the acid solution.
工程 (3B— 2)にお 、て、マグネタイト粉末を得るための酸溶液に浸漬する条件は、 中間マグネタイト固形物の糸且成、中間マグネタイト固形物の形状等により異なるが、 使用する酸溶液の種類、酸の濃度、酸溶液の使用量、反応温度、反応時間等を、マ グネタイト粉末が得られるように適宜決定することができる。  In the step (3B-2), the conditions for immersing in the acid solution for obtaining the magnetite powder vary depending on the yarn of the intermediate magnetite solid, the shape of the intermediate magnetite solid, etc. The type, acid concentration, amount of acid solution used, reaction temperature, reaction time, and the like can be appropriately determined so as to obtain a magnetite powder.
M元素を選択的に溶出させるには、 M元素だけが溶出する pH域に制御して行うこと ができる。 M元素を選択的に溶出することにより、比表面積の大きい Feを主成分とす るマグネタイト粉末が得られる。適宜、条件を制御することにより、 M元素の一部を残 存させ、あるいは、 Fe元素の一部を溶出させてもよい。 [0042] 工程 (3B— 2)により得られるマグネタイト粉末は、反応溶液から濾別され、必要に応 じて洗浄することができる。得られるマグネタイト粉末は、主に Fe酸化物、及び一部残 存した M元素やその他の元素の、酸化物若しくは水酸化物、及び一部が残存した M 元素、その他の元素と用いた酸の陰イオンとの化合物、並びに水和水、付着水等の 水分を含有する。 In order to selectively elute M element, it can be controlled in the pH range where only M element elutes. By selectively eluting the element M, a magnetite powder mainly composed of Fe having a large specific surface area can be obtained. By appropriately controlling the conditions, a part of the M element may remain or a part of the Fe element may be eluted. [0042] The magnetite powder obtained in the step (3B-2) is filtered off from the reaction solution, and can be washed if necessary. The obtained magnetite powder is mainly composed of Fe oxide, oxides or hydroxides of partially remaining M elements and other elements, and partially used M elements and other elements. Contains a compound with an anion, and water such as hydration water and adhesion water.
[0043] 本発明の方法 (3)においては、工程 (3B— 2)で調製したマグネタイト粉末を還元する 工程 (3C)を含む。  [0043] The method (3) of the present invention includes a step (3C) of reducing the magnetite powder prepared in the step (3B-2).
工程 (3C)における還元は、上述の本発明の方法 (1)における工程 (1C)と同様に行う ことで、目的の多孔質鉄粉を得ることができる。  The target porous iron powder can be obtained by performing the reduction in the step (3C) in the same manner as in the step (1C) in the above-described method (1) of the present invention.
[0044] 工程 (3C)を実施するにあたり、必要に応じて、工程 (3B— 2)で調製したマグネタイト 粉末を 400°C以下の温度に加熱する乾燥工程を行うことができる。 [0044] In carrying out the step (3C), a drying step of heating the magnetite powder prepared in the step (3B-2) to a temperature of 400 ° C or lower can be performed as necessary.
該乾燥工程は、酸素を含む雰囲気でも不活性ガス雰囲気でも行うことができる。乾 燥温度が 400°Cを越えるとマグネタイトの一部がへマタイトになる。  The drying step can be performed in an atmosphere containing oxygen or an inert gas atmosphere. When the drying temperature exceeds 400 ° C, part of the magnetite becomes hematite.
工程 (3C)に用いるマグネタイト粉末は、へマタイトを含有してもよいが、へマタイトは 、工程 (3C)における還元処理により水蒸気を多く発生させ、その処理に余計なコスト がかかる。従って、へマタイトの生成は少ない方が良ぐ乾燥温度は 400°C以下が好 ましい。  The magnetite powder used in the step (3C) may contain hematite, but hematite generates a large amount of water vapor by the reduction treatment in the step (3C), and the treatment requires extra cost. Therefore, it is better to produce less hematite. The drying temperature is preferably 400 ° C or less.
[0045] 本発明の方法 (2)における工程 (2B— 1)又は本発明の方法 (3)における工程 (3B— 2) において溶出させた M元素は、公知の沈澱分別法や溶媒抽出法等で回収 '再利用 することにより、希土類元素等の有効金属を有効利用することができる。  [0045] The element M eluted in the step (2B-1) in the method (2) of the present invention or the step (3B-2) in the method (3) of the present invention is a known precipitation fractionation method, solvent extraction method, etc. It is possible to effectively use effective metals such as rare earth elements by collecting and reusing at
また、 Fe— M含有合金として、希土類—鉄—ホウ素系の永久磁石用合金を用いた 場合、得られるマグネタイト粉末や多孔質鉄粉に希土類元素を含有させることができ る。このような多孔質鉄粉は、表層部に希土類元素の酸ィ匕物が存在するため、空気 に触れても発火し難い。  When a rare earth-iron-boron based permanent magnet alloy is used as the Fe-M-containing alloy, the magnetite powder or porous iron powder obtained can contain a rare earth element. Such porous iron powder does not easily ignite even when it comes into contact with air, because rare earth oxides are present on the surface layer.
[0046] 本発明の方法 (2)における工程 (2B - 2)又は本発明の方法 (3)における工程 (3B - 2) により得られるマグネタイト粉末は、複数の細孔を有し、且つ大きな比表面積を有す る。このため、湿潤状態において有機ハロゲンィ匕合物を分解するのに極めて有効で あり、汚染土壌、排水の浄化剤として有用である。 前記マグネタイト粉末の比表面積は、 4m2/g以上、好ましくは 5m2/g以上、更に好 ましくは 8m2/g以上であり、その上限は特に限定されないが、通常 50m2/g程度であ る。該比表面積は、窒素ガスを用いた BET法で測定した値である。比表面積が 4m2Z gより小さいと、渦電流が大きくなり、所望の電波吸収性能が得られない恐れがある。 [0046] The magnetite powder obtained by the step (2B-2) in the method (2) of the present invention or the step (3B-2) in the method (3) of the present invention has a plurality of pores and has a large ratio. Has a surface area. Therefore, it is extremely effective for decomposing organic halogen compounds in a wet state, and is useful as a purification agent for contaminated soil and wastewater. The specific surface area of the magnetite powder is 4 m 2 / g or more, preferably 5 m 2 / g or more, more preferably 8 m 2 / g or more. The upper limit is not particularly limited, but is usually about 50 m 2 / g. is there. The specific surface area is a value measured by a BET method using nitrogen gas. If the specific surface area is less than 4 m 2 Z g, the eddy current increases and the desired radio wave absorption performance may not be obtained.
[0047] 前記マグネタイト粉末の平均粒子径は、 2〜90 μ m、好ましくは 5〜15 μ mである。該 平均粒子径は、レーザー回折法で測定した D50の値である。 D50力 ^ /z mより小さいと 、最終的に得られる多孔質鉄粉が発火し易くなる恐れがある。一方、 D50力 ^O /z mより 大きいと、最終的に得られる多孔質鉄粉の電波吸収体への充填率が低下し、電波吸 収性能が低下する恐れがある。  [0047] The magnetite powder has an average particle size of 2 to 90 µm, preferably 5 to 15 µm. The average particle diameter is a value of D50 measured by a laser diffraction method. If it is less than D50 force ^ / z m, the finally obtained porous iron powder may be easily ignited. On the other hand, if the D50 force is greater than ^ O / zm, the filling rate of the finally obtained porous iron powder in the radio wave absorber may be reduced, and the radio wave absorption performance may be reduced.
[0048] 前記マグネタイト粉末は、上述の比表面積及び平均粒子径に代表される形状の特 異性を有し、その組成は、酸素を除いた残りの成分は鉄を主成分とし、好ましくは 85a t%以上含み、 Fe以外の成分を含有することができる。  [0048] The magnetite powder has characteristics of a shape typified by the above-mentioned specific surface area and average particle diameter, and the composition is such that the remaining components excluding oxygen are mainly composed of iron, preferably 85at. It contains more than% and can contain components other than Fe.
Fe以外の成分としては、希土類一鉄合金スクラップを原料として用いる場合、原料 に由来する、例えば、 Yを含む希土類元素、 B、 C、 N、 Co、 Al、 Cu、 Ga、 Ti、 Zr、 Nb、 V 、 Cr、 Mo、 Mn、 Ni、 Si、 Mg及び Caの少なくとも 1種の元素を含有することができる。該 鉄以外の元素の含有量は、通常 15at%以下、好ましくは 0.01〜15at%である。該含 有量が、 0.01at%未満では含有する効果が十分でなぐ 15at%より多いと電波吸収体 とした際に、電波吸収特性が低下し、更には経済性が低下する恐れがある。  As components other than Fe, when rare earth-iron alloy scrap is used as a raw material, for example, rare earth elements including Y, B, C, N, Co, Al, Cu, Ga, Ti, Zr, Nb , V, Cr, Mo, Mn, Ni, Si, Mg and Ca can be contained. The content of elements other than iron is usually 15 at% or less, preferably 0.01 to 15 at%. If the content is less than 0.01 at%, the effect of inclusion is insufficient, and if the content is more than 15 at%, the radio wave absorption characteristics of the radio wave absorber may be lowered, and further, the economic efficiency may be lowered.
[0049] 前記マグネタイト粉末の組成にぉ 、て、上記 Fe以外の元素のうち、 Yを含む希土類 元素、 Al、 Ti、 Si、 V、 Cr、 Nb、 Zr、 Mg又は Mnは、酸素との親和力が Feよりも大きいた め、これらを含ませることによって、最終的に得られる多孔質鉄粉の表層部に酸化物 層を形成し易いので好ましい。特に希土類元素を l〜5at%含有させることが該酸ィ匕 物層の形成のし易さの点で好ましい。希土類元素としては、 Nd、 Pr、 Tb、 Dyを含むこ とが好ましい。また、純鉄は透磁率が大きぐ電波吸収用磁性体として優れている力 Co、 Al、 Si、 Ni等の少なくとも 1種の元素を含有させることによって、更に高透磁率ィ匕 が図れる。  [0049] Among the elements of the magnetite powder, among the elements other than Fe, rare earth elements including Y, Al, Ti, Si, V, Cr, Nb, Zr, Mg, or Mn have an affinity for oxygen. Is larger than Fe, and inclusion of these is preferable because an oxide layer can be easily formed on the surface layer portion of the finally obtained porous iron powder. In particular, it is preferable to contain 1 to 5 at% of a rare earth element from the viewpoint of easy formation of the oxide layer. The rare earth element preferably contains Nd, Pr, Tb, Dy. In addition, pure iron has a high magnetic permeability and is excellent as a magnetic substance for electromagnetic wave absorption. By including at least one element such as Co, Al, Si, Ni, etc., a higher magnetic permeability can be achieved.
[0050] 本発明の電波吸収体は、上述の本発明の多孔質鉄粉を含有する。電波吸収体は 、榭脂と本発明の多孔質鉄粉とを混合'混練'加熱することにより製造できる。製造条 件は、公知の方法に準じて適宜選択することができる。 [0050] The radio wave absorber of the present invention contains the above-described porous iron powder of the present invention. The radio wave absorber can be produced by mixing and kneading and heating the resin and the porous iron powder of the present invention. Manufacturing conditions The conditions can be appropriately selected according to a known method.
本発明の電波吸収体において、 lGHz〜20GHz帯域の電磁波等の吸収性能を向 上させるには、本発明の多孔質鉄粉をできるだけ多く含有することが好ましい。好ま しくは 50重量%以上である。多孔質鉄粉の含有量が多すぎると電波吸収体の成形が 難しくなるため、通常、 95重量%以下とする。また、所望する電波吸収特性を得るた め、他の磁性粉を含有することもできる。  The radio wave absorber of the present invention preferably contains as much of the porous iron powder of the present invention as possible in order to improve the absorption performance of electromagnetic waves and the like in the lGHz to 20 GHz band. Preferably, it is 50% by weight or more. If the content of porous iron powder is too high, it will be difficult to form a radio wave absorber, so it is usually 95% by weight or less. Further, in order to obtain a desired radio wave absorption characteristic, other magnetic powder can be contained.
また、所望する電波吸収特性に合わせ、扁平化させた多孔質鉄粉を電波吸収体に 含有させることができる。  Further, a flattened porous iron powder can be contained in the radio wave absorber in accordance with the desired radio wave absorption characteristics.
本発明の多孔質鉄粉は、扁平ィ匕処理における加工圧力が小さぐ容易にアスペクト 比を大きくすることができる。  The porous iron powder of the present invention can easily increase the aspect ratio when the processing pressure in the flat wrinkle treatment is small.
[0051] 本発明の多孔質鉄粉は、磁性材料そのものの表皮効果と相まって、表面に流れる 電流の行路長が大きくなることから渦電流損を抑制でき、榭脂との密着性が向上し、 圧縮変形抵抗を小さくできる。従って、例えば、 l〜20GHzの高周波領域、特に 10GH z以上の帯域での電波吸収特性に優れ、この領域の電波障害低減に極めて有効で ある。また、有機ハロゲンィ匕合物の分解に極めて有効である。 [0051] The porous iron powder of the present invention, combined with the skin effect of the magnetic material itself, increases the path length of the current flowing on the surface, so that eddy current loss can be suppressed, and the adhesion to the resin is improved. Compression deformation resistance can be reduced. Therefore, for example, it has excellent radio wave absorption characteristics in a high frequency region of 1 to 20 GHz, particularly in a band of 10 GHz or more, and is extremely effective in reducing radio wave interference in this region. In addition, it is extremely effective for decomposing organic halogen compounds.
また、本発明の方法 (2)又は方法 (3)において得られる上述のマグネタイト粉末は、 M 元素を含有するため、還元処理されても、発火性の低い多孔質鉄粉の原料として、ま た、土壌改良剤として有効である。  In addition, the above-described magnetite powder obtained in the method (2) or method (3) of the present invention contains M element, so that it can be used as a raw material for porous iron powder having low ignitability even after reduction treatment. It is effective as a soil conditioner.
実施例  Example
[0052] 次に実施例により本発明を詳述する。  Next, the present invention will be described in detail by way of examples.
実施例 1—1  Example 1-1
組成が l l.INd— 3.03Dy— 0.56Co— 6.20B— 79.07Feとなるように配合した原料をァ ルゴン雰囲気中、高周波溶解炉で溶解し、ストリップキャスティング法により厚さ約 0.5 mmの合金薄帯を得た。次に、合金薄帯を粉砕して平均粒子径が約 10 mの合金粉 末を得た。該粉末 500gを 1000mlの純水に混ぜて合金スラリーとした。該スラリーを攪 拌し、毎分 300mlの空気をパブリングしながら 5molZlの硝酸溶液 1500mlを添カ卩した。 スラリーの温度は 50°Cに保った。十分に反応を進行させた後、スラリー中に残存する 固形物をヌッチ 式濾過機で濾過し、得られた固形物をデカンテーシヨン法により洗 浄した。次いで、この固形物を大気中 400°Cで 5時間加熱した後、 X線回折装置 (XRD )により、主として酸ィ匕鉄力もなることを確認した。その後、水素 100%の雰囲気中、 600 °Cで 4時間加熱して多孔質鉄粉を調製した。 Ingredients with a composition of l l.INd—3.03Dy—0.56Co— 6.20B—79.07Fe were melted in an argon atmosphere in a high-frequency melting furnace, and an alloy thin film with a thickness of about 0.5 mm was obtained by strip casting. I got a belt. Next, the alloy ribbon was pulverized to obtain an alloy powder having an average particle size of about 10 m. 500 g of the powder was mixed with 1000 ml of pure water to obtain an alloy slurry. The slurry was stirred and 1500 ml of 5 mol Zl nitric acid solution was added while publishing 300 ml of air per minute. The temperature of the slurry was kept at 50 ° C. After allowing the reaction to proceed sufficiently, the solid matter remaining in the slurry is filtered with a Nuts filter, and the resulting solid matter is washed by a decantation method. Purified. Next, after this solid was heated in the atmosphere at 400 ° C. for 5 hours, it was confirmed by an X-ray diffractometer (XRD) that it also mainly became acidic. Thereafter, a porous iron powder was prepared by heating at 600 ° C. for 4 hours in an atmosphere of 100% hydrogen.
得られた多孔質鉄粉について、 XRDにより酸化鉄の有無、 EPMA(Electron Probe M icro Analyzer)により表層部の酸ィ匕物の有無を判定し、 BET法により比表面積、レー ザ一回折法により平均粒子径 (D50)、窒素吸着法により平均細孔径及び細孔容積を 測定した。結果を表 1に示す。  About the obtained porous iron powder, the presence or absence of iron oxide by XRD and the presence or absence of acid oxide on the surface layer by EPMA (Electron Probe Micro Analyzer) are determined, the specific surface area by BET method, and the laser diffraction method. Average particle diameter (D50), average pore diameter and pore volume were measured by nitrogen adsorption method. The results are shown in Table 1.
得られた多孔質鉄粉を、 XRDにより分析した結果、 a Fe及びォキシ塩ィ匕ネオジム のピークが確認された。また ICPOnductively coupled plasma)により分析した結果、多 孔質鉄粉の組成は、 Ndと Dyの総量が 2.32at%、 Coが 1.06at%、 Bが 0.1at%、残部が Feであった。得られた多孔質鉄粉における表面の SEM像の写しを図 1に示す。  As a result of analyzing the obtained porous iron powder by XRD, peaks of a Fe and oxysalt / neodymium were confirmed. As a result of analysis by ICPOnductively coupled plasma), the composition of the porous iron powder was 2.32 at% for the total amount of Nd and Dy, 1.06 at% for Co, 0.1 at% for B, and Fe for the rest. Fig. 1 shows a copy of the SEM image of the surface of the obtained porous iron powder.
[0053] 次に、得られた多孔質鉄粉とエポキシ榭脂とを重量比で 65: 35となるように混合し、 続いて、円板状に成形した。得られた成形物を 130°Cで 30分加熱し、更に 180°Cで硬 化処理を行い、電波吸収特性測定用の試料を調製した。該試料を超音波加工機に て外径 7.00πιπι Φ、内径 3.04πιπι Φのドーナツ状に成形後、測定用プローブに取付け 市販のネットワークアナライザーを用いて、試料厚さ方向の S 11 (反射係数)の周波数 依存性を測定した。結果を図 2に示す。 [0053] Next, the obtained porous iron powder and epoxy resin were mixed at a weight ratio of 65:35, and then formed into a disk shape. The obtained molded product was heated at 130 ° C. for 30 minutes, and further cured at 180 ° C. to prepare a sample for measuring radio wave absorption characteristics. The sample was formed into a donut shape with an outer diameter of 7.00πιπι Φ and an inner diameter of 3.04πιπι Φ using an ultrasonic machine, and then attached to a measurement probe. Using a commercially available network analyzer, S 11 in the sample thickness direction (reflection coefficient) The frequency dependence of was measured. The result is shown in figure 2.
[0054] 比較例 1 1 [0054] Comparative Example 1 1
市販の粒径 5 μ mの扁平ィ匕したアトマイズ鉄粉にっ 、て、実施例 1— 1と同様の測定 を行った。結果を表 1に示す。電波吸収特性についても実施例 1—1と同様に試料を 調製し測定した。結果を図 3に示す。  The same measurement as in Example 1-1 was performed on a commercially available flattened atomized iron powder having a particle size of 5 μm. The results are shown in Table 1. The radio wave absorption characteristics were also prepared and measured in the same manner as in Example 1-1. The results are shown in Figure 3.
図 2及び図 3から明らかなように、比較例 1—1の試料では、 10GHz以上に— 20dBを 超える吸収特性が見られな力つた。実施例 1—1の試料では、 10GHzを超える領域に おいても— 20dBを超える電波吸収が見られ、 13GHz付近に— 20dBを超える特性が 観察され、そのときの板厚は 1.5mmと小さかった。  As is clear from Figs. 2 and 3, the sample of Comparative Example 1-1 was strong enough to show no absorption characteristics exceeding -20dB above 10GHz. In the sample of Example 1-1, radio wave absorption exceeding 20 dB was observed even in the region exceeding 10 GHz, and characteristics exceeding 20 dB were observed near 13 GHz, and the plate thickness at that time was as small as 1.5 mm. .
[0055] 実施例 1 2 [0055] Example 1 2
合金組成をミッシュメタル 10at%、残部 Feとした以外は実施例 1— 1と同様に多孔質 鉄粉を得た。 ICPにより分析した結果、得られた多孔質鉄粉の組成は、ミッシュメタル の総量力 l.7at%、残部は Feであった。 X線回折により a—Feに由来するピークを確 認した。また、実施例 1—1と同様の各測定を行った。結果を表 1に示す。 Porous iron powder was obtained in the same manner as in Example 1-1 except that the alloy composition was changed to 10 at% Misch metal and the remaining Fe. As a result of analysis by ICP, the composition of the obtained porous iron powder is The total amount of iron was l.7at%, and the balance was Fe. A peak derived from a-Fe was confirmed by X-ray diffraction. Further, the same measurements as in Example 1-1 were performed. The results are shown in Table 1.
電波吸収特性についても実施例 1—1と同様に試料を調製し測定したところ、 1〜20 GHzの領域で— 20dBを超える電波吸収特性が得られた。更に、電波吸収特性測定 後の試料を湿度 80%、 40°Cの環境で 1時間暴露し、発鲭状況を調べたところ、鲭は 確認されなかった。  Regarding the radio wave absorption characteristics, a sample was prepared and measured in the same manner as in Example 1-1, and radio wave absorption characteristics exceeding -20 dB were obtained in the region of 1 to 20 GHz. Furthermore, when the sample after measurement of the radio wave absorption characteristics was exposed for 1 hour in an environment of 80% humidity and 40 ° C, and the state of igniting was examined, no soot was found.
[0056] 実施例 1 3 [0056] Example 1 3
ミッシュメタルの溶出が少なくなるような条件に変更した以外は実施例 1 2と同様 に多孔質鉄粉を得た。 ICPにより分析した結果、得られた多孔質鉄粉の組成はミツシ ュメタルの総量力 .5at%、残部は Feであった。 X線回折により a—Feに由来するピー クを確認した。また、実施例 1—1と同様の各測定を行った。結果を表 1に示す。  Porous iron powder was obtained in the same manner as in Example 12 except that the conditions were changed so as to reduce the elution of misch metal. As a result of analysis by ICP, the composition of the obtained porous iron powder was a total amount of 1.5% by weight of the misty metal, and the balance was Fe. Peaks derived from a-Fe were confirmed by X-ray diffraction. Further, the same measurements as in Example 1-1 were performed. The results are shown in Table 1.
電波吸収特性についても実施例 1—1と同様に試料を調製し測定したところ、 1〜20 GHzの領域で— 20dBを超える電波吸収特性が得られた力 実施例 1— 2と比較し、 若干吸収が小さかった。また、実施例 2と同様に暴露試験を行ったところ、鲭が確認 された。このように多孔質鉄粉の希土類含有量が多い場合、電波吸収特性、耐食性 が若干劣る場合があることが判った。  Regarding the radio wave absorption characteristics, a sample was prepared and measured in the same manner as in Example 1-1. The force with which a radio wave absorption characteristic exceeding 20 dB was obtained in the region of 1 to 20 GHz was slightly compared with Example 1-2. Absorption was small. Further, when an exposure test was conducted in the same manner as in Example 2, soot was confirmed. Thus, it was found that when the porous iron powder has a high rare earth content, the radio wave absorption characteristics and corrosion resistance may be slightly inferior.
[0057] [表 1] [0057] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0058] 製造例 1  [0058] Production Example 1
組成が 12.9Nd -0.5Co-6.0B- 80.6Feとなるように配合した原料をアルゴン雰囲気 中、高周波溶解炉で溶解し、ストリップキャスティング法により厚さ約 0.6mmの合金薄 帯を得た。該薄帯を粉砕して平均粒子径が約 15 mの合金粉末を得た。該粉末 500g を 1000mlの純水に混ぜ合金スラリーとした。該スラリーを攪拌し、毎分 300mlの空気を 吹き込みながら 5molZlの硝酸溶液を添加し、空気の吹き込み量と硝酸溶液の投入 速度を制御して 60°Cを超えな 、ように反応させ、 pH5.5となった時点で硝酸溶液の投 入を終了し、以後 2時間空気を吹き込みながら攪拌を行った。硝酸溶液の総投入量 は 1600mlであった。得られた溶液をヌッチヱ式濾過機で濾過して、沈殿物と溶液を分 離した。沈殿物の X線回折スペクトルを測定した結果、水酸ィ匕第二鉄を主とするもの であった。 The raw materials blended so as to have a composition of 12.9Nd-0.5Co-6.0B-80.6Fe were melted in a high-frequency melting furnace in an argon atmosphere, and an alloy ribbon having a thickness of about 0.6 mm was obtained by strip casting. The ribbon was pulverized to obtain an alloy powder having an average particle size of about 15 m. 500 g of the powder was mixed with 1000 ml of pure water to obtain an alloy slurry. Stir the slurry, add 5 molZl of nitric acid solution while blowing 300 ml of air per minute, and control the amount of air blown and the rate of charging nitric acid solution so that it does not exceed 60 ° C, and pH 5. When 5 is reached, throw the nitric acid solution. After that, the mixture was stirred while blowing air for 2 hours. The total amount of nitric acid solution was 1600 ml. The obtained solution was filtered with a Nucci filter, and the precipitate and the solution were separated. As a result of measuring the X-ray diffraction spectrum of the precipitate, it was mainly composed of ferric hydroxide.
次に、該沈殿物を 1000mlの純水に混ぜスラリー状にした。反応容器としてオートタレ ーブを用い、攪拌しながら 5molZlの水酸化ナトリウム水溶液 1600mlを添カ卩し、 150°C で 10時間攪拌反応させた。スラリー中に残存する固形物をヌッチェ式濾過機で濾過 し、マグネタイト粉末を得た。得られたマグネタイト粉末をデカンテーシヨン法により洗 浄した。該マグネタイト粉末を ICP分析したところ、その組成は 1.62Nd— 0.70CO— 0.84 B— 96.84Feであった。該マグネタイトを 300°Cで大気中 5時間加熱した。加熱後のマ グネタイト粉末について BET法により比表面積、レーザー回折法により D50を測定し た。その結果、 BET値は 20.5m2/g、平均粒子径は 17.5 mであった。 Next, the precipitate was mixed with 1000 ml of pure water to form a slurry. Using an auto-turve as a reaction vessel, 1600 ml of a 5 molZl sodium hydroxide aqueous solution was added while stirring, and the reaction was stirred at 150 ° C. for 10 hours. The solid matter remaining in the slurry was filtered with a Nutsche filter to obtain a magnetite powder. The obtained magnetite powder was washed by a decantation method. ICP analysis of the magnetite powder revealed that the composition was 1.62Nd—0.70CO—0.84 B—96.84Fe. The magnetite was heated at 300 ° C. in the atmosphere for 5 hours. The magnetite powder after heating was measured for specific surface area by BET method and D50 by laser diffraction method. As a result, the BET value was 20.5 m 2 / g and the average particle size was 17.5 m.
製造例 2  Production example 2
組成が 10.9Nd— 3.10Dy— 0.50Co— 6.10B— 79.4Feとなるように配合した原料をァ ルゴン雰囲気中、高周波溶解炉で溶解し、ストリップキャスティング法により厚さ約 0.4 mmの合金薄帯を得た。該合金薄帯を粉砕して平均粒子径が約 10 mの合金粉末を 得た。該粉末 500gを 1000mlの純水に混ぜ合金スラリーとした。該スラリーを攪拌し、 毎分 300mlの空気を吹き込みながら 2molZlの水酸化ナトリウム水溶液 2500mlを添カロ し、 60°Cに昇温した後、 24時間攪拌反応させた。得られた溶液をヌッチェ式濾過機で 濾過して、沈殿物と溶液を分離した。次に、該沈殿物を 1000mlの純水に混ぜスラリー 状にした。該スラリーに 5mol/lの塩酸溶液 1500mlを添カ卩した。スラリーの温度は 60°C を保った。十分に反応を進行させた後、スラリー中に残存する固形物をヌッチェ式濾 過機で濾過し、マグネタイト粉末を得た。得られたマグネタイト粉末をデカンテーショ ン法により洗浄した。該マグネタイト粉末を ICP分析したところ、その組成は 1.41Nd— 0 .45Dy-0.72Co— 0.70B— 96.7Feであった。  The raw material with a composition of 10.9Nd— 3.10Dy— 0.50Co— 6.10B— 79.4Fe was melted in an argon atmosphere in a high-frequency melting furnace, and an alloy ribbon with a thickness of approximately 0.4 mm was formed by strip casting. Obtained. The alloy ribbon was pulverized to obtain an alloy powder having an average particle size of about 10 m. 500 g of the powder was mixed with 1000 ml of pure water to obtain an alloy slurry. The slurry was stirred, and 2500 ml of a 2 mol Zl aqueous sodium hydroxide solution was added while blowing 300 ml of air per minute, and the temperature was raised to 60 ° C., followed by stirring for 24 hours. The obtained solution was filtered with a Nutsche filter to separate the precipitate from the solution. Next, the precipitate was mixed with 1000 ml of pure water to form a slurry. 1500 ml of 5 mol / l hydrochloric acid solution was added to the slurry. The slurry temperature was kept at 60 ° C. After sufficiently proceeding with the reaction, the solid matter remaining in the slurry was filtered with a Nutsche filter to obtain magnetite powder. The obtained magnetite powder was washed by a decantation method. ICP analysis of the magnetite powder revealed that the composition was 1.41Nd—0.45Dy-0.72Co—0.70B—96.7Fe.
次いで、マグネタイト粉末を 7等分し、それぞれ 100、 200、 300、 400、 500、 600、 700 °Cで大気中 5時間加熱した。加熱後のマグネタイト粉末について BET法により比表面 積、レーザー回折法により D50を測定した。図 4及び図 5にそれぞれ 300°C、 400°Cで 加熱して得られたマグネタイト粉末の X線回折スペクトルを示す。 400°C未満の加熱で は酸ィ匕物はマグネタイトのみであるが、 400°C以上の加熱ではへマタイトが析出して いる。また、図 6に示す比表面積と加熱温度の関係から、 300°C以上の加熱で比表面 積が著しく小さくなり、 600°Cでは 4m2Zg以下となる。したがって、比表面積が 4m2Zg 以上の値を得るには 600°C以下の加熱が必要であることがわかる。図 6に示す平均粒 子径と加熱温度の関係から、平均粒子径は加熱温度が上がるにつれ若干小さくなる 傾向がある。 Next, the magnetite powder was divided into seven equal parts and heated in air at 100, 200, 300, 400, 500, 600, and 700 ° C. for 5 hours, respectively. The magnetite powder after heating was measured for specific surface area by BET method and D50 by laser diffraction method. Figures 4 and 5 show 300 ° C and 400 ° C respectively. An X-ray diffraction spectrum of magnetite powder obtained by heating is shown. When heated below 400 ° C, the only oxide is magnetite, but when heated above 400 ° C, hematite is precipitated. In addition, from the relationship between the specific surface area and heating temperature shown in Fig. 6, the specific surface area is significantly reduced by heating at 300 ° C or higher, and at 600 ° C it is 4m 2 Zg or lower. Therefore, it can be seen that heating at 600 ° C or lower is necessary to obtain a specific surface area of 4 m 2 Zg or higher. From the relationship between the average particle size and the heating temperature shown in Fig. 6, the average particle size tends to be slightly smaller as the heating temperature increases.
[0060] 製造例 3 [0060] Production Example 3
合金組成をミッシュメタル 10.8at%、残部 Fe、粉砕後の粒径を 24.2 mとした以外は 製造例 1と同様にしてマグネタイトを製造した。 ICPにより組成を分析した結果、ミツシ ュメタルの総量が 1.3at%、残部は Feであった。製造例 1と同様に比表面積、 D50を測 定したところ、比表面積は 25.5m2/g、平均粒子径は 15.8 mであった。また X線回折 によりへマタイトのピークは確認できな力つた。 Magnetite was produced in the same manner as in Production Example 1 except that the alloy composition was 10.8 at%, the balance was Fe, and the particle size after grinding was 24.2 m. As a result of analyzing the composition by ICP, the total amount of misty metal was 1.3at% and the balance was Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 25.5 m 2 / g and the average particle size was 15.8 m. The X-ray diffraction revealed that hematite peaks could not be confirmed.
[0061] 製造例 4 [0061] Production Example 4
合金組成をミッシュメタル 8.5at%、残部 Fe、粉砕後の粒径を 23.8 mとした以外は 製造例 3と同様にしてマグネタイトを製造した。 ICPにより組成を分析した結果、ミツシ ュメタルの総量が 1.1原子%、残部は Feであった。製造例 1と同様に比表面積、 D50を 測定したところ、比表面積は 24.5m2Zg、平均粒子径は 16.8 mであった。また X線回 折によりへマタイトのピークは確認できな力つた。 Magnetite was produced in the same manner as in Production Example 3, except that the alloy composition was 8.5 at%, the remaining Fe, and the particle size after grinding was 23.8 m. As a result of analyzing the composition by ICP, the total amount of misty metal was 1.1 atomic% and the balance was Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.5 m 2 Zg and the average particle size was 16.8 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
[0062] 製造例 5 [0062] Production Example 5
5molZlの水酸化ナトリウム水溶液 1600mlを 3molZlの炭酸水素アンモニゥム水溶液 4000mlに変えた以外は製造例 1と同様にしてマグネタイトを製造した。 ICPにより組成 を分析した結果、 1.54Nd— 0.65Co— 1.45B— 96.36Feであった。製造例 1と同様に比 表面積、 D50を測定したところ、比表面積は 19.3m2/g、平均粒子径は 18.3 mであつ た。また X線回折によりへマタイトのピークは確認できな力 た。 Magnetite was produced in the same manner as in Production Example 1 except that 1600 ml of 5 mol Zl aqueous sodium hydroxide solution was changed to 4000 ml of 3 mol Zl ammonium bicarbonate aqueous solution. The composition was analyzed by ICP. As a result, it was 1.54Nd—0.65Co—1.45B—96.36Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 19.3 m 2 / g and the average particle size was 18.3 m. Hematite peaks were not confirmed by X-ray diffraction.
[0063] 製造例 6 [0063] Production Example 6
5molZlの水酸化ナトリウム水溶液 1600mlを 3molZlの水酸化カリウム水溶液 4000ml に変えた以外は製造例 1と同様にしてマグネタイトを製造した。 ICPにより組成を分析 した結果、 1.38Nd—0.70Co— 0.43B— 97.49Feであった。製造例 1と同様に比表面積 、 D50を測定したところ、比表面積は 15.3m2/g、平均粒子径は 14.1 mであった。ま た X線回折によりへマタイトのピークは確認できな力つた。 Magnetite was produced in the same manner as in Production Example 1 except that 1600 ml of 5 molZl sodium hydroxide aqueous solution was changed to 4000 ml of 3 molZl potassium hydroxide aqueous solution. Analyzing composition by ICP As a result, it was 1.38Nd—0.70Co—0.43B—97.49Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 15.3 m 2 / g and the average particle size was 14.1 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
[0064] 製造例 7 [0064] Production Example 7
2molZlの水酸化ナトリウム水溶液 2500mlを 3molZlの炭酸水素アンモニゥム水溶液 4000mlに変えた以外は製造例 2と同様にしてマグネタイトを製造した。得られたマグ ネタイト粉末を 300°Cで 5時間加熱した。 ICPにより組成を分析した結果、 1.22Nd—0.3 IDy— 0.99Co— 2.8B— 94.68Feであった。製造例 1と同様に比表面積、 D50を測定し たところ、比表面積は 18.3m2/g、平均粒子径は 20.1 mであった。また X線回折によ りへマタイトのピークは確認できな力つた。 Magnetite was produced in the same manner as in Production Example 2 except that 2500 ml of 2 molZl aqueous sodium hydroxide solution was changed to 4000 ml of 3 molZl aqueous ammonium hydrogen carbonate solution. The obtained magnetite powder was heated at 300 ° C for 5 hours. The composition was analyzed by ICP and found to be 1.22Nd-0.3 IDy- 0.99Co- 2.8B- 94.68Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 18.3 m 2 / g and the average particle size was 20.1 m. The X-ray diffraction revealed that hematite peaks could not be confirmed.
[0065] 製造例 8  [0065] Production Example 8
2molZlの水酸化ナトリウム水溶液 2500mlを 3molZlの水酸化カリウム水溶液 4000ml に変えた以外は製造例 2と同様にしてマグネタイトを製造した。得られたマグネタイト 粉末を 300°Cで 5時間加熱した。 ICPにより組成を分析した結果、得られたマグネタイト 粉末の組成は 1.33Nd— 0.50Dy— 0.67Co— 0.50B— 97.00Feであった。製造例 1と同 様に比表面積、 D50を測定したところ、比表面積は 24.6m2Zg、平均粒子径は 16.5 mであった。また X線回折によりへマタイトのピークは確認できな力つた。 Magnetite was produced in the same manner as in Production Example 2, except that 2500 ml of a 2 mol Zl aqueous sodium hydroxide solution was changed to 4000 ml of a 3 mol Zl aqueous potassium hydroxide solution. The obtained magnetite powder was heated at 300 ° C for 5 hours. As a result of analyzing the composition by ICP, the composition of the obtained magnetite powder was 1.33Nd—0.50Dy—0.67Co—0.50B—97.00Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.6 m 2 Zg and the average particle size was 16.5 m. The X-ray diffraction showed that hematite peaks could not be confirmed.
[0066] 製造例 9 [0066] Production Example 9
5molZlの塩酸溶液 1500mlを 2molZlの硝酸溶液 3000mlに変えた以外は製造例 2と 同様にしてマグネタイトを製造した。得られたマグネタイト粉末を 300°Cで 5時間加熱し た。 ICPにより組成を分析した結果、 1.53Nd— 0.50Dy— 0.88Co— 0.70B— 96.6Feであ つた。製造例 1と同様に比表面積、 D50を測定したところ、比表面積は 22.6m2/g、平 均粒子径は 17.2 mであった。また X線回折によりへマタイトのピークは確認できなか つた o Magnetite was produced in the same manner as in Production Example 2, except that 1500 ml of 5 mol Zl hydrochloric acid solution was changed to 3000 ml of 2 mol Zl nitric acid solution. The obtained magnetite powder was heated at 300 ° C for 5 hours. As a result of analyzing the composition by ICP, it was 1.53Nd—0.50Dy—0.88Co—0.70B—96.6Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 22.6 m 2 / g and the average particle diameter was 17.2 m. Hematite peak could not be confirmed by X-ray diffraction o
[0067] 製造例 10  [0067] Production Example 10
2molZlの水酸化ナトリウム水溶液 2500mlを 3molZlの水酸化カリウム水溶液 4000ml 、 5molZlの塩酸溶液 1500mlを ImolZlの硝酸溶液 2000mlにそれぞれ変えた以外は 製造例 2と同様にしてマグネタイトを製造した。得られたマグネタイト粉末を 300°Cで 5 時間加熱した。 ICPにより組成を分析した結果、 1.56Nd— 0.53Dy—0.69Co— 0.47B— 96.75Feであった。製造例 1と同様に比表面積、 D50を測定したところ、比表面積は 24 .6m2Zg、平均粒子径は 15.4 mであった。また X線回折によりへマタイトのピークは 確認できな力つた。 Magnetite was produced in the same manner as in Production Example 2 except that 2500 ml of 2 molZl sodium hydroxide aqueous solution was changed to 4000 ml of 3 molZl potassium hydroxide aqueous solution and 1500 ml of 5 molZl hydrochloric acid solution was changed to 2000 ml of nitric acid solution of ImolZl. The obtained magnetite powder is heated at 300 ° C for 5 Heated for hours. As a result of analyzing the composition by ICP, it was 1.56Nd—0.53Dy—0.69Co—0.47B—96.75Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 24.6 m 2 Zg and the average particle size was 15.4 m. Hematite peaks were also confirmed by X-ray diffraction.
[0068] 比較製造例 1  [0068] Comparative Production Example 1
平均粒子径 0.30 m、比表面積 8.5m2/gの市販のトナー用マグネタイト粉末を水素 100%の雰囲気中、 600°Cの温度で 4時間加熱した。還元処理した鉄粉を大気中に取 り出すと発火した。 A commercially available magnetite powder for toner having an average particle size of 0.30 m and a specific surface area of 8.5 m 2 / g was heated in a 100% hydrogen atmosphere at a temperature of 600 ° C. for 4 hours. When reduced iron powder was taken out into the atmosphere, it ignited.
[0069] 製造例 11  [0069] Production Example 11
合金スラリーとして、希土類一鉄 ホウ素系焼結磁石の製造過程で発生した平均 粒径 10 μ mの研削屑 500gを 1000mlの純粋に混ぜて調整したスラリーを用いた以外は 製造例 2と同様にして、マグネタイトを製造した。 ICPにより組成を分析した結果、 1.40 Nd—0.36Pr—0.65Co— 0.35B— 97.24Feであった。製造例 1と同様に比表面積、 D50 を測定したところ、比表面積は 18.6m2Zg、平均粒子径は 7.5 mであった。 X線回折 によりへマタイトのピークは確認できな力つた。 The same procedure as in Production Example 2 was used, except that an alloy slurry was used that was prepared by mixing 500 ml of grinding scraps with an average particle size of 10 μm generated in the process of manufacturing rare earth-iron-boron-based sintered magnets with 1000 ml. Magnetite was manufactured. As a result of analyzing the composition by ICP, it was 1.40 Nd—0.36Pr—0.65Co—0.35B—97.24Fe. When the specific surface area and D50 were measured in the same manner as in Production Example 1, the specific surface area was 18.6 m 2 Zg and the average particle diameter was 7.5 m. X-ray diffraction revealed a hematite peak that could not be confirmed.
また、塩酸溶液を添加、反応後、マグネタイトを濾過した際の濾液を撹拌し、酸性フ ッ化アンモン 200gZL溶液をカ卩え、希土類フッ化物を沈澱させた。沈澱物を濾過、洗 浄し、希土類フッ化物を得た。更に希土類フッ化物の沈澱物を濾過した際の濾液を 撹拌し、 5molZlの水酸ィ匕ナトリウム水溶液を添加し、水酸ィ匕コバルトを沈殿させた。 沈澱物を濾過、洗浄し、水酸ィ匕コバルトを得た。  Further, after adding the hydrochloric acid solution and reacting, the filtrate obtained when the magnetite was filtered was stirred, and an acidic ammonium fluoride 200 g ZL solution was added to precipitate the rare earth fluoride. The precipitate was filtered and washed to obtain a rare earth fluoride. Further, the filtrate obtained by filtering the precipitate of the rare earth fluoride was stirred, and 5 mol Zl of aqueous sodium hydroxide solution was added to precipitate cobalt hydroxide. The precipitate was filtered and washed to obtain cobalt hydroxide.
以上より、希土類一鉄合金スクラップを原料として用いた場合、鉄以外の希土類元 素、コバルト等の有用金属を回収することが可能である。  From the above, when rare earth-iron-iron alloy scrap is used as a raw material, it is possible to recover useful metals such as rare earth elements and cobalt other than iron.
[0070] 実施例 2— 1〜2— 10 [0070] Examples 2-1 to 2-10
製造例 1、 3〜 11で得られたマグネタイト粉末を実施例 1 1と同様に水素 100%の 雰囲気中 600°Cの温度で 4時間加熱した。得られた多孔質鉄粉について、 XRDにより 酸化鉄の有無、 EPMAにより表層部の酸ィ匕物の有無を判定し、 BET法により比表面 積、レーザー回折法により D50、窒素吸着法により平均細孔径及び細孔容積を測定 した。結果を表 2に示す。 また、いずれの試料も XRDにより (X一 Feに由来する回折パターンを示すことを確認 した。電波吸収特性についても実施例 1—1と同様にして行ったところ、いずれの試 料も l〜20GHzの領域で一 20dBを超える電波吸収特性が得られた。 The magnetite powders obtained in Production Examples 1 and 3 to 11 were heated in the atmosphere of 100% hydrogen at a temperature of 600 ° C. for 4 hours in the same manner as in Example 11. The resulting porous iron powder is checked for the presence of iron oxide by XRD and the presence or absence of acid oxides on the surface by EPMA, specific surface area by BET method, D50 by laser diffraction method, and average fineness by nitrogen adsorption method. The pore diameter and pore volume were measured. The results are shown in Table 2. In addition, it was confirmed by XRD that all samples showed a diffraction pattern derived from X-Fe. The radio wave absorption characteristics were also the same as in Example 1-1. An electromagnetic wave absorption characteristic exceeding 1-20 dB was obtained in the above region.
[表 2] 酸化鉄表層部の比表面積平均粒子径平均細孔径細孔容積 [Table 2] Specific surface area average particle size average pore size average pore size pore volume of iron oxide surface layer
酸化物 /g) ( β m) (nm) (ml/g)  Oxide / g) (β m) (nm) (ml / g)
実施例 2 — 1 無 有 12.1 8.9 10.3 0.033 実施例 2 — 2 有 15.3 8.0 13.4 0.032 実施例 2— 3 無 有 17.5 8.7 16.5 0.047 実施例 2— 4 有 16.4 9.2 13.4 0.054 実施例 2 — 5 有 9.7 7.1 14.6 0.035 実施例 2— 6 有 10.8 10.3 11.3 0.024 実施例 2— 7 有 14.4 8.3 15.2 0.027 実施例 2— 8 有 13.2 9.1 20.7 0.031 実施例 2 — 9 有 18.3 7.9 12.2 0.056 実施例 2 — 10 無 有 11.5 4.7 15.5 0.042  Example 2-1 No Yes 12.1 8.9 10.3 0.033 Example 2-2 Yes 15.3 8.0 13.4 0.032 Example 2-3 No Yes 17.5 8.7 16.5 0.047 Example 2-4 Yes 16.4 9.2 13.4 0.054 Example 2-5 Yes 9.7 7.1 14.6 0.035 Example 2—6 Yes 10.8 10.3 11.3 0.024 Example 2—7 Yes 14.4 8.3 15.2 0.027 Example 2—8 Yes 13.2 9.1 20.7 0.031 Example 2 — 9 Yes 18.3 7.9 12.2 0.056 Example 2 — 10 No Yes 11.5 4.7 15.5 0.042

Claims

請求の範囲 The scope of the claims
[I] 組成が鉄を主成分とし、比表面積が 4m2Zg以上、平均粒子径が 2〜90 μ mであり、 X線回折により ex Feに由来するピークが確認できる多孔質鉄粉。 [I] A porous iron powder whose composition is mainly composed of iron, has a specific surface area of 4 m 2 Zg or more, an average particle diameter of 2 to 90 μm, and a peak derived from ex Fe can be confirmed by X-ray diffraction.
[2] 表層部の少なくとも一部が酸化されている請求項 1の多孔質鉄粉。  [2] The porous iron powder according to claim 1, wherein at least a part of the surface layer portion is oxidized.
[3] 組成が、 Yを含む希土類元素、 Al、 Ti、 Si、 Mn、 Co、 Ni、 B、 C及び Nの少なくとも 1種 の元素を 0.01〜15at%含む請求項 1の多孔質鉄粉。  [3] The porous iron powder according to claim 1, wherein the composition contains 0.01 to 15 at% of at least one element selected from the group consisting of rare earth elements including Y, Al, Ti, Si, Mn, Co, Ni, B, C and N.
[4] 組成が、 Yを含む希土類元素の少なくとも 1種の元素を l〜5at%含む請求項 1の多 孔質鉄粉。 [4] The porous iron powder according to claim 1, wherein the composition contains 1 to 5 at% of at least one element of rare earth elements including Y.
[5] 細孔の平均孔径が lOOnm以下である請求項 1記載の多孔質鉄粉。  5. The porous iron powder according to claim 1, wherein the average pore diameter of the pores is lOOnm or less.
[6] 細孔容積が O.OlmlZg以上である請求項 1の多孔質鉄粉。 6. The porous iron powder according to claim 1, wherein the pore volume is O.OlmlZg or more.
[7] 請求項 1の多孔質鉄粉を含む電波吸収体。 [7] A radio wave absorber comprising the porous iron powder according to claim 1.
[8] 任意の M元素を含有する鉄を主成分とする Fe— M含有合金を準備する工程 (1A)と 該 Fe— M含有合金から M元素を溶出し、 Feを主成分とする Fe含有固形物を得るた めに、該 Fe— M含有合金を酸溶液に浸漬する工程 (1B)と、  [8] Step (1A) of preparing an Fe—M containing alloy containing iron as a main component containing any M element, and eluting M element from the Fe—M containing alloy, and containing Fe containing Fe as a main component A step (1B) of immersing the Fe-M-containing alloy in an acid solution to obtain a solid;
該 Fe含有固形物を還元する工程 (1C)とを含む、  Reducing the Fe-containing solid (1C),
X線回折により ex—Feに由来するピークが確認できる、多孔質鉄粉の製造方法。  A method for producing porous iron powder in which a peak derived from ex-Fe can be confirmed by X-ray diffraction.
[9] 工程 (1B)の後、工程 (1C)の前に、 Fe含有固形物を乾燥又は酸化させるために加熱 する工程を含む請求項 8の製造方法。 [9] The production method according to claim 8, comprising a step of heating the Fe-containing solid material for drying or oxidation after the step (1B) and before the step (1C).
[10] 任意の M元素を含有する鉄を主成分とする Fe— M含有合金を準備する工程 (2A)と 該 Fe— M含有合金から M元素を溶出し、 Fe水酸化物を主成分とする Fe水酸化物含 有固形物を得るために、該 Fe— M含有合金を酸溶液に浸漬する工程 (2B— 1)と、 マグネタイト粉末を得るために、該 Fe水酸化物含有固形物をアルカリ溶液に浸漬す る工程 (2B— 2)と、 [10] A step (2A) of preparing an Fe—M-containing alloy containing iron containing any M element as a main component, and eluting M element from the Fe—M-containing alloy; In order to obtain an Fe hydroxide-containing solid, a step (2B-1) of immersing the Fe-M-containing alloy in an acid solution; and to obtain a magnetite powder, the Fe hydroxide-containing solid A step of immersing in an alkaline solution (2B-2);
該マグネタイト粉末を還元する工程 (2C)とを含む、  Reducing the magnetite powder (2C),
X線回折により ex—Feに由来するピークが確認できる、多孔質鉄粉の製造方法。  A method for producing porous iron powder in which a peak derived from ex-Fe can be confirmed by X-ray diffraction.
[I I] 任意の M元素を含有する鉄を主成分とする Fe M含有合金を準備する工程 (3A)と マグネタイトを主成分とする中間マグネタイト固形物を得るために、該 Fe— M含有合 金をアルカリ溶液に浸漬する工程 (3B— 1)と、 [II] A step (3A) of preparing an Fe-M-containing alloy mainly containing iron containing any M element A step of immersing the Fe-M-containing alloy in an alkaline solution (3B-1) to obtain an intermediate magnetite solid containing magnetite as a main component;
M元素を溶出させ、マグネタイト粉末を得るために、該中間マグネタイト固形物を酸 溶液に浸漬する工程 (3B— 2)と、  A step (3B-2) of immersing the intermediate magnetite solid in an acid solution to elute element M and obtain magnetite powder;
該マグネタイト粉末を還元する工程 (3C)とを含む、  Reducing the magnetite powder (3C),
X線回折により ex—Feに由来するピークが確認できる、多孔質鉄粉の製造方法。  A method for producing porous iron powder in which a peak derived from ex-Fe can be confirmed by X-ray diffraction.
[12] M元素力 Yを含む希土類元素の少なくとも 1種である請求項 8、 10又は 1 1の製造 方法。 [12] The method according to claim 8, 10, or 11, wherein the element is at least one rare earth element including elemental force Y.
[13] 工程 (1C)、工程 (2C)及び工程 (3C)における還元を、水素を 3体積%以上含む還元 性雰囲気中、 300°C以上で、 1分間〜 100時間の熱処理条件にて行う請求項 8、 10又 は 1 1の製造方法。  [13] The reduction in step (1C), step (2C) and step (3C) is performed in a reducing atmosphere containing 3% by volume or more of hydrogen at a temperature of 300 ° C or higher for 1 minute to 100 hours. The method according to claim 8, 10 or 11.
[14] Fe—M含有合金が、希土類—鉄合金スクラップを含む請求項 8、 10又は 1 1の製造 方法。  [14] The method according to claim 8, 10 or 11, wherein the Fe—M-containing alloy contains rare earth-iron alloy scrap.
PCT/JP2006/317645 2005-09-06 2006-09-06 Porous iron powder, process for producing the same and radio wave absorber WO2007029736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200680032664.XA CN101257989B (en) 2005-09-06 2006-09-06 Porous iron powder, process for producing the same and radio wave absorber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005294161A JP5148824B2 (en) 2005-09-06 2005-09-06 Magnetite powder, method for producing magnetite powder
JP2005-294141 2005-09-06
JP2005294141A JP5299983B2 (en) 2005-09-06 2005-09-06 Porous iron powder, method for producing porous iron powder, electromagnetic wave absorber
JP2005-294161 2005-09-06

Publications (1)

Publication Number Publication Date
WO2007029736A1 true WO2007029736A1 (en) 2007-03-15

Family

ID=37835855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317645 WO2007029736A1 (en) 2005-09-06 2006-09-06 Porous iron powder, process for producing the same and radio wave absorber

Country Status (2)

Country Link
CN (1) CN102744398B (en)
WO (1) WO2007029736A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051967A (en) * 2010-08-31 2012-03-15 Jfe Mineral Co Ltd Cleaning material
KR101456116B1 (en) * 2012-12-31 2014-11-03 국민대학교산학협력단 Manufacturing method of metal foam and metal foam manufactured thereby

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289440A (en) * 1997-02-12 1998-10-27 Tdk Corp Magnetic recording medium and magnetic recording and reproducing method
JP2002105501A (en) * 2000-09-26 2002-04-10 Hoganas Ab Spherical porous iron powder and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI117224B (en) * 1994-01-20 2006-07-31 Nec Tokin Corp Electromagnetic interference suppression piece, applied by electronic device and hybrid integrated circuit element
JP3700312B2 (en) * 1996-04-19 2005-09-28 住友電気工業株式会社 Method for producing Fe metal porous body
JPH1083911A (en) * 1996-09-06 1998-03-31 Tokin Corp Composite magnetic material and electromagnetic interference inhibition body using that
EP0903758A4 (en) * 1997-02-12 1999-09-08 Tdk Corp Magnetic recording medium and magnetic recording/reproducing method
DE69836284T2 (en) * 1998-12-18 2007-02-15 Dowa Mining Co., Ltd. FERROMAGNETIC POWDER
US6589667B1 (en) * 2000-09-26 2003-07-08 Höganäs Ab Spherical porous iron powder and method for producing the same
CN1191139C (en) * 2002-11-14 2005-03-02 中国地质大学(武汉) Preparation method of porous iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289440A (en) * 1997-02-12 1998-10-27 Tdk Corp Magnetic recording medium and magnetic recording and reproducing method
JP2002105501A (en) * 2000-09-26 2002-04-10 Hoganas Ab Spherical porous iron powder and its manufacturing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MACHIDA K.: "Kidorui Jishaku Zairyo no ECO Materials-ka", MATERIAL SCIENCE & TECHNOLOGY, vol. 74, no. 4, 1 April 2004 (2004-04-01), pages 389 - 395, XP003010103 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051967A (en) * 2010-08-31 2012-03-15 Jfe Mineral Co Ltd Cleaning material
KR101456116B1 (en) * 2012-12-31 2014-11-03 국민대학교산학협력단 Manufacturing method of metal foam and metal foam manufactured thereby

Also Published As

Publication number Publication date
CN102744398B (en) 2015-01-14
CN102744398A (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5299983B2 (en) Porous iron powder, method for producing porous iron powder, electromagnetic wave absorber
JP7174962B2 (en) Magnet powder containing Sm--Fe--N system crystal particles, sintered magnet produced therefrom, and production method thereof
JP4686494B2 (en) High frequency magnetic material and manufacturing method thereof
KR100697752B1 (en) High frequency magnetic materials and method for producing the same
CN111386161A (en) Magnetic material and method for producing the same
JP2006077264A (en) METHOD FOR RECYCLING RARE-EARTH SINTERED MAGNET AND TRANSITION-METAL BASED SCRAP, AND METHOD FOR MANUFACTURING MAGNETIC-MATERIAL POWDER FOR GHz BAND WAVE ABSORBER AND METHOD FOR MANUFACTURING WAVE ABSORBER
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
CN111373065A (en) Magnetic material and method for producing the same
Miura et al. Microwave absorption properties of the nano-composite powders recovered from Nd–Fe–B bonded magnet scraps
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
JP4601907B2 (en) High frequency magnetic material powder, high frequency magnetic component using the same, and manufacturing method
WO2007029736A1 (en) Porous iron powder, process for producing the same and radio wave absorber
US20230162913A1 (en) Rare earth magnet and production method thereof
JP4444191B2 (en) High frequency magnetic material, high frequency magnetic device, and method of manufacturing high frequency magnetic material
JPWO2008133025A1 (en) Nickel-iron-zinc alloy nanoparticles
JP2011132581A (en) Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization
JP7097702B2 (en) Fe-Co alloy powder and inductor moldings and inductors using it
KR102393236B1 (en) soft magnetic flat powder
CN110506314B (en) Magnetic material and method for producing the same
EP4280234A1 (en) Magnetic composite
JP5148824B2 (en) Magnetite powder, method for producing magnetite powder
JP7002179B2 (en) Fe-Ni alloy powder and inductor moldings and inductors using it
JP2010024479A (en) Flat fine particle of iron alloy and method for producing the same
JP7001259B2 (en) Magnetic materials and their manufacturing methods
JPH07315844A (en) Production of ferrite powder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032664.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797540

Country of ref document: EP

Kind code of ref document: A1