WO2007029676A1 - Biological tissue sheet and method for preparation thereof - Google Patents

Biological tissue sheet and method for preparation thereof Download PDF

Info

Publication number
WO2007029676A1
WO2007029676A1 PCT/JP2006/317510 JP2006317510W WO2007029676A1 WO 2007029676 A1 WO2007029676 A1 WO 2007029676A1 JP 2006317510 W JP2006317510 W JP 2006317510W WO 2007029676 A1 WO2007029676 A1 WO 2007029676A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
amniotic membrane
cell
sheet
derived
Prior art date
Application number
PCT/JP2006/317510
Other languages
French (fr)
Japanese (ja)
Inventor
Kouji Hashimoto
Yuuji Shirakata
Junji Hamuro
Wakana Ito
Original Assignee
Arblast Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arblast Co., Ltd. filed Critical Arblast Co., Ltd.
Publication of WO2007029676A1 publication Critical patent/WO2007029676A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells

Definitions

  • the present invention relates to a biological tissue sheet.
  • the present invention relates to a biological tissue sheet containing cells derived from keratoconjunctival epithelial cells, skin epidermal cells, hair follicle epithelial cells, oral mucosal epithelial cells, airway mucosal epithelial cells, intestinal mucosal epithelial cells, and the like. It relates to the production method of the sheet and the use (transplantation method etc.) of the sheet.
  • the skin is an organ that covers the outermost layer of a living body, and is a kind of barrier that protects a living body from an external force.
  • the skin is composed of the epidermis, dermis, and subcutaneous tissue.
  • the epidermis is mainly keratinocyte power, which contains a small number of pigment cells, Langerno cells, and cells.
  • the cells that make up the epidermis are mainly keratinocytes, (1) keratinocytes that have lost their nuclei, which occupy the outermost layer, (2) cells that have nuclei beneath them (granular cells, spiny cells, basal cells)
  • the epidermis basement membrane exists between the basal cells in the lowermost layer and the dermis.
  • the basal layer is a single cell layer, which is the mother cell layer of epidermal keratinocytes, and it is thought that the only cells with the ability to divide are basal cells.
  • a state in which the epidermis has been lost for some reason is an ulcer.
  • the epidermis is regenerated and the ulcer surface becomes epithelialized by the proliferation of keratinocytes from the periphery or by the proliferation of keratinocytes derived from some hair follicles.
  • epithelialization takes time only by regeneration of the epidermis from the surrounding area.
  • the cell cycle of the basal layer is about 450 hours.
  • Daughter cells born by division change morphologically and functionally as they move to the spinous layer, and then keratinize through the granular layer to become the stratum corneum and eventually fall out of the body.
  • the time until dropout is called turnover time, which is estimated to be 47 to 48 days.
  • epidermal keratinocytes are divided into stem cells, transit-amplifying cells, post-mitotic cells based on their ability to divide. It is classified into three types of cells (post-dividing cells).
  • a stem cell is a cell that has infinite self-renewal ability and generates a transit-amplifying cell by division.
  • Transit-amplifying cells have a certain division ability and become transit-amplifying cells after division, but eventually lose division ability and become post-mitotic cells.
  • Stem cell of epidermis is considered to have the following characteristics.
  • epidermal growth factor (EGF) family Eko EGF
  • EGF transforming growth factor
  • TGF-a heparin binding EGF like growth factor
  • HB—EGF betacellulin
  • amphiregulin amphiregulin
  • neuregulins neuregulins
  • TGF— ⁇ TGF- ⁇
  • HB—EGF heparin binding EGF like growth factor
  • amphiregulin amphiregulin
  • neuregulins heparin binding EGF like growth factor
  • other forces that are actually involved in epidermal keratinocyte proliferation TGF— ⁇ , HB—EGF, and amphiregulin. It is thought to be regrin, and these factors have been shown to act autoproliferatively on epidermal keratinocytes.
  • TGF- ⁇ , vitamin D, retinoic acid, etc. are known as factors that suppress the growth of epidermal keratinocytes.
  • JP-A-10-277143 JP-A-10-277143 (Patent Document 1) describes a graft for treating a full-thickness defect such as human skin and a method for producing the same.
  • the graft disclosed in this document is made by embedding fibroblasts derived from dermal tissue in human fibrin sheet and attaching the epidermal tissue to the surface of this sheet.
  • the epidermis sheet is divided into an autologous cultured epidermis sheet and an autologous cultured epidermis sheet depending on the origin of the cells used.
  • autologous skin sheet transplantation is mainly intended to cover and engraft the epidermal defect site, while transplantation of other culture skin sheet is effective as a biological dressing.
  • epidermal keratinocytes produce various cell growth factors and cytokines, and the effectiveness of other-cultured epidermal sheets has been revealed.
  • Cornea One of the tissues expected to contribute to regenerative medicine alongside the skin is the cornea. Cornea
  • the keratoconjunctival epithelial cells are always in contact with the outside world, and have a protective action to protect the eyeball with foreign substances such as microorganisms in the outside world and light rays such as ultraviolet rays. That is, keratoconjunctival epithelial cells are transparent to the cornea It plays a vital role in protecting the sex and the entire eyeball and maintaining homeostasis.
  • the cornea may become turbid and lose its transparency due to pathological conditions such as keratitis, corneal ulcer, and perforation.
  • pathological conditions such as keratitis, corneal ulcer, and perforation.
  • treatment by cornea transplantation using the cornea provided by the eyeball donor Kas et al. Has been performed.
  • the transparent cornea is transplanted after removing the cornea from which the transparency of the patient has been lost, and the transparency is restored by this transplantation, and visual acuity can be restored again.
  • corneal transplantation can be expected to have an effective therapeutic effect
  • epilepsy diseases that cannot be addressed by corneal transplantation alone. Examples include Stevens-Johnson syndrome, pemphigoid, chemical trauma, and burns. Normally, keratoconjunctival epithelial cells repeat division every day, old cells peel off, and new cells are regenerated from stem cell tissue. However, it has been found that in the above pathological conditions, the stem cell tissue that regenerates the cornea is damaged.
  • Stem cell tissue that regenerates corneal epithelium is called “corneal limbal tissue”, and is limited to the boundary between black eyes and white eyes, and is in a special environment exposed to the outside world.
  • this stem cell tissue itself is eradicated by some kind of disorder.
  • the defective part is covered with surrounding conjunctival epithelium, lacking transparency, and exerting an extremely low visual acuity.
  • the corneal limbus is withered, so that the transplanted cornea cannot be maintained for a long time simply by transplanting the cornea.
  • an amniotic membrane transplantation method As one method for transplanting the limbus, an amniotic membrane transplantation method has been developed (Medical Asahi, September 1999 issue: p62-65, N Engl J Med340: 1697-1703, 1999: Non-patent document 1 ).
  • the amniotic membrane used in this transplantation method is obtained from the placenta of pregnant women who have undergone cesarean section. Since the amniotic membrane has a thick basement membrane, it acts as a substrate for the proliferation and differentiation of keratoconjunctival epithelial cells when transplanted.
  • amniotic membrane since the amniotic membrane has both anti-inflammatory and scarring suppression effects that are almost immunogenic, the keratoconjunctival epithelium and these stem cell tissues transplanted onto the amniotic membrane are rejected by the transplant recipient (recipient). Etc. will be protected.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-277143
  • Non-Patent Document 1 Medical Asahi, September 1999 issue: p62-65, N Engl J Med340: 1697-1703, 1999
  • transplantation using the graft is regarded as xenotransplantation or equivalent, and is considered to have a serious problem in ethics and safety. In fact, there are no examples of xenotransplantation being put to practical use in the medical field!
  • Transplantation of cultured epidermis sheets made it possible to cover a wide range of wound surfaces by subculturing keratinocytes from stamp-sized skin. In addition, since it can be stored frozen, it can be applied to the treatment of intractable and recurrent skin ulcers that require repeated transplantation. It is not always easy to satisfactorily engraft culture sheets produced by conventional culture methods, for example, transplanted cultured skin sheets. This is because the cultured epidermis sheet lacks the components of the basement membrane and the stratified epidermis does not form a strong stratum corneum.
  • the 3D cultured skin developed by Bell is also the closest to the skin at present, with both the stratum corneum and the granule layer being recognized, but due to the complexity of the procedure and the need for special techniques, it is still in Japan. Not popular . Three-dimensional cultured skin has already been demonstrated overseas and has already been commercialized. However, it is not possible to expect permanent engraftment with the ability to promote epithelialization in allogeneic transplantation. In Japan, there is little prospect of widespread transplantation in terms of ethics and safety, and there has been a focus on improving autotransplantation.
  • the present invention has been made in view of the above background and problems, and an object thereof is to provide a biological tissue sheet that is expected to have a high therapeutic effect and has high safety at the time of transplantation.
  • the present inventors first tried to produce a cultured skin sheet. Specifically, in consideration of safety, the condition that the cells derived from different animals (feeder cells) are not used when culturing epidermal keratinocytes is used, and good growth and tissue formation of epidermal keratinocytes are achieved.
  • feeder cells the condition that the cells derived from different animals
  • the fibroblasts interact with collagen in the amniotic membrane to ensure good growth of the fibroblasts themselves, and the nutritional components necessary for the survival, proliferation and organization of epidermal keratinocytes It was speculated that a state of being supplied from fibroblasts was created through this, and as a result, a high-quality epidermal cell layer could be constructed.
  • the present inventors have succeeded in producing a safe and practical biological tissue sheet that does not use cells derived from different animals.
  • the present invention has been completed on the basis of the above results and knowledge, and provides the following configuration.
  • the present invention provides a biological tissue sheet containing biological cells grown on a collagen sheet placed on human fibroblasts. It is preferable to use amniotic membrane as the collagen sheet here.
  • Amniotic membrane is not only immunogenic but also has anti-inflammation and anti-scarring effects.
  • As the collagen sheet it is particularly preferable to use amniotic membrane from which the epithelium (epithelial cell layer) has been removed. This is because the absence of epithelium improves the growth of living cells seeded thereon. This is also because a further reduction in immunogenicity is achieved.
  • amniotic membrane added with trehalose is used as a collagen sheet. Such amniotic membrane is excellent in flexibility and functions better as a substrate for cell culture.
  • a medium for growing cells derived from living organisms (1) a serum-free medium, or (2) a medium containing only serum derived from the recipient as a serum component can be used.
  • the biological cell is preferably a cell derived from the corneal epithelium, conjunctival epithelium, skin epidermis, hair follicle epithelium, oral mucosa, airway mucosa or intestinal mucosa.
  • a biological tissue sheet according to another embodiment of the present invention includes a layered cell layer formed by expanded cells.
  • the biological tissue sheet of the present invention is, for example, directly or amniotic (amniotic membrane different from the collagen sheet used as a culture substrate.
  • amniotic membrane different from the collagen sheet used as a culture substrate in one embodiment of the present invention
  • the “second amniotic membrane is used for convenience. And also transplanted into a tissue defect. In the latter case, typically, after transplanting the second amniotic membrane to the tissue defect, a biological tissue sheet is transplanted on the amniotic membrane.
  • the present invention further provides a method for producing a biological tissue sheet.
  • the production method of the present invention includes the following steps. That is, (a) preparing human fibroblasts; (b) placing a collagen sheet on the human fibroblasts seeded in a culture vessel; (c) preparing living-derived cells; Inoculating a biological cell on the collagen sheet; and (d) culturing and proliferating the biological cell in the absence of a heterologous animal cell.
  • step (b) A collagen sheet is placed after a predetermined time has elapsed since the seeding of human fibroblasts. This step promotes the adhesion and monolayering of human fibroblasts to the culture container, thereby achieving a high quality sheet of the biological tissue sheet.
  • step (b) ′ is a step of culturing the human fibroblast for a predetermined time.
  • step the infiltration of human fibroblasts into the collagen sheet is promoted, and the high quality of the living yarn and woven sheet can be achieved.
  • the step of bringing the outermost layer into contact with air is further performed. This step promotes keratinization (epithelialization) of the cell layer.
  • amniotic membrane is used as the collagen sheet in step (b). It is particularly preferable to use amniotic membrane from which the epithelium (epithelial cell layer) has been removed as the collagen sheet. . On the other hand, in one embodiment of the present invention, amniotic membrane added with trehalose is used as a collagen sheet.
  • a serum-free medium or (2) a medium containing only serum derived from a recipient as a serum component can be used.
  • the biological cell is preferably a cell derived from the corneal epithelium, conjunctival epithelium, skin epidermis, hair follicle epithelium, oral mucosa, airway mucosa or intestinal mucosa.
  • FIG. 1 is a flowchart showing an amnion epithelial removal procedure.
  • FIG. 2 is a diagram for explaining an amniotic membrane fixing method.
  • the amniotic membrane is sandwiched between a pair of frames, and in (b), the amniotic membrane is sandwiched between the frame and a flat plate member.
  • FIG. 3 is a HE-stained image showing the state of the cultured skin sheet on day 17 after transplantation.
  • FIG. 4 is a diagram showing the results of immunohistochemical staining for cultured skin sheets.
  • FIG. 5 shows the results of immunohistochemical staining of cultured skin sheets.
  • FIG. 6 Experimental method (upper) and experimental results (lower) regarding the relationship between the seeding time of epidermal keratinocytes and the quality of the cultured skin sheet to be constructed.
  • the lower left is the HE-stained image of the cultured skin sheet constructed under condition 1 (time after amnion placement, time to seed the epidermis keratinocytes), the lower right is condition 2 (after amnion placement, It is an HE-stained image of a cultured skin sheet constructed under the condition of seeding epidermal keratinocytes without taking time.
  • FIG. 7 Experimental method (upper) and experimental result (lower) regarding the relationship between the time of placing (attaching) the amniotic membrane and the quality of the cultured skin sheet to be constructed.
  • the lower left is an HE-stained image of a cultured skin sheet constructed under Condition 1 (conditions where the fibroblast seeding power is short in the time interval until placement on the amniotic membrane), and the lower right is Condition 2 (fibroblast seeding power is up to the amnion placement)
  • Condition 1 condition where the fibroblast seeding power is short in the time interval until placement on the amniotic membrane
  • Condition 2 fibroblast seeding power is up to the amnion placement
  • FIG. 8 is an HE-stained image of a cultured corneal epithelial sheet constructed using amniotic membrane and human fibroblasts.
  • FIG. 9 is an immunostained image (confocal laser microscope, 100 ⁇ magnification) of a cultured corneal epithelial sheet constructed using amniotic membrane and human fibroblasts.
  • Upper row (A) shows immunostaining results for keratin 3.
  • the lower panel (B) shows the result of immunostaining for keratin 12.
  • Left side Green color Display primary After staining with antibody, stained with secondary antibody Al eX a488.
  • Center Red coloration Colored with DNA staining reagent PI.
  • the present invention provides a biological tissue sheet having the following constitution. That is, it is a living tissue sheet containing living body-derived cells grown on a collagen sheet placed on human fibroblasts. Living body-derived cells form a cell layer.
  • the features of the biological tissue sheet of the present invention and its production method will be described in detail below.
  • the biological tissue sheet of the present invention comprises (a) a step of preparing human fibroblasts, (b) a step of placing a collagen sheet on the human fibroblasts seeded in a culture vessel, (c) Preparing a cell derived from a living body and seeding the living body-derived cell on the collagen sheet; and (d) culturing and proliferating the living body-derived cell in the absence of a heterologous animal cell. Can do.
  • each step will be described.
  • human fibroblasts are prepared.
  • the origin of human fibroblasts is not particularly limited.
  • human fibroblasts derived from skin tissue, ocular tissue (cornea, sclera, conjunctiva, etc.), or oral mucosal tissue can be used.
  • human fibroblasts provided in the form of cell lines can be used, it is preferable to use recipient-derived fibroblasts from the viewpoint of biocompatibility.
  • human fibroblasts may be selected in consideration of the type of cells derived from a living body to be cultured on a collagen sheet (in other words, the type of living tissue sheet to be produced).
  • human fibroblasts derived from the same tissue as the living body cell to be used may be employed.
  • biologically derived cells and human fibroblasts the proliferation of the biologically derived cells and the expected tissue properties are improved.
  • An example of a preferred combination of biological cells and human fibroblasts is a combination of epidermal keratinocytes (biological cells) and human fibroblasts derived from skin tissue. Can be mentioned.
  • Human fibroblasts can be cultured by a conventional method.
  • human fibroblasts can be cultured in an appropriate medium in the presence of 37 ° C and 5% CO. Used for human fibroblast culture
  • the medium to be used is not particularly limited as long as the cells can grow, and a medium usually used for fibroblast culture may be used.
  • a DMEM medium containing serum such as fetal calf serum
  • serum added to the medium human serum, fetal bovine serum, sheep serum, and the like can be used.
  • serum it is preferable to use a serum that is derived from the same species (human serum) and autologous serum (that is, the serum of the recipient itself).
  • autologous serum that eliminates the risk of causing immune rejection.
  • Human fibroblasts may be cultured using a medium supplemented with growth factors and antibiotics. By using growth factors and antibiotics, cell proliferation rate and survival rate can be improved and contamination can be prevented.
  • Human fibroblasts may be cultured using a medium that is serum-free and does not contain proteins derived from different animals. That is, a serum-free culture method may be employed as the culture method in the present invention. In such an embodiment, problems such as immune rejection due to contamination of serum-derived components can be avoided.
  • step (b) first, the prepared human fibroblasts are seeded in a culture vessel.
  • a culture container of an appropriate size.
  • a commercially available culture insert or petri dish with a moderate force can be selected and used.
  • the material of the culture vessel and the presence or absence of surface coating are not particularly limited.
  • Human fibroblasts for example, plated at a cell density of 10,000 to 50,000 pieces / cm 2. If the cell density at the time of seeding is too small, one of the effects of the present invention that the growth of living cells is improved by using human fibroblasts is not sufficiently exhibited. On the other hand, sowing If the cell density at the time is too high, the nutrients supplied to the culture solution are insufficient, which is not preferable.
  • a collagen sheet is placed on the human fibroblasts seeded in the culture vessel.
  • the collagen sheet is placed after a predetermined time has passed for the seeding force of human fibroblasts. Ensuring sufficient time after seeding of human fibroblasts promotes adhesion and monolayering of human fibroblasts to the culture container, and is effective in producing high-quality biological tissue sheets.
  • the predetermined time here is, for example, 1 hour or more, preferably 2 hours or more, more preferably 4 hours or more, and even more preferably 1 day or more (eg, 1 day, 2 days, 3 days). is there.
  • the "collagen sheet” functions as a culture substrate for living cells.
  • the type of collagen used as a raw material for the collagen sheet is not particularly limited, and type I collagen, type III collagen, type IV collagen and the like can be used. A mixture of a plurality of types of collagen can also be used. These collagens can be extracted and purified from the skins of animals such as pigs, sushi, and hedges, and connective tissues such as soft bones by acid solubilization, alkali solubilization, enzyme solubilization, etc. it can. For the purpose of reducing antigenicity, it is preferable to use a so-called atherocollagen in which the telopeptide is removed by treatment with a degrading enzyme such as pepsin or trypsin. Collagen derived from amnion, particularly human amnion, may be used as a material for the collagen sheet.
  • the term “derived from amniotic membrane” means that it is widely obtained using amnion as a starting material.
  • amniotic membrane is a membrane that covers the outermost layer of the uterus and placenta in mammals, and is composed of a basement membrane and an epithelial layer formed on a collagen-rich parenchyma.
  • Amniotic membranes such as humans, monkeys, chimpanzees, pigs, horses, and ushi can be used. Among them, it is preferable to use human amniotic membrane. It also has advantages in terms of safety, including immunogenicity and virus infection. For example, human amnion can also collect force such as human fetal membrane and placenta obtained as a postpartum at delivery.
  • human amniotic membrane can be prepared by treating and purifying an integral body consisting of human fetal membrane, placenta and umbilical cord obtained immediately after delivery.
  • a treatment and purification method a known method such as a method described in JP-A-5-56987 can be adopted. That is, the amniotic membrane is peeled off from the fetal membrane obtained at the time of delivery Then, the remaining tissue is removed by physical treatment such as ultrasonic washing and enzyme treatment, and human amniotic membrane can be prepared through a washing step as appropriate.
  • the human amniotic membrane thus prepared can be stored frozen until use. Freezing of the human amniotic membrane can be performed, for example, at ⁇ 80 ° C. in a liquid in which DMEM (Dulbecco's modified Eagle's medium) and glycerol are mixed in an equal volume ratio. Cryopreservation is expected to improve operability as well as decrease antigenicity.
  • amniotic membrane can be used as it is, it is preferable to use a material obtained by removing the epithelium from the amniotic membrane by reptile treatment or the like.
  • a material obtained by removing the epithelium from the amniotic membrane by reptile treatment or the like When using human amniotic membrane from which the epithelium has been removed, it is preferable to seed biologically-derived cells on the surface side (ie, the basement membrane side) where the epithelium has been removed in step (c) described later. This is because this surface side is rich in type IV collagen, and it is considered that the seeded living cells are proliferated and stratified well.
  • a step of preparing an amniotic membrane separated from a living body (1) A step of preparing an amniotic membrane separated from a living body.
  • the epithelial removal method it is possible to completely remove the epithelium while suppressing damage to the basement membrane as much as the conventional manual epithelial removal method. That is, according to the epithelial removal method, an amniotic membrane having a basement membrane in which the epithelium is completely removed and the original structure is well maintained can be obtained. Such an amniotic membrane functions well as, for example, a cell culture substrate (base material).
  • the following epithelial removal method is very easy to operate and requires less operation time than conventional manual methods. It is also easy to process a large number of amniotic membranes at the same time. Furthermore, since skilled technology is not particularly required, it is easy to automate.
  • each step of the epithelial removal method will be described in detail (see FIG. 1).
  • step (1) prepare the amniotic membrane.
  • the amniotic membrane here is preferably human amniotic membrane.
  • human amnion can be collected by force such as human fetal membrane or placenta obtained as a postpartum at the time of delivery.
  • the human amniotic membrane can be prepared by treating and purifying an integral product such as human fetal membrane, placenta and umbilical cord obtained immediately after delivery.
  • known methods such as the method described in JP-A-5-56987 can be employed. Typically, this step is performed as follows.
  • a part of the placenta tissue is collected at the time of delivery, and then the amniotic tissue is manually detached from the placenta tissue. You may freeze once at this stage.
  • amniotic membrane from which blood cell components and chorion are removed at this stage, but after the freeze-thaw treatment (step 2) described later, removal of blood cell components and peeling of Z or chorion are performed. You can also.
  • the human amniotic membrane thus prepared can be stored frozen until the next treatment. Freezing of the human amniotic membrane can be performed, for example, at ⁇ 80 ° C. in a solution in which DMEM (Dulbecco's modified Eagle's medium) and glycerol are mixed in an equal volume ratio. Cryopreservation is expected to improve operability as well as decrease antigenicity.
  • DMEM Dulbecco's modified Eagle's medium
  • glycerol glycerol
  • amniotic membrane prepared by the above procedure is fixed to a frame and then subjected to the subsequent treatment. It becomes easy to handle by fixing the amniotic membrane with a frame.
  • FIG. 2 shows a specific example of how to fix the amniotic membrane.
  • two frames (1, 2) of the same shape are used.
  • the amniotic membrane 10 is fixed by holding the edges of these two frames. Fix the amniotic membrane in an expanded state.
  • the amniotic membrane 10 is fixed using the frame 3 and the plate-like member 4.
  • the amniotic membrane 10 is spread on the plate-like member 4.
  • the epithelial side of the amniotic membrane 10 is turned up.
  • the upper force of the amniotic membrane 10 is also put on the frame 3, and the edge of the amniotic membrane 10 is sandwiched between the plate-like member 4 and the frame 3.
  • the trypsin solution can be brought into contact only with the epithelial side of the amniotic membrane (for example, a trypsin solution is added inside the frame 3).
  • trypsin treatment can be performed without affecting the parts other than the epithelium (the amnion dense layer and the basement membrane). In other words, while the trypsin acts on the epithelium of the amniotic membrane, it is possible to protect the denseness of the amniotic membrane, etc.
  • the amniotic membrane is once frozen and then thawed.
  • This freezing and thawing process makes it easier for the amniotic epithelial layer to peel off during subsequent trypsin treatment. This is thought to be due to the loosening of the adhesive state (bonded state) between the amniotic epithelial layer and the basement membrane.
  • a freezing temperature of about 20 ° C to about 80 ° C can be used. In consideration of the fact that a sufficient frozen state can be obtained and a general-purpose freezer can be used, it is preferable to freeze at about 80 ° C.
  • a melting temperature of about 4 ° C to about 50 ° C can be employed. Preferably the melting temperature is about 37 ° C.
  • freeze-thaw treatment it is preferable to repeat the freeze-thaw treatment.
  • the effect of the freeze-thaw treatment that the epithelium is easily detached in the subsequent trypsin treatment is enhanced.
  • the freeze-thaw treatment is preferably performed twice under the conditions of a freezing temperature of -80 ° C and a thawing temperature of 37 ° C.
  • the conditions (freezing temperature and thawing temperature) for each time when the freeze-thaw treatment is repeatedly performed may be the same, partly different, or different from each other. However, from the viewpoint of operability, it is preferable that the conditions are the same each time.
  • the amniotic membrane after the freeze-thaw treatment is treated with trypsin.
  • Trypsinization is performed by bringing a trypsin solution into contact with the amniotic membrane.
  • a trypsin solution with a trypsin concentration of about 0.01% (w / v) to about 0.05% (w / v).
  • a trypsin solution having a trypsin concentration of about 0.02% (w / v) is used. If the trypsin concentration of the trypsin solution is too low, the action of trypsin will not be fully exerted. On the other hand, if the trypsin concentration is too high, trypsin can act well on the amniotic epithelium, while trypsin also acts on the amnion dense layer and the basement membrane, which may damage the part.
  • trypsins are commercially available such as those derived from ushi, porcine, and human.
  • Trypsin-EDTA Invitrogen
  • trypsin 1: 250 Sigma
  • a chelating agent is usually added to the trypsin solution, but the chelating agent is not essential.
  • EDTA As a chelating agent, EDTA, NTA, DTPA, HEDTA, GLDA, etc. can be used. Any combination of these may be used.
  • the chelating agent is added, for example, to a concentration of about O.lmM to about 0.6 mM.
  • trypsin treatment under conditions where only the amnion epithelial side is in contact with the trypsin solution. This is to protect the action force of trypsin on parts other than the amniotic epithelium. For example, immerse only the amnion epithelium side in a trypsin solution, do not add trypsin solution to the amnion epithelium side, apply it, and block the amnion chorion side to avoid contact with the solution. Thereafter, only the amnion epithelial side can be brought into contact with the trypsin solution by, for example, immersing it completely in a trypsin solution.
  • the amniotic membrane (frame-fixed amniotic membrane) fixed in advance to the frame as shown in Fig. 2b is used, only the epithelial side of the amniotic membrane is exposed, so the frame-fixed amniotic membrane is immersed in a trypsin solution, for example. It is possible to contact only the amnion epithelium side with the trypsin solution.
  • This method also has the advantage that the trypsin treatment can be performed by a simple operation of immersing the frame-fixed amniotic membrane.
  • the trypsin treatment time (contact time of the trypsin solution) is, for example, about 5 minutes to about 60 minutes. Good It is preferably about 10 minutes to about 20 minutes, more preferably about 15 minutes. If the treatment time is too short, trypsin cannot be sufficiently exerted, resulting in insufficient removal of the amniotic epithelium. On the other hand, if the treatment time is too long, trypsin may also act on the basement membrane and dense layer of the amniotic membrane to damage the part.
  • the temperature condition of the trypsin treatment is, for example, about 25 ° C. to about 42 ° C. so that trypsin works well.
  • the trypsin treatment can be performed in a plurality of times.
  • the amniotic membrane is washed. This washing removes the attached trypsin solution and simultaneously removes the amniotic epithelium (epithelial cells). For example, leave it in a liquid with an appropriate flow (for example, flowing water), shake it in a suitable liquid (for example, shake up and down), or apply ultrasonic waves while immersed in a suitable liquid.
  • the amniotic membrane after trypsinization is washed by adding.
  • the liquid used for washing include physiological saline, phosphate buffer, pure water, and DMEM.
  • the washed amniotic membrane may be refrigerated or frozen until use.
  • it can be stored in a state of being immersed in a storage solution containing glyceride (for example, 50% glycerol-containing DMEM (Dulbecco'S Modofied Eagle Medium: GIBCOBRL)).
  • glyceride for example, 50% glycerol-containing DMEM (Dulbecco'S Modofied Eagle Medium: GIBCOBRL)
  • amniotic membrane to which trehalose is added can also be used. In this case, it is preferable that the epithelium of the amniotic membrane is removed.
  • trehalose increases the flexibility of the amniotic membrane, particularly when it is lyophilized (see Japanese Patent Application 2005-214339 for details). Amniotic membrane with trehalose works well as a substrate for cell culture (see Japanese Patent Application No. 2005-214339 for details).
  • the matrix protein inside the amniotic membrane is weakened, the strength of the amniotic membrane is reduced and it becomes susceptible to damage. Also, moisture cannot be firmly held inside, and it becomes brittle and loses elasticity.
  • G Rehalose acts on loosened bonds in matrix proteins to strengthen the bonds between the proteins, thereby normalizing the water retention function inside the amniotic membrane, maintaining the original moisture, cohesion, and elasticity of the amniotic membrane. Expected. By adding trehalose, it is considered that the matrix protein inside the amniotic membrane becomes soft with freezing and drying treatment, and in particular, it can effectively prevent swelling and weakening in water.
  • Trenorose (substance name, generic name) is a compound represented by (X-D-Glucopyranosyl (1,1) —a—D—Glucopyranosi de.
  • Attachment of trehalose to the amniotic membrane can be performed, for example, by treating the amniotic membrane with a trehalose solution.
  • the amniotic membrane is immersed in a solution obtained by dissolving trehalose in distilled water or phosphate buffered saline (PBS (-)) so that the concentration is 5% (w / v) to 20% (w / v). To do.
  • the temperature during immersion is, for example, in the range of 4 ° C to 37 ° C.
  • the immersion time is, for example, in the range of 1 hour to 1 day.
  • Treha for example, Treha (registered trademark) provided by Hayashibara Shoji Co., Ltd. or HI Plus Plus Life Science Co., Ltd. can be used.
  • a method of adding trehalose to the amniotic membrane As a method of adding trehalose to the amniotic membrane, a method of applying a trehalose solution to the surface of the amniotic membrane, a method of spraying the trehalose solution to the surface of the amniotic membrane, a method of adding trehalose directly to the surface of the amniotic membrane, etc. may be adopted.
  • a reconstructed amniotic membrane can also be used as the collagen sheet.
  • amniotic membrane that has been once decomposed by homogenizer, ultrasonic wave, or enzymatic treatment and reconstructed into a membrane shape can be used.
  • the treatment method is preferably a homogenizer. This is because it is expected to keep the minute structure of the basement membrane relatively high.
  • the conditions (rotation speed) of the homogenization treatment are, for example, 3000 rpm to 50000 rpm, preferably 10000 rpm to 40000 rpm, and more preferably ⁇ 30000 rpm.
  • an amnion in which the chorionic side of the amniotic membrane is coated with a bioabsorbable material can also be used as the collagen sheet.
  • a bioabsorbable material used for such purposes it is earlier than amniotic membrane.
  • Decomposition 'It is preferable to adopt a material that is absorbed.
  • polydaractin 910, gelatin, collagen, polylactic acid and the like can be suitably used as the bioabsorbable material here.
  • the form of the bioabsorbable material used for reinforcement is not particularly limited.
  • the amniotic membrane is reinforced by covering the amnion chorion side with a bioabsorbable material formed into a mesh or sheet.
  • the amniotic membrane can be either wet or dry during the reinforcement process.
  • step (c) Immediately after placing the collagen sheet on human fibroblasts, seeding and culturing of biological cells (step (c)) can be performed, but preferably human fibroblasts are inoculated before seeding the biological cells. Incubate for a predetermined time (step (b) ').
  • step (b) ′ is effective for producing a high-quality biological tissue sheet.
  • the implementation of this step promotes the infiltration of human fibroblasts into the collagen sheet, and living body-derived cells can receive the supply of nutrient components with the strength of human fibroblasts from the initial stage of culture. .
  • the predetermined time here is, for example, 2 hours or more, preferably 1 day or more, more preferably 3 days or more, and even more preferably 5 days or more (f, 5 days, 6 days, 7 days).
  • living body-derived cells are prepared, and the living body-derived cells are seeded on a collagen sheet.
  • the cells derived from the living body use cells that are suitable for the purpose of the finally obtained living tissue sheet.
  • skin epidermal cells including stem cells and precursor cells
  • hair follicle epithelial cells including stem cells and precursor cells
  • corneal epithelial cells including stem cells and progenitor cells
  • mucosal epithelial cells for the purpose of regenerating mucosal epithelial tissue ( Their stem cells and progenitor cells) are preferably used.
  • mucosal epithelial cells include oral mucosal epithelial cells, intestinal mucosal epithelial cells, airway mucosal epithelial cells and the like.
  • the preparation method of living body-derived cells will be described taking skin epidermal cells, corneal epithelial cells, oral mucosal epithelial cells, intestinal mucosal epithelial cells and airway mucosal epithelial cells as examples. [0046] (Skin epidermal cells)
  • Corneal epithelial cells can be obtained from corneal limbal tissue force.
  • endothelium cells such as corneal limbal tissue force are detached and removed, and the conjunctiva is excised to produce a single cell suspension. This is stored in a nitrogen tank and then rapidly thawed at 37 ° C to prepare the corneal epithelial cell suspension.
  • Subculture if necessary. Moreover, you may use for subculture without cryopreserving.
  • EpiLife TM (Cascade), which is a serum-free medium, MCDB153 medium (Nissui Pharmaceutical Co., Ltd.), media prepared by modifying the amino acid composition of these media, etc. should be used. Can do.
  • Oral mucosal epithelial cells include cells present in the root of the tooth (inner oral mucosal epithelial cells), lip cells, palate cells, buttocks cells, and the like. Of these, the intraoral mucosal epithelial cells are particularly preferred because of their high proliferative ability and low antigenicity. Oral mucosal epithelial cells can be collected by excising the area where the target cells are present with a scalpel or by cleaving. In the oral marginal mucosal epithelial cells, the oral mucosal epithelium adhering to the tooth extraction can be separated from the enamel cement transition and collected. In order to remove impurities such as connective tissue, treatment with enzymes such as dispase or trypsin or filter treatment is preferred!
  • Intestinal mucosal epithelial cells are collected from colonoscopic intestinal epithelial biopsy tissue or open surgery Sometimes collected in the usual way.
  • epidermal cells can be excised from the tissue by lazer capture microdissection.
  • the technique of the present invention is also applied to a biological tissue sheet produced using all human digestive tract epithelial cells of the esophagus, stomach, duodenum, small intestine, and large intestine.
  • human gastrointestinal epithelium is damaged by ulcers or inflammation, bone marrow-derived cells play a rescue role in response to emergency situations, and the epithelium is repaired.
  • Gastrointestinal epithelial cells though some, are made by bone marrow.
  • the significance of the present invention can be regarded as equivalent to that using corneal epithelial cells.
  • the number of epithelial cells made from bone marrow which is usually only about a few thousand, increases from 50 times to 100 times in the process of healing ulcers (wounds) inside the gastrointestinal tract due to gastric ulcer, colitis, etc. It has been found that 1 in 10 gastrointestinal epithelial cells are derived from the bone marrow.
  • Gastrointestinal mucosal epithelial cell-derived tissue tissue prepared here is used for intractable ulcers and inflammation of enteric diseases such as severe intestinal infections, ulcerative colitis, Crohn's disease, Behcet's disease, etc. In the sense of promoting the regeneration of the intestinal epithelium, it is considered to be extremely meaningful. Expected to be useful for intestinal allergy
  • Airway mucosal epithelial cells are easily obtained from biopsy tissue of the airway mucosa, and in the same way as described above, treatment with an enzyme such as dispase trypsin or filtering is performed to remove impurities such as connective tissue. Is preferred. Airway mucosal epithelial cells play an important role in the pathogenesis of various infectious diseases through the biosynthesis and release of j8 defensin. The role of airway mucosal epithelium is high in asthma and allergic diseases! Providing a biological tissue sheet produced from the airway mucosal epithelial cells according to the present invention to the airway mucosa that has undergone tissue damage goes beyond the emergency response and leads to the provision of an artificial airway. In particular, the immunosuppressive action of the sheet prepared on the amniotic membrane is beneficial.
  • oral mucosal epithelial cells and intestinal mucosal epithelial cells are preferably treated with an enzyme such as dispase trypsin or filtered to remove impurities such as connective tissue after collection of the tissue.
  • an enzyme such as dispase trypsin or filtered to remove impurities such as connective tissue after collection of the tissue.
  • the living body-derived cells also have a person (recipient) ability to receive transplantation of the living tissue sheet.
  • the donor of the living cell and the recipient of the living transplant sheet are the same A person is preferred.
  • the prepared biological cells are seeded on a collagen sheet and then subjected to culture (step (d)).
  • Biological cells such as cell density of about 1 X 10 3 cells ZCM 2 or more, preferably rather about 1 X 10 3 cells / cm 2 ⁇ about 1 X 10 7 cells / cm 2, more preferably about 1 X 10 4 pieces / cm 2 to about 1 ⁇ 10 6 pieces Zcm 2 is seeded on the amniotic membrane.
  • hybridization the formation of a cell layer by two or more types of cells.
  • one cell type used when constructing a hybrid cell layer is defined as a first cell, and a cell type different from this is defined as a second cell.
  • the types of cells used in the construction of the hybridized cell layer will be described in detail below, taking as an example the case where the biological tissue sheet of the present invention is prepared for corneal epithelial reconstruction.
  • oral mucosal epithelial cells, conjunctival epithelial cells, nasal mucosal epithelial cells, other mucosal epithelial cells, or any one of these mucosal epithelia is used as one of the cell types (first cells) used to form the cell layer.
  • An undifferentiated cell that can be constructed is preferably used.
  • autologous cells are used for the first cell.
  • self refers to a subject to whom the biological tissue sheet of the present invention is applied, that is, a person (recipient) who receives a transplant. On the other hand, those other than “self” are called “others”.
  • corneal epithelial cells, conjunctival epithelial cells, or amniotic epithelial cells are preferably used as the cell type (second cell) used for forming the cell layer together with the first cells.
  • These cells are collected from the living tissue in which they are present. Specifically, for example, a part of the tissue in which the target cells are present is collected with a scalpel, etc., and then processed into a cell suspension (suspension) after removal of connective tissue, separation of cells, etc. To do. Two or more different types of cells may be used as the first cell. Similarly, two or more different types of cells may be used for the second cell.
  • stem cells have been suggested in the oral mucosal epithelium suitable as a collection source for the first cells, and it is considered that differentiation induction into cells forming an epithelial cell layer is easy.
  • using oral mucosal epithelial cells is easy to collect, can collect a large amount of cells, Has advantages such as the ability to prepare transplanted material using its own cells even when treating patients with binocular disease.
  • the advantage that the transplant material derived from one's own cells can be applied to patients who cannot collect corneal epithelial cells is expected to greatly eliminate the clinically important rejection problem.
  • Oral mucosal epithelial cells include cells present in the root of the tooth (inner oral mucosal epithelial cells), lip cells, palate cells, buttocks cells, and the like. Of these, the intraoral mucosal epithelial cells are particularly preferred because of their high proliferative ability and low antigenicity. Oral mucosal epithelial cells can be collected by excising the area where the target cells are present with a scalpel or by cleaving. In the oral marginal mucosal epithelial cells, the oral mucosal epithelium adhering to the tooth extraction can be separated from the enamel cement transition and collected. In order to remove impurities such as connective tissue, treatment with enzymes such as dispase or trypsin or filter treatment is preferred!
  • Oral mucosal epithelial cells collected from the oral cavity other than the patient to be transplanted with the sheet-like composition prepared according to the present invention can also be used, but considering immune rejection, oral mucosal epithelial cells from the patient's own oral cavity Is preferably collected and subjected to culture.
  • the oral mucosa has a high proliferative capacity, and usually wounds are healed by taking antibiotics for a few days after surgery, disinfecting with isodine, and so on.
  • the corneal epithelial cells of another person can be preferably used as the second cells.
  • Such corneal epithelial cells can be obtained from, for example, an infectious disease-free donor eyeball from an eye bank (Northwest Lions eye bank, etc.).
  • Cells usable as the second cell are not limited to corneal epithelial cells, and conjunctival epithelial cells, amniotic epithelial cells, and the like may be used.
  • a corneal epithelial cell which is a cell constituting the corneal epithelium in a living body, or a conjunctival epithelial cell existing in the vicinity thereof is employed, a sheet-like composition that better reproduces the characteristics of the corneal epithelium can be constructed. It is conceivable that.
  • a corneal epithelial cell was used as the second cell, a cell layer similar to the corneal epithelium could be constructed. This fact supports the above-mentioned expectation and confirms that corneal epithelial cells are particularly suitable as the second cells.
  • amniotic epithelial cells are used as the second cells, it is possible to form a cell layer that well reproduces the characteristics required for the cornea. It has been certified. This fact indicates that amniotic epithelial cells can be suitably used as the second cells.
  • the ability to use own cells as the second cells If other cells are used, the cells can be obtained more easily. For example, even when a sheet-like composition is prepared for treatment of a binocular patient, corneal epithelial cells as second cells can be obtained.
  • first cells and the second cells (hereinafter collectively referred to as "first cells etc.") prepared respectively are seeded on the amniotic membrane and subjected to culture.
  • first and second cells prepared in the form of a cell suspension are dropped onto the amniotic membrane and cultured.
  • the seeding of the first cell and the seeding of the second cell are performed at the same time (the term "simultaneous” here is literally the same time as well as placing a substantial time interval after one seeding. If the other cells are seeded at different timings, for example, the second cells are seeded after several minutes to several hours after the seeding of the first cells. Good. By shifting the seeding time in this way, for example, a region rich in cells derived from the first cell is localized and a cell layer is constructed, so that a homogeneous cell layer can be constructed. It is possible.
  • the ratio of the first cells and the like to be seeded is not particularly limited, but typically, approximately the same number of first cells and second cells are seeded.
  • the number of the first cells the number of the second cells S3: 7, 5: 5
  • Comparison of the cases of 7: 3 showed that there was no clear difference between them in terms of cell proliferation and stratification (data not shown).
  • living body-derived cells are cultured and grown in the absence of heterologous animal cells.
  • “in the absence of heterologous animal cells” means that animal cells that are heterologous to the living body-derived cells are not used as a condition for culturing the living body-derived cells.
  • human cells for example, human epidermal keratinocytes or human corneal epithelial cells
  • cells of animal species other than humans, such as mice and rats are present in the culture medium (coexisting) This is a condition that you do not want.
  • Culture of cells derived from living organisms can be performed by a conventional method.
  • the medium used for culturing living body-derived cells is not particularly limited as long as the cells can be grown.
  • M CDB153 medium Nisui Pharmaceutical Co., Ltd.
  • EpiLife TM Cascade
  • medium prepared by modifying the amino acid composition of these mediums DMEM (D A medium in which HSM medium and DMEM medium are mixed at a predetermined ratio, such as a medium in which ulbecco's modified Eagle's medium) and Ham's F12 medium are mixed at a predetermined ratio, can be used.
  • serum added to the medium human serum, fetal bovine serum, sheep serum, and the like can be used.
  • Human fibroblasts may be cultured using a medium supplemented with growth factors and antibiotics. By using growth factors and antibiotics, cell proliferation rate and survival rate can be improved and contamination can be prevented.
  • Biological cells may be cultured using a medium that is serum-free and does not contain a protein derived from a different animal. That is, a serum-free culture method may be employed as the culture method in the present invention. In such an embodiment, problems such as immune rejection due to contamination of serum-derived components can be avoided.
  • step (d) living body-derived cells grow on the collagen sheet.
  • step (e) a step in which the surface layer of the cell layer is brought into contact with air is performed. This step is also referred to as air lifting in this specification. This step (e) is performed for the differentiation of the cells forming the cell layer and the induction of the barrier function.
  • the surface of the culture solution is lowered by temporarily removing a part of the culture solution using a dropper, pipette, etc., thereby exposing the outermost layer of the cell layer to the outside of the culture solution. It can be carried out. Alternatively, the cell layer can be lifted together with the amniotic membrane, and the outermost layer can be temporarily exposed from the culture medium surface. Furthermore, air may be sent into the culture solution using a tube or the like, and air may be brought into contact with the uppermost layer of the cell layer. From the viewpoint of ease of operation, it is preferable to carry out the method by lowering the surface of the culture solution and exposing the outermost layer of the cell layer.
  • the time for performing this step (e), that is, the time for bringing the outermost layer of the cell layer into contact with air is a force that varies depending on the type of cell layer, the state of the cell, the culture conditions, etc.
  • it is preferably 5 days to 2 weeks, more preferably about 1 week.
  • it is preferably 2 days to 1 week, more preferably 2 days to 4 days.
  • a sheet-like construct obtained by culturing an amniotic membrane (first amniotic membrane) is adhered to one side of another amniotic membrane (second amniotic membrane), and a part of the first amniotic membrane is covered with the other one.
  • a structure having a cell layer covering the second amniotic membrane is transplanted into the epidermal defect part, and (2) epidermal keratinocytes cultured on the amniotic membrane placed on human fibroblasts are collected together with the amniotic membrane.
  • an excellent method for reconstructing the epidermis was to transplant it onto another amniotic membrane that had previously been transplanted into the skin defect.
  • the cultured epidermis is formed on the amniotic membrane, after transplantation, the cells that make up the cultured epidermis are promoted to proliferate and migrate to the surrounding area, and as a result, the cultured epidermis can rapidly expand. A high therapeutic effect can be obtained. Therefore, it is expected that an excellent therapeutic method can be established even for skin defects extending to a wide range of subcutaneous tissues by combining artificial dermal transplantation with the above transplantation technique.
  • step (f) a step of collecting the living body-derived cells together with the amniotic membrane as the collagen sheet; A step of culturing and proliferating the living body-derived cell after the living body-derived cell and the amniotic membrane are placed on another amniotic membrane (second amniotic membrane) with the amnion side down is further performed.
  • step (D and step (g) another amniotic membrane (second amniotic membrane) is adhered to one side of the amniotic membrane, and the amniotic membrane is partly covered and the other part is the second amniotic membrane.
  • a construct having a cell layer covering the amniotic membrane is obtained, wherein the entire surface of the second amniotic membrane is covered with the cell layer by appropriately adjusting the size of the second amniotic membrane, culture conditions, etc. And, a part of the surface of the second amniotic membrane is covered with a cell layer, so that one can obtain!
  • step (£) the cells derived from the living body after the culture and the amniotic membrane used as the culture substrate are collected.
  • the proliferating living cells and amniotic membrane can be recovered by peeling off the amniotic membrane after culturing.
  • step (g) the collected biological cells and the amniotic membrane are placed on another amniotic membrane, and then the biological cells are cultured again.
  • two-stage culture step (d) and step) is performed.
  • step (g) first, a construct comprising the collected biological cells and amniotic membrane (hereinafter referred to as “cell-amniotic membrane construct”) is placed on a separately prepared amniotic membrane (second amniotic membrane) with the amnion side down. Placed. Multiple cell-amniotic constructs can also be placed on the second amniotic membrane. For example, the cell-amniotic construct recovered after culturing in step (d) can be duplicated by cutting. Several cell-amniotic constructs can be obtained. Alternatively, it is possible to prepare a plurality of cell-amniotic constructs by preparing a plurality of culture systems independent of each other and carrying out step (d) in parallel.
  • the cell-amniotic constructs When a plurality of cell-amniotic constructs are placed on the second amniotic membrane, it is preferable to arrange the cell-amniotic constructs so that they are uniformly dispersed, that is, the intervals are constant. In subsequent cultures (and after transplantation into the living body), when the cells proliferate and the cell layer extends to the surroundings, the cell layer is quickly and efficiently removed from the area where the initial cell layer is not formed in the second amniotic membrane. It is because it can coat
  • the cell layer together with the second amniotic membrane can be transplanted into the tissue defect part of the living body. Formation of the layer is promoted and a high therapeutic effect is obtained.
  • the above method is particularly suitable for producing a cultured skin sheet (or a cultured skin sheet). If it is necessary to keratinize the surface layer of the cell layer, use the same method as above before step (1), between step (1) and step (g), or after step (g). Perform air lifting (step (e))
  • the culture in step (g) can be performed under the same conditions as the culture conditions in step (d). That is, it is preferable to use a medium that is serum-free and does not contain a protein derived from a heterologous animal as a medium that is preferably cultured in the absence of the heterologous animal cell. When using a medium containing serum, it is preferable to use autologous serum, the ability to use serum derived from the same species (human-derived serum when culturing human biological cells). Similarly to step (d), in step (g), the culture conditions may be changed during the culture step for the purpose of good growth of the cells derived from living organisms.
  • the biological tissue sheet of the present invention is used for regeneration (reconstruction) of skin epidermis, hair follicle epithelium, corneal epithelium, oral mucosal epithelium, intestinal mucosal epithelium, and airway mucosal epithelium.
  • the living tissue sheet of the present invention can be directly transplanted into a tissue defect part of a living body.
  • "Nao The “grafting” means transplantation without substantially interposing another substance between the tissue defect and the biological tissue sheet.
  • transplant the living tissue sheet of the present invention (except for those using the second amniotic membrane in the production process) into the tissue defect part of the living body so that other substances are interposed between them. You can also.
  • a biological tissue sheet can be transplanted into a tissue defect through an amniotic membrane (second amniotic membrane) different from the collagen sheet used as a culture substrate.
  • a biological tissue sheet prepared in advance can be transplanted onto the amniotic membrane.
  • the presence of amniotic membrane as a base is expected to allow the cells contained in the biological tissue sheet to proliferate efficiently and migrate well to the surroundings. That is, rapid extension of the cell layer constituting the biological tissue sheet can be expected, and a high therapeutic effect can be obtained.
  • the external defect is protected by covering the tissue defect with amniotic membrane. This also contributes to the improvement of the therapeutic effect.
  • amniotic membrane was collected at the cesarean section in the operating room. The operation was careful of cleanliness, and a special gown was worn after hand washing according to the surgical operation. Before delivery, a clean bat for collecting amnion and physiological saline for washing were prepared. After delivery, the placenta tissue was transferred to a vat and the amnion tissue was manually detached from the placenta. The adhesion between the amniotic membrane and the placenta was strong! The part was excised with scissors.
  • the amniotic treatment was performed in the order of (1) washing and chorionic membrane removal, (2) trimming, and (3) storage. In all processes, sterilize all containers and equipment that should be used in a clean fume hood and sterilize disposable dishes (dish, etc.). (Sportable) type was used. Remove blood components adhering to the collected amniotic membrane while rinsing with physiological saline, then rinsing with a sufficient amount of physiological saline, with the chorion facing upward, and visually form a pale white to white membrane. The observed chorion was detached. After this, the area near the placenta, which was uneven and opaque by hand touch and visual observation, was cut and removed with a scalpel.
  • amniotic membrane was divided into sizes of about 4 ⁇ 4 cm using a scalpel. After division, amniotic membranes in good condition were selected based on shape and thickness. Subsequently, the selected amnion was washed a total of 2 times with 5 g / mL gentamicin-added phosphate buffer (PBS).
  • PBS gentamicin-added phosphate buffer
  • amniotic membrane was washed twice with a sufficient amount of PBS, and the epithelium was manually cleaved (removed) using a cell scraper (Nunc USA) under a stereomicroscope.
  • the amniotic membrane with epithelial epithelium was placed in a 2 mL sterile cryotube supplemented with 1 mL of amniotic membrane preservation solution and stored at ⁇ 80 ° C. in an ultra-low temperature freezer until use.
  • optical and electron microscopic operations scanning electron microscope
  • Adipose tissue and dermis were removed as much as possible with scissors and washed several times with Dulbecco's phosphate buffer (PBS). Subsequently, it was sterilized by immersion in 70% ethanol for 1 minute. After washing with PBS, cut into strips 3mm wide and 10mm long and soaked in Dispase Solution (Dispase II, Godo Shusei, 250 units / ml Dulbecco's Modified MEM Medium; DMEM) at 4 ° C (18-24 hours). The next day, the epidermis was peeled from the dermis using tweezers. The peeled dermis is subjected to fibroblast culture (3. below).
  • the peeled epidermis is washed with DMEM, then washed with PB S, and then immersed in a 0.25% trypsin solution at 37 ° C for 10 minutes. A trypsin treatment was performed. The treated epidermis was transferred to a plastic petri dish containing a trypsin neutralizing solution, and then the epidermis pieces were loosened with tweezers. The resulting cell suspension was transferred to a 50 ml sterile tube. PBS was added to prepare the epidermal keratinocyte suspension. After counting the number of cells, the cells were centrifuged at lOOOOrpm for 5 minutes to precipitate the cells.
  • the cells were suspended in MCDB153 medium, which is a serum-free medium.
  • the cell suspension thus obtained was seeded at a rate of 2 to 3 ⁇ 10 6 cells / ⁇ culture medium per 100 mm collagen coated petri dish (Asahi Techno Glass, type I collagen coated dish; 4010-010).
  • the culture solution was changed the next day, and thereafter the culture solution was changed every other day. Subculture was performed when the cell density reached about 70-80%.
  • the remaining cells were collected using PBS. 10 centrifuge tubes The cells were centrifuged at 00 rpm for 5 minutes to precipitate the cells, and the supernatant was removed by aspiration. DMEM medium containing 10% fetal bovine serum was added to the centrifuge tube to suspend the cells. The fibroblast suspension thus obtained was seeded in a cell culture dish. Subculture was performed when the cell density reached 90-100%. The cells were stored frozen as appropriate. The cryopreservation solution was stored in liquid nitrogen using 10% glycerol, 20% FCS, and 70% DMEM.
  • the fibroblasts cultured in (1) were taken out and confirmed to be confluent with a phase-contrast microscope, and then loaded into a safety cabinet. Remove medium in 100 mm dish (or 60 mm dish) containing fibroblasts, wash with PBS (-), add 0.05% trypsin-EDTA, 37 ° C, 5% CO Let sit for 2 minutes under. Phase contrast after 2 minutes
  • trypsin reaction was stopped by adding DMEM supplemented with 10% FBS.
  • the cell suspension was collected in a 15 mL tube.
  • the supernatant was removed by centrifuging at 1000 rpm for 5 minutes at room temperature in a desktop multi-centrifuge. During centrifugation, 5 mL of DMEM supplemented with 10% FBS was injected into a 100 mm dish, and then a culture insert (manufactured by Coaster) was placed.
  • a part of the cell suspension prepared by suspending the cell precipitate after centrifugation in DMEM supplemented with 10% FBS was mixed with an equal amount of 0.4% trypan blue, and the number of cells and the cell viability were measured with a hemocytometer. Based on the measurement results, the cell suspension was diluted with DMEM supplemented with 10% FBS to 2.1xl0 5 cells / mL. 10 mL of diluted cell suspension was added to the culture insert. In order to adhere the cells, dish (37 ° C, 5% CO in a CO incubator)
  • the amniotic membrane is treated as follows.
  • the amniotic membrane (freeze-stored) prepared in 1 above was thawed at room temperature and transferred to a 100 mm diameter Petri dish. Subsequently, the amniotic membrane was washed in two 100 mm diameter Petri dishes containing PBS (-) containing 5 g / mL gentamicin, and then immersed in a 60 mm diameter Petri dish containing 10% FBS-added DMEM.
  • a 0-ring was placed on the amniotic membrane using an insulative scissors to prevent the amniotic membrane from floating. Place the culture insert with amniotic membrane attached on a 100mm dish according to the above procedure, then inject 1 mL of 10% FBS-added DMEM into the culture insert, and then in a CO incubator at 37 ° C and 5% CO. Left to stand.
  • human epidermal keratinocytes were seeded on the amnion.
  • the human epidermal keratinocytes prepared in 2. were peeled off using trypsin 'EDTA and collected.
  • An epidermis keratinocyte suspension adjusted to a concentration of 2 million cells / 0.25 ml by centrifugation was obtained.
  • the dish with the culture insert seeded with human fibroblasts and amnion was removed from the CO incubator and loaded into a safety cabinet.
  • the culture medium in one insert was removed, and the outside of the culture insert was removed leaving about 5 mL of culture medium. After 0.5 ml of epidermal keratinocyte suspension was seeded on the amniotic membrane in the culture insert, it was transferred into a CO incubator. 1.5 so that epidermal keratinocytes adhere to the amniotic membrane
  • the submerged culture solution was prepared as follows.
  • Serum-free medium for keratinocytes 3 doses plus 1 dose of DMEM Medium containing 0.3% tuss fetal serum
  • Air-lifting was performed about 2 days after seeding of epidermal keratinocytes.
  • the culture medium inside and outside the culture insert was carefully removed, and 1.6 mL of the culture medium for stratification was added outside the culture insert.
  • the culture medium was changed twice a day in the morning and evening.
  • the cultured skin sheet was completed after 7 days of air exposure.
  • the culture solution for stratification was prepared as follows.
  • Serum-free medium for keratinocytes 1 dose of DMEM plus 1% culture medium containing fetus serum
  • the cultured skin sheet constructed by the above culture method was transplanted with the amnion side as the contact surface to the skin defect formed on the back of nude mice.
  • a part of the tissue at the transplant site was excised to prepare a specimen and subjected to HE staining.
  • frozen tissue sections were prepared and subjected to immunohistochemical staining. Immunohistochemical staining was performed using Chile's Histofine SAB-AP kit and Eufuxin was used as a substrate.
  • the antibodies used for immunohistochemical staining are as follows.
  • E-cadherin HECD-1, Tak ara
  • keratin 10 LHP1, NeoMarkers
  • j8 4 integrin 3E1, Chemicon
  • ⁇ 2 integrin MAB1950, Chemicon
  • keratin 14 LL002, NeoMarkers
  • laminin 5 G1, Sera-Lab
  • type IV collagen 2311C3, Chemicon
  • type VII collagen LH7.2, NeoMar kers
  • polyclonal antibody desmoglein 3 ( 5 G11, Zymed).
  • Fig. 3 shows the HE-stained image.
  • the magnification is increased in the order of upper left, upper right, lower left, and lower right.
  • a skin layer of about 10 m is formed.
  • the grafts were well engrafted and the morphology of the epidermis was close to that of normal skin. That is, it consisted of a more compact stratum corneum than the upper layer, 1 to 2 granular layers, 5 to 8 spiny layers, and 1 basal layer.
  • Strongly enlarged findings showed dense adhesion at the epidermis / dermis junction, and many images of fibroblasts entering the amnion.
  • many luminal structures are seen in the dermis directly under the amniotic membrane, resulting in the formation of capillaries. It became clear that it was done actively.
  • laminin 5 type IV collagen, and type VII collagen, which are the main constituents of the basement membrane, are expressed in the epidermis / dermis junction, and the pattern is normal skin. And almost the same.
  • E-cadherin a major component of epidermal cell junction, is expressed between cells in all layers, and oc 2 intedarin and j8 4 integrin are expressed between cells, mainly in the basal layer, and are distributed almost the same as normal skin.
  • Desmoglein 3 a constituent protein of desmosome, was expressed between cells from the basal layer to the parabasal layer, and the expression pattern was similar to that of normal skin.
  • Keratin 10 was expressed from the parabasal layer to the upper spiny layer, and was expressed in the same manner as in normal skin.
  • Keratin 14 was expressed in the basal layer and the parabasal layer, and the expression pattern was slightly different from the expression of only the basal layer in normal skin (Figs. 4 and 5).
  • the cultured skin sheet produced by the above method has properties similar to normal epidermis and functions effectively as a skin reconstruction transplant material.
  • the cultured skin sheet that is finally constructed after seeding the epidermis keratinocytes, that is, the time until the epidermis keratinocytes are seeded after the amnion is placed (attached) on the monolayer fibroblasts
  • the effect on the quality of food was examined.
  • the outline of the experimental method is shown in the upper part of Fig. 6.
  • condition 1 condition for seeding epidermis keratinocytes after placing on the amniotic membrane, the experimental procedure on the upper left side of Fig. 6
  • the epidermal keratinocytes were removed 5 days after placing the amniotic membrane on fibroblasts. Sowing.
  • condition 2 the condition in which epidermal keratinocytes are seeded without placing time after placing the amniotic membrane, the experimental procedure on the upper right side of FIG. 6
  • the epidermal keratinocytes immediately after placing the amniotic membrane on the fibroblasts. Sowing.
  • amniotic membrane should be placed 4 hours after seeding of fibroblasts in condition 1, and amniotic membrane should be placed 5 days after seeding of fibroblasts in condition 2. I rubbed.
  • the constructed cultured skin sheets were each stained with HE and evaluated histologically.
  • Condition 1 The HE-stained image of the cultured skin sheet constructed in Fig. 6 is shown in the lower left of Fig. 6, and the HE-stained image of the cultured skin sheet constructed in Condition 2 is shown in the lower right of the figure.
  • keratinocytes are more regularly aligned in the epidermal layer formed on the amniotic membrane than in the cultured skin sheet constructed in condition 2.
  • the skin layer of the cultured skin sheet constructed under Condition 1 is thicker, and a gradual layer structure is clearly recognized. Furthermore, the flatness and denseness of the stratum corneum located at the uppermost part of the skin layer are also good.
  • the cultured skin sheet constructed under condition 1 shows infiltration of many fibroblasts. Therefore, in the culture method under Condition 1, many fibroblasts infiltrate into the amniotic membrane before the seeding of the amniotic membrane placement force epidermal keratinocytes, and this causes growth of the epidermal keratinocytes. It is presumed that a high-quality skin layer was formed as a result of preparing a suitable environment.
  • the constructed cultured skin sheets were each stained with HE and evaluated histologically.
  • the HE-stained image of the cultured skin sheet constructed in Condition 1 is shown in the lower left of Fig. 7, and the HE-stained image of the cultured skin sheet constructed in Condition 2 is shown in the lower right of the figure.
  • the cultured skin sheet constructed under condition 2 has a thicker epithelial layer and a clear stratum corneum than the cultured skin sheet constructed under condition 1. Shikaso also has good flatness and denseness of the stratum corneum.
  • the amniotic membrane when focusing on the amniotic membrane and fibroblasts used as the culture substrate, the amniotic membrane between conditions 1 and 2 Although the number of fibroblasts that infiltrate into the cells does not differ greatly, a fibroblast layer that uniformly covers the bottom of the amniotic membrane is observed in the cultured skin sheet constructed under condition 2. From this, under condition 2, after fibroblasts are seeded, a sufficient amount of time is applied to place the amniotic membrane for good adhesion of fibroblasts to the surface of the culture insert and fibroblasts.
  • amniotic membrane from which the epithelium was removed was prepared in the same manner as in the case of producing a cultured skin sheet
  • the cornea was purchased from Northwest Lions Eye Bank (Seattle, USA) with a grade equivalent to that for transplantation.
  • the central part of the cornea was punched and removed with a 7.0 mm trepan blade, the conjunctiva was removed with a scissors under the stereomicroscope, the sclera was removed with a scalpel, and the substantial part was removed with a scissors.
  • the corneal epithelial tissue is washed with PBS (-), then immersed in 1.2 U / mL Dispase solution (Roche, Dispasell, 2.4 U / mL), in a CO incubator under 5% CO condition at 37 ° C for 1 hour.
  • the corneal epithelial tissue was immersed in 0.02% EDTA-added PBS (-) and PBS (-) in this order for 2 minutes at room temperature.
  • the epithelial cells are detached using a pestle and the cell mass A corneal epithelial cell suspension containing a large amount of was prepared.
  • the corneal epithelial cell suspension was divided into two aliquots of 1.2 mL, and 0.3 mL of 0.25% trypsin EDTA (Invitrogen) was added to each suspension and mixed.
  • the corneal epithelial cell suspension prepared in this manner was transferred to a 15 mL centrifuge tube. After suspension, a part of the cell suspension was mixed with an equal volume of 0.4% trypan blue, and the cell viability was measured with a hemocytometer.
  • the 15 mL centrifuge tube containing the cell suspension was centrifuged at 1000 rpm for 5 minutes at room temperature using a desktop multi-centrifuge, and the supernatant was removed.
  • the HSM medium was added to the tube after centrifugation so that the total volume was 1.0 mL, and the cells were suspended. CO 2 incubator at 37 ° C, 5% CO.
  • Static culture was performed in one.
  • the cell growth rate and cell morphology of the cells were observed using a phase contrast microscope under a magnification of 100 times. Once grown to approximately 70% subconfluent, the cells were passaged as follows. The subculture was repeated until the number of cells necessary for production of the cultured corneal epithelial sheet was obtained.
  • the HSM culture solution was placed in a centrifuge tube to make 1.0 mL, and the cells were suspended.
  • Human fibroblasts were prepared in the same manner as in the production of cultured skin sheets.
  • Human fibroblasts were seeded on the culture insert and amnion was placed in the same manner as in the production of the cultured skin sheet. However, a 6-well plate was used in place of the 100 mm dish, and a culture insert (Coaster Co., Ltd.) suitable for the 6-well plate was used.
  • Corneal epithelial cells were seeded on the amniotic membrane 5 days after the amnion sticking operation. First, the corneal epithelial cells prepared in 2 were observed with a phase contrast microscope, and it was confirmed that they were about 70-80% subconfluent. The culture solution was removed, washed with PBS ( ⁇ ), added with 2 mL of 0.05% trypsin-EDTA, and allowed to stand at 37 ° C., 5% CO for 5 minutes. Then trypsin inhibitor
  • the 15 mL centrifuge tube containing the cell suspension was centrifuged at 1000 rpm for 5 minutes at room temperature using a desktop multi-centrifuge. After centrifugation, the supernatant was removed, and the submerged A culture solution was added to the centrifuge tube so that the cell count was 1 ⁇ 10 3 cells / l based on the cell count results, and the cells were suspended.
  • the 6-well plate on which the culture insert on which human fibroblasts were seeded and amnion was affixed was taken out of the CO incubator and carried into a safety cabinet.
  • the culture medium inside and outside the culture insert was removed, and about 1 mL of submerged A culture medium was added outside the culture insert. Inoculate the corneal epithelial cell suspension prepared at 1 X 10 3 cells / l on the amniotic membrane in the culture insert, and use the submerged A medium so that the volume of the solution in the culture insert is 1 mL. I made a mess up.
  • a 6-well plate on which a cell-seeded cell insert is placed is loaded into a CO incubator, 37 ° C, 5% Static culture was performed under CO conditions.
  • the inner and bottom surfaces of the culture insert were washed with PBS (-) containing 5 g / mL gentamicin, and the culture insert was placed on a silicone sheet in a 100 mm diameter Petri dish with the culture insert mark on top.
  • the insert was placed and the sheet was punched out with an 18 mm trepan. It was placed on a 9mm graph paper (OHP) with a silicone mat, taking care not to lose power in the top, bottom, left and right.
  • the top, bottom, left, and right edges were on the grid line, and the sheet was cut with a force razor along the line passing through the center, and divided into four equal parts. Two sheets on the diagonal of this equally divided sheet were embedded using OCT compound.
  • the corneal epithelial cell layer was peeled off from the amniotic membrane in a sheet form, immersed in 2.5 mL of 0.05% trypsin-EDTA solution, and allowed to stand in a CO incubator under 5% CO conditions at 37 ° C for 5 minutes. So
  • the cell suspension suspended by pipetting and converted into a single cell was transferred to a 15 mL centrifuge tube.
  • the supernatant was removed by centrifugation at 1500 rpm for 5 minutes at room temperature in a table-top multi-centrifuge.
  • SHEM was placed in a centrifuge tube so that the total volume was 1.0 mL, and the cells were suspended.
  • a portion of the cell suspension was taken and mixed with an equal volume of 0.4% trypan blue, and the cell count and cell viability were measured with a hemocytometer.
  • the number of cells per cell and the survival rate of these sheets were 1.4 xlO 6 cells and 96.8%, respectively.
  • the cultured corneal epithelial sheet embedded in 7-2 above was sliced with a cryostat to prepare slide sections. This slide section was subjected to HE staining as described below. The following operations were performed at room temperature.
  • the slide sections were fixed with mild form for 5 minutes, and then washed with running water for about 10 minutes. After washing, the cells were stained with hematoxylin for 5 to 10 seconds and washed with running water for 5 to 10 minutes. Next, it was stained with eosin for 3 to 5 seconds and washed with running water for 5 to 15 minutes. After washing, dehydration was performed for several seconds in order of 70, 90, 95%, and absolute ethanol. After dehydration with absolute ethanol, it was immersed in xylene for 5 minutes and then immersed in fresh xylene for 30 minutes or more. After that, the mounting medium (Yanteran-Yu) was dropped, the cover glass was placed, the slide was sealed, and when the mounting medium was dry, the coating was applied around the cover glass. When the cure was dry, it was observed with an optical microscope.
  • the prepared cultured corneal epithelial sheet had an epithelial layer stratified into 4-6 layers with a thickness of about 50 m (Fig. 8).
  • a group of cells similar to basal cells having a comparative columnar shape existed on the basal side (amniotic membrane side) of this epithelial layer.
  • the outermost cell has a flat core that is flat, and unlike the skin, its surface is not keratinized. was confirmed. From the above, it was shown by optical microscope observation that an epithelial layer similar to normal cornea was formed on the amniotic membrane.
  • Immunostaining was performed to examine the immunohistological characteristics of the prepared cultured corneal epithelial sheet.
  • keratin-specific keratins 3 and 12 were examined.
  • the cultured corneal epithelial sheet embedded in 7-2 above was sliced with a cryostat to prepare a slide section.
  • the slide sections were subjected to immunostaining as described below. First, the slide sections were washed with PBS ( ⁇ ) and then blocked with 1% BSA to suppress nonspecific antibody reaction. Thereafter, an antibody against each keratin (primary antibody) was reacted at room temperature for 1 hour. After the reaction, it was washed with a blocking solution containing Triton X-100 for 15 minutes under the conditions of 3 times, and then a fluorescently labeled antibody (secondary antibody) was reacted at room temperature for 1 hour.
  • the antibodies used are as follows. Primary antibody: Keratin 3 (cytokeratin3 / 12, PROGEN ⁇ Cat.No.61807), Keratin 12 (Anti—Keratinl2, Transgenic Inc ⁇ Cat.No. KR074) Secondary antibody: Alexa488 anti mouse (Molecular probes ⁇ Cat.No. .A- 11029, used for keratin 3), Alexa488 anti rabbit (Molecular probes, Cat. No. A-11034, used for keratin 12)
  • the amnion from which the epithelium was removed prepared by the procedure described in 1. of Example 1, was immersed in a 10% (w / v) trehalose solution at 37 ° C. for 2 hours.
  • the trehalose solution was prepared by diluting trehalose (Toreno Life Co., Ltd., Life Plus, Life Sciences, Hayashibara) with distilled water.
  • the pH of the solution was kept in the range of 7-10.
  • the amniotic membrane was clamped with a pair of sterilized plastic frames and then fixed with clips. 80 ° C deep free per frame After confirming that the amniotic membrane was frozen, freeze drying (-110 ° C, about 1 hour) was performed using a vacuum freeze dryer (Yamato, NEOCO OL).
  • a cultured skin sheet is obtained in the same manner as in 2. to 6. of Example 1 except that the trehalose-treated lyophilized amniotic membrane obtained in 1. is used as the amniotic membrane used for the culture substrate.
  • a cultured corneal epithelial sheet is obtained in the same manner as in 2. to 6. of Example 2, except that the trehalose-treated lyophilized amniotic membrane obtained in 1. is used as the amniotic membrane used as the culture substrate.
  • the use of the biological tissue sheet provided by the present invention can be used for regeneration (reconstruction) of wide skin epidermis, corneal epithelium, oral mucosal epithelium, airway mucosal epithelium and intestinal mucosal epithelium. Among these, it can be suitably used for regeneration of the skin epidermis or corneal epithelium.
  • the biological tissue sheet of the present invention can be used for gene therapy.
  • gene therapy There are two types of gene therapy, in vivo and ex vivo.
  • the former is a method in which a gene is directly introduced into a living body, and the latter is a method in which a cell is taken out and the gene is introduced and then returned to the body.
  • an ex vivo method is immediately developed as long as a gene is introduced into cultured skin, cultured corneal epithelium, or cultured intestinal mucosal epithelial sheet.
  • the effectiveness of gene transfer into keratinocytes by various viral vectors has been shown, and in particular, when an adenovirus vector is used, it can be introduced into almost 100% of keratinocytes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Disclosed is a biological tissue sheet which can show a high therapeutic effect and shows a high safety in transplantation. A method for preparation of a biological tissue sheet comprising the steps of: (a) providing a human fibroblast; (b) placing a collagen sheet on the human fibroblast which has been seeded in a culture vessel; (c) preparing a biologically derived cell and seeding the cell on the collagen sheet; and (d) culturing the biologically derived cell in the absence of a cell derived from a different animal to grow the cell.

Description

明 細 書  Specification
生体組織シート及びその作製方法  Biological tissue sheet and method for producing the same
技術分野  Technical field
[0001] 本発明は生体組織シートに関する。詳細には、本発明は、角結膜上皮細胞、皮膚 表皮細胞、毛包上皮細胞、口腔粘膜上皮細胞、気道粘膜上皮細胞や腸管粘膜上 皮細胞などに由来する細胞を含有する生体組織シート及び同シートの作製方法、並 びに同シートの利用(移植方法等)に関する。  [0001] The present invention relates to a biological tissue sheet. Specifically, the present invention relates to a biological tissue sheet containing cells derived from keratoconjunctival epithelial cells, skin epidermal cells, hair follicle epithelial cells, oral mucosal epithelial cells, airway mucosal epithelial cells, intestinal mucosal epithelial cells, and the like. It relates to the production method of the sheet and the use (transplantation method etc.) of the sheet.
背景技術  Background art
[0002] 皮膚は生体の最外層を覆う器官であり、外界力 生体を防御する一種のバリアであ る。皮膚は、表皮、真皮、および皮下組織から構成されており、表皮は主として角化 細胞力 なり、これに色素細胞、ランゲルノ、ンス細胞などが少数混在する。表皮を構 成する細胞は主に角化細胞であり、(1)最外層を占める、核の消失した角質細胞、(2) その下層にある核を有する細胞 (顆粒細胞、有棘細胞、基底細胞)よりなり、さらに最 下層の基底細胞と真皮の間に表皮基底膜が存在する。基底層は一層の細胞層で、 表皮角化細胞の母細胞層であり、分裂能力を有する細胞は基底細胞のみであると考 えられている。  [0002] The skin is an organ that covers the outermost layer of a living body, and is a kind of barrier that protects a living body from an external force. The skin is composed of the epidermis, dermis, and subcutaneous tissue. The epidermis is mainly keratinocyte power, which contains a small number of pigment cells, Langerno cells, and cells. The cells that make up the epidermis are mainly keratinocytes, (1) keratinocytes that have lost their nuclei, which occupy the outermost layer, (2) cells that have nuclei beneath them (granular cells, spiny cells, basal cells) The epidermis basement membrane exists between the basal cells in the lowermost layer and the dermis. The basal layer is a single cell layer, which is the mother cell layer of epidermal keratinocytes, and it is thought that the only cells with the ability to divide are basal cells.
[0003] 表皮が何らかの理由により失われた状態が潰瘍である。表皮の欠損した部位では、 周辺からの角化細胞の増殖や、一部毛包由来の角化細胞の増殖によって表皮が再 生され潰瘍面は上皮化する。しかし、一度に広範囲の表皮欠損が生じる熱傷や、難 治性の深い、毛包の欠如した潰瘍では周辺からの表皮の再生のみでは上皮化に時 間がかかる。  [0003] A state in which the epidermis has been lost for some reason is an ulcer. At the site where the epidermis is missing, the epidermis is regenerated and the ulcer surface becomes epithelialized by the proliferation of keratinocytes from the periphery or by the proliferation of keratinocytes derived from some hair follicles. However, in the case of burns that cause extensive epidermal defects at once, or intractable ulcers that lack hair follicles, epithelialization takes time only by regeneration of the epidermis from the surrounding area.
[0004] 基底層の細胞周期は約 450時間である。分裂により生まれた娘細胞は有棘層へと 移動するに伴い形態的、機能的に変化し、さらに顆粒層を経て角化し角層となり、最 終的には体外に脱落する。脱落するまでの時間を turnover timeといい、 47〜48日と みられている。  [0004] The cell cycle of the basal layer is about 450 hours. Daughter cells born by division change morphologically and functionally as they move to the spinous layer, and then keratinize through the granular layer to become the stratum corneum and eventually fall out of the body. The time until dropout is called turnover time, which is estimated to be 47 to 48 days.
[0005] 現在一般的に認められている表皮の再生モデルでは表皮角化細胞をその分裂能 力より、 stem cell (幹細胞)、 transit- amplifying cell (移行増殖期細胞)、 post -mitotic cell (分裂後細胞)の 3種類に分類している。 stem cellとは、無限の自己再生能力を 有する細胞で、分裂により transit- amplifying cellを生み出す。 Transit- amplifying cell は一定の分裂能力を有し、分裂後、 transit-amplifying cellとなるが、最終的に分裂能 力を失い、 post— mitotic cellとなる。 [0005] In the epidermis regeneration model that is generally accepted, epidermal keratinocytes are divided into stem cells, transit-amplifying cells, post-mitotic cells based on their ability to divide. It is classified into three types of cells (post-dividing cells). A stem cell is a cell that has infinite self-renewal ability and generates a transit-amplifying cell by division. Transit-amplifying cells have a certain division ability and become transit-amplifying cells after division, but eventually lose division ability and become post-mitotic cells.
[0006] 表皮の stem cellは以下の特徴を有しているとされている。(l)stem cellそのものは細 胞周期が長い (slow cycling) o (2)部位により存在場所が異なる。(3)集合して存在する 。(4) α 2 |8 1および α 3 |8 1インテグリンを強く発現する。しかし、基底細胞では約 40% の細胞力 Sインテグリンを強く発現しており、実際には stem cellは基底細胞の約 10%程 度と推定されている。つまり、基底層には stem cellのみではなぐ transit— amplifying cell, post -mitotic cellも存在しているということである。  [0006] Stem cell of epidermis is considered to have the following characteristics. (L) The stem cell itself has a long cell cycle (slow cycling) o (2) The location varies depending on the site. (3) It exists as a set. (4) It strongly expresses α 2 | 8 1 and α 3 | 8 1 integrins. However, about 40% of the cell strength S integrin is strongly expressed in basal cells, and in fact stem cells are estimated to be about 10% of basal cells. In other words, there are transit-amplifying cells and post-mitotic cells in the basal layer.
[0007] 表皮が傷害を受けた場合、増殖刺激が起こり、細胞は盛んに増殖を始め再生が開 始される。このとき、最も重要な役割を担っているのがー連の上皮細胞成長因子群で ある。上皮細胞成長因子(epidermal growth factor, EGF)ファミリー〖こは、 EGF、トラン スフォーミング増殖因子(transforming growth factor, TGF) - a、へパリン結合性 EG F様増殖因子(heparin binding EGF like growth factor, HB— EGF)、ベタセルリン(be tacellulin)、アンフィレギュリン(amphiregulin)、ニューレグリン(neuregulins)が含まれ る力 実際に表皮角化細胞の増殖に関係するものは TGF— α、 HB— EGF、アンフィ レグリンであると考えられており、これらの因子は表皮角化細胞に対して自己増殖的 に作用することが示されている。逆に、表皮角化細胞の増殖に対して抑制的に作用 する因子としては TGF— β、ビタミン D、レチノイン酸 (retinoic acid)などが知られて [0007] When the epidermis is damaged, proliferation stimulation occurs, and the cells actively start to proliferate and start to regenerate. At this time, a series of epidermal growth factor groups plays the most important role. Epidermal growth factor (EGF) family Eko, EGF, transforming growth factor (TGF)-a, heparin binding EGF like growth factor, HB—EGF), betacellulin (be tacellulin), amphiregulin, neuregulins, and other forces that are actually involved in epidermal keratinocyte proliferation are TGF— α , HB—EGF, and amphiregulin. It is thought to be regrin, and these factors have been shown to act autoproliferatively on epidermal keratinocytes. On the other hand, TGF-β, vitamin D, retinoic acid, etc. are known as factors that suppress the growth of epidermal keratinocytes.
3  Three
いる。  Yes.
[0008] 再生医学の分野において、ヒト皮膚において真皮、上皮の全層が欠損した損傷部 位を移植するための移植片の開発が進められている。例えば、特開平 10— 277143 号公報 (特許文献 1)には、ヒト皮膚等の全層欠損創を治療するための移植片及びそ の製造方法が記載されている。当該文献に開示される移植片は、ヒトのフイブリンシ ート内に真皮組織由来の線維芽細胞を包埋し、表皮組織をこのシートの表面に付着 して作られる。  [0008] In the field of regenerative medicine, development of a graft for transplanting a damaged site in which all layers of the dermis and epithelium are deficient in human skin is in progress. For example, JP-A-10-277143 (Patent Document 1) describes a graft for treating a full-thickness defect such as human skin and a method for producing the same. The graft disclosed in this document is made by embedding fibroblasts derived from dermal tissue in human fibrin sheet and attaching the epidermal tissue to the surface of this sheet.
従来、皮膚欠損の修復には皮膚全層を移植する全層植皮と、表皮と真皮上層を移 植する分層植皮が行われているが、採取部位の大きさに制限がある。その点、培養 表皮は一度小皮膚片を採取するだけで数千倍の皮膚面積が得られるという利点が あり、また、凍結保存が可能であるため繰り返し使用できることは従来の植皮術と比 較すると最大の利点であると思われる。 Conventionally, for skin defect repair, full-thickness skin grafts that transfer the entire skin, and the epidermis and upper dermis are transferred. Divided skin grafting is carried out, but the size of the collection site is limited. In that respect, the cultured epidermis has the advantage that a small skin piece can be obtained several thousand times just by collecting a small piece of skin once, and it can be repeatedly stored because it can be cryopreserved, compared to conventional skin grafting. It seems to be the biggest advantage.
表皮シートは使用する細胞の由来によって自家培養表皮シートと他家培養表皮シ ートに分かれる。自家培養表皮シート移植は表皮欠損部位を被覆し、生着させること を主な目的とする場合が多ぐ一方、他家培養表皮シート移植は、生物学的被覆材 料 (biological dressing)としての効果を期待する場合が多い。表皮細胞の基礎的研 究から、表皮角化細胞は様々な細胞成長因子、サイト力インを産生することが明らか となり他家培養表皮シートの有効性が判明している。  The epidermis sheet is divided into an autologous cultured epidermis sheet and an autologous cultured epidermis sheet depending on the origin of the cells used. In many cases, autologous skin sheet transplantation is mainly intended to cover and engraft the epidermal defect site, while transplantation of other culture skin sheet is effective as a biological dressing. Many people expect From basic research on epidermal cells, it has been clarified that epidermal keratinocytes produce various cell growth factors and cytokines, and the effectiveness of other-cultured epidermal sheets has been revealed.
[0009] 培養表皮を安全かつ安定的に供給する技術が完成すれば、移植技術の進歩と相 まって再生医療が実用化され、患者への福音は計り知れない。表皮の再生を考えた 場合、分裂 ·増殖能を有する基底細胞を分離 '培養し、大量に増殖させて表皮を再 生させ、移植に用いるということは非常に理にかなつたものであるといえる。しかし、基 ホ田胞には stem cellの ではな \、 transit— amplifying cell、 post— mitotic cellも含ま れており、より効率の良い培養皮膚の作製には表皮 stem cellを選択的に培養する技 術の確立が望まれるところである。  [0009] If the technology for supplying the cultured epidermis safely and stably is completed, regenerative medicine will be put into practical use in conjunction with the advancement of transplantation technology, and the gospel to patients cannot be measured. When considering epidermal regeneration, it is very reasonable to separate cultivated and proliferative basal cells' incubate, proliferate in large quantities, regenerate epidermis, and use for transplantation. . However, the basic horticules include \, transit-amplifying cells, and post-mitotic cells, which are not stem cells, and techniques for selectively culturing epidermal stem cells to produce more efficient cultured skin. The establishment of a technique is desired.
これまでに多くの研究者によって表皮細胞を培養する技術の研究 *開発が試みら れ、その成果は皮膚生物学の分野において多大な恩恵をもたらした。具体的には、 培養角化細胞を用いることで、表皮細胞の特性、表皮の再生、分化、増殖機構が急 速に明らかになりつつある。一方で、患者より小皮膚片を採取し、角化細胞を継代培 養し、大量に増殖させることが可能となり、また凍結保存ができるようになったことから 、広範囲熱傷、難治性潰瘍などの治療に培養皮膚が用いられつつある。  So far, many researchers have attempted to research and develop technologies for culturing epidermal cells, and the results have brought tremendous benefits in the field of skin biology. Specifically, by using cultured keratinocytes, the characteristics of epidermal cells, regeneration, differentiation, and proliferation mechanisms of epidermis are rapidly becoming clear. On the other hand, small skin pieces are collected from patients, keratinocytes are subcultured, and can be proliferated in large quantities, and can be cryopreserved. Cultured skin is being used for treatment.
[0010] 皮膚と並んで再生医療の貢献が期待されている組織の一つが角膜である。角膜は [0010] One of the tissues expected to contribute to regenerative medicine alongside the skin is the cornea. Cornea
、眼球を構成する光学系の最も外層にあり、透明な血管のない組織であって、涙液と 共に平滑な表面を形成することにより良好な視力を得ることに貢献している。また、角 結膜上皮細胞は常に外界と接し、外界の微生物などの異物、紫外線などの光線など 力 眼球を守る防御作用を持っている。すなわち、角結膜上皮細胞は、角膜の透明 性と眼球全体を防御し恒常性を維持するために極めて重要な役割を果たして 、る。 It is the outermost layer of the optical system that constitutes the eyeball, and is a transparent bloodless tissue that contributes to obtaining good visual acuity by forming a smooth surface together with tears. In addition, the keratoconjunctival epithelial cells are always in contact with the outside world, and have a protective action to protect the eyeball with foreign substances such as microorganisms in the outside world and light rays such as ultraviolet rays. That is, keratoconjunctival epithelial cells are transparent to the cornea It plays a vital role in protecting the sex and the entire eyeball and maintaining homeostasis.
[0011] 角膜は、例えば角膜炎、角膜潰瘍、穿孔等の病態により濁り、透明性が失われてし まう場合がある。このような角膜の濁りによる永続的な視力の低下に対しては、眼球提 供者カゝら提供された角膜を用いる角膜移植による治療が行われている。角膜移植は 、患者の透明性が失われた角膜を取り除いた後、透明な角膜を移植するというもので あって、この移植により透明性が回復し、再び視力を取り戻すことができる。  [0011] The cornea may become turbid and lose its transparency due to pathological conditions such as keratitis, corneal ulcer, and perforation. For such a permanent decrease in visual acuity due to turbidity of the cornea, treatment by cornea transplantation using the cornea provided by the eyeball donor Kas et al. Has been performed. In the corneal transplantation, the transparent cornea is transplanted after removing the cornea from which the transparency of the patient has been lost, and the transparency is restored by this transplantation, and visual acuity can be restored again.
このような角膜移植によって効果的な治療効果が期待できる場合がある一方で、角 膜の移植だけでは対処できな ヽ疾病が存在する。例えばステイーブンス ·ジョンソン 症候群、眼類天疱瘡、化学外傷、熱傷などである。通常、角結膜上皮細胞は、毎日 分裂を繰り返し、古くなつた細胞は、はがれ落ち、幹細胞組織から新たな細胞が再生 される。ところが以上のような病態では、角膜を再生させる幹細胞組織に障害がある ことがわかってきている。  While such corneal transplantation can be expected to have an effective therapeutic effect, there are epilepsy diseases that cannot be addressed by corneal transplantation alone. Examples include Stevens-Johnson syndrome, pemphigoid, chemical trauma, and burns. Normally, keratoconjunctival epithelial cells repeat division every day, old cells peel off, and new cells are regenerated from stem cell tissue. However, it has been found that in the above pathological conditions, the stem cell tissue that regenerates the cornea is damaged.
[0012] 角膜上皮を再生させる幹細胞組織は「角膜輪部組織」と呼ばれ、ちょうど黒目と白 目の境界部分に限局し、外界に露出された特殊な環境にある。上述した病態では、 この幹細胞組織自体がなんらかの障害を受けて根絶してしまうと考えられて 、る。そ して、この幹細胞組織の根絶により、その欠損部分は周りに存在する結膜上皮で覆 われ、透明性に欠け、視力の極端な低下力あたらされる。このように、上述の病態で は角膜輪部が枯渴しているため、単に角膜を移植するだけでは移植された角膜を長 期に維持できない。そのため、恒久的な眼表面再建を図るためには、角膜輪部をも 移植する必要がある。この角膜輪部を移植する方法の一つとして、羊膜移植法が開 発されている(メディカル朝日 1999年 9月号: p62〜65、 N Engl J Med340 : 1697 〜1703、 1999 :非特許文献 1)。この移植法に用いられる羊膜は、帝王切開した妊 婦等の胎盤から得られる。羊膜は厚い基底膜をもつことから、移植された場合、角結 膜上皮細胞が増殖、分化するための基質として作用する。さらに、羊膜は免疫原性 がほとんどなぐ抗炎症、瘢痕形成抑制などの作用を併せ持つことから、羊膜上に移 植される角結膜上皮やこれらの幹細胞組織は移植受容者 (レシピエント)の拒絶反応 等カゝら保護されることになる。  [0012] Stem cell tissue that regenerates corneal epithelium is called “corneal limbal tissue”, and is limited to the boundary between black eyes and white eyes, and is in a special environment exposed to the outside world. In the above-mentioned pathological condition, it is considered that this stem cell tissue itself is eradicated by some kind of disorder. And by eradicating this stem cell tissue, the defective part is covered with surrounding conjunctival epithelium, lacking transparency, and exerting an extremely low visual acuity. Thus, in the above-mentioned pathological condition, the corneal limbus is withered, so that the transplanted cornea cannot be maintained for a long time simply by transplanting the cornea. Therefore, in order to achieve permanent ocular surface reconstruction, it is also necessary to transplant the corneal annulus. As one method for transplanting the limbus, an amniotic membrane transplantation method has been developed (Medical Asahi, September 1999 issue: p62-65, N Engl J Med340: 1697-1703, 1999: Non-patent document 1 ). The amniotic membrane used in this transplantation method is obtained from the placenta of pregnant women who have undergone cesarean section. Since the amniotic membrane has a thick basement membrane, it acts as a substrate for the proliferation and differentiation of keratoconjunctival epithelial cells when transplanted. In addition, since the amniotic membrane has both anti-inflammatory and scarring suppression effects that are almost immunogenic, the keratoconjunctival epithelium and these stem cell tissues transplanted onto the amniotic membrane are rejected by the transplant recipient (recipient). Etc. will be protected.
[0013] 特許文献 1 :特開平 10— 277143号公報 非特許文献 1:メディカル朝日 1999年 9月号: p62〜65、 N Engl J Med340 : 1697 〜1703、 1999 Patent Document 1: Japanese Patent Laid-Open No. 10-277143 Non-Patent Document 1: Medical Asahi, September 1999 issue: p62-65, N Engl J Med340: 1697-1703, 1999
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 表皮角化細胞の培養は従来困難なものとされていたが、 1975年、 Rheinwaldと Gree nによりマウス 3T3フィーダ一レイヤー法が発表され、初めて表皮角化細胞の培養が 可能となった。この方法はマウス 3T3細胞をフィーダ一レイヤーとして用いることや、牛 胎仔血清を使用するためにロット間での差がみられることなどにより培養は決して容 易なものではなかった。 1980年代になり、 Henningsと Yuspaは培養液中の Ca2+濃度を 低くすると表皮角化細胞が未分化状態となり増殖が亢進することを示した。さらに Boy ceと Hamは低 Ca2+濃度培地である MCDB153培地を開発し、牛下垂体抽出液を添カロ することでヒト表皮角化細胞の無血清培養法が可能であることを示した。 1986年には Pittelkowらは無血清培養法を用いて表皮角化細胞を培養し、さらに牛胎仔血清添 加高カルシウム培地に変更することで培養表皮シートを作製し熱傷患者に移植し良 好な成績を得た。現在ではこの無血清培養法が主流であるが、異種動物由来の 3T3 細胞がフィーダ一レイヤーとして用いられている。異種動物由来の細胞の共存下で 培養して得られる移植片では異種動物由来の産物が夾雑する危険性が存在する。 従って、当該移植片を用いた移植術は異種移植ないしはそれに準ずるものとして捉 えられ、倫理的、安全上に大きな問題があるとされている。事実、医療現場において 異種移植が実用化された例はな!/ヽ。 [0014] Culture of epidermal keratinocytes has been considered difficult in the past. In 1975, Rheinwald and Green announced the mouse 3T3 feeder-layer method, making it possible to culture epidermal keratinocytes for the first time. . This method was not easy to culture because mouse 3T3 cells were used as a feeder layer, and there were differences between lots due to the use of fetal calf serum. In the 1980s, Hennings and Yuspa showed that epidermal keratinocytes became undifferentiated and increased in proliferation when the Ca 2+ concentration in the culture medium was lowered. Furthermore, Boyce and Ham developed MCDB153 medium, which is a low Ca 2+ concentration medium, and showed that serum-free culture of human epidermal keratinocytes is possible by adding calf pituitary extract. In 1986, Pittelkow et al. Cultivated epidermal keratinocytes using a serum-free culture method, and then changed to a fetal calf serum-supplemented high calcium medium to produce a cultured epidermal sheet and transplant it to a burn patient. I got a grade. Currently, this serum-free culture method is the mainstream, but 3T3 cells derived from different animals are used as feeder layers. In transplants obtained by culturing in the presence of cells derived from different species, there is a risk of contamination with products derived from different species. Therefore, transplantation using the graft is regarded as xenotransplantation or equivalent, and is considered to have a serious problem in ethics and safety. In fact, there are no examples of xenotransplantation being put to practical use in the medical field!
[0015] 培養表皮シート移植は切手大の皮膚より角化細胞を継代培養することにより広範 囲の創面を覆うことを可能とした。また、凍結保存可能であるため、繰り返し移植を必 要とする難治性、再発性皮膚潰瘍治療に応用できる。従来の培養法で作製された培 養シート、たとえば、移植された培養表皮シートを良好に生着させることは必ずしも容 易なことではない。それは培養表皮シートが基底膜の構成成分を欠き、重層化した 表皮が強固な角層を形成していないことによるものである。その点、 Bellにより開発さ れた三次元培養皮膚は角層、顆粒層も認められ現時点では皮膚に最も近い培養皮 膚であるが、手技の煩雑さ、特殊技術の必要性より、いまだ本邦では普及していない 。三次元培養皮膚は海外にお!、てはすでに他家移植で有効性が示され商品化され ている。しかし、他家移植では上皮化の促進作用は認められる力 永久的な生着は 期待できない。本邦においては倫理面、安全性の確認の点で他家移植は普及する 見込みが少なく自家移植の改善に焦点が当てられてきている。 [0015] Transplantation of cultured epidermis sheets made it possible to cover a wide range of wound surfaces by subculturing keratinocytes from stamp-sized skin. In addition, since it can be stored frozen, it can be applied to the treatment of intractable and recurrent skin ulcers that require repeated transplantation. It is not always easy to satisfactorily engraft culture sheets produced by conventional culture methods, for example, transplanted cultured skin sheets. This is because the cultured epidermis sheet lacks the components of the basement membrane and the stratified epidermis does not form a strong stratum corneum. In this regard, the 3D cultured skin developed by Bell is also the closest to the skin at present, with both the stratum corneum and the granule layer being recognized, but due to the complexity of the procedure and the need for special techniques, it is still in Japan. Not popular . Three-dimensional cultured skin has already been demonstrated overseas and has already been commercialized. However, it is not possible to expect permanent engraftment with the ability to promote epithelialization in allogeneic transplantation. In Japan, there is little prospect of widespread transplantation in terms of ethics and safety, and there has been a focus on improving autotransplantation.
[0016] 一方、角膜が結膜上皮で覆われ混濁を生じる眼表面疾患に対する外科的治療とし ては、現在は角膜上皮移植術が行われているが、強い炎症を伴った難治性角結膜 疾患 (Stevens-Johnson症候群や眼類天疱瘡、角膜腐食など)においては、その予後 が極めて不良である。その最大の理由として、強い抗原性を有する異系(ァ口)の角 膜上皮が宿主の免疫系に認識され拒絶を受けることが挙げられる。更に、拒絶反応 の予防のため術後に多量の免疫抑制剤を全身及び局所投与することによる合併症 もその予後不良の大きな要因となっている。一方、ァ口の角膜上皮を利用する場合に は、ドナー不足の問題がある。一眼力も得られる角膜を用いて数十の角膜上皮シート の作製できる技術を達成すればドナー不足の課題は解決される。  [0016] On the other hand, as a surgical treatment for an ocular surface disease in which the cornea is covered with the conjunctival epithelium, corneal epithelial transplantation is currently performed, but refractory keratoconjunctival disease with strong inflammation ( For Stevens-Johnson syndrome, pemphigoid, corneal corrosion, etc., the prognosis is extremely poor. The biggest reason is that the foreign corneal epithelium with strong antigenicity is recognized and rejected by the host immune system. In addition, complications caused by systemic and local administration of large amounts of immunosuppressive agents after surgery to prevent rejection are a major factor in the poor prognosis. On the other hand, when the corneal epithelium of the mouth is used, there is a problem of donor shortage. Achieving technology that can produce dozens of corneal epithelial sheets using corneas that can be obtained with a single eye force will solve the problem of insufficient donors.
課題を解決するための手段  Means for solving the problem
[0017] 本発明は以上の背景及び課題に鑑みてなされたものであって、高い治療効果が望 めるとともに移植時の安全性が高い生体組織シートを提供することを目的とする。力 カゝる目的の下、本発明者らはまず培養皮膚シートの作製を試みた。具体的には、安 全性を考慮して表皮角化細胞の培養時に異種動物由来の細胞 (フィーダ一細胞)を 使用しない条件とした上で、表皮角化細胞の良好な増殖及び組織形成を可能とする 培養方法を模索した。その結果、ヒト線維芽細胞上に載せたコラーゲンシート上で表 皮角化細胞を培養するという新たな培養方法を見出すに至った。当該培養方法の有 効性を検証すベぐコラーゲンシートとしてヒト羊膜を用いて培養皮膚シートの作製を 試みたところ、正常な表皮に近似した構造の細胞層を備え、生体に対する適合性に も優れた培養皮膚シートを構築することに成功した。換言すれば、当該培養方法によ れば、異種動物細胞をフィーダ一細胞として使用しなくとも、表皮角化細胞の増殖及 び組織ィ匕に適した環境をつくりだすことができ、優れた治療効果を期待できる培養皮 膚シートを得られることが判明した。ところで、得られた培養皮膚シートの構造を詳細 に検討したところ、線維芽細胞が羊膜内へと浸潤していることが判明した。このことか ら、線維芽細胞が羊膜内のコラーゲンと相互作用することによって、線維芽細胞自身 の良好な生育が確保されるとともに、表皮角化細胞の生存、増殖及び組織ィ匕に必要 な栄養成分が羊膜を介して線維芽細胞から供給される状態が作り出され、その結果 として高品質の表皮細胞層を構築できたものと推測された。 [0017] The present invention has been made in view of the above background and problems, and an object thereof is to provide a biological tissue sheet that is expected to have a high therapeutic effect and has high safety at the time of transplantation. For the purpose of encouraging, the present inventors first tried to produce a cultured skin sheet. Specifically, in consideration of safety, the condition that the cells derived from different animals (feeder cells) are not used when culturing epidermal keratinocytes is used, and good growth and tissue formation of epidermal keratinocytes are achieved. We looked for possible culture methods. As a result, they have found a new culture method of culturing epidermal keratinocytes on a collagen sheet placed on human fibroblasts. An attempt was made to produce a cultured skin sheet using human amniotic membrane as a collagen sheet to verify the effectiveness of the culture method, and it was equipped with a cell layer with a structure approximating that of a normal epidermis and excellent in compatibility with living organisms. Succeeded in building a cultured skin sheet. In other words, according to the culture method, it is possible to create an environment suitable for the proliferation and tissue proliferation of epidermal keratinocytes without using heterogeneous animal cells as feeder cells. It has been found that a cultured skin sheet can be obtained. By the way, when the structure of the obtained cultured skin sheet was examined in detail, it was found that fibroblasts infiltrated into the amniotic membrane. This or Furthermore, the fibroblasts interact with collagen in the amniotic membrane to ensure good growth of the fibroblasts themselves, and the nutritional components necessary for the survival, proliferation and organization of epidermal keratinocytes It was speculated that a state of being supplied from fibroblasts was created through this, and as a result, a high-quality epidermal cell layer could be constructed.
一方、培養皮膚シートの構築に有効であることが判明した上記培養方法の汎用性 を調べるために、培養に供する細胞を表皮角化細胞力も他の組織由来の細胞に換 えて同様の実験を施行した。その結果、角膜上皮細胞を用いた実験系において、表 皮角化細胞と同様に良好な細胞増殖及び組織化を達成でき、高品質の培養角膜上 皮シートを構築することに成功した。これによつて、上記培養方法が表皮細胞層の構 築にのみ適するのではなく汎用性の高いものであって、再生医療分野の技術として 極めて有用であることが判明した。  On the other hand, in order to investigate the versatility of the above-described culture method that was found to be effective for the construction of cultured skin sheets, the same experiment was conducted by replacing the cells used for culture with cells derived from other tissues in terms of epidermal keratinocyte strength. did. As a result, in an experimental system using corneal epithelial cells, it was possible to achieve good cell growth and organization similar to epidermal keratinocytes, and succeeded in constructing a high-quality cultured corneal epithelial sheet. As a result, it has been found that the above culture method is not only suitable for the construction of the epidermal cell layer but is highly versatile and extremely useful as a technique in the field of regenerative medicine.
以上のように本発明者らは、異種動物由来の細胞を全く用いない、安全で実用的 な生体組織シートの作製に成功した。  As described above, the present inventors have succeeded in producing a safe and practical biological tissue sheet that does not use cells derived from different animals.
本発明は以上の成果及び知見に基づいて完成されたものであって、次の構成を提 供する。  The present invention has been completed on the basis of the above results and knowledge, and provides the following configuration.
即ち本発明は、ヒト線維芽細胞上に載置したコラーゲンシート上で増殖させた生体 由来細胞を含有してなる生体組織シートを提供する。ここでのコラーゲンシートとして 羊膜が用いられることが好ましい。羊膜は免疫原性がほとんどないことに加え、抗炎 症、瘢痕形成抑制などの作用を併せ持つ力もである。コラーゲンシートとして、上皮( 上皮細胞層)が除去された羊膜が用いられることが特に好ましい。上皮がないことに よってその上に播種された生体由来細胞の増殖等が良好となるからである。また、免 疫原性の一層の低下が達成されるからである。一方、本発明の一態様では、コラー ゲンシートとしてトレハロースを付加した羊膜が用いられる。かかる羊膜は、柔軟性に 優れるとともに、細胞培養用の基質として一層良好に機能する。  That is, the present invention provides a biological tissue sheet containing biological cells grown on a collagen sheet placed on human fibroblasts. It is preferable to use amniotic membrane as the collagen sheet here. Amniotic membrane is not only immunogenic but also has anti-inflammation and anti-scarring effects. As the collagen sheet, it is particularly preferable to use amniotic membrane from which the epithelium (epithelial cell layer) has been removed. This is because the absence of epithelium improves the growth of living cells seeded thereon. This is also because a further reduction in immunogenicity is achieved. On the other hand, in one embodiment of the present invention, amniotic membrane added with trehalose is used as a collagen sheet. Such amniotic membrane is excellent in flexibility and functions better as a substrate for cell culture.
生体由来細胞を増殖させるときの培地として、(1)無血清培地、又は (2)血清成分とし て、レシピエントに由来する血清のみを含む培地を使用することができる。  As a medium for growing cells derived from living organisms, (1) a serum-free medium, or (2) a medium containing only serum derived from the recipient as a serum component can be used.
生体由来細胞は好ましくは、角膜上皮、結膜上皮、皮膚表皮、毛包上皮、口腔粘 膜、気道粘膜又は腸管粘膜由来の細胞である。 [0019] 本発明の一態様では、増殖させた細胞に加えて、使用したヒト線維芽細胞由来の 細胞が浸潤して 、るコラーゲンシートを含有して生体組織シートが構成される。また、 本発明の他の一態様の生体組織シートは、増殖させた細胞によって形成される、重 層化した細胞層を備える。 The biological cell is preferably a cell derived from the corneal epithelium, conjunctival epithelium, skin epidermis, hair follicle epithelium, oral mucosa, airway mucosa or intestinal mucosa. In one embodiment of the present invention, in addition to the proliferated cells, the human fibroblast-derived cells used infiltrate and contain a collagen sheet to form a living tissue sheet. A biological tissue sheet according to another embodiment of the present invention includes a layered cell layer formed by expanded cells.
本発明の生体組織シートは例えば、直接又は羊膜 (培養基質として使用したコラー ゲンシートとは異なる羊膜。本発明の一態様において培養基質として使用される羊 膜と区別するため、便宜上「第 2の羊膜」ともいう)を介して組織欠損部に移植される。 後者の場合、典型的には組織欠損部に対して第 2の羊膜を移植した後、当該羊膜の 上に生体組織シートを移植することになる。  The biological tissue sheet of the present invention is, for example, directly or amniotic (amniotic membrane different from the collagen sheet used as a culture substrate. For the sake of distinction from the amniotic membrane used as the culture substrate in one embodiment of the present invention, the “second amniotic membrane is used for convenience. And also transplanted into a tissue defect. In the latter case, typically, after transplanting the second amniotic membrane to the tissue defect, a biological tissue sheet is transplanted on the amniotic membrane.
[0020] 本発明はさらに、生体組織シートの作製方法を提供する。本発明の作製方法は以 下のステップを含む。即ち、(a)ヒト線維芽細胞を用意するステップ; (b)培養容器に播 種した前記ヒト線維芽細胞の上にコラーゲンシートを載置するステップ; (c)生体由来 細胞を調製し、該生体由来細胞を前記コラーゲンシート上に播種するステップ;及び ( d)異種動物細胞非存在下、前記生体由来細胞を培養して増殖させるステップである 本発明の一態様では、ステップ (b)において、ヒト線維芽細胞の播種から所定時間 経過した後にコラーゲンシートを載置する。このステップによってヒト線維芽細胞の培 養容器への接着及びモノレイヤー化が促され、生体組織シートの高品質ィ匕を図るこ とがでさる。  [0020] The present invention further provides a method for producing a biological tissue sheet. The production method of the present invention includes the following steps. That is, (a) preparing human fibroblasts; (b) placing a collagen sheet on the human fibroblasts seeded in a culture vessel; (c) preparing living-derived cells; Inoculating a biological cell on the collagen sheet; and (d) culturing and proliferating the biological cell in the absence of a heterologous animal cell.In one aspect of the invention, in step (b), A collagen sheet is placed after a predetermined time has elapsed since the seeding of human fibroblasts. This step promotes the adhesion and monolayering of human fibroblasts to the culture container, thereby achieving a high quality sheet of the biological tissue sheet.
本発明の一態様では、ステップ (b)とステップ (c)の間に以下のステップが実施される 。即ち、(b)'前記ヒト線維芽細胞を所定時間培養するステップである。このステップに よって、ヒト線維芽細胞のコラーゲンシート内への浸潤が促され、生体糸且織シートの 高品質ィ匕を図ることができる。  In one aspect of the present invention, the following steps are performed between step (b) and step (c). That is, (b) ′ is a step of culturing the human fibroblast for a predetermined time. By this step, the infiltration of human fibroblasts into the collagen sheet is promoted, and the high quality of the living yarn and woven sheet can be achieved.
本発明の他の一態様では、(e)前記生体由来細胞が増殖した後、最表層を空気に 接触させるステップが更に実施される。このステップによって、細胞層の角化(上皮化 )が促される。  In another aspect of the present invention, (e) after the living body-derived cells have grown, the step of bringing the outermost layer into contact with air is further performed. This step promotes keratinization (epithelialization) of the cell layer.
ステップ (b)でのコラーゲンシートとして羊膜が用いられることが好ましい。コラーゲン シートとして、上皮 (上皮細胞層)が除去された羊膜が用いられることが特に好ましい 。一方、本発明の一態様では、コラーゲンシートとしてトレハロースを付加した羊膜が 用いられる。 Preferably, amniotic membrane is used as the collagen sheet in step (b). It is particularly preferable to use amniotic membrane from which the epithelium (epithelial cell layer) has been removed as the collagen sheet. . On the other hand, in one embodiment of the present invention, amniotic membrane added with trehalose is used as a collagen sheet.
ステップ (d)を実施する際の培地として、(1)無血清培地、又は (2)血清成分として、レ シピエントに由来する血清のみを含む培地を使用することができる。  As a medium for carrying out step (d), (1) a serum-free medium, or (2) a medium containing only serum derived from a recipient as a serum component can be used.
生体由来細胞は好ましくは、角膜上皮、結膜上皮、皮膚表皮、毛包上皮、口腔粘 膜、気道粘膜又は腸管粘膜由来の細胞である。  The biological cell is preferably a cell derived from the corneal epithelium, conjunctival epithelium, skin epidermis, hair follicle epithelium, oral mucosa, airway mucosa or intestinal mucosa.
図面の簡単な説明 Brief Description of Drawings
[図 1]羊膜上皮の除去手順を示すフローチャートである。 FIG. 1 is a flowchart showing an amnion epithelial removal procedure.
[図 2]羊膜の固定法を説明する図である。(a)では一対の枠で羊膜を挟み、(b)では枠 と平板状部材で羊膜を挟む。  FIG. 2 is a diagram for explaining an amniotic membrane fixing method. In (a), the amniotic membrane is sandwiched between a pair of frames, and in (b), the amniotic membrane is sandwiched between the frame and a flat plate member.
[図 3]移植後 17日目の培養皮膚シートの状態を示す HE染色像である。  FIG. 3 is a HE-stained image showing the state of the cultured skin sheet on day 17 after transplantation.
[図 4]培養皮膚シートに対する免疫組織ィ匕学染色の結果を示す図である。 FIG. 4 is a diagram showing the results of immunohistochemical staining for cultured skin sheets.
[図 5]培養皮膚シートに対する免疫組織ィ匕学染色の結果を示す図である。 FIG. 5 shows the results of immunohistochemical staining of cultured skin sheets.
[図 6]表皮角化細胞の播種時期と、構築される培養皮膚シートの品質との関係につ いての実験方法 (上段)及び実験結果 (下段)である。下段左は条件 1 (羊膜載置後、 時間を置!、て表皮角化細胞を播種する条件)で構築された培養皮膚シートの HE染 色像、下段右は条件 2 (羊膜載置後、時間を置かずに表皮角化細胞を播種する条件 )で構築された培養皮膚シートの HE染色像である。 [Fig. 6] Experimental method (upper) and experimental results (lower) regarding the relationship between the seeding time of epidermal keratinocytes and the quality of the cultured skin sheet to be constructed. The lower left is the HE-stained image of the cultured skin sheet constructed under condition 1 (time after amnion placement, time to seed the epidermis keratinocytes), the lower right is condition 2 (after amnion placement, It is an HE-stained image of a cultured skin sheet constructed under the condition of seeding epidermal keratinocytes without taking time.
[図 7]羊膜の載置 (貼付)時期と、構築される培養皮膚シートの品質との関係について の実験方法 (上段)及び実験結果 (下段)である。下段左は条件 1 (線維芽細胞播種 力も羊膜載置までの時間間隔が短い条件)で構築された培養皮膚シートの HE染色 像、下段右は条件 2 (線維芽細胞播種力も羊膜載置までの時間間隔が長 、条件)で 構築された培養皮膚シートの HE染色像である。  [Fig. 7] Experimental method (upper) and experimental result (lower) regarding the relationship between the time of placing (attaching) the amniotic membrane and the quality of the cultured skin sheet to be constructed. The lower left is an HE-stained image of a cultured skin sheet constructed under Condition 1 (conditions where the fibroblast seeding power is short in the time interval until placement on the amniotic membrane), and the lower right is Condition 2 (fibroblast seeding power is up to the amnion placement) This is a HE-stained image of a cultured skin sheet constructed with long time intervals and conditions.
[図 8]羊膜及びヒト線維芽細胞を用いて構築した培養角膜上皮シートの HE染色像で ある。  FIG. 8 is an HE-stained image of a cultured corneal epithelial sheet constructed using amniotic membrane and human fibroblasts.
[図 9]羊膜及びヒト線維芽細胞を用いて構築した培養角膜上皮シートの免疫染色像( 共焦点レーザー顕微鏡、倍率 100倍)である。上段 (A)はケラチン 3に対する免疫染 色結果。下段 (B)はケラチン 12に対する免疫染色結果。左側:緑色発色 表示一次 抗体で染色後、二次抗体 AleXa488で染色。中央:赤色発色 DNA染色試薬 PIで染 色。右側:左側と中央の写真を重ね合わせたもの。 FIG. 9 is an immunostained image (confocal laser microscope, 100 × magnification) of a cultured corneal epithelial sheet constructed using amniotic membrane and human fibroblasts. Upper row (A) shows immunostaining results for keratin 3. The lower panel (B) shows the result of immunostaining for keratin 12. Left side: Green color Display primary After staining with antibody, stained with secondary antibody Al eX a488. Center: Red coloration Colored with DNA staining reagent PI. Right: Superimposed left and center photos.
符号の説明  Explanation of symbols
[0022] 1、 2、 3 枠 [0022] 1, 2, 3 frames
4 板状部材  4 Plate member
10 羊膜  10 Amniotic membrane
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 本発明は、次の構成カゝらなる生体組織シートを提供する。即ち、ヒト線維芽細胞上 に載置したコラーゲンシート上で増殖させた生体由来細胞を含有してなる生体組織 シートである。生体由来細胞は細胞層を形成している。以下に本発明の生体組織シ ート及びその製法の特徴を詳述する。  [0023] The present invention provides a biological tissue sheet having the following constitution. That is, it is a living tissue sheet containing living body-derived cells grown on a collagen sheet placed on human fibroblasts. Living body-derived cells form a cell layer. The features of the biological tissue sheet of the present invention and its production method will be described in detail below.
[0024] 本発明の生体組織シートは、(a)ヒト線維芽細胞を用意するステップ、(b)培養容器に 播種した前記ヒト線維芽細胞の上にコラーゲンシートを載置するステップ、(c)生体由 来細胞を調製し、該生体由来細胞を前記コラーゲンシート上に播種するステップ、(d) 異種動物細胞非存在下、前記生体由来細胞を培養して増殖させるステップを含む 方法によって作製することができる。以下、ステップ毎に説明する。  [0024] The biological tissue sheet of the present invention comprises (a) a step of preparing human fibroblasts, (b) a step of placing a collagen sheet on the human fibroblasts seeded in a culture vessel, (c) Preparing a cell derived from a living body and seeding the living body-derived cell on the collagen sheet; and (d) culturing and proliferating the living body-derived cell in the absence of a heterologous animal cell. Can do. Hereinafter, each step will be described.
[0025] 1.ステップ (a)  [0025] 1. Step (a)
ステップ (a)ではヒト線維芽細胞を用意する。ヒト線維芽細胞の由来は特に限定され ない。例えば、皮膚組織由来、眼組織 (角膜、強膜、結膜など)由来、又は口腔粘膜 組織由来のヒト線維芽細胞を使用することができる。細胞株の状態で提供されて 、る ヒト線維芽細胞を用いることもできるが、生体適合性の観点から、可能であればレシピ ェント由来の線維芽細胞を用いることが好ましい。また、コラーゲンシート上で培養す る生体由来細胞の種類 (換言すれば作製する生体組織シートの種類)を考慮してヒト 線維芽細胞を選定するとよい。具体的には、使用する生体由来細胞と同組織 (又は 生体で隣接する組織)由来のヒト線維芽細胞を採用するとよい。このような生体由来 細胞とヒト線維芽細胞の組合せとすれば、生体由来細胞の増殖及び期待される組織 ィ匕がより良好なものとなる。生体由来細胞とヒト線維芽細胞の好ましい組合せの例とし ては、表皮角化細胞(生体由来細胞)と、皮膚組織由来のヒト線維芽細胞との組み合 わせを挙げることができる。 In step (a), human fibroblasts are prepared. The origin of human fibroblasts is not particularly limited. For example, human fibroblasts derived from skin tissue, ocular tissue (cornea, sclera, conjunctiva, etc.), or oral mucosal tissue can be used. Although human fibroblasts provided in the form of cell lines can be used, it is preferable to use recipient-derived fibroblasts from the viewpoint of biocompatibility. In addition, human fibroblasts may be selected in consideration of the type of cells derived from a living body to be cultured on a collagen sheet (in other words, the type of living tissue sheet to be produced). Specifically, human fibroblasts derived from the same tissue as the living body cell to be used (or a tissue adjacent to the living body) may be employed. With such a combination of biologically derived cells and human fibroblasts, the proliferation of the biologically derived cells and the expected tissue properties are improved. An example of a preferred combination of biological cells and human fibroblasts is a combination of epidermal keratinocytes (biological cells) and human fibroblasts derived from skin tissue. Can be mentioned.
ヒト線維芽細胞の培養は常法で行うことができる。例えば、適当な培地中、 37°C、 5% CO存在下でヒト線維芽細胞を培養することができる。ヒト線維芽細胞の培養に使用 Human fibroblasts can be cultured by a conventional method. For example, human fibroblasts can be cultured in an appropriate medium in the presence of 37 ° C and 5% CO. Used for human fibroblast culture
2 2
する培地は、当該細胞の生育が可能であれば特に限定されず、線維芽細胞の培養 に通常使用される培地を用いればよい。例えば、血清 (牛胎仔血清など)を含む DME M培地等を使用することができる。培地中に添加する血清としては、ヒト血清、牛胎仔 血清、羊血清などを用いることができる。中でも、同種由来の血清 (ヒト血清)を使用 する力、自家血清 (即ちレシピエント自身の血清)を使用することが好ましい。勿論、 可能であれば、免疫拒絶反応の惹起のおそれがなくなる自家血清を使用することが 最も好ましい。  The medium to be used is not particularly limited as long as the cells can grow, and a medium usually used for fibroblast culture may be used. For example, a DMEM medium containing serum (such as fetal calf serum) can be used. As serum added to the medium, human serum, fetal bovine serum, sheep serum, and the like can be used. Among them, it is preferable to use a serum that is derived from the same species (human serum) and autologous serum (that is, the serum of the recipient itself). Of course, if possible, it is most preferable to use autologous serum that eliminates the risk of causing immune rejection.
成長因子や抗生物質等が添加された培地を使用してヒト線維芽細胞を培養しても よい。成長因子や抗生物質等を使用することにより、細胞増殖率や生存率の向上、 汚染の防止などが図られる。  Human fibroblasts may be cultured using a medium supplemented with growth factors and antibiotics. By using growth factors and antibiotics, cell proliferation rate and survival rate can be improved and contamination can be prevented.
ヒト線維芽細胞の培養を、無血清で且つ異種動物由来のタンパク質を含まな 、培 地を用いて行ってもよい。即ち、本発明における培養方法として無血清培養法を採 用してもよい。このような態様では、血清由来の成分の混入による免疫拒絶等の問題 を回避することができる。  Human fibroblasts may be cultured using a medium that is serum-free and does not contain proteins derived from different animals. That is, a serum-free culture method may be employed as the culture method in the present invention. In such an embodiment, problems such as immune rejection due to contamination of serum-derived components can be avoided.
尚、以下で説明する、ヒト線維芽細胞の播種 (ステップ (b))及び播種後の培養 (ステ ップ (b)' )にお 、ても上記の培養条件を採用することができる。  It should be noted that the above-described culture conditions can also be employed for human fibroblast seeding (step (b)) and culture after seeding (step (b) ′) described below.
[0026] 2.ステップ (b) [0026] 2. Step (b)
ステップ (b)ではまず、用意したヒト線維芽細胞を培養容器に播種する。最終的に得 られる生体組織シートの大きさを考慮して適当な大きさの培養容器を使用する。例え ば、市販のカルチャーインサートやシャーレの中力も適当な大きさのものを選び使用 することができる。尚、培養容器の材質、表面コーティングの有無は特に限定されな い。  In step (b), first, the prepared human fibroblasts are seeded in a culture vessel. Considering the size of the biological tissue sheet finally obtained, use a culture container of an appropriate size. For example, a commercially available culture insert or petri dish with a moderate force can be selected and used. The material of the culture vessel and the presence or absence of surface coating are not particularly limited.
[0027] ヒト線維芽細胞は、例えば 10000〜50000個/ cm2の細胞密度で播種する。播種時の 細胞密度が小さすぎれば、ヒト線維芽細胞を用いることによって生体由来細胞の増 殖等が良好になるという、本発明の効果の一つが十分に発揮されない。他方、播種 時の細胞密度が高すぎれば、培養液力 供給される栄養が不足するので好ましくな い。 [0027] Human fibroblasts, for example, plated at a cell density of 10,000 to 50,000 pieces / cm 2. If the cell density at the time of seeding is too small, one of the effects of the present invention that the growth of living cells is improved by using human fibroblasts is not sufficiently exhibited. On the other hand, sowing If the cell density at the time is too high, the nutrients supplied to the culture solution are insufficient, which is not preferable.
[0028] 培養容器に播種されたヒト線維芽細胞の上にはコラーゲンシートが載置される。好 ましくは、ヒト線維芽細胞の播種力も所定時間経過した後にコラーゲンシートを載置 する。ヒト線維芽細胞播種後に十分な時間を確保することは、ヒト線維芽細胞の培養 容器への接着及びモノレイヤー化を促し、高品質の生体組織シートの作製に有効で ある。ここでの所定時間は例えば 1時間以上であり、好ましくは 2時間以上であり、更 に好ましくは 4時間以上であり、より一層好ましくは 1日以上 (例えば 1日、 2日、 3日) である。  [0028] A collagen sheet is placed on the human fibroblasts seeded in the culture vessel. Preferably, the collagen sheet is placed after a predetermined time has passed for the seeding force of human fibroblasts. Ensuring sufficient time after seeding of human fibroblasts promotes adhesion and monolayering of human fibroblasts to the culture container, and is effective in producing high-quality biological tissue sheets. The predetermined time here is, for example, 1 hour or more, preferably 2 hours or more, more preferably 4 hours or more, and even more preferably 1 day or more (eg, 1 day, 2 days, 3 days). is there.
[0029] 「コラーゲンシート」は生体由来細胞の培養基質として機能する。コラーゲンシート の原材料となるコラーゲンの種類は特に限定されず、 I型コラーゲン、 III型コラーゲン 、 IV型コラーゲンなどを用いることができる。複数の種類のコラーゲンが混在するもの を用いることもできる。これらのコラーゲンは、ブタ、ゥシ、ヒッジなどの動物の皮膚、軟 骨などの結合組織から、酸可溶化法、アルカリ可溶ィ匕法、酵素可溶化法などにより抽 出、精製することができる。尚、抗原性を低下させる目的から、ペプシンやトリプシン などの分解酵素で処理することによりテロペプチドを除去した、いわゆるァテロコラー ゲンとしたものを用いることが好ましい。コラーゲンシートの材料として羊膜由来、特に ヒト羊膜由来のコラーゲンを用いてもよい。ここで、羊膜由来とは、広く羊膜を出発原 料として得られたものであることを意味する。  [0029] The "collagen sheet" functions as a culture substrate for living cells. The type of collagen used as a raw material for the collagen sheet is not particularly limited, and type I collagen, type III collagen, type IV collagen and the like can be used. A mixture of a plurality of types of collagen can also be used. These collagens can be extracted and purified from the skins of animals such as pigs, sushi, and hedges, and connective tissues such as soft bones by acid solubilization, alkali solubilization, enzyme solubilization, etc. it can. For the purpose of reducing antigenicity, it is preferable to use a so-called atherocollagen in which the telopeptide is removed by treatment with a degrading enzyme such as pepsin or trypsin. Collagen derived from amnion, particularly human amnion, may be used as a material for the collagen sheet. Here, the term “derived from amniotic membrane” means that it is widely obtained using amnion as a starting material.
コラーゲンシートとして羊膜を用いることが好ましい。「羊膜」とは、哺乳動物におい て子宮と胎盤の最表層を覆う膜であって、コラーゲンに富む実質組織上に基底膜、 上皮層が形成されて構成される。ヒト、サル、チンパンジー、ブタ、ゥマ、ゥシ等の羊膜 を用いることができる。中でもヒト羊膜を用いることが好ましい。免疫原性やウィルス感 染を含め、安全性の面で有利だ力もである。ヒト羊膜は、例えば分娩時に後産として 得られるヒト胎仔膜、胎盤など力も採取することができる。具体的には、分娩直後に得 られるヒト胎仔膜、胎盤及び臍帯からなる一体物を処理、精製することによりヒト羊膜 を調製することができる。処理、精製方法は、特開平 5— 56987号に記載される方法 などの公知の方法を採用できる。すなわち、分娩時に得られる胎仔膜より羊膜を剥離 し、超音波洗浄等の物理的処理及び酵素処理などにより残存組織を除去し、適宜洗 浄工程を経てヒト羊膜を調製することができる。このように調製したヒト羊膜は、使用時 まで凍結して保存しておくことができる。ヒト羊膜の凍結は、例えば- 80°C、 DMEM (Du lbecco's modified Eagle's medium)とグリセロールとを体積比で等量混合した液中で 行うことができる。凍結保存することにより操作性が向上することは勿論のこと、抗原 性が低下することも期待できる。 It is preferable to use amniotic membrane as the collagen sheet. The “amniotic membrane” is a membrane that covers the outermost layer of the uterus and placenta in mammals, and is composed of a basement membrane and an epithelial layer formed on a collagen-rich parenchyma. Amniotic membranes such as humans, monkeys, chimpanzees, pigs, horses, and ushi can be used. Among them, it is preferable to use human amniotic membrane. It also has advantages in terms of safety, including immunogenicity and virus infection. For example, human amnion can also collect force such as human fetal membrane and placenta obtained as a postpartum at delivery. Specifically, human amniotic membrane can be prepared by treating and purifying an integral body consisting of human fetal membrane, placenta and umbilical cord obtained immediately after delivery. As a treatment and purification method, a known method such as a method described in JP-A-5-56987 can be adopted. That is, the amniotic membrane is peeled off from the fetal membrane obtained at the time of delivery Then, the remaining tissue is removed by physical treatment such as ultrasonic washing and enzyme treatment, and human amniotic membrane can be prepared through a washing step as appropriate. The human amniotic membrane thus prepared can be stored frozen until use. Freezing of the human amniotic membrane can be performed, for example, at −80 ° C. in a liquid in which DMEM (Dulbecco's modified Eagle's medium) and glycerol are mixed in an equal volume ratio. Cryopreservation is expected to improve operability as well as decrease antigenicity.
[0030] 羊膜をそのまま利用することもできるが、羊膜から搔爬処理などによって上皮を除 去したものを利用することが好ましい。上皮を除去したヒト羊膜を利用する場合には、 後述のステップ (c)において、上皮を除去して表出した面側 (即ち、基底膜側)に生体 由来細胞を播種することが好ましい。この面側には、 IV型コラーゲンがリッチに含まれ ており、播種された生体由来細胞の増殖、重層化が良好に行われると考えられるから である。 [0030] Although the amniotic membrane can be used as it is, it is preferable to use a material obtained by removing the epithelium from the amniotic membrane by reptile treatment or the like. When using human amniotic membrane from which the epithelium has been removed, it is preferable to seed biologically-derived cells on the surface side (ie, the basement membrane side) where the epithelium has been removed in step (c) described later. This is because this surface side is rich in type IV collagen, and it is considered that the seeded living cells are proliferated and stratified well.
例えば、上記のように凍結保存したヒト羊膜を解凍した後、 EDTAやタンパク分解酵 素で処理して細胞間の接着を緩め、そしてセルスクレイパーなどを用いて上皮を搔 爬することにより、上皮が除去されたヒト羊膜を調製することができる。好ましくは、以 下のステップを含む方法で上皮を除去したヒト羊膜を用いることが好ましい。  For example, after thawing the human amniotic membrane cryopreserved as described above, treatment with EDTA or a proteolytic enzyme relaxes the adhesion between cells, and the epithelium is replated using a cell scraper or the like. A removed human amniotic membrane can be prepared. It is preferable to use human amniotic membrane from which the epithelium has been removed by a method including the following steps.
(1)生体より分離された羊膜を用意するステップ。  (1) A step of preparing an amniotic membrane separated from a living body.
(2)前記羊膜に凍結融解処理を施すステップ。  (2) A step of subjecting the amniotic membrane to a freeze-thaw treatment.
(3)凍結融解処理後の羊膜にトリプシン処理を施すステップ。  (3) A step of applying a trypsin treatment to the amniotic membrane after the freeze-thaw treatment.
(4)トリプシン処理後の羊膜を洗浄するステップ。  (4) A step of washing the amniotic membrane after the trypsin treatment.
[0031] 当該上皮除去法によれば、従来の用手的な上皮除去法と同程度に、基底膜の損 傷を抑えつつ上皮を完全に除去することが可能である。即ち、当該上皮除去法によ れば、上皮が完全に除去され、しかも本来の構造を良好に保持した基底膜を備える 羊膜が得られる。かかる羊膜は例えば、細胞培養用の基質 (基材)として良好に機能 する。一方で以下の上皮除去法は、従来の用手的方法に比較して操作が非常に簡 便であり、操作時間も短くてすむ。また、同時に多数の羊膜を処理することも容易で ある。さらには、熟練した技術が特に要求されないことから、自動化することも容易で ある。 以下、上皮除去法の各ステップを詳細に説明する(図 1を参照)。 [0031] According to the epithelial removal method, it is possible to completely remove the epithelium while suppressing damage to the basement membrane as much as the conventional manual epithelial removal method. That is, according to the epithelial removal method, an amniotic membrane having a basement membrane in which the epithelium is completely removed and the original structure is well maintained can be obtained. Such an amniotic membrane functions well as, for example, a cell culture substrate (base material). On the other hand, the following epithelial removal method is very easy to operate and requires less operation time than conventional manual methods. It is also easy to process a large number of amniotic membranes at the same time. Furthermore, since skilled technology is not particularly required, it is easy to automate. Hereinafter, each step of the epithelial removal method will be described in detail (see FIG. 1).
[0032] (1)羊膜の用意 [0032] (1) Preparation of amniotic membrane
ステップ (1)では羊膜を用意する。ここでの羊膜は好ましくはヒト羊膜である。ヒト羊膜 は例えば、分娩時に後産として得られるヒト胎仔膜、胎盤など力 採取することができ る。具体的には、分娩直後に得られるヒト胎仔膜、胎盤及び臍帯カゝらなる一体物を処 理 '精製することによりヒト羊膜を調製することができる。このようなヒト羊膜の調製方法 は、特開平 5— 56987号に記載される方法などの公知の方法を採用できる。典型的 には以下の手順でこのステップを実施する。  In step (1), prepare the amniotic membrane. The amniotic membrane here is preferably human amniotic membrane. For example, human amnion can be collected by force such as human fetal membrane or placenta obtained as a postpartum at the time of delivery. Specifically, the human amniotic membrane can be prepared by treating and purifying an integral product such as human fetal membrane, placenta and umbilical cord obtained immediately after delivery. As a method for preparing such human amniotic membrane, known methods such as the method described in JP-A-5-56987 can be employed. Typically, this step is performed as follows.
(1-1)羊膜の採取  (1-1) Collection of amniotic membrane
分娩時に胎盤組織の一部を採取し、続いて胎盤組織より羊膜組織を用手的に剥離 する。この段階で一旦凍結してもよい。  A part of the placenta tissue is collected at the time of delivery, and then the amniotic tissue is manually detached from the placenta tissue. You may freeze once at this stage.
(1-2)血球成分等の除去  (1-2) Removal of blood cell components
羊膜に付着した血球成分を生理食塩水などで洗浄 ·除去する。また、絨毛膜を用 手的に剥離し、除去する。このように、この段階において血球成分及び絨毛膜を除去 した羊膜にすることが好ましいが、後述の凍結融解処理 (ステップ 2)の後に、血球成 分の除去及び Z又は絨毛膜の剥離を行うこともできる。  Wash and remove blood cell components adhering to the amniotic membrane with physiological saline. Also, the chorion is manually peeled off and removed. Thus, it is preferable to use amniotic membrane from which blood cell components and chorion are removed at this stage, but after the freeze-thaw treatment (step 2) described later, removal of blood cell components and peeling of Z or chorion are performed. You can also.
このように調製したヒト羊膜は、次の処理まで凍結して保存しておくことができる。ヒト 羊膜の凍結は、例えば- 80°C、 DMEM (Dulbecco's modified Eagle's medium)とグリセ ロールとを体積比で等量混合した液中で行うことができる。凍結保存することにより操 作性が向上することは勿論のこと、抗原性が低下することも期待できる。  The human amniotic membrane thus prepared can be stored frozen until the next treatment. Freezing of the human amniotic membrane can be performed, for example, at −80 ° C. in a solution in which DMEM (Dulbecco's modified Eagle's medium) and glycerol are mixed in an equal volume ratio. Cryopreservation is expected to improve operability as well as decrease antigenicity.
[0033] 以上の手順で調製した羊膜を枠に固定した後、以降の処理に供することが好まし い。羊膜を枠で固定することによって取り扱いやすくなる。 [0033] It is preferable that the amniotic membrane prepared by the above procedure is fixed to a frame and then subjected to the subsequent treatment. It becomes easy to handle by fixing the amniotic membrane with a frame.
羊膜の固定方法の具体例を図 2に示す。図 2aの例では同形状の二つの枠(1、 2) が使用される。これら二つの枠にその縁部を狭持されて羊膜 10が固定される。尚、羊 膜を拡げた状態で固定する。図 2bの例では、枠 3と板状部材 4とを用いて羊膜 10を 固定する。まず、板状部材 4の上に羊膜 10を拡げた状態で載せる。このとき羊膜 10 の上皮側を上にする。続いて羊膜 10の上力も枠 3を載せ、羊膜 10の縁部を板状部 材 4と枠 3で挟む。その結果、羊膜 10の上皮側のみが露出することになる。従って、 後述のトリプシン処理を実施するときに、トリプシン溶液を羊膜の上皮側のみに接触 させることができる(例えば、枠 3の内側にトリプシン溶液を添加する)。これによつて、 上皮以外の部分 (羊膜緻密層及び基底膜)〖こ影響を与えることなくトリプシン処理を 行うことができる。即ち、羊膜の上皮に対してトリプシンを作用させつつ、羊膜緻密等 をトリプシンの作用力 保護することができる。 Figure 2 shows a specific example of how to fix the amniotic membrane. In the example of Figure 2a, two frames (1, 2) of the same shape are used. The amniotic membrane 10 is fixed by holding the edges of these two frames. Fix the amniotic membrane in an expanded state. In the example of FIG. 2 b, the amniotic membrane 10 is fixed using the frame 3 and the plate-like member 4. First, the amniotic membrane 10 is spread on the plate-like member 4. At this time, the epithelial side of the amniotic membrane 10 is turned up. Subsequently, the upper force of the amniotic membrane 10 is also put on the frame 3, and the edge of the amniotic membrane 10 is sandwiched between the plate-like member 4 and the frame 3. As a result, only the epithelial side of the amniotic membrane 10 is exposed. Therefore, When the trypsin treatment described below is performed, the trypsin solution can be brought into contact only with the epithelial side of the amniotic membrane (for example, a trypsin solution is added inside the frame 3). As a result, trypsin treatment can be performed without affecting the parts other than the epithelium (the amnion dense layer and the basement membrane). In other words, while the trypsin acts on the epithelium of the amniotic membrane, it is possible to protect the denseness of the amniotic membrane, etc.
[0034] (2)凍結融解処理 [0034] (2) Freezing and thawing treatment
このステップでは羊膜を一旦凍結させ、その後融解させる。この凍結融解処理によ つて、後のトリプシン処理の際に羊膜上皮層が剥離し易くなる。これは、羊膜上皮層 と基底膜との間の接着状態 (結合状態)が緩められることによると考えられる。  In this step, the amniotic membrane is once frozen and then thawed. This freezing and thawing process makes it easier for the amniotic epithelial layer to peel off during subsequent trypsin treatment. This is thought to be due to the loosening of the adhesive state (bonded state) between the amniotic epithelial layer and the basement membrane.
凍結温度として約 20°C〜約 80°Cを採用することができる。十分な凍結状態を 得ることができる点、汎用的なフリーザーを利用できる点などを考慮し、約 80°Cで 凍結させることが好ましい。一方、融解温度として約 4°C〜約 50°Cを採用することがで きる。好ましくは融解温度を約 37°Cとする。  A freezing temperature of about 20 ° C to about 80 ° C can be used. In consideration of the fact that a sufficient frozen state can be obtained and a general-purpose freezer can be used, it is preferable to freeze at about 80 ° C. On the other hand, a melting temperature of about 4 ° C to about 50 ° C can be employed. Preferably the melting temperature is about 37 ° C.
凍結融解処理を繰り返し実施することが好ましい。繰り返し実施することによって、 後のトリプシン処理において上皮が剥離しやすくなるという凍結融解処理の効果が増 強される。但し、必要以上に繰り返し行えば上皮以外の部分に悪影響を与えることも 予想される。従って例えば凍結融解処理を 2〜4回の範囲で繰り返し実施することが 好ましい。本発明者らの検討した結果、凍結温度- 80°C、融解温度 37°Cの凍結融解 処理を 2回実施することによって必要十分な効果が得られることが判明した。この知 見より、凍結温度- 80°C、融解温度 37°Cの条件下では凍結融解処理を 2回実施する ことが好ましいと言える。  It is preferable to repeat the freeze-thaw treatment. By repeatedly performing the treatment, the effect of the freeze-thaw treatment that the epithelium is easily detached in the subsequent trypsin treatment is enhanced. However, if it is repeated more than necessary, it is also expected to adversely affect parts other than the epithelium. Therefore, for example, it is preferable to repeatedly perform freeze-thaw treatment in the range of 2 to 4 times. As a result of investigations by the present inventors, it was found that necessary and sufficient effects can be obtained by performing freeze-thaw treatment twice at a freezing temperature of −80 ° C. and a thawing temperature of 37 ° C. From this knowledge, it can be said that the freeze-thaw treatment is preferably performed twice under the conditions of a freezing temperature of -80 ° C and a thawing temperature of 37 ° C.
凍結融解処理を繰り返し実施する場合の各回の条件 (凍結温度、融解温度)は全 てが同一であっても、一部が異なっていても、又は相互に異なっていてもよい。但し 操作性の点から、各回の条件を同一とすることが好ましい。  The conditions (freezing temperature and thawing temperature) for each time when the freeze-thaw treatment is repeatedly performed may be the same, partly different, or different from each other. However, from the viewpoint of operability, it is preferable that the conditions are the same each time.
[0035] (3)トリプシン処理 [0035] (3) Trypsin treatment
このステップでは凍結融解処理後の羊膜をトリプシンで処理する。トリプシン処理は 、トリプシン溶液を羊膜に接触させることによって実施される。トリプシン溶液として例 えば、トリプシン濃度が約 0.01%(w/v)〜約 0.05%(w/v)のトリプシン溶液を使用すること ができる。好ましくはトリプシン濃度が約 0.02%(w/v)のトリプシン溶液を使用する。トリ プシン溶液のトリプシン濃度が低すぎればトリプシンの作用が十分に発揮されな 、。 一方、トリプシン濃度が高すぎれば羊膜上皮に対してトリプシンを良好に作用させる ことができる反面、羊膜緻密層及び基底膜にもトリプシンが作用し、当該部分が損傷 すること〖こなる。 In this step, the amniotic membrane after the freeze-thaw treatment is treated with trypsin. Trypsinization is performed by bringing a trypsin solution into contact with the amniotic membrane. For example, use a trypsin solution with a trypsin concentration of about 0.01% (w / v) to about 0.05% (w / v). Can do. Preferably, a trypsin solution having a trypsin concentration of about 0.02% (w / v) is used. If the trypsin concentration of the trypsin solution is too low, the action of trypsin will not be fully exerted. On the other hand, if the trypsin concentration is too high, trypsin can act well on the amniotic epithelium, while trypsin also acts on the amnion dense layer and the basement membrane, which may damage the part.
トリプシンはゥシ由来、ブタ由来、ヒト由来のもの等、数多く市販されている。例えば 、 Trypsin- EDTA(Invitrogen社)、トリプシン 1:250 (Sigma社)を好適に使用することが できる。  Many trypsins are commercially available such as those derived from ushi, porcine, and human. For example, Trypsin-EDTA (Invitrogen) and trypsin 1: 250 (Sigma) can be preferably used.
[0036] トリプシン溶液には通常キレート剤を添加しておくが、キレート剤は必須ではない。  [0036] A chelating agent is usually added to the trypsin solution, but the chelating agent is not essential.
キレート剤としては EDTA、 NTA、 DTPA、 HEDTA、 GLDA等を用いることができる。こ れらを任意に組み合わせて使用してもよい。キレート剤は例えば約 O.lmM〜約 0.6m Mの濃度となるように添加される。  As a chelating agent, EDTA, NTA, DTPA, HEDTA, GLDA, etc. can be used. Any combination of these may be used. The chelating agent is added, for example, to a concentration of about O.lmM to about 0.6 mM.
[0037] 羊膜上皮側のみがトリプシン溶液に接触する条件下でトリプシン処理を実施するこ とが好ましい。羊膜上皮以外の部分をトリプシンの作用力 保護するためである。例 えば、羊膜上皮側のみをトリプシン溶液に浸漬させること、羊膜上皮側にトリプシン溶 液を添加な 、し塗布すること、羊膜絨毛膜側をブロックして溶液に接しな 、ように加 ェを行った後にトリプシン液に全浸漬する等によって、羊膜上皮側のみをトリプシン 溶液に接触させることが可能である。上述のように、図 2bに示すような枠に予め固定 した羊膜 (枠固定羊膜)を使用すれば羊膜の上皮側のみが露出した状態になってい るため、例えば枠固定羊膜をトリプシン溶液に浸漬させることによつても羊膜上皮側 のみをトリプシン溶液に接触させることが可能である。この方法では、枠固定した羊膜 を浸漬するという簡便な操作でトリプシン処理を実施できるという利点もある。尚、この ように枠に固定された羊膜を使用する場合においても、枠ごとトリプシン溶液に浸漬 すると 、う方法ではなく、羊膜の上皮側部分のみをトリプシン溶液に浸漬すること (例 えば羊膜の上皮側を下にしてトリプシン溶液に漬ける)、枠内へのトリプシン溶液の添 カロ、又は羊膜上皮側へのトリプシン溶液の塗布によって羊膜の上皮側のみをトリプシ ン溶液に接虫させることにしてもよい。  [0037] It is preferable to carry out trypsin treatment under conditions where only the amnion epithelial side is in contact with the trypsin solution. This is to protect the action force of trypsin on parts other than the amniotic epithelium. For example, immerse only the amnion epithelium side in a trypsin solution, do not add trypsin solution to the amnion epithelium side, apply it, and block the amnion chorion side to avoid contact with the solution. Thereafter, only the amnion epithelial side can be brought into contact with the trypsin solution by, for example, immersing it completely in a trypsin solution. As described above, if the amniotic membrane (frame-fixed amniotic membrane) fixed in advance to the frame as shown in Fig. 2b is used, only the epithelial side of the amniotic membrane is exposed, so the frame-fixed amniotic membrane is immersed in a trypsin solution, for example. It is possible to contact only the amnion epithelium side with the trypsin solution. This method also has the advantage that the trypsin treatment can be performed by a simple operation of immersing the frame-fixed amniotic membrane. Even when the amniotic membrane fixed to the frame is used in this way, if the entire frame is immersed in a trypsin solution, only the epithelial side portion of the amniotic membrane is immersed in the trypsin solution (for example, the epithelium of the amniotic membrane). (You can dip it in a trypsin solution with the side down), add the trypsin solution in the frame, or apply the trypsin solution to the amnion epithelial side to infect only the epithelial side of the amniotic membrane with the trypsin solution. .
[0038] トリプシン処理時間(トリプシン溶液の接触時間)は例えば約 5分〜約 60分とする。好 ましくは約 10分〜約 20分、更に好ましくは約 15分とする。処理時間が短すぎればトリ プシンを十分に作用させることができず、結果として羊膜上皮の除去が不十分となる 。一方、処理時間が長すぎれば羊膜の基底膜、緻密層に対してもトリプシンが作用し て当該部分を損傷させるおそれがある。 [0038] The trypsin treatment time (contact time of the trypsin solution) is, for example, about 5 minutes to about 60 minutes. Good It is preferably about 10 minutes to about 20 minutes, more preferably about 15 minutes. If the treatment time is too short, trypsin cannot be sufficiently exerted, resulting in insufficient removal of the amniotic epithelium. On the other hand, if the treatment time is too long, trypsin may also act on the basement membrane and dense layer of the amniotic membrane to damage the part.
トリプシン処理の温度条件はトリプシンが良好に作用するように例えば約 25°C〜約 4 2°Cとする。  The temperature condition of the trypsin treatment is, for example, about 25 ° C. to about 42 ° C. so that trypsin works well.
トリプシン溶液を接触させる間、羊膜を静置した状態に維持することが好ましい。トリ プシン溶液が基底膜、緻密層により浸透しに《なると考えられる力もである。  It is preferred to keep the amniotic membrane stationary while contacting the trypsin solution. It is also the force that the trypsin solution is thought to penetrate through the basement membrane and the dense layer.
トリプシン処理を複数回に分けて実施することもできる。  The trypsin treatment can be performed in a plurality of times.
[0039] (4)洗浄 [0039] (4) Cleaning
以上の方法でトリプシン溶液を接触させた後、羊膜を洗浄する。この洗浄によって 付着しているトリプシン溶液が除去され、同時に羊膜上皮(上皮細胞)が除去される。 例えば適当な流れをもった液体中(例えば流水中)に放置すること、適当な液体に浸 けた状態で振盪 (例えば上下振盪)させること、又は適当な液体に浸けた状態で超音 波等を加えることによって、トリプシン処理後の羊膜を洗浄する。洗浄に使用する液 体として、生理食塩水、リン酸系緩衝液、純水、 DMEMを例示できる。  After contacting the trypsin solution by the above method, the amniotic membrane is washed. This washing removes the attached trypsin solution and simultaneously removes the amniotic epithelium (epithelial cells). For example, leave it in a liquid with an appropriate flow (for example, flowing water), shake it in a suitable liquid (for example, shake up and down), or apply ultrasonic waves while immersed in a suitable liquid. The amniotic membrane after trypsinization is washed by adding. Examples of the liquid used for washing include physiological saline, phosphate buffer, pure water, and DMEM.
[0040] 洗浄後の羊膜を使用時まで冷蔵又は冷凍保存しておいてもよい。例えば、グリセ口 ールを含む保存液(例えば 50%グリセロール含有 DMEM (Dulbecco' S Modofied Eagle Medium: GIBCOBRL社))に浸漬させた状態で保存することができる。 [0040] The washed amniotic membrane may be refrigerated or frozen until use. For example, it can be stored in a state of being immersed in a storage solution containing glyceride (for example, 50% glycerol-containing DMEM (Dulbecco'S Modofied Eagle Medium: GIBCOBRL)).
[0041] (トレハロース付カ卩羊膜の使用) [0041] (Use of cocoon amniotic membrane with trehalose)
コラーゲンシートとして、トレハロースが付加された羊膜を用いることもできる。尚、こ の場合にぉ ヽても羊膜の上皮が除去されて 、ることが好ま 、。  As the collagen sheet, amniotic membrane to which trehalose is added can also be used. In this case, it is preferable that the epithelium of the amniotic membrane is removed.
トレハロースの付カ卩によって羊膜の柔軟性が向上し、特に凍結乾燥状態としたとき の柔軟性が大幅に改善される(詳細は特願 2005— 214339を参照)。また、トレハロ ースを付加した羊膜は細胞培養用の基質として良好に機能する(詳細は特願 2005 — 214339を参照)。  The addition of trehalose increases the flexibility of the amniotic membrane, particularly when it is lyophilized (see Japanese Patent Application 2005-214339 for details). Amniotic membrane with trehalose works well as a substrate for cell culture (see Japanese Patent Application No. 2005-214339 for details).
ここで、羊膜内部のマトリックス蛋白が弱体ィ匕すると羊膜の強度が低下し、障害を受 けやすくなる。また、水分を内部に堅固に保持できず、脆弱となり弾力も失われる。ト レハロースはマトリックス蛋白内の結合の緩んだ部分に作用して蛋白質間の結合を 強め、これによつて羊膜内部の水分保持機能が正常になり、羊膜本来の潤い、まとま り、弾力が維持されるものと予想される。トレハロースを付加しておくことによって、凍 結乾燥処理に伴い羊膜内部のマトリックス蛋白が柔らかくなり、特に水中で膨潤し弱 体ィ匕することを有効に防止できると考えられる。 Here, if the matrix protein inside the amniotic membrane is weakened, the strength of the amniotic membrane is reduced and it becomes susceptible to damage. Also, moisture cannot be firmly held inside, and it becomes brittle and loses elasticity. G Rehalose acts on loosened bonds in matrix proteins to strengthen the bonds between the proteins, thereby normalizing the water retention function inside the amniotic membrane, maintaining the original moisture, cohesion, and elasticity of the amniotic membrane. Expected. By adding trehalose, it is considered that the matrix protein inside the amniotic membrane becomes soft with freezing and drying treatment, and in particular, it can effectively prevent swelling and weakening in water.
トレノヽロース(物質名、一般名)は (X -D-Glucopyranosyl (1,1)— a— D— Glucopyranosi deで表される化合物である。  Trenorose (substance name, generic name) is a compound represented by (X-D-Glucopyranosyl (1,1) —a—D—Glucopyranosi de.
羊膜へのトレハロースの付カ卩は例えば、トレハロース溶液で羊膜を処理することによ つておこなうことができる。例えば、 5% (w/v)〜20% (w/v)となるようにトレハロースを 蒸留水やリン酸緩衝化生理食塩水 (PBS(-))に溶解して得られる溶液に羊膜を浸漬 する。浸漬時の温度は例えば 4°C〜37°Cの範囲内とする。浸漬時間は例えば 1時間 〜1日の範囲内とする。尚、トレハロースは例えば株式会社林原商事が提供するトレ ハ (登録商標)や株式会社ェイチプラスビィ ·ライフサイエンスが提供する、とれはの!/ヽ のち等を利用することができる。  Attachment of trehalose to the amniotic membrane can be performed, for example, by treating the amniotic membrane with a trehalose solution. For example, the amniotic membrane is immersed in a solution obtained by dissolving trehalose in distilled water or phosphate buffered saline (PBS (-)) so that the concentration is 5% (w / v) to 20% (w / v). To do. The temperature during immersion is, for example, in the range of 4 ° C to 37 ° C. The immersion time is, for example, in the range of 1 hour to 1 day. As for trehalose, for example, Treha (registered trademark) provided by Hayashibara Shoji Co., Ltd. or HI Plus Plus Life Science Co., Ltd. can be used.
羊膜へのトレハロースの付加方法として、トレハロース溶液を羊膜表面に塗布する 方法、トレハロース溶液を羊膜表面に吹き付ける方法、トレハロースを直接羊膜表面 に添加する方法等を採用してもょ 、。  As a method of adding trehalose to the amniotic membrane, a method of applying a trehalose solution to the surface of the amniotic membrane, a method of spraying the trehalose solution to the surface of the amniotic membrane, a method of adding trehalose directly to the surface of the amniotic membrane, etc. may be adopted.
[0042] (再構築した羊膜の使用) [0042] (Use of reconstructed amniotic membrane)
コラーゲンシートとして、再構築した羊膜を用いることもできる。具体的には例えば、 ホモジナイザ、超音波、酵素処理により一旦分解し、再び膜状の形状に再構築した 羊膜を用いることができる。処理の方法はホモジナイザを用いることが好ましい。基底 膜の微小な構造体を比較的高く保持することが期待されるからである。ホモジナイズ 処理の条件(回転数)は例えば 3000rpm〜50000rpm、好ましくは 10000rpm〜4 0000rpm、更に好まし <は約 30000rpmである。  A reconstructed amniotic membrane can also be used as the collagen sheet. Specifically, for example, amniotic membrane that has been once decomposed by homogenizer, ultrasonic wave, or enzymatic treatment and reconstructed into a membrane shape can be used. The treatment method is preferably a homogenizer. This is because it is expected to keep the minute structure of the basement membrane relatively high. The conditions (rotation speed) of the homogenization treatment are, for example, 3000 rpm to 50000 rpm, preferably 10000 rpm to 40000 rpm, and more preferably <30000 rpm.
[0043] (生体吸収性材料による補強が施された羊膜の使用) [0043] (Use of amniotic membrane reinforced with bioabsorbable material)
コラーゲンシートとして、羊膜の絨毛膜側が生体吸収性材料で被覆された羊膜を使 用することもできる。このように補強を施した羊膜を使用することによって操作性が向 上する。このような目的で使用される生体吸収性材料として、羊膜に比較して早期に 分解 '吸収される材料を採用することが好ましい。例えばポリダラクチン 910、ゼラチ ン、コラーゲン、ポリ乳酸等をここでの生体吸収性材料として好適に使用することがで きる。補強に使われる生体吸収性材料の形態は特に限定されない。例えばメッシュ 状やシート状に成形した生体吸収性材料で羊膜絨毛膜側を被覆することで羊膜を 補強する。羊膜の状態は、補強を行う過程では湿潤状態、乾燥状態のいずれでも構 わない。 An amnion in which the chorionic side of the amniotic membrane is coated with a bioabsorbable material can also be used as the collagen sheet. By using the amniotic membrane thus reinforced, the operability is improved. As a bioabsorbable material used for such purposes, it is earlier than amniotic membrane. Decomposition 'It is preferable to adopt a material that is absorbed. For example, polydaractin 910, gelatin, collagen, polylactic acid and the like can be suitably used as the bioabsorbable material here. The form of the bioabsorbable material used for reinforcement is not particularly limited. For example, the amniotic membrane is reinforced by covering the amnion chorion side with a bioabsorbable material formed into a mesh or sheet. The amniotic membrane can be either wet or dry during the reinforcement process.
[0044] 3.ステップ (b)' [0044] 3. Step (b) '
ヒト線維芽細胞上にコラーゲンシートを載置した直後に生体由来細胞の播種及び 培養 (ステップ (c))を実施することもできるが、好ましくは生体由来細胞を播種する前 にヒト線維芽細胞を所定時間培養する (ステップ (b)' )。このステップ (b)'を実施するこ とは、高品質の生体組織シートの作製に有効である。即ち、このステップの実施によ つて、ヒト線維芽細胞のコラーゲンシート内への浸潤が促され、培養初期段階より、ヒ ト線維芽細胞力もの栄養成分の供給を生体由来細胞が受けることができる。その結 果、生体由来細胞の増殖及び組織ィ匕が良好となり、高品質の細胞層の構築に有利 となる。ここでの所定時間は、例えば 2時間以上、好ましくは 1日以上、更に好ましくは 3日以上、より一層好ましくは 5日以上 (f列えば 5日、 6日、 7日)とする。  Immediately after placing the collagen sheet on human fibroblasts, seeding and culturing of biological cells (step (c)) can be performed, but preferably human fibroblasts are inoculated before seeding the biological cells. Incubate for a predetermined time (step (b) '). Performing step (b) ′ is effective for producing a high-quality biological tissue sheet. In other words, the implementation of this step promotes the infiltration of human fibroblasts into the collagen sheet, and living body-derived cells can receive the supply of nutrient components with the strength of human fibroblasts from the initial stage of culture. . As a result, the growth and organization of the cells derived from the living body are improved, which is advantageous for the construction of a high-quality cell layer. The predetermined time here is, for example, 2 hours or more, preferably 1 day or more, more preferably 3 days or more, and even more preferably 5 days or more (f, 5 days, 6 days, 7 days).
[0045] 4.ステップ (c) [0045] 4. Step (c)
ステップでは、生体由来細胞を調製し、該生体由来細胞をコラーゲンシート上に播 種する。生体由来細胞としては、最終的に得られる生体組織シートの用途に適合し た細胞を使用する。例えば皮膚表皮組織の再生用のシートを作製する場合には、皮 膚表皮細胞 (その幹細胞、前駆細胞を含む)や毛包上皮細胞 (その幹細胞、前駆細 胞を含む)などが好適に使用される。同様に、角膜上皮組織の再生を目的とする場 合には角膜上皮細胞 (その幹細胞、前駆細胞を含む)が好適に使用され、粘膜上皮 組織の再生を目的とする場合には粘膜上皮細胞 (その幹細胞、前駆細胞を含む)が 好適に使用される。粘膜上皮細胞の例としては口腔粘膜上皮細胞、腸管粘膜上皮 細胞、気道粘膜上皮細胞などを挙げることができる。  In the step, living body-derived cells are prepared, and the living body-derived cells are seeded on a collagen sheet. As the cells derived from the living body, use cells that are suitable for the purpose of the finally obtained living tissue sheet. For example, when preparing a sheet for regeneration of skin epidermal tissue, skin epidermal cells (including stem cells and precursor cells) and hair follicle epithelial cells (including stem cells and precursor cells) are preferably used. The Similarly, corneal epithelial cells (including stem cells and progenitor cells) are preferably used for the purpose of regenerating corneal epithelial tissue, and mucosal epithelial cells (for the purpose of regenerating mucosal epithelial tissue ( Their stem cells and progenitor cells) are preferably used. Examples of mucosal epithelial cells include oral mucosal epithelial cells, intestinal mucosal epithelial cells, airway mucosal epithelial cells and the like.
生体由来細胞の調製方法について、皮膚表皮細胞、角膜上皮細胞、口腔粘膜上 皮細胞、腸管粘膜上皮細胞及び気道粘膜上皮細胞を例に採り説明する。 [0046] (皮膚表皮細胞) The preparation method of living body-derived cells will be described taking skin epidermal cells, corneal epithelial cells, oral mucosal epithelial cells, intestinal mucosal epithelial cells and airway mucosal epithelial cells as examples. [0046] (Skin epidermal cells)
まず、皮膚の採取にあたっては、あら力じめ採取部位を予防的にポビドンョードなど の消毒薬にて消毒し、抗真菌剤の外用塗布を行った後、小皮膚片を皮膚生検に準 じて採取する。表皮角化細胞の培養にあたってはハサミで皮膚片力 脂肪組織と真 皮をできる限り取り除き、ダルベッコリン酸緩衝液 (PBS)にて数回洗浄する。 70%エタ ノールに 1分間浸し滅菌する。短冊状に切り、デイスパーゼ液に浸し、 4°Cでー晚静 置する。ついで表皮を真皮から剥離する。剥離した表皮を、洗浄後、表皮片をほぐし 、表皮角化細胞浮遊液を調整する。細胞を無血清培地に懸濁し、コラーゲンコートシ ヤーレに播種し、継代培養を行う。  First of all, when collecting the skin, preparatively disinfect the collection site with a disinfectant such as povidone, apply an antifungal agent externally, and then apply a small skin piece to the skin biopsy. Collect. When cultivating epidermal keratinocytes, remove as much of the skin as possible with a pair of scissors, adipose tissue and dermis, and wash several times with Dulbecco's phosphate buffer (PBS). Sterilize in 70% ethanol for 1 minute. Cut into strips, soak in dispase solution, and stand at 4 ° C. The epidermis is then peeled off from the dermis. After washing the peeled epidermis, loosen the epidermis and adjust the epidermal keratinocyte suspension. Suspend cells in serum-free medium, inoculate on collagen-coated share, and perform subculture.
[0047] (角膜上皮細胞)  [0047] (corneal epithelial cells)
角膜上皮細胞は角膜輪部組織力ゝら得ることができる。例えば角膜輪部組織力ゝら内 皮細胞を剥離除去し、結膜を切除し単一細胞浮遊液を作製する。そしてこれを窒素 タンクで保存し、その後急速に 37°Cで融解して角膜上皮細胞浮遊液を調整する。必 要に応じて継代培養する。また、凍結保存せずに継代培養に用いてもよい。継代培 養には、例えば無血清培地である EpiLife™ (カスケード社)、 MCDB153培地(日水製 薬株式会社)やこれらの培地のアミノ酸組成等を改変して作製される培地などを使用 することができる。  Corneal epithelial cells can be obtained from corneal limbal tissue force. For example, endothelium cells such as corneal limbal tissue force are detached and removed, and the conjunctiva is excised to produce a single cell suspension. This is stored in a nitrogen tank and then rapidly thawed at 37 ° C to prepare the corneal epithelial cell suspension. Subculture if necessary. Moreover, you may use for subculture without cryopreserving. For subculture, for example, EpiLife ™ (Cascade), which is a serum-free medium, MCDB153 medium (Nissui Pharmaceutical Co., Ltd.), media prepared by modifying the amino acid composition of these media, etc. should be used. Can do.
[0048] (口腔粘膜上皮細胞)  [0048] (Oral mucosal epithelial cells)
口腔粘膜上皮細胞としては歯根部に存在する細胞(口腔内縁粘膜上皮細胞)、口 唇部の細胞、口蓋部の細胞、頰部の細胞などが用いられる。中でも口腔内縁粘膜上 皮細胞はその増殖能が高ぐまた抗原性が低いことから、これを用いることが特に好 ましい。口腔粘膜上皮細胞は、目的とする細胞が存在する場所をメスなどで切除した り、搔爬したりすることにより採取することができる。口腔内縁粘膜上皮細胞にあって は、抜歯に付着している口腔粘膜上皮をエナメルセメント移行部より分離し、これより 採取することができる。尚、結合組織などの不純物を除去するために、デイスパーゼ やトリプシンなどの酵素による処理や、フィルター処理を施すことが好まし!/、。  Oral mucosal epithelial cells include cells present in the root of the tooth (inner oral mucosal epithelial cells), lip cells, palate cells, buttocks cells, and the like. Of these, the intraoral mucosal epithelial cells are particularly preferred because of their high proliferative ability and low antigenicity. Oral mucosal epithelial cells can be collected by excising the area where the target cells are present with a scalpel or by cleaving. In the oral marginal mucosal epithelial cells, the oral mucosal epithelium adhering to the tooth extraction can be separated from the enamel cement transition and collected. In order to remove impurities such as connective tissue, treatment with enzymes such as dispase or trypsin or filter treatment is preferred!
[0049] (腸管粘膜上皮細胞)  [0049] (Intestinal mucosal epithelial cells)
腸管粘膜上皮細胞は大腸内視鏡下腸管上皮生検組織より採取、または開腹手術 時に通常の手法で採取される。また、組織より lazer capture microdissectionにより上 皮細胞を切除することもできる。食道、胃、十二指腸、小腸、大腸のヒトの全ての消化 管上皮細胞を用いて作製される生体組織シートについても本発明の技術は適用され る。潰瘍や炎症などでヒトの消化管上皮が傷害を受けた時、骨髄由来細胞が緊急事 態に対応するレスキュー的な役割を果たし、上皮が修復される。消化管上皮細胞も 一部とはいえ骨髄力 作られる。この意味で本発明の意義は角膜上皮細胞を用いる ものと同等とみなすことができる。通常はわずか 1000個に数個程度しかない骨髄から できる上皮細胞が、胃潰瘍、大腸炎などでできた消化管内面の潰瘍 (傷口)が治って いく過程では 50倍から 100倍にも増え、概ね 10個に 1個の消化管上皮細胞が骨髄由 来であることが判明している。ここで作製される消化管粘膜上皮細胞由来生体組織 シートは難病に指定されている重症腸管感染症、潰瘍性大腸炎、クローン病、ベー チェット病などの腸疾患の治りにくい潰瘍、炎症に対して、腸管上皮の再生を促す意 味でもすこぶる有意義と考えられる。腸管アレルギーに対しての有用性も期待される Intestinal mucosal epithelial cells are collected from colonoscopic intestinal epithelial biopsy tissue or open surgery Sometimes collected in the usual way. In addition, epidermal cells can be excised from the tissue by lazer capture microdissection. The technique of the present invention is also applied to a biological tissue sheet produced using all human digestive tract epithelial cells of the esophagus, stomach, duodenum, small intestine, and large intestine. When human gastrointestinal epithelium is damaged by ulcers or inflammation, bone marrow-derived cells play a rescue role in response to emergency situations, and the epithelium is repaired. Gastrointestinal epithelial cells, though some, are made by bone marrow. In this sense, the significance of the present invention can be regarded as equivalent to that using corneal epithelial cells. The number of epithelial cells made from bone marrow, which is usually only about a few thousand, increases from 50 times to 100 times in the process of healing ulcers (wounds) inside the gastrointestinal tract due to gastric ulcer, colitis, etc. It has been found that 1 in 10 gastrointestinal epithelial cells are derived from the bone marrow. Gastrointestinal mucosal epithelial cell-derived tissue tissue prepared here is used for intractable ulcers and inflammation of enteric diseases such as severe intestinal infections, ulcerative colitis, Crohn's disease, Behcet's disease, etc. In the sense of promoting the regeneration of the intestinal epithelium, it is considered to be extremely meaningful. Expected to be useful for intestinal allergy
[0050] (気道粘膜上皮細胞) [0050] (Airway mucosal epithelial cells)
気道粘膜上皮細胞は気道粘膜の生検組織より容易に得られ、前述の組織同様に 結合組織などの不純物を除去するために、デイスパーゼゃトリプシンなどの酵素によ る処理や、フィルター処理を施すことが好ましい。気道粘膜上皮細胞は j8デフェンシ ンの生合成、放出などを介し、各種感染症の病態進展に重要な働きを担う。また、喘 息やアレルギー疾患にお 、ても気道粘膜上皮の果たす役割は高!、。組織障害を受 けた気道粘膜に本発明になる気道粘膜上皮細胞から作製される生体組織シートを 提供することは、緊急時対応を超え、人口気道の提供にも繋がるものである。特に羊 膜上に作製されたシートの持つ免疫抑制作用は有益である。  Airway mucosal epithelial cells are easily obtained from biopsy tissue of the airway mucosa, and in the same way as described above, treatment with an enzyme such as dispase trypsin or filtering is performed to remove impurities such as connective tissue. Is preferred. Airway mucosal epithelial cells play an important role in the pathogenesis of various infectious diseases through the biosynthesis and release of j8 defensin. The role of airway mucosal epithelium is high in asthma and allergic diseases! Providing a biological tissue sheet produced from the airway mucosal epithelial cells according to the present invention to the airway mucosa that has undergone tissue damage goes beyond the emergency response and leads to the provision of an artificial airway. In particular, the immunosuppressive action of the sheet prepared on the amniotic membrane is beneficial.
[0051] 口腔粘膜上皮細胞や腸管粘膜上皮細胞などは特に、組織の採取後、結合組織な どの不純物を除去するために、デイスパーゼゃトリプシンなどの酵素による処理や、フ ィルター処理を施すことが好まし 、。  [0051] In particular, oral mucosal epithelial cells and intestinal mucosal epithelial cells are preferably treated with an enzyme such as dispase trypsin or filtered to remove impurities such as connective tissue after collection of the tissue. Better ,.
[0052] 生体由来細胞は、生体組織シートの移植を受ける者 (レシピエント)力も調製するこ とが好ましい。即ち、生体由来細胞のドナーと、生体移植シートのレシピエントが同一 人であることが好ましい。このような自家細胞を用いることにより、免疫拒絶の問題が 解消される。 [0052] It is preferable that the living body-derived cells also have a person (recipient) ability to receive transplantation of the living tissue sheet. In other words, the donor of the living cell and the recipient of the living transplant sheet are the same A person is preferred. By using such autologous cells, the problem of immune rejection is solved.
[0053] 調製された生体由来細胞は、コラーゲンシート上に播種され、その後培養に供され る (ステップ (d))。生体由来細胞は、例えば細胞密度が約 1 X 103個 Zcm2以上、好まし くは約 1 X 103個/ cm2〜約 1 X 107個/ cm2、更に好ましくは約 1 X 104個/ cm2〜約 1 X 106個 Zcm2となるように羊膜上に播種される。 [0053] The prepared biological cells are seeded on a collagen sheet and then subjected to culture (step (d)). Biological cells, such as cell density of about 1 X 10 3 cells ZCM 2 or more, preferably rather about 1 X 10 3 cells / cm 2 ~ about 1 X 10 7 cells / cm 2, more preferably about 1 X 10 4 pieces / cm 2 to about 1 × 10 6 pieces Zcm 2 is seeded on the amniotic membrane.
[0054] ここで、二種以上の生体由来細胞を併用することにしてもよい。本明細書では、この ように二種以上の細胞によって細胞層を形成することを「ハイブリッド化」ともいう。ここ で、説明の便宜上、ハイブリッド化された細胞層を構築する際に使用する細胞種の一 つを第 1細胞とし、これと種類が異なる細胞種を第 2細胞とする。 [0054] Here, two or more types of biological cells may be used in combination. In the present specification, the formation of a cell layer by two or more types of cells is also referred to as “hybridization”. Here, for convenience of explanation, one cell type used when constructing a hybrid cell layer is defined as a first cell, and a cell type different from this is defined as a second cell.
ハイブリッド化された細胞層を構築する場合に使用する細胞の種類を、角膜上皮の 再建用として本発明の生体組織シートを作製する場合を例にとり、以下に詳述する。 まず、細胞層の形成に使用する細胞種の一つ(第 1細胞)として口腔粘膜上皮細胞 、結膜上皮細胞、鼻腔粘膜上皮細胞、又はその他の粘膜上皮細胞、或いはこれらい ずれかの粘膜上皮を構築可能な未分化細胞が好適に用いられる。第 1細胞は原則 として自己細胞を用いる。本明細書において「自己」とは、本発明の生体組織シート を適用する対象、即ち移植を受ける者 (レシピエント)をいう。一方、このような「自己」 以外の者を「他人」という。  The types of cells used in the construction of the hybridized cell layer will be described in detail below, taking as an example the case where the biological tissue sheet of the present invention is prepared for corneal epithelial reconstruction. First, oral mucosal epithelial cells, conjunctival epithelial cells, nasal mucosal epithelial cells, other mucosal epithelial cells, or any one of these mucosal epithelia is used as one of the cell types (first cells) used to form the cell layer. An undifferentiated cell that can be constructed is preferably used. As a rule, autologous cells are used for the first cell. In the present specification, “self” refers to a subject to whom the biological tissue sheet of the present invention is applied, that is, a person (recipient) who receives a transplant. On the other hand, those other than “self” are called “others”.
他方、第 1細胞とともに細胞層の形成に使用される細胞種 (第 2細胞)としては、角 膜上皮細胞、結膜上皮細胞、又は羊膜上皮細胞が好適に用いられる。これらの細胞 は、それが存在する生体組織より採取される。具体的には例えば、目的の細胞が存 在する組織の一部をメスなどで採取した後、結合組織の除去、細胞の分離等の処理 を経て細胞浮遊液 (懸濁液)の形態に調製する。尚、第 1細胞として異なる二種以上 の細胞を用いてもよい。第 2細胞についても同様に、異なる二種以上の細胞を用い てもよい。  On the other hand, corneal epithelial cells, conjunctival epithelial cells, or amniotic epithelial cells are preferably used as the cell type (second cell) used for forming the cell layer together with the first cells. These cells are collected from the living tissue in which they are present. Specifically, for example, a part of the tissue in which the target cells are present is collected with a scalpel, etc., and then processed into a cell suspension (suspension) after removal of connective tissue, separation of cells, etc. To do. Two or more different types of cells may be used as the first cell. Similarly, two or more different types of cells may be used for the second cell.
[0055] 第 1細胞の採取源として好適な口腔粘膜上皮には幹細胞の存在が示唆されており 、上皮様細胞層を形成する細胞へと分化誘導を行い易いと考えられる。また、口腔 粘膜上皮細胞を用いることは、採取が容易なこと、多量の細胞を採取可能なこと、更 には両眼性の患者を処置する場合においても自己の細胞を用いて移植材料を調製 できること等の利点を有する。特に、角膜上皮細胞を採取不可能な患者に対して、自 己の細胞由来の移植材料を適用できるという利点は、臨床上極めて重要な拒絶反応 の問題を大幅に解消するものと期待される。 [0055] The presence of stem cells has been suggested in the oral mucosal epithelium suitable as a collection source for the first cells, and it is considered that differentiation induction into cells forming an epithelial cell layer is easy. In addition, using oral mucosal epithelial cells is easy to collect, can collect a large amount of cells, Has advantages such as the ability to prepare transplanted material using its own cells even when treating patients with binocular disease. In particular, the advantage that the transplant material derived from one's own cells can be applied to patients who cannot collect corneal epithelial cells is expected to greatly eliminate the clinically important rejection problem.
口腔粘膜上皮細胞としては歯根部に存在する細胞(口腔内縁粘膜上皮細胞)、口 唇部の細胞、口蓋部の細胞、頰部の細胞などが用いられる。中でも口腔内縁粘膜上 皮細胞はその増殖能が高ぐまた抗原性が低いことから、これを用いることが特に好 ましい。口腔粘膜上皮細胞は、目的とする細胞が存在する場所をメスなどで切除した り、搔爬したりすることにより採取することができる。口腔内縁粘膜上皮細胞にあって は、抜歯に付着している口腔粘膜上皮をエナメルセメント移行部より分離し、これより 採取することができる。尚、結合組織などの不純物を除去するために、デイスパーゼ やトリプシンなどの酵素による処理や、フィルター処理を施すことが好まし!/、。  Oral mucosal epithelial cells include cells present in the root of the tooth (inner oral mucosal epithelial cells), lip cells, palate cells, buttocks cells, and the like. Of these, the intraoral mucosal epithelial cells are particularly preferred because of their high proliferative ability and low antigenicity. Oral mucosal epithelial cells can be collected by excising the area where the target cells are present with a scalpel or by cleaving. In the oral marginal mucosal epithelial cells, the oral mucosal epithelium adhering to the tooth extraction can be separated from the enamel cement transition and collected. In order to remove impurities such as connective tissue, treatment with enzymes such as dispase or trypsin or filter treatment is preferred!
本発明によって作製されるシート状組成物を移植する予定の患者以外の口腔より 採取した口腔粘膜上皮細胞を用いることもできるが、免疫拒絶反応を考慮すれば、 患者自身の口腔より口腔粘膜上皮細胞を採取し、培養に供することが好ましい。 口腔粘膜は増殖能が高ぐ通常、術後数日間の抗生剤内服、イソジン消毒等で創 傷治癒するため、粘膜採取による患者自身の侵襲は軽度であると思われる。  Oral mucosal epithelial cells collected from the oral cavity other than the patient to be transplanted with the sheet-like composition prepared according to the present invention can also be used, but considering immune rejection, oral mucosal epithelial cells from the patient's own oral cavity Is preferably collected and subjected to culture. The oral mucosa has a high proliferative capacity, and usually wounds are healed by taking antibiotics for a few days after surgery, disinfecting with isodine, and so on.
一方、第 2細胞としては、他人 (ァ口)の角膜上皮細胞を好適に利用できる。このよう な角膜上皮細胞は例えば、感染症フリーのドナー眼球をアイバンク(Northwest lions eye bank等)より入手することができる。第 2細胞として使用可能な細胞は角膜上皮細 胞に限られず、結膜上皮細胞、羊膜上皮細胞等を用いてもよい。但し、生体におけ る角膜上皮を構成する細胞である角膜上皮細胞、又はその近隣に存在する結膜上 皮細胞を採用すれば、角膜上皮の特性をより良好に再現するシート状組成物を構築 できると考えられる。本発明者らの検討の結果、第 2細胞として角膜上皮細胞を使用 した場合には、角膜上皮に近似した細胞層を構築できることが確認された。この事実 は、上記の予想を支持するものであるとともに、第 2細胞として角膜上皮細胞が特に 好適であることを裏付けるものである。一方、第 2細胞として羊膜上皮細胞を用いた 場合にも、角膜として求められる特性を良好に再現した細胞層を形成できることが確 認された。この事実は、第 2細胞として羊膜上皮細胞も好適に使用できることを示すも のである。 On the other hand, the corneal epithelial cells of another person (a mouth) can be preferably used as the second cells. Such corneal epithelial cells can be obtained from, for example, an infectious disease-free donor eyeball from an eye bank (Northwest Lions eye bank, etc.). Cells usable as the second cell are not limited to corneal epithelial cells, and conjunctival epithelial cells, amniotic epithelial cells, and the like may be used. However, if a corneal epithelial cell, which is a cell constituting the corneal epithelium in a living body, or a conjunctival epithelial cell existing in the vicinity thereof is employed, a sheet-like composition that better reproduces the characteristics of the corneal epithelium can be constructed. it is conceivable that. As a result of the study by the present inventors, it was confirmed that when a corneal epithelial cell was used as the second cell, a cell layer similar to the corneal epithelium could be constructed. This fact supports the above-mentioned expectation and confirms that corneal epithelial cells are particularly suitable as the second cells. On the other hand, even when amniotic epithelial cells are used as the second cells, it is possible to form a cell layer that well reproduces the characteristics required for the cornea. It has been certified. This fact indicates that amniotic epithelial cells can be suitably used as the second cells.
[0057] 第 2細胞として自己の細胞を用いることもできる力 他人の細胞を用いることにすれ ば細胞をより容易に入手することができる。例えば、両眼性の患者の治療用にシート 状組成物を作製する場合にぉ 、ても、第 2細胞としての角膜上皮細胞を入手可能と なる。  [0057] The ability to use own cells as the second cells If other cells are used, the cells can be obtained more easily. For example, even when a sheet-like composition is prepared for treatment of a binocular patient, corneal epithelial cells as second cells can be obtained.
[0058] それぞれ調製された第 1細胞と第 2細胞 (以下、これらをまとめて「第 1細胞等」とも いう)は羊膜上に播種され、培養に供される。通常、細胞浮遊液の形態に調製された 第 1細胞と第 2細胞とをそれぞれ羊膜上に滴下し、培養を実施する。  [0058] The first cells and the second cells (hereinafter collectively referred to as "first cells etc.") prepared respectively are seeded on the amniotic membrane and subjected to culture. Usually, the first and second cells prepared in the form of a cell suspension are dropped onto the amniotic membrane and cultured.
典型的には、第 1細胞の播種と第 2細胞の播種とを同時 (ここでの「同時」は、文字 通りの同時は勿論のこと、片方の播種の後に実質的な時間的間隔を置かずに他方 を播種する場合を含む)に実施するが、例えば、第 1細胞の播種後、数分〜数時間 経過した時点で第 2細胞を播種する等、両者を異なるタイミングで播種してもよい。こ のように播種の時期をずらすことによって例えば、第 1細胞に由来する細胞に富む領 域が局在して 、る細胞層を構築するなど、均質でな!、細胞層を構築することも可能 である。  Typically, the seeding of the first cell and the seeding of the second cell are performed at the same time (the term "simultaneous" here is literally the same time as well as placing a substantial time interval after one seeding. If the other cells are seeded at different timings, for example, the second cells are seeded after several minutes to several hours after the seeding of the first cells. Good. By shifting the seeding time in this way, for example, a region rich in cells derived from the first cell is localized and a cell layer is constructed, so that a homogeneous cell layer can be constructed. It is possible.
[0059] 播種される第 1細胞等の比率は特に限定されないが、典型的には、およそ同数の 第 1細胞と第 2細胞が播種されるようにする。尚、第 1細胞として口腔粘膜上皮細胞を 、第 2細胞として角膜上皮細胞を用いた実験において、第 1細胞の数:第 2細胞の数 力 S3 : 7の場合、 5 : 5の場合、及び 7 : 3の場合を比較したところ、細胞の増殖の点及び 重層化の点についてこれらの間に明確な差異は認められな力つた (データ示さず)。  [0059] The ratio of the first cells and the like to be seeded is not particularly limited, but typically, approximately the same number of first cells and second cells are seeded. In the experiment using oral mucosal epithelial cells as the first cells and corneal epithelial cells as the second cells, the number of the first cells: the number of the second cells S3: 7, 5: 5, and Comparison of the cases of 7: 3 showed that there was no clear difference between them in terms of cell proliferation and stratification (data not shown).
[0060] 5.ステップ (d)  [0060] 5. Step (d)
このステップでは、異種動物細胞非存在下、生体由来細胞を培養して増殖させる。 本発明にお 、て「異種動物細胞非存在下」とは、生体由来細胞を培養する際の条件 として、当該生体由来細胞に対して異種である動物の細胞が使用されないことをいう 。具体的には生体由来細胞としてヒト細胞 (例えばヒト表皮角化細胞ゃヒト角膜上皮 細胞)を使用する場合に、マウスやラット等、ヒト以外の動物種の細胞が培養液中に 存在 (併存)しない条件のことをいう。このような条件で培養を実施することによって、 最終的に得られる移植材料 (即ち生体組織シート)に異種由来の成分 (異種細胞自 体を含む)が混入するおそれがなくなる。 In this step, living body-derived cells are cultured and grown in the absence of heterologous animal cells. In the present invention, “in the absence of heterologous animal cells” means that animal cells that are heterologous to the living body-derived cells are not used as a condition for culturing the living body-derived cells. Specifically, when human cells (for example, human epidermal keratinocytes or human corneal epithelial cells) are used as living cells, cells of animal species other than humans, such as mice and rats, are present in the culture medium (coexisting) This is a condition that you do not want. By carrying out the culture under such conditions, There is no possibility that foreign-derived components (including heterologous cells themselves) will be mixed into the finally obtained transplantation material (ie, biological tissue sheet).
生体由来細胞の培養は常法で行うことができる。生体由来細胞を培養する際に用 いられる培地は、当該細胞を増殖させるものであれば特に限定されない。例えば、 M CDB153培地(日水製薬株式会社)や、 EpiLife™ (カスケード社)、これらの培地のアミ ノ酸組成等を改変して作製される培地、上皮細胞の成長に通常用いられる DMEM (D ulbecco's modified Eagle's medium)とハム F12培地(Ham's F12 medium)とを所定割 合で混ぜた培地など、 HSM培地と DMEM培地を所定割合で混ぜた培地などを使用 することができる。培地中に添加する血清としては、ヒト血清、牛胎仔血清、羊血清な どを用いることができる。中でも、同種由来の血清 (ヒト血清)を使用するか、自家血清 (即ちレシピエント自身の血清)を使用することが好ましい。勿論、可能であれば、免 疫拒絶反応の惹起のおそれがなくなる自家血清を使用することが最も好ましい。 成長因子や抗生物質等が添加された培地を使用してヒト線維芽細胞を培養しても よい。成長因子や抗生物質等を使用することにより、細胞増殖率や生存率の向上、 汚染の防止などが図られる。  Culture of cells derived from living organisms can be performed by a conventional method. The medium used for culturing living body-derived cells is not particularly limited as long as the cells can be grown. For example, M CDB153 medium (Nissui Pharmaceutical Co., Ltd.), EpiLife ™ (Cascade), medium prepared by modifying the amino acid composition of these mediums, DMEM (D A medium in which HSM medium and DMEM medium are mixed at a predetermined ratio, such as a medium in which ulbecco's modified Eagle's medium) and Ham's F12 medium are mixed at a predetermined ratio, can be used. As serum added to the medium, human serum, fetal bovine serum, sheep serum, and the like can be used. Among them, it is preferable to use serum derived from the same species (human serum) or autologous serum (that is, the serum of the recipient itself). Of course, if possible, it is most preferable to use autologous serum that eliminates the risk of causing an immune rejection reaction. Human fibroblasts may be cultured using a medium supplemented with growth factors and antibiotics. By using growth factors and antibiotics, cell proliferation rate and survival rate can be improved and contamination can be prevented.
生体由来細胞の培養を、無血清で且つ異種動物由来のタンパク質を含まな!/、培地 を用いて行ってもよい。即ち、本発明における培養方法として無血清培養法を採用し てもよい。このような態様では、血清由来の成分の混入による免疫拒絶等の問題を回 避することができる。  Biological cells may be cultured using a medium that is serum-free and does not contain a protein derived from a different animal. That is, a serum-free culture method may be employed as the culture method in the present invention. In such an embodiment, problems such as immune rejection due to contamination of serum-derived components can be avoided.
生体由来細胞の良好な増殖等を目的として培養ステップの途中で培養条件を変更 することちでさる。  This can be done by changing the culture conditions in the middle of the culture step for the purpose of good growth of living cells.
ステップ (d)の結果、コラーゲンシート上で生体由来細胞が増殖する。このようにして 得られた細胞層の表層を角化する必要がある場合 (例えば表皮角化細胞を用いて 培養皮膚シート又は培養表皮シートを作製する場合や、角膜上皮細胞を用いて角 膜上皮シートを作製する場合)には、細胞層の表層を空気に接触させるステップ (ス テツプ (e))が実施される。尚、このステップを本明細書においてエアーリフティング (Ai r-lifting)とも呼ぶ。このステップ (e)は、細胞層を形成する細胞の分化、及びバリア機 能の誘導のために行われる。 このステップは、培養液の一部をスポイト、ピペットなどを用いて一時的に除去する ことにより培養液表面を低下させ、これにより細胞層の最表層を一時的に培養液外に 露出させることによって行うことができる。又は、細胞層を羊膜ごと持ち上げて、最表 層を培養液表面から一時的に露出させることにより行うこともできる。更には、チュー ブなどを用いて空気を培養液中に送り込み、細胞層の最上層に空気を接触させても よい。操作の容易さの観点から、培養液表面を低下させて細胞層の最表層を露出さ せる方法により行うことが好まし 、。 As a result of step (d), living body-derived cells grow on the collagen sheet. When it is necessary to keratinize the surface layer of the cell layer thus obtained (for example, when a cultured skin sheet or a cultured epidermal sheet is prepared using epidermal keratinocytes, or corneal epithelium is used using corneal epithelial cells) In the case of producing a sheet), a step (step (e)) in which the surface layer of the cell layer is brought into contact with air is performed. This step is also referred to as air lifting in this specification. This step (e) is performed for the differentiation of the cells forming the cell layer and the induction of the barrier function. In this step, the surface of the culture solution is lowered by temporarily removing a part of the culture solution using a dropper, pipette, etc., thereby exposing the outermost layer of the cell layer to the outside of the culture solution. It can be carried out. Alternatively, the cell layer can be lifted together with the amniotic membrane, and the outermost layer can be temporarily exposed from the culture medium surface. Furthermore, air may be sent into the culture solution using a tube or the like, and air may be brought into contact with the uppermost layer of the cell layer. From the viewpoint of ease of operation, it is preferable to carry out the method by lowering the surface of the culture solution and exposing the outermost layer of the cell layer.
このステップ (e)を行う時間、即ち細胞層の最表層を空気に接触させる時間は、細胞 層の種類や細胞の状態、或いは培養条件などによって変動する力 例えば 1日〜 3 週間程度である。表皮細胞層の構築を目的とする場合は好ましくは 5日〜2週間、更 に好ましくは約 1週間である。他方、角膜上皮細胞の構築を目的とする場合は好まし くは 2日〜 1週間、更に好ましくは 2日〜 4日である。  The time for performing this step (e), that is, the time for bringing the outermost layer of the cell layer into contact with air is a force that varies depending on the type of cell layer, the state of the cell, the culture conditions, etc. For the purpose of constructing an epidermal cell layer, it is preferably 5 days to 2 weeks, more preferably about 1 week. On the other hand, when it is intended to construct corneal epithelial cells, it is preferably 2 days to 1 week, more preferably 2 days to 4 days.
6.第 2の羊膜の使用 6. Use of second amniotic membrane
ここで、本発明者らのこれまでの検討によって、羊膜上では表皮角化細胞の増殖が 良好で、且つ細胞の遊走能力も良好に発揮されることが判明している(詳細は PCT ZJP2005Z2334を参照)。即ち、表皮角化細胞の培養基質として羊膜が極めて優 れていることが明ら力となっている。この知見を考慮すれば二通りの移植術、即ち (1) ヒト線維芽細胞上に載置した羊膜上で培養した表皮角化細胞を羊膜とともに回収し、 その後、別の羊膜上に載置し培養することによって得られるシート状構築物(羊膜( 第 1の羊膜)の片面に別の羊膜 (第 2の羊膜)が接着しており、且つ一部で第 1の羊膜 を被覆し、他の一部では第 2の羊膜を被覆する細胞層を備える構築物)を表皮欠損 部に移植する方法、及び (2)ヒト線維芽細胞上に載置した羊膜上で培養した表皮角 化細胞を羊膜とともに回収し、それを、予め皮膚欠損部に移植した別の羊膜上に移 植する方法が優れた表皮再建術となると考えられた。ここで、真皮全層及び皮下組 織までの欠損では保存的治療ではなかなか上皮化しないため、まず移植床を整える 必要がある。真皮の欠損には従来、人工真皮が用いられており、ある程度の治療効 果が得られている。人工真皮では血管の再生がみられるが、その上に培養表皮を移 植する場合、基底膜の構成が不十分であることにより生着が不良になることが指摘さ れている。一方、人工真皮移植と組み合わせて上記の (1)又は (2)の移植術を用いれ ば、基底膜構成成分を有する羊膜を介して培養表皮が移植されることになる力ゝら高 い生着率を期待できる。しかも、羊膜上に培養表皮が形成された状態となることから、 移植後、培養表皮を構成する細胞の良好な増殖及び周辺への遊走が促され、その 結果、培養表皮が速やかに伸展することで高い治療効果が得られる。従って、広範 囲の皮下組織にまで至る皮膚欠損に対しても、人工真皮移植と上記移植術を組み 合わせることによって整容的にも優れた治療法を確立できると期待される。 Here, it has been clarified by the present inventors that the epidermis keratinocytes proliferate well on the amniotic membrane and that the cell migration ability is well demonstrated (for details, see PCT ZJP2005Z2334). reference). That is, it is clear that amniotic membrane is extremely excellent as a culture substrate for epidermal keratinocytes. Considering this knowledge, two types of transplantation are performed: (1) Epidermal keratinocytes cultured on amniotic membrane placed on human fibroblasts are collected together with amniotic membrane, and then placed on another amniotic membrane. A sheet-like construct obtained by culturing (an amniotic membrane (first amniotic membrane) is adhered to one side of another amniotic membrane (second amniotic membrane), and a part of the first amniotic membrane is covered with the other one. In this part, a structure having a cell layer covering the second amniotic membrane) is transplanted into the epidermal defect part, and (2) epidermal keratinocytes cultured on the amniotic membrane placed on human fibroblasts are collected together with the amniotic membrane. However, it was considered that an excellent method for reconstructing the epidermis was to transplant it onto another amniotic membrane that had previously been transplanted into the skin defect. Here, it is very difficult to conserve epithelium in conservative treatments for defects up to the entire dermis and subcutaneous tissue, so it is necessary to prepare the transplant bed first. Conventionally, artificial dermis has been used for dermal defects, and a certain degree of therapeutic effect has been obtained. In the artificial dermis, vascular regeneration is observed, but when the cultured epidermis is transplanted on the artificial dermis, it is pointed out that engraftment is poor due to insufficient basement membrane composition. It is. On the other hand, if the transplantation method described in (1) or (2) above is used in combination with artificial dermis transplantation, the cultured epidermis is transplanted through the amniotic membrane having the basement membrane constituents. You can expect rates. In addition, since the cultured epidermis is formed on the amniotic membrane, after transplantation, the cells that make up the cultured epidermis are promoted to proliferate and migrate to the surrounding area, and as a result, the cultured epidermis can rapidly expand. A high therapeutic effect can be obtained. Therefore, it is expected that an excellent therapeutic method can be established even for skin defects extending to a wide range of subcutaneous tissues by combining artificial dermal transplantation with the above transplantation technique.
以上の知見に基づいて本発明の一態様では、ステップ (d) (培養ステップ)の後に、(f )前記生体由来細胞を、前記コラーゲンシートとしての羊膜とともに回収するステップ と (g)回収した前記生体由来細胞及び前記羊膜を、羊膜側を下にして別の羊膜 (第 2 の羊膜)上に載置した後、前記生体由来細胞を培養して増殖させるステップが更に 実施される。ステップ (D及びステップ (g)を実施することによって、羊膜の片面に別の 羊膜 (第 2の羊膜)が接着しており、且つ一部で羊膜を被覆し、他の一部では第 2の 羊膜を被覆する細胞層を備える構築物が得られる。尚、第 2の羊膜の大きさや培養 条件等を適宜調整することによって、第 2の羊膜の表面の全体が細胞層で被覆され て 、る構築物、及び第 2の羊膜の表面の一部が細胞層で被覆されて 、る構築物の!/、 ずれかを得ることができる。  Based on the above findings, in one aspect of the present invention, after step (d) (cultivation step), (f) a step of collecting the living body-derived cells together with the amniotic membrane as the collagen sheet; A step of culturing and proliferating the living body-derived cell after the living body-derived cell and the amniotic membrane are placed on another amniotic membrane (second amniotic membrane) with the amnion side down is further performed. By performing step (D and step (g), another amniotic membrane (second amniotic membrane) is adhered to one side of the amniotic membrane, and the amniotic membrane is partly covered and the other part is the second amniotic membrane. A construct having a cell layer covering the amniotic membrane is obtained, wherein the entire surface of the second amniotic membrane is covered with the cell layer by appropriately adjusting the size of the second amniotic membrane, culture conditions, etc. And, a part of the surface of the second amniotic membrane is covered with a cell layer, so that one can obtain!
[0063] ステップ (£)では、培養後の生体由来細胞と、培養基質として用いた羊膜が回収され る。例えば、培養皿内に載置した羊膜上で生体由来細胞を培養した場合には、培養 後に羊膜を培養皿力 剥離することで、増殖した生体由来細胞及び羊膜を回収する ことができる。 [0063] In step (£), the cells derived from the living body after the culture and the amniotic membrane used as the culture substrate are collected. For example, when living cells are cultured on an amniotic membrane placed in a culture dish, the proliferating living cells and amniotic membrane can be recovered by peeling off the amniotic membrane after culturing.
[0064] ステップ (g)では、回収した生体由来細胞と羊膜を、別の羊膜上に載置した後、生体 由来細胞を再び培養する。このように、当該態様では二段階の培養 (ステップ (d)及び ステップ ))が実施される。  [0064] In step (g), the collected biological cells and the amniotic membrane are placed on another amniotic membrane, and then the biological cells are cultured again. Thus, in this embodiment, two-stage culture (step (d) and step)) is performed.
ステップ (g)ではまず、回収した生体由来細胞と羊膜からなる構築物(以下、「細胞- 羊膜構築物」という)が、羊膜側を下にして、別途用意した羊膜 (第 2の羊膜)上に載 置される。複数個の細胞-羊膜構築物を第 2の羊膜上に載置することもできる。例え ば、ステップ (d)による培養後に回収した細胞-羊膜構築物を裁断することによって複 数個の細胞-羊膜構築物を得ることができる。或いは、互いに独立した複数の培養系 を用意し、並行してステップ (d)を実施することによって複数個の細胞-羊膜構築物を 得ることちでさる。 In step (g), first, a construct comprising the collected biological cells and amniotic membrane (hereinafter referred to as “cell-amniotic membrane construct”) is placed on a separately prepared amniotic membrane (second amniotic membrane) with the amnion side down. Placed. Multiple cell-amniotic constructs can also be placed on the second amniotic membrane. For example, the cell-amniotic construct recovered after culturing in step (d) can be duplicated by cutting. Several cell-amniotic constructs can be obtained. Alternatively, it is possible to prepare a plurality of cell-amniotic constructs by preparing a plurality of culture systems independent of each other and carrying out step (d) in parallel.
複数個の細胞-羊膜構築物を第 2の羊膜上に載置する場合、均一に分散した状態 、即ち間隔が一定となるように細胞-羊膜構築物を配置することが好ましい。その後の 培養において (及び生体への移植後)細胞が増殖して細胞層が周囲へと伸展する際 、第 2の羊膜において当初細胞層が形成されていない領域を迅速且つ効率的に細 胞層で被覆することができるからである。即ち、以上の方法を採用すれば、第 2の羊 膜上において、広い表面積の細胞層を短時間に形成させることができる。このように 、一層効率的な細胞層の作製が可能となる。一方、第 2の羊膜の表面全体を被覆す る細胞層が形成される前に第 2の羊膜ごと細胞層を生体の組織欠損部に移植するこ ともでき、この場合には移植後に迅速な細胞層の形成が促されて高い治療効果が得 られる。  When a plurality of cell-amniotic constructs are placed on the second amniotic membrane, it is preferable to arrange the cell-amniotic constructs so that they are uniformly dispersed, that is, the intervals are constant. In subsequent cultures (and after transplantation into the living body), when the cells proliferate and the cell layer extends to the surroundings, the cell layer is quickly and efficiently removed from the area where the initial cell layer is not formed in the second amniotic membrane. It is because it can coat | cover with. That is, if the above method is adopted, a cell layer having a large surface area can be formed in a short time on the second amniotic membrane. In this way, a more efficient cell layer can be produced. On the other hand, before the cell layer covering the entire surface of the second amniotic membrane is formed, the cell layer together with the second amniotic membrane can be transplanted into the tissue defect part of the living body. Formation of the layer is promoted and a high therapeutic effect is obtained.
広い表面積の細胞層を短時間に得ることができるから、以上の方法は培養皮膚シ ート(又は培養表皮シート)を作製する際に特に好適なものとなる。尚、細胞層の表層 を角化する必要がある場合には、ステップ (1)の前、ステップ (1)とステップ (g)の間、又は ステップ (g)の後に、上記と同様の方法でエアーリフティング (ステップ (e))を実施する  Since a cell layer having a large surface area can be obtained in a short time, the above method is particularly suitable for producing a cultured skin sheet (or a cultured skin sheet). If it is necessary to keratinize the surface layer of the cell layer, use the same method as above before step (1), between step (1) and step (g), or after step (g). Perform air lifting (step (e))
[0065] ステップ (g)における培養は、上記ステップ (d)における培養条件と同様の条件で実 施することができる。即ち、異種動物細胞非存在下で培養することが好ましぐ培地に は無血清で且つ異種動物由来のタンパク質を含まな 、ものを用いることが好ま 、。 血清を含む培地を採用する場合には同種由来の血清 (ヒトの生体由来細胞を培養す る際にはヒト由来の血清)を使用する力、自家血清を使用することが好ましい。また、 ステップ (d)と同様にステップ (g)においても、生体由来細胞の良好な増殖を目的として 培養ステップの途中で培養条件を変更してもよ 、。 [0065] The culture in step (g) can be performed under the same conditions as the culture conditions in step (d). That is, it is preferable to use a medium that is serum-free and does not contain a protein derived from a heterologous animal as a medium that is preferably cultured in the absence of the heterologous animal cell. When using a medium containing serum, it is preferable to use autologous serum, the ability to use serum derived from the same species (human-derived serum when culturing human biological cells). Similarly to step (d), in step (g), the culture conditions may be changed during the culture step for the purpose of good growth of the cells derived from living organisms.
[0066] 本発明の生体組織シートは、皮膚表皮、毛包上皮、角膜上皮、口腔粘膜上皮、腸 管粘膜上皮、及び気道粘膜上皮などの再生 (再建)に利用される。例えば、本発明 の生体組織シートを生体の組織欠損部に直接、移植することができる。ここでの「直 接移植」とは、組織欠損部と生体組織シートの間に他の物質を実質的に介在させる ことなく移植することを意味する。一方、両者の間に他の物質が介在するように、本発 明の生体組織シート (但し、作製過程において第 2の羊膜を使用するものは除く)を、 生体の組織欠損部に移植することもできる。例えば、培養基質として用いたコラーゲ ンシートとは別の羊膜 (第 2の羊膜)を介して、組織欠損部に生体組織シートを移植 することができる。具体的には、組織欠損部に対して羊膜 (第 2の羊膜)を移植した後 、予め作製しておいた生体組織シートを当該羊膜上に移植することができる。このよう な移植術によれば、羊膜が下地として存在することによって、生体組織シートに含有 される細胞が効率的に増殖するとともに周囲へと良好に遊走することが期待される。 即ち、生体組織シートを構成する細胞層の迅速な伸展を期待でき、高い治療効果が 得られる。一方、組織欠損部が羊膜で被覆されることによって外部カゝら保護される。こ のことも治療効果の向上に寄与する。 [0066] The biological tissue sheet of the present invention is used for regeneration (reconstruction) of skin epidermis, hair follicle epithelium, corneal epithelium, oral mucosal epithelium, intestinal mucosal epithelium, and airway mucosal epithelium. For example, the living tissue sheet of the present invention can be directly transplanted into a tissue defect part of a living body. "Nao The “grafting” means transplantation without substantially interposing another substance between the tissue defect and the biological tissue sheet. On the other hand, transplant the living tissue sheet of the present invention (except for those using the second amniotic membrane in the production process) into the tissue defect part of the living body so that other substances are interposed between them. You can also. For example, a biological tissue sheet can be transplanted into a tissue defect through an amniotic membrane (second amniotic membrane) different from the collagen sheet used as a culture substrate. Specifically, after transplanting amniotic membrane (second amniotic membrane) to the tissue defect part, a biological tissue sheet prepared in advance can be transplanted onto the amniotic membrane. According to such a transplantation technique, the presence of amniotic membrane as a base is expected to allow the cells contained in the biological tissue sheet to proliferate efficiently and migrate well to the surroundings. That is, rapid extension of the cell layer constituting the biological tissue sheet can be expected, and a high therapeutic effect can be obtained. On the other hand, the external defect is protected by covering the tissue defect with amniotic membrane. This also contributes to the improvement of the therapeutic effect.
[0067] 以下、実施例を用いて本発明をより具体的に説明するが、本発明は以下の実施例 に限定されるものではない。 [0067] Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
実施例 1  Example 1
[0068] 羊膜及びヒト線維芽細胞を用いた培養皮膚シートの作製  [0068] Preparation of cultured skin sheet using amniotic membrane and human fibroblasts
1.羊膜の調製  1. Preparation of amniotic membrane
1 - 1.羊膜の採取  1-1. Collection of amniotic membrane
全身的合併症のない帝王切開予定の妊婦に対して事前に産婦人科医とともに十 分なインフォームドコンセントを行った後、手術室で帝王切開時に羊膜を採取した。 操作は清潔に気をつけ、手術操作に準じて手洗いの後に専用ガウンを装用した。分 娩前に清潔な羊膜採取用のバットと洗浄用の生理食塩水を準備した。分娩後に胎盤 組織をバットに移し、用手的に羊膜組織を胎盤より剥離した。羊膜と胎盤との癒着が 強!、部分はハサミで切除した。  After a thorough informed consent was obtained with a gynecologist in advance for a pregnant woman scheduled for cesarean section with no systemic complications, amniotic membrane was collected at the cesarean section in the operating room. The operation was careful of cleanliness, and a special gown was worn after hand washing according to the surgical operation. Before delivery, a clean bat for collecting amnion and physiological saline for washing were prepared. After delivery, the placenta tissue was transferred to a vat and the amnion tissue was manually detached from the placenta. The adhesion between the amniotic membrane and the placenta was strong! The part was excised with scissors.
[0069] 1 - 2.羊膜の処理 [0069] 1-2. Treatment of amniotic membrane
羊膜処理の過程は(1)洗浄及び絨毛膜除去、(2)トリミング、(3)保存の順で行つ た。すべての過程において、操作は清潔なドラフト内で行うのが望ましぐ使用する容 器や器具もすベて滅菌されたものを使用し、シャーレ等は滅菌された使い捨て (ディ スポーザブル)タイプのものを使用した。採取した羊膜に付着した血液成分を生理食 塩水にて洗浄しながら除去し、さらに十分量の生理食塩水にて洗浄し、絨毛膜を上 面にし、淡白色〜白色の膜状に目視にて観察される絨毛膜を剥離した。この後、手 の感触及び目視による観察にて凹凸があり不透明な胎盤近くの領域を手術用メスに て切断し、除去した。次に、羊膜を、手術用メスを用いて約 4 X 4 cm程度のサイズに 分割した。分割後、形状や厚さなどを基準に状態のよい羊膜を選別した。続いて選 別した羊膜に対して、 5 g/mLゲンタマイシン添加リン酸緩衝液 (PBS)で合計 2回洗 浄した。 The amniotic treatment was performed in the order of (1) washing and chorionic membrane removal, (2) trimming, and (3) storage. In all processes, sterilize all containers and equipment that should be used in a clean fume hood and sterilize disposable dishes (dish, etc.). (Sportable) type was used. Remove blood components adhering to the collected amniotic membrane while rinsing with physiological saline, then rinsing with a sufficient amount of physiological saline, with the chorion facing upward, and visually form a pale white to white membrane. The observed chorion was detached. After this, the area near the placenta, which was uneven and opaque by hand touch and visual observation, was cut and removed with a scalpel. Next, the amniotic membrane was divided into sizes of about 4 × 4 cm using a scalpel. After division, amniotic membranes in good condition were selected based on shape and thickness. Subsequently, the selected amnion was washed a total of 2 times with 5 g / mL gentamicin-added phosphate buffer (PBS).
[0070] 1 - 3.羊膜の保存  [0070] 1-3. Preservation of amniotic membrane
採取、洗浄して選別された羊膜を保存液になじませた後、 1 mLの保存液の入った 2 mLの滅菌クライオチューブに、 1枚ずつ入れラベルし、—80°Cのディープフリーザ 一に保存した。保存液には 50%滅菌済みグリセロールを含む DMEM (ダルベッコ変 法 MEM培地、 Invitrogen社)を使用した。保存された羊膜の使用期限は 3ヶ月とし、期 限が過ぎれば焼却処分した。尚、このような保存処理を行わずに、以下の上皮の処 理を実施してもよい。  After collecting, washing and sorting the amniotic membrane into the preservation solution, place it in a 2 mL sterile cryotube containing 1 mL of preservation solution, label it one by one, and place it in a deep freezer at 80 ° C. saved. DMEM (Dulbecco's modified MEM medium, Invitrogen) containing 50% sterilized glycerol was used as the stock solution. The stored amniotic membrane was used for 3 months, and was incinerated when the expiration date passed. Note that the following epithelial processing may be performed without performing such storage processing.
[0071] 1 -4.羊膜上皮の処理  [0071] 1 -4. Treatment of amniotic epithelium
— 80°Cで保存していた羊膜を室温で解凍した後、 5 g/mLゲンタマイシン添加リン 酸緩衝液 (PBS)で 2回洗浄した。洗浄後の羊膜を 0.02%EDTA溶液(Cambrex社)に 浸し(100mmペトリディッシュ)、 5%CO条件下の COインキュベーター内で 37°C、 2〜6  — The amniotic membrane stored at 80 ° C was thawed at room temperature, and then washed twice with 5 g / mL gentamicin-added phosphate buffer (PBS). Immerse the washed amniotic membrane in a 0.02% EDTA solution (Cambrex) (100mm Petri dish), 37 ° C in a CO incubator under 5% CO conditions, 2-6
2 2  twenty two
時間反応させた。反応後、羊膜を十分量の PBSで 2回洗浄し、実体顕微鏡下にて、セ ルスクレイパー(Nunc社 USA)を用いて用手的に上皮を搔爬(除去)した。上皮を搔 爬した羊膜は、使用までの間、羊膜保存液 1 mLを加えた 2 mLの滅菌クライオチュー ブ内に入れ、超低温フリーザーにて- 80°Cにて保存した。尚、この処理方法によって 一層の羊膜上皮細胞が除去されたことを光学的及び電子顕微鏡的操作 (走査型電 子顕微鏡)で確認した (データ示さず)。  Reacted for hours. After the reaction, the amniotic membrane was washed twice with a sufficient amount of PBS, and the epithelium was manually cleaved (removed) using a cell scraper (Nunc USA) under a stereomicroscope. The amniotic membrane with epithelial epithelium was placed in a 2 mL sterile cryotube supplemented with 1 mL of amniotic membrane preservation solution and stored at −80 ° C. in an ultra-low temperature freezer until use. In addition, it was confirmed by optical and electron microscopic operations (scanning electron microscope) that no more amniotic epithelial cells were removed by this treatment method (data not shown).
[0072] 2.ヒト表皮角化細胞の調製 [0072] 2. Preparation of human epidermal keratinocytes
2- 1.皮膚の採取  2- 1. Collection of skin
あらかじめ採取部位を 3日間程度予防的にポビドンョードにて消毒 ·抗真菌剤の外 用塗布を行った後、小皮膚片を皮膚生検に準じて採取した。 Pre-collection sites for about 3 days in a preventive manner with povidone After application, small skin pieces were collected according to skin biopsy.
[0073] 2- 2.表皮角化細胞の無血清培養法  [0073] 2- 2. Serum-free culture method of epidermal keratinocytes
ハサミで皮膚片カも脂肪組織と真皮をできる限り取り除き、ダルベッコリン酸緩衝液 (PBS)にて数回洗浄した。続いて 70%エタノールに 1分間浸し滅菌した。 PBSにて洗 浄後、幅 3mm長さ 10mm程度の短冊状に切り、デイスパーゼ液 (ディスパーゼ II、 合同 酒精社、 250単位/ mlダルベッコ変法 MEM培地; DMEM)に浸し、 4°Cでー晚(18〜24 時間)静置した。翌日、ピンセットを用いて表皮を真皮から剥離した。剥離した真皮は 線維芽細胞培養に供する(下記の 3. ) 0剥離した表皮を DMEMにて洗浄、続いて PB Sにて洗浄した後、 0.25%トリプシン溶液中に浸し、 37°C、 10分間のトリプシン処理を行 つた。処理後の表皮を、トリプシン中和液の入ったプラスチックシャーレに移した後、 ピンセットにて表皮片をほぐした。得られた細胞浮遊液を 50mlの滅菌チューブに移し た。 PBSを添加し、表皮角化細胞浮遊液を調整した。細胞数を計測した後、 lOOOrpm 、 5分間遠心処理して細胞を沈殿させた。上清を吸引除去した後、無血清培地である MCDB153培地に細胞を懸濁した。このようにして得た細胞浮遊液を、 100mmコラー ゲンコートシャーレ(旭テクノグラス、 I型コラーゲンコートディッシュ; 4010- 010)当たり 2 〜3 X 106細胞/ ΙΟπύ培養液の割合で播種した。翌日培養液を交換し、以後 1日おき に培養液を交換した。細胞密度が 70〜80%程度になった時点で継代培養を行った。 Adipose tissue and dermis were removed as much as possible with scissors and washed several times with Dulbecco's phosphate buffer (PBS). Subsequently, it was sterilized by immersion in 70% ethanol for 1 minute. After washing with PBS, cut into strips 3mm wide and 10mm long and soaked in Dispase Solution (Dispase II, Godo Shusei, 250 units / ml Dulbecco's Modified MEM Medium; DMEM) at 4 ° C (18-24 hours). The next day, the epidermis was peeled from the dermis using tweezers. The peeled dermis is subjected to fibroblast culture (3. below). 0 The peeled epidermis is washed with DMEM, then washed with PB S, and then immersed in a 0.25% trypsin solution at 37 ° C for 10 minutes. A trypsin treatment was performed. The treated epidermis was transferred to a plastic petri dish containing a trypsin neutralizing solution, and then the epidermis pieces were loosened with tweezers. The resulting cell suspension was transferred to a 50 ml sterile tube. PBS was added to prepare the epidermal keratinocyte suspension. After counting the number of cells, the cells were centrifuged at lOOOOrpm for 5 minutes to precipitate the cells. After removing the supernatant by aspiration, the cells were suspended in MCDB153 medium, which is a serum-free medium. The cell suspension thus obtained was seeded at a rate of 2 to 3 × 10 6 cells / ΙΟπύ culture medium per 100 mm collagen coated petri dish (Asahi Techno Glass, type I collagen coated dish; 4010-010). The culture solution was changed the next day, and thereafter the culture solution was changed every other day. Subculture was performed when the cell density reached about 70-80%.
[0074] 3.ヒト線維芽細胞の調製  [0074] 3. Preparation of human fibroblasts
2- 2.において剥離した真皮を DMEMにて洗浄後、一辺 l〜2mmにメスを用いて細 切した。細切した真皮片を I型コラーゲンコ一トディッシュに約 1 cmの間隔で密着させ た。ディッシュを COインキュベーター内で 30分間静置した。これによつて真皮片をデ  2-2 The dermis peeled off in 2 was washed with DMEM, and then cut into pieces with a knife on one side of 1-2mm. Shredded dermis pieces were closely attached to a type I collagen coat dish at an interval of about 1 cm. The dish was left for 30 minutes in a CO incubator. This removes the dermis fragments.
2  2
イツシュに完全に密着させた。その後、ディッシュ内に牛胎仔血清を 10%含む DMEM 培地を約 5 mL添加した後、 7日間静置した。 7日目に初回の培養液交換を行った。真 皮片から線維芽細胞が遊走してくるのを確認した。細胞が増殖し、真皮片の周囲 5m mまで遊走してきた段階で継代を行った。 PBSで洗浄後、 0.125%トリプシン、 0.05%EDT Aを含む溶液を 3 mL添加し、 37°C、 3分間処理した。細胞がディッシュ底面から剥離し たことを顕微鏡で確認した後、 3 mLのトリプシンインヒビターを添カ卩し、続いて細胞を 5 0 mLのチューブに回収した。 PBSを用いて残りの細胞を回収した。遠心チューブを 10 00rpm、 5分間の遠心処理に供し、細胞を沈殿させ、上清を吸引除去した。牛胎仔血 清を 10%含む DMEM培地を遠心チューブに添加して細胞を懸濁させた。このようにし て得た線維芽細胞浮遊液を細胞培養用ディッシュに播種した。細胞密度が 90〜100 %になった時点で継代培養を行った。適宜細胞を凍結保存した。凍結保存液は 10% グリセロール、 20%FCS、 70%DMEMを用い、液体窒素中で保存した。 It was in close contact with it. Thereafter, about 5 mL of DMEM medium containing 10% fetal calf serum was added to the dish, and then allowed to stand for 7 days. On the 7th day, the first culture broth was changed. We confirmed that fibroblasts migrated from the dermis. Passage was performed when the cells proliferated and migrated to 5 mm around the dermis. After washing with PBS, 3 mL of a solution containing 0.125% trypsin and 0.05% EDT A was added and treated at 37 ° C for 3 minutes. After confirming that the cells detached from the bottom of the dish with a microscope, 3 mL of trypsin inhibitor was added, and then the cells were collected in a 50 mL tube. The remaining cells were collected using PBS. 10 centrifuge tubes The cells were centrifuged at 00 rpm for 5 minutes to precipitate the cells, and the supernatant was removed by aspiration. DMEM medium containing 10% fetal bovine serum was added to the centrifuge tube to suspend the cells. The fibroblast suspension thus obtained was seeded in a cell culture dish. Subculture was performed when the cell density reached 90-100%. The cells were stored frozen as appropriate. The cryopreservation solution was stored in liquid nitrogen using 10% glycerol, 20% FCS, and 70% DMEM.
[0075] 4.カルチャーインサート上へのヒト線維芽細胞の播種及び羊膜の載置 (貼付) [0075] 4. Seeding of human fibroblasts on culture insert and placing amnion (attachment)
COインキュベーターより、コラーゲン Iコート 100 mmディッシュ(もしくは 60 mmデイツ Collagen I coat 100 mm dish (or 60 mm date) from CO incubator
2 2
シュ)に培養していた線維芽細胞を取り出し、位相差顕微鏡にて細胞がコンフルェン トであることを確認した後、安全キャビネット内に搬入した。線維芽細胞の入った 100m mディッシュ (もしくは 60 mmディッシュ)内の培地を除去し、 PBS (-)で洗浄後、 0.05%トリ プシン- EDTAを添カ卩し、 37°C、 5%CO条件下で、 2分間静置した。 2分後に位相差顕  The fibroblasts cultured in (1) were taken out and confirmed to be confluent with a phase-contrast microscope, and then loaded into a safety cabinet. Remove medium in 100 mm dish (or 60 mm dish) containing fibroblasts, wash with PBS (-), add 0.05% trypsin-EDTA, 37 ° C, 5% CO Let sit for 2 minutes under. Phase contrast after 2 minutes
2  2
微鏡にて細胞が剥離しているのを確認し、 10%FBS添加 DMEMを添カ卩し、トリプシンの 反応を停止させた。細胞浮遊液を 15 mLチューブに回収した。卓上多本架遠心機で 1000rpm、 5分間、常温で遠心し、上清を除いた。遠心中に 100mmディッシュに 10% F BS添加 DMEMを 5mLを注入した後、カルチャーインサート(コースター社製)を載せた 。遠心後の細胞の沈殿を 10% FBS添加 DMEMで懸濁して調製した細胞浮遊液の一 部を等量の 0.4%トリパンブルーと混和し血球計算盤にて細胞数、細胞生存率を測定 した。測定結果を基に 2.1xl05個/ mLになるように 10% FBS添加 DMEMで細胞浮遊液 を希釈した。希釈後の細胞浮遊液を 10mLずつカルチャーインサートに添加した。細 胞を接着させるため、 37°C、 5%CO条件下の COインキュベーター内でディッシュ( After confirming that the cells were detached with a microscope, trypsin reaction was stopped by adding DMEM supplemented with 10% FBS. The cell suspension was collected in a 15 mL tube. The supernatant was removed by centrifuging at 1000 rpm for 5 minutes at room temperature in a desktop multi-centrifuge. During centrifugation, 5 mL of DMEM supplemented with 10% FBS was injected into a 100 mm dish, and then a culture insert (manufactured by Coaster) was placed. A part of the cell suspension prepared by suspending the cell precipitate after centrifugation in DMEM supplemented with 10% FBS was mixed with an equal amount of 0.4% trypan blue, and the number of cells and the cell viability were measured with a hemocytometer. Based on the measurement results, the cell suspension was diluted with DMEM supplemented with 10% FBS to 2.1xl0 5 cells / mL. 10 mL of diluted cell suspension was added to the culture insert. In order to adhere the cells, dish (37 ° C, 5% CO in a CO incubator)
2 2  twenty two
及びカルチャーインサート)を約 4時間静置した。  And culture insert) were allowed to stand for about 4 hours.
[0076] 一方、ディッシュを COインキュベーター内に静置している間に以下の手順で羊膜 [0076] On the other hand, while the dish is left in the CO incubator, the amniotic membrane is treated as follows.
2  2
を準備した。まず、上記 1.で調整した羊膜 (凍結保存)を常温で解凍し、 100 mm径 ペトリディッシュに移した。続いて、 5 g/mLゲンタマイシン添加 PBS (-)が入った 2枚 の 100 mm径ペトリディッシュ内で羊膜を洗浄後、 10% FBS添加 DMEMの入った 60mm 径ペトリディッシュに羊膜を浸した。  Prepared. First, the amniotic membrane (freeze-stored) prepared in 1 above was thawed at room temperature and transferred to a 100 mm diameter Petri dish. Subsequently, the amniotic membrane was washed in two 100 mm diameter Petri dishes containing PBS (-) containing 5 g / mL gentamicin, and then immersed in a 60 mm diameter Petri dish containing 10% FBS-added DMEM.
[0077] COインキュベーターから、ヒト線維芽細胞を播種したディッシュを取り出し、位相差 [0077] From the CO incubator, the dish seeded with human fibroblasts was taken out and the phase difference was removed.
2  2
顕微鏡にて細胞がカルチャーインサートに接着したことを確認し、安全キャビネット内 に搬入した。カルチャーインサートをディッシュ力も取り外した後、別の容器 (例えば 1 00 mm径ペトリディッシュ)に載せ、余分な 10% FBS添加 DMEMを除いた羊膜を、無鈎 セッシで上皮側が上側 (端の切り込みが右上にくる)となるように羊膜をカルチャーィ ンサート内(線維芽細胞層の上)に載置した。 7〜16倍の倍率の実体顕微鏡下でモニ ターを観察しながら、羊膜とカルチャーインサートとの間に気泡が混入しないように、 また羊膜に皺が生じな 、ように、無鈎セッシを用いて羊膜をカルチャーインサートに 貼付した。羊膜を貼付後、羊膜が浮くことがないよう、無鈎セッシを用いて 0-リングを 羊膜上に載せた。以上の手順で羊膜を貼付したカルチャーインサートを 100mmデイツ シュに載せ、続いて、 10% FBS添加 DMEM 1 mLをカルチャーインサート内に注入した 後、 37°C、 5%CO条件下、 COインキュベーター内で静置した。 Make sure that the cells adhere to the culture insert with a microscope, and then inside the safety cabinet. It was carried in. After removing the dish insert from the dish, place it in another container (eg, 100 mm diameter Petri dish), and add 10% FBS added to the amniotic membrane without DMEM. The amniotic membrane was placed in the culture insert (on the fibroblast layer). While observing the monitor under a stereomicroscope at a magnification of 7 to 16 times, use a hairless set so that air bubbles do not enter between the amniotic membrane and the culture insert and that no wrinkles occur in the amniotic membrane. Amnion was attached to the culture insert. After applying the amniotic membrane, a 0-ring was placed on the amniotic membrane using an insulative scissors to prevent the amniotic membrane from floating. Place the culture insert with amniotic membrane attached on a 100mm dish according to the above procedure, then inject 1 mL of 10% FBS-added DMEM into the culture insert, and then in a CO incubator at 37 ° C and 5% CO. Left to stand.
2  2
5.ヒト表皮角化細胞の播種 5. Seeding of human epidermal keratinocytes
羊膜の貼付操作後 5日目にヒト表皮角化細胞を羊膜上に播種した。まず、 2.で調 製したヒト表皮角化細胞をトリプシン 'EDTAを用いてディッシュ力 剥離し、回収した 。遠心処理によって 200万個 /0.25mlの濃度に調整した表皮角化細胞浮遊液を得た。 ヒト線維芽細胞の播種及び羊膜の貼付を行ったカルチャーインサートを載せたディ ッシュを COインキュベーターから取り出し、安全キャビネット内に搬入した。カルチヤ  On the 5th day after the amnion sticking operation, human epidermal keratinocytes were seeded on the amnion. First, the human epidermal keratinocytes prepared in 2. were peeled off using trypsin 'EDTA and collected. An epidermis keratinocyte suspension adjusted to a concentration of 2 million cells / 0.25 ml by centrifugation was obtained. The dish with the culture insert seeded with human fibroblasts and amnion was removed from the CO incubator and loaded into a safety cabinet. Kartya
2  2
一インサート内の培養液を除去し、カルチャーインサート外は約 5mL培養液を残して 除去した。 0.5mlの表皮角化細胞浮遊液をカルチャーインサート内の羊膜上に播種し た後、 COインキュベーター内に移した。表皮角化細胞が羊膜に密着するように 1.5 The culture medium in one insert was removed, and the outside of the culture insert was removed leaving about 5 mL of culture medium. After 0.5 ml of epidermal keratinocyte suspension was seeded on the amniotic membrane in the culture insert, it was transferred into a CO incubator. 1.5 so that epidermal keratinocytes adhere to the amniotic membrane
2  2
〜2.0時間インキュベーター内で静置し、その後 5mlのサブマージ用培養液をカルチ ヤーインサート内側に緩やかに添カ卩し、さらにカルチャーインサート外側に 5ml添カロし た。翌日、サブマージ用培養液をカルチャーインサート内側に緩やかに追加し、さら にカルチャーインサート外側にも 5ml追カ卩した。  It was allowed to stand in the incubator for ˜2.0 hours, and then 5 ml of the submerged culture medium was gently added to the inside of the culture insert and further 5 ml was added to the outside of the culture insert. The next day, the medium for submerging was gently added to the inside of the culture insert, and 5 ml was added to the outside of the culture insert.
以後、 Air-liftingを開始するまで、原則として 2日に 1回、位相差顕微鏡による観察を 行い、サブマージ用培養液にてカルチャーインサート内 15mL、カルチャーインサート 外 15mLとなるように培養液交換を行った。  After that, until the start of Air-lifting, in principle, observe with a phase contrast microscope once every two days, and replace the culture medium so that the culture medium for submerging is 15 mL inside the culture insert and 15 mL outside the culture insert. It was.
サブマージ用培養液は以下のごとく調整した。  The submerged culture solution was prepared as follows.
角化細胞用無血清培地(HSM培地) 3用量に対して、 DMEMを 1用量加えたもので 、 0.3%ゥシ胎児血清を含む培養液 Serum-free medium for keratinocytes (HSM medium) 3 doses plus 1 dose of DMEM Medium containing 0.3% tuss fetal serum
[0079] 6.気相下培養 [0079] 6. Cultivation under gas phase
表皮角化細胞を播種後約 2日目に空気曝露 (Air-lifting)を行った。カルチャーイン サート内、外の培養液を注意深く除去し、カルチャーインサート外に重層化用培養液 を 1.6 mL添加した。培養液交換を 1日朝夕 2回行った。 7日間の空気曝露により培養 皮膚シートが完成した。  Air-lifting was performed about 2 days after seeding of epidermal keratinocytes. The culture medium inside and outside the culture insert was carefully removed, and 1.6 mL of the culture medium for stratification was added outside the culture insert. The culture medium was changed twice a day in the morning and evening. The cultured skin sheet was completed after 7 days of air exposure.
重層化用培養液は以下のごとく調整した。  The culture solution for stratification was prepared as follows.
角化細胞用無血清培地(HSM培地) 1用量に対して、 DMEMを 1用量加えたもので 、 2%ゥシ胎児血清を含む培養液  Serum-free medium for keratinocytes (HSM medium) 1 dose of DMEM plus 1% culture medium containing fetus serum
[0080] 7.培養皮膚シートの評価 [0080] 7. Evaluation of cultured skin sheet
7- 1.培養皮膚シートの組織学的評価 (移植後)  7- 1. Histological evaluation of cultured skin sheet (after transplantation)
上記培養方法で構築された培養皮膚シートを、ヌードマウスの背部に形成した皮膚 欠損部に対して羊膜側を接触面として移植した。移植後 17日目に移植部の組織の 一部を摘出して標本を作製し HE染色を施行した。また、凍結組織切片を作製して免 疫組織化学染色を施行した。免疫組織ィ匕学染色は-チレィ社のヒストファイン SAB— APキットを用いて行い、基質には-ユーフクシンを用いた。また、免疫組織化学染色 に用いた抗体は以下の通りである。モノクローナル抗体; Eカドヘリン(HECD— 1、 Tak ara)、ケラチン 10 (LHP1, NeoMarkers)、 j8 4インテグリン(3E1、 Chemicon)、 α 2イン テグリン(MAB1950、 Chemicon)、ケラチン 14 (LL002, NeoMarkers)、ラミニン 5 (GB1、 Sera- Lab)、 IV型コラーゲン(2311C3、 Chemicon)、 VII型コラーゲン(LH7.2、 NeoMar kers)、ポリクローナル抗体;デスモグレイン 3 (5G11、 Zymed)。 The cultured skin sheet constructed by the above culture method was transplanted with the amnion side as the contact surface to the skin defect formed on the back of nude mice. On the 17th day after transplantation, a part of the tissue at the transplant site was excised to prepare a specimen and subjected to HE staining. In addition, frozen tissue sections were prepared and subjected to immunohistochemical staining. Immunohistochemical staining was performed using Chile's Histofine SAB-AP kit and Eufuxin was used as a substrate. The antibodies used for immunohistochemical staining are as follows. Monoclonal antibodies: E-cadherin (HECD-1, Tak ara), keratin 10 (LHP1, NeoMarkers), j8 4 integrin (3E1, Chemicon), α2 integrin (MAB1950, Chemicon), keratin 14 (LL002, NeoMarkers), laminin 5 (GB1, Sera-Lab), type IV collagen (2311C3, Chemicon), type VII collagen (LH7.2, NeoMar kers), polyclonal antibody; desmoglein 3 ( 5 G11, Zymed).
HE染色像を図 3に示す。尚、左上、右上、左下、右下の順で倍率を上げている。 H E染色像から明らかなように、約 10 mの表皮層が形成されている。また HE染色の結 果より、移植片は良好に生着し、表皮の形態は正常皮膚と近似していた。すなわち、 上層よりコンパクトな角層、 1〜2層の顆粒層、 5〜8層の有棘層、 1層の基底層からな り、形態は正常皮膚と同じく整然としたものであった。強拡大所見では表皮 ·真皮結 合部では密な接着が認められ、羊膜の中へ線維芽細胞が進入している像が数多く 認められた。また、羊膜直下の真皮では管腔構造が多数みられ、毛細血管の新生が 盛んに行われて 、ることが明らかとなつた。 Fig. 3 shows the HE-stained image. The magnification is increased in the order of upper left, upper right, lower left, and lower right. As is clear from the HE-stained image, a skin layer of about 10 m is formed. From the results of HE staining, the grafts were well engrafted and the morphology of the epidermis was close to that of normal skin. That is, it consisted of a more compact stratum corneum than the upper layer, 1 to 2 granular layers, 5 to 8 spiny layers, and 1 basal layer. Strongly enlarged findings showed dense adhesion at the epidermis / dermis junction, and many images of fibroblasts entering the amnion. In addition, many luminal structures are seen in the dermis directly under the amniotic membrane, resulting in the formation of capillaries. It became clear that it was done actively.
以上の結果から、上記方法で作製した培養皮膚シートを用いれば皮膚欠損部を正 常な状態へと短期間で再建できること、即ち上記方法で作製した培養皮膚シートの 有効性が確認された。  From the above results, it was confirmed that if the cultured skin sheet prepared by the above method was used, the skin defect part could be reconstructed to a normal state in a short period of time, that is, the effectiveness of the cultured skin sheet prepared by the above method was confirmed.
[0081] 一方、免疫組織化学染色の結果では、基底膜の主要構成成分であるラミニン 5、 IV 型コラーゲン、 VII型コラーゲンともに洗浄に表皮 ·真皮結合部に発現しており、その パターンは正常皮膚とほぼ同様のものであった。  [0081] On the other hand, as a result of immunohistochemical staining, laminin 5, type IV collagen, and type VII collagen, which are the main constituents of the basement membrane, are expressed in the epidermis / dermis junction, and the pattern is normal skin. And almost the same.
表皮細胞間結合の主要成分である Eカドヘリンは全層に細胞間で発現、 oc 2インテ ダリン、 j8 4インテグリンは基底層を中心に細胞間に発現しており、正常皮膚とほぼ同 様の分布、発現であった。デスモゾームの構成蛋白であるデスモグレイン 3は基底層 から傍基底層の細胞間に発現し、正常皮膚と同様の発現パターンであった。ケラチ ン 10は傍基底層から上層の有棘層に発現しており、正常皮膚と同様の発現であった 。ケラチン 14は基底層と傍基底層に発現しており、正常皮膚での基底層のみの発現 とは若干異なる発現パターンであった(図 4、図 5)。  E-cadherin, a major component of epidermal cell junction, is expressed between cells in all layers, and oc 2 intedarin and j8 4 integrin are expressed between cells, mainly in the basal layer, and are distributed almost the same as normal skin. , Expression. Desmoglein 3, a constituent protein of desmosome, was expressed between cells from the basal layer to the parabasal layer, and the expression pattern was similar to that of normal skin. Keratin 10 was expressed from the parabasal layer to the upper spiny layer, and was expressed in the same manner as in normal skin. Keratin 14 was expressed in the basal layer and the parabasal layer, and the expression pattern was slightly different from the expression of only the basal layer in normal skin (Figs. 4 and 5).
[0082] 以上のように、上記方法で作製した培養皮膚シートは正常な表皮に近似した性状 を備え、皮膚再建用移植材料として有効に機能することが明らかとなった。  [0082] As described above, it has been clarified that the cultured skin sheet produced by the above method has properties similar to normal epidermis and functions effectively as a skin reconstruction transplant material.
[0083] 7- 2.表皮角化細胞の播種時期と三次元培養皮膚シートの品質との関係  [0083] 7- 2. Relationship between seeding time of epidermal keratinocytes and quality of 3D cultured skin sheet
表皮角化細胞の播種時期、即ちモノレイヤー状態の線維芽細胞上に羊膜を載置( 貼付)した後、表皮角化細胞を播種するまでの時間が、最終的に構築される培養皮 膚シートの品質に与える影響を検討した。実験方法の概要を図 6の上段に示す。条 件 1 (羊膜載置後、時間を置いて表皮角化細胞を播種する条件、図 6の上段左側の 実験手順)では線維芽細胞上に羊膜を載置した 5日後に表皮角化細胞を播種した。 一方、条件 2 (羊膜載置後、時間を置かずに表皮角化細胞を播種する条件、図 6の 上段右側の実験手順)では線維芽細胞上に羊膜を載置した直後に表皮角化細胞を 播種した。尚、総培養時間を合わせるために、条件 1では線維芽細胞の播種から 4時 間後に羊膜を載置することとし、条件 2では線維芽細胞の播種から 5日後に羊膜を載 置すること〖こした。  The cultured skin sheet that is finally constructed after seeding the epidermis keratinocytes, that is, the time until the epidermis keratinocytes are seeded after the amnion is placed (attached) on the monolayer fibroblasts The effect on the quality of food was examined. The outline of the experimental method is shown in the upper part of Fig. 6. In condition 1 (conditions for seeding epidermis keratinocytes after placing on the amniotic membrane, the experimental procedure on the upper left side of Fig. 6), the epidermal keratinocytes were removed 5 days after placing the amniotic membrane on fibroblasts. Sowing. On the other hand, in condition 2 (the condition in which epidermal keratinocytes are seeded without placing time after placing the amniotic membrane, the experimental procedure on the upper right side of FIG. 6), the epidermal keratinocytes immediately after placing the amniotic membrane on the fibroblasts. Sowing. In order to match the total culture time, amniotic membrane should be placed 4 hours after seeding of fibroblasts in condition 1, and amniotic membrane should be placed 5 days after seeding of fibroblasts in condition 2. I rubbed.
構築された培養皮膚シートをそれぞれ HE染色し、組織学的評価を行った。条件 1 で構築した培養皮膚シートの HE染色像を図 6の下段左に、条件 2で構築した培養皮 膚シートの HE染色像を同図下段右に示す。条件 1で構築した培養皮膚シートでは、 条件 2で構築した培養皮膚シートに比較して、羊膜上に形成された表皮層にお 、て 角化細胞がより規則的に整列している。また、条件 1で構築した培養皮膚シートの表 皮層はより重厚であり、段階的な層構造も明確に認められる。さらに、表皮層の最上 部に位置する角層の平坦性及び緻密性も良好である。一方、培養基質として用いた 羊膜部分に注目すると、条件 1で構築した培養皮膚シートでは多数の線維芽細胞の 浸潤が認められる。このことから、条件 1の培養方法では、羊膜載置力 表皮角化細 胞の播種までの間に羊膜内へと多くの線維芽細胞が浸潤し、これによつて表皮角化 細胞の生育に適した環境が整えられた結果、高品質の表皮層が形成されたと推測さ れる。 The constructed cultured skin sheets were each stained with HE and evaluated histologically. Condition 1 The HE-stained image of the cultured skin sheet constructed in Fig. 6 is shown in the lower left of Fig. 6, and the HE-stained image of the cultured skin sheet constructed in Condition 2 is shown in the lower right of the figure. In the cultured skin sheet constructed in condition 1, keratinocytes are more regularly aligned in the epidermal layer formed on the amniotic membrane than in the cultured skin sheet constructed in condition 2. In addition, the skin layer of the cultured skin sheet constructed under Condition 1 is thicker, and a gradual layer structure is clearly recognized. Furthermore, the flatness and denseness of the stratum corneum located at the uppermost part of the skin layer are also good. On the other hand, focusing on the amniotic membrane part used as the culture substrate, the cultured skin sheet constructed under condition 1 shows infiltration of many fibroblasts. Therefore, in the culture method under Condition 1, many fibroblasts infiltrate into the amniotic membrane before the seeding of the amniotic membrane placement force epidermal keratinocytes, and this causes growth of the epidermal keratinocytes. It is presumed that a high-quality skin layer was formed as a result of preparing a suitable environment.
以上のように、線維芽細胞上に羊膜を載置 (貼付)した後、十分な時間を確保して 線維芽細胞の羊膜内への浸潤を促すことが、高品質の培養皮膚シートの作製に有 効であると判明した。  As described above, after placing the amniotic membrane on the fibroblasts (affixing), securing sufficient time to promote infiltration of fibroblasts into the amniotic membrane is necessary for the production of high-quality cultured skin sheets. It turned out to be effective.
7- 3.羊膜の載置 (貼付)時期と三次元培養皮膚シートの品質との関係 7- 3. Relationship between the time of placing (attaching) the amniotic membrane and the quality of the three-dimensional cultured skin sheet
羊膜の載置時期、即ち線維芽細胞を播種した後、羊膜を載置するまでの時間が、 最終的に構築される培養皮膚シートの品質に与える影響を検討した。実験方法の概 要を図 7の上段に示す。条件 1 (線維芽細胞播種力 羊膜載置までの時間間隔が短 い条件)では線維芽細胞を播種した 4時間後に羊膜を線維芽細胞上に載置した。一 方、条件 2 (線維芽細胞播種から羊膜載置までの時間間隔が長!ヽ条件)では線維芽 細胞を播種した 1日後に羊膜を線維芽細胞上に載置した。以降の培養条件、操作手 順等は同じとした。  The effect of the time of placing the amniotic membrane, that is, the time until the amniotic membrane was placed after the seeding of fibroblasts, on the quality of the finally constructed cultured skin sheet was examined. An outline of the experimental method is shown in the upper part of Fig. 7. Under condition 1 (conditions for disseminating fibroblasts, the time interval until placement of the amniotic membrane was short), the amniotic membrane was placed on the fibroblasts 4 hours after the seeding of fibroblasts. On the other hand, in condition 2 (the time interval from seeding of fibroblasts to placement of amniotic membrane was long), the amniotic membrane was placed on fibroblasts one day after seeding of fibroblasts. Subsequent culture conditions and operation procedures were the same.
構築された培養皮膚シートをそれぞれ HE染色し、組織学的評価を行った。条件 1 で構築した培養皮膚シートの HE染色像を図 7の下段左に、条件 2で構築した培養皮 膚シートの HE染色像を同図下段右に示す。条件 2で構築した培養皮膚シートでは、 条件 1で構築した培養皮膚シートに比較して、上皮層がより重厚であるとともに、明確 な角層が認められる。しカゝも、角層の平坦性及び緻密性が良好である。一方、培養 基質として用いた羊膜及び線維芽細胞に注目すると、条件 1と条件 2との間で、羊膜 内に浸潤して 、る線維芽細胞の数に大差はな 、が、条件 2で構築された培養皮膚シ ートでは羊膜の底面を均一に覆う線維芽細胞層が観察される。このことから、条件 2 では、線維芽細胞を播種した後、十分な時間を置いて力も羊膜を載置することによつ て、カルチャーインサート表面への線維芽細胞の良好な接着及び線維芽細胞のモノ レイヤー化が生じた結果、表皮角化細胞に対する羊膜を介した線維芽細胞の生育 促進作用が良好に且つ均一に発揮され、正常状態に近似した表皮層及び角層を備 えた高品質の培養皮膚シートが形成されたと推測される。 The constructed cultured skin sheets were each stained with HE and evaluated histologically. The HE-stained image of the cultured skin sheet constructed in Condition 1 is shown in the lower left of Fig. 7, and the HE-stained image of the cultured skin sheet constructed in Condition 2 is shown in the lower right of the figure. The cultured skin sheet constructed under condition 2 has a thicker epithelial layer and a clear stratum corneum than the cultured skin sheet constructed under condition 1. Shikaso also has good flatness and denseness of the stratum corneum. On the other hand, when focusing on the amniotic membrane and fibroblasts used as the culture substrate, the amniotic membrane between conditions 1 and 2 Although the number of fibroblasts that infiltrate into the cells does not differ greatly, a fibroblast layer that uniformly covers the bottom of the amniotic membrane is observed in the cultured skin sheet constructed under condition 2. From this, under condition 2, after fibroblasts are seeded, a sufficient amount of time is applied to place the amniotic membrane for good adhesion of fibroblasts to the surface of the culture insert and fibroblasts. As a result, the growth promoting effect of fibroblasts through the amniotic membrane on epidermal keratinocytes was demonstrated well and uniformly, and high quality with an epidermis layer and a stratum corneum that approximated normal conditions. It is presumed that a cultured skin sheet was formed.
以上のように、線維芽細胞播種後に十分な時間を確保して線維芽細胞の接着及 びモノレイヤー化を促すことが、高品質の培養皮膚シートの作製に有効であると判明 した。  As described above, it was found that securing sufficient time after fibroblast seeding to promote adhesion and monolayer formation of fibroblasts was effective for the production of high-quality cultured skin sheets.
実施例 2  Example 2
[0085] 羊膜及びヒト線維芽細胞を用いた三次元培養角膜上皮シートの作製  [0085] Preparation of three-dimensional cultured corneal epithelial sheet using amniotic membrane and human fibroblasts
1.羊膜の調製  1. Preparation of amniotic membrane
培養皮膚シートの作製の場合と同様の方法で、上皮が除去された羊膜を調製した  The amniotic membrane from which the epithelium was removed was prepared in the same manner as in the case of producing a cultured skin sheet
[0086] 2.ヒト角膜上皮細胞の調製 [0086] 2. Preparation of human corneal epithelial cells
2- 1.角膜の調達  2- 1. Procurement of cornea
角膜は移植用と同等グレードのものを Northwest Lions Eye Bank (シアトル、米国) より購入した。  The cornea was purchased from Northwest Lions Eye Bank (Seattle, USA) with a grade equivalent to that for transplantation.
[0087] 2- 2.角膜上皮細胞の無血清培養法 [0087] 2- 2. Serum-free culture method of corneal epithelial cells
(1)角膜上皮細胞のシングルセル化  (1) Single cell formation of corneal epithelial cells
7.0 mmトレパン刃により角膜のセンター部分を打ち抜き除去し、実体顕微鏡下での 剪刀による結膜の除去及び手術用メスによる強膜の除去、剪刀による実質部分の除 去を行った。角膜上皮組織を PBS (-)にて洗浄後、 1.2U/mL Dispase溶液 (Roche社, Dispasell, 2.4U/mL)に浸し、 5%CO条件下の COインキュベータ一にて 37°C、 1時間  The central part of the cornea was punched and removed with a 7.0 mm trepan blade, the conjunctiva was removed with a scissors under the stereomicroscope, the sclera was removed with a scalpel, and the substantial part was removed with a scissors. The corneal epithelial tissue is washed with PBS (-), then immersed in 1.2 U / mL Dispase solution (Roche, Dispasell, 2.4 U / mL), in a CO incubator under 5% CO condition at 37 ° C for 1 hour.
2 2  twenty two
、静置した。その後角膜上皮組織を 0.02%EDTA添加 PBS( -)、 PBS (-)の順でそれぞ れ常温、 2分間、浸漬した。 1つの角膜上皮組織を実体顕微鏡下、 2.4 mLの DMEM/ F12もしくは HSM培養液に浸漬した状態でセッシを用いて上皮細胞を剥離し、細胞塊 を多く含む角膜上皮細胞浮遊液を調製した。角膜上皮細胞浮遊液を 1.2 mLずつ 2 等分し、各浮遊液に 0.3 mLの 0.25% trypsin EDTA(Invitrogen社)をカ卩え、混和した。 , Let it stand. Subsequently, the corneal epithelial tissue was immersed in 0.02% EDTA-added PBS (-) and PBS (-) in this order for 2 minutes at room temperature. With a corneal epithelial tissue immersed in 2.4 mL of DMEM / F12 or HSM medium under a stereomicroscope, the epithelial cells are detached using a pestle and the cell mass A corneal epithelial cell suspension containing a large amount of was prepared. The corneal epithelial cell suspension was divided into two aliquots of 1.2 mL, and 0.3 mL of 0.25% trypsin EDTA (Invitrogen) was added to each suspension and mixed.
5%CO条件下の COインキュベータ一にて、 37°C、約 10分間静置し、 40倍の倍率下In a CO incubator under 5% CO condition, leave at 37 ° C for about 10 minutes, and under 40x magnification
2 2 twenty two
の位相差顕微鏡で随時観察しながら、細胞塊がなくなるまでマイクロピぺッターでピ ペッティングした。このようにして調製した角膜上皮細胞浮遊液を 15 mL遠心チューブ に移した。懸濁後、細胞浮遊液の一部を等量の 0.4%トリパンブルーと混和し、血球計 算版にて細胞数細胞生存率を測定した。細胞浮遊液の入った 15 mL遠心チューブを 卓上多本架遠心機で 1000rpm、 5分間、常温で遠心し、上清を除いた。遠心後のチュ ーブに全量が 1.0 mLになるように HSM培養液をカ卩え、細胞を懸濁した。全量の浮遊 液を 35mm collagen coated dishに播種し、 37°C、 5%CO条件下の COインキュベータ While observing with a phase contrast microscope, pipetting was performed with a micropipettor until the cell mass disappeared. The corneal epithelial cell suspension prepared in this manner was transferred to a 15 mL centrifuge tube. After suspension, a part of the cell suspension was mixed with an equal volume of 0.4% trypan blue, and the cell viability was measured with a hemocytometer. The 15 mL centrifuge tube containing the cell suspension was centrifuged at 1000 rpm for 5 minutes at room temperature using a desktop multi-centrifuge, and the supernatant was removed. The HSM medium was added to the tube after centrifugation so that the total volume was 1.0 mL, and the cells were suspended. CO 2 incubator at 37 ° C, 5% CO.
2 2  twenty two
一内にて静置培養した。 Static culture was performed in one.
(2)細胞の培養及び継代 (2) Cell culture and passage
培養開始後 1日毎に、 100倍の倍率下の位相差顕微鏡を用いて細胞の細胞増殖率 、及び細胞の形態を観察した。約 70%サブコンフルェントの状態まで増殖したら、以 下のように細胞を継代した。培養角膜上皮シートの作製に必要な細胞数が得られる まで継代を繰り返した。  Every day after the start of culture, the cell growth rate and cell morphology of the cells were observed using a phase contrast microscope under a magnification of 100 times. Once grown to approximately 70% subconfluent, the cells were passaged as follows. The subculture was repeated until the number of cells necessary for production of the cultured corneal epithelial sheet was obtained.
(a)コラーゲンコートディッシュ力も培養液を除去した。  (a) Collagen-coated dish force also removed the culture solution.
(b) PBS(-)2 mLをコラーゲンコートディッシュに加え、その後除去した(洗浄)。  (b) 2 mL of PBS (-) was added to the collagen coat dish and then removed (washed).
(c) 0.05%トリプシン- EDTA lmLを加え、 COインキュベーター内で、 37°Cで細胞が  (c) Add 0.05 mL trypsin-EDTA (1 mL), and in a CO incubator, the cells
2  2
球状になるまで(10分間)静置し、マイクロピぺッターによるピペッティングにて細胞浮 遊液を調製した。 It was allowed to stand until it became spherical (10 minutes), and a cell suspension was prepared by pipetting with a micropipette.
(d)細胞浮遊液を 15 mL遠心チューブに移し、 1000rpm、 5分間、常温で遠心し、上 清を除いた。  (d) The cell suspension was transferred to a 15 mL centrifuge tube and centrifuged at 1000 rpm for 5 minutes at room temperature to remove the supernatant.
(e) 1.0 mLになるように HSM培養液を遠心チューブにカ卩え、細胞を懸濁した。  (e) The HSM culture solution was placed in a centrifuge tube to make 1.0 mL, and the cells were suspended.
(f)細胞浮遊液の一部を等量の 0.4%トリパンブルーと混和し、血球計算版にて細胞 数、細胞生存率を測定した。  (f) A part of the cell suspension was mixed with an equal amount of 0.4% trypan blue, and the cell count and cell viability were measured with a hemocytometer.
(g)細胞浮遊液全量を、 60 mmもしくは 100 mmコラーゲンコートディッシュに播種し 、 37°C、 5%CO条件下の COインキュベーター内にて静置培養した。 [0089] 3.ヒト線維芽細胞の調製 (g) The whole cell suspension was seeded on a 60 mm or 100 mm collagen-coated dish and statically cultured in a CO incubator under conditions of 37 ° C and 5% CO. [0089] 3. Preparation of human fibroblasts
培養皮膚シートの作製の場合と同様の方法でヒト線維芽細胞を調製した。  Human fibroblasts were prepared in the same manner as in the production of cultured skin sheets.
[0090] 4.カルチャーインサート上へのヒト線維芽細胞の播種及び羊膜の載置 (貼付) [0090] 4. Seeding of human fibroblasts on culture insert and placing amnion (attachment)
培養皮膚シートの作製の場合と同様の方法で、カルチャーインサート上へのヒト線 維芽細胞の播種及び羊膜の載置を行った。但し、 100mmディッシュに代えて 6ゥエル プレートを使用し、併せて 6ゥエルプレートに適合するカルチャーインサート(コースタ 一社製)を使用した。  Human fibroblasts were seeded on the culture insert and amnion was placed in the same manner as in the production of the cultured skin sheet. However, a 6-well plate was used in place of the 100 mm dish, and a culture insert (Coaster Co., Ltd.) suitable for the 6-well plate was used.
[0091] 5.ヒト角膜上皮細胞の播種 [0091] 5. Seeding of human corneal epithelial cells
羊膜の貼付操作後 5日目に角膜上皮細胞を羊膜上に播種した。まず、 2.で調製し た角膜上皮細胞を位相差顕微鏡で観察し、 70〜80%程度のサブコンフルェントにな つていることを確認した。培養液を除去し、 PBS (-)で洗浄後、 0.05%トリプシン- EDTA 2 mLを添加し、 37°C、 5%CO条件下で 5分間静置した。その後、トリプシンインヒビタ  Corneal epithelial cells were seeded on the amniotic membrane 5 days after the amnion sticking operation. First, the corneal epithelial cells prepared in 2 were observed with a phase contrast microscope, and it was confirmed that they were about 70-80% subconfluent. The culture solution was removed, washed with PBS (−), added with 2 mL of 0.05% trypsin-EDTA, and allowed to stand at 37 ° C., 5% CO for 5 minutes. Then trypsin inhibitor
2  2
一 2 mLを添加し、細胞浮遊液をピペッティングして 50 mL遠心チューブに回収した。 細胞浮遊液の入った 50 mL遠心チューブを、卓上多本架遠心機で 1000 rpm、 5分間 、常温で遠心した。遠心後、上清を除去し、サブマージ用 A培養液 10 mLを添加した 。細胞塊が無くなるまで十分にピペッティングして得られた細胞浮遊液を 15 mL遠心 チューブに移した。細胞浮遊液の一部を等量の 0.4%トリパンブルーと混和し、血球計 算版にて細胞数、細胞生存率を測定した。細胞浮遊液の入った 15 mL遠心チューブ を、卓上多本架遠心機で 1000 rpm、 5分間、常温で遠心した。遠心後、上清を除去 し、細胞数計測結果を基に 1 X 103 cells/?lとなるようにサブマージ用 A培養液を遠心 チューブに加え、細胞を懸濁した。 1 mL was added, and the cell suspension was pipetted and collected in a 50 mL centrifuge tube. The 50 mL centrifuge tube containing the cell suspension was centrifuged at 1000 rpm for 5 minutes at room temperature in a desktop multi-centrifuge. After centrifugation, the supernatant was removed, and 10 mL of submerged A culture solution was added. The cell suspension obtained by pipetting well until the cell mass disappeared was transferred to a 15 mL centrifuge tube. A part of the cell suspension was mixed with an equal amount of 0.4% trypan blue, and the cell count and cell viability were measured with a hemocytometer. The 15 mL centrifuge tube containing the cell suspension was centrifuged at 1000 rpm for 5 minutes at room temperature using a desktop multi-centrifuge. After centrifugation, the supernatant was removed, and the submerged A culture solution was added to the centrifuge tube so that the cell count was 1 × 10 3 cells / l based on the cell count results, and the cells were suspended.
[0092] ヒト線維芽細胞の播種及び羊膜の貼付を行ったカルチャーインサートを載置した 6 ゥエルプレートを COインキュベーターから取り出し、安全キャビネット内に搬入した。 [0092] The 6-well plate on which the culture insert on which human fibroblasts were seeded and amnion was affixed was taken out of the CO incubator and carried into a safety cabinet.
2  2
カルチャーインサート内外の培養液を除去し、カルチャーインサート外には約 1 mLサ ブマージ用 A培養液を添加した。 1 X 103 cells/?lに調製した角膜上皮細胞浮遊液 25 0 ?1をカルチャーインサート内の羊膜上に播種し、カルチャーインサート内の溶液量 が 1 mLとなるようにサブマージ用 A培養液でメスアップした。細胞を播種したカルチヤ 一インサートを載置した 6ゥエルプレートを COインキュベーターに搬入し、 37°C、 5% CO条件下で静置培養した。 The culture medium inside and outside the culture insert was removed, and about 1 mL of submerged A culture medium was added outside the culture insert. Inoculate the corneal epithelial cell suspension prepared at 1 X 10 3 cells / l on the amniotic membrane in the culture insert, and use the submerged A medium so that the volume of the solution in the culture insert is 1 mL. I made a mess up. A 6-well plate on which a cell-seeded cell insert is placed is loaded into a CO incubator, 37 ° C, 5% Static culture was performed under CO conditions.
2  2
以後、 Air-liftingを開始するまで、原則として 2日に 1回、位相差顕微鏡による観察を 行うとともに、サブマージ用 A培養液にてカルチャーインサート内 1 mL、カルチャーィ ンサート外 2 mLとなるように培養液交換を行った。 Thereafter, until the start of Air-lifting, 1 every two days in principle, performs observation by phase contrast microscope, so that by submerged for A broth culture insert within 1 mL, and culture I concert outside 2 m L The culture medium was replaced.
サブマージ用 A培養液は以下のごとく調製した。 HSM培養液:ダルベッコ変法 MEM 培養液 =3:1、 FCS; 0.3%、 2.5 μ g/mLゲンタマイシン  A submerged A culture was prepared as follows. HSM medium: Dulbecco's modified MEM medium = 3: 1, FCS; 0.3%, 2.5 μg / mL gentamicin
[0093] 6.気相下培養 [0093] 6. Submerged culture
角膜上皮細胞を播種後約 10日目に空気曝露 (Air-lifting)を行った。カルチャーィ ンサート内、外の培養液を注意深く除去し、カルチャーインサート外に重層化用 A培 養液を 1.6 mL添加した。培養液交換は 1日朝夕 2回行い、 3日間の空気曝露により培 養角膜上皮シートが完成した。  About 10 days after seeding of corneal epithelial cells, air-lifting was performed. The culture medium outside and inside the culture insert was carefully removed, and 1.6 mL of the layer A culture medium was added outside the culture insert. The culture medium was changed twice a day in the morning and evening, and the cultured corneal epithelial sheet was completed after 3 days of air exposure.
重層化用 A培養液は以下のごとく調整した。 HSM培養液:ダルベッコ変法 MEM培養 液 = 1:1、 FCS; 2%、 2.5 μ g/mLゲンタマイシン  The A culture solution for stratification was prepared as follows. HSM medium: Dulbecco's modified MEM medium = 1: 1, FCS; 2%, 2.5 μg / mL gentamicin
[0094] 7.三次元培養角膜上皮シートの評価 [0094] 7. Evaluation of three-dimensional cultured corneal epithelial sheet
7- 1.実体顕微鏡による写真撮影  7- 1. Photography with a stereomicroscope
培養角膜上皮シートが入って 、る 6ゥエルプレートを COインキュベーターから取り  Remove the 6 well plate containing the cultured corneal epithelial sheet from the CO incubator.
2  2
出し、位相差顕微鏡で重層化の程度、細胞の形態等を観察後、実体顕微鏡にて外 観写真を撮影した。位相差及び実体顕微鏡による観察では、細胞の欠損等の目立 つた変化は確認されなカゝつた。  After observing the degree of stratification and cell morphology with a phase contrast microscope, an external photograph was taken with a stereomicroscope. Observations using phase contrast and a stereomicroscope did not confirm any noticeable changes such as cell loss.
[0095] 7— 2.シートの分割、組織包埋  [0095] 7— 2. Sheet division and tissue embedding
次に、 5 g/mLゲンタマイシン添加 PBS (-)にてカルチャーインサートの内側及び底 面を洗浄し、カルチャーインサートのマークが上にくる状態で 100 mm径ペトリディッシ ュに入ったシリコーンシート上にカルチャーインサートを置き、 18 mmトレパンでシート を打ち抜いた。上下左右が分力もなくならないように気を付けながら、シリコンマットの 入った 9mmの方眼紙 (OHP)の上に置いた。上端、下端、左端、右端が方眼の線上に くるようにして、中央を通る線に合わせて力ミソリでシートを切断し、 4等分した。この等 分したシートの対角線上の 2枚のシートを、 OCT compoundを用いて包埋した。  Next, the inner and bottom surfaces of the culture insert were washed with PBS (-) containing 5 g / mL gentamicin, and the culture insert was placed on a silicone sheet in a 100 mm diameter Petri dish with the culture insert mark on top. The insert was placed and the sheet was punched out with an 18 mm trepan. It was placed on a 9mm graph paper (OHP) with a silicone mat, taking care not to lose power in the top, bottom, left and right. The top, bottom, left, and right edges were on the grid line, and the sheet was cut with a force razor along the line passing through the center, and divided into four equal parts. Two sheets on the diagonal of this equally divided sheet were embedded using OCT compound.
[0096] 7- 3.細胞数 ·細胞生存率の測定 7- 2.で分割し、包埋せずに残った 2枚のシートを 35mmディッシュ内において、 1.5 mLの PBS (-)と 1.5 mLの 1.2U/mLデイスパーゼをカ卩ぇ混和した溶液に浸漬し、 37°Cで 30分、 5%CO条件下の COインキュベーター内に静置した。 30分後、無鈎セッシで [0096] 7- 3. Number of cells · Measurement of cell viability 7-2 Divide the two sheets that were left unembedded, and immerse them in a 35 mm dish in a mixture of 1.5 mL of PBS (-) and 1.5 mL of 1.2 U / mL dispase. Then, it was allowed to stand in a CO incubator at 37 ° C for 30 minutes under 5% CO conditions. 30 minutes later
2 2  twenty two
羊膜から角膜上皮細胞層をシート状に剥がし、 2.5 mLの 0.05%トリプシン- EDTA溶 液に浸漬し、 37°Cで 5分間、 5%CO条件下の COインキュベーター内に静置した。そ The corneal epithelial cell layer was peeled off from the amniotic membrane in a sheet form, immersed in 2.5 mL of 0.05% trypsin-EDTA solution, and allowed to stand in a CO incubator under 5% CO conditions at 37 ° C for 5 minutes. So
2 2  twenty two
の後、ピペッティングにより懸濁してシングルセル化した細胞浮遊液を 15 mL遠心チ ユーブに移した。卓上多本架遠心機で 1500rpm、 5分間、常温で遠心し、上清を除去 した。遠心チューブに全量が 1.0 mLになるように SHEMをカ卩え、細胞を懸濁した。細 胞浮遊液の一部をとり、等量の 0.4%トリパンブルーと混和し、血球計算版にて細胞数 、細胞生存率を測定した。これらのシートの 1シート換算の細胞数及び生存率はそれ ぞれ 1.4 xlO6 cells及び 96.8 %であった。 After that, the cell suspension suspended by pipetting and converted into a single cell was transferred to a 15 mL centrifuge tube. The supernatant was removed by centrifugation at 1500 rpm for 5 minutes at room temperature in a table-top multi-centrifuge. SHEM was placed in a centrifuge tube so that the total volume was 1.0 mL, and the cells were suspended. A portion of the cell suspension was taken and mixed with an equal volume of 0.4% trypan blue, and the cell count and cell viability were measured with a hemocytometer. The number of cells per cell and the survival rate of these sheets were 1.4 xlO 6 cells and 96.8%, respectively.
7-4.培養角膜上皮シートの組織学的特性の検証 7-4. Verification of histological characteristics of cultured corneal epithelial sheet
(1) HE染色 (1) HE staining
上記 7— 2.で包埋した培養角膜上皮シートを、クライオスタツトにて薄切し、スライド 切片を作製した。このスライド切片に対して、下記の方法の通り HE染色を実施した。 以下の操作は室温にて実施した。  The cultured corneal epithelial sheet embedded in 7-2 above was sliced with a cryostat to prepare slide sections. This slide section was subjected to HE staining as described below. The following operations were performed at room temperature.
まず、スライド切片をマイルドホルムで 5分間固定し、固定後に流水にて約 10分間洗 浄した。洗浄後、へマトキシリンで 5〜10秒間染色し、流水にて 5〜10分間洗浄した。 その次にェォジンで 3〜5秒間染色し、流水にて 5〜15分間水洗した。洗浄後、 70、 90 、 95%、無水エタノールの順に数秒間ずつ脱水を行った。無水エタノールでの脱水 後、キシレン中に 5分間浸漬し、新しいキシレンにて 30分間以上浸漬した。その後、 封入剤 (ェンテラン-ユー)を滴下し、カバーガラスを載せて、スライドを封入し、封入 剤が乾いたら、カバーグラスの周囲にマ-ユキユアを塗布した。マ-キュアが乾燥した ら、光学顕微鏡による観察を行った。  First, the slide sections were fixed with mild form for 5 minutes, and then washed with running water for about 10 minutes. After washing, the cells were stained with hematoxylin for 5 to 10 seconds and washed with running water for 5 to 10 minutes. Next, it was stained with eosin for 3 to 5 seconds and washed with running water for 5 to 15 minutes. After washing, dehydration was performed for several seconds in order of 70, 90, 95%, and absolute ethanol. After dehydration with absolute ethanol, it was immersed in xylene for 5 minutes and then immersed in fresh xylene for 30 minutes or more. After that, the mounting medium (Yanteran-Yu) was dropped, the cover glass was placed, the slide was sealed, and when the mounting medium was dry, the coating was applied around the cover glass. When the cure was dry, it was observed with an optical microscope.
HE染色像力も明らかなように、作製した培養角膜上皮シートは約 50 mの厚さの 4- 6層に重層化した上皮層を備えていた (図 8)。この上皮層の基底側(羊膜側)には比 較的円柱形をした基底細胞類似の細胞群が存在していた。また、最表層の細胞は扁 平型を呈していた力 核を有しており、皮膚とは異なりその表面は角化していないこと が確認された。以上より、光学顕微鏡観察において羊膜上に正常角膜類似の上皮 層が形成されて 、ることが示された。 As can be seen in the HE-stained image power, the prepared cultured corneal epithelial sheet had an epithelial layer stratified into 4-6 layers with a thickness of about 50 m (Fig. 8). On the basal side (amniotic membrane side) of this epithelial layer, a group of cells similar to basal cells having a comparative columnar shape existed. In addition, the outermost cell has a flat core that is flat, and unlike the skin, its surface is not keratinized. Was confirmed. From the above, it was shown by optical microscope observation that an epithelial layer similar to normal cornea was formed on the amniotic membrane.
[0098] (2)免疫染色による角膜特異的タンパク発現の確認  [0098] (2) Confirmation of cornea-specific protein expression by immunostaining
作製した培養角膜上皮シートの免疫組織学的特性を検討するために免疫染色を 行った。  Immunostaining was performed to examine the immunohistological characteristics of the prepared cultured corneal epithelial sheet.
すなわち、角膜特異的なケラチン 3及び 12を検討した。上記 7— 2.で包埋した培養 角膜上皮シートを、クライオスタツトにて薄切し、スライド切片を作製した。このスライド 切片に対して、下記の方法の通り免疫染色を実施した。まず、スライド切片を PBS (-) で洗浄した後、 1% BSAでブロッキングを行い、非特異的な抗体反応を抑制した。その 後、各ケラチンに対する抗体(1次抗体)を室温で 1時間反応させた。反応後 Triton X -100含有のブロッキング溶液にて 15分、 3回の条件で洗浄し、続いて蛍光標識抗体( 2次抗体)を室温で 1時間反応させた。反応後、 PBS (-)にて 15分、 3回の条件で洗浄し 、 PIを滴下後、スライドガラスにて封入した後、共焦点もしくは蛍光顕微鏡にて組織を 観察した。また、用いた抗体は以下の通りである。 1次抗体:ケラチン 3 (cytokeratin3/ 12、 PROGENゝ Cat.No.61807)、ケラチン 12(Anti— Keratinl2、 Transgenic Incゝ Cat.No. KR074) 2次抗体: Alexa488 anti mouse(Molecular probesゝ Cat.No.A- 11029、ケラチ ン 3用に使用)、 Alexa488 anti rabbit(Molecular probes, Cat.No.A- 11034、ケラチン 12 用に使用)  That is, keratin-specific keratins 3 and 12 were examined. The cultured corneal epithelial sheet embedded in 7-2 above was sliced with a cryostat to prepare a slide section. The slide sections were subjected to immunostaining as described below. First, the slide sections were washed with PBS (−) and then blocked with 1% BSA to suppress nonspecific antibody reaction. Thereafter, an antibody against each keratin (primary antibody) was reacted at room temperature for 1 hour. After the reaction, it was washed with a blocking solution containing Triton X-100 for 15 minutes under the conditions of 3 times, and then a fluorescently labeled antibody (secondary antibody) was reacted at room temperature for 1 hour. After the reaction, the plate was washed with PBS (-) for 15 minutes under three conditions, PI was added dropwise, sealed with a slide glass, and the tissue was observed with a confocal or fluorescent microscope. The antibodies used are as follows. Primary antibody: Keratin 3 (cytokeratin3 / 12, PROGEN ゝ Cat.No.61807), Keratin 12 (Anti—Keratinl2, Transgenic Inc ゝ Cat.No. KR074) Secondary antibody: Alexa488 anti mouse (Molecular probes ゝ Cat.No. .A- 11029, used for keratin 3), Alexa488 anti rabbit (Molecular probes, Cat. No. A-11034, used for keratin 12)
免疫染色の結果、ケラチン 3、ケラチン 12ともに培養角膜上皮シート全層に発現が 確認された(図 9)。この発現は、正常角膜上皮組織とほぼ同様のものであった。  As a result of immunostaining, the expression of keratin 3 and keratin 12 was confirmed in all layers of the cultured corneal epithelial sheet (FIG. 9). This expression was almost the same as that of normal corneal epithelial tissue.
実施例 3  Example 3
[0099] トレハロース処理羊膜を用いた生体組織シートの作製  [0099] Preparation of biological tissue sheet using trehalose-treated amniotic membrane
1. トレハロース処理'凍結乾燥羊膜の作製  1. Trehalose treatment 'Preparation of freeze-dried amniotic membrane
実施例 1の 1.に記載した手順で調製した、上皮が除去された羊膜を、 10% (w/v )トレハロース溶液に 37°Cで 2時間浸漬した。トレハロース溶液は、トレハロース(とれ はのいのち、株式会社ェイチプラスビィ'ライフサイエンス、林原製)を蒸留水で希釈 して作製した。溶液の pHは 7〜 10の範囲に保った。羊膜を一組の滅菌済みプラスチ ックフレームで挟持した後、クリップで固定した。フレームごと 80°Cのディープフリー ザ一内に移し、羊膜が凍結したのを確認した後、真空凍結乾燥機 (Yamato, NEOCO OL)を用いて凍結乾燥処理 (-110°C、約 1時間)を行った。使用説明書に従い、十分 な乾燥体が得られるように条件設定した。凍結乾燥処理後の羊膜をフレーム力 外し 、外側がポリアミドナイロン、内側がポリエチレン力もなる二層構造の袋に移し、家庭 用真空パック器 (フレームノバ、マジックパック)を用いて真空包装した。このようにして 得られた真空パック状態の羊膜に Ί線を照射して (約 25kGy)滅菌した。滅菌処理後 の羊膜を真空パック状態のまま使用直前まで常温保存した。尚、保存開始力も 12ケ 月経過した時点にぉ ヽても凍結乾燥直後の状態を維持して 、た。 The amnion from which the epithelium was removed, prepared by the procedure described in 1. of Example 1, was immersed in a 10% (w / v) trehalose solution at 37 ° C. for 2 hours. The trehalose solution was prepared by diluting trehalose (Toreno Life Co., Ltd., Life Plus, Life Sciences, Hayashibara) with distilled water. The pH of the solution was kept in the range of 7-10. The amniotic membrane was clamped with a pair of sterilized plastic frames and then fixed with clips. 80 ° C deep free per frame After confirming that the amniotic membrane was frozen, freeze drying (-110 ° C, about 1 hour) was performed using a vacuum freeze dryer (Yamato, NEOCO OL). Conditions were set according to the instruction manual so that a sufficiently dry product could be obtained. The amniotic membrane after freeze-drying was removed from the frame force, transferred to a two-layered bag with polyamide nylon on the outside and polyethylene on the inside, and vacuum packed using a household vacuum pack device (frame nova, magic pack). Thus the amnion vacuum packed state obtained by by irradiating Ί line (approximately 25 kGy) and sterilized. The amnion after sterilization was stored at room temperature in a vacuum packed state until just before use. In addition, the storage starting power was maintained at the state immediately after freeze-drying even after 12 months.
[0100] 2.生体組織シートの作製 [0100] 2. Production of biological tissue sheet
(1)培養皮膚シート  (1) Cultured skin sheet
培養基質に用いる羊膜として、 1.で得られたトレハロース処理 ·凍結乾燥羊膜を用 いること以外は、実施例 1の 2.〜6.と同様の操作を行い、培養皮膚シートを得る。  A cultured skin sheet is obtained in the same manner as in 2. to 6. of Example 1 except that the trehalose-treated lyophilized amniotic membrane obtained in 1. is used as the amniotic membrane used for the culture substrate.
(2)培養角膜上皮シート  (2) Cultured corneal epithelial sheet
培養基質に用いる羊膜として、 1.で得られたトレハロース処理 ·凍結乾燥羊膜を用 いること以外は、実施例 2の 2.〜6.と同様の操作を行い、培養角膜上皮シートを得 る。  A cultured corneal epithelial sheet is obtained in the same manner as in 2. to 6. of Example 2, except that the trehalose-treated lyophilized amniotic membrane obtained in 1. is used as the amniotic membrane used as the culture substrate.
産業上の利用可能性  Industrial applicability
[0101] 本発明が提供する生体組織シートの用途は広ぐ皮膚表皮、角膜上皮、口腔粘膜 上皮、気道粘膜上皮及び腸管粘膜上皮などの再生 (再建)に利用され得る。中でも、 皮膚表皮又は角膜上皮の再生に好適に利用され得る。 [0101] The use of the biological tissue sheet provided by the present invention can be used for regeneration (reconstruction) of wide skin epidermis, corneal epithelium, oral mucosal epithelium, airway mucosal epithelium and intestinal mucosal epithelium. Among these, it can be suitably used for regeneration of the skin epidermis or corneal epithelium.
また、本発明の生体組織シートを遺伝子治療に利用することも可能である。遺伝子 治療には大きく in vivo法と ex vivo法があり、前者は遺伝子を直接生体内に導入する 方法で、後者はいつたん細胞を取り出し、遺伝子を導入した後再び体内に戻す方法 である。遺伝子治療の現在の技術水準に鑑みると、培養皮膚、培養角膜上皮、培養 腸管粘膜上皮シートに遺伝子を導入しさえすれば即座に ex vivo法へと発展する。各 種ウィルスベクターによるケラチノサイトへの遺伝子導入の有効性が示されてきており 、特に、アデノウイルスベクターを用いた場合ほぼ 100%のケラチノサイトに導入可能 である。皮膚科領域での遺伝子治療では、 VII型コラーゲン、ラミニン 5等の異常が原 因である先天性表皮水疱症などの遺伝病の治療には自家培養表皮シートに正常遺 伝子を導入することで極めて有効な治療となることが予想される。また、糖尿病、血友 病など体内の分子の欠乏により引き起こされる全身性疾患においてケラチノサイトに 遺伝子を導入し欠乏分子を産生させ、補充する、いわゆるデリバリーシステムとして の培養皮膚の可能性もあり、今後ますます培養生体組織の応用が発展することが予 想される。 In addition, the biological tissue sheet of the present invention can be used for gene therapy. There are two types of gene therapy, in vivo and ex vivo. The former is a method in which a gene is directly introduced into a living body, and the latter is a method in which a cell is taken out and the gene is introduced and then returned to the body. In view of the current state of the art of gene therapy, an ex vivo method is immediately developed as long as a gene is introduced into cultured skin, cultured corneal epithelium, or cultured intestinal mucosal epithelial sheet. The effectiveness of gene transfer into keratinocytes by various viral vectors has been shown, and in particular, when an adenovirus vector is used, it can be introduced into almost 100% of keratinocytes. In gene therapy in the dermatological field, abnormalities such as type VII collagen and laminin 5 For the treatment of genetic diseases such as congenital epidermolysis bullosa, the introduction of normal genes into autologous cultured epidermal sheets is expected to be an extremely effective treatment. In addition, there is a possibility of cultured skin as a so-called delivery system that introduces genes into keratinocytes to produce and supplement deficient molecules in systemic diseases caused by deficiencies in the body's molecules such as diabetes and hemophilia. It is expected that more and more applications of cultured biological tissue will be developed.
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものでは ない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々 の変形態様もこの発明に含まれる。  The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その 全ての内容を援用によって引用することとする。  The contents of papers, published patent gazettes, patent gazettes, etc. specified in this specification are incorporated by reference in their entirety.

Claims

請求の範囲 The scope of the claims
[I] ヒト線維芽細胞上に載置したコラーゲンシート上で増殖させた生体由来細胞を含有 してなる生体組織シート。  [I] A biological tissue sheet containing biological cells grown on a collagen sheet placed on human fibroblasts.
[2] 前記コラーゲンシートが羊膜であることを特徴とする、請求項 1に記載の生体組織 シート。  [2] The living tissue sheet according to claim 1, wherein the collagen sheet is amniotic membrane.
[3] 前記羊膜が、上皮が除去された羊膜であることを特徴とする、請求項 2に記載の生 体組織シート。  3. The biological tissue sheet according to claim 2, wherein the amniotic membrane is an amniotic membrane from which the epithelium has been removed.
[4] 前記羊膜が、トレハロースを付加した羊膜であることを特徴とする、請求項 2又は 3 に記載の生体組織シート。  4. The biological tissue sheet according to claim 2 or 3, wherein the amniotic membrane is an amniotic membrane to which trehalose is added.
[5] 無血清培地を使用して前記生体由来細胞を増殖させることを特徴とする、請求項 1[5] The biologically derived cells are grown using a serum-free medium.
〜4の 、ずれかに記載の生体組織シート。 The biological tissue sheet according to any one of 4 to 4.
[6] 血清成分として、レシピエントに由来する血清のみを含む培地を使用して前記生体 由来細胞を増殖させることを特徴とする、請求項 1〜4のいずれかに記載の生体組織 シート。 [6] The living tissue sheet according to any one of claims 1 to 4, wherein the living body-derived cells are grown using a medium containing only serum derived from a recipient as a serum component.
[7] 前記生体由来細胞が角膜上皮、結膜上皮、皮膚表皮、毛包上皮、口腔粘膜、気道 粘膜又は腸管粘膜由来の細胞であることを特徴とする、請求項 1〜6のいずれかに 記載の生体組織シート。  [7] The cell according to any one of claims 1 to 6, wherein the living body-derived cell is a cell derived from a corneal epithelium, a conjunctival epithelium, a skin epidermis, a hair follicle epithelium, an oral mucosa, an airway mucosa, or an intestinal mucosa. Living tissue sheet.
[8] 増殖させた前記生体由来細胞に加えて、前記ヒト線維芽細胞由来の細胞が浸潤し ている前記コラーゲンシートを含有することを特徴とする、請求項 1〜7のいずれかに 記載の生体組織シート。 [8] The collagen sheet according to any one of claims 1 to 7, further comprising the collagen sheet infiltrated with the cells derived from the human fibroblasts in addition to the cells derived from the living body. Biological tissue sheet.
[9] 増殖させた前記生体由来細胞によって形成される、重層化した細胞層を備えること を特徴とする、請求項 1〜8の 、ずれかに記載の生体組織シート。 [9] The biological tissue sheet according to any one of [1] to [8], further comprising a multilayered cell layer formed by the proliferated cells derived from the living body.
[10] ヒト線維芽細胞が浸潤している羊膜上に生体由来細胞層が形成されてなる、生体 組織シート。 [10] A biological tissue sheet in which a biological cell layer is formed on an amniotic membrane infiltrated with human fibroblasts.
[II] 以下のステップを含んでなる、生体組織シートの作製方法:  [II] A method for producing a biological tissue sheet comprising the following steps:
(a)ヒト線維芽細胞を用意するステップ;  (a) providing human fibroblasts;
(b)培養容器に播種した前記ヒト線維芽細胞の上にコラーゲンシートを載置するステ ップ; (c)生体由来細胞を調製し、該生体由来細胞を前記コラーゲンシート上に播種する ステップ; (b) a step of placing a collagen sheet on the human fibroblasts seeded in a culture vessel; (c) preparing a living body-derived cell and seeding the living body-derived cell on the collagen sheet;
(d)異種動物細胞非存在下、前記生体由来細胞を培養して増殖させるステップ。  (d) A step of culturing and proliferating the living body-derived cells in the absence of heterologous animal cells.
[12] 前記ステップ (b)において、前記ヒト線維芽細胞の播種から所定時間経過した後に 前記コラーゲンシートを載置することを特徴とする、請求項 11に記載の作製方法。 12. The production method according to claim 11, wherein in the step (b), the collagen sheet is placed after a predetermined time has elapsed since the seeding of the human fibroblasts.
[13] 前記ステップ (b)とステップ (c)の間に以下のステップを実施することを特徴とする、請 求項 11又は 12に記載の作製方法: [13] The manufacturing method according to claim 11 or 12, wherein the following steps are performed between step (b) and step (c):
(b) '前記ヒト線維芽細胞を所定時間培養するステップ。  (b) 'culturing the human fibroblast for a predetermined time.
[14] 以下のステップを更に含むことを特徴とする、請求項 11〜13のいずれかに記載の 作製方法: [14] The production method according to any one of claims 11 to 13, further comprising the following steps:
(e)前記生体由来細胞が増殖した後、最表層を空気に接触させるステップ。  (e) A step of bringing the outermost layer into contact with air after the biological cells are grown.
[15] 前記コラーゲンシートが羊膜であることを特徴とする、請求項 11〜14のいずれかに 記載の作製方法。  [15] The production method according to any one of [11] to [14], wherein the collagen sheet is amniotic membrane.
[16] 前記羊膜が、上皮が除去された羊膜であることを特徴とする、請求項 15に記載の 作製方法。  16. The production method according to claim 15, wherein the amniotic membrane is an amniotic membrane from which an epithelium has been removed.
[17] 前記羊膜が、トレハロースを付加した羊膜であることを特徴とする、請求項 15又は 1 6に記載の作製方法。  17. The production method according to claim 15 or 16, wherein the amniotic membrane is an amniotic membrane added with trehalose.
[18] 前記ステップ (d)力 無血清培地を使用して実施されることを特徴とする、請求項 11 [18] The step (d) is performed using a serum-free medium.
〜 17の 、ずれかに記載の作製方法。 The production method according to any one of ˜17.
[19] 前記ステップ (d)力 血清成分として、レシピエントに由来する血清のみを含む培地 を使用して実施されることを特徴とする、請求項 11〜 17の 、ずれかに記載の作製方 法。 [19] The method according to any one of claims 11 to 17, wherein the step (d) is performed using a medium containing only serum derived from a recipient as a serum component. Law.
[20] 前記生体由来細胞が角膜上皮、結膜上皮、皮膚表皮、毛包上皮、口腔粘膜、気道 粘膜又は腸管粘膜由来の細胞であることを特徴とする、請求項 11〜19のいずれか に記載の作製方法。  [20] The cell according to any one of claims 11 to 19, wherein the biological cell is a cell derived from a corneal epithelium, a conjunctival epithelium, a skin epidermis, a hair follicle epithelium, an oral mucosa, an airway mucosa, or an intestinal mucosa. Manufacturing method.
[21] 請求項 1〜10の ヽずれかの生体組織シートを移植材料として使用する移植方法。  [21] A transplantation method using the biological tissue sheet of any one of claims 1 to 10 as a transplant material.
PCT/JP2006/317510 2005-09-07 2006-09-05 Biological tissue sheet and method for preparation thereof WO2007029676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-259019 2005-09-07
JP2005259019 2005-09-07

Publications (1)

Publication Number Publication Date
WO2007029676A1 true WO2007029676A1 (en) 2007-03-15

Family

ID=37835796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317510 WO2007029676A1 (en) 2005-09-07 2006-09-05 Biological tissue sheet and method for preparation thereof

Country Status (1)

Country Link
WO (1) WO2007029676A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204711A (en) * 2013-03-19 2014-10-30 国立大学法人 千葉大学 Method for production of three-dimensional culture skin model, and use thereof
JP2019536596A (en) * 2016-11-02 2019-12-19 アクソジェン コーポレーション Amniotic membrane graft and its preparation and use
CN111888529A (en) * 2020-07-20 2020-11-06 肖雁冰 Bionic amniotic membrane based on human amniotic membrane and amniotic mesenchymal stem cells, and method and application thereof
WO2021039833A1 (en) * 2019-08-29 2021-03-04 国立大学法人愛媛大学 Method for producing cultured tissue, and preparation for external application

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506169A (en) * 1990-04-24 1993-09-16 エイゼンバーグ,マーク Synthetic biological skin equivalent
JP2001161353A (en) * 1999-12-09 2001-06-19 Japan Ophthalmic Consultants:Kk Cell piece for transplantation and method for preparing the same
JP2002320666A (en) * 2000-09-26 2002-11-05 Sanyo Chem Ind Ltd Manufacturing method of artificial cornea
WO2003043542A1 (en) * 2001-11-19 2003-05-30 Amniotec Inc. Ectocornea-like sheet and method of constructing the same
JP2005013717A (en) * 2003-06-06 2005-01-20 Nipro Corp Cultured epidermis and its culture method
JP2005348736A (en) * 2004-06-11 2005-12-22 Bioland Ltd Supporting device of membrane for cell culture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506169A (en) * 1990-04-24 1993-09-16 エイゼンバーグ,マーク Synthetic biological skin equivalent
JP2001161353A (en) * 1999-12-09 2001-06-19 Japan Ophthalmic Consultants:Kk Cell piece for transplantation and method for preparing the same
JP2002320666A (en) * 2000-09-26 2002-11-05 Sanyo Chem Ind Ltd Manufacturing method of artificial cornea
WO2003043542A1 (en) * 2001-11-19 2003-05-30 Amniotec Inc. Ectocornea-like sheet and method of constructing the same
JP2005013717A (en) * 2003-06-06 2005-01-20 Nipro Corp Cultured epidermis and its culture method
JP2005348736A (en) * 2004-06-11 2005-12-22 Bioland Ltd Supporting device of membrane for cell culture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204711A (en) * 2013-03-19 2014-10-30 国立大学法人 千葉大学 Method for production of three-dimensional culture skin model, and use thereof
JP2019536596A (en) * 2016-11-02 2019-12-19 アクソジェン コーポレーション Amniotic membrane graft and its preparation and use
JP7171588B2 (en) 2016-11-02 2022-11-15 アクソジェン コーポレーション Amnion tissue graft and method of preparation and use thereof
US11577001B2 (en) 2016-11-02 2023-02-14 Axogen Corporation Amnion tissue grafts and methods of preparing and using same
WO2021039833A1 (en) * 2019-08-29 2021-03-04 国立大学法人愛媛大学 Method for producing cultured tissue, and preparation for external application
JP7502803B2 (en) 2019-08-29 2024-06-19 国立大学法人愛媛大学 Method for producing cultured tissue and topical agent
CN111888529A (en) * 2020-07-20 2020-11-06 肖雁冰 Bionic amniotic membrane based on human amniotic membrane and amniotic mesenchymal stem cells, and method and application thereof

Similar Documents

Publication Publication Date Title
WO2005087286A1 (en) Biological tissue sheet, method of forming the same and transplantation method by using the sheet
KR101313033B1 (en) Sheet-like composition
Baiguera et al. Tissue engineered human tracheas for in vivo implantation
US6916655B2 (en) Cultured skin and method of manufacturing the same
RU2461622C2 (en) Bioengineered construct for tissue implantation and method for making said bioengineered construct (versions)
RU2645473C2 (en) Tissue structures obtained by bioengineering, and methods for their production and application
WO2006075602A1 (en) Sheet-shaped composition utilizing amnion and method of preparing the same
WO2004078225A1 (en) Amnion-origin medical material and method of preparing the same
JP4397082B2 (en) Cell piece for transplantation and method for producing the same
WO2015105249A1 (en) Mesenchymal stem cells-hydrogel-biodegradable or mesenchymal stem cells-hydrogel-non-degradable support composition for skin regeneration or wound healing
RU2498808C2 (en) Method of treating patient&#39;s oral diseases (versions)
WO2003043542A1 (en) Ectocornea-like sheet and method of constructing the same
WO2006003818A1 (en) Corneal epithelial sheet and process for producing the same
WO2007043255A1 (en) Cultured corneal endothelial sheet and method of producing the same
Qi et al. Construction and characterization of human oral mucosa equivalent using hyper-dry amniotic membrane as a matrix
JPWO2005087285A1 (en) Corneal epithelial sheet, method for producing the same, and transplantation method using the sheet
WO2007029676A1 (en) Biological tissue sheet and method for preparation thereof
JP2009225675A (en) Feeder cell derived from same kind of skin for preparing epithelial cell sheet
ES2353990B1 (en) ELABORATION OF ARTIFICIAL FABRICS THROUGH TISULAR ENGINEERING USING FIBRINE AND AGAROSE BIOMATERIALS.
WO2006090696A1 (en) Method for preparing epithelium-denuded amnion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP