WO2007029606A1 - Light diffusion film and surface light source using same - Google Patents

Light diffusion film and surface light source using same Download PDF

Info

Publication number
WO2007029606A1
WO2007029606A1 PCT/JP2006/317301 JP2006317301W WO2007029606A1 WO 2007029606 A1 WO2007029606 A1 WO 2007029606A1 JP 2006317301 W JP2006317301 W JP 2006317301W WO 2007029606 A1 WO2007029606 A1 WO 2007029606A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
light source
light diffusing
luminance
Prior art date
Application number
PCT/JP2006/317301
Other languages
French (fr)
Japanese (ja)
Inventor
Akikazu Kikuchi
Hiromitsu Takahashi
Kozo Takahashi
Takayuki Kaneko
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Publication of WO2007029606A1 publication Critical patent/WO2007029606A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • B32B2305/18Fabrics, textiles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members

Definitions

  • the present invention relates to a light diffusing film suitably used for a planar light source such as a planar light source (backlight), a light box, an electric signboard device, and a planar illumination of a liquid crystal display. More specifically, the present invention relates to a light diffusing film that is preferably used for mounting on a light emitting surface of a so-called direct type surface light source or side light type surface light source, a direct type surface light source and a side light type surface light source using the same.
  • the surface light source has a surface light source structure called a side light type surface light source or a direct type surface light source. It has been adopted.
  • a direct-type surface light source is preferably used for a surface light source applied to a television or the like.
  • a direct type surface light source is a planar light source of a type in which a light source is disposed in a hollow casing and emitted light is emitted from the main plane of the casing (for example, Patent Document 1). That is, a structure in which a number of light sources such as cold cathode ray tubes are disposed immediately below the light emission surface.
  • the direct type surface light source among various surface light sources has a large brightness difference between the position directly on the light source on the screen and the position other than the light source, and is easily recognized as uneven brightness.
  • a translucent milky white plate (so-called light diffusing plate) having a very strong light diffusibility is used on the light exit surface (Fig. 2) to reduce luminance unevenness as much as possible.
  • This light diffusing plate is a resin plate such as acrylic or polycarbonate having a thickness of several millimeters mixed with organic and inorganic fine particles (preferably silicone fine particles). Yes.
  • liquid crystal displays and the like are required to have higher screen luminance, and in response to this, techniques such as increasing the light emission intensity of the light source are employed. In this case, uneven brightness is more likely to occur. Therefore, increasing the thickness of the light diffusing plate or further increasing the amount of fine particles added increases the light diffusibility of the light diffusing plate, thereby reducing luminance unevenness. Elimination has been attempted.
  • Patent Document 1 JP-A-5-119311 (Claim 1, FIG. 1)
  • Patent Document 2 Japanese Patent Laid-Open No. 11 268211 (Claims 1 and 2, FIGS. 1 and 4) Disclosure of the Invention
  • an object of the present invention is to provide a novel light diffusing film capable of efficiently eliminating luminance unevenness and achieving both luminance uniformity on the screen and high luminance characteristics.
  • a further object of the present invention is to provide a novel surface light source, particularly a direct type surface light source, having high brightness and high uniformity using this light diffusion film.
  • the present invention has the following configuration. That is, the light diffusing film of the present invention has a base film containing a light diffusing element inside, and the ratio of the maximum aspect ratio Asmax to the minimum value Asmin on at least one surface Asma xZAsmin (anisotropic degree) ) Is a light diffusing film with a surface irregularity shape of 1.1 or more.
  • the surface light source of this invention is a surface light source using the said light-diffusion film.
  • a direct surface light source that is excellent in high front luminance characteristics and screen uniformity, illuminates a liquid crystal screen brightly, and makes a liquid crystal image clearer and easier to see. Can do.
  • FIG. 1 is a perspective view for illustrating the structure of a surface light source using the light diffusion film of the present invention.
  • FIG. 2 is a perspective view for illustrating the structure of a planar light emitter.
  • FIG. 3 is a diagram for explaining how to obtain the surface unevenness aspect ratio of a light diffusion film.
  • FIG. 4 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
  • FIG. 5 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
  • FIG. 6 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
  • FIG. 7 is a cross-sectional view for illustrating the relationship between the average distance a between the light sources of the direct type surface light source, the average distance between the light source of the direct type surface light source and the light diffusing film, and the angle ⁇ shown in Equation (1). is there.
  • FIG. 8 is a bird's-eye view (excluding the light diffusion film) for illustrating the positional relationship between the straight lines L1 to L10.
  • FIG. 9 is a bird's eye view for explaining a measurement system of B ( ⁇ 5) and B (+5).
  • FIG. 10 is an (X-Z) cross-sectional view of the mold used in Example 3-1.
  • FIG. 11 is an (x-z) cross-sectional view of the mold used in Example 3-2.
  • FIG. 12 is an (x-z) cross-sectional view of the mold used in Example 3-3.
  • the light diffusing film of the present invention has a base film containing a light diffusing element inside, and at least one surface has a ratio of the maximum aspect ratio Asmax to the minimum value Asmin A smaxZAsmin ( It is necessary that the surface irregularity shape with an anisotropic degree of 1.1 or more is formed.
  • the light diffusion film of the present invention needs to be composed of a base film containing a light diffusion element therein. Although light is diffused also by the fine surface irregularities described later, the light may not be sufficiently diffused by the surface irregularities alone. Therefore, light can be diffused more efficiently by including a light diffusing element in the base film.
  • the light diffusing element preferably has a component force having a refractive index different from that of the main component constituting the base film. The greater the difference in refractive index, the greater the light diffusivity.
  • the resin constituting the base film is not particularly limited, but preferably has no absorption in the visible light region.
  • “having no absorption in the visible light region” means that when a film having a smooth surface of 200 ⁇ m thickness is formed only with these resins, the total light transmittance power of the film is ⁇ . ! It means 70% or more in the whole area of ⁇ 700nm.
  • resins satisfying such conditions include polyolefins (including cycloolefin copolymers), polycarbonates and polyesters. Among them, aromatic polyester is preferably used as a resin having good dimensional stability, mechanical properties, and handling properties (handleability).
  • PET polyethylene terephthalate
  • polyethylene 2, 6 naphthalene dicarboxylate polypropylene terephthalate
  • polybutylene terephthalate poly 1,4-cyclohexylene dimethylene having excellent productivity. It is more preferable to use terephthalate or the like.
  • PET fat is Since it is cheap and easily available, it can be most preferably used.
  • polyesters may be homopolymers or copolymers.
  • copolymer component in the case of a copolymer include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and diol components having 2 to 15 carbon atoms. Acids, adipic acid, sebacic acid, phthalic acid, sulfonic acid group-containing isophthalic acid, and their ester-forming compounds, diethylene glycol, triethylene glycol, neopentyl glycol, cyclohexane dimethanol, polyalkylene glycol, etc. Can be mentioned.
  • additives may be added to these polyester resins within a range that does not impair the effects of the present invention.
  • additives include optical brighteners, crosslinkers, heat stabilizers, oxidation stabilizers, UV absorbers, organic lubricants, organic and inorganic fine particles, fillers, light stabilizers, antistatic agents, nucleating agents, Examples include dyes, dispersants, and coupling agents.
  • the type of the light diffusing element contained in the interior of the resin constituting the film as described above is not particularly limited, and various inorganic particles, organic particles, resin, and the like can be used. It is preferable that the light diffusing element has no significant absorption in the visible light region.
  • the light diffusing element can be a single component or two or more components.
  • an example of an element suitably used as a light diffusing element is a polyolefin type Resin (refractive index 1.45-: L 55), silicone-based resin (refractive index 1.4-1.5), talyl-based resin (including copolymer) (refractive index 1.45-: L 55), methacrylic resin (including copolymer) (refractive index 1.45 ⁇ : L55), bubbles (refractive index 1.0), silica (refractive index 1.45 ⁇ : L6), sulfuric acid Examples thereof include barium (refractive index: 1.6 to 1.7), calcium carbonate (refractive index: 1.45: L 7), and titanium oxide (refractive index: 2.5 to 2.7).
  • fine particles composed of silicone-based resin, fine particles composed of acrylic-based resin, or fine particles composed of methacrylic resin have a low refractive index and visible light absorption. It is preferably used.
  • the fine particles refer to particles having an average particle diameter, which is an average value of sphere equivalent diameters, of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the equivalent diameter of a sphere refers to the diameter of a sphere having the same volume as that of a sphere that has a shape other than a sphere.
  • polymethylpentene when polyolefin resin is used as the light diffusing element, polymethylpentene (refractive index 1.45) can be preferably used because it has a low refractive index and little absorption in visible light.
  • polymethylpentene since polymethylpentene has a melting point of about 235 ° C., it has an advantage that it can be melt-extruded together with a polyester resin.
  • the resin constituting the base film and the resin serving as the light diffusion element are melt-extruded together, the resin constituting the light diffusion element is dispersed in the resin constituting the base film. It will be.
  • the average particle diameter of the light diffusing element can be obtained by taking the average of the sphere equivalent diameters of the resin dispersion to be the light diffusing element.
  • the average particle size of the light diffusing element is preferably 0.2 ⁇ m or more and 50 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and even more preferably 0.5 ⁇ m or more and 10 ⁇ m or less. m or less.
  • the above-mentioned refractive index is a typical value, and may vary depending on the copolymerization component, the degree of polymerization, the crystal structure, and the like.
  • the light diffusing element area occupancy ratio in a cross section perpendicular to the film surface is preferably 1% or more, more preferably 2% or more.
  • the light diffusing element area occupancy is 1% or more, the light diffusing property is improved more efficiently.
  • the upper limit is not particularly specified, if it exceeds 50%, the light diffusibility becomes too large, and the light incident on the film is scattered not only forward but also backward. The transmittance may decrease.
  • the number density of the light diffusing elements in a cross section perpendicular to the film surface is preferably 250 Zmm 2 or more. More preferably 500 ZMM 2.
  • the number density of the light diffusing elements is 250 Zmm 2 or more, the light diffusing property is more efficiently obtained.
  • the upper limit is not particularly defined, it exceeds 100,000,000 ZMM 2, only the light-diffusing property becomes too large, the light incident on the film in the rear as well as front only Due to scattering, the light transmittance may decrease.
  • the occupation ratio of the light diffusing elements in the cross section of the film is 1% or more and the number density of the light diffusing elements in the cross section of the film is 250 Zmm 2 or more. In this case, light diffusivity is very efficiently increased.
  • the base film containing the light diffusing element is stretched beyond the -axis. More preferably, it is stretched biaxially. This is because at least the base film is stretched so that the entire light diffusion film can have excellent mechanical properties such as high strength.
  • thermoplastic resins A and B that satisfy the following formula (I) are prepared.
  • TA is the melting point of resin A
  • TB is the melting point of resin B.
  • Laminate resin A having a melting point higher than that of resin B on one or both sides of resin B.
  • the light diffusing element is dispersed in the resin B to obtain an unstretched laminated sheet.
  • the laminated sheet is stretched uniaxially or more.
  • separation may occur at the interface between the resin B and the light diffusing element, and voids called voids may be formed.
  • the voids themselves are appropriate light diffusing elements.
  • the transmittance of the laminated sheet decreases, and when used as a light diffusion film, the luminance characteristics may be inferior.
  • the voids can be eliminated by heat treatment under conditions satisfying the following formula ( ⁇ ).
  • TH is a heat treatment temperature. That is, by performing a heat treatment at a temperature at which only the resin B is melted, the void between the resin B and the light diffusing element once generated can be eliminated.
  • the type of rosin used in sorghum A and B is not particularly limited, but polyethylene terephthalate is used as slab A, polyethylene terephthalate is used as sallow B, and isophthalic acid is cyclohexane. Preferred is rosin copolymerized with sandimethanol etc. to lower its melting point. Appropriately used.
  • the light diffusing element used at this time is not particularly limited.
  • the above-described light diffusing element can be preferably used.
  • fine particles composed of silicone-based resin, acrylic It is particularly preferable to use fine particles composed of a system resin, microparticles composed of a methacrylic resin, or polymethylpentene, refractive index and points of dispersibility in a resin.
  • the light diffusing film of the present invention has at least one surface having a concave / convex shape having a ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the
  • the shape of the surface irregularities formed on the film surface in the present invention is not particularly limited. However, at least one surface needs to have a surface irregularity shape in which the ratio AsmaxZAsmin (anisotropic degree) of the maximum value Asmax and the minimum value Asmin of the average aspect ratio is 1.1 or more.
  • the average aspect ratio is obtained as follows.
  • the film surface direction is defined as the X-axis direction (an arbitrary direction is defined as a positive direction), and the film thickness direction is defined as the y-axis direction.
  • A1 be the nearest recess (minimum point in the thickness direction) in the positive X-axis direction with respect to AO.
  • Asl force The simple average of AslOO is obtained, and this is defined as the aspect ratio As (0 °) of the surface shape. However, if the irregularity is only up to An, the simple average of Asl force Asn is obtained, and this is used as the aspect ratio As (0 °) of the surface irregularity.
  • n is an integer less than 100.
  • anisotropy of the aspect ratio in the film plane is determined as follows.
  • the light diffusion film of the present invention has an anisotropy of at least one surface unevenness of 1.
  • the anisotropy is preferably 1.3 or more, more preferably 1.5 or more, and particularly preferably 2.0 or more.
  • the direct type surface light source in which the light diffusion film of the present invention is particularly used is a light source having a straight portion as shown in FIGS. 4, 5, and 6 (examples include a cold cathode tube, an organic EL, an inorganic EL, and an LED). In many cases, it is installed so that the straight portions thereof are substantially parallel to each other.
  • the emitted light distribution (luminance distribution) of the light source power varies greatly depending on the direction to the light source. That is, there is a large anisotropy. Therefore, it is not necessary to diffuse light in the direction parallel to the linear direction of the light source, but diffuse light very strongly in the direction perpendicular to the linear direction of the light source. There is a need.
  • the fine unevenness imparted to the film surface has a function of diffusing light.
  • This light diffusivity does not need to be the same in the entire plane. In other words, it is necessary to diffuse light strongly in the direction perpendicular to the linear direction of the light source, but it is not necessary to diffuse light strongly in the direction parallel to the linear direction of the light source. . Rather, in the direction parallel to the linear direction of the light source, it is considered that it is not necessary to diffuse the light strongly so that the luminance is not lowered.
  • the light diffusing film of the present invention the light beam direction can be controlled efficiently, and the luminance characteristics are considered to be improved as compared with the conventional light diffusing plate.
  • the in-plane angle indicating the minimum value Asmin is substantially orthogonal to the in-plane angle indicating the maximum value Asmax of the aspect ratio of the uneven surface shape.
  • substantially orthogonal means that the cut surface As (0 °), As (15.), '-' As (165.) in increments of 15 ° It means that the cut surface to be orthogonal. For example, when As (0 °) is Asmax and As (90 °) is Asmin, or As (105 °) is Asmax and As (15 °) is Asmin.
  • the unevenness formed on the surface should be fine.
  • the light diffusing film of the present invention can be suitably used for a liquid crystal display or the like. Since the display is observed by human eyes, the surface unevenness of the light diffusing film is visually recognized. This is because it is often preferable in terms of quality.
  • Axav is preferably 0.5 mm or less, and more preferably 0.2 mm or less.
  • the lower limit is not particularly specified, but it is 0.1 m or more.
  • Asmax is preferably 0.3 or more. More preferably, it is 0.5 or more, particularly preferably 0.7 or more, and most preferably 1.0 or more.
  • Asmax is 0.3 or more, excellent light diffusibility can be obtained, and screen uniformity and luminance characteristics can be improved.
  • the upper limit is not particularly specified, but is preferably 10 or less. If it exceeds 10, the tendency of light rays to be emitted only in a specific direction becomes strong, and it may not contribute much to the brightness uniformity in the screen.
  • the shape of the surface irregularities is not particularly limited, and may be a regular shape or an irregular shape.
  • regular shapes include quadratic curves and some or all of trigonometric functions.
  • the method for imparting such a fine surface irregularity shape to the substrate film is not particularly limited, but thermal imprinting and optical imprinting can be suitably used.
  • Thermal imprinting refers to heating a mold with a fine surface shape and a resin, pressing the mold against the resin, cooling the mold and the resin, and then releasing the mold. In this method, the shape on the mold surface is transferred to the resin.
  • the resin used for thermal imprinting may be a thermoplastic resin or a thermosetting resin, but a highly transparent resin is preferred.
  • the resin suitable for thermal imprinting include acrylic resin, silicone resin, various olefin copolymers, polycarbonate, polystyrene, polyolefin, polyethylene terephthalate, and the like.
  • polyethylene terephthalate when polyethylene terephthalate is used, it is preferable to copolymerize isophthalic acid, cyclohexanedimethanol, naphthalate, spiroglycol, fluorene or the like in order to reduce crystallinity. This is because when the crystallinity is high, the film may crystallize and become white when heat imprinted.
  • optical imprinting is a method in which a photocurable resin is applied on a base film, a mold having a fine surface shape is pressed against a portion to which the photocurable resin is applied, The part is irradiated with light such as ultraviolet rays, the photocurable resin is cured, then released, and the shape applied to the mold surface It is a technique to transfer the shape to rosin.
  • the resin suitable for optical imprint include acrylic resin.
  • the light transmittance of the light diffusion film of the present invention is preferably 40% or more. More preferably, it is 50% or more, particularly preferably 60% or more. This is because the luminance characteristics can be improved by setting the light transmittance to 40% or more.
  • the haze of the light diffusion film of the present invention is preferably 50% or more. More preferably, it is 65% or more, particularly preferably 80% or more. This is because when the haze is 50% or more, the screen uniformity when the light diffusion film is used as a surface light source can be improved.
  • the overall thickness of the light diffusion film of the present invention is preferably 1000 ⁇ m or less. Further, it is preferably 10 to 500 ⁇ m, particularly preferably 20 to 300 ⁇ m.
  • the “total thickness of the light diffusing film” is the thickness of the base film when the light diffusing film is composed only of the base film.
  • the thickness is the combined thickness of the base film and the resin layer.
  • the total thickness is 1000 m or less, the light diffusing film can be reduced in weight, and handling properties can be improved. By reducing the weight, it is possible to reduce the load applied to the surface light source when the light diffusing film is actually mounted on the surface light source.
  • the light diffusing film when the total thickness is 300 m or less, the light diffusing film can be easily wound up in a roll shape, and handling properties and post-processing properties can be remarkably improved.
  • the thickness of the entire surface light source when it is used as a light diffusing film for a liquid crystal display or the like, the thickness of the entire surface light source may increase, which may be preferable.
  • the light diffusion film is a plate-like material that is incorporated into a surface light source for light diffusion. Specifically, it is often used for a light diffusion plate of a direct type surface light source. Accordingly, it is preferable that the light diffusing film has an achromatic color or slightly bluish in terms of the color tone of the screen.
  • a fluorescent brightening agent for example, commercially available fluorescent whitening agents can be used as appropriate. For example, UBITEC (R) (Ciba-Gaigi), OB-1 (Eastman), TBO (Sumitomo Seika), Keikoru.
  • the light diffusing film of the present invention is in the normal direction when light is incident on the light diffusing film in an angle range of 20 ° to 50 ° with respect to the normal direction of the film surface. It is preferable that the minimum value BI of the specific luminance of the transmitted light beam is 0.0013 or more. More preferably, it is 0.004 or more, and particularly preferably 0.008 or more.
  • the maximum average specific luminance Bmax is preferably 0.002 or more, more preferably 0.005 or more, and particularly preferably 0.01 or more.
  • the specific luminance is a value obtained by a measuring device called a go-off otometer.
  • the specific measurement method is the force described in detail below.
  • the average specific luminance is the specific luminance of light transmitted in the normal direction when the light beam is incident on the light diffusion film at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface.
  • the maximum average specific brightness Bmax is the value that gives the maximum average specific brightness, taking into account the front and back of the film and the in-plane anisotropy of the film. Detailed measurement methods will be described later.
  • the values of the minimum specific brightness BI and Z or the maximum average specific brightness Bmax within the above range, a light diffusion film having a high brightness unevenness improvement effect and a brightness improvement effect can be obtained.
  • the upper limits of the specific luminance minimum value BI and the maximum average specific luminance Bmax are not particularly limited, but are preferably 0.5 or less. If it exceeds 0.5, light is transmitted only in a specific direction, which may be inferior in luminance unevenness improvement effect and luminance characteristics.
  • the light diffusing film of a preferred embodiment of the present invention in which the specific luminance minimum values BI and Z or the maximum average specific luminance Bmax are within the above range is a direct-type surface light source having two or more linear light source portions.
  • the two or more linear light source sections mean that a plurality of linear light sources as shown in FIG. 4 are arranged side by side, and two or more straight line sections as shown in FIGS. 5 and 6 are U-shaped. In some cases, it may be composed of Multiple light source It is preferable that the straight portions are parallel.
  • the light diffusion film of the present invention is a method in which light is incident on the light diffusion film at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface, and the film is rotated in-plane. It is preferable that the ratio Bmax ⁇ ZBmin of the maximum average specific luminance Bmax and the minimum average specific luminance Bmin of light transmitted in the line direction is 1.1 or more. More preferably, it is 1.3 or more, and particularly preferably 1.5 or more. When the BmaxZBmin of the light diffusing film is 1.1 or more, it is possible to obtain high luminance characteristics while efficiently equalizing the luminance in the screen.
  • the minimum average specific luminance Bmin and BmaxZBmin are obtained by the method described below using a go-off otometer.
  • the measurement is performed by transmission measurement, the tilt angle is 0 ° (no tilt), and a polarizing filter and a bandpass filter (such as a color filter) are not used! ,.
  • 0 20 °, 25 °, 30 °, 35 °, 40 °, 45 °, 50 °, 20 °, 25 °, 30 °, 35 °
  • ⁇ & ⁇ ( ⁇ 0 °, a plane)
  • indicates the in-plane rotation angle in the measurement (clockwise direction is the + direction).
  • the highest Bav obtained up to (9) above is taken as the maximum average specific luminance Bmax.
  • the BM at the surface and angle ⁇ when Bmax is measured is defined as the minimum specific brightness value BI.
  • the surface opposite to the surface usually has the maximum average specific luminance Bmax. become.
  • the direct type surface light source for which the film is preferably used has a light source having two or more straight portions as shown in FIGS. 4 to 6 and is installed so that the straight portions are substantially parallel to each other. Many. That is, there is a large anisotropy in the outgoing light distribution with the light source power.
  • Luminance unevenness is a phenomenon caused by the difference between the luminance directly above the light source and the luminance between the light sources due to the large anisotropy of the emitted light distribution of the strong light source power.
  • the direct type surface light source When the direct type surface light source is observed from the front (when viewed from the normal direction with respect to the light emitting surface of the surface light source), the light source itself is a light emitter, and the brightness is very high.
  • the luminance between the light sources mainly depends on how much light incident on the light diffusing film is refracted and scattered in the direction of the observer, in addition to the light source power existing in the vicinity.
  • a is the average distance between the light sources of the direct type surface light source
  • b is the average distance between the light source of the direct type surface light source and the light reflection diffusion film.
  • the angle ⁇ indicates the angle shown in FIG.
  • a is a force that is the average distance between the light sources of the direct type surface light sources. This is obtained as follows.
  • the long side direction of the surface light source is the L side, and the short side direction is the S side. If the surface light source is square, the L side and S side are determined for convenience. Next, divide one L side into 11 equal parts, and draw straight lines L1 to L10 perpendicular to the L side to the other L side as well (Fig. 8).
  • one S side is divided into 11 equal parts, and straight lines S1 to S 10 are drawn perpendicularly to the S side from the equally divided point to the other S side. Then, the same operation as (2) to (3) is performed to obtain SA1 to SA11 and SA.
  • the average of LA1 to 10 and SA1 to 10 is defined as the average distance a between the surface light sources. Note that straight lines without data are not subject to average calculation.
  • b is an average distance between the direct type surface light source and the light diffusion film. This is obtained as follows.
  • linear light source unit 1 Numbers are assigned to each linear light source unit for convenience, such as linear light source unit 1, linear light source unit 2,..., Linear light source unit n.
  • ⁇ of a direct type surface light source used in a liquid crystal display or the like currently on the market is 30. Most of them are about 40 °.
  • the light diffusion film of the present invention has a performance of emitting light incident in an angle range of 20 ° to 50 ° corresponding to ⁇ in the normal direction of the film surface.
  • the minimum value ⁇ of the specific luminance is 0.0013 or more at the in-plane angle ⁇ having the highest diffusibility or the highest directivity of the emitted light.
  • the minimum value ⁇ of the specific luminance is incident within an angle range of 20 ° to 50 ° with respect to the film surface at the in-plane angle ⁇ with the highest diffusibility or the highest directivity of the emitted light. It can be said that it is an index indicating the lower limit of the ability to emit light in the normal direction of the film surface.
  • the maximum average luminance Bmax is obtained by measuring the incident light in the angle range of 20 ° to 50 ° with respect to the film surface at the in-plane angle ⁇ having the highest diffusibility or the highest directivity of the emitted light. It can be said that this is an index indicating the average of the performance of emission in the normal direction of the film surface.
  • the maximum average specific luminance Bmax is preferably 0.002 or more.
  • the film of the present invention can be applied to all in-planes (in other words, any ⁇
  • the specific brightness minimum value BI and maximum average specific brightness Bmax are high and are not necessary. Rather, it is thought that it is not necessary to reduce the brightness if the light is not diffused strongly.
  • the light diffusing film of the present invention has an optical anisotropy in the film plane.
  • the ratio BmaxZBmin between the maximum average specific luminance ratio Bmax and the minimum average luminance ratio Bmin is 1. Desirably 1 or more.
  • the light diffusion film of the present invention efficiently controls the emission direction of the incident light, and the luminance characteristics are improved as compared with the conventional light diffusion film while reducing the luminance unevenness. It is considered a thing.
  • the light diffusion film of the present invention exhibits a high luminance unevenness improvement effect and luminance characteristics with a direct type surface light source having a ⁇ force of 0 ° to 60 °. More preferably, it is 20 ° to 50 °, and further preferably 30 ° to 40 °.
  • the ⁇ force is greater than 0 °, the distance between the light sources becomes very large, and even if the specific luminance BI, Bmax, Bmax ⁇ ZBmin is set within a suitable range, the luminance unevenness may not be sufficiently eliminated. On the other hand, if the ⁇ force is less than 0 °, the luminance characteristics may be inferior.
  • the average specific luminance B (+5) satisfies the following formula (IV), or the average specific luminance B (-5) satisfies the following formula (V).
  • the average specific luminance B (+5) is transmitted in the direction of + 5 ° with respect to the normal direction when incident at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface. It is the average specific luminance.
  • the average specific brightness B (-5) is transmitted in the direction of 5 ° with respect to the normal direction when incident at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface direction.
  • the measurement of B (+5) and B (-5) shall be performed based on the measurement condition of Bmax.
  • the Bmax value is first measured, and then the receiving angle of the receiver is set to + 5 ° or 5 ° from the normal direction of the film ( Figure 9).
  • the tilt angle shall be 0 ° (no tilting).
  • the diffusion film of the present invention satisfies the formula (IV) or (V), the improvement in luminance unevenness can be further enhanced.
  • B (+ 5) ZBmax or B ( ⁇ 5) ZBma X is small, which means that light with strong directivity is incident on incident light with a constant incident angle ⁇ . It means that a line is emitted. In other words, the light beam is emitted intensely only in a certain angle direction.
  • the light diffusing film has the role of leveling the luminance in the screen, but it is preferable that the light is emitted only in a specific angle direction like a prism. If a light beam is emitted strongly only in a specific angle direction, light is hardly emitted in the other direction, which may contribute little to luminance uniformity in the screen.
  • the surface of the light diffusing film may have a fine uneven shape.
  • the maximum value of the aspect ratio Asmax should be 0.3 or more. Asmax is more preferably 0.5 or more, and particularly preferably 0.7 or more. By setting the aspect ratio Asmax to 0.3 or more, the specific luminance minimum value BI and specific luminance Bmax can be increased.
  • the upper limit of Asmax is not particularly specified, but is preferably 10 or less.
  • B (+ 5) ZBmax and B (— 5) ZBmax may become small, which is not very good for luminance uniformity in the screen. This is because there are things.
  • the light diffusion film of the present invention has an anisotropy AsmaxZAsmin of 1.1 or more, but when AsmaxZAsmin is 1.1 or more, the value of BmaxZBmin can be increased.
  • AsmaxZAsmin is more preferably 1.3 or more, particularly preferably 1.5 or more.
  • the light diffusing film of the present invention preferably has a surface irregularity shape with an anisotropic degree of 1.1 or more formed on the surface of the base film containing the light diffusing element therein (hereinafter referred to as the present invention).
  • Preferred form I) “the surface unevenness shape of 1.1 or more is formed on the surface of the base film containing the light diffusing element therein” means that the base film itself has an anisotropic degree of 1 A form in which one or more surface irregularities are formed, or a form in which a surface irregularity having a degree of anisotropy of 1. or more is formed in the coating layer applied to the base film.
  • this is a form in which a light diffusing element is contained in one film and a surface uneven shape having an anisotropy of 1.1 or more is formed.
  • a film that contains a light diffusing element inside and a film that has a surface with an irregularity of 1.1 or more on its surface are overlapped. It is not a form of overlapping different films.
  • optical properties of the light diffusing film are preferably different in the preferred embodiment of the present invention from Form I and the form in which separate films are laminated.
  • the power for which the details of this reason are under intensive study The present inventors consider as follows! / Speak.
  • Form I of the present invention the above phenomenon does not occur.
  • a surface irregularity shape having an anisotropy of 1.1 or more is formed on the surface of the substrate film itself, the critical angle does not exist and the light transmittance increases.
  • the refractive index of the base film is smaller than the refractive index of the substance constituting the coating layer After all, there is no critical angle and the light transmittance is high.
  • the critical angle is larger because the refractive index difference is smaller than the refractive index difference between the base film and air. As a result, the light transmittance is increased.
  • a light beam having a wide emission angle is incident on the surface uneven shape with a sufficient amount of light, and as a result, more light is anisotropically diffused by the surface uneven shape. Can be considered. Therefore, it is easy for the light diffusion film of the preferred form I of the present invention to have two effects of high luminance characteristics and luminance uniformity.
  • the light diffusing film of the present invention when mounted on a surface light source, it is preferable that the surface provided with a surface irregularity shape having an anisotropy degree of 1.1 or more is positioned so as to be located in the viewer direction. .
  • the in-plane luminance of the surface light source can be particularly improved, and the in-plane luminance uniformity can also be improved.
  • the light diffusion film and the light source It is preferred to have a fabric in between.
  • the fibers constituting the light diffusing fabric include acrylic fibers such as poly (methyl methacrylate) and polyacrylonitrile, polyester fibers such as polyethylene terephthalate and poly (ethylene terephthalate), polyamide fibers such as nylon 6 and nylon 66, polyurethane fibers, polyethylene, Polyolefin fibers such as polypropylene, polyimide fibers, polyacetal fibers, polyether fibers, polystyrene fibers, polycarbonate fibers, polyesteramide fibers, polyphenylene sulfide fibers, polychlorinated bull fibers, polyether ester fibers, polyacetate bull fibers, Includes a variety of synthetic fibers such as polybulutyl fiber, poly (vinylidene fluoride) fiber, ethylene-butyl acetate copolymer fiber, fluorinated resin, and styrene-acrylic copolymer fiber !
  • acrylic fibers such as poly (methyl methacrylate) and polyacrylonitrile
  • polyester fibers can be preferably used for moisture absorption stability and thermal stability, etc., but polyester fibers are also particularly preferably used for versatility and transparency. it can.
  • the fiber may be a spun yarn obtained by spinning a staple that has been crimped and cut to a predetermined length, or may be a filament yarn made of a continuous synthetic fiber.
  • the number of single yarns to be formed may be one monofilament yarn or a multifilament yarn composed of two or more single yarns. It is preferable to use a filament yarn in view of high light transmittance.
  • the fabric may have any structure such as a woven fabric, a knitted fabric, a dry nonwoven fabric, and a wet nonwoven fabric.
  • the fabric has good dimensional stability and small thickness unevenness when handling the fabric, and excellent mechanical strength.
  • a woven fabric is particularly preferable.
  • the weaving structure of the woven fabric is not particularly limited, and may be any structure such as plain weave, twill weave and satin weave.
  • the fabric Although such a fabric is generally lightweight, it itself has light diffusibility, and therefore, when combined with a light diffusing film, it is possible to further improve screen brightness uniformity and brightness. From such a viewpoint, the fabric preferably has a haze of 50% or more.
  • the fabric is preferably a woven fabric having excellent mechanical strength.
  • the color tone of the fabric and the fibers constituting it is preferably an achromatic color with no coloring.
  • a transparent color or white color that does not absorb light is preferable.
  • the fabric may be exposed to ultraviolet rays contained in the light source, and yellowing and strength deterioration may occur, and the ultraviolet durability is sufficient. It may not be.
  • the fabric turns yellow, the color tone of the light transmitted through the yellowed fabric changes, and the color tone of the display screen may also change. Therefore, it is preferable that the fabric is subjected to UV resistance treatment.
  • UV resistance treatment refers to reducing the occurrence of yellowing or deterioration of strength even when a cloth is exposed to ultraviolet rays by applying an ultraviolet absorbent or an antioxidant (hereinafter referred to as an ultraviolet absorbent) to the cloth.
  • the application method is a method of spraying an ultraviolet absorber or the like, a pad curing method in which it is dried after being immersed in a bath containing an ultraviolet absorber, a method of applying to the fiber surface, such as a coating method or a printing method. May be exhausted inside the fiber! /.
  • thermoplastic resin B chip constituting the main layer of a base film that has been sufficiently vacuum-dried as necessary;
  • a mixture of light diffusing elements is fed to a heated main extruder.
  • the added light of the light diffusing element may be obtained by using a master chip prepared by uniformly melting and kneading in advance, or may be directly kneaded and supplied to an extruder. Further, in order to laminate a thermoplastic resin layer having a melting point TA, chips of thermoplastic resin A which has been sufficiently vacuum-dried as necessary are supplied to a heated sub-extruder.
  • the raw materials are supplied to each extruder, and laminated (AZB or AZBZA) so that the polymer of the sub-extruder comes to one side of the polymer of the main extruder in the T-die composite die.
  • Co-extrusion molding is performed to obtain a melt-laminated sheet.
  • the molten laminated sheet is closely cooled and fixed on a cooled drum to produce an unstretched laminated film. At this time, in order to obtain a uniform film, static electricity is applied to close the drum. It is desirable to put it on. After that, a base material finem is obtained through a stretching process, a heat treatment process, and the like as necessary.
  • the stretching method is not particularly limited, but the sequential biaxial stretching method in which the stretching in the longitudinal direction and the stretching in the width direction are separated, or the simultaneous biaxial stretching in which the stretching in the longitudinal direction and the stretching in the width direction are performed simultaneously. There is a law.
  • the unstretched laminated film is guided to a heated roll group, stretched in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film), and then cooled roll group Cool with.
  • both ends of the film stretched in the longitudinal direction are guided to a heated tent while being held by clips, and can be stretched in a direction perpendicular to the longitudinal direction (lateral direction or width direction).
  • the substrate film is obtained by uniformly cooling and then cooling to near room temperature.
  • a photocurable resin is coated on the base film using a known coating means. After coating, press a mold with an uneven surface with an aspect ratio of 1.1 or more and irradiate it with light.
  • the light irradiation direction is not particularly limited.
  • the light diffusing film of the present invention is obtained by releasing the mold after irradiating light and curing the photocurable resin. Can do.
  • the light diffusion film is cut perpendicularly to the film surface direction without crushing it in the thickness direction.
  • the cut section is enlarged and observed with a scanning electron microscope such as S-2100A (Hitachi, Ltd.) at an appropriate magnification (500 to 10000 times as a guide), and in accordance with the method described above. Calculate the maximum value Asmax, the minimum value Asmin, and the degree of anisotropy AsmaxZAsmin of the aspect ratio of the surface irregularity shape. Note that the N number of samples measured in each of the examples, comparative examples, and reference examples is 1.
  • Light transmittance and haze were measured using a direct reading haze computer HGM-2DP (for C light source) (manufactured by Suga Test Instruments Co., Ltd.). The total light transmittance and haze are obtained for both surfaces of the light diffusion film, and the values on the surface with higher light transmittance are the light transmittance and haze of the light diffusion film.
  • the N number of samples measured for each example, comparative example, and reference example is 1.
  • the total thickness of the film is measured from the magnified image, and this is taken.
  • the range of thickness direction LX film surface direction L is arbitrarily defined, and the range The total area of the light diffusing elements contained therein is calculated.
  • the area occupancy of the light diffusing element is calculated by dividing the total area of the light diffusing element by the measurement range (ie, L 2 ). The same operation is performed at 10 locations with different measurement ranges, and the average value is the area occupancy ratio of the light diffusing element in the film cross section.
  • each light diffusing element can be obtained by tracing the shape of each light diffusing element on a transparent film or tracing paper from the cross-sectional image obtained above, and using this image analysis software.
  • image analysis software For example, Toyobo Co., Ltd. Image Analyzer V10LAB or NanoHunter NS2K-Lt manufactured by Nanosystem Co., Ltd., which is the software successor, the area and sphere equivalent diameter of each light diffusing element are obtained.
  • those with a sphere equivalent diameter of 0 or less are not included in the total area of the light diffusing element.
  • the simple average of the sphere equivalent diameters of the respective light diffusing elements obtained above is defined as the average particle diameter of the light diffusing elements.
  • those with a sphere equivalent diameter of 0.1 ⁇ m or less are included in the average calculation.
  • the film is formed by laminating two or more layers or a coating layer is formed, a light diffusing element is contained, and only the layer is selected and observed.
  • the light diffusion film is cut perpendicular to the film surface without being crushed in the thickness direction.
  • the cut section was magnified and observed with a scanning electron microscope such as S-2100A (Hitachi Ltd.) at an appropriate magnification (500 to L0000 as a guide). Calculate the number density of light diffusing elements in the cross section perpendicular to the surface.
  • the N number of samples measured for each example, comparative example, and reference example is 1.
  • the entire thickness of the film is measured from the magnified image, and this is taken.
  • the range in the thickness direction LX film surface direction L is arbitrarily defined, and the number of light diffusing elements included in the range is calculated.
  • light diffusing elements having a sphere equivalent diameter of 0.1 ⁇ m or less are not included in the number of light diffusing elements.
  • the number density of the light diffusing elements is calculated by dividing the number of the light diffusing elements by the measurement range (that is, L 2 ). The same operation was performed at 10 locations with different measurement ranges, and the average value was calculated for the light diffusing element in the film cross section. Number density.
  • the unit of number density is [piece Zmm 2 ].
  • Each fluorescent tube is installed in parallel with the length direction of the fluorescent tube so that the distance between the fluorescent tubes (the distance between the centers of the fluorescent tubes) is 26 mm.
  • the cross-sectional thickness (diameter) of the fluorescent tube is 2 mm.
  • the direct type surface light source has a light-reflective film (# 188E60L, manufactured by Toray Industries, Inc.) with a rectangular shape (long side is 40cm, short side is 30cm).
  • the distance between the light source center and the bottom of the reflector is 10mm. It is installed under the fluorescent tube.
  • Examples 1 1 to 1 17, 3— 1 to 3-4 and Comparative Examples 1 — 1 to 1-3, 3— 1 were rectangular (the long side was 40 cm)
  • the light diffusing film with a short side of 30 cm was installed so that the distance between the center of the fluorescent tube and the surface of the light diffusing film in the observer direction was 10 mm.
  • ⁇ of the surface light source is 52 °.
  • Examples 2-1 to 2-10, Comparative Examples 2-1 to 2-4, and Reference Examples 2-1 to 2-3 the shape is rectangular (the long side is 40 cm and the short side is 30 cm).
  • the light diffusing film was installed so that the distance between the center of the fluorescent tube and the surface of the light diffusing film in the observer direction was 18.6 mm. In this case, ⁇ of the surface light source is 35 °.
  • the light diffusion film was installed so that the direction in which the aspect ratio of the light diffusing film was maximum and the longitudinal direction of the fluorescent lamp were orthogonal to each other.
  • Luminance measurement was performed using EyeScale-3 of Eye 'system.
  • the attached CCD camera was placed at a point lm from the center of the surface light source, facing the surface light source surface.
  • the center of the surface light source refers to the center of gravity of the surface of the light diffusion film.
  • the front luminance of the surface light source was an average luminance in the range of 10 cm ⁇ 10 cm at the center of the surface light source. In this evaluation method, it is satisfactory if the front luminance of the surface light source is 5500 cdZmm 2 or more.
  • the uniformity is the maximum brightness in the range of 10cm x 10cm in the center of the surface light source. It was obtained by dividing.
  • the uniformity is preferably 1.2 or less, more preferably 1
  • V may be a screen.
  • Measurement is performed by transmission measurement.
  • the tilt angle is 0 ° (no tilt)
  • the beam aperture scale value VS1 is set to 3.0
  • the light receiving stop scale value VS3 is set to 2.0.
  • the HIGH VOLT ADJ. Value of the main body is HVA. Also panel If the value displayed on the meter (output signal) exceeds 110, use a neutral density filter. Two or more neutral density filters may be used. If a neutral density filter is used, measure the neutral density GB in advance. Dimming rate GB measurement method conforms to dimming rate GA measurement method. If the value displayed on the panel meter (output signal) does not exceed 110, the value shall be KBB.
  • the straight light transmittance was measured using a direct reading haze computer HGM-2DP (for C light source) (manufactured by Suga Test Instruments Co., Ltd.), and the measured value was defined as GA.
  • HGM-2DP for C light source
  • GA the measured value
  • measure with the neutral density filters stacked measure with the neutral density filters stacked.
  • the straight light transmittance obtained as a result of the measurement is defined as the light attenuation rate. Note that the light attenuation rate when the neutral density filter is not used is 1.00.
  • Pellets mixed with 99.93% by volume of polycarbonate as the main resin component of the light diffusing film and 0.07% by volume of anatase titanium oxide with an average particle diameter (diameter) of 1 ⁇ m as the light diffusing element. Supplied. Next, melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the obtained base film and mold were heated to 180 ° C and held for 2 minutes.
  • the surface of the base film provided with the mold shape was pressed at a pressure of 10 MPa and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 130 ° C. and the pressure was released.
  • the film with surface irregularities formed from the mold was released to obtain a light diffusion film.
  • This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.15, and the average front luminance was 5800 cdZm 2 , indicating good performance.
  • SPG-PET polyethylene terephthalate
  • spiroglycol as the main resin component of the light diffusing film is copolymerized in the extruder with 30 mol / ml of diol units.
  • Pellets mixed with 0.8% by volume of polymethylpentene were supplied as elements.
  • melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 4 m.
  • Pellets mixed with 98.8% by volume of SPG-PET as the main resin component constituting the light diffusion film and 1.2% by volume of polymethylpentene as the light diffusion element were supplied to the extruder. Next, melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size was 4.5 m.
  • This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.08, and the average front luminance was 5600 cdZm 2 , indicating good performance.
  • the polyester resin obtained by copolymerizing 10 mol% of isophthalic acid component with respect to the acid unit and 10 mol% of cyclohexanedimethanol component with respect to the glycol unit as the main resin component constituting the light diffusion film Pellets containing 97% by volume of fat (melting point TB: 225 ° C) (hereinafter referred to as “IC-PET”) and 3% by volume of polymethylpentene as a light diffusing element were supplied. Further, a sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to the sub-extruder.
  • Sub-extruder component layer Main extruder component layer:
  • Sub-extruder component layer 1: Melting three-layer lamination coextrusion was carried out to 8: 1.
  • the extruded resin was cooled on a mirror cast drum by the electrostatic application method to produce a three-layer laminated sheet.
  • This laminated sheet was stretched by a factor of 3.2 in the longitudinal direction at a temperature of 87 ° C.
  • the film was stretched 3.4 times in the width direction at 110 ° C through a 95 ° C preheating zone.
  • a substrate film with a thickness of 280 ⁇ m was obtained by heat treatment at a heat treatment temperature TH of 235 ° C for 30 seconds.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 4.8 ⁇ m.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the surface light source had a uniformity of 1.06 and an average front luminance of 5400 cdZm 2 , indicating good performance.
  • the main extruder as the main ⁇ component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 94 volume 0/0, pellets with a polymethylpentene as the light diffuser mixing 6 vol% Supplied.
  • a sub-extruder is used. Point TA: 265 ° C.) Pellets were fed.
  • the extruded resin was cooled on a mirror cast drum by the electrostatic application method to produce a three-layer laminated sheet.
  • This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C with a tenter.
  • the substrate film having a thickness of 180 ⁇ m was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, the haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are values measured by making light rays incident from the surface provided with the uneven surface shape. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface not having the surface unevenness was the light source side). Uniformity of the surface light source is 1.0 5, the average front luminance 5400CdZm 2, showed a good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy of the aspect ratio of the surface shape in the obtained light diffusion film, the number density of the light diffusion element, the area occupancy, the transmittance, the haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
  • This light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the uniformity of this surface light source was 1.03 and the average front luminance was 5500 cdZm 2 , indicating good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • This light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the uniformity of this surface light source was 1.03 and the average front luminance was 5500 cdZm 2 , indicating good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • a powerful light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the surface light source had a uniformity of 1.03 and an average front luminance of 5600 cdZm 2 , indicating good performance.
  • the thickness was changed in the same manner as in Example 1-5. A 120 ⁇ m substrate film was obtained.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
  • This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.02, and the average front luminance was 5500 cdZm 2 , indicating good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the main extruder as the main ⁇ component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 96 volume 0/0, acrylic having an average particle size of 4 mu m as a light diffusing element - styrene rack Pellets mixed with 4% by volume of bridge particles were supplied.
  • a sub-extruder was used, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder.
  • the extruded resin was cooled on a mirror cast drum by an electrostatic application method to prepare a three-layer laminated sheet.
  • the laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C with a tenter. Further, a base film having a thickness of 120 ⁇ m was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.00 and the average front luminance was 5500 cdZm 2 , indicating good performance.
  • Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • Table 1 shows the haze and the total thickness.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
  • the average front brightness was 5600cdZm 2 and showed good performance.
  • Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • Table 1 shows the haze and the total thickness.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source is 1
  • the average front brightness was 5600 cdZm 2 , indicating good performance.
  • Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.00 and the average front luminance was 5600 cdZm 2 , indicating good performance.
  • the main extruder mainly as ⁇ component IC- PET (melting point TB: 225 ° C) constituting the light diffusing film 96 volume 0/0, pellets of a mixture of polymethylpentene 4 vol% light diffuser Supplied.
  • a sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder.
  • the melted three-layer lamination coextrusion was performed so that the ratio was 8: 1.
  • a three-layer laminate sheet was prepared by cooling on a mirror-casting drum by applying electrostatic force. This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and subsequently stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C.
  • the substrate film having a thickness of 120 ⁇ m was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the surface of the light diffusing film obtained in Example 116, on which the surface unevenness is formed is in the observer direction (the surface unevenness is The layers were formed so that the surface not formed was on the fabric side.
  • Hitoshi Hitoshido of the surface light source is 1.00, the average front luminance showed good performance and 5900cdZm 2.
  • the support of the light diffusion film by the fabric was good with almost no sag of the fabric.
  • warp yarn (84dtex—72 filament, 100% polyester filament yarn), horizontal yarn (84dtex—72 filament, 100% polyester filament yarn)
  • Weaving density Vertical weaving density 110 Z-inch, horizontal weaving density 90 Z-inch.
  • the total light transmittance and haze of the fabric made with the above configuration were 51% and 90%, respectively.
  • the main extruder as the main ⁇ component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 92 volume 0/0, pellets with a polymethylpentene as the light diffuser mixing 8 vol% Supplied.
  • a sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder.
  • the component layer supplied to the sub-extruder on both sides of the component layer supplied to the main extruder in the thickness ratio is the thickness ratio.
  • Sub-extruder component layer Melting three-layer lamination coextrusion was performed so that 1: 8: 1.
  • a three-layer laminate sheet was prepared by cooling on a mirror-casting drum by applying electrostatic force. This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and subsequently stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C. Further, a heat treatment temperature TH was set at 235 ° C. for 30 seconds to obtain a base film having a thickness of 150 ⁇ m.
  • the obtained base film was directly used as a light diffusion film.
  • This light diffusion film Is flat on both sides, the number density, area occupancy, and transmittance of the light diffusing element in the film cross section
  • Table 1 shows the haze and the total thickness. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5.2 m.
  • PET pellets were supplied to the extruder as the main resin component of the film.
  • melt extrusion was performed, and a single-layer sheet was prepared by cooling on a mirror-casting drum by an electrostatic application method.
  • This single-layer sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a 95 ° C preheating zone with a tenter.
  • a base material Finolem with a thickness of 150 ⁇ m was obtained by heat treatment at a heat treatment temperature TH of 235 ° C for 30 seconds.
  • the maximum value Asm ax, the minimum value Asmin, the anisotropy, the transmittance, the haze, and the total thickness of the aspect ratio of the surface shape in the obtained light diffusion film were as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the uniformity of this surface light source is 1
  • the average front brightness was 5000 cdZm 2 .
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • the maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1.
  • the transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
  • This light diffusing film was laid such that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the uniformity of this surface light source was 1.22, and the average front luminance was 5100 cdZm 2 .
  • the polyester resin obtained by copolymerizing 10 mol% of the isophthalic acid component with respect to the acid unit and 10 mol% of the cyclohexanedimethanol component with respect to the glycol unit as the main resin component constituting the light diffusion film fat (mp 225 ° C) (hereinafter, "IC- PET" say.) 98 volume 0/0, polymethylpentene supplying pellets were mixed 2 vol% as light diffuser, also, the main extrusion A sub-extruder was used separately from the machine, and PET (melting point 265 ° C) pellets were supplied to this sub-extruder.
  • the extruded resin was cooled on a mirror cast drum by an electrostatic application method to produce a three-layer laminated sheet. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter.
  • the substrate film having a thickness of 140 ⁇ m was obtained by heat treatment at 240 ° C. for 30 seconds.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the UV curing resin (Dainippon Ink & Chemicals Co., Ltd .: Unidic 15-829) and the initiator (Ciba 'Specialty Chemicals Co., Ltd .: Irgacure 907) were UV cured.
  • Fat: Initiator Mixing at a ratio of 99: 1, mixing with a mixer for 30 minutes and stirring to obtain a coating solution.
  • the coating solution was applied to the surface of the mold provided with a surface shape so that the thickness of the coating film was 50 m. After the application, a base film was placed on the upper surface of the coating film and adhered.
  • Table 2 The total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the surface light source had a uniformity of 1.08 and an average front luminance of 5900 cdZm 2 , indicating good performance.
  • a base film having a thickness of 140 ⁇ m was obtained in the same manner as in Example 2-1.
  • An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • transmittance, haze, and total thickness were as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.06, and the average front luminance was 5800 cdZm 2 , indicating good performance.
  • a base film having a thickness of 140 ⁇ m was obtained in the same manner as in Example 2-1.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the viewer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the uniformity of this surface light source was 1.04, and the average front luminance was 5700 cdZm 2 , indicating good performance.
  • a base film having a thickness of 140 ⁇ m was obtained in the same manner as in Example 2-1.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). Uniformity of the surface light source is 1.0 3, the average front luminance 5900CdZm 2, showed a good performance.
  • a base film having a thickness of 140 ⁇ m was obtained in the same manner as in Example 2-1.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the in-plane rotation angle indicating the minimum specific brightness BI, the maximum average specific brightness Bmax, the minimum average specific brightness Bmin, the maximum / minimum ratio BmaxZBmin, and the maximum average specific brightness Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin ⁇ , maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze
  • the total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • the surface on which the uneven surface of the light diffusion film is formed is directed toward the viewer (the uneven surface)
  • the surface where no is formed is laid on the light source side.
  • the uniformity of this surface light source is 1.0
  • the average front brightness was 5800cdZm 2 , showing good performance.
  • a base film having a thickness of 140 ⁇ m was obtained in the same manner as in Example 2-1.
  • the mold used was a nickel mold with a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the obtained light diffusion film has a minimum specific brightness BI, a maximum average specific brightness Bmax, a minimum average specific brightness Bmin, a ratio between the maximum and minimum values BmaxZBmin, an in-plane rotation angle indicating the maximum average specific brightness Bmax, and Difference in in-plane rotation angle indicating minimum average specific brightness Bmin ⁇ , maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze
  • Table 2 The total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side).
  • the surface light source had a uniformity of 1.0 2 and an average front luminance of 5800 cdZm 2 , indicating good performance.
  • the diffusion film obtained in Example 2-3 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm.
  • the ⁇ of this surface light source was calculated to be 30 °, but the uniformity was 1.03 and the average front luminance was 6000 cd / m 2 , indicating good performance.
  • the diffusion film obtained in Example 2-6 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm.
  • the ⁇ of the surface light source was calculated, but was 30 °, uniformity ratio 1.02, the average front luminance 5900cd / m 2 der It showed good performance.
  • the diffusion film obtained in Example 2-3 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm.
  • the force uniformity of 40 ° was 1.05
  • the average front brightness was 5600 cdZm 2 , indicating good performance.
  • the diffusion film obtained in Example 2-6 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm.
  • the force uniformity of 40 ° was 1.03
  • the average front brightness was 5700 cdZm 2 , indicating good performance.
  • Polycarbonate pellets were supplied to the extruder as the main resin component constituting the light diffusion film. Next, melt extrusion was performed, and a single-layer sheet was prepared by cooling on a mirror-casting drum by an electrostatic application method.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the obtained single-layer sheet and mold were heated to 175 ° C and held for 2.5 minutes.
  • the surface of the single-layer sheet with the shape of the mold was pressed with a pressure of 12 MPa and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 125 ° C. and the pressure was released.
  • the film on which the surface irregularities were formed was released from the mold to obtain a light diffusion film.
  • the total thickness was as shown in Table 2. Where transmittance and haze are It is the numerical value which measured by making a light ray inject from the surface in which the surface uneven
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.19 and the average front luminance was 6100 cdZm 2 .
  • the mold used here is a nickel mold having a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the obtained single-layer sheet and mold were heated to 135 ° C and held for 3 minutes.
  • the surface on which the mold shape was given to the single-layer sheet was pressed with a pressure of lOMPa, and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 65 ° C. and the pressure was released.
  • the film on which the concave / convex shape was formed from the mold was released to obtain a light diffusion film.
  • Table 2 The total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • fat (mp 225 ° C) hereinafter, "IC- PET” say.) 98 volume 0/0, polymethylpentene supplying pellets were mixed 2 vol% as light diffuser, also, the main extrusion A sub-extruder was used separately from the machine, and PET (melting point 265 ° C) pellets were supplied to this sub-extruder.
  • a three-layer laminated sheet was prepared by cooling on a mirror-casting drum by electrostatic application. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Further, a base film having a thickness of 390 ⁇ m was obtained by heat treatment at 240 ° C. for 30 seconds.
  • the mold used here is a nickel mold having a curved surface represented by the following formula.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is / zm.
  • the mixture was mixed for 30 minutes with a mixer and stirred to obtain a coating solution.
  • the coating solution was applied to the surface of the mold surface shape so that the thickness of the coating film was 50 / zm.
  • a base film was placed on the upper surface of the coating film and adhered. Thereafter, a total of 500 mjZW of ultraviolet rays was irradiated from the base film side to the mold surface direction.
  • Table 2 The total thickness was as shown in Table 2.
  • the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
  • This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the viewer direction (the surface on which the surface irregularities were not formed was on the light source side). Uniformity of the surface light source 1. 1 0, the average front luminance was 5800cdZm 2.
  • the main extruder is supplied with pellets containing 90% by volume of IC-PET as the main resin component of the light diffusing film and 10% by volume of polymethylpentene as the light diffusing element.
  • PET melting point 265 ° C
  • the melted three-layer lamination coextrusion was performed so that the ratio was 8: 1.
  • a three-layer laminate sheet was prepared by cooling on a mirror-cast cast drum by the electrostatic application method. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Furthermore, the substrate film having a thickness of 140 ⁇ m was obtained by heat treatment at 240 ° C. for 30 seconds.
  • the obtained light diffusion film has a minimum specific brightness BI, a maximum average specific brightness Bmax, a minimum average specific brightness Bmin, a ratio between the maximum and minimum values BmaxZBmin, an in-plane rotation angle indicating the maximum average specific brightness Bmax, and Difference in in-plane rotation angle indicating minimum average specific brightness Bmin ⁇ , maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze
  • Table 2 The total thickness was as shown in Table 2.
  • This light diffusion film was incorporated into a surface light source. Uniformity of the surface light source 1. 24 average positive surface brightness was 4300cdZm 2.
  • the main extruder is supplied with pellets containing 98% by volume of IC-PET as the main resin component of the light diffusing film and 2% by volume of polymethylpentene as the light diffusing element.
  • PET melting point 265 ° C
  • the component layer supplied to the sub-extruder on both sides of the component layer supplied to the main extruder in the thickness is the thickness ratio.
  • Sub-extruder component ratio: main extruder component ratio: sub-extruder component ratio Melting three-layer lamination coextrusion was performed so that 1: 8: 1.
  • a three-layer laminated sheet was prepared by cooling on a mirror-casting drum by electrostatic application.
  • This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Further, the substrate film having a thickness of 140 ⁇ m was obtained by heat treatment at 240 ° C. for 30 seconds.
  • the total thickness was as shown in Table 2.
  • This light diffusion film was incorporated into a surface light source. Uniformity of the surface light source 1. 79 average positive surface brightness was found to be 5200cdZm 2.
  • the diffusion film obtained in Comparative Example 2-2 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm.
  • the ⁇ of this surface light source was calculated and found to be 30 °. Uniformity 1. 73 average front luminance been filed in 5300cdZm 2.
  • the diffusion film obtained in Comparative Example 2-2 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm. Calculating ⁇ of this surface light source As a result, it was 40 °. Uniformity 1. 86 average front luminance been filed in 5000cdZm 2.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Examples 1-16.
  • z indicates the mold thickness direction
  • x and y indicate the mold surface direction.
  • the unit is ⁇ m.
  • the cross-sectional shape of the mold is shown in FIG. 10, and the shape with unevenness in the y-axis direction is a strip lens column.
  • In-plane rotation angle and minimum indicating the minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, maximum average specific brightness Bmax of the obtained light diffusion film Difference of in-plane rotation angle indicating average specific brightness Bmin ⁇ , maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy ratio of maximum value to minimum value AsmaxZAsmin, transmittance, haze, total thickness are shown in Tables 3 and 4.
  • the transmittance and haze are numerical values measured by entering light rays from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are values measured by incidence of light from a surface on which no surface irregularity is formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.01, and the average front luminance was 5700 cdZm 2 , indicating good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Examples 1-16.
  • the transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are values measured by entering light from a surface on which no surface irregularity is formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source was 1.00, and the average front luminance was 5800 cdZm 2 , indicating good performance.
  • a base film having a thickness of 120 ⁇ m was obtained in the same manner as in Examples 1-16.
  • the obtained light diffusion film has a minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax, and Minimum average specific brightness Bmin in-plane rotation angle difference ⁇ , surface shape aspect ratio maximum value Asmax, minimum value Asmin, ratio of maximum value to minimum value Anisotropy AsmaxZ Asmin, transmittance, haze
  • Tables 3 and 4 the total thickness was as shown in Tables 3 and 4.
  • the transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed.
  • BI, Bmax, and Bmin are values measured by entering light from a surface on which no surface irregularity is formed.
  • This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side).
  • the uniformity of this surface light source is 1
  • the average front brightness was 6000 cdZm 2 , indicating good performance.
  • the following fabrics were prepared and spread out, and fixed to the surface light source casing with double-sided adhesive tape (Nitto Denko Co., Ltd. No. 500).
  • the surface of the light diffusing film obtained in Example 32, on which the surface unevenness is formed is the viewer direction (the surface unevenness is formed)
  • the uniformity is 1.0.
  • the average front luminance was 6000 cdZm 2 , indicating good performance.
  • the support of the light diffusing film by the fabric was good with almost no deflection of the fabric.
  • warp yarn 56dtex—18 filament, 100% polyester filament yarn
  • horizontal thread 84dtex—36 filament, 100% polyester filament yarn
  • Weaving density Vertical weaving density 118 Z-inch, horizontal weaving density 92 Z-inch.
  • the film obtained in Comparative Example 1-1 was laid on a surface light source, and further on it (observer direction), the surface of the film obtained in Comparative Example 12 was formed with a surface irregularity shape in the observer direction (front view). It was laid so that the surface on which the surface irregularities were not formed was the light source side).
  • Table 4 shows the haze and transmittance.
  • the transmittance and haze were superimposed on the film obtained in Comparative Example 1-1 on the film obtained in Comparative Example 1-2 so that the surface with the surface irregularities formed on the outside. It is a numerical value measured by making a light ray incident from the surface on which the surface uneven shape of the film obtained in Comparative Example 12 was formed.
  • the uniformity of this surface light source was 1.27 and the average front brightness was 5200.
  • Example 3 3 70 93 150 None 1.00 6000
  • the light diffusing film of the present invention is suitable and useful for a surface light source used in a display device such as a personal computer, a television or a mobile phone, particularly a flat display device such as a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a light diffusion film comprising a base film which contains a light diffusion element inside. This light diffusion film is provided with a rough surface having a ratio between the maximum value Asmax and the minimum valum Asmin of the average aspect ratio, namely Asmax/Asmin (anisotropic degree) of not less than 1.1 on at least one side. This light diffusion film is excellent in luminance uniformity and high luminance characteristics.

Description

明 細 書  Specification
光拡散フィルムおよびそれを用いた面光源  Light diffusion film and surface light source using the same
技術分野  Technical field
[0001] 本発明は、液晶ディスプレイの面光源 (バックライト)やライトボックス、電照式看板装 置、面状照明などの面状光源に好適に用いられる光拡散フィルムに関するものであ る。さらに詳しくは、いわゆる直下型面光源やサイドライト型面光源の出射面に装着 するのに好ましく用いられる光拡散性フィルムとそれを用いた直下型面光源、サイド ライト型面光源に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a light diffusing film suitably used for a planar light source such as a planar light source (backlight), a light box, an electric signboard device, and a planar illumination of a liquid crystal display. More specifically, the present invention relates to a light diffusing film that is preferably used for mounting on a light emitting surface of a so-called direct type surface light source or side light type surface light source, a direct type surface light source and a side light type surface light source using the same.
背景技術  Background art
[0002] 近年、パソコン、テレビあるいは携帯電話などの表示装置として、液晶を利用したデ イスプレイが数多く用いられている。これらの液晶ディスプレイは、それ自体は発光体 でないために、裏側力 面光源を使用して光を照射することにより表示が可能となつ ている。また、面光源は、単に光を照射するだけでなぐ画面全体を均一に照射せね ばならないという要求に応えるため、サイドライト型面光源もしくは直下型面光源と呼 ばれる面光源の構造のものが採用されている。  In recent years, many displays using liquid crystals have been used as display devices for personal computers, televisions, mobile phones and the like. Since these liquid crystal displays are not themselves illuminants, they can be displayed by irradiating light using a backside surface light source. In addition, in order to meet the requirement that the entire surface of the surface light source must be evenly irradiated by simply irradiating light, the surface light source has a surface light source structure called a side light type surface light source or a direct type surface light source. It has been adopted.
[0003] このとき、面光源の出射光に輝度ムラがあるとディスプレイの画質が低下するため、 画面全体を均一に照射することが要求される。  [0003] At this time, if there is uneven luminance in the light emitted from the surface light source, the image quality of the display deteriorates, so that the entire screen is required to be irradiated uniformly.
[0004] なかでも、テレビなどに適用される面光源では、直下型面光源が好適に用いられる 。直下型面光源とは、中空の筐体に光源を配置し、該光源から出射光を該筐体の主 たる一平面から出射させる方式の面状光源である(たとえば特許文献 1)。即ち、光出 射面の直ぐ下の位置に、多数の冷陰極線管等の光源が配置される構造となる。  [0004] In particular, a direct-type surface light source is preferably used for a surface light source applied to a television or the like. A direct type surface light source is a planar light source of a type in which a light source is disposed in a hollow casing and emitted light is emitted from the main plane of the casing (for example, Patent Document 1). That is, a structure in which a number of light sources such as cold cathode ray tubes are disposed immediately below the light emission surface.
[0005] このため、種々の面光源の中でも直下型面光源では、画面上で光源の直上に当た る位置と、そうでない位置で大きな輝度差が生じやすぐ輝度ムラとして認識されやす いという問題がある。このため、一般に光出射面には非常に強い光拡散性を持つ半 透明の乳白板 (いわゆる光拡散板)を用い(図 2)、可能な限り輝度ムラを低減させて いる。この光拡散板には、有機'無機の微粒子 (好ましくはシリコーンの微粒子)など を混入させた厚さ数 mmのアクリルやポリカーボネートなどの樹脂の板が用いられて いる。 [0005] For this reason, the direct type surface light source among various surface light sources has a large brightness difference between the position directly on the light source on the screen and the position other than the light source, and is easily recognized as uneven brightness. There's a problem. For this reason, in general, a translucent milky white plate (so-called light diffusing plate) having a very strong light diffusibility is used on the light exit surface (Fig. 2) to reduce luminance unevenness as much as possible. This light diffusing plate is a resin plate such as acrylic or polycarbonate having a thickness of several millimeters mixed with organic and inorganic fine particles (preferably silicone fine particles). Yes.
[0006] さらに、それでも均一性が不足する場合、光拡散板に直接遮光パターンを印刷し、 光源の上部から透過する光を部分的に遮り、画面全体の輝度を均一させる方法 (た とえば特許文献 2)等も提案されて 、る。  [0006] Furthermore, if the uniformity is still insufficient, a light shielding pattern is printed directly on the light diffusing plate, and the light transmitted from the upper part of the light source is partially blocked to uniform the brightness of the entire screen (for example, patent References 2) etc. have been proposed.
[0007] 一方、液晶ディスプレイ等における画面輝度はより高いことが求められおり、これに 対しては光源の光出射強度をより大きくするなどの手法が採られている。この場合、 輝度ムラはさらに生じやすくなるため、光拡散板の厚みをさらに厚くしたり、微粒子の 添加量をさらに増やしたりすることによって、光拡散板の光拡散性を大きくし、輝度ム ラの解消が試みられてきた。  [0007] On the other hand, liquid crystal displays and the like are required to have higher screen luminance, and in response to this, techniques such as increasing the light emission intensity of the light source are employed. In this case, uneven brightness is more likely to occur. Therefore, increasing the thickness of the light diffusing plate or further increasing the amount of fine particles added increases the light diffusibility of the light diffusing plate, thereby reducing luminance unevenness. Elimination has been attempted.
特許文献 1 :特開平 5— 119311号公報 (請求項 1、図 1)  Patent Document 1: JP-A-5-119311 (Claim 1, FIG. 1)
特許文献 2:特開平 11 268211号公報 (請求項 1および 2、図 1および 4) 発明の開示  Patent Document 2: Japanese Patent Laid-Open No. 11 268211 (Claims 1 and 2, FIGS. 1 and 4) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、光拡散板の光拡散性を単に大きくすると、一方で光線透過率が減少 してしまい、光源の光出射強度の増大による輝度向上効果が減殺されてしまうという 課題があった。 However, simply increasing the light diffusibility of the light diffusing plate has a problem in that the light transmittance is decreased, and the brightness enhancement effect due to the increase in the light emission intensity of the light source is diminished.
[0009] そこで本発明の目的は、これらの点を鑑み、輝度ムラを効率良く解消し、画面上の 輝度均斉度と高輝度特性を両立できうる新規な光拡散フィルムを提供することにある 。さらに本発明の目的は、この光拡散フィルムを用いた高輝度かつ高均斉度を兼ね 備えた新規な面光源、特に直下型面光源を提供することにある。  Accordingly, in view of these points, an object of the present invention is to provide a novel light diffusing film capable of efficiently eliminating luminance unevenness and achieving both luminance uniformity on the screen and high luminance characteristics. A further object of the present invention is to provide a novel surface light source, particularly a direct type surface light source, having high brightness and high uniformity using this light diffusion film.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、上記課題を解決するために、以下の構成をとるものである。すなわち本 発明の光拡散フィルムは、内部に光拡散素子を含有する基材フィルムを有し、かつ、 少なくとも一方の表面に平均アスペクト比の最大値 Asmaxと最小値 Asminの比 Asma xZAsmin (異方度)が 1. 1以上である表面凹凸形状が形成されている光拡散フィル ムである。 In order to solve the above problems, the present invention has the following configuration. That is, the light diffusing film of the present invention has a base film containing a light diffusing element inside, and the ratio of the maximum aspect ratio Asmax to the minimum value Asmin on at least one surface Asma xZAsmin (anisotropic degree) ) Is a light diffusing film with a surface irregularity shape of 1.1 or more.
また、本発明の面光源は、上記光拡散フィルムを用いた面光源である。 発明の効果 Moreover, the surface light source of this invention is a surface light source using the said light-diffusion film. The invention's effect
[0011] 本発明の光拡散フィルムによれば、高い正面輝度特性と画面均斉度に優れ、液晶 画面を明るく照らし、液晶画像をより鮮明かつ見やすくすることができる直下型面光 源を提供することができる。  According to the light diffusing film of the present invention, there is provided a direct surface light source that is excellent in high front luminance characteristics and screen uniformity, illuminates a liquid crystal screen brightly, and makes a liquid crystal image clearer and easier to see. Can do.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]本発明の光拡散フィルムを用いた面光源の構造を例示説明するための斜視図 である。  FIG. 1 is a perspective view for illustrating the structure of a surface light source using the light diffusion film of the present invention.
[図 2]面状発光体の構造を例示説明するための斜視図である。  FIG. 2 is a perspective view for illustrating the structure of a planar light emitter.
[図 3]光拡散フィルムの表面凹凸形状アスペクト比の求め方を説明する図である。  FIG. 3 is a diagram for explaining how to obtain the surface unevenness aspect ratio of a light diffusion film.
[図 4]直線状光源構造を例示説明するための鳥瞰図 (光拡散フィルムを除く)である。  FIG. 4 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
[図 5]直線状光源構造を例示説明するための鳥瞰図 (光拡散フィルムを除く)である。  FIG. 5 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
[図 6]直線状光源構造を例示説明するための鳥瞰図 (光拡散フィルムを除く)である。  FIG. 6 is a bird's-eye view (excluding a light diffusion film) for illustrating a linear light source structure.
[図 7]直下型面光源の光源間平均距離 a、直下型面光源の光源と光拡散フィルムの 平均距離、および式(1)で示される角度 Θの関係を例示説明するための断面図であ る。  FIG. 7 is a cross-sectional view for illustrating the relationship between the average distance a between the light sources of the direct type surface light source, the average distance between the light source of the direct type surface light source and the light diffusing film, and the angle Θ shown in Equation (1). is there.
[図 8]直線 L1〜L10の位置関係を例示説明するための鳥瞰図(光拡散フィルムを除 く)である。  FIG. 8 is a bird's-eye view (excluding the light diffusion film) for illustrating the positional relationship between the straight lines L1 to L10.
[図 9]B (- 5) , B ( + 5)の測定系を説明するための鳥瞰図である。  FIG. 9 is a bird's eye view for explaining a measurement system of B (−5) and B (+5).
[図 10]実施例 3—1で用いた金型の (X-Z)断面図である。  FIG. 10 is an (X-Z) cross-sectional view of the mold used in Example 3-1.
[図 11]実施例 3— 2で用いた金型の (x-z)断面図である。  FIG. 11 is an (x-z) cross-sectional view of the mold used in Example 3-2.
[図 12]実施例 3— 3で用いた金型の (x-z)断面図である。  FIG. 12 is an (x-z) cross-sectional view of the mold used in Example 3-3.
符号の説明  Explanation of symbols
[0013] 1 :光反射フィルム [0013] 1: Light reflecting film
2 :光源  2: Light source
3 :光拡散板  3: Light diffusion plate
4 :投光器  4: Floodlight
5 :入射光線  5: Incident light
6 :受光器 7 :光拡散フィルム 6: Receiver 7: Light diffusion film
8 :金型  8: Mold
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 本発明の光拡散フィルムは、内部に光拡散素子を含有する基材フィルムを有し、か つ、少なくとも一方の表面に平均アスペクト比の最大値 Asmaxと最小値 Asminの比 A smaxZAsmin (異方度)が 1. 1以上である表面凹凸形状が形成されていることが必 要である。このような条件を満たす光拡散フィルムとすることで、直下型面光源の輝度 ムラを飛躍的に改善させること、および輝度特性を飛躍的に向上させることが可能で ある。 [0014] The light diffusing film of the present invention has a base film containing a light diffusing element inside, and at least one surface has a ratio of the maximum aspect ratio Asmax to the minimum value Asmin A smaxZAsmin ( It is necessary that the surface irregularity shape with an anisotropic degree of 1.1 or more is formed. By making the light diffusing film satisfying such conditions, it is possible to dramatically improve the luminance unevenness of the direct type surface light source and to dramatically improve the luminance characteristics.
[0015] まず、本発明の光拡散フィルムは、内部に光拡散素子を含有する基材フィルムで 構成されていることが必要である。後述する微細な表面凹凸形状によっても光は拡 散されるが、表面凹凸形状だけでは光を十分に拡散させることができないことがある 。そこで基材フィルム内部に光拡散素子を含有させることで、より効率的に光を拡散 させることがでさる。  [0015] First, the light diffusion film of the present invention needs to be composed of a base film containing a light diffusion element therein. Although light is diffused also by the fine surface irregularities described later, the light may not be sufficiently diffused by the surface irregularities alone. Therefore, light can be diffused more efficiently by including a light diffusing element in the base film.
[0016] ここで、光拡散素子は基材フィルムを構成する主たる成分とは屈折率の異なる成分 力も構成されて 、ることが好ま 、。屈折率の差が大き 、ほど光拡散性は大きくなる。  Here, the light diffusing element preferably has a component force having a refractive index different from that of the main component constituting the base film. The greater the difference in refractive index, the greater the light diffusivity.
[0017] まず、本発明において、基材フィルムを構成する榭脂は特に限定されるものではな いが、可視光領域に吸収を有しないものが好ましい。ここでいう「可視光領域に吸収 を有しな ヽ」とは、それら榭脂のみで膜厚 200 μ mの両表面が平滑なフィルムを形成 した場合に、そのフィルムの全光線透過率力 ΟΟηπ!〜 700nmの全領域にお!、て 7 0%以上であることを意味する。このような条件を満たす榭脂の例としては、ポリオレフ イン (シクロォレフィンコポリマー等も含む)、ポリカーボネートやポリエステル等が挙げ られる。中でも寸法安定性、機械特性、ハンドリング特性 (取扱い性)が良好な榭脂と して、芳香族ポリエステルが好適に用いられる。  [0017] First, in the present invention, the resin constituting the base film is not particularly limited, but preferably has no absorption in the visible light region. Here, “having no absorption in the visible light region” means that when a film having a smooth surface of 200 μm thickness is formed only with these resins, the total light transmittance power of the film is ΟΟηπ. ! It means 70% or more in the whole area of ~ 700nm. Examples of resins satisfying such conditions include polyolefins (including cycloolefin copolymers), polycarbonates and polyesters. Among them, aromatic polyester is preferably used as a resin having good dimensional stability, mechanical properties, and handling properties (handleability).
[0018] 芳香族ポリエステルの中でも、生産性に優れるポリエチレンテレフタレート(以下、 P ETと略称する)、ポリエチレン 2, 6 ナフタレンジカルボキシレート、ポリプロピレン テレフタレート、ポリブチレンテレフタレート、ポリ 1, 4ーシクロへキシレンジメチレン テレフタレートなどを用いることがより好ましい。さらに、これらの中でも PET榭脂は、 安価かつ入手容易であることから、最も好ましく用いることができる。 [0018] Among aromatic polyesters, polyethylene terephthalate (hereinafter abbreviated as PET), polyethylene 2, 6 naphthalene dicarboxylate, polypropylene terephthalate, polybutylene terephthalate, poly 1,4-cyclohexylene dimethylene having excellent productivity. It is more preferable to use terephthalate or the like. Among these, PET fat is Since it is cheap and easily available, it can be most preferably used.
[0019] これらのポリエステルはホモポリマーであってもコポリマーであってもよい。コポリマ 一である場合の共重合成分としては、芳香族ジカルボン酸、脂肪族ジカルボン酸、 脂環族ジカルボン酸、炭素数 2〜 15のジオール成分を挙げることができ、これらの例 としては、たとえばイソフタル酸、アジピン酸、セバシン酸、フタル酸、スルホン酸塩基 含有イソフタル酸、およびこれらのエステル形成性ィ匕合物、ジエチレングリコール、ト リエチレングリコール、ネオペンチルグリコール、シクロへキサンジメタノール、ポリア ルキレングリコールなどを挙げることができる。  [0019] These polyesters may be homopolymers or copolymers. Examples of the copolymer component in the case of a copolymer include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, alicyclic dicarboxylic acids, and diol components having 2 to 15 carbon atoms. Acids, adipic acid, sebacic acid, phthalic acid, sulfonic acid group-containing isophthalic acid, and their ester-forming compounds, diethylene glycol, triethylene glycol, neopentyl glycol, cyclohexane dimethanol, polyalkylene glycol, etc. Can be mentioned.
[0020] これらのポリエステル榭脂中には本発明の効果を阻害しない範囲内で各種添加物 が添加されていてもよい。これら添加物としては、蛍光増白剤、架橋剤、耐熱安定剤 、耐酸化安定剤、紫外線吸収剤、有機の滑剤、有機、無機の微粒子、充填剤、耐光 剤、帯電防止剤、核剤、染料、分散剤、カップリンブ剤などが例示される。  [0020] Various additives may be added to these polyester resins within a range that does not impair the effects of the present invention. These additives include optical brighteners, crosslinkers, heat stabilizers, oxidation stabilizers, UV absorbers, organic lubricants, organic and inorganic fine particles, fillers, light stabilizers, antistatic agents, nucleating agents, Examples include dyes, dispersants, and coupling agents.
[0021] 次に、上述したようなフィルムを構成する榭脂の内部に含有する光拡散素子の種類 は特に限定されず、各種無機粒子、有機粒子、榭脂等を用いることができる。光拡散 素子は可視光領域にぉ 、て大きな吸収を有さな 、ことが好ま 、。光拡散素子は単 一の成分であってもよ 、し、 2種類以上の成分を用いてもょ 、。  [0021] Next, the type of the light diffusing element contained in the interior of the resin constituting the film as described above is not particularly limited, and various inorganic particles, organic particles, resin, and the like can be used. It is preferable that the light diffusing element has no significant absorption in the visible light region. The light diffusing element can be a single component or two or more components.
[0022] 光拡散フィルムを構成する主たる成分にポリエステル系榭脂(屈折率 1. 55〜: L 6 5)を用いた場合、光拡散素子として好適に用いられる素子の例としては、ポリオレフ イン系榭脂 (屈折率 1. 45〜: L 55)、シリコーン系榭脂 (屈折率 1. 4〜1. 5)、アタリ ル系榭脂 (共重合体含む)(屈折率 1. 45〜: L 55)、メタクリル系榭脂 (共重合体含 む)(屈折率 1. 45〜: L 55)、気泡(屈折率 1. 0)、シリカ(屈折率 1. 45〜: L 6)、硫 酸バリウム (屈折率 1. 6〜1. 7)、炭酸カルシウム (屈折率 1. 45〜: L 7)、または酸化 チタン (屈折率 2. 5〜2. 7)などが挙げられる。  [0022] When a polyester-based resin (refractive index: 1.55 to L 6 5) is used as a main component constituting the light diffusing film, an example of an element suitably used as a light diffusing element is a polyolefin type Resin (refractive index 1.45-: L 55), silicone-based resin (refractive index 1.4-1.5), talyl-based resin (including copolymer) (refractive index 1.45-: L 55), methacrylic resin (including copolymer) (refractive index 1.45 ~: L55), bubbles (refractive index 1.0), silica (refractive index 1.45 ~: L6), sulfuric acid Examples thereof include barium (refractive index: 1.6 to 1.7), calcium carbonate (refractive index: 1.45: L 7), and titanium oxide (refractive index: 2.5 to 2.7).
[0023] なかでもシリコーン系榭脂より構成される微粒子、アクリル系榭脂より構成される微 粒子、またはメタクリル系樹脂より構成される微粒子等が、屈折率および可視光に吸 収が少ない点カゝら好適に用いられる。ここで、微粒子とは、球相当直径の平均値であ る平均粒径が 0. 1 μ m以上 100 μ m以下の粒子を指す。球相当直径とは、微粒子 等が球以外の形状を有して!/ヽた場合、その体積と同じ体積を持つ球の直径を指す。 [0024] また、光拡散素子としてポリオレフイン榭脂を用いる場合は、特にポリメチルペンテ ン (屈折率 1. 45)が屈折率および可視光に吸収が少ない点から好適に用いることが できる。また、ポリメチルペンテンは融点が 235°C程度であるため、ポリエステル系榭 脂と一緒に溶融押出することが可能であるという利点もある。 [0023] Among them, fine particles composed of silicone-based resin, fine particles composed of acrylic-based resin, or fine particles composed of methacrylic resin have a low refractive index and visible light absorption. It is preferably used. Here, the fine particles refer to particles having an average particle diameter, which is an average value of sphere equivalent diameters, of 0.1 μm or more and 100 μm or less. The equivalent diameter of a sphere refers to the diameter of a sphere having the same volume as that of a sphere that has a shape other than a sphere. [0024] Further, when polyolefin resin is used as the light diffusing element, polymethylpentene (refractive index 1.45) can be preferably used because it has a low refractive index and little absorption in visible light. In addition, since polymethylpentene has a melting point of about 235 ° C., it has an advantage that it can be melt-extruded together with a polyester resin.
[0025] このように基材フィルムを構成する榭脂と光拡散素子となる樹脂が一緒に溶融押出 される場合、光拡散素子となる榭脂は基材フィルムを構成する榭脂中に分散すること となる。この場合の光拡散素子の平均粒径は、光拡散素子となる樹脂の分散体の球 相当直径の平均をとることにより求められる。  [0025] When the resin constituting the base film and the resin serving as the light diffusion element are melt-extruded together, the resin constituting the light diffusion element is dispersed in the resin constituting the base film. It will be. In this case, the average particle diameter of the light diffusing element can be obtained by taking the average of the sphere equivalent diameters of the resin dispersion to be the light diffusing element.
[0026] 光拡散素子の平均粒径は 0. 2 μ m以上 50 μ m以下が好ましぐより好ましくは 0. 3 μ m以上 20 μ m以下、さらに好ましくは 0. 5 μ m以上 10 μ m以下である。光拡散素 子の粒径を力かる範囲にすることにより、光を効率的に拡散させることが可能となり、 輝度ムラを低減させることができる。一方、 0.: L m以下であると、レイリー散乱現象 などにより、フィルムを透過した光が色付くことがある。また、 100 m以上であると、 光拡散素子が視認され、外観上好ましくないことがある。  [0026] The average particle size of the light diffusing element is preferably 0.2 μm or more and 50 μm or less, more preferably 0.3 μm or more and 20 μm or less, and even more preferably 0.5 μm or more and 10 μm or less. m or less. By setting the particle size of the light diffusing element within the range where the light diffusion element is used, light can be diffused efficiently, and uneven brightness can be reduced. On the other hand, if it is less than 0 .: L m, the light transmitted through the film may be colored due to the Rayleigh scattering phenomenon. On the other hand, if it is 100 m or more, the light diffusing element is visually recognized, which may be unfavorable in appearance.
[0027] 尚、上記した屈折率は代表的な値であり、共重合成分や、重合度、結晶構造等に より変化し得る。  [0027] The above-mentioned refractive index is a typical value, and may vary depending on the copolymerization component, the degree of polymerization, the crystal structure, and the like.
[0028] 本発明の光拡散フィルムにおいて、フィルム面に垂直な断面での光拡散素子面積 占有率は 1%以上であることが好ましいより好ましくは 2%以上である。光拡散素子面 積占有率が 1%以上であると、光拡散性がより効率良く高まる。  In the light diffusing film of the present invention, the light diffusing element area occupancy ratio in a cross section perpendicular to the film surface is preferably 1% or more, more preferably 2% or more. When the light diffusing element area occupancy is 1% or more, the light diffusing property is improved more efficiently.
[0029] 尚、上限は特に規定されるものではないが、 50%を超えると、光拡散性があまりに 大きくなり過ぎ、フィルムに入射した光が前方のみならず後方にも散乱するため、光 線透過率が低下することがある。  [0029] Although the upper limit is not particularly specified, if it exceeds 50%, the light diffusibility becomes too large, and the light incident on the film is scattered not only forward but also backward. The transmittance may decrease.
[0030] 本発明の光拡散フィルムにおいて、フィルム面に垂直な断面における光拡散素子 の数密度は 250個 Zmm2以上であることが好まし 、。より好ましくは 500個 Zmm2で ある。光拡散素子の数密度が 250個 Zmm2以上であると、光拡散性がより効率良く t¾まる。 [0030] In the light diffusing film of the present invention, the number density of the light diffusing elements in a cross section perpendicular to the film surface is preferably 250 Zmm 2 or more. More preferably 500 ZMM 2. When the number density of the light diffusing elements is 250 Zmm 2 or more, the light diffusing property is more efficiently obtained.
[0031] 尚、上限は特に規定されるものではないが、 100000000個 Zmm2を超えると、光 拡散性があまりに大きくなり過ぎ、フィルムに入射した光が前方のみならず後方にも 散乱するため、光線透過率が低下することがある。 [0031] Incidentally, the upper limit is not particularly defined, it exceeds 100,000,000 ZMM 2, only the light-diffusing property becomes too large, the light incident on the film in the rear as well as front only Due to scattering, the light transmittance may decrease.
[0032] また、フィルム断面での光拡散素子占有率は 1%以上、かつフィルム断面での光拡 散素子の数密度は 250個 Zmm2以上であることが特に好ましい。この場合、非常に 効率的に光拡散性が高まる。 [0032] Further, it is particularly preferable that the occupation ratio of the light diffusing elements in the cross section of the film is 1% or more and the number density of the light diffusing elements in the cross section of the film is 250 Zmm 2 or more. In this case, light diffusivity is very efficiently increased.
[0033] 本発明の光拡散フィルムは光拡散素子を含有する基材フィルムがー軸以上に延伸 されていることが好ましい。より好ましくは二軸に延伸されていることである。少なくとも 基材フィルムが延伸されていることにより、光拡散フィルム全体が高い強度等の優れ た機械特性を持つことができるためである。  [0033] In the light diffusing film of the present invention, it is preferable that the base film containing the light diffusing element is stretched beyond the -axis. More preferably, it is stretched biaxially. This is because at least the base film is stretched so that the entire light diffusion film can have excellent mechanical properties such as high strength.
[0034] ここで、延伸された基材フィルムを効率良く得る方法としては、例えば以下のような 積層フィルムを作成する方法が挙げられる。  Here, as a method for efficiently obtaining a stretched substrate film, for example, a method for producing a laminated film as described below can be mentioned.
[0035] まず、下記 (I)式を満たすような熱可塑性榭脂 A, Bを用意する。  [0035] First, thermoplastic resins A and B that satisfy the following formula (I) are prepared.
TA (°C) >TB (°C) (I)  TA (° C)> TB (° C) (I)
ここで、 TAは榭脂 Aの融点、 TBは榭脂 Bの融点である。榭脂 Bの片側または両側 に榭脂 Bよりも融点の高い榭脂 Aを積層する。ここで、光拡散素子を榭脂 B中に分散 し、未延伸積層シートを得る。  Here, TA is the melting point of resin A, and TB is the melting point of resin B. Laminate resin A having a melting point higher than that of resin B on one or both sides of resin B. Here, the light diffusing element is dispersed in the resin B to obtain an unstretched laminated sheet.
[0036] 次いで、該積層シートを一軸以上に延伸する。この際、延伸に伴って、榭脂 Bと光 拡散素子の界面で剥離が生じ、ボイドと呼ばれる空隙が生じることがある。ボイドの生 成が少量の場合は、ボイド自体が適度な光拡散素子となる。しかし、ボイドが多量に 生成した場合は、積層シートの透過率が減少し、光拡散フィルムとして用いた場合、 輝度特性に劣ることがある。このような場合、延伸後、下記 (Π)式を満たす条件で熱 処理することにより、ボイドを消滅させることができる。  [0036] Next, the laminated sheet is stretched uniaxially or more. At this time, along with stretching, separation may occur at the interface between the resin B and the light diffusing element, and voids called voids may be formed. When the generation of voids is small, the voids themselves are appropriate light diffusing elements. However, when a large amount of voids are formed, the transmittance of the laminated sheet decreases, and when used as a light diffusion film, the luminance characteristics may be inferior. In such a case, after stretching, the voids can be eliminated by heat treatment under conditions satisfying the following formula (Π).
TA (°C) >TH (°C) >TB (°C) (II)  TA (° C)> TH (° C)> TB (° C) (II)
ここで、 THは熱処理温度である。即ち、榭脂 Bのみが溶融する温度で熱処理する ことにより、一旦生じた榭脂 Bと光拡散素子との間のボイドを消滅させることができる。  Here, TH is a heat treatment temperature. That is, by performing a heat treatment at a temperature at which only the resin B is melted, the void between the resin B and the light diffusing element once generated can be eliminated.
[0037] このようにして、延伸された基材フィルムを得ることができる。  [0037] In this way, a stretched substrate film can be obtained.
[0038] ここで、榭脂 A, Bに用いられる榭脂種としては特に限定されるものではないが、榭 脂 Aとしてポリエチレンテレフタレートが、榭脂 Bとして、ポリエチレンテレフタレートに イソフタル酸ゃシクロへキサンジメタノール等を共重合させ低融点化させた榭脂が好 適に用いられる。 [0038] Here, the type of rosin used in sorghum A and B is not particularly limited, but polyethylene terephthalate is used as slab A, polyethylene terephthalate is used as sallow B, and isophthalic acid is cyclohexane. Preferred is rosin copolymerized with sandimethanol etc. to lower its melting point. Appropriately used.
[0039] 尚、このとき用いられる光拡散素子は特に限定されるものではなぐ例えば、先述し た光拡散素子を好適に用いることができる。榭脂 Aにポリエチレンテレフタレート、榭 脂 Bにポリエチレンテレフタレートにイソフタル酸ゃシクロへキサンジメタノール等を共 重合させ低融点化させた榭脂を用いた場合、シリコーン系榭脂より構成される微粒子 、アクリル系榭脂より構成される微粒子、メタクリル系樹脂より構成される微粒子または 、ポリメチルペンテンカ、屈折率および榭脂への分散性の点力 特に好適に用いるこ とがでさる。  Note that the light diffusing element used at this time is not particularly limited. For example, the above-described light diffusing element can be preferably used. In the case of using a resin having a low melting point obtained by copolymerizing polyethylene terephthalate in resin A, polyethylene terephthalate in resin B and isophthalic acid cyclohexane dimethanol, etc., fine particles composed of silicone-based resin, acrylic It is particularly preferable to use fine particles composed of a system resin, microparticles composed of a methacrylic resin, or polymethylpentene, refractive index and points of dispersibility in a resin.
[0040] 次に、本発明の光拡散フィルムは、少なくとも一方の表面に平均アスペクト比の最 大値 Asmaxと最小値 Asminの比 AsmaxZAsmin (異方度)が 1. 1以上である表面凹 凸形状が形成されて ヽることが併せて必要である。  [0040] Next, the light diffusing film of the present invention has at least one surface having a concave / convex shape having a ratio AsmaxZAsmin (anisotropy) of 1.1 or more as the ratio of the maximum value Asmax to the minimum value Asmin of the average aspect ratio. It is also necessary that the
[0041] 以下、表面凹凸形状について詳細に説明する。  [0041] Hereinafter, the uneven surface shape will be described in detail.
[0042] まず、本発明においてフィルム表面に形成される表面凹凸の形状は特に限定され るものではない。しかし、少なくとも一方の表面については、平均アスペクト比の最大 値 Asmaxと最小値 Asminの比 AsmaxZAsmin (異方度)が 1. 1以上である表面凹凸 形状が形成されて ヽることが必要である。  [0042] First, the shape of the surface irregularities formed on the film surface in the present invention is not particularly limited. However, at least one surface needs to have a surface irregularity shape in which the ratio AsmaxZAsmin (anisotropic degree) of the maximum value Asmax and the minimum value Asmin of the average aspect ratio is 1.1 or more.
[0043] ここで、平均アスペクト比とは、次のようにして求められるものである。  Here, the average aspect ratio is obtained as follows.
(1) フィルムを厚み方向に潰さないようにフィルム面に対して垂直に切断し、断面を 観察する。ここでフィルム断面において、フィルム面方向を X軸方向とし (任意の方向 をプラス方向とする)、フィルムの厚み方向を y軸方向とする。  (1) Cut the film perpendicular to the film surface so as not to crush it in the thickness direction, and observe the cross section. Here, in the film cross section, the film surface direction is defined as the X-axis direction (an arbitrary direction is defined as a positive direction), and the film thickness direction is defined as the y-axis direction.
(2) 表面凹凸形状の凸部 (極大地点)のうち、任意の一点を AOとする。(図 3を参照 )  (2) AO is an arbitrary point among the convex and concave parts (maximum points) of the surface irregularities. (See Figure 3)
(3) ついで、 AOに対して X軸プラス方向において直近の凹部(厚み方向の極小地 点)を A1とする。  (3) Next, let A1 be the nearest recess (minimum point in the thickness direction) in the positive X-axis direction with respect to AO.
(4) AOと A1の X軸方向の距離の絶対値を計測し、これを Axlとする。このとき、該 距離が 0. 5 m未満の場合は、該極小地点は凹部とはみなさず、 X軸プラス方向に おいて次に直近の凹部を探し、それを A1とする。  (4) Measure the absolute value of the distance between AO and A1 in the X-axis direction, and let this be Axl. At this time, if the distance is less than 0.5 m, the local minimum point is not regarded as a recess, and the next closest recess in the X-axis plus direction is searched for, which is designated as A1.
(5) AOと A1の y軸方向の距離の絶対値を計測し、これを Aylとする。このとき、該 距離が 0. 5 /z m未満の場合は、該極小地点は凹部とはみなさず、 X軸プラス方向に おいて次に直近の凹部を探し、それを A1とする。 (5) Measure the absolute value of the distance between AO and A1 in the y-axis direction and call this Ayl. At this time, the If the distance is less than 0.5 / zm, the local minimum point is not regarded as a recess, and the next nearest recess in the X-axis plus direction is searched for, which is designated as A1.
(6) 以下の式に則り Aslを求める。  (6) Calculate Asl according to the following formula.
•Asl =Ayl/Axl Asl = Ayl / Axl
(7) っ 、で、 A1に対して X軸プラス方向にお!、て直近の凸部(厚み方向の極大地 点)を A2とする。  (7) Therefore, let A1 be the nearest convex part (maximum point in the thickness direction) in the positive direction of the X axis with respect to A1!
(8) A1と A2の X軸方向の距離の絶対値を計測し、これを Ax2とする。このとき、該 距離が 0. 5 m未満の場合は、該極大地点は凸部とはみなさず、 X軸プラス方向に おいて次に直近の凸部を探し、それを A2とする。  (8) Measure the absolute value of the distance between A1 and A2 in the X-axis direction and call this Ax2. At this time, if the distance is less than 0.5 m, the local maximum point is not regarded as a convex part, and the next closest convex part in the X-axis plus direction is searched for, and is designated as A2.
(9) A1と A2の y軸方向の距離の絶対値を計測し、これを Ay2とする。このとき、該 距離が 0. 5 m未満の場合は、該極大地点は凸部とはみなさず、 X軸プラス方向に おいて次に直近の凸部を探し、それを A2とする。  (9) Measure the absolute value of the distance in the y-axis direction between A1 and A2, and call this Ay2. At this time, if the distance is less than 0.5 m, the local maximum point is not regarded as a convex part, and the next closest convex part in the X-axis plus direction is searched for, and is designated as A2.
(10) 以下の式に則り As2を求める。  (10) Find As2 according to the following formula.
•As2=Ay2/Ax2 As2 = Ay2 / Ax2
(11) 上記(3)から(10)の作業を繰り返すことにより、 A3から A100に該当する凹凸 部を定め、 As3〜AslOOを求める。  (11) Repeat steps (3) to (10) above to determine the concavo-convex parts corresponding to A3 to A100, and obtain As3 to AslOO.
(12) Asl力 AslOOの単純平均を求め、これを表面形状のアスペクト比 As (0° ) とする。ただし、凹凸部が Anまでしかない場合は、 Asl力 Asnの単純平均を求め、 これを表面凹凸形状のアスペクト比 As (0° )とする。ここで nは 100未満の整数であ る。  (12) Asl force The simple average of AslOO is obtained, and this is defined as the aspect ratio As (0 °) of the surface shape. However, if the irregularity is only up to An, the simple average of Asl force Asn is obtained, and this is used as the aspect ratio As (0 °) of the surface irregularity. Here, n is an integer less than 100.
また、フィルム面内におけるアスペクト比の異方度は以下のように求める。  Further, the anisotropy of the aspect ratio in the film plane is determined as follows.
(13) フィルム面内において上記(1)で切断した方向に対して、時計回りに 15° ず らした方向になるようフィルムをフィルム面に対して垂直に切断する。  (13) Cut the film perpendicular to the film surface so that it is 15 ° clockwise with respect to the direction cut in (1) above.
(14) 上記(1)から(13)の作業を行い、得られた表面形状のアスペクト比を As (15 ° )とする。  (14) Perform steps (1) to (13) above, and set the aspect ratio of the obtained surface shape to As (15 °).
(15) 同様に、フィルム面内において上記(1)で切断した方向に対して、時計回りに 30° 、 45° 、 60° 、 75° 、 90° 、 105° 、 120° 、 135° 、 150° 、 165° ずらした 方向になるようフィルムをフィルム面に対してそれぞれ垂直に切断し、上記(1)から(1 3)の作業を行 、、得られた表面形状のアスペクト比をそれぞれ As (30° )、 As (45 。 )、As (60。 )、As (75。 ) ' - 'As (165° )とする。 (15) Similarly, 30 °, 45 °, 60 °, 75 °, 90 °, 105 °, 120 °, 135 °, 150 in the clockwise direction with respect to the direction cut in (1) above in the film plane Cut the film perpendicularly to the film surface so that the directions are shifted by 165 ° and 165 °. 3), the aspect ratio of the obtained surface shape was set to As (30 °), As (45.), As (60.), As (75.) '-'As (165 °) To do.
(16) As (0。 )、As (15。 )、As (30。 )、As (45。 )、As (60。 )、As (75。 ) · · ·Α s (165° )のうち、最大値を Asmax、最小値を Asminとする。  (16) As (0.), As (15.), As (30.), As (45.), As (60.), As (75.) · · · Of Α s (165 °), The maximum value is Asmax and the minimum value is Asmin.
(17) Asmaxを Asminで除した値(AsmaxZAsmin)を異方度とする。尚、 Asminが 0 の場合、異方度は無限大となる。また、 As (n° ) (n=0〜165° )の何れもが同じ値 の場合、異方度は 1となる。  (17) The value obtained by dividing Asmax by Asmin (AsmaxZAsmin) is the degree of anisotropy. If Asmin is 0, the anisotropy is infinite. In addition, when all of As (n °) (n = 0 to 165 °) have the same value, the anisotropy is 1.
[0045] 本発明の光拡散フィルムは、少なくとも一方の表面の表面凹凸形状の異方度が 1.  [0045] The light diffusion film of the present invention has an anisotropy of at least one surface unevenness of 1.
1以上であることが必要である。異方度は好ましくは 1. 3以上、さらに好ましく 1. 5以 上、特に好ましくは 2. 0以上である。表面凹凸形状の異方度を 1. 1以上にすることに より、高い輝度ムラ改善効果および輝度向上効果を有する光拡散フィルムを得ること ができる。  Must be 1 or more. The anisotropy is preferably 1.3 or more, more preferably 1.5 or more, and particularly preferably 2.0 or more. By setting the anisotropy of the surface irregularity to 1.1 or more, a light diffusion film having a high luminance unevenness improvement effect and a luminance improvement effect can be obtained.
[0046] 表面凹凸形状の異方度を 1. 1以上にすることにより、上記効果が得られる詳細な 理由につ 、ては不明であるが、本発明者らは次のように考えて!/、る。  [0046] Although the detailed reason why the above effect can be obtained by setting the anisotropy of the uneven surface shape to 1.1 or more is unknown, the present inventors consider as follows! /
[0047] 本発明の光拡散フィルムが特に用いられる直下型面光源は、図 4、図 5および図 6 に示すように直線部を有する光源 (例として冷陰極管、有機 EL、無機 EL、 LEDなど が挙げられる)を有し、かつその直線部がほぼ平行となるように設置されて 、ることが 多い。  [0047] The direct type surface light source in which the light diffusion film of the present invention is particularly used is a light source having a straight portion as shown in FIGS. 4, 5, and 6 (examples include a cold cathode tube, an organic EL, an inorganic EL, and an LED). In many cases, it is installed so that the straight portions thereof are substantially parallel to each other.
[0048] このような場合、光源の直線部と直交する方向(例えば図 4の破線で示される方向) においては、光源と光源が存在しない部分が交互に現われることとなり、輝度分布は 極めて大きな偏差を持つ。  [0048] In such a case, in the direction orthogonal to the straight line portion of the light source (for example, the direction indicated by the broken line in FIG. 4), the light source and the portion where the light source does not exist appear alternately, and the luminance distribution has a very large deviation. have.
[0049] 一方、光源の直線部と平行な方向においては、(1)光源上(2)非光源上の 2つの ノターンがあり得る。まず、(1)光源上 (例えば図 4の一点鎖線で示される方向)では 、光源の輝度分布はほぼ一様であることから、輝度分布の偏差は小さい。次に(2)非 光源上 (例えば図 4の二点鎖線で示される方向)では、光源が存在しないため輝度の 絶対値は低いものの、輝度分布の偏差は小さい。このように、光源の直線部と平行な 方向における輝度分布の偏差は小さ 、。  [0049] On the other hand, in the direction parallel to the linear portion of the light source, there can be (1) two turns on the light source and (2) a non-light source. First, (1) on the light source (for example, the direction indicated by the one-dot chain line in FIG. 4), the luminance distribution deviation is small because the luminance distribution of the light source is almost uniform. Next, (2) on the non-light source (for example, the direction indicated by the two-dot chain line in Fig. 4), since there is no light source, the absolute value of the luminance is low, but the deviation of the luminance distribution is small. Thus, the deviation of the luminance distribution in the direction parallel to the straight line portion of the light source is small.
即ち、光源力ゝらの出射光分布 (輝度分布)は、光源に対する方向によって大きく異な る、つまり大きな異方性があることになる。そこで、光源の直線方向に対して平行とな る方向については、光を拡散させる必要がない一方、光源の直線方向に対して垂直 となる方向にっ 、ては、非常に強く光を拡散させる必要がある。 In other words, the emitted light distribution (luminance distribution) of the light source power varies greatly depending on the direction to the light source. That is, there is a large anisotropy. Therefore, it is not necessary to diffuse light in the direction parallel to the linear direction of the light source, but diffuse light very strongly in the direction perpendicular to the linear direction of the light source. There is a need.
[0050] ここで、フィルム表面に付与された微細な凹凸は光を拡散させる働きがあると推定さ れる。この光拡散性は面内全てで同程度である必要はない。つまり、光源の直線方 向に対して垂直となる方向については、光を強く拡散させる必要があるが、光源の直 線方向に対して平行となる方向については、光を強く拡散させる必要がない。むしろ 、光源の直線方向に対して平行となる方向については、光を強く拡散させないほうが 輝度を低下させずにすむと考えられる。そして、結果として、本発明の光拡散フィル ムを用いることにより、光線方向を効率良く制御することとなり、輝度特性も従来の光 拡散板と比較して向上するものと考えられる。  [0050] Here, it is presumed that the fine unevenness imparted to the film surface has a function of diffusing light. This light diffusivity does not need to be the same in the entire plane. In other words, it is necessary to diffuse light strongly in the direction perpendicular to the linear direction of the light source, but it is not necessary to diffuse light strongly in the direction parallel to the linear direction of the light source. . Rather, in the direction parallel to the linear direction of the light source, it is considered that it is not necessary to diffuse the light strongly so that the luminance is not lowered. As a result, by using the light diffusing film of the present invention, the light beam direction can be controlled efficiently, and the luminance characteristics are considered to be improved as compared with the conventional light diffusing plate.
[0051] また、表面凹凸形状のアスペクト比の最大値 Asmaxを示す面内角度に対して、最 小値 Asminを示す面内角度は実質的に直交していることが好ましい。これは、上述し たように、直下型面光源において光を強く拡散させなければならない方向と、強く拡 散させなくともよ ヽ方向は直交して 、るためと考えられる。ここで「実質的に直交して いる」とは、 15° 刻みの切断面 As (0° )、As (15。 )、 ' - 'As (165。 )において、 As maxとなる切断面と Asminとなる切断面とが直交していることを意味する。例えば、 As (0° )が Asmaxで As (90° )が Asminの場合や、 As (105° )が Asmaxで As ( 15° )が Asminの場合等をいう。  [0051] Further, it is preferable that the in-plane angle indicating the minimum value Asmin is substantially orthogonal to the in-plane angle indicating the maximum value Asmax of the aspect ratio of the uneven surface shape. As described above, this is considered to be because the direction in which light should be strongly diffused in the direct type surface light source and the direction that does not require strong diffusion are orthogonal to each other. Here, “substantially orthogonal” means that the cut surface As (0 °), As (15.), '-' As (165.) in increments of 15 ° It means that the cut surface to be orthogonal. For example, when As (0 °) is Asmax and As (90 °) is Asmin, or As (105 °) is Asmax and As (15 °) is Asmin.
[0052] 本発明の光拡散フィルムにおいて、表面に形成される凹凸は微細であることが必要 であることが好ましい。  [0052] In the light diffusion film of the present invention, it is preferable that the unevenness formed on the surface should be fine.
[0053] 本発明の光拡散フィルムは液晶ディスプレイ等に好適に用いることができる力 該 ディスプレイは人間の目によって観察されるので、光拡散フィルムの表面凹凸形状が 視認されることは液晶ディスプレイ等の品質上、好ましくな 、ことが多 、ためである。  [0053] The light diffusing film of the present invention can be suitably used for a liquid crystal display or the like. Since the display is observed by human eyes, the surface unevenness of the light diffusing film is visually recognized. This is because it is often preferable in terms of quality.
[0054] そのため、本発明において微細とは、 Asmaxとなった断面において求めた Axlから AxlOOの単純平均 Axavが lmm以下である場合をいう。 Axavが lmm以下であると 、光拡散フィルムの表面凹凸形状がディスプレイ観察者によって視認されることを防 ぐことができ、高品位なディスプレイ等を提供することができる。 [0055] また、 Axavは 0. 5mm以下であることが好ましぐさらに好ましくは 0. 2mm以下で ある。下限は特に規定されるものではないが、 0. 1 m以上である。 Axavを 0. 1 μ m以上とすることにより、表面の凹凸形状に入射した光線を幾何光学的に拡散させる ことが可能となり、より効率的に光を拡散させることができる。 Therefore, in the present invention, “fine” means a case where the simple average Axav from Axl to AxlOO obtained in the cross section having Asmax is 1 mm or less. When Axav is 1 mm or less, the surface unevenness of the light diffusion film can be prevented from being visually recognized by a display observer, and a high-quality display or the like can be provided. [0055] Axav is preferably 0.5 mm or less, and more preferably 0.2 mm or less. The lower limit is not particularly specified, but it is 0.1 m or more. By setting Axav to 0.1 μm or more, it becomes possible to diffuse light incident on the surface irregularities geometrically and diffuse light more efficiently.
[0056] さらに、本発明において Asmaxは 0. 3以上であることが好ましい。さらに好ましくは 0 . 5以上であり、特に好ましくは 0. 7以上であり、最も好ましくは 1. 0以上である。 Asm axが 0. 3以上であると、優れた光拡散性を得ることができ、画面均斉度や輝度特性を 向上させることができる。尚、上限は特に規定されるものではないが、 10以下であるこ とが好ましい。 10を越えると、特定の方向にのみ光線が出射される傾向が強くなり、 画面内の輝度均斉化にはあまり寄与しないことがあるためである。  [0056] Further, in the present invention, Asmax is preferably 0.3 or more. More preferably, it is 0.5 or more, particularly preferably 0.7 or more, and most preferably 1.0 or more. When Asmax is 0.3 or more, excellent light diffusibility can be obtained, and screen uniformity and luminance characteristics can be improved. The upper limit is not particularly specified, but is preferably 10 or less. If it exceeds 10, the tendency of light rays to be emitted only in a specific direction becomes strong, and it may not contribute much to the brightness uniformity in the screen.
[0057] 尚、表面凹凸の形状としては、特に限定されず、規則的な形状であっても不規則的 な形状であっても良 、。規則的な形状の例としては二次曲線や三角関数の一部や 全部などが挙げられる。  [0057] The shape of the surface irregularities is not particularly limited, and may be a regular shape or an irregular shape. Examples of regular shapes include quadratic curves and some or all of trigonometric functions.
[0058] このような微細な表面凹凸形状を基材フィルムに付与する方法としては特に限定さ れないが、熱インプリントや光インプリントを好適に用いることができる。  [0058] The method for imparting such a fine surface irregularity shape to the substrate film is not particularly limited, but thermal imprinting and optical imprinting can be suitably used.
[0059] 熱インプリントとは、微細な表面形状が施された金型と榭脂を熱し、榭脂に金型を押 し付け、金型と榭脂を冷却後、金型を離型し、金型表面に施された形状を榭脂へ転 写させる手法である。ここで、熱インプリントに用いられる榭脂は熱可塑性榭脂であつ ても、熱硬化性榭脂であってもよいが、透明性の高い樹脂が好ましい。熱インプリント に適した榭脂としては、アクリル系榭脂、シリコーン系榭脂、各種シクロォレフィンコポ リマー、ポリカーボネート、ポリスチレン、ポリオレフイン、ポリエチレンテレフタレート等 が挙げられる。ここで、ポリエチレンテレフタレートを用いるときは、結晶性を低下させ るために、イソフタル酸、シクロへキサンジメタノール、ナフタレート、スピログリコール 、フルオレン等を共重合することが好ましい。結晶性が高いと、熱インプリントした際に フィルムが結晶化し、白色化することがあるためである。  [0059] Thermal imprinting refers to heating a mold with a fine surface shape and a resin, pressing the mold against the resin, cooling the mold and the resin, and then releasing the mold. In this method, the shape on the mold surface is transferred to the resin. Here, the resin used for thermal imprinting may be a thermoplastic resin or a thermosetting resin, but a highly transparent resin is preferred. Examples of the resin suitable for thermal imprinting include acrylic resin, silicone resin, various olefin copolymers, polycarbonate, polystyrene, polyolefin, polyethylene terephthalate, and the like. Here, when polyethylene terephthalate is used, it is preferable to copolymerize isophthalic acid, cyclohexanedimethanol, naphthalate, spiroglycol, fluorene or the like in order to reduce crystallinity. This is because when the crystallinity is high, the film may crystallize and become white when heat imprinted.
[0060] 一方、光インプリントとは、基材フィルム上に光硬化性榭脂を塗布し、微細な表面形 状が施された金型を光硬化性榭脂を塗布した部分に押し付け、該部分に紫外線等 の光線を照射し、光硬化性榭脂を硬化させ、その後離型し、金型表面に施された形 状を榭脂へ転写させる手法である。光インプリントに適した榭脂としては、アクリル系 榭脂が挙げられる. [0060] On the other hand, optical imprinting is a method in which a photocurable resin is applied on a base film, a mold having a fine surface shape is pressed against a portion to which the photocurable resin is applied, The part is irradiated with light such as ultraviolet rays, the photocurable resin is cured, then released, and the shape applied to the mold surface It is a technique to transfer the shape to rosin. Examples of the resin suitable for optical imprint include acrylic resin.
本発明の光拡散フィルムの光線透過率は 40%以上であることが好ましい。さらに好 ましくは 50%以上、特に好ましくは 60%以上である。光線透過率を 40%以上にする ことにより、輝度特性を向上させることができるためである。  The light transmittance of the light diffusion film of the present invention is preferably 40% or more. More preferably, it is 50% or more, particularly preferably 60% or more. This is because the luminance characteristics can be improved by setting the light transmittance to 40% or more.
[0061] 本発明の光拡散フィルムのヘイズは 50%以上であることが好ましい。さらに好ましく は 65%以上、特に好ましくは 80%以上である。ヘイズが 50%以上であると、光拡散 フィルムを面光源に用いた場合の画面均斉度を向上させることができるためである。  [0061] The haze of the light diffusion film of the present invention is preferably 50% or more. More preferably, it is 65% or more, particularly preferably 80% or more. This is because when the haze is 50% or more, the screen uniformity when the light diffusion film is used as a surface light source can be improved.
[0062] 本発明の光拡散フィルムの全体の厚みは 1000 μ m以下であることが好ましい。さら に好ましくは 10〜500 μ m、特に好ましくは 20〜300 μ mである。ここで「光拡散フィ ルムの全体の厚み」とは、光拡散フィルムが基材フィルムのみで構成されている場合 には、その基材フィルムの厚みである。また、光拡散フィルムが基材フィルム表面に 他の榭脂層が積層されている場合には、基材フィルムと榭脂層とを合わせた厚みで ある。全体の厚みが 1000 m以下であると、光拡散フィルムを軽量化させることがで き、また、ハンドリング性を向上させることができる。軽量ィ匕することにより、実際に光 拡散フィルムを面光源に搭載した際に、面光源に力かる荷重を小さくすることも可能 である。特に全体厚みを 300 m以下とした場合は、光拡散フィルムをロール状に卷 き取ることが容易となり、ハンドリング性や後加工性を著しく向上させることが可能であ る。一方、 1000 /z mを超えると光拡散フィルムとして液晶ディスプレイなどに用いた 場合、面光源全体の厚みが大きくなり好ましくな ヽことがある。  [0062] The overall thickness of the light diffusion film of the present invention is preferably 1000 µm or less. Further, it is preferably 10 to 500 μm, particularly preferably 20 to 300 μm. Here, the “total thickness of the light diffusing film” is the thickness of the base film when the light diffusing film is composed only of the base film. In addition, when the light diffusing film has another resin layer laminated on the surface of the base film, the thickness is the combined thickness of the base film and the resin layer. When the total thickness is 1000 m or less, the light diffusing film can be reduced in weight, and handling properties can be improved. By reducing the weight, it is possible to reduce the load applied to the surface light source when the light diffusing film is actually mounted on the surface light source. In particular, when the total thickness is 300 m or less, the light diffusing film can be easily wound up in a roll shape, and handling properties and post-processing properties can be remarkably improved. On the other hand, when it exceeds 1000 / zm, when it is used as a light diffusing film for a liquid crystal display or the like, the thickness of the entire surface light source may increase, which may be preferable.
[0063] 光拡散フィルムとは、前述したように光拡散のために面光源に組込まれる板状材で ある。具体的には直下型面光源の光拡散板に用いられることが多い。従って、画面 の色調の点で光拡散フィルムは無彩色に近いか、僅かに青みを帯びている色目が 好ましい。この点を考慮して光拡散フィルム中に蛍光増白剤を適量添加することも好 ましい態様の 1つである。蛍光増白剤としては市販のものを適宜使用すればよぐたと えば、ュビテック (R) (チバガイギ—社製)、 OB— 1 (イーストマン社製)、 TBO (住友 精化社製)、ケイコール (R) (日本曹達社製)、カャライト(R) (日本化薬社製)、リュ ーコプア(R) EGM (クライアントジャパン社製)などを用いることができる。 [0064] また、本発明の光拡散フィルムは、フィルム表面の法線方向に対して 20° 〜50° の角度範囲にぉ 、て光線を該光拡散フィルムへ入射したときに、法線方向へ透過さ れる光線の比輝度の最小値 BIを 0. 0014以上とすることが好ましい。さらに好ましく は 0. 004以上であり、特に好ましくは 0. 008以上である。 [0063] As described above, the light diffusion film is a plate-like material that is incorporated into a surface light source for light diffusion. Specifically, it is often used for a light diffusion plate of a direct type surface light source. Accordingly, it is preferable that the light diffusing film has an achromatic color or slightly bluish in terms of the color tone of the screen. In consideration of this point, it is also a preferred embodiment to add an appropriate amount of a fluorescent brightening agent to the light diffusion film. For example, commercially available fluorescent whitening agents can be used as appropriate. For example, UBITEC (R) (Ciba-Gaigi), OB-1 (Eastman), TBO (Sumitomo Seika), Keikoru. (R) (manufactured by Nippon Soda Co., Ltd.), Kyalite (R) (manufactured by Nippon Kayaku Co., Ltd.), Leukopua (R) EGM (manufactured by Client Japan), etc. can be used. [0064] The light diffusing film of the present invention is in the normal direction when light is incident on the light diffusing film in an angle range of 20 ° to 50 ° with respect to the normal direction of the film surface. It is preferable that the minimum value BI of the specific luminance of the transmitted light beam is 0.0013 or more. More preferably, it is 0.004 or more, and particularly preferably 0.008 or more.
[0065] 比輝度の最小値 BIを 0. 0014以上することで、直下型面光源の輝度ムラを飛躍的 に改善させることができる。  [0065] By setting the minimum value BI of the specific brightness to 0.0013 or more, the brightness unevenness of the direct type surface light source can be drastically improved.
[0066] また、本発明の光拡散フィルムにおいて、最大平均比輝度 Bmaxは 0. 002以上で あることが好ましぐさらに好ましくは 0. 005以上、特に好ましくは 0. 01以上である。  [0066] In the light diffusion film of the present invention, the maximum average specific luminance Bmax is preferably 0.002 or more, more preferably 0.005 or more, and particularly preferably 0.01 or more.
[0067] ここで、比輝度とはゴ-オフオトメータなる測定装置によって求められる値である。具 体的な測定法は下記に詳述する力 光拡散フィルム表面の法線方向に対して 20° 〜50° の角度で光拡散フィルムへ光線を入射したとき (入射角を 0とする)、法線方 向へ透過される光強度を入射光の光強度で除し、さらにその値を cos Θで除した値を 比輝度とする。尚、このときあおりはっけない(あおり角は 0° とする)。  Here, the specific luminance is a value obtained by a measuring device called a go-off otometer. The specific measurement method is the force described in detail below. When a light beam is incident on the light diffusion film at an angle of 20 ° to 50 ° with respect to the normal direction of the surface of the light diffusion film (incident angle is assumed to be 0), The light intensity transmitted in the normal direction is divided by the light intensity of the incident light, and the value divided by cos Θ is the specific luminance. At this time, the tilt is not allowed (the tilt angle is 0 °).
[0068] また、平均比輝度とはフィルム表面の法線方向に対して 20° 〜50° の角度で光 線を該光拡散フィルムへ入射したときの法線方向へ透過される光線の比輝度を平均 したものであり、最大平均比輝度 Bmaxとは、フィルムの表裏およびフィルムの面内異 方性を考慮した上で、最大の平均比輝度となる値を指す。詳細な測定法等について は後述する。  [0068] The average specific luminance is the specific luminance of light transmitted in the normal direction when the light beam is incident on the light diffusion film at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface. The maximum average specific brightness Bmax is the value that gives the maximum average specific brightness, taking into account the front and back of the film and the in-plane anisotropy of the film. Detailed measurement methods will be described later.
[0069] 比輝度の最小値 BIおよび Zまたは最大平均比輝度 Bmaxの値を上記範囲内にす ることにより、高い輝度ムラ改善効果および輝度向上効果を有する光拡散フィルムを 得ることができる。尚、比輝度の最小値 BI、最大平均比輝度 Bmaxの上限は特に限定 されるものではないが、 0. 5以下であることが好ましい。 0. 5を超える場合は、特定方 向にのみ光が透過され、カゝえって輝度ムラ改善効果や輝度特性に劣ることがある。  [0069] By setting the values of the minimum specific brightness BI and Z or the maximum average specific brightness Bmax within the above range, a light diffusion film having a high brightness unevenness improvement effect and a brightness improvement effect can be obtained. The upper limits of the specific luminance minimum value BI and the maximum average specific luminance Bmax are not particularly limited, but are preferably 0.5 or less. If it exceeds 0.5, light is transmitted only in a specific direction, which may be inferior in luminance unevenness improvement effect and luminance characteristics.
[0070] また、比輝度の最小値 BIおよび Zまたは最大平均比輝度 Bmaxが上記範囲内にあ る本発明の好ましい態様の光拡散フィルムは、二以上の直線光源部を有する直下型 面光源により特に好ましく用いられる。ここで二以上の直線光源部とは、図 4に示すよ うな直線状の光源が複数並んでいる場合の他に、図 5,図 6に示すような 2以上の直 線部が U字状等によって構成されて ヽるような場合も含まれる。光源における複数の 直線部は平行となって 、ることが好まし 、。 [0070] Further, the light diffusing film of a preferred embodiment of the present invention in which the specific luminance minimum values BI and Z or the maximum average specific luminance Bmax are within the above range is a direct-type surface light source having two or more linear light source portions. Particularly preferably used. Here, the two or more linear light source sections mean that a plurality of linear light sources as shown in FIG. 4 are arranged side by side, and two or more straight line sections as shown in FIGS. 5 and 6 are U-shaped. In some cases, it may be composed of Multiple light source It is preferable that the straight portions are parallel.
[0071] 2以上の直線部が U字状等によって構成されている場合、直線部が 2以上あれば 一つの光源であっても、 2以上の直線部を有する光源部に含まれる。  [0071] When two or more straight portions are configured in a U-shape or the like, if there are two or more straight portions, one light source is included in the light source portion having two or more straight portions.
[0072] 本発明の光拡散フィルムは、フィルム表面の法線方向に対して 20° 〜50° の角 度で光線を該光拡散フィルムへ入射し、フィルムを面内回転させた場合において、法 線方向へ透過される光線の最大平均比輝度 Bmaxと最小平均比輝度 Bminの比 Bma xZBminが 1. 1以上であることが好ましい。さらに好ましくは 1. 3以上、特に好ましく は 1. 5以上である。光拡散フィルムの BmaxZBminが 1. 1以上であると、画面内の輝 度を効率良く均斉化させつつ、高輝度特性を得ることができる。  [0072] The light diffusion film of the present invention is a method in which light is incident on the light diffusion film at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface, and the film is rotated in-plane. It is preferable that the ratio Bmax × ZBmin of the maximum average specific luminance Bmax and the minimum average specific luminance Bmin of light transmitted in the line direction is 1.1 or more. More preferably, it is 1.3 or more, and particularly preferably 1.5 or more. When the BmaxZBmin of the light diffusing film is 1.1 or more, it is possible to obtain high luminance characteristics while efficiently equalizing the luminance in the screen.
[0073] ここで、最小平均比輝度 Bminおよび BmaxZBminは、ゴ-オフオトメーターを用い て下記で述べる方法で求めるものである。  Here, the minimum average specific luminance Bmin and BmaxZBmin are obtained by the method described below using a go-off otometer.
[0074] 以下、比輝度の最小値 BI、最大平均比輝度 Bmaxと最小平均比輝度 Bmin、および それらの比 BmaxZBminの求め方につ!、て詳述する。  [0074] Hereinafter, the minimum value BI of the specific luminance, the maximum average specific luminance Bmax and the minimum average specific luminance Bmin, and the method for obtaining the ratio BmaxZBmin will be described in detail.
(1) 測定は透過測定で行い、あおり角は 0° (あおりなし)とし、偏光フィルターゃバ ンドパスフィルター(色フィルタ一等)は使用しな!、。  (1) The measurement is performed by transmission measurement, the tilt angle is 0 ° (no tilt), and a polarizing filter and a bandpass filter (such as a color filter) are not used! ,.
(2) 次いで、試料台には何も設置せずに、光線入射角 0を 0° 、受光角を 0° とし て光度を測定し、このときの値を KAとする。  (2) Next, without setting anything on the sample stage, measure the light intensity with a light incident angle of 0 ° and a light receiving angle of 0 °, and the value at this time shall be KA.
(3) 測定対象フィルムの両表面を、それぞれ便宜的に a面、 b面と定める。試料台に 測定対象フィルムを光線入射面が a面となるようにかつ、たわみ等がな 、ように設置し 、光線入射角 Θ (対フィルム面法線方向)を 20° 、受光角を 0° (対フィルム面法線 方向)とし、光度 KB ( 0 = 20° )を測定する。  (3) Both surfaces of the film to be measured are defined as a-side and b-side for convenience. Place the film to be measured on the sample stage so that the light incident surface is a-plane and without bending. Light incident angle Θ (normal direction of film surface) is 20 °, and light receiving angle is 0 °. Measure the luminous intensity KB (0 = 20 °).
(4) 下記式より比輝度 Bを求める。  (4) Calculate the relative luminance B using the following formula.
B ( 0 = 20° ) = (KB/KA) /cos Θ  B (0 = 20 °) = (KB / KA) / cos Θ
(5) Θ = 25° 、 30° 、 35° 、 40° 、 45° 、 50° 、—20° 、—25° 、—30° 、 - 35° 、 一 40° 、 一 45° 、 一 50° 【こお ヽても、同様【こ it輝度を求める。 Θ = 20° 、 2 5° 、 30° 、 35° 、 40° 、 45° 、 50° 、—20° 、—25° 、—30° 、—35° 、—40 。 、 —45° 、 一 50° の比輝度の最小値を ΒΜ ( φ =0° , a面)とする。また、 0 = 20 ° 、 25° 、 30° 、 35° 、 40° 、 45° 、 50° 、 一20° 、 一25° 、 一30° 、 一35° 、 —40° 、—45° 、 一 50° の比輝度の平均比輝度を求め、これを Β&ν(φ =0° , a 面)とする。ここで φは測定における面内回転角を示す(時計回り方向を +方向とす る)。 (5) Θ = 25 °, 30 °, 35 °, 40 °, 45 °, 50 °, -20 °, -25 °, -30 °, -35 °, 40 °, 45 °, 50 ° [Same as above] [This brightness is obtained. Θ = 20 °, 25 °, 30 °, 35 °, 40 °, 45 °, 50 °, -20 °, -25 °, -30 °, -35 °, -40. Let 比 (φ = 0 °, a-plane) be the minimum value of the specific brightness of -45 ° and 150 °. Also, 0 = 20 °, 25 °, 30 °, 35 °, 40 °, 45 °, 50 °, 20 °, 25 °, 30 °, 35 °, The average specific luminance of specific luminances of −40 °, −45 °, and 150 ° is obtained, and this is defined as Β & ν (φ = 0 °, a plane). Here, φ indicates the in-plane rotation angle in the measurement (clockwise direction is the + direction).
(6) フィルム面内において(3)〜(5)で測定した方向に対して、時計回りに 15° 回 転方向になるようフィルムを回転させる。即ち、 φ=15。 となる  (6) Rotate the film in the direction of 15 ° clockwise with respect to the direction measured in (3) to (5). That is, φ = 15. Become
(7) 上記(3)〜(5)の作業を行い、 ΒΜ(φ =15° , a面)および Β&ν(φ =15° , a 面)を得る。  (7) Perform steps (3) to (5) above to obtain ΒΜ (φ = 15 °, a-plane) and Β & ν (φ = 15 °, a-plane).
(8) フィルム面内において(3)で測定した方向に対して、時計回りに 30° 、45° 、 60° 、 75° 、 90° 、 105° 、 120° 、 135° 、 150° 、 165° 回転させた方向にな るようフィルムをフィルム面方向に回転させる。そして、それぞれの回転位置において 上記(3)〜(5)の作業を行い、それぞれ ΒΜ(φ =30° , a面)、 ΒΜ(φ =45° , a 面)、…、 ΒΜ(φ =165。 , a面)、および Β&ν(φ =30。 , a面)、 Bav( φ =45。 , a面)、…、 Β&ν(φ =165。 , a面)を得る。  (8) 30 °, 45 °, 60 °, 75 °, 90 °, 105 °, 120 °, 135 °, 150 °, 165 ° clockwise with respect to the direction measured in (3) in the film plane Rotate the film in the direction of the film surface so that it is in the rotated direction. Then, the above operations (3) to (5) are performed at each rotational position, and ΒΜ (φ = 30 °, a surface), ΒΜ (φ = 45 °, a surface), ..., ΒΜ (φ = 165 , A surface), and Β & ν (φ = 30,, a surface), Bav (φ = 45,, a surface),…, Β & ν (φ = 165., A surface).
(9) b面についても上記(3)〜(8)の作業を行い、それぞれ ΒΜ(φ =0° , b®)、B Μ( =15° , b面)、…、 ΒΜ(φ =165。 , b面)、および Bav( φ =— 15。 , b面) 、 ···、 Β&ν(φ =— 165° , b面)を得る。  (9) Repeat the above steps (3) to (8) for the b-plane. そ れ ぞ れ (φ = 0 °, b®), B Μ (= 15 °, b-plane), ..., ΒΜ (φ = 165 , B plane), and Bav (φ = —15,, b plane),..., Β & ν (φ = —165 °, b plane).
(10) 上記(9)までで得られた Bavのうち最も高 、値を最大平均比輝度 Bmaxとする 。また、 Bmaxを測定した際の面及び角度 φでの BMを比輝度の最小値 BIとする。本 願発明において、一方の表面のみに異方度 1. 1以上の表面凹凸形状が形成されて いる場合には、通常は、その面とは反対側の面が最大平均比輝度 Bmaxをとる面にな る。  (10) The highest Bav obtained up to (9) above is taken as the maximum average specific luminance Bmax. Also, the BM at the surface and angle φ when Bmax is measured is defined as the minimum specific brightness value BI. In the present invention, when a surface irregularity shape having an anisotropic degree of 1.1 or more is formed on only one surface, the surface opposite to the surface usually has the maximum average specific luminance Bmax. become.
(11) 最大平均比輝度 Bmaxをとる面において、面内回転角 φを変化させた上記測 定で得られた Bavのうち最も小さい値を最小平均比輝度 Bminとする。  (11) On the surface taking the maximum average specific luminance Bmax, the smallest value among the Bavs obtained by the above measurement with the in-plane rotation angle φ varied is the minimum average specific luminance Bmin.
(12) Bmaxを Bminで除した値(BmaxZBmin)を求める。尚、 Bminが 0の場合、 Bma xZBminは無限大となる。また、 Bmaxと Bminが同じ値の場合、 BmaxZBminは 1とな る。  (12) Find the value obtained by dividing Bmax by Bmin (BmaxZBmin). When Bmin is 0, Bma xZBmin is infinite. BmaxZBmin is 1 when Bmax and Bmin are the same value.
BI、 Bmax, BmaxZminを上記範囲にすることにより、上記効果が得られる詳細な理 由については不明であるが、本発明者らは次のように考えている。 本発明の光拡散 フィルムが好適に用いられる直下型面光源は、図 4〜6に示すように二以上の直線部 を有する光源を有し、かつその直線部がほぼ平行となるように設置されて 、ることが 多い。即ち、光源力もの出射光分布には大きな異方性があることになる。 Although the detailed reason why the above-mentioned effect can be obtained by setting BI, Bmax, and BmaxZmin within the above ranges is unknown, the present inventors consider as follows. Light diffusion of the present invention The direct type surface light source for which the film is preferably used has a light source having two or more straight portions as shown in FIGS. 4 to 6 and is installed so that the straight portions are substantially parallel to each other. Many. That is, there is a large anisotropy in the outgoing light distribution with the light source power.
[0076] 輝度ムラは、力かる光源力 の出射光分布の大きな異方性により、光源直上の輝度 と光源間の輝度が異なることにより生じる現象である。直下型面光源を正面から観察 すると (面光源の発光面に対して法線方向から観察すると)光源の直上は光源自体 が発光体であるために非常に高輝度となる。一方、光源間には当然のことながら、発 光体は存在せず、輝度は光源直上と比較して著しく低い。ここで光源間の輝度は、 主として近傍に存在する光源力ゝら光拡散フィルムへ入射する光がどの程度観察者方 向へ屈折 ·散乱透過されるかが重要となる。  [0076] Luminance unevenness is a phenomenon caused by the difference between the luminance directly above the light source and the luminance between the light sources due to the large anisotropy of the emitted light distribution of the strong light source power. When the direct type surface light source is observed from the front (when viewed from the normal direction with respect to the light emitting surface of the surface light source), the light source itself is a light emitter, and the brightness is very high. On the other hand, as a matter of course, there is no light emitter between the light sources, and the luminance is remarkably lower than that immediately above the light source. Here, the luminance between the light sources mainly depends on how much light incident on the light diffusing film is refracted and scattered in the direction of the observer, in addition to the light source power existing in the vicinity.
[0077] そのため、下記 (III)式より導かれる δの角度で光拡散フィルムへ光線が入射された ときに、フィルム面の法線方向へ出射される光量を一定以上とすることにより、光源間 に位置する部分の光拡散フィルムの輝度が上昇する。その結果として輝度ムラが改 善されつつ、高輝度特性を示すものと考えられる。  [0077] Therefore, when a light beam is incident on the light diffusion film at an angle of δ derived from the following formula (III), the amount of light emitted in the normal direction of the film surface is set to a certain level or more, so that The brightness of the light diffusing film in the portion located in the area increases. As a result, it is considered that the luminance unevenness is improved and high luminance characteristics are exhibited.
[0078] tan δ = (a/2) /h · · · (III)  [0078] tan δ = (a / 2) / h · · · (III)
(III)式において、 aは直下型面光源の光源間平均距離、 bは直下型面光源の光源と 光反射拡散フィルムの平均距離。ここで、角度 δとは、即ち図 7で示される角度を示 している。  In the formula (III), a is the average distance between the light sources of the direct type surface light source, and b is the average distance between the light source of the direct type surface light source and the light reflection diffusion film. Here, the angle δ indicates the angle shown in FIG.
[0079] 尚、(III)式において aは直下型面光源の光源間平均距離である力 これは以下の ように求められるものである。  In Formula (III), a is a force that is the average distance between the light sources of the direct type surface light sources. This is obtained as follows.
(1) 面光源の長辺方向を L辺、短辺方向を S辺とする。尚、面光源が正方形の場合 は、便宜的に L辺と S辺を定めることにする。次いで、一方の L辺を 11等分し、等分点 力も他方の L辺へ直線 L1〜L10をそれぞれ L辺に対して垂直に引く(図 8)。  (1) The long side direction of the surface light source is the L side, and the short side direction is the S side. If the surface light source is square, the L side and S side are determined for convenience. Next, divide one L side into 11 equal parts, and draw straight lines L1 to L10 perpendicular to the L side to the other L side as well (Fig. 8).
(2) 直線 L1が 2本以上の蛍光管と交わっている場合は、直線 L1と最初の蛍光管と の交点 (交点は蛍光管の中心部とする)から次の蛍光管との交点の距離 (光源間距 離)を測定する。同様にして全ての光源間距離を測定し、それらの平均を算出する。 この方法で求めた平均光源間距離を LA1とする。尚、直線 L1が 1本以下の蛍光管と しか交わっていない場合は、光源間距離が存在しないため、データなしとする。 (3) 直線 L2から L10についても同様の作業を行い、 LA2〜LA10を求める。 (2) If the straight line L1 intersects with two or more fluorescent tubes, the distance from the intersection of the straight line L1 and the first fluorescent tube (the intersection is the center of the fluorescent tube) to the next fluorescent tube Measure (distance between light sources). Similarly, the distance between all the light sources is measured, and the average of them is calculated. Let LA1 be the average distance between light sources obtained by this method. If the straight line L1 intersects only one or less fluorescent tubes, there is no data because there is no distance between light sources. (3) Repeat the same process for straight lines L2 to L10 to find LA2 to LA10.
(4) S辺についても、一方の S辺を 11等分し、等分点から他方の S辺へ直線 S1〜S 10をそれぞれ S辺に対して垂直に引く。そして(2)〜(3)と同様の作業を行い、 SA1 〜SA11および SAを求める。  (4) As for the S side, one S side is divided into 11 equal parts, and straight lines S1 to S 10 are drawn perpendicularly to the S side from the equally divided point to the other S side. Then, the same operation as (2) to (3) is performed to obtain SA1 to SA11 and SA.
(5) LA1〜10および SA1〜10の平均を、当該面光源の光源間平均距離 aとする。 尚、データなしの直線については、平均計算の対象としない。  (5) The average of LA1 to 10 and SA1 to 10 is defined as the average distance a between the surface light sources. Note that straight lines without data are not subject to average calculation.
[0080] 一方、前記 (III)式にぉ 、て、 bは直下型面光源と光拡散フィルムの平均距離である 力 これは以下のようにして求める。  [0080] On the other hand, in the above formula (III), b is an average distance between the direct type surface light source and the light diffusion film. This is obtained as follows.
(1) 各直線光源部に便宜的に直線光源部 1、直線光源部 2、 · · ·、直線光源部 nと いうように番号を付する。  (1) Numbers are assigned to each linear light source unit for convenience, such as linear light source unit 1, linear light source unit 2,..., Linear light source unit n.
(2) 直線光源部 1の直線光源部分の長さを計測し、直線光源部 1を長さ方向に 11 等分する。  (2) Measure the length of the linear light source section of the linear light source section 1 and divide the linear light source section 1 into 11 equal parts in the length direction.
(3) 直線光源部 1について、各等分点における直線光源部の径方向の中心部から 光拡散フィルムの光源側表面までの最短距離を計測する。  (3) For the linear light source unit 1, measure the shortest distance from the radial center of the linear light source unit to the light source side surface of the light diffusion film at each equally divided point.
(4) 各等分点における最短距離を平均し、当該平均値をその直線光源部の直線光 源部 光拡散フィルム間距離とする。  (4) Average the shortest distances at each equally divided point, and use the average value as the distance between the light diffusion films of the straight light source part of the straight light source part.
(5) 他の直線光源部についても直線光源部一光拡散フィルム間距離を求める。 (5) For other linear light source units, the distance between the linear light source unit and one light diffusion film is obtained.
(6) 以上で得られた直線光源部 1から直線光源部 nまでの直線光源部一光拡散フ イルム間距離を平均し、当該平均値を bとする。 (6) Average the distance between the linear light source unit 1 light diffusion film from the linear light source unit 1 to the linear light source unit n obtained above, and let the average value be b.
[0081] 以上のような方法で求められる aおよび bに基づき前記 (III)式より角度 δが導かれる  [0081] Based on a and b obtained by the above method, the angle δ is derived from the above equation (III).
[0082] 尚、現在市販される液晶ディスプレイ等に用いられている直下型面光源の δは 30 。 〜40° 程度のものが多い。 [0082] It should be noted that δ of a direct type surface light source used in a liquid crystal display or the like currently on the market is 30. Most of them are about 40 °.
[0083] 輝度ムラを低減するためには光源の直線方向に対して垂直となる方向にっ ヽては 、非常に強く光を拡散させる、もしくは光線の出射方向に一定の指向性を持たせるな ど制御することが好ましい。つまり、光の拡散現象を利用したり、光線の出射方向に 一定の指向性を持たせるなどして、フィルム面に対して δの角度で入射する光線を 観察者正面方向(フィルム面の法線方向)へ出射することにより、光源からの出射光 分布の大きな異方性が解消される。その結果、輝度ムラが低減したり、輝度が高くな ると 、る効果が現れるものと推定して 、る。 [0083] In order to reduce luminance unevenness, in a direction perpendicular to the linear direction of the light source, light should be diffused very strongly, or a certain directivity should be given to the light emission direction. It is preferable to control. In other words, by using the light diffusion phenomenon or by providing a certain directivity in the light emission direction, light incident on the film surface at an angle of δ is observed in the front direction of the observer (normal to the film surface). Light emitted from the light source Large distribution anisotropy is eliminated. As a result, it is presumed that when the luminance unevenness is reduced or the luminance is increased, the effect appears.
[0084] このことより、本発明の光拡散フィルムは、 δに相当する 20° 〜50° の角度範囲で 入射する光線を、フィルム面の法線方向へ出射する性能を有することが好ましい。具 体的には、拡散性が最も高い、もしくは出射光の指向性が最も高い面内角度 φにお いて、比輝度の最小値 ΒΙが 0. 0014以上であることが好ましい。つまり、比輝度の最 小値 ΒΙは、拡散性が最も高い、もしくは出射光の指向性が最も高い面内角度 φにお いて、フィルム面に対して 20° 〜50° の角度範囲で入射する光線をフィルム面の法 線方向へ出射する性能の下限を示す指標であると言える。  [0084] From this, it is preferable that the light diffusion film of the present invention has a performance of emitting light incident in an angle range of 20 ° to 50 ° corresponding to δ in the normal direction of the film surface. Specifically, it is preferable that the minimum value 比 of the specific luminance is 0.0013 or more at the in-plane angle φ having the highest diffusibility or the highest directivity of the emitted light. In other words, the minimum value 比 of the specific luminance is incident within an angle range of 20 ° to 50 ° with respect to the film surface at the in-plane angle φ with the highest diffusibility or the highest directivity of the emitted light. It can be said that it is an index indicating the lower limit of the ability to emit light in the normal direction of the film surface.
[0085] さらに、最大平均輝度 Bmaxは、拡散性が最も高い、もしくは出射光の指向性が最も 高い面内角度 φにおいて、フィルム面に対して 20° 〜50° の角度範囲で入射する 光線をフィルム面の法線方向へ出射する性能の平均を示す指標であると言える。最 大平均比輝度 Bmaxは 0. 002以上が好ましい。  [0085] Further, the maximum average luminance Bmax is obtained by measuring the incident light in the angle range of 20 ° to 50 ° with respect to the film surface at the in-plane angle φ having the highest diffusibility or the highest directivity of the emitted light. It can be said that this is an index indicating the average of the performance of emission in the normal direction of the film surface. The maximum average specific luminance Bmax is preferably 0.002 or more.
[0086] 一方、光源の直線方向に対して平行となる方向にっ 、ては、光を拡散させる必要 はないと考えられるため、本発明のフィルムも、面内全てで(言い換えれば何れの φ にお 、ても)比輝度の最小値 BIや最大平均比輝度 Bmaxの値が高 、必要はな 、と推 測される。むしろ、光を強く拡散させないせないほうが輝度を低下させずにすむと考 えられる  [0086] On the other hand, since it is considered unnecessary to diffuse light in a direction parallel to the linear direction of the light source, the film of the present invention can be applied to all in-planes (in other words, any φ However, it is estimated that the specific brightness minimum value BI and maximum average specific brightness Bmax are high and are not necessary. Rather, it is thought that it is not necessary to reduce the brightness if the light is not diffused strongly.
そこで、本発明の光拡散フィルムは、フィルム面内で光学的異方性を有するほうが 有利であると考えられ、具体的には最大平均比輝度比 Bmaxと最小平均輝度比 Bmin の比 BmaxZBminが 1. 1以上であることが望ましい。  Therefore, it is considered that the light diffusing film of the present invention has an optical anisotropy in the film plane. Specifically, the ratio BmaxZBmin between the maximum average specific luminance ratio Bmax and the minimum average luminance ratio Bmin is 1. Desirably 1 or more.
[0087] これらの結果として、本発明の光拡散フィルムは、入射した光線の出射方向を効率 良く制御することとなり、輝度ムラを低減させつつ輝度特性も従来の光拡散フィルムと 比較して向上したものと考えられる。 [0087] As a result, the light diffusion film of the present invention efficiently controls the emission direction of the incident light, and the luminance characteristics are improved as compared with the conventional light diffusion film while reducing the luminance unevenness. It is considered a thing.
[0088] 本発明者らの検討によれば、従来のいかなる手法によっても、このような輝度ムラ改 善効果を有する光拡散フィルムを得ることはできな力つた。 According to the study by the present inventors, it was impossible to obtain a light diffusion film having such an effect of improving luminance unevenness by any conventional method.
[0089] この理由の詳細は不明であるが、従来の光拡散板は光拡散性を高めることのみを 目的としているためと考えられる。そのため、本発明で狙いとする光拡散フィルム用途 にとつては、輝度ムラの改善が不充分であると言わざるを得ないものであった。 [0089] Although the details of the reason are unknown, it is considered that the conventional light diffusion plate is only intended to enhance the light diffusibility. Therefore, the light diffusion film intended for the present invention On the other hand, it has been unavoidable that improvement in luminance unevenness is insufficient.
[0090] 市販の液晶ディスプレイには直下型面光源が多く用いられていることから、これら液 晶ディスプレイを分解し、光拡散板を取り出し、比輝度を測定したところ光線入射角 Θ力^ 0° 〜50° の範囲では比輝度の最小値 BI、最大平均輝度 Bmaxは 0. 0014 未満であり、 BmaxZBminもほぼ 1. 0であった。  [0090] Since commercially available liquid crystal displays often use direct-type surface light sources, these liquid crystal displays were disassembled, the light diffusion plate was taken out, and the specific luminance was measured. In the range of ˜50 °, the minimum specific brightness BI and the maximum average brightness Bmax were less than 0.0013, and BmaxZBmin was almost 1.0.
[0091] また、本発明の光拡散フィルムは δ力^ 0° 〜60° の範囲である直下型面光源で 高い輝度ムラ改善効果と輝度特性が発現される。より好ましくは 20° 〜50° であり、 さらに好ましくは 30° 〜40° である。  [0091] In addition, the light diffusion film of the present invention exhibits a high luminance unevenness improvement effect and luminance characteristics with a direct type surface light source having a δ force of 0 ° to 60 °. More preferably, it is 20 ° to 50 °, and further preferably 30 ° to 40 °.
δ力 0° よりも大きいと、光源間の間隔が非常に大きくなり、比輝度 BI、 Bmax, Bma xZBminを好適な範囲にしたとしても輝度ムラが充分に解消できな ヽことがある。一 方、 δ力 0° よりも小さい場合、輝度特性に劣ることがある。  If the δ force is greater than 0 °, the distance between the light sources becomes very large, and even if the specific luminance BI, Bmax, Bmax × ZBmin is set within a suitable range, the luminance unevenness may not be sufficiently eliminated. On the other hand, if the δ force is less than 0 °, the luminance characteristics may be inferior.
[0092] また、本発明の光拡散フィルムは、平均比輝度 B ( + 5)が下記 (IV)式を満たす、又 は平均比輝度 B ( - 5)が下記 (V)式を満たすことが好ま 、。より好ましくは (IV)およ び (V)式の両方を満たすことである。ここで、平均比輝度 B ( + 5)とは、フィルム面方 向の法線方向に対して 20° 〜50° の角度で入射した場合において、法線方向に 対して + 5° 方向へ透過される平均比輝度のことである。また、平均比輝度 B (— 5)と は、フィルム面方向の法線方向に対して 20° 〜50° の角度で入射した場合におい て、法線方向に対して 5° 方向へ透過される平均比輝度のことである。尚、 B ( + 5 )および B (— 5)の測定は、 Bmaxの測定条件を基準として行うものとする。即ち、まず 、 Bmaxの値が測定される条件にし、次いで、受光器の受光角をフィルムの法線方向 から + 5° もしくは 5° へとするものとする(図 9)。但し、あおり角は 0° とする(あお りはつけないものとする)。  [0092] Further, in the light diffusion film of the present invention, the average specific luminance B (+5) satisfies the following formula (IV), or the average specific luminance B (-5) satisfies the following formula (V). Favored ,. More preferably, both the formulas (IV) and (V) are satisfied. Here, the average specific luminance B (+5) is transmitted in the direction of + 5 ° with respect to the normal direction when incident at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface. It is the average specific luminance. The average specific brightness B (-5) is transmitted in the direction of 5 ° with respect to the normal direction when incident at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface direction. It is the average specific luminance. The measurement of B (+5) and B (-5) shall be performed based on the measurement condition of Bmax. In other words, the Bmax value is first measured, and then the receiving angle of the receiver is set to + 5 ° or 5 ° from the normal direction of the film (Figure 9). However, the tilt angle shall be 0 ° (no tilting).
B ( + 5) /Bmax≥0. 5 …(IV)  B (+ 5) /Bmax≥0.5 5 (IV)
B (- 5) /Bmax≥0. 5 · ' · (ν)。  B (-5) /Bmax≥0.5 · '· (ν).
[0093] 本発明の拡散フィルムが、(IV)式または (V)式を満たすことによって、輝度ムラ改善 をさらに高めることができる。その理由の詳細については現在、鋭意解析中であるが 、本発明者らは次のように考えている。即ち、 B ( + 5) ZBmaxもしくはB (— 5) ZBma Xが小さいということは、一定の入射角 Θを有する入射光線に対し、指向性の強い光 線が出射されるということを意味する。言いかえると、ある特定の角度方向にのみ光 線が強く出射されるということである。ここで、光拡散フィルムは画面内の輝度を均斉 化する役割を有するが、プリズムのようにある特定の角度方向にのみ光線が強く出射 されると 、うことは好ましくな 、。ある特定の角度方向にのみ光線が強く出射されると 、他の方向には光はほとんど出射されないこととなるため、画面内の輝度均斉化には ほとんど寄与しな 、ことがある。 [0093] When the diffusion film of the present invention satisfies the formula (IV) or (V), the improvement in luminance unevenness can be further enhanced. The details of the reason are currently under intensive analysis, but the present inventors consider as follows. That is, B (+ 5) ZBmax or B (− 5) ZBma X is small, which means that light with strong directivity is incident on incident light with a constant incident angle Θ. It means that a line is emitted. In other words, the light beam is emitted intensely only in a certain angle direction. Here, the light diffusing film has the role of leveling the luminance in the screen, but it is preferable that the light is emitted only in a specific angle direction like a prism. If a light beam is emitted strongly only in a specific angle direction, light is hardly emitted in the other direction, which may contribute little to luminance uniformity in the screen.
[0094] ここで、比輝度の最小値 BIを 0. 0014以上としたり、最大平均比輝度 Bmaxを 0. 00 2以上とするための手段としては、例えば、光拡散フィルムの表面微細凹凸形状のァ スぺタト比の最大値 Asmaxを 0. 3以上とすることなどが挙げられる。 Asmaxは、より好 ましくは 0. 5以上であり、特に好ましくは 0. 7以上である。アスペクト比 Asmaxを 0. 3 以上とすることにより、比輝度の最小値 BIや比輝度 Bmaxの値をより大きくすることが できる。尚、 Asmaxの上限は特に規定されるものではないが、 10以下であることが好 ましい。 10を越えると、特定の方向にのみ光線が出射される傾向が強くなり、 B ( + 5) ZBmaxや B (— 5) ZBmaxが小さくなることがあり、画面内の輝度均斉化にはあまり寄 与しな 、ことがあるためである。  [0094] Here, as means for setting the minimum specific brightness BI to 0.0013 or more and the maximum average specific brightness Bmax to 0.002 or more, for example, the surface of the light diffusing film may have a fine uneven shape. For example, the maximum value of the aspect ratio Asmax should be 0.3 or more. Asmax is more preferably 0.5 or more, and particularly preferably 0.7 or more. By setting the aspect ratio Asmax to 0.3 or more, the specific luminance minimum value BI and specific luminance Bmax can be increased. The upper limit of Asmax is not particularly specified, but is preferably 10 or less. Beyond 10, there is a strong tendency for light to be emitted only in a specific direction, and B (+ 5) ZBmax and B (— 5) ZBmax may become small, which is not very good for luminance uniformity in the screen. This is because there are things.
[0095] また、本発明の光拡散フィルムは、異方度 AsmaxZAsminが 1. 1以上であるが、 As maxZAsminが 1. 1以上であることにより、 BmaxZBminの値をより大きくすることがで きる。 AsmaxZAsminは、さらに好ましくは 1. 3以上、特に好ましくは 1. 5以上である  [0095] In addition, the light diffusion film of the present invention has an anisotropy AsmaxZAsmin of 1.1 or more, but when AsmaxZAsmin is 1.1 or more, the value of BmaxZBmin can be increased. AsmaxZAsmin is more preferably 1.3 or more, particularly preferably 1.5 or more.
[0096] 本発明の光拡散フィルムは、内部に光拡散素子を含有する基材フィルムの表面に 異方度 1. 1以上の表面凹凸形状が形成されていることが好ましい(以下、本発明の 好ましい形態 Iとする)。ここで、「内部に光拡散素子を含有する基材フィルムの表面 に異方度 1. 1以上の表面凹凸形状が形成されている」とは、基材フィルム自体の表 面に異方度 1. 1以上の表面凹凸形状が形成されている形態や、基材フィルムに塗 布された塗布層に異方度 1. 1以上の表面凹凸形状が形成されている形態のことで ある。つまり、 1枚のフィルムに、光拡散素子が含有され、かつ、異方度 1. 1以上の表 面凹凸形状が形成されている形態である。言いかえると、内部に光拡散素子を含有 するフィルムと、表面に異方度 1. 1以上の凹凸形状が形成されているフィルムとを重 ね合わせたような、別々のフィルムを重ね合わせた形態ではない。 [0096] The light diffusing film of the present invention preferably has a surface irregularity shape with an anisotropic degree of 1.1 or more formed on the surface of the base film containing the light diffusing element therein (hereinafter referred to as the present invention). Preferred form I). Here, “the surface unevenness shape of 1.1 or more is formed on the surface of the base film containing the light diffusing element therein” means that the base film itself has an anisotropic degree of 1 A form in which one or more surface irregularities are formed, or a form in which a surface irregularity having a degree of anisotropy of 1. or more is formed in the coating layer applied to the base film. In other words, this is a form in which a light diffusing element is contained in one film and a surface uneven shape having an anisotropy of 1.1 or more is formed. In other words, a film that contains a light diffusing element inside and a film that has a surface with an irregularity of 1.1 or more on its surface are overlapped. It is not a form of overlapping different films.
[0097] 光拡散フィルムの光学特性は、本発明の好ま 、形態 Iと、別々のフィルムを重ね 合わせた形態とでは大きく異なる。この理由の詳細については鋭意検討中である力 本発明者らは以下のように考えて!/ヽる。  [0097] The optical properties of the light diffusing film are preferably different in the preferred embodiment of the present invention from Form I and the form in which separate films are laminated. The power for which the details of this reason are under intensive study The present inventors consider as follows! / Speak.
[0098] すなわち、単にフィルムを重ね合わせた場合は、フィルムとフィルムの間に空気層 が存在するため、一枚目のフィルム内部力も空気層へ光が透過する際に、臨界角が 存在する。この臨界角以上の角度を有する光線は全反射現象のため、フィルムと空 気層との界面を透過できず、 100%反射してしまう。そのため、一枚目のフィルムから は限られた出射角をもった光線が限られた光量で出射されることとなる。つまり、限ら れた出射光しか 2枚目のフィルムへ入射しな 、。  That is, when the films are simply overlapped, an air layer exists between the films, and therefore, a critical angle exists when light passes through the air layer in the first film internal force. Light rays having an angle greater than the critical angle cannot be transmitted through the interface between the film and the air layer because of the total reflection phenomenon and are reflected 100%. Therefore, a light beam having a limited emission angle is emitted from the first film with a limited amount of light. In other words, only a limited amount of emitted light is incident on the second film.
[0099] 一方、本発明の好ま U、形態 Iでは、上記のような現象は生じな 、。まず、基材フィ ルム自体の表面に異方度 1. 1以上の表面凹凸形状を形成した場合には、当然のこ とながら臨界角は存在せず、光線透過率は高くなる。また、基材フィルムに塗布した 塗布層に異方度 1. 1以上の表面凹凸形状を形成した場合であっても、基材フィルム の屈折率が塗布層を構成する物質の屈折率より小さければ、やはり臨界角は存在せ ず、光線透過率は高くなる。たとえ基材フィルムの屈折率が塗布層を構成する物質 の屈折率より大きくても、その屈折率差は、基材フィルムと空気との屈折率差よりも小 さくなるため、臨界角はより大きくなり、やはり光線透過率は高くなる。  [0099] On the other hand, in the preferred U, Form I of the present invention, the above phenomenon does not occur. First, when a surface irregularity shape having an anisotropy of 1.1 or more is formed on the surface of the substrate film itself, the critical angle does not exist and the light transmittance increases. In addition, even when a surface irregularity shape having an anisotropic degree of 1.1 or more is formed on the coating layer applied to the base film, if the refractive index of the base film is smaller than the refractive index of the substance constituting the coating layer After all, there is no critical angle and the light transmittance is high. Even if the refractive index of the base film is larger than the refractive index of the material constituting the coating layer, the critical angle is larger because the refractive index difference is smaller than the refractive index difference between the base film and air. As a result, the light transmittance is increased.
[0100] つまり、本発明の好ましい形態 Iでは、幅広い出射角を有する光線が、十分な光量 をもって表面凹凸形状へ入射することとなり、結果的により多くの光を表面凹凸形状 により異方拡散させることができるものと考えられる。従って、本発明の好ましい形態 I の光拡散フィルムでは、高輝度特性と輝度均斉度の二つの効果を有することが容易 となる。  That is, in the preferred form I of the present invention, a light beam having a wide emission angle is incident on the surface uneven shape with a sufficient amount of light, and as a result, more light is anisotropically diffused by the surface uneven shape. Can be considered. Therefore, it is easy for the light diffusion film of the preferred form I of the present invention to have two effects of high luminance characteristics and luminance uniformity.
[0101] また、本発明の光拡散フィルムは、面光源に搭載するに際し、異方度 1. 1以上の 表面凹凸形状を設けた面が観察者方向に位置するように設置されることが好ましい。 この位置関係で面光源に搭載することにより、面光源の面内輝度を特に向上させ、 面内輝度均斉度も併せて向上させることができる。  [0101] In addition, when the light diffusing film of the present invention is mounted on a surface light source, it is preferable that the surface provided with a surface irregularity shape having an anisotropy degree of 1.1 or more is positioned so as to be located in the viewer direction. . By mounting on the surface light source in this positional relationship, the in-plane luminance of the surface light source can be particularly improved, and the in-plane luminance uniformity can also be improved.
[0102] また、本発明の光拡散フィルムを搭載した面光源において、光拡散フィルムと光源 の間に布帛を有することが好ま 、。 [0102] Further, in the surface light source equipped with the light diffusion film of the present invention, the light diffusion film and the light source It is preferred to have a fabric in between.
[0103] ここで、布帛とは繊維より構成される。光拡散布帛を構成する繊維としては、ポリメチ ルメタタリレートやポリアクリロニトリル等のアクリル繊維、ポリエチレンテレフタレートや ボリブリレンテレフタレート等のポリエステル繊維、ナイロン 6やナイロン 66等のポリア ミド繊維、ポリウレタン繊維、ポリエチレンやポリプロピレン等のポリオレフイン繊維、ポ リイミド繊維、ポリアセタール繊維、ポリエーテル繊維、ポリスチレン繊維、ポリカーボ ネート繊維、ポリエステルアミド繊維、ポリフエ-レンスルファイド繊維、ポリ塩化ビュル 繊維、ポリエーテルエステル繊維、ポリ酢酸ビュル繊維、ポリビュルプチラール繊維、 ポリフッ化ビ-リデン繊維、エチレン—酢酸ビュル共重合繊維、フッ素榭脂系繊維、 及びスチレン アクリル共重合繊維などの ヽずれの合成繊維を含んで!/ヽてもよく、 1 種類の合成繊維からなって 、てもよ 、し、 2種類以上の合成繊維力も構成されて ヽて もよ 、。吸湿安定性や熱安定性等力もポリエステル繊維やポリフエ-レンサルファイド 繊維、フッ素榭脂系繊維等を好ましく用いることができるが、さらに、汎用性、透明性 の観点力もポリエステル繊維を特に好ましく用いることができる。  Here, the fabric is composed of fibers. The fibers constituting the light diffusing fabric include acrylic fibers such as poly (methyl methacrylate) and polyacrylonitrile, polyester fibers such as polyethylene terephthalate and poly (ethylene terephthalate), polyamide fibers such as nylon 6 and nylon 66, polyurethane fibers, polyethylene, Polyolefin fibers such as polypropylene, polyimide fibers, polyacetal fibers, polyether fibers, polystyrene fibers, polycarbonate fibers, polyesteramide fibers, polyphenylene sulfide fibers, polychlorinated bull fibers, polyether ester fibers, polyacetate bull fibers, Includes a variety of synthetic fibers such as polybulutyl fiber, poly (vinylidene fluoride) fiber, ethylene-butyl acetate copolymer fiber, fluorinated resin, and styrene-acrylic copolymer fiber ! / ヽ at best, made from one type of synthetic fibers, even I, then, two or more types of synthetic fibers force be configured even ヽ,. Polyester fibers, poly (sulfur sulfide) fibers, fluoro-resin fibers, etc. can be preferably used for moisture absorption stability and thermal stability, etc., but polyester fibers are also particularly preferably used for versatility and transparency. it can.
[0104] 前記繊維は、捲縮を付与され所定の長さにカットされたステーブルを紡績して得た 紡績糸でもよいし、連続した合成繊維カゝらなるフィラメントヤーンであってもよい。構成 する単糸の本数は、 1本のモノフィラメントヤーンでもよいし、 2本以上の単糸からなる マルチフィラメントヤーンであってもよ 、。高光線透過率の観点力もフィラメントヤーン を用いることが好ましい。  [0104] The fiber may be a spun yarn obtained by spinning a staple that has been crimped and cut to a predetermined length, or may be a filament yarn made of a continuous synthetic fiber. The number of single yarns to be formed may be one monofilament yarn or a multifilament yarn composed of two or more single yarns. It is preferable to use a filament yarn in view of high light transmittance.
[0105] また、布帛は、織物、編物、乾式不織布、湿式不織布などいかなる構造のものであ つてもよいが、布帛取り扱い時の寸法安定性がよぐ厚みムラも小さぐかつ機械強度 に優れるという観点から、織物が特に好ましい。織物の織り組織は特に限定されるも のではなぐ平織り、綾織り、朱子織り等いかなる組織であってもよい。  [0105] The fabric may have any structure such as a woven fabric, a knitted fabric, a dry nonwoven fabric, and a wet nonwoven fabric. However, the fabric has good dimensional stability and small thickness unevenness when handling the fabric, and excellent mechanical strength. From the viewpoint, a woven fabric is particularly preferable. The weaving structure of the woven fabric is not particularly limited, and may be any structure such as plain weave, twill weave and satin weave.
[0106] このような布帛は、一般に軽量であるが、それ自体が光拡散性を有するため、光拡 散フィルムと組み合わせることにより、画面輝度均斉化 ·高輝度化をさらに向上させる ことができる。こうした観点から、布帛は 50%以上のヘイズを有することが好ましい。  [0106] Although such a fabric is generally lightweight, it itself has light diffusibility, and therefore, when combined with a light diffusing film, it is possible to further improve screen brightness uniformity and brightness. From such a viewpoint, the fabric preferably has a haze of 50% or more.
[0107] さらに、このような布帛を展張し、面光源筐体に固定ィ匕することにより、布帛に光拡 散フィルムをはじめとする光学フィルムの支持体としての役割を持たせることも可能で ある。このような観点からも布帛は、機械強度に優れる織物であることが好ましい。 [0107] Furthermore, by spreading such a fabric and fixing it to the surface light source casing, it is possible to give the fabric a role as a support for an optical film such as a light diffusion film. is there. From this point of view, the fabric is preferably a woven fabric having excellent mechanical strength.
[0108] 尚、布帛やそれを構成する繊維の色調としては、色付きがなぐ無彩色が好ましい 。なかでも光吸収がない透明色や白色が好ましい。これらの色調の布帛を用いること により、光損失を低減でき、高輝度特性に寄与することが可能となる。  [0108] The color tone of the fabric and the fibers constituting it is preferably an achromatic color with no coloring. Among these, a transparent color or white color that does not absorb light is preferable. By using fabrics of these color tones, it is possible to reduce light loss and contribute to high luminance characteristics.
[0109] また、前記布帛は、液晶ディスプレイの面光源の光源が点灯している間は光源中に 含まれる紫外線に曝露され、黄変、強度劣化が発生する場合があり、紫外線耐久性 が十分でない場合がある。布帛が黄変すると、黄変した布帛を透過した光の色調が 変化してしまいディスプレイ画面も色調が変化してしまうことがある。よって、前記布帛 は、耐紫外線処理がなされていることが好ましい。耐紫外線処理とは、布帛に紫外線 吸収剤や酸化防止剤など (以下、紫外線吸収剤等)を付与し、布帛が紫外線に暴露 させても黄変や強度劣化の発生を少なくすることをいう。付与する方法は、紫外線吸 収剤等をスプレーする方法や、紫外線吸収剤等の入った浴などに浸漬した後に乾燥 するパッド'キュア方法、コーティング法、プリンティング法等繊維の表面に付与する 方法であってもよ 、し、繊維の内部に吸尽されてなるものであってもよ!/、。  [0109] Further, while the light source of the surface light source of the liquid crystal display is turned on, the fabric may be exposed to ultraviolet rays contained in the light source, and yellowing and strength deterioration may occur, and the ultraviolet durability is sufficient. It may not be. When the fabric turns yellow, the color tone of the light transmitted through the yellowed fabric changes, and the color tone of the display screen may also change. Therefore, it is preferable that the fabric is subjected to UV resistance treatment. The term “ultraviolet resistant treatment” refers to reducing the occurrence of yellowing or deterioration of strength even when a cloth is exposed to ultraviolet rays by applying an ultraviolet absorbent or an antioxidant (hereinafter referred to as an ultraviolet absorbent) to the cloth. The application method is a method of spraying an ultraviolet absorber or the like, a pad curing method in which it is dried after being immersed in a bath containing an ultraviolet absorber, a method of applying to the fiber surface, such as a coating method or a printing method. May be exhausted inside the fiber! /.
[0110] 次に本発明の光拡散フィルムの製造方法について、その一例を説明するが、この 例に限定されるものではない。  Next, an example of the method for producing a light diffusion film of the present invention will be described, but the present invention is not limited to this example.
[0111] 主押出機、副押出機を有する複合製膜装置において、必要に応じて十分な真空 乾燥を行った基材フィルムの主層を構成する熱可塑性榭脂 Bのチップ (融点 TB)と 光拡散素子を混合したものを加熱された主押出機に供給する。光拡散素子の添カロ は、事前に均一に溶融混練して配合させて作製されたマスターチップを用いても、も しくは直接混練して押出機に供給するなどしてもよい。また、融点 TAを有する熱可塑 性榭脂層を積層するために、必要に応じて十分な真空乾燥を行った熱可塑性榭脂 Aのチップを加熱された副押出機に供給する。  [0111] In a composite film-forming apparatus having a main extruder and a sub-extruder, a thermoplastic resin B chip (melting point TB) constituting the main layer of a base film that has been sufficiently vacuum-dried as necessary; A mixture of light diffusing elements is fed to a heated main extruder. The added light of the light diffusing element may be obtained by using a master chip prepared by uniformly melting and kneading in advance, or may be directly kneaded and supplied to an extruder. Further, in order to laminate a thermoplastic resin layer having a melting point TA, chips of thermoplastic resin A which has been sufficiently vacuum-dried as necessary are supplied to a heated sub-extruder.
[0112] このようにして各押出機に原料を供給し、 Tダイ複合口金内で主押出機のポリマー の片面に副押出機のポリマーが来るように積層(AZBもしくは AZBZA)してシート 状に共押し出し成形し、溶融積層シートを得る。  [0112] In this way, the raw materials are supplied to each extruder, and laminated (AZB or AZBZA) so that the polymer of the sub-extruder comes to one side of the polymer of the main extruder in the T-die composite die. Co-extrusion molding is performed to obtain a melt-laminated sheet.
[0113] この溶融積層シートを、冷却されたドラム上で密着冷却固定ィ匕し、未延伸積層フィ ルムを作製する。この時、均一なフィルムを得るために静電気を印加してドラムに密 着させることが望ましい。その後、必要により延伸工程、熱処理工程等を経て基材フ イノレムを得る。 [0113] The molten laminated sheet is closely cooled and fixed on a cooled drum to produce an unstretched laminated film. At this time, in order to obtain a uniform film, static electricity is applied to close the drum. It is desirable to put it on. After that, a base material finem is obtained through a stretching process, a heat treatment process, and the like as necessary.
[0114] 延伸の方法は特に問わないが、長手方向の延伸と巾方向の延伸を分離して行う逐 次二軸延伸法や、長手方向の延伸と巾方向の延伸を同時に行う同時二軸延伸法が ある。  [0114] The stretching method is not particularly limited, but the sequential biaxial stretching method in which the stretching in the longitudinal direction and the stretching in the width direction are separated, or the simultaneous biaxial stretching in which the stretching in the longitudinal direction and the stretching in the width direction are performed simultaneously. There is a law.
[0115] 逐次二軸延伸の方法としては、例えば、上記の未延伸積層フィルムを加熱したロー ル群に導き、長手方向(縦方向、すなわちフィルムの進行方向)に延伸し、次いで冷 却ロール群で冷却する。  [0115] As a method of sequential biaxial stretching, for example, the unstretched laminated film is guided to a heated roll group, stretched in the longitudinal direction (longitudinal direction, that is, the traveling direction of the film), and then cooled roll group Cool with.
[0116] 続いて長手方向に延伸したフィルムの両端をクリップで把持しながら加熱されたテ ンターに導き、長手方向に垂直な方向(横方向あるいは幅方向)に延伸を行うことが できる。  [0116] Subsequently, both ends of the film stretched in the longitudinal direction are guided to a heated tent while being held by clips, and can be stretched in a direction perpendicular to the longitudinal direction (lateral direction or width direction).
[0117] 同時二軸延伸の方法としては、例えば、上記の未延伸積層フィルムの両端をクリツ プで把持しながら加熱されたテンターに導き、巾方向に延伸を行うと同時にクリップ 走行速度を加速していくことで、長手方向の延伸を同時に行う方法がある。この同時 二軸延伸法は、フィルムが加熱されたロールに接触することがないため、フィルム表 面に光学的な欠点となるキズが入らな 、と 、う利点を有する。  [0117] As a method of simultaneous biaxial stretching, for example, the both ends of the above-mentioned unstretched laminated film are guided to a heated tenter while being gripped with a clip, and stretched in the width direction and at the same time the clip traveling speed is accelerated. There is a method in which stretching in the longitudinal direction is performed simultaneously. This simultaneous biaxial stretching method has the advantage that the film surface does not come into contact with the heated roll, so that the film surface is not damaged as an optical defect.
[0118] こうして得られた二軸延伸積層フィルムに平面安定性、寸法安定性を付与し、さら に必要に応じて榭脂 Bと光拡散素子の間に生じたボイド (空隙)を消滅させるために、 引き続いてテンター内で熱処理 (熱固定)を行う。ここで、ボイドを消滅させる場合、熱 処理温度 TAは前記 (Π)式を満たす温度とすることが望ましい。尚、熱処理温度や熱 処理時間を調節することにより、ボイドを完全に消滅させたり、一部を残存させてボイ ドについても光拡散素子として働力せることも可能である。  [0118] In order to impart planar stability and dimensional stability to the biaxially stretched laminated film thus obtained, and to eliminate voids (voids) generated between the resin B and the light diffusing element as necessary. Next, heat treatment (heat setting) is performed in the tenter. Here, when the void is eliminated, it is desirable that the heat treatment temperature TA is a temperature satisfying the above-mentioned equation (iii). By adjusting the heat treatment temperature and the heat treatment time, it is possible to completely eliminate the voids or to leave some of the voids to act as light diffusing elements.
[0119] 熱処理後、均一に徐冷後、室温付近まで冷却することにより基材フィルムが得られ る。  [0119] After the heat treatment, the substrate film is obtained by uniformly cooling and then cooling to near room temperature.
[0120] 次 、で、基材フィルム上に公知の塗布手段を用いて光硬化性榭脂を塗布する。塗 布後、アスペクト比の異方度が 1. 1以上であるような表面凹凸形状が施された金型を 押し付け、光線を照射する。光線の照射方向は特に問わない。光線を照射し、光硬 化性榭脂が硬化した後、金型を離すことによって本発明の光拡散フィルムを得ること ができる。 [0120] Next, a photocurable resin is coated on the base film using a known coating means. After coating, press a mold with an uneven surface with an aspect ratio of 1.1 or more and irradiate it with light. The light irradiation direction is not particularly limited. The light diffusing film of the present invention is obtained by releasing the mold after irradiating light and curing the photocurable resin. Can do.
実施例  Example
[0121] 各実施例、比較例、参考例で得られた光拡散フィルムの評価方法について説明す る。  [0121] An evaluation method of the light diffusion film obtained in each example, comparative example, and reference example will be described.
[0122] [特性の測定方法および評価方法]  [0122] [Characteristic measurement method and evaluation method]
(1)表面凹凸形状のアスペクト比の最大値 Asmax、最小値 Asmin、異方度 Asmax / Asmin  (1) Maximum aspect ratio of surface irregularities Asmax, minimum value Asmin, anisotropy Asmax / Asmin
まず、ミクロトームを用いて、光拡散フィルムを厚み方向に潰すことなぐフィルム面 方向に対して垂直に切断する。次いで、切断した断面を S— 2100A型((株)日立製 作所)などの走査型電子顕微鏡を用いて、適当な倍率(目安として 500〜10000倍) で拡大観察し、先述した方法に則り、表面凹凸形状のアスペクト比の最大値 Asmax、 最小値 Asmin、異方度 AsmaxZAsminを算出する。なお、各実施例、比較例、参考 例につ 、て測定したサンプルの N数は 1である。  First, using a microtome, the light diffusion film is cut perpendicularly to the film surface direction without crushing it in the thickness direction. Next, the cut section is enlarged and observed with a scanning electron microscope such as S-2100A (Hitachi, Ltd.) at an appropriate magnification (500 to 10000 times as a guide), and in accordance with the method described above. Calculate the maximum value Asmax, the minimum value Asmin, and the degree of anisotropy AsmaxZAsmin of the aspect ratio of the surface irregularity shape. Note that the N number of samples measured in each of the examples, comparative examples, and reference examples is 1.
[0123] (2)光線透過率、ヘイズ [0123] (2) Light transmittance, haze
直読ヘーズコンピューター HGM— 2DP (C光源用)(スガ試験機 (株)製)を用いて 光線透過率およびヘイズを測定した。尚、全光線透過率およびヘイズは光拡散フィ ルムの両面について求め、より光線透過率の高い面における数値を当該光拡散フィ ルムの光線透過率およびヘイズとする。なお、各実施例、比較例、参考例について 測定したサンプルの N数は 1である。  Light transmittance and haze were measured using a direct reading haze computer HGM-2DP (for C light source) (manufactured by Suga Test Instruments Co., Ltd.). The total light transmittance and haze are obtained for both surfaces of the light diffusion film, and the values on the surface with higher light transmittance are the light transmittance and haze of the light diffusion film. The N number of samples measured for each example, comparative example, and reference example is 1.
[0124] (3)フィルム面に垂直な断面における光拡散素子の面積占有率および平均粒径 まず、ミクロトームを用いて、光拡散フィルムを厚み方向に潰すことなぐフィルム面 に対して垂直に切断する。次いで、切断した断面を S— 2100A型((株)日立製作所 )などの走査型電子顕微鏡を用いて、適当な倍率(目安として 500〜: LOOOO倍)で拡 大観察し、以下の方法によりフィルム面に垂直な断面における光拡散素子の面積占 有率を算出する。なお、各実施例、比較例、参考例について測定したサンプルの N 数は 1である。 [0124] (3) Area occupancy and average particle size of light diffusing element in cross section perpendicular to film surface First, a microtome is used to cut the light diffusing film perpendicularly to the film surface without crushing it in the thickness direction. . Next, the cut section was enlarged and observed with a scanning electron microscope such as S-2100A (Hitachi, Ltd.) at an appropriate magnification (500 to as a guide: LOOOO times). Calculate the area occupancy ratio of the light diffusing element in the cross section perpendicular to the surface. The N number of the sample measured for each example, comparative example, and reference example is 1.
[0125] 拡大観察した像よりフィルムの全体の厚みを測定し、これをしとする。ついで、フィル ム断面において、厚み方向 L Xフィルム面方向 Lの範囲を任意に規定し、当該範囲 中に含まれる光拡散素子の総面積を算出する。該光拡散素子の総面積を測定範囲 (即ち L2)で除すことにより、光拡散素子の面積占有率を算出する。同様の作業を測 定範囲を変えて 10箇所で行い、平均値をフィルム断面における光拡散素子の面積 占有率とする。 [0125] The total thickness of the film is measured from the magnified image, and this is taken. Next, in the film cross section, the range of thickness direction LX film surface direction L is arbitrarily defined, and the range The total area of the light diffusing elements contained therein is calculated. The area occupancy of the light diffusing element is calculated by dividing the total area of the light diffusing element by the measurement range (ie, L 2 ). The same operation is performed at 10 locations with different measurement ranges, and the average value is the area occupancy ratio of the light diffusing element in the film cross section.
[0126] 個々の光拡散素子の面積の求め方としては、上記で得られた断面画像より、個々 の光拡散素子の形状を透明なフィルムもしくはトレーシングペーパーにトレースし、こ れを画像解析ソフト(例えば東洋紡績 (株) Image Analyzer V10LABや前記ソフトの後 継ソフトであるナノシステム(株)製の NanoHunter NS2K- Ltなど)を用いて個々の光 拡散素子の面積および球相当直径を求める。ここで、球相当直径が 0. 以下の ものは光拡散素子の総面積に含めない。  [0126] The area of each light diffusing element can be obtained by tracing the shape of each light diffusing element on a transparent film or tracing paper from the cross-sectional image obtained above, and using this image analysis software. (For example, Toyobo Co., Ltd. Image Analyzer V10LAB or NanoHunter NS2K-Lt manufactured by Nanosystem Co., Ltd., which is the software successor), the area and sphere equivalent diameter of each light diffusing element are obtained. Here, those with a sphere equivalent diameter of 0 or less are not included in the total area of the light diffusing element.
[0127] また、上記で得られた各光拡散素子の球相当直径の単純平均を、光拡散素子の 平均粒径とする。ここで、光拡散素子の平均粒径を求めるにあたっては、球相当直径 が 0. 1 μ m以下のものも平均の計算に含める。  [0127] The simple average of the sphere equivalent diameters of the respective light diffusing elements obtained above is defined as the average particle diameter of the light diffusing elements. Here, when calculating the average particle size of the light diffusing element, those with a sphere equivalent diameter of 0.1 μm or less are included in the average calculation.
[0128] 尚、フィルムが 2層以上積層されることにより構成されていたり、塗布層が形成され て 、る場合は、光拡散素子が含有されて!、る層のみを選択して観察する。  [0128] If the film is formed by laminating two or more layers or a coating layer is formed, a light diffusing element is contained, and only the layer is selected and observed.
[0129] (4)フィルム面に垂直な断面における光拡散素子の数密度  [0129] (4) Number density of light diffusing element in cross section perpendicular to film surface
まず、ミクロトームを用いて、光拡散フィルムを厚み方向に潰すことなぐフィルム面 に対して垂直に切断する。次いで、切断した断面を S— 2100A型((株)日立製作所 )などの走査型電子顕微鏡を用いて、適当な倍率(目安として 500〜: L0000倍)で拡 大観察し、以下の方法によりフィルム面に垂直な断面における光拡散素子の数密度 を算出する。なお、各実施例、比較例、参考例について測定したサンプルの N数は 1 である。  First, using a microtome, the light diffusion film is cut perpendicular to the film surface without being crushed in the thickness direction. Next, the cut section was magnified and observed with a scanning electron microscope such as S-2100A (Hitachi Ltd.) at an appropriate magnification (500 to L0000 as a guide). Calculate the number density of light diffusing elements in the cross section perpendicular to the surface. The N number of samples measured for each example, comparative example, and reference example is 1.
[0130] 拡大観察した像よりフィルムの全体の厚みを測定し、これをしとする。ついで、フィル ム断面において、厚み方向 L Xフィルム面方向 Lの範囲を任意に規定し、当該範囲 中に含まれる光拡散素子の数を算出する。ここで、球相当直径が 0. 1 μ m以下の光 拡散素子については光拡散素子の数に含めないものとする。該光拡散素子の数を 測定範囲 (即ち L2)で除すことにより、光拡散素子の数密度を算出する。同様の作業 を測定範囲を変えて 10箇所で行い、平均値をフィルム断面における光拡散素子の 数密度とする。ここで、数密度の単位は [個 Zmm2]とする。 [0130] The entire thickness of the film is measured from the magnified image, and this is taken. Next, in the film cross section, the range in the thickness direction LX film surface direction L is arbitrarily defined, and the number of light diffusing elements included in the range is calculated. Here, light diffusing elements having a sphere equivalent diameter of 0.1 μm or less are not included in the number of light diffusing elements. The number density of the light diffusing elements is calculated by dividing the number of the light diffusing elements by the measurement range (that is, L 2 ). The same operation was performed at 10 locations with different measurement ranges, and the average value was calculated for the light diffusing element in the film cross section. Number density. Here, the unit of number density is [piece Zmm 2 ].
[0131] 尚、フィルムが 2層以上積層されることにより構成されていたり、塗布層が形成され て 、る場合は、光拡散素子が含有されて!、る層のみを選択して観察する。  [0131] In the case where the film is formed by laminating two or more layers or a coating layer is formed, a light diffusing element is contained! Only the layer is selected and observed.
[0132] (5)面光源正面輝度と均斉度  [0132] (5) Front light source brightness and uniformity
長さ 39cmの 4Wの直線蛍光管が 12本設置されている直下型面光源を用いた。各 蛍光管は、蛍光管の長さ方向に平行で、蛍光間距離 (蛍光管の中心間距離)が 26m mとなるように設置されている。蛍光管の断面厚み(直径)は 2mmである。該直下型 面光源には、形状が長方形 (長辺が 40cm、短辺が 30cm)の光反射フィルム (東レ( 株)製 # 188E60L)力 光源中心部と反射板底面部との距離が 10mmとなるよう蛍 光管の下に設置されている。  A direct-type surface light source with 12 39W-long 4W linear fluorescent tubes installed. Each fluorescent tube is installed in parallel with the length direction of the fluorescent tube so that the distance between the fluorescent tubes (the distance between the centers of the fluorescent tubes) is 26 mm. The cross-sectional thickness (diameter) of the fluorescent tube is 2 mm. The direct type surface light source has a light-reflective film (# 188E60L, manufactured by Toray Industries, Inc.) with a rectangular shape (long side is 40cm, short side is 30cm). The distance between the light source center and the bottom of the reflector is 10mm. It is installed under the fluorescent tube.
[0133] この直下型面光源を用いて、実施例 1 1〜1 17、 3— 1〜3—4および比較例 1 — 1〜1— 3、 3— 1では形状が長方形 (長辺が 40cm、短辺が 30cm)の光拡散フィル ムを、蛍光管の中心と光拡散フィルムの観察者方向の表面との距離が 10mmとなる ように設置した。この場合、面光源の δは 52° となる。  [0133] Using this direct type surface light source, the shapes in Examples 1 1 to 1 17, 3— 1 to 3-4 and Comparative Examples 1 — 1 to 1-3, 3— 1 were rectangular (the long side was 40 cm) The light diffusing film with a short side of 30 cm was installed so that the distance between the center of the fluorescent tube and the surface of the light diffusing film in the observer direction was 10 mm. In this case, δ of the surface light source is 52 °.
[0134] 実施例 2— 1〜2— 10、比較例 2— 1〜2— 4、参考例 2— 1〜2— 3では、形状が長 方形 (長辺が 40cm、短辺が 30cm)の光拡散フィルムを、蛍光管の中心と光拡散フィ ルムの観察者方向の表面との距離が 18. 6mmとなるように設置した。この場合、面 光源の δは 35° となる。  [0134] In Examples 2-1 to 2-10, Comparative Examples 2-1 to 2-4, and Reference Examples 2-1 to 2-3, the shape is rectangular (the long side is 40 cm and the short side is 30 cm). The light diffusing film was installed so that the distance between the center of the fluorescent tube and the surface of the light diffusing film in the observer direction was 18.6 mm. In this case, δ of the surface light source is 35 °.
[0135] 何れの場合も、光拡散フィルムのアスペクト比が最大となる方向と、蛍光灯の長手 方向が直交するように設置した。  [0135] In any case, the light diffusion film was installed so that the direction in which the aspect ratio of the light diffusing film was maximum and the longitudinal direction of the fluorescent lamp were orthogonal to each other.
[0136] すべての蛍光管を点灯させ、 1時間経過後に下記方法に従って輝度測定を行った  [0136] All fluorescent tubes were turned on, and luminance was measured according to the following method after 1 hour.
[0137] 輝度測定は、(株)アイ'システムの EyeScale— 3を用いて行った。附属の CCDカメ ラを面光源の中心から lmの地点に、面光源面に対し正面となるように設置した。ここ で面光源の中心とは、光拡散フィルムの面の重心点を指す。 [0137] Luminance measurement was performed using EyeScale-3 of Eye 'system. The attached CCD camera was placed at a point lm from the center of the surface light source, facing the surface light source surface. Here, the center of the surface light source refers to the center of gravity of the surface of the light diffusion film.
[0138] 面光源正面輝度は、面光源の中央部 10cm X 10cmの範囲の平均輝度とした。本 評価方法においては、面光源正面輝度が 5500cdZmm2以上あれば良好である。 The front luminance of the surface light source was an average luminance in the range of 10 cm × 10 cm at the center of the surface light source. In this evaluation method, it is satisfactory if the front luminance of the surface light source is 5500 cdZmm 2 or more.
[0139] また、均斉度は面光源の中央部 10cm X 10cmの範囲の最大輝度を最小輝度で 除することにより求めた。尚、均斉度は 1. 2以下であることが好ましぐより好ましくは 1[0139] In addition, the uniformity is the maximum brightness in the range of 10cm x 10cm in the center of the surface light source. It was obtained by dividing. The uniformity is preferably 1.2 or less, more preferably 1
. 1以下、さらに好ましくは 1. 05以下である。均斉度が大きいと輝度ムラにより見づら1 or less, more preferably 1.05 or less. If the degree of uniformity is large, it is difficult to see due to uneven brightness
V、画面となることがあるからである。 This is because V may be a screen.
[0140] なお、各実施例、比較例、
Figure imgf000031_0001
、て測定したサンプルの N数は 1である。
[0140] Each example, comparative example,
Figure imgf000031_0001
The N number of samples measured in this way is 1.
[0141] (6)比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均比輝度 Bmin [0141] (6) Minimum value of specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin
比輝度は、(株)村上色彩技術研究所製の自動変角光度計 (ゴ-オフオトメータ) G Specific brightness is measured by Murakami Color Research Laboratory Co., Ltd.
P— 200型を用いて測定する、以下、測定条件および方法を示す。なお、各実施例、 比較例、参考例につ!、て測定したサンプルの N数は 1である。 The measurement conditions and method are shown below for measurement using P-200. In each example, comparative example, and reference example, the N number of the sample measured was 1.
(i) 測定は透過測定で行!、、あおり角は 0° (あおりなし)、光束絞りの目盛値 VS1 を 3. 0に、受光絞りの目盛値 VS3を 2. 0にする。偏光フィルターやバンドパスフィル ター(色フィルタ一等)は使用しない。  (i) Measurement is performed by transmission measurement. The tilt angle is 0 ° (no tilt), the beam aperture scale value VS1 is set to 3.0, and the light receiving stop scale value VS3 is set to 2.0. Do not use polarizing filters or bandpass filters (such as color filters).
(ii) 上記の条件にした後、試料台には何も設置せずに、光線入射角 Θを 0° 、受光 角を 0° として光度を測定する。このときパネルメーター(出力信号)の数値の表示が 90〜: L 10となるように本体の HIGH VOLT ADJ.のつまみを調整する。このときの HIG H VOLT ADJ.の値を HVA、パネルメーター(出力信号)の数値を KAAとする。尚、 HIGH VOLT ADJ.のつまみを調整しても、パネルメーター(出力信号)の数値の表示 力 S 110を越える場合は、減光フィルターを用いる。減光フィルタ一は 2枚以上用いて もよい。尚、減光フィルターを用いる場合は、減光率 GAを予め測定しておく。減光率 GAの測定法については後述する。また、減光フィルタ一は (株)村上色彩技術研究 所製の GP - 200型用の減光フィルターを用 、る。  (ii) After making the above conditions, measure the light intensity with a light incident angle Θ of 0 ° and a light receiving angle of 0 °, without setting anything on the sample stage. At this time, adjust the HIGH VOLT ADJ. Knob so that the value displayed on the panel meter (output signal) is 90 to L10. At this time, the value of HIG H VOLT ADJ. Is HVA, and the value of the panel meter (output signal) is KAA. Even if the HIGH VOLT ADJ. Knob is adjusted, if the panel meter (output signal) numeric display power S 110 is exceeded, a neutral density filter is used. Two or more neutral density filters may be used. When using a neutral density filter, measure the attenuation factor GA in advance. The method for measuring the attenuation factor GA will be described later. The neutral density filter is a GP-200 type neutral density filter manufactured by Murakami Color Research Laboratory.
従って、実際の光度 KAは  Therefore, the actual luminous intensity KA is
•KA= (KAA/GA)  KA = (KAA / GA)
となる。  It becomes.
(iii) 測定対象フィルムの両表面を、それぞれ便宜的に a面、 b面と定める。試料台に 測定対象フィルムを光線入射面が a面となるようにかつ、たわみ等がな 、ように設置 する。光線入射角 Θ (対フィルム面法線方向)を 20° 、受光角を 0° (対フィルム面法 線方向)とし、光度 KB ( Θ = 20° )を測定する。  (iii) Both surfaces of the film to be measured are defined as a-side and b-side for convenience. Place the film to be measured on the sample stage so that the light incident surface is a-plane and there is no deflection. Measure the luminous intensity KB (Θ = 20 °) with a light incident angle Θ (normal to the film surface) of 20 ° and an acceptance angle of 0 ° (normal to the film surface).
また、測定においては、本体の HIGH VOLT ADJ.の値は HVAとする。また、パネル メーター(出力信号)の数値の表示が 110を超える場合は、減光フィルターを用いる。 減光フィルタ一は 2枚以上用いてもよい。尚、減光フィルターを用いる場合は、減光 率 GBを予め測定しておく。減光率 GBの測定法は減光率 GAの測定法に準拠する。 パネルメーター(出力信号)の数値の表示が 110を超えない場合は、該数値を KBB とする。 In measurement, the HIGH VOLT ADJ. Value of the main body is HVA. Also panel If the value displayed on the meter (output signal) exceeds 110, use a neutral density filter. Two or more neutral density filters may be used. If a neutral density filter is used, measure the neutral density GB in advance. Dimming rate GB measurement method conforms to dimming rate GA measurement method. If the value displayed on the panel meter (output signal) does not exceed 110, the value shall be KBB.
従って、実際の光度 KBは  Therefore, the actual luminous intensity KB is
•KB= (KBB/GB)  • KB = (KBB / GB)
となる。  It becomes.
(iv) 前述した方法に基づき、比輝度の最小値 BI、最大平均比輝度 Bmax、最小平 均比輝度 Bminを算出する。  (iv) Based on the method described above, the minimum specific brightness value BI, maximum average specific brightness Bmax, and minimum average specific brightness Bmin are calculated.
[0142] (減光率 GAの測定法) [0142] (Measurement method of light attenuation GA)
直読ヘーズコンピューター HGM— 2DP (C光源用)(スガ試験機 (株)製)を用いて 直進光透過率を測定し、該測定値を GAとした。尚、減光フィルターを 2枚以上用い る場合は、減光フィルターを重ねた状態で測定する。測定の結果、得られた直進光 透過率を減光率とする。尚、減光フィルターを使用しない場合の減光率は 1. 00であ る。  The straight light transmittance was measured using a direct reading haze computer HGM-2DP (for C light source) (manufactured by Suga Test Instruments Co., Ltd.), and the measured value was defined as GA. When two or more neutral density filters are used, measure with the neutral density filters stacked. The straight light transmittance obtained as a result of the measurement is defined as the light attenuation rate. Note that the light attenuation rate when the neutral density filter is not used is 1.00.
[0143] (7)最大平均比輝度 Bmaxを示す面内回転角と最小平均比輝度 Bminを示す面内 回転角の差 Δ φ  [0143] (7) Difference between in-plane rotation angle indicating maximum average specific luminance Bmax and in-plane rotation angle indicating minimum average specific luminance Bmin Δ φ
(6)にて求めた最大平均比輝度 Bmaxを示す面内回転角を φ max,最小平均比輝 度 Bminを示す面内回転角を φ πήηとしたとき、その差 Δ φを下記式より求めた。  When the in-plane rotation angle indicating the maximum average specific brightness Bmax obtained in (6) is φ max and the in-plane rotation angle indicating the minimum average specific brightness Bmin is φ πήη, the difference Δφ is obtained from the following equation: It was.
Δ = I max— φ mm |。  Δ = I max—φ mm |.
[0144] [実施例、比較例、参考例] [Examples, comparative examples, reference examples]
[実施例 1 1]  [Example 1 1]
押出機に、光拡散フィルムを構成する主たる榭脂成分としてポリカーボネートを 99. 93体積%、光拡散素子として平均粒径 (直径) 1 μ mのアナターゼ酸化チタンを 0. 0 7体積%混合したペレットを供給した。次いで溶融押出しを行い、静電印加法により 鏡面のキャストドラム上で冷却して基材フィルムを作成した。  Pellets mixed with 99.93% by volume of polycarbonate as the main resin component of the light diffusing film and 0.07% by volume of anatase titanium oxide with an average particle diameter (diameter) of 1 μm as the light diffusing element. Supplied. Next, melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
[0145] この基材フィルムに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使 用した金型は下記式で示される曲面が施されたニッケル製の金型である。 [0145] An uneven shape was formed on one surface of this base film by the following method. Note that here The used mold is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.0691 X x)+5 X sin(0.0628 X y)  • z = 5 X sin (0.0691 X x) +5 X sin (0.0628 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0146] まず、得られた基材フィルムと金型を 180°Cまで加熱し、 2分間保持した。次 、で 10 MPaの圧力で基材フィルムに金型の形状が付与されている面を押し当て、 3分間保 持した。その後、圧力を保持させたまま、 130°Cまで冷却し、圧力を開放した。金型よ り表面凹凸形状が形成されたフィルムを離型し、光拡散フィルムを得た。  [0146] First, the obtained base film and mold were heated to 180 ° C and held for 2 minutes. Next, the surface of the base film provided with the mold shape was pressed at a pressure of 10 MPa and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 130 ° C. and the pressure was released. The film with surface irregularities formed from the mold was released to obtain a light diffusion film.
[0147] 得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asmax、最小値 Asmin,異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率、へ ィズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状が形 成された面より光線を入射して測定した数値である。  [0147] Maximum value Asmax, minimum value Asmin, anisotropy of the aspect ratio of the surface shape in the obtained light diffusing film, number density of light diffusing elements in the film cross section, area occupancy, transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed.
[0148] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 15、平均正面輝度は 5800cdZm2であり、良好な性能を示した。 [0148] This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.15, and the average front luminance was 5800 cdZm 2 , indicating good performance.
[0149] [実施例 1 2]  [Example 1 2]
押出機に、光拡散フィルムを構成する主たる榭脂成分としてスピログリコールをダリ コール単位に対し 30モル共重合したポリエチレンテレフタレート(以下「SPG— PET 」と言う。)を 99. 2体積%、光拡散素子としてポリメチルペンテンを 0. 8体積%を混合 したペレットを供給した。次いで溶融押出しを行い、静電印加法により鏡面のキャスト ドラム上で冷却して基材フィルムを作成した。  99.2% by volume of polyethylene terephthalate (hereinafter referred to as “SPG-PET”) in which 30 moles of spiroglycol as the main resin component of the light diffusing film is copolymerized in the extruder with 30 mol / ml of diol units. Pellets mixed with 0.8% by volume of polymethylpentene were supplied as elements. Next, melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
[0150] この基材フィルムに実施例 1 1と同様の方法で一方の表面に凹凸形状を形成した  [0150] An uneven shape was formed on one surface of this base film in the same manner as in Example 11.
[0151] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 4 mであった。 [0151] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 4 m.
[0152] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 10、平均正面輝度は 5700cdZm2であり、良好な性能を示した。 [0152] In this light diffusion film, the surface on which the surface irregularities are formed is in the observer direction (surface irregularities The surface on which the shape is not formed is laid on the light source side). Uniformity of the surface light source 1. 10 average front luminance 5700CdZm 2, showed a good performance.
[0153] [実施例 1 3]  [Example 1 3]
押出機に、光拡散フィルムを構成する主たる榭脂成分として SPG— PETを 98. 8 体積%、光拡散素子としてポリメチルペンテンを 1. 2体積%混合したペレットを供給 した。次いで溶融押出しを行い、静電印加法により鏡面のキャストドラム上で冷却して 基材フィルムを作成した。  Pellets mixed with 98.8% by volume of SPG-PET as the main resin component constituting the light diffusion film and 1.2% by volume of polymethylpentene as the light diffusion element were supplied to the extruder. Next, melt extrusion was performed, and a substrate film was prepared by cooling on a mirror-casting drum by an electrostatic application method.
[0154] この基材フィルムに実施例 1 1と同様の方法で一方の表面に凹凸形状を形成した  [0154] An uneven shape was formed on one surface of this base film in the same manner as in Example 11.
[0155] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径は 4. 5 mであった。 [0155] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size was 4.5 m.
[0156] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 08、平均正面輝度は 5600cdZm2であり、良好な性能を示した。 [0156] This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.08, and the average front luminance was 5600 cdZm 2 , indicating good performance.
[0157] [実施例 1 4]  [Example 1 4]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として PETに酸単位に対 してイソフタル酸成分を 10mol%、グリコール単位に対してシクロへキサンジメタノー ル成分を 10mol%共重合させたポリエステル榭脂(融点 TB : 225°C) (以下、「IC— P ET」と言う。)を 97体積%、光拡散素子としてポリメチルペンテンを 3体積%混合した ペレットを供給した。また、主押出機とは別に副押出機を用い、この副押出機に、 PE T (融点 TA: 265°C)ペレットを供給した。次 、で主押出機に供給した成分層の両側 表層に副押出機に供給した成分層が厚み比率で 副押出機の成分層:主押出機の 成分層:副押出機の成分層 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。押 し出された榭脂を静電印加法により鏡面のキャストドラム上で冷却して 3層積層シート を作成した。この積層シートを温度 87°Cで長手方向に 3. 2倍に延伸し、続いてテン ターにて 95°Cの予熱ゾーンを通して 110°Cで巾方向に 3. 4倍に延伸した。さらに熱 処理温度 THを 235°Cとして 30秒間熱処理することにより厚み 280 μ mの基材フィル ムを得た。 In the main extruder, the polyester resin obtained by copolymerizing 10 mol% of isophthalic acid component with respect to the acid unit and 10 mol% of cyclohexanedimethanol component with respect to the glycol unit as the main resin component constituting the light diffusion film. Pellets containing 97% by volume of fat (melting point TB: 225 ° C) (hereinafter referred to as “IC-PET”) and 3% by volume of polymethylpentene as a light diffusing element were supplied. Further, a sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to the sub-extruder. Next, on both sides of the component layer supplied to the main extruder, the component layer supplied to the sub-extruder on the surface layer is the thickness ratio. Sub-extruder component layer: Main extruder component layer: Sub-extruder component layer = 1: Melting three-layer lamination coextrusion was carried out to 8: 1. The extruded resin was cooled on a mirror cast drum by the electrostatic application method to produce a three-layer laminated sheet. This laminated sheet was stretched by a factor of 3.2 in the longitudinal direction at a temperature of 87 ° C. The film was stretched 3.4 times in the width direction at 110 ° C through a 95 ° C preheating zone. Furthermore, a substrate film with a thickness of 280 μm was obtained by heat treatment at a heat treatment temperature TH of 235 ° C for 30 seconds.
[0158] この基材フィルムに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使 用した金型は下記式で示される曲面が施されたニッケル製の金型である。  [0158] An uneven shape was formed on one surface of this base film by the following method. The mold used here is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.0691 X x)+5 X sin(0.0628 X y)  • z = 5 X sin (0.0691 X x) +5 X sin (0.0628 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0159] まず、紫外線硬化榭脂 (大日本インキ化学工業 (株)製:ュニディック 15 -829)に 開始剤(チバ 'スペシャルティ ·ケミカルズ (株)製:ィルガキュア 907)を紫外線硬化榭 脂:開始剤 = 99 : 1の質量割合で混合し、ミキサーで 30分間混合'攪拌し、塗液を得 た。次いで、該塗液を金型の表面形状が付与された面に、塗膜の厚みが 50 /z mとな るように塗布した。塗布後、塗膜の上面に基材フィルムを乗せ、密着させた。その後、 基材フィルム面側より金型面方向に対して合計 500mjZWの紫外線を照射した。紫 外線照射後、 40°Cで 30分間熱固定した。その後、金型を離型することにより、基材フ イルムの一方の面に、表面凹凸形状が形成された紫外線硬化榭脂層が積層された 光拡散フィルムを得た。 [0159] First, UV curing resin (Dainippon Ink & Chemicals Co., Ltd .: Unidic 15-829) and initiator (Ciba's Specialty Chemicals Co., Ltd .: Irgacure 907) were UV cured resin: initiator = 99: 1 was mixed at a mass ratio, mixed for 30 minutes with a mixer and stirred to obtain a coating solution. Next, the coating solution was applied to the surface of the mold provided with the surface shape so that the thickness of the coating film was 50 / zm. After the application, a base film was placed on the upper surface of the coating film and adhered. Thereafter, a total of 500 mjZW ultraviolet rays were irradiated from the base film surface side to the mold surface direction. After UV irradiation, it was heat-fixed at 40 ° C for 30 minutes. Thereafter, the mold was released to obtain a light diffusing film in which an ultraviolet curable resin layer having surface irregularities formed on one surface of the base film was laminated.
[0160] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 4. 8 μ mであった。  [0160] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 4.8 μm.
[0161] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 06、平均正面輝度は 5400cdZm2であり、良好な性能を示した。 [0161] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The surface light source had a uniformity of 1.06 and an average front luminance of 5400 cdZm 2 , indicating good performance.
[0162] [実施例 1 5]  [0162] [Example 1 5]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PET (融点 TB : 225°C)を 94体積0 /0、光拡散素子としてポリメチルペンテンを 6体積%混合したペレ ットを供給した。また、主押出機とは別に副押出機を用い、この副押出機に、 PET (融 点 TA: 265°C)ペレットを供給した。次 ヽで主押出機に供給した成分層の両側表層 に副押出機に供給した成分層が厚み比率で 副押出機の成分層:主押出機の成分 層:副押出機の成分層 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。押し出 された榭脂を静電印加法により鏡面のキャストドラム上で冷却して 3層積層シートを作 成した。この積層シートを温度 87°Cで長手方向に 3. 2倍に延伸し、続いてテンター にて 95°Cの予熱ゾーンを通して 110°Cで巾方向に 3. 4倍に延伸した。さらに熱処理 温度 THを 235°Cとして 30秒間熱処理することにより厚み 180 μ mの基材フィルムを 得た。 The main extruder, as the main榭脂component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 94 volume 0/0, pellets with a polymethylpentene as the light diffuser mixing 6 vol% Supplied. In addition to the main extruder, a sub-extruder is used. Point TA: 265 ° C.) Pellets were fed. Next, the component layers supplied to the sub-extruder on both side layers of the component layer supplied to the main extruder in the thickness ratio are sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: Melting three-layer lamination coextrusion was carried out to 8: 1. The extruded resin was cooled on a mirror cast drum by the electrostatic application method to produce a three-layer laminated sheet. This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C with a tenter. Furthermore, the substrate film having a thickness of 180 μm was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
[0163] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した  [0163] An uneven shape was formed on one surface of this base film in the same manner as in Example 14
[0164] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が設けられた面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。 [0164] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, the haze, The total thickness was as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface provided with the uneven surface shape. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0165] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状を付与していない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 5、平均正面輝度は 5400cdZm2であり、良好な性能を示した。 [0165] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface not having the surface unevenness was the light source side). Uniformity of the surface light source is 1.0 5, the average front luminance 5400CdZm 2, showed a good performance.
[0166] [実施例 1 6]  [Example 1 6]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0167] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 • Z=5 X sin(0.104 X x)+5 X sin(0.0942 X y)  [0167] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula. • Z = 5 X sin (0.104 X x) +5 X sin (0.0942 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0168] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。 [0168] Maximum value Asmax, minimum value Asmin, anisotropy, number density of light diffusing elements in the film cross section, area occupancy, transmittance in the obtained light diffusion film Table 1 shows the haze and the total thickness. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0169] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1[0169] This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source is 1
. 04、平均正面輝度は 5500cdZm2と良好な性能を示した。 . 04, the average front luminance showed good performance and 5500CdZm 2.
[0170] [実施例 1 7] [Example 1 7]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0171] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した[0171] An uneven shape was formed on one surface of this base film in the same manner as in Example 14.
。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.173 X x)+5 X sin(0.157 X y) • z = 5 X sin (0.173 X x) +5 X sin (0.157 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0172] 得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asmax、最小値 Asmin,異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率、へ ィズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状が形 成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは断面 観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。  [0172] The maximum value Asmax, the minimum value Asmin, the anisotropy of the aspect ratio of the surface shape in the obtained light diffusion film, the number density of the light diffusion element, the area occupancy, the transmittance, the haze, The total thickness was as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0173] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 3、平均正面輝度は 5500cdZm2であり、良好な性能を示した。 [0173] This light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source was 1.03 and the average front luminance was 5500 cdZm 2 , indicating good performance.
[0174] [実施例 1 8]  [Example 1 8]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0175] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 • z=5 X sin(0.346 X x)+5 X sin(0.314 X y) [0175] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula. • z = 5 X sin (0.346 X x) +5 X sin (0.314 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0176] 得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asmax、最小値 Asmin,異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率、へ ィズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状が形 成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは断面 観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。  [0176] Maximum aspect ratio of surface shape in the obtained light diffusing film Asmax, minimum value Asmin, anisotropy, number density of light diffusing element in the film cross section, area occupancy, transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0177] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 03、平均正面輝度は 5500cdZm2であり、良好な性能を示した。 [0177] This light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source was 1.03 and the average front luminance was 5500 cdZm 2 , indicating good performance.
[0178] [実施例 1 9]  [Example 1 9]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0179] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 [0179] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.518 X x)+5 X sin(0.471 X y) • z = 5 X sin (0.518 X x) +5 X sin (0.471 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0180] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。 [0180] Maximum aspect ratio of surface irregularities in the obtained light diffusion film Asmax, minimum value Asmin, anisotropy, number density of light diffusing elements in the film cross section, area occupancy, transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0181] 力かる光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸 形状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 03、平均正面輝度は 5600cdZm2であり、良好な性能を示した。 [0181] A powerful light diffusion film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The surface light source had a uniformity of 1.03 and an average front luminance of 5600 cdZm 2 , indicating good performance.
[0182] [実施例 1 10] [0182] [Example 1 10]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。 Except for changing the extrusion amounts of the main extruder and sub-extruder, the thickness was changed in the same manner as in Example 1-5. A 120 μm substrate film was obtained. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0183] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。[0183] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.0942 X x)+5 X sin(0.0628 X y) • z = 5 X sin (0.0942 X x) +5 X sin (0.0628 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0184] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。  [0184] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0185] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 02、平均正面輝度は 5500cdZm2であり、良好な性能を示した。 [0185] This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.02, and the average front luminance was 5500 cdZm 2 , indicating good performance.
[0186] [実施例 1 11]  [Example 1 11]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0187] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 [0187] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.0942 X x)+5 X sin(0.0471 X y) • z = 5 X sin (0.0942 X x) +5 X sin (0.0471 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0188] 得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asmax、最小値 Asmin,異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率、へ ィズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状が形 成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは断面 観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。 [0188] Maximum aspect ratio of surface shape in the obtained light diffusing film Asmax, minimum value Asmin, anisotropy, number density of light diffusing element in the film cross section, area occupancy, transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0189] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 01、平均正面輝度は 5500cdZm2であり、良好な性能を示した。 [0189] In this light diffusion film, the surface on which the surface irregularities are formed is in the observer direction (surface irregularities The surface on which the shape is not formed is laid on the light source side). The uniformity of this surface light source was 1.01, and the average front luminance was 5500 cdZm 2 , indicating good performance.
[0190] [実施例 1 12]  [0190] [Example 1 12]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PET (融点 TB : 225°C)を 96体積0 /0、光拡散素子として平均粒径 4 μ mのアクリル—スチレン系架 橋粒子を 4体積%混合したペレットを供給した。また、主押出機とは別に副押出機を 用い、この副押出機に、 PET (融点 TA: 265°C)ペレットを供給した。次いで主押出 機に供給した成分層の両側表層に副押出機に供給した成分層が厚み比率で 副押 出機の成分層:主押出機の成分層:副押出機の成分層 = 1 : 8 : 1 となるよう溶融 3層 積層共押出しを行った。押し出された榭脂を静電印加法により鏡面のキャストドラム 上で冷却して 3層積層シートを作成した。この積層シートを温度 87°Cで長手方向に 3 . 2倍に延伸し、続いてテンターにて 95°Cの予熱ゾーンを通して 110°Cで巾方向に 3 . 4倍に延伸した。さらに熱処理温度 THを 235°Cとして 30秒間熱処理することにより 厚み 120 μ mの基材フィルムを得た。 The main extruder, as the main榭脂component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 96 volume 0/0, acrylic having an average particle size of 4 mu m as a light diffusing element - styrene rack Pellets mixed with 4% by volume of bridge particles were supplied. In addition to the main extruder, a sub-extruder was used, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder. Next, the component layer supplied to the sub-extruder on the surface layer on both sides of the component layer supplied to the main extruder in the thickness ratio. Sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8 : Three-layer melt co-extrusion was performed so as to be 1. The extruded resin was cooled on a mirror cast drum by an electrostatic application method to prepare a three-layer laminated sheet. The laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C with a tenter. Further, a base film having a thickness of 120 μm was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
[0191] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 • z=5 X sin(0.0942 X x)+5 X sin(0.0314 X y)  [0191] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula. • z = 5 X sin (0.0942 X x) +5 X sin (0.0314 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0192] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。  [0192] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the film cross section, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
[0193] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 00、平均正面輝度は 5500cdZm2であり、良好な性能を示した。 [0193] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.00 and the average front luminance was 5500 cdZm 2 , indicating good performance.
[0194] [実施例 1 13]  [Example 1 13]
実施例 1 12と同様の方法で厚み 120 mの基材フィルムを得た。  Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
[0195] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。[0195] An uneven shape was formed on one surface of this base film in the same manner as in Example 14 . However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.157 X x)+5 X sin(0.0628 X y) • z = 5 X sin (0.157 X x) +5 X sin (0.0628 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0196] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率[0196] Maximum value Asmax, minimum value Asmin, anisotropy of the aspect ratio of the surface irregularity shape in the obtained light diffusion film, number density of light diffusion elements in the film cross section, area occupancy, transmittance
、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。 Table 1 shows the haze and the total thickness. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
[0197] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1[0197] The light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source is 1
. 01、平均正面輝度は 5600cdZm2であり、良好な性能を示した。 01, the average front brightness was 5600cdZm 2 and showed good performance.
[0198] [実施例 1 14] [0198] [Example 1 14]
実施例 1 12と同様の方法で厚み 120 mの基材フィルムを得た。  Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
[0199] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した[0199] An uneven shape was formed on one surface of this base film in the same manner as in Example 14
。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.314 X x)+5 X sin(0.126 X y) • z = 5 X sin (0.314 X x) +5 X sin (0.126 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0200] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率[0200] Maximum aspect ratio of surface irregularities in the obtained light diffusing film Asmax, minimum value Asmin, anisotropy, number density of light diffusing elements in the film cross section, area occupancy, transmittance
、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。 Table 1 shows the haze and the total thickness. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
[0201] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1[0201] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source is 1
. 00、平均正面輝度は 5600cdZm2であり、良好な性能を示した。 The average front brightness was 5600 cdZm 2 , indicating good performance.
[0202] [実施例 1 15] [0202] [Example 1 15]
実施例 1 12と同様の方法で厚み 120 mの基材フィルムを得た。  Example 1 A substrate film having a thickness of 120 m was obtained in the same manner as in 12.
[0203] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した[0203] An uneven shape was formed on one surface of this base film in the same manner as in Example 14
。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.471 X x)+5 X sin(0.236 X y) ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。 • z = 5 X sin (0.471 X x) +5 X sin (0.236 X y) Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0204] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。  [0204] Maximum value Asmax, minimum value Asmin, anisotropy, number density of light diffusing elements in cross section of film, area occupancy rate, transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed.
[0205] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 00、平均正面輝度は 5600cdZm2であり、良好な性能を示した。 [0205] This light diffusion film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.00 and the average front luminance was 5600 cdZm 2 , indicating good performance.
[0206] [実施例 1 16]  [Example 1 16]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PET (融点 TB : 225°C)を 96体積0 /0、光拡散素子としてポリメチルペンテンを 4体積%混合したペレ ットを供給した。また、主押出機とは別に副押出機を用い、この副押出機に、 PET (融 点 TA: 265°C)ペレットを供給した。次 ヽで主押出機に供給した成分層の両側表層 に副押出し機に供給した成分層が厚み比率で 副押出機の成分層:主押出機の成 分層:副押出機の成分層 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。静電 印加法により鏡面のキャストドラム上で冷却して 3層積層シートを作成した。この積層 シートを温度 87°Cで長手方向に 3. 2倍に延伸し、続いてテンターにて 95°Cの予熱 ゾーンを通して 110°Cで巾方向に 3. 4倍に延伸した。さらに熱処理温度 THを 235 °Cとして 30秒間熱処理することにより厚み 120 μ mの基材フィルムを得た。 The main extruder, mainly as榭脂component IC- PET (melting point TB: 225 ° C) constituting the light diffusing film 96 volume 0/0, pellets of a mixture of polymethylpentene 4 vol% light diffuser Supplied. A sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder. Next, the thickness of the component layer supplied to the sub-extruder on both side layers of the component layer supplied to the main extruder is as follows: Component layer of the sub-extruder: Component layer of the main extruder: Component layer of the sub-extruder = 1 The melted three-layer lamination coextrusion was performed so that the ratio was 8: 1. A three-layer laminate sheet was prepared by cooling on a mirror-casting drum by applying electrostatic force. This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and subsequently stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C. Furthermore, the substrate film having a thickness of 120 μm was obtained by heat treatment at a heat treatment temperature TH of 235 ° C. for 30 seconds.
[0207] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 •z=5 X sin(0.314 Xx)  [0207] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula. Z = 5 X sin (0.314 Xx)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0208] 得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asmax、最小値[0208] Maximum aspect ratio of the surface shape in the obtained light diffusion film Asmax, minimum value
Asmin,異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率、へ ィズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状が形 成された面より光線を入射して測定した数値である。 Asmin, anisotropy, number density, area occupancy, transmittance, haze and total thickness of the light diffusing element in the film cross section were as shown in Table 1. The transmittance and haze are values measured by making light rays incident from the surface on which the surface irregularity shape is formed.
[0209] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 01、平均正面輝度は 5700cdZm2であり、良好な性能を示した。 [0209] In this light diffusion film, the surface on which the surface unevenness is formed is in the direction of the observer (surface unevenness The surface on which the shape is not formed is laid on the light source side). The uniformity of this surface light source was 1.01, and the average front luminance was 5700 cdZm 2 , indicating good performance.
[0210] [実施例 1 17] [0210] [Example 1 17]
下記の布帛を作成し、展張し、面光源筐体に両面接着テープ(日東電工 (株)製 N The following fabrics were created and spread out, and double-sided adhesive tape (Nitto Denko Corporation N)
0. 500)で固定した。該布帛の上 (蛍光灯に面する側とは反対側の面)に、実施例 1 16で得られた光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表 面凹凸形状が形成されていない面が布帛側)になるように重ねた。この面光源の均 斉度は 1. 00、平均正面輝度は 5900cdZm2と良好な性能を示した。また布帛によ る光拡散フィルムの支持については、布帛の橈みもほとんどなく良好であった。 0. 500). On the fabric (the surface opposite to the side facing the fluorescent lamp), the surface of the light diffusing film obtained in Example 116, on which the surface unevenness is formed, is in the observer direction (the surface unevenness is The layers were formed so that the surface not formed was on the fabric side. Hitoshi Hitoshido of the surface light source is 1.00, the average front luminance showed good performance and 5900cdZm 2. The support of the light diffusion film by the fabric was good with almost no sag of the fabric.
[0211] (布帛の構成)  [0211] (Composition of fabric)
1.使用糸:タテ糸(84dtex— 72フィラメント、ポリエステル 100%フィラメントヤーン) 、 ョコ糸(84dtex— 72フィラメント、ポリエステル 100%フィラメントヤーン)  1. Yarn used: warp yarn (84dtex—72 filament, 100% polyester filament yarn), horizontal yarn (84dtex—72 filament, 100% polyester filament yarn)
2.織り組織:平織り  2. Weaving organization: Plain weave
3.織り密度:タテ織り密度 110本 Zインチ、ョコ織り密度 90本 Zインチ。  3. Weaving density: Vertical weaving density 110 Z-inch, horizontal weaving density 90 Z-inch.
[0212] 上記構成で作成された布帛の全光線透過率、ヘイズはそれぞれ 51%、 90%であ つた o [0212] The total light transmittance and haze of the fabric made with the above configuration were 51% and 90%, respectively.
[0213] [比較例 1 1]  [0213] [Comparative Example 1 1]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PET (融点 TB : 225°C)を 92体積0 /0、光拡散素子としてポリメチルペンテンを 8体積%混合したペレ ットを供給した。また、主押出機とは別に副押出機を用い、この副押出機に、 PET (融 点 TA: 265°C)ペレットを供給した。次 ヽで主押出し機に供給した成分層の両側表 層に副押出機に供給した成分層が厚み比率で 副押出機の成分層:主押出機の成 分層:副押出機の成分層 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。静電 印加法により鏡面のキャストドラム上で冷却して 3層積層シートを作成した。この積層 シートを温度 87°Cで長手方向に 3. 2倍に延伸し、続いてテンターにて 95°Cの予熱 ゾーンを通して 110°Cで巾方向に 3. 4倍に延伸した。さらに熱処理温度 THを 235 °Cとして 30秒間熱処理することにより厚み 150 μ mの基材フィルムを得た。 The main extruder, as the main榭脂component constituting the light diffusing film IC- PET (melting point TB: 225 ° C) to 92 volume 0/0, pellets with a polymethylpentene as the light diffuser mixing 8 vol% Supplied. A sub-extruder was used separately from the main extruder, and PET (melting point TA: 265 ° C) pellets were supplied to this sub-extruder. Next, the component layer supplied to the sub-extruder on both sides of the component layer supplied to the main extruder in the thickness ratio is the thickness ratio. Sub-extruder component layer: Main extruder component layer: Sub-extruder component layer = Melting three-layer lamination coextrusion was performed so that 1: 8: 1. A three-layer laminate sheet was prepared by cooling on a mirror-casting drum by applying electrostatic force. This laminated sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and subsequently stretched 3.4 times in the width direction at 110 ° C through a preheating zone of 95 ° C. Further, a heat treatment temperature TH was set at 235 ° C. for 30 seconds to obtain a base film having a thickness of 150 μm.
[0214] 得られた基材フィルムをそのまま光拡散フィルムとして用いた。この光拡散フィルム は両面が平坦であり、フィルム断面での光拡散素子の数密度、面積占有率、透過率[0214] The obtained base film was directly used as a light diffusion film. This light diffusion film Is flat on both sides, the number density, area occupancy, and transmittance of the light diffusing element in the film cross section
、ヘイズ、総厚みは表 1に示すとおりであった。また、ポリメチルペンテンは断面観察 の結果、球状に分散しており、平均粒径 (直径)は 5. 2 mであった。 Table 1 shows the haze and the total thickness. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5.2 m.
[0215] この光拡散フィルムを敷設した面光源の均斉度は 1. 42、平均正面輝度は 4800cd / m (?めった。  [0215] The uniformity of the surface light source on which this light diffusing film was laid was 1.42, and the average front luminance was 4800 cd / m (?).
[0216] [比較例 1 2]  [0216] [Comparative Example 1 2]
押出機に、フィルムを構成する主たる榭脂成分として PETのペレットを供給した。次 いで溶融押出しを行い、静電印加法により鏡面のキャストドラム上で冷却して単層シ ートを作成した。この単層シートを温度 87°Cで長手方向に 3. 2倍に延伸し、続いて テンターにて 95°Cの予熱ゾーンを通して 110°Cで巾方向に 3. 4倍に延伸した。さら に熱処理温度 THを 235°Cとして 30秒間熱処理することにより厚み 150 μ mの基材 フイノレムを得た。  PET pellets were supplied to the extruder as the main resin component of the film. Next, melt extrusion was performed, and a single-layer sheet was prepared by cooling on a mirror-casting drum by an electrostatic application method. This single-layer sheet was stretched 3.2 times in the longitudinal direction at a temperature of 87 ° C, and then stretched 3.4 times in the width direction at 110 ° C through a 95 ° C preheating zone with a tenter. Furthermore, a base material Finolem with a thickness of 150 μm was obtained by heat treatment at a heat treatment temperature TH of 235 ° C for 30 seconds.
[0217] 得られた基材フィルムに実施例 1 6と同様の方法で一方の表面に凹凸形状を形 成した。  [0217] An uneven shape was formed on one surface of the obtained base film in the same manner as in Example 16.
[0218] その結果、得られた光拡散フィルムにおける表面形状のアスペクト比の最大値 Asm ax、最小値 Asmin、異方度、透過率、ヘイズ、総厚みは表 1に示すとおりであった。尚 、透過率とヘイズは表面凹凸形状が形成された面より光線を入射して測定した数値 である。  [0218] As a result, the maximum value Asm ax, the minimum value Asmin, the anisotropy, the transmittance, the haze, and the total thickness of the aspect ratio of the surface shape in the obtained light diffusion film were as shown in Table 1. The transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed.
[0219] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 [0219] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source is 1
. 68、平均正面輝度は 5000cdZm2であった。 68. The average front brightness was 5000 cdZm 2 .
[0220] [比較例 1 3] [0220] [Comparative Example 1 3]
主押出機と副押出機の押出量を変更した以外は、実施例 1—5と同様の方法で厚 み 120 μ mの基材フィルムを得た。なお、厚み比は 副押出機の成分層:主押出機 の成分層:副押出機の成分層 = 1 : 8 : 1 である。  A base film having a thickness of 120 μm was obtained in the same manner as in Example 1-5 except that the extrusion amounts of the main extruder and the sub-extruder were changed. The thickness ratio is: sub-extruder component layer: main extruder component layer: sub-extruder component layer = 1: 8: 1.
[0221] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した[0221] An uneven shape was formed on one surface of this base film in the same manner as in Example 14
。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.0942 X x)+5 X sin(0.0942 X y) ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。 • z = 5 X sin (0.0942 X x) +5 X sin (0.0942 X y) Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0222] 得られた光拡散フィルムにおける表面凹凸形状のアスペクト比の最大値 Asmax、最 小値 Asmin、異方度、フィルム断面での光拡散素子の数密度、面積占有率、透過率 、ヘイズ、総厚みは表 1に示すとおりであった。尚、透過率とヘイズは表面凹凸形状 が形成された面より光線を入射して測定した数値である。また、ポリメチルペンテンは 断面観察の結果、球状に分散しており、平均粒径 (直径)は 5 /z mであった。  [0222] The maximum value Asmax, the minimum value Asmin, the anisotropy, the number density of the light diffusing element in the cross section of the film, the area occupancy, the transmittance, haze, The total thickness was as shown in Table 1. The transmittance and haze are numerical values measured by making light incident from the surface on which the surface irregularities are formed. As a result of cross-sectional observation, polymethylpentene was dispersed in a spherical shape, and the average particle size (diameter) was 5 / zm.
[0223] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 22、平均正面輝度は 5100cdZm2であった。 [0223] This light diffusing film was laid such that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source was 1.22, and the average front luminance was 5100 cdZm 2 .
[0224] [実施例 2— 1]  [0224] [Example 2-1]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として PETに酸単位に対 してイソフタル酸成分を 10mol%、グリコール単位に対してシクロへキサンジメタノー ル成分を 10mol%共重合させたポリエステル榭脂(融点 225°C) (以下、「IC— PET」 と言う。)を 98体積0 /0、光拡散素子としてポリメチルペンテンを 2体積%混合したペレ ットを供給し、また、主押出機とは別に副押出機を用い、この副押出機に、 PET (融 点 265°C)ペレットを供給した。次 、で主押出機に供給した成分層の両側表層に副 押出機に供給した成分層が厚み比率で 副押出機の成分比:主押出機の成分比: 副押出機の成分比 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。押し出され た榭脂を静電印加法により鏡面のキャストドラム上で冷却して 3層積層シートを作成し た。この積層シートを温度 88°Cで長手方向に 3. 3倍に延伸し、続いてテンターにて 9 5°Cの予熱ゾーンを通して 115°Cで巾方向に 3. 5倍に延伸した。さらに熱処理温度 を 240°Cとして 30秒間熱処理することにより厚み 140 μ mの基材フィルムを得た。 In the main extruder, the polyester resin obtained by copolymerizing 10 mol% of the isophthalic acid component with respect to the acid unit and 10 mol% of the cyclohexanedimethanol component with respect to the glycol unit as the main resin component constituting the light diffusion film. fat (mp 225 ° C) (hereinafter, "IC- PET" say.) 98 volume 0/0, polymethylpentene supplying pellets were mixed 2 vol% as light diffuser, also, the main extrusion A sub-extruder was used separately from the machine, and PET (melting point 265 ° C) pellets were supplied to this sub-extruder. Next, the thickness of the component layer supplied to the sub-extruder on both side layers of the component layer supplied to the main extruder is as follows: Component ratio of sub-extruder: Component ratio of main extruder: Component ratio of sub-extruder = 1: Melting three-layer lamination coextrusion was carried out to 8: 1. The extruded resin was cooled on a mirror cast drum by an electrostatic application method to produce a three-layer laminated sheet. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Furthermore, the substrate film having a thickness of 140 μm was obtained by heat treatment at 240 ° C. for 30 seconds.
[0225] この基材フィルムに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使 用した金型は下記式で示される曲面が施されたニッケル製の金型である。  [0225] An uneven shape was formed on one surface of this base film by the following method. The mold used here is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.314 X x)+5 X sin(0.251 X y)  • z = 5 X sin (0.314 X x) +5 X sin (0.251 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0226] まず、紫外線硬化榭脂 (大日本インキ化学工業 (株)製:ュニディック 15— 829)に 開始剤(チバ 'スペシャルティ ·ケミカルズ (株)製:ィルガキュア 907)を紫外線硬化榭 脂:開始剤 = 99 : 1の割合で混合し、ミキサーで 30分間混合'攪拌し、塗液を得た。 次いで、該塗液を金型の表面形状が付与された面に、塗膜の厚みが 50 mとなるよ うに塗布した。塗布後、塗膜の上面に基材フィルムを乗せ、密着させた。その後、基 材フィルム面側より金型面方向に対して合計 500mjZWの紫外線を照射した。紫外 線照射後、 40°Cで 30分間熱固定した。その後、金型を離型することにより、基材フィ ルムの一方の面に表面凹凸形状が形成された紫外線硬化榭脂層が積層された光拡 散フィルムを得た。 [0226] First, the UV curing resin (Dainippon Ink & Chemicals Co., Ltd .: Unidic 15-829) and the initiator (Ciba 'Specialty Chemicals Co., Ltd .: Irgacure 907) were UV cured. Fat: Initiator = Mixing at a ratio of 99: 1, mixing with a mixer for 30 minutes and stirring to obtain a coating solution. Next, the coating solution was applied to the surface of the mold provided with a surface shape so that the thickness of the coating film was 50 m. After the application, a base film was placed on the upper surface of the coating film and adhered. Thereafter, a total of 500 mjZW of ultraviolet rays was irradiated from the base film side to the mold surface direction. After UV irradiation, it was heat fixed at 40 ° C for 30 minutes. Thereafter, the mold was released to obtain a light diffusing film in which an ultraviolet curable resin layer having a surface irregularity formed on one surface of the base film was laminated.
[0227] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。  [0227] The minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0228] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 8、平均正面輝度は 5900cdZm2であり、良好な性能を示した。 [0228] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The surface light source had a uniformity of 1.08 and an average front luminance of 5900 cdZm 2 , indicating good performance.
[0229] [実施例 2— 2]  [0229] [Example 2-2]
実施例 2— 1と同様の方法で厚み 140 μ mの基材フィルムを得た。この基材フィル ムに実施例 2—1と同様の方法で一方の表面に凹凸形状を形成した。但し、使用した 金型は下記式で示される曲面が施されたニッケル製の金型である。  A base film having a thickness of 140 μm was obtained in the same manner as in Example 2-1. An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1. However, the mold used was a nickel mold with a curved surface represented by the following formula.
• z=5 X sin(0.314 X x)+5 X sin(0.188 X y)  • z = 5 X sin (0.314 X x) +5 X sin (0.188 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0230] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin、につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0230] The minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, maximum / minimum ratio BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δ φ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy ratio of maximum value to minimum value AsmaxZ Asm In, transmittance, haze, and total thickness were as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light from the surface when the surface irregularities are formed.
[0231] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 6、平均正面輝度は 5800cdZm2であり、良好な性能を示した。 [0231] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.06, and the average front luminance was 5800 cdZm 2 , indicating good performance.
[0232] [実施例 2— 3]  [0232] [Example 2-3]
実施例 2— 1と同様の方法で厚み 140 μ mの基材フィルムを得た。  A base film having a thickness of 140 μm was obtained in the same manner as in Example 2-1.
[0233] この基材フィルムに実施例 2— 1と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 • z=5 X sin(0.314 X x)+5 X sin(0.126 X y)  [0233] An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1. However, the mold used was a nickel mold with a curved surface represented by the following formula. • z = 5 X sin (0.314 X x) +5 X sin (0.126 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0234] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0234] The in-plane rotation angle indicating the minimum specific value BI, maximum average specific luminance Bmax, minimum average specific luminance Bmin, maximum / minimum ratio BmaxZBmin, maximum average specific luminance Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0235] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 4、平均正面輝度は 5700cdZm2であり、良好な性能を示した。 [0235] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the viewer direction (the surface on which the surface irregularities were not formed was on the light source side). The uniformity of this surface light source was 1.04, and the average front luminance was 5700 cdZm 2 , indicating good performance.
[0236] [実施例 2— 4]  [0236] [Example 2-4]
実施例 2— 1と同様の方法で厚み 140 μ mの基材フィルムを得た。  A base film having a thickness of 140 μm was obtained in the same manner as in Example 2-1.
[0237] この基材フィルムに実施例 2— 1と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 •z=5 X sin(0.251 Xx) [0237] An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1. However, the mold used was a nickel mold with a curved surface represented by the following formula. Z = 5 X sin (0.251 Xx)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0238] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0238] The in-plane rotation angle indicating the minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, maximum / minimum ratio BmaxZBmin, maximum average specific brightness Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0239] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 3、平均正面輝度は 5900cdZm2であり、良好な性能を示した。 [0239] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). Uniformity of the surface light source is 1.0 3, the average front luminance 5900CdZm 2, showed a good performance.
[0240] [実施例 2— 5]  [0240] [Example 2-5]
実施例 2— 1と同様の方法で厚み 140 μ mの基材フィルムを得た。  A base film having a thickness of 140 μm was obtained in the same manner as in Example 2-1.
[0241] この基材フィルムに実施例 2— 1と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 •z=5 X sin(0.440 Xx)  [0241] An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1. However, the mold used was a nickel mold with a curved surface represented by the following formula. Z = 5 X sin (0.440 Xx)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0242] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0242] The in-plane rotation angle indicating the minimum specific brightness BI, the maximum average specific brightness Bmax, the minimum average specific brightness Bmin, the maximum / minimum ratio BmaxZBmin, and the maximum average specific brightness Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0243] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0[0243] The surface on which the uneven surface of the light diffusion film is formed is directed toward the viewer (the uneven surface) The surface where no is formed is laid on the light source side. The uniformity of this surface light source is 1.0
3、平均正面輝度は 5800cdZm2であり、良好な性能を示した。 3. The average front brightness was 5800cdZm 2 , showing good performance.
[0244] [実施例 2 - 6] [Example 2-6]
実施例 2— 1と同様の方法で厚み 140 μ mの基材フィルムを得た。  A base film having a thickness of 140 μm was obtained in the same manner as in Example 2-1.
[0245] この基材フィルムに実施例 2— 1と同様の方法で一方の表面に凹凸形状を形成した[0245] An uneven shape was formed on one surface of this base film in the same manner as in Example 2-1.
。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。. However, the mold used was a nickel mold with a curved surface represented by the following formula.
•z=5 X sin(0.628 X x) Z = 5 X sin (0.628 X x)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0246] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0246] The obtained light diffusion film has a minimum specific brightness BI, a maximum average specific brightness Bmax, a minimum average specific brightness Bmin, a ratio between the maximum and minimum values BmaxZBmin, an in-plane rotation angle indicating the maximum average specific brightness Bmax, and Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0247] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 0 2、平均正面輝度は 5800cdZm2であり、良好な性能を示した。 [0247] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the observer direction (the surface on which the surface irregularities were not formed was on the light source side). The surface light source had a uniformity of 1.0 2 and an average front luminance of 5800 cdZm 2 , indicating good performance.
[0248] [実施例 2— 7]  [0248] [Example 2-7]
実施例 2— 3で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 23. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 30° であったが、均斉度は 1. 03、平均正面輝度は 6000cd/m2であ り、良好な性能を示した。 The diffusion film obtained in Example 2-3 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm. The δ of this surface light source was calculated to be 30 °, but the uniformity was 1.03 and the average front luminance was 6000 cd / m 2 , indicating good performance.
[0249] [実施例 2— 8]  [Example 2—8]
実施例 2— 6で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 23. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 30° であったが、均斉度は 1. 02、平均正面輝度は 5900cd/m2であ り、良好な性能を示した。 The diffusion film obtained in Example 2-6 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm. When the δ of the surface light source was calculated, but was 30 °, uniformity ratio 1.02, the average front luminance 5900cd / m 2 der It showed good performance.
[0250] [実施例 2— 9]  [0250] [Example 2-9]
実施例 2— 3で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 15. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 40° であった力 均斉度は 1. 05、平均正面輝度は 5600cdZm2であ り、良好な性能を示した。 The diffusion film obtained in Example 2-3 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm. When the δ of this surface light source was calculated, the force uniformity of 40 ° was 1.05, and the average front brightness was 5600 cdZm 2 , indicating good performance.
[0251] [実施例 2— 10] [0251] [Example 2-10]
実施例 2— 6で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 15. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 40° であった力 均斉度は 1. 03、平均正面輝度は 5700cdZm2であ り、良好な性能を示した。 The diffusion film obtained in Example 2-6 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm. When the δ of this surface light source was calculated, the force uniformity of 40 ° was 1.03, and the average front brightness was 5700 cdZm 2 , indicating good performance.
[0252] [参考例 2— 1] [0252] [Reference Example 2-1]
押出機に、光拡散フィルムを構成する主たる榭脂成分としてポリカーボネートのぺ レットを供給した。次いで溶融押出しを行い、静電印加法により鏡面のキャストドラム 上で冷却して単層シートを作成した。  Polycarbonate pellets were supplied to the extruder as the main resin component constituting the light diffusion film. Next, melt extrusion was performed, and a single-layer sheet was prepared by cooling on a mirror-casting drum by an electrostatic application method.
[0253] この単層シートに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使用 した金型は下記式で示される曲面が施されたニッケル製の金型である。 [0253] An uneven shape was formed on one surface of this single-layer sheet by the following method. The mold used here is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.0942 X x)+5 X sin(0.0942 X y)  • z = 5 X sin (0.0942 X x) +5 X sin (0.0942 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0254] まず、得られた単層シートと金型を 175°Cまで加熱し、 2. 5分保持した。次いで 12 MPaの圧力で単層シートに金型の形状が付与されている面を押し当て、 3分間保持 した。その後、圧力を保持させたまま、 125°Cまで冷却し、圧力を開放した。金型より 表面凹凸形状が形成されたフィルムを離型し、光拡散フィルムを得た。 [0254] First, the obtained single-layer sheet and mold were heated to 175 ° C and held for 2.5 minutes. Next, the surface of the single-layer sheet with the shape of the mold was pressed with a pressure of 12 MPa and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 125 ° C. and the pressure was released. The film on which the surface irregularities were formed was released from the mold to obtain a light diffusion film.
[0255] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin、につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0255] The in-plane rotation angle indicating the minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, maximum / minimum ratio BmaxZBmin, maximum average specific brightness Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Where transmittance and haze are It is the numerical value which measured by making a light ray inject from the surface in which the surface uneven | corrugated shape was formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light from the surface when the surface irregularities are formed.
[0256] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 1 9、平均正面輝度は 6100cdZm2であった。 [0256] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.19 and the average front luminance was 6100 cdZm 2 .
[0257] [参考例 2— 2]  [0257] [Reference Example 2-2]
押出機に、光拡散フィルムを構成する主たる榭脂成分として、 PETにグリコール単 位に対してシクロへキサンジメタノール成分を 20mol%共重合させたポリエステル榭 脂を 99. 8体積%、光拡散素子としてポリメチルペンテンを 0. 2体積%混合したペレ ットを供給した。次いで溶融押出しを行い、静電印加法により鏡面のキャストドラム上 で冷却して単層シートを作成した。  In the extruder, 99.8% by volume of a polyester resin obtained by copolymerizing 20 mol% of cyclohexanedimethanol component with glycol unit as a main resin component constituting the light diffusion film in the extruder, light diffusion element A pellet containing 0.2% by volume of polymethylpentene was supplied. Next, melt extrusion was carried out, and a single layer sheet was prepared by cooling on a mirror cast drum by an electrostatic application method.
この単層シートに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使用し た金型は下記式で示される曲面が施されたニッケル製の金型である。  An uneven shape was formed on one surface of this single layer sheet by the following method. The mold used here is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.157 X x)+5 X sin(0.157 X y)  • z = 5 X sin (0.157 X x) +5 X sin (0.157 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0258] まず、得られた単層シートと金型を 135°Cまで加熱し、 3分保持した。次いで lOMPa の圧力で単層シートに金型の形状が付与されている面を押し当て、 3分間保持した。 その後、圧力を保持させたまま、 65°Cまで冷却し、圧力を開放した。金型より表面凹 凸形状が形成されたフィルムを離型し、光拡散フィルムを得た。 [0258] First, the obtained single-layer sheet and mold were heated to 135 ° C and held for 3 minutes. Next, the surface on which the mold shape was given to the single-layer sheet was pressed with a pressure of lOMPa, and held for 3 minutes. Thereafter, while maintaining the pressure, it was cooled to 65 ° C. and the pressure was released. The film on which the concave / convex shape was formed from the mold was released to obtain a light diffusion film.
[0259] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。 [0260] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸が形 成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 14、 平均正面輝度は 5800cdZm2であつた。 [0259] The minimum specific brightness BI, the maximum average specific brightness Bmax, the minimum average specific brightness Bmin, the ratio between the maximum and minimum BmaxZBmin, the in-plane rotation angle indicating the maximum average specific brightness Bmax Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed. [0260] This light diffusion film was laid so that the surface on which the surface irregularities were formed was in the viewer direction (the surface on which the surface irregularities were not formed was on the light source side). Uniformity of the surface light source 1. 14 average front luminance was found to be 5800cdZm 2.
[0261] [参考例 2— 3]  [0261] [Reference Example 2-3]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として PETに酸単位に対 してイソフタル酸成分を 10mol%、グリコール単位に対してシクロへキサンジメタノー ル成分を 10mol%共重合させたポリエステル榭脂(融点 225°C) (以下、「IC— PET」 と言う。)を 98体積0 /0、光拡散素子としてポリメチルペンテンを 2体積%混合したペレ ットを供給し、また、主押出機とは別に副押出機を用い、この副押出機に、 PET (融 点 265°C)ペレットを供給した。次 、で主押出機に供給した成分層の両側表層に副 押出機に供給した成分層が厚み比率で 副押出機の成分比:主押出機の成分比: 副押出機の成分比 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。静電印加法 により鏡面のキャストドラム上で冷却して 3層積層シートを作成した。この積層シートを 温度 88°Cで長手方向に 3. 3倍に延伸し、続いてテンターにて 95°Cの予熱ゾーンを 通して 115°Cで巾方向に 3. 5倍に延伸した。さらに熱処理温度を 240°Cとして 30秒 間熱処理することにより厚み 390 μ mの基材フィルムを得た。 In the main extruder, the polyester resin obtained by copolymerizing 10 mol% of isophthalic acid component with respect to the acid unit and 10 mol% of cyclohexanedimethanol component with respect to the glycol unit as the main resin component constituting the light diffusion film. fat (mp 225 ° C) (hereinafter, "IC- PET" say.) 98 volume 0/0, polymethylpentene supplying pellets were mixed 2 vol% as light diffuser, also, the main extrusion A sub-extruder was used separately from the machine, and PET (melting point 265 ° C) pellets were supplied to this sub-extruder. Next, the thickness of the component layer supplied to the sub-extruder on both side layers of the component layer supplied to the main extruder is as follows: Component ratio of sub-extruder: Component ratio of main extruder: Component ratio of sub-extruder = 1: Melting three-layer lamination coextrusion was carried out to 8: 1. A three-layer laminated sheet was prepared by cooling on a mirror-casting drum by electrostatic application. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Further, a base film having a thickness of 390 μm was obtained by heat treatment at 240 ° C. for 30 seconds.
[0262] この基材フィルムに下記方法で一方の表面に凹凸形状を形成した。尚、ここで、使 用した金型は下記式で示される曲面が施されたニッケル製の金型である。  [0262] An uneven shape was formed on one surface of the base film by the following method. The mold used here is a nickel mold having a curved surface represented by the following formula.
• z=5 X sin(0.314 X x)+5 X sin(0.314 X y)  • z = 5 X sin (0.314 X x) +5 X sin (0.314 X y)
ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は/ z mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is / zm.
[0263] まず、紫外線硬化榭脂 (大日本インキ化学工業 (株)製:ュニディック 15— 829)に 開始剤(チバ 'スペシャルティ ·ケミカルズ (株)製:ィルガキュア 907)を紫外線硬化榭 脂:開始剤 = 99 : 1の割合で混合し、ミキサーで 30分間混合'攪拌し、塗液を得た。 次いで、該塗液を金型の表面形状が形成された面に、塗膜の厚みが 50 /z mとなるよ うに塗布した。塗布後、塗膜の上面に基材フィルムを乗せ、密着させた。その後、基 材フィルム面側より金型面方向に対して合計 500mjZWの紫外線を照射した。紫外 線照射後、 40°Cで 30分間熱固定した。その後、金型を離型することにより、基材フィ ルムの一方の面に表面凹凸形状が形成された紫外線硬化榭脂層が積層された光拡 散フィルムを得た。 [0263] First, an ultraviolet-curing resin (Dainippon Ink Chemical Co., Ltd .: Unidic 15-829) and an initiator (Ciba 'Specialty Chemicals Co., Ltd .: Irgacure 907) were UV-cured resin: initiator = 99: 1 The mixture was mixed for 30 minutes with a mixer and stirred to obtain a coating solution. Next, the coating solution was applied to the surface of the mold surface shape so that the thickness of the coating film was 50 / zm. After the application, a base film was placed on the upper surface of the coating film and adhered. Thereafter, a total of 500 mjZW of ultraviolet rays was irradiated from the base film side to the mold surface direction. After UV irradiation, it was heat fixed at 40 ° C for 30 minutes. After that, by releasing the mold, the light spreading in which the ultraviolet curable resin layer having the surface unevenness formed on one surface of the substrate film is laminated. A powder film was obtained.
[0264] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。ここで、透過率とヘイズは 表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax, Bmin,につ 、ては表面凹凸形状が形成されて 、な 、面より光線を入射して測定した 数値である。  [0264] The minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. Here, the transmittance and haze are numerical values measured by incidence of light from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are numerical values obtained by measuring the incidence of light rays from the surface when the surface irregularities are formed.
[0265] この光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面凹凸形状 が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1. 1 0、平均正面輝度は 5800cdZm2であった。 [0265] This light diffusing film was laid so that the surface on which the surface irregularities were formed was in the viewer direction (the surface on which the surface irregularities were not formed was on the light source side). Uniformity of the surface light source 1. 1 0, the average front luminance was 5800cdZm 2.
[0266] [比較例 2— 1]  [0266] [Comparative Example 2-1]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PETを 90体積 %、光拡散素子としてポリメチルペンテンを 10体積%混合したペレットを供給し、また 、主押出機とは別に副押出機を用い、この副押出機に、 PET (融点 265°C)ペレット を供給した。次!ヽで主押出機に供給した成分層の両側表層に副押出機に供給した 成分層が厚み比率で 副押出機の成分比:主押出機の成分比:副押出機の成分比 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。静電印加法により鏡面のキャス トドラム上で冷却して 3層積層シートを作成した。この積層シートを温度 88°Cで長手 方向に 3. 3倍に延伸し、続いてテンターにて 95°Cの予熱ゾーンを通して 115°Cで巾 方向に 3. 5倍に延伸した。さらに熱処理温度を 240°Cとして 30秒間熱処理すること により厚み 140 μ mの基材フィルムを得た。  The main extruder is supplied with pellets containing 90% by volume of IC-PET as the main resin component of the light diffusing film and 10% by volume of polymethylpentene as the light diffusing element. Using a sub-extruder, PET (melting point 265 ° C) pellets were fed to this sub-extruder. Next! The thickness of the component layer supplied to the sub-extruder on both sides of the component layer supplied to the main extruder in Bamboo. The component ratio of the sub-extruder: The component ratio of the main extruder: The component ratio of the sub-extruder = 1 The melted three-layer lamination coextrusion was performed so that the ratio was 8: 1. A three-layer laminate sheet was prepared by cooling on a mirror-cast cast drum by the electrostatic application method. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Furthermore, the substrate film having a thickness of 140 μm was obtained by heat treatment at 240 ° C. for 30 seconds.
[0267] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。 [0268] この光拡散フィルムを面光源へ組み込んだ。この面光源の均斉度は 1. 24、平均正 面輝度は 4300cdZm2であった。 [0267] The obtained light diffusion film has a minimum specific brightness BI, a maximum average specific brightness Bmax, a minimum average specific brightness Bmin, a ratio between the maximum and minimum values BmaxZBmin, an in-plane rotation angle indicating the maximum average specific brightness Bmax, and Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2. [0268] This light diffusion film was incorporated into a surface light source. Uniformity of the surface light source 1. 24 average positive surface brightness was 4300cdZm 2.
[0269] [比較例 2— 2]  [0269] [Comparative Example 2-2]
主押出機に、光拡散フィルムを構成する主たる榭脂成分として IC— PETを 98体積 %、光拡散素子としてポリメチルペンテンを 2体積%混合したペレットを供給し、また、 主押出機とは別に副押出機を用い、この副押出機に、 PET (融点 265°C)ペレットを 供給した。次!ヽで主押出機に供給した成分層の両側表層に副押出機に供給した成 分層が厚み比率で 副押出機の成分比:主押出機の成分比:副押出機の成分比 = 1 : 8 : 1 となるよう溶融 3層積層共押出しを行った。静電印加法により鏡面のキャスト ドラム上で冷却して 3層積層シートを作成した。この積層シートを温度 88°Cで長手方 向に 3. 3倍に延伸し、続いてテンターにて 95°Cの予熱ゾーンを通して 115°Cで巾方 向に 3. 5倍に延伸した。さらに熱処理温度を 240°Cとして 30秒間熱処理することによ り厚み 140 μ mの基材フィルムを得た。  The main extruder is supplied with pellets containing 98% by volume of IC-PET as the main resin component of the light diffusing film and 2% by volume of polymethylpentene as the light diffusing element. Using a sub-extruder, PET (melting point 265 ° C) pellets were fed to this sub-extruder. Next, the component layer supplied to the sub-extruder on both sides of the component layer supplied to the main extruder in the thickness is the thickness ratio. Sub-extruder component ratio: main extruder component ratio: sub-extruder component ratio = Melting three-layer lamination coextrusion was performed so that 1: 8: 1. A three-layer laminated sheet was prepared by cooling on a mirror-casting drum by electrostatic application. This laminated sheet was stretched 3.3 times in the longitudinal direction at a temperature of 88 ° C, and then stretched 3.5 times in the width direction at 115 ° C through a preheating zone of 95 ° C with a tenter. Further, the substrate film having a thickness of 140 μm was obtained by heat treatment at 240 ° C. for 30 seconds.
[0270] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 2に示すとおりであった。  [0270] The in-plane rotation angle indicating the minimum specific value BI, maximum average specific luminance Bmax, minimum average specific luminance Bmin, maximum / minimum ratio BmaxZBmin, maximum average specific luminance Bmax of the obtained light diffusion film Difference in in-plane rotation angle indicating minimum average specific brightness Bmin Δφ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy as the ratio of maximum value to minimum value AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Table 2.
[0271] この光拡散フィルムを面光源へ組み込んだ。この面光源の均斉度は 1. 79、平均正 面輝度は 5200cdZm2であつた。 [0271] This light diffusion film was incorporated into a surface light source. Uniformity of the surface light source 1. 79 average positive surface brightness was found to be 5200cdZm 2.
[0272] [比較例 2— 3]  [0272] [Comparative Example 2-3]
比較例 2— 2で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 23. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 30° であった。均斉度は 1. 73、平均正面輝度は 5300cdZm2であつ た。 The diffusion film obtained in Comparative Example 2-2 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 23.5 mm. The δ of this surface light source was calculated and found to be 30 °. Uniformity 1. 73 average front luminance been filed in 5300cdZm 2.
[0273] [比較例 2— 4]  [0273] [Comparative Example 2-4]
比較例 2— 2で得られた拡散フィルムを、蛍光管の中心と光拡散フィルムの光源側 の表面との距離が 15. 5mmとなるように面光源へ組み込んだ。この面光源の δを計 算したところ、 40° であった。均斉度は 1. 86、平均正面輝度は 5000cdZm2であつ た。 The diffusion film obtained in Comparative Example 2-2 was incorporated into a surface light source so that the distance between the center of the fluorescent tube and the light source side surface of the light diffusion film was 15.5 mm. Calculating δ of this surface light source As a result, it was 40 °. Uniformity 1. 86 average front luminance been filed in 5000cdZm 2.
[0274] [実施例 3— 1]  [0274] [Example 3-1]
実施例 1— 16と同様の方法で厚み 120 μ mの基材フィルムを得た。  A base film having a thickness of 120 μm was obtained in the same manner as in Examples 1-16.
[0275] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は下記式で示される曲面が施されたニッケル製の金型である。 • {(x+n X 100)2/502}+ {z2/37.52} = 1 [0275] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was a nickel mold with a curved surface represented by the following formula. • {(x + n X 100 ) 2/50 2} + {z 2 /37.5 2} = 1
ただし、 一 50≤(χ+η Χ 100)≤50 (η=0, ± 1 , ± 2, ± 3 · · · ) 、 z≤0。  However, 50≤ (χ + η Χ 100) ≤50 (η = 0, ± 1, ± 2, ± 3 ···), z≤0.
[0276] ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、単位は μ mである。  Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. The unit is μm.
即ち、金型の断面形状は図 10で示され、また、 y軸方向に凹凸はなぐ形状はストラ ィプレンズ柱となっている。 得られた光拡散フィルムの比輝度の最小値 BI、最大平 均比輝度 Bmax、最小平均比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平 均比輝度 Bmaxを示す面内回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ Φ、表面形状のアスペクト比の最大値 Asmax、最小値 Asmin、最大値と最小値の比 である異方度 AsmaxZAsmin、透過率、ヘイズ、総厚みは表 3、 4に示すとおりであつ た。ここで、透過率とヘイズは表面凹凸形状が形成された面より光線を入射して測定 した数値である。 BI、 Bmax, Bmin,については表面凹凸形状が形成されていない面 より光線を入射して測定した数値である。  In other words, the cross-sectional shape of the mold is shown in FIG. 10, and the shape with unevenness in the y-axis direction is a strip lens column. In-plane rotation angle and minimum indicating the minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, maximum average specific brightness Bmax of the obtained light diffusion film Difference of in-plane rotation angle indicating average specific brightness Bmin ΔΦ, maximum aspect ratio of surface shape Asmax, minimum value Asmin, anisotropy ratio of maximum value to minimum value AsmaxZAsmin, transmittance, haze, total thickness Are shown in Tables 3 and 4. Here, the transmittance and haze are numerical values measured by entering light rays from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are values measured by incidence of light from a surface on which no surface irregularity is formed.
[0277] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 01、平均正面輝度は 5700cdZm2であり、良好な性能を示した。 [0277] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.01, and the average front luminance was 5700 cdZm 2 , indicating good performance.
[0278] [実施例 3— 2]  [0278] [Example 3-2]
実施例 1— 16と同様の方法で厚み 120 μ mの基材フィルムを得た。  A base film having a thickness of 120 μm was obtained in the same manner as in Examples 1-16.
[0279] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は図 11で示された単位曲面形状の A側端部と B側端部(図 11 の A— END と B— END)が連続的に接合された形状が施されたニッケル製の 金型である。ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、 y軸方向に は凹凸はなぐ形状はストライプレンズ柱となっている。 [0280] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 3、 4に示すとおりであった。ここで、透過率とヘイズ は表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax 、 Bmin,については表面凹凸形状が形成されていない面より光線を入射して測定し た数値である。 [0279] An uneven shape was formed on one surface of this base film in the same manner as in Example 14. However, the mold used was shaped so that the A-side end and B-side end (A-END and B-END in Fig. 11) of the unit curved surface shown in Fig. 11 were joined continuously. This is a nickel mold. Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. In addition, the shape without unevenness in the y-axis direction is a stripe lens column. [0280] The minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio between maximum and minimum BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax Minimum average specific brightness Bmin in-plane rotation angle difference Δφ, surface shape aspect ratio maximum value Asmax, minimum value Asmin, ratio of maximum value to minimum value Anisotropy AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Tables 3 and 4. Here, the transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are values measured by entering light from a surface on which no surface irregularity is formed.
[0281] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 00、平均正面輝度は 5800cdZm2であり、良好な性能を示した。 [0281] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source was 1.00, and the average front luminance was 5800 cdZm 2 , indicating good performance.
[0282] [実施例 3— 3]  [0282] [Example 3-3]
実施例 1— 16と同様の方法で厚み 120 μ mの基材フィルムを得た。  A base film having a thickness of 120 μm was obtained in the same manner as in Examples 1-16.
[0283] この基材フィルムに実施例 1 4と同様の方法で一方の表面に凹凸形状を形成した 。但し、使用した金型は図 12で示された単位曲面形状の A側端部と B側端部(図 12 の A— END と B— END)が連続的に接合された形状が施されたニッケル製の 金型である。ここで、 zは金型厚み方向、 x,yは金型面方向を示す。また、 y軸方向に は凹凸はなぐ形状はストライプレンズ柱となっている。  [0283] An uneven shape was formed on one surface of the base film in the same manner as in Example 14. However, the mold used was shaped so that the A-side end and B-side end (A-END and B-END in Fig. 12) of the unit curved surface shown in Fig. 12 were continuously joined. This is a nickel mold. Here, z indicates the mold thickness direction, and x and y indicate the mold surface direction. In addition, the shape without unevenness in the y-axis direction is a stripe lens column.
[0284] 得られた光拡散フィルムの比輝度の最小値 BI、最大平均比輝度 Bmax、最小平均 比輝度 Bmin、最大値と最小値の比 BmaxZBmin、最大平均比輝度 Bmaxを示す面内 回転角と最小平均比輝度 Bminを示す面内回転角の差 Δ φ、表面形状のアスペクト 比の最大値 Asmax、最小値 Asmin、最大値と最小値の比である異方度 AsmaxZ Asm in、透過率、ヘイズ、総厚みは表 3、 4に示すとおりであった。ここで、透過率とヘイズ は表面凹凸形状が形成された面より光線を入射して測定した数値である。 BI、 Bmax 、 Bmin,については表面凹凸形状が形成されていない面より光線を入射して測定し た数値である。  [0284] The obtained light diffusion film has a minimum specific brightness BI, maximum average specific brightness Bmax, minimum average specific brightness Bmin, ratio of maximum and minimum BmaxZBmin, in-plane rotation angle indicating maximum average specific brightness Bmax, and Minimum average specific brightness Bmin in-plane rotation angle difference Δφ, surface shape aspect ratio maximum value Asmax, minimum value Asmin, ratio of maximum value to minimum value Anisotropy AsmaxZ Asmin, transmittance, haze The total thickness was as shown in Tables 3 and 4. Here, the transmittance and haze are numerical values measured by making light rays incident from the surface on which the surface irregularities are formed. BI, Bmax, and Bmin are values measured by entering light from a surface on which no surface irregularity is formed.
[0285] この光拡散フィルムを、表面凹凸形状が形成された面が観察者方向(表面凹凸形 状が形成されていない面が光源側)になるように敷設した。この面光源の均斉度は 1 . 00、平均正面輝度は 6000cdZm2であり、良好な性能を示した。 [0285] This light diffusing film was laid so that the surface on which the surface unevenness was formed was in the observer direction (the surface on which the surface unevenness was not formed was on the light source side). The uniformity of this surface light source is 1 The average front brightness was 6000 cdZm 2 , indicating good performance.
[0286] [実施例 3— 4] [0286] [Example 3-4]
下記の布帛を作成し、展張し、面光源筐体に両面接着テープ(日東電工 (株)製 N o. 500)で固定した。該布帛の上 (蛍光灯に面する側とは反対側の面)に、実施例 3 2で得られた光拡散フィルムを表面凹凸形状が形成された面が観察者方向(表面 凹凸形状が形成されていない面が布帛側)になるように重ねたところ、均斉度は 1. 0 The following fabrics were prepared and spread out, and fixed to the surface light source casing with double-sided adhesive tape (Nitto Denko Co., Ltd. No. 500). On the fabric (the surface opposite to the side facing the fluorescent lamp), the surface of the light diffusing film obtained in Example 32, on which the surface unevenness is formed, is the viewer direction (the surface unevenness is formed) When layered so that the unfinished surface is the fabric side), the uniformity is 1.0.
0.平均正面輝度は 6000cdZm2であり、良好な性能を示した。また布帛による光拡 散フィルムの支持については、布帛の撓みもほとんどなく良好であった。 0. The average front luminance was 6000 cdZm 2 , indicating good performance. The support of the light diffusing film by the fabric was good with almost no deflection of the fabric.
[0287] (布帛の構成)  [0287] (Composition of fabric)
1.使用糸:タテ糸(56dtex— 18フィラメント、ポリエステル 100%フィラメントヤーン) 、 ョコ糸(84dtex— 36フィラメント、ポリエステル 100%フィラメントヤーン)  1. Yarn used: warp yarn (56dtex—18 filament, 100% polyester filament yarn), horizontal thread (84dtex—36 filament, 100% polyester filament yarn)
2.織り組織:平織り  2. Weaving organization: Plain weave
3.織り密度:タテ織り密度 118本 Zインチ、ョコ織り密度 92本 Zインチ。  3. Weaving density: Vertical weaving density 118 Z-inch, horizontal weaving density 92 Z-inch.
[0288] 上記構成で作成された布帛の全光線透過率、ヘイズはそれぞれ 55%、 91%であ つた o [0288] The total light transmittance and haze of the fabric made with the above composition were 55% and 91%, respectively. O
[0289] [比較例 3— 1]  [0289] [Comparative Example 3-1]
比較例 1—1で得られたフィルムを面光源に敷設し、さらにその上 (観察者方向)に 比較例 1 2で得られたフィルムを表面凹凸形状が形成された面が観察者方向(表 面凹凸形状が形成されていない面が光源側)になるように敷設した。ヘイズ、透過率 は表 4に示すとおりであった。ここで透過率とヘイズは、比較例 1—1で得られたフィル ムの上に、比較例 1—2で得られたフィルムを表面凹凸形状が形成された面が外側と なるよう重ね合わせ、比較例 1 2で得られたフィルムの表面凹凸形状が形成された 面より光線を入射して測定した数値である。この面光源の均斉度は 1. 27、平均正面 輝度は 5200であった。  The film obtained in Comparative Example 1-1 was laid on a surface light source, and further on it (observer direction), the surface of the film obtained in Comparative Example 12 was formed with a surface irregularity shape in the observer direction (front view). It was laid so that the surface on which the surface irregularities were not formed was the light source side). Table 4 shows the haze and transmittance. Here, the transmittance and haze were superimposed on the film obtained in Comparative Example 1-1 on the film obtained in Comparative Example 1-2 so that the surface with the surface irregularities formed on the outside. It is a numerical value measured by making a light ray incident from the surface on which the surface uneven shape of the film obtained in Comparative Example 12 was formed. The uniformity of this surface light source was 1.27 and the average front brightness was 5200.
[0290] [表 1]
Figure imgf000058_0001
[0290] [Table 1]
Figure imgf000058_0001
lO£Ll£/900Zd /13d 19 9096Z0/.00Z OAV
Figure imgf000060_0001
lO £ Ll £ / 900Zd / 13d 19 9096Z0 / .00Z OAV
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000061_0001
s^0292w 透過率 ヘイズ 全体厚み 布 ft 均斉度 輝度 s ^ 0292w Transmittance Haze Overall thickness Cloth ft Uniformity Brightness
[%] [%] [•i m] [-] [cd/m2] 実施例 3— 1 72 93 160 なし 1.01 5700 [%] [%] [• im] [-] [cd / m 2 ] Example 3— 1 72 93 160 None 1.01 5700
実施例 3— 2 71 92 150 なし 1.00 5800  Example 3— 2 71 92 150 None 1.00 5800
実施例 3— 3 70 93 150 なし 1.00 6000  Example 3—3 70 93 150 None 1.00 6000
実施例 3— 4 71 92 150 あり 1.00 6000  Example 3—4 71 92 150 Yes 1.00 6000
比較例 3— 1 68 93 300 なし 1.27 5200 産業上の利用可能性  Comparative Example 3— 1 68 93 300 None 1.27 5200 Industrial Applicability
本発明の光拡散フィルムは、パソコン、テレビあるいは携帯電話などの表示装置、 特に液晶表示装置等の平面表示装置に用いられる面光源用として好適であり、有用 である。  The light diffusing film of the present invention is suitable and useful for a surface light source used in a display device such as a personal computer, a television or a mobile phone, particularly a flat display device such as a liquid crystal display device.

Claims

請求の範囲 The scope of the claims
[I] 内部に光拡散素子を含有する基材フィルムを有し、かつ、少なくとも一方の表面に 平均アスペクト比の最大値 Asmaxと最小値 Asminの比 AsmaxZAsmin (異方度)が 1 . 1以上である表面凹凸形状が形成されている光拡散フィルム。  [I] It has a base film containing a light diffusing element inside, and the ratio AsmaxZAsmin (anisotropy) of the maximum aspect ratio of the average aspect ratio Asmax to the minimum value Asmin is 1.1 or more on at least one surface. A light diffusion film in which a certain surface uneven shape is formed.
[2] 前記基材フィルムがー軸以上に延伸されて 、る請求項 1に記載の光拡散フィルム。  [2] The light diffusing film according to [1], wherein the base film is stretched beyond the -axis.
[3] フィルム面に垂直な断面における前記光拡散素子の面積占有率が 1%以上である 請求項 1に記載の光拡散フィルム。 [3] The light diffusing film according to [1], wherein an area occupancy of the light diffusing element in a cross section perpendicular to the film surface is 1% or more.
[4] フィルム面に垂直な断面における前記光拡散素子の数密度が 250個 Zmm2以上 である請求項 1に記載の光拡散フィルム。 4. The light diffusing film according to claim 1, wherein the number density of the light diffusing elements in a cross section perpendicular to the film surface is 250 Zmm 2 or more.
[5] 前記平均アスペクト比の最大値 Asmaxが 0. 3以上である請求項 1に記載の光拡散 フイノレム。 [5] The light diffusion finolem according to [1], wherein the maximum value Asmax of the average aspect ratio is 0.3 or more.
[6] フィルム表面の法線方向に対して 20° 〜50° の角度範囲において光線を該フィ ルムへ入射したときの、法線方向へ透過される光線の比輝度の最小値 BIが 0. 0014 以上である請求項 1に記載の光拡散フィルム。  [6] The minimum value BI of the relative luminance of the light transmitted in the normal direction when the light is incident on the film in an angle range of 20 ° to 50 ° with respect to the normal direction of the film surface is 0. 2. The light diffusing film according to claim 1, which is as described above.
[7] フィルム表面の法線方向に対して 20° 〜50° の角度範囲において光線を該フィ ルムへ入射したときの、法線方向へ透過される光線の最大平均比輝度 Bmaxが 0. 00 2以上である請求項 1に記載の光拡散フィルム。  [7] When the light beam is incident on the film in an angle range of 20 ° to 50 ° with respect to the normal direction of the film surface, the maximum average specific luminance Bmax of the light beam transmitted in the normal direction is 0.00. 2. The light diffusion film according to claim 1, wherein the light diffusion film is 2 or more.
[8] フィルム表面の法線方向に対して 20° 〜50° の角度で光線を該フィルムへ入射し 、フィルムを面内回転させた場合において、法線方向へ透過される光線の最大平均 比輝度 Bmaxと最小平均比輝度 Bminの比 BmaxZBminが 1. 1以上である請求項 1に 記載の光拡散フィルム。  [8] Maximum average ratio of light rays transmitted in the normal direction when light rays are incident on the film at an angle of 20 ° to 50 ° with respect to the normal direction of the film surface and the film is rotated in the plane. The light diffusing film according to claim 1, wherein the ratio BmaxZBmin between the luminance Bmax and the minimum average specific luminance Bmin is 1.1 or more.
[9] 前記異方度が 1. 1以上である表面凹凸形状が、内部に光拡散素子を含有する基 材フィルム自体の表面、又は内部に光拡散素子を含有する基材フィルムに塗布され た塗布層に形成されて!ヽる請求項 1に記載の光拡散フィルム。  [9] The surface irregularity shape having an anisotropy of 1.1 or more was applied to the surface of the base material film itself containing the light diffusing element or the base film containing the light diffusing element inside. Formed on the coating layer! The light diffusing film according to claim 1.
[10] 請求項 1〜9のいずれかに記載の光拡散フィルムを用いた面光源。  [10] A surface light source using the light diffusion film according to any one of [1] to [9].
[II] 前記光拡散フィルムが、その異方度が 1. 1以上である表面凹凸形状の形成された 面が観察者側に向けられて配置されている請求項 10に記載の面光源。  [II] The surface light source according to claim 10, wherein the light diffusing film is arranged such that a surface having a surface irregularity shape having an anisotropy of 1.1 or more is directed toward an observer.
[12] 前記光拡散フィルムと光源との間に布帛を有する請求項 11に記載の面光源。 [13] 前記光拡散フィルムが前記布帛によって支持されている請求項 12に記載の面光 源。 12. The surface light source according to claim 11, further comprising a cloth between the light diffusion film and the light source. 13. The surface light source according to claim 12, wherein the light diffusion film is supported by the fabric.
PCT/JP2006/317301 2005-09-06 2006-09-01 Light diffusion film and surface light source using same WO2007029606A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-257453 2005-09-06
JP2005257453 2005-09-06
JP2005-302717 2005-10-18
JP2005302717 2005-10-18
JP2005333696 2005-11-18
JP2005-333696 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007029606A1 true WO2007029606A1 (en) 2007-03-15

Family

ID=37835725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317301 WO2007029606A1 (en) 2005-09-06 2006-09-01 Light diffusion film and surface light source using same

Country Status (3)

Country Link
KR (1) KR20080042882A (en)
TW (1) TW200717108A (en)
WO (1) WO2007029606A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004795A1 (en) * 2007-07-04 2009-01-08 Maruzen Petrochemical Co., Ltd. Resin solution for thermal imprint, resin thin film for thermal imprint, methods for production of the resin solution and the resin thin film
CN102692207A (en) * 2011-03-25 2012-09-26 财团法人工业技术研究院 Measuring method and measuring device
TWI670510B (en) * 2017-04-06 2019-09-01 德商卡爾科德寶兩合公司 Use of wet non-woven material as light distribution element and light source

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126188A1 (en) * 2009-04-29 2010-11-04 도레이새한 주식회사 Light diffusing plate for lcd backlight unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123307A (en) * 1996-10-25 1998-05-15 Matsushita Electric Works Ltd Light diffusion plate and its production
JPH1195013A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Prism sheet, manufacture thereof, surface light source device, and transmissive display
JPH11160505A (en) * 1997-09-25 1999-06-18 Dainippon Printing Co Ltd Light diffusion film and its manufacture, polarizing plate with diffusion layer, and liquid crystal display device
JPH11183710A (en) * 1997-12-25 1999-07-09 Toppan Printing Co Ltd Antidazzle hard coating film and its production
JP2001310410A (en) * 2000-04-28 2001-11-06 Komatsu Seiren Co Ltd Reflective material and manufacturing method therefor
JP2002107510A (en) * 2000-09-27 2002-04-10 Keiwa Inc Anistropic diffusion sheet and backlight unit using the same
JP2004004417A (en) * 2002-04-18 2004-01-08 Nitto Denko Corp Light diffusion sheet, optical device and image display device
JP2004087234A (en) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd Surface light source unit and transmission type display device using the same
JP2004341244A (en) * 2003-05-15 2004-12-02 Sony Corp Light diffusion film and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10123307A (en) * 1996-10-25 1998-05-15 Matsushita Electric Works Ltd Light diffusion plate and its production
JPH1195013A (en) * 1997-09-17 1999-04-09 Dainippon Printing Co Ltd Prism sheet, manufacture thereof, surface light source device, and transmissive display
JPH11160505A (en) * 1997-09-25 1999-06-18 Dainippon Printing Co Ltd Light diffusion film and its manufacture, polarizing plate with diffusion layer, and liquid crystal display device
JPH11183710A (en) * 1997-12-25 1999-07-09 Toppan Printing Co Ltd Antidazzle hard coating film and its production
JP2001310410A (en) * 2000-04-28 2001-11-06 Komatsu Seiren Co Ltd Reflective material and manufacturing method therefor
JP2002107510A (en) * 2000-09-27 2002-04-10 Keiwa Inc Anistropic diffusion sheet and backlight unit using the same
JP2004004417A (en) * 2002-04-18 2004-01-08 Nitto Denko Corp Light diffusion sheet, optical device and image display device
JP2004087234A (en) * 2002-08-26 2004-03-18 Daicel Chem Ind Ltd Surface light source unit and transmission type display device using the same
JP2004341244A (en) * 2003-05-15 2004-12-02 Sony Corp Light diffusion film and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004795A1 (en) * 2007-07-04 2009-01-08 Maruzen Petrochemical Co., Ltd. Resin solution for thermal imprint, resin thin film for thermal imprint, methods for production of the resin solution and the resin thin film
JP2009013273A (en) * 2007-07-04 2009-01-22 Maruzen Petrochem Co Ltd Resin solution for heat imprint, resin thin film for heat imprint, and manufacturing method for these
CN102692207A (en) * 2011-03-25 2012-09-26 财团法人工业技术研究院 Measuring method and measuring device
US8767094B2 (en) 2011-03-25 2014-07-01 Industrial Technology Research Institute Measurement method and measurement device
TWI670510B (en) * 2017-04-06 2019-09-01 德商卡爾科德寶兩合公司 Use of wet non-woven material as light distribution element and light source

Also Published As

Publication number Publication date
TW200717108A (en) 2007-05-01
KR20080042882A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
US7327415B2 (en) Microvoided light diffuser
US7132136B2 (en) Stacked microvoided light diffuser
US8979330B2 (en) Anisotropic light-diffusing film, anisotropic light-diffusing laminate, anisotropic light-reflecting laminate, and use thereof
US20030118750A1 (en) Microvoided light diffuser containing optical contact layer
KR20080091781A (en) Reinforced reflective polarizer films
JP5109346B2 (en) Light diffusing film and direct surface light source using the same
TWI437278B (en) Anisotropic light-diffusing film, anisotropic light-diffusing film laminated sheet and production method thereof
KR20100063705A (en) White film and surface light sources with the same
KR20090114354A (en) Diffusion sheet and back lighting unit using same
JP4300826B2 (en) Light diffusing film and direct surface light source using the same
KR102369250B1 (en) Liquid crystal display device, polarizing plate, and polarizer protective film
JP5682667B2 (en) White film and surface light source using the same
WO2007029606A1 (en) Light diffusion film and surface light source using same
JP4345305B2 (en) Light reflecting film and surface light source using the same
JP5532799B2 (en) White reflective film
JP5391618B2 (en) White film and surface light source using the same
JP5141528B2 (en) Laminated film and backlight unit using the same
JP2010108824A (en) Direct backlight
JP2007140499A (en) Light diffusion member and surface light source using the same
JP2007140477A (en) Light diffusion film and surface light source using the same
KR101597641B1 (en) Directly under backlight device
JP2001354792A (en) Optically interfacial film
KR100850155B1 (en) Non-oriented optical film with excellent optical and thermal properties
JP2015031893A (en) Lens film laminate for lighting equipment
CN101258428A (en) Light diffusion film and surface light source using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032758.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087005708

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06797243

Country of ref document: EP

Kind code of ref document: A1