WO2007028743A1 - Method for producing a filter element and a support structure for a catalyst with improved heat resistance - Google Patents

Method for producing a filter element and a support structure for a catalyst with improved heat resistance Download PDF

Info

Publication number
WO2007028743A1
WO2007028743A1 PCT/EP2006/065824 EP2006065824W WO2007028743A1 WO 2007028743 A1 WO2007028743 A1 WO 2007028743A1 EP 2006065824 W EP2006065824 W EP 2006065824W WO 2007028743 A1 WO2007028743 A1 WO 2007028743A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
filter element
ceramic
ceramic body
magnesium
Prior art date
Application number
PCT/EP2006/065824
Other languages
German (de)
French (fr)
Inventor
Bernd Schumann
Joerg Jockel
Matthias Kruse
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2007028743A1 publication Critical patent/WO2007028743A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62876Coating fibres with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths

Definitions

  • a method of manufacturing a filter element and a support structure for a catalyst having improved temperature resistance is provided.
  • the invention relates to processes for the production of ceramic bodies with improved temperature resistance and ceramic bodies, in particular filter elements and support structures for exhaust aftertreatment devices of an internal combustion engine.
  • Filter elements for particulate filters of diesel engines and the support structures of catalysts for internal combustion engines are often made of cordierite. Pure cordierite has a very small thermal expansion coefficient and thus has a good resistance to sudden temperature changes (thermal shocks).
  • temperatures of over 1,000 ° Celsius can occur because the regeneration of soot is exothermic. Since the soot distribution within the filter element is not homogeneous and also the possibilities of heat dissipation locally are different, caused during regeneration local temperature differences in the filter element.
  • the local temperature differences in the filter element result in thermal stresses that can lead to the destruction of the filter element by cracks.
  • the invention has for its object to provide a method for producing a filter element and a filter element, which is more robust in terms of thermal stresses than conventional ceramic body made of cordierite.
  • This object is achieved in a method for producing bodies of magnesium-aluminum-silicate, preferably cordierite, or a body of another ceramic material, wherein the starting materials of magnesium-aluminum-silicate or other ceramic material to a moldable mass be mixed, the moldable mass fibers are added. From this fiberized moldable mass, a body is then formed and subjected to a heat treatment.
  • the ceramic body produced by the process according to the invention has a fiber-reinforced structure, which is mechanically very resilient and has a good internal damping. As a result, naturally increases the temperature resistance of the body produced by the process according to the invention.
  • An advantage of the method according to the invention is that, with the exception of the addition of the fibers to the moldable mass, no further process-related expense is required compared to the production of a cordierite ceramic body according to the prior art.
  • the inventive method is very inexpensive and effective.
  • the mechanical strength of the body produced by the method of the invention can be further increased by coating the fibers before adding them to the moldable mass.
  • the fibers are coated with iron, cobalt, nickel, palladium, platinum and / or titanium. It has been shown in practical experiments that by the coating of the fibers in the finished ceramic body a direct
  • thermo-mechanical stability of the ceramic body produced by the method according to the invention is based on an improved vibration damping by the fibers. This vibration damping is particularly effective when there is a cavity around the fibers that can absorb and dampen vibration present in the ceramic body.
  • the coatings of the invention act as a release agent between the fibers and the ceramic material. It has proven to be advantageous if the body is formed by extrusion, since in this method, in particular prismatic body with honeycomb-shaped cross-section can be made quickly and inexpensively.
  • the fibers consist of magnesium-aluminum-silicate, preferably cordierite, or a material with similar properties, and that the material of the fibers is doped with a material which suppresses the sintering. This doping suppresses the sintering in the calcination process, so that the fibers remain as such after the calcination process.
  • Zirconium, lanthanum and / or cerium have proven to be suitable materials for doping the fibers.
  • the fibers consist of other ceramic materials.
  • a thickness of 3 .mu.m-6 .mu.m, more preferably of 3 .mu.m-5 .mu.m has proven.
  • For the length of the fibers have dimensions of 10 .mu.m - 100 .mu.m, more preferably from 10 .mu.m - 20 .mu.m, proved.
  • Figure 1 is a schematic representation of a
  • FIG. 2 shows a longitudinal section of a filter element according to the invention
  • FIG. 3 shows a flow diagram of an exemplary embodiment of the method according to the invention.
  • Figure 4 shows the structure of a body according to the invention.
  • an internal combustion engine carries the reference numeral 10.
  • the exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this, soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is particularly necessary in diesel engines to comply with legal requirements.
  • the filter device 14 comprises a cylindrical housing 16, in which one in the present embodiment rotationally symmetrical, also a total cylindrical filter element 18 is arranged.
  • FIG. 2 shows a cross-section of a filter element 18 according to the prior art.
  • the filter element 18 is manufactured as an extruded shaped body from a ceramic material, such as cordierite.
  • the filter element 18 is flowed through in the direction of the arrows 20 of not shown exhaust gas.
  • An entrance surface has the reference numeral 22 in FIG. 2, while an exit surface in FIG. 2 has the reference numeral 24.
  • the inlet channels 28 are at the
  • the sealing plugs are shown in FIG. 2 without reference numerals.
  • the outlet channels 30 are open at the outlet surface 24 and closed in the region of the inlet surface 22.
  • the flow path of the unpurified exhaust gas thus leads into one of the inlet channels 28 and from there through a filter wall (without reference numeral) into one of the outlet channels 30. This is illustrated by the arrows 32 by way of example.
  • FIG. 3 is a flow chart of a
  • a first step 34 the materials required for producing a ceramic body are mixed together in the desired composition. Thereafter, temperature-resistant ceramic fibers are added to this mixture. Subsequently, in a third Step 38 of the mass given the desired shape in a molding process.
  • the shaping can be effected by extrusion.
  • the body resulting from the shaping process 38 is subjected to a heat treatment, in particular a sintering process, in a further step 40.
  • the fibers retain their shape and structure and increase the mechanical strength of the ceramic material.
  • a small air cushion forms between the ceramic material and the fibers, which further increases the internal damping of the ceramic body produced by the process according to the invention.
  • FIG. 4 schematically shows the structure of a ceramic body produced by the method according to the invention.
  • the ceramic workpiece is shown in Figure 4 by hatching.
  • Fibers 42 are incorporated in this matrix.
  • This structure is interrupted by various pores 44, which ensure the required for a filter element porosity of the ceramic body.
  • some of the fibers 42 protrude into the pores 44. This effect is desirable because it increases the storage capacity of the filter element, in particular for soot. If the fibers 42 have been provided with a suitable coating, the ends of the fibers 42 which protrude into the pores 44 may also have a catalytic effect.
  • a dashed line 46 indicates by way of example that an air cushion 48 forms between the hatched ceramic body and the fibers 42 due to the coating of the fibers 42 before the sintering process.
  • This air cushion 48 increases the internal damping of ceramic material and is therefore advantageous.

Abstract

A method for producing a filter element and a filter element for an exhaust treatment device of an internal combustion engine with increased heat resistance and mechanical endurance under thermal stress in comparison with conventional ceramic bodies are proposed. The filter element consists of magnesium aluminium silicate and contains fibres (42), with preference coated fibres.

Description

Verfahren zur Herstellung eines Filterelements und einer Trägerstruktur für einen Katalysator mit verbesserter Temperaturbeständigkeit .A method of manufacturing a filter element and a support structure for a catalyst having improved temperature resistance.
Stand der TechnikState of the art
Die Erfindung betrifft Verfahren zur Herstellung von keramischen Körpern mit verbesserter Temperaturfestigkeit und keramische Körper, insbesondere Filterelemente und Trägerstrukturen für Abgasnachbehandlungseinrichtungen einer Brennkraftmaschine.The invention relates to processes for the production of ceramic bodies with improved temperature resistance and ceramic bodies, in particular filter elements and support structures for exhaust aftertreatment devices of an internal combustion engine.
Filterelemente für Partikelfilter von Dieselbrennkraftmaschinen und die Trägerstrukturen von Katalysatoren für Brennkraftmaschinen werden häufig aus Cordierit hergestellt. Reines Cordierit hat einen sehr kleinen thermischen Ausdehnungskoeffizienten und weist somit eine gute Beständigkeit gegen plötzliche Temperaturänderungen (Thermoschocks) auf.Filter elements for particulate filters of diesel engines and the support structures of catalysts for internal combustion engines are often made of cordierite. Pure cordierite has a very small thermal expansion coefficient and thus has a good resistance to sudden temperature changes (thermal shocks).
Bei der kontinuierlichen oder zyklischen Regeneration der Filterelemente können Temperaturen von über 1.000° Celsius auftreten, da die Regeneration von Ruß exotherm ist. Da die Rußverteilung innerhalb des Filterelements nicht homogen ist und außerdem die Möglichkeiten der Wärmeabfuhr lokal unterschiedlich sind, entstehen bei der Regeneration lokale Temperaturunterschiede im Filterelement.In the continuous or cyclic regeneration of the filter elements temperatures of over 1,000 ° Celsius can occur because the regeneration of soot is exothermic. Since the soot distribution within the filter element is not homogeneous and also the possibilities of heat dissipation locally are different, caused during regeneration local temperature differences in the filter element.
Aus den lokalen Temperaturunterschieden im Filterelement resultieren Wärmespannungen, die zur Zerstörung des Filterelements durch Risse führen können.The local temperature differences in the filter element result in thermal stresses that can lead to the destruction of the filter element by cracks.
Ein möglicher Ansatzpunkt zur Verringerung dieser Wärmespannungen besteht darin, die Motorsteuerung der Brennkraftmaschine so auszulegen, dass unzulässig hohe Temperaturgradienten im Filterelement mit Sicherheit vermieden werden. Allerdings führt dies zu erheblichen Restriktionen bei der Steuerung der Brennkraftmaschine und ist deshalb nicht vorteilhaft.One possible starting point for reducing these thermal stresses is to design the engine control of the internal combustion engine so that impermissibly high temperature gradients in the filter element are reliably avoided. However, this leads to considerable restrictions in the control of the internal combustion engine and is therefore not advantageous.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Filterelements und ein Filterelement bereitzustellen, das bezüglich Wärmespannungen robuster ist als herkömmliche keramische Körper aus Cordierit.The invention has for its object to provide a method for producing a filter element and a filter element, which is more robust in terms of thermal stresses than conventional ceramic body made of cordierite.
Diese Aufgabe wird erfindungsgemäß gelöst bei einem Verfahren zur Herstellung von Körpern aus Magnesium- Aluminium-Silikat, bevorzugt Cordierit, oder einem Körper aus einem anderen keramischen Werkstoff, bei welchem die Ausgangsmaterialien von Magnesium-Aluminium-Silikat oder eines anderen keramischen Werkstoffs zu einer formbaren Masse gemischt werden, der formbaren Masse Fasern zugefügt werden. Aus dieser mit Fasern versetzten formbaren Masse wird anschließend ein Körper geformt und einer Wärmebehandlung unterzogen.This object is achieved in a method for producing bodies of magnesium-aluminum-silicate, preferably cordierite, or a body of another ceramic material, wherein the starting materials of magnesium-aluminum-silicate or other ceramic material to a moldable mass be mixed, the moldable mass fibers are added. From this fiberized moldable mass, a body is then formed and subjected to a heat treatment.
Vorteile der ErfindungAdvantages of the invention
Der nach dem erfindungsgemäßen Verfahren hergestellte keramische Körper weist eine faserverstärkte Struktur auf, die mechanisch sehr belastbar ist und eine gute Eigendämpfung aufweist. Dadurch steigt naturgemäß auch die Temperaturbeständigkeit des nach dem erfindungsgemäßen Verfahren hergestellten Körpers.The ceramic body produced by the process according to the invention has a fiber-reinforced structure, which is mechanically very resilient and has a good internal damping. As a result, naturally increases the temperature resistance of the body produced by the process according to the invention.
Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass mit Ausnahme der Zugabe der Fasern zu der formbaren Masse kein weiterer verfahrenstechnischer Aufwand gegenüber der Herstellung eines keramischen Körpers aus Cordierit nach dem Stand der Technik erforderlich ist. Somit ist das erfindungsgemäße Verfahren sehr kostengünstig und effektiv.An advantage of the method according to the invention is that, with the exception of the addition of the fibers to the moldable mass, no further process-related expense is required compared to the production of a cordierite ceramic body according to the prior art. Thus, the inventive method is very inexpensive and effective.
Die mechanische Belastbarkeit des nach dem erfindungsgemäßen Verfahren hergestellten Körpers kann weiter gesteigert werden, indem die Fasern vor dem Zufügen zu der formbaren Masse beschichtet werden. Bevorzugt werden die Fasern mit Eisen, Kobalt, Nickel, Palladium, Platin und/oder Titan beschichtet. Es hat sich bei praktischen Versuchen gezeigt, dass durch die Beschichtung der Fasern in dem fertig gestellten keramischen Körper ein direkterThe mechanical strength of the body produced by the method of the invention can be further increased by coating the fibers before adding them to the moldable mass. Preferably, the fibers are coated with iron, cobalt, nickel, palladium, platinum and / or titanium. It has been shown in practical experiments that by the coating of the fibers in the finished ceramic body a direct
Kontakt zwischen dem eigentlichen keramischen Material und den Fasern vermieden wird, und dass zwischen den ursprünglich beschichteten Fasern und dem keramischen Werkstoff ein Luftpolster gebildet wird. Die Erhöhung der thermomechanischen Stabilität der nach dem erfindungsgemäßen Verfahren hergestellten keramischen Körper beruht auf einer verbesserten Schwingungsdämpfung durch die Fasern. Diese Schwingungsdämpfung ist besonders wirkungsvoll, wenn um die Fasern herum ein Hohlraum vorhanden ist, der eine in dem keramischen Körper vorhandene Schwingung aufnehmen und dämpfen kann.Contact between the actual ceramic material and the fibers is avoided, and that between the originally coated fibers and the ceramic material, an air cushion is formed. The increase in the thermo-mechanical stability of the ceramic body produced by the method according to the invention is based on an improved vibration damping by the fibers. This vibration damping is particularly effective when there is a cavity around the fibers that can absorb and dampen vibration present in the ceramic body.
Die erfindungsgemäßen Beschichtungen wirken als Trennmittel zwischen den Fasern und dem keramischen Werkstoff. Es hat sich als vorteilhaft erwiesen, wenn der Körper durch Extrudieren geformt wird, da bei diesem Verfahren vor allem prismatische Körper mit wabenförmigen Querschnitt schnell und kostengünstig hergestellt werden können.The coatings of the invention act as a release agent between the fibers and the ceramic material. It has proven to be advantageous if the body is formed by extrusion, since in this method, in particular prismatic body with honeycomb-shaped cross-section can be made quickly and inexpensively.
Die erfindungsgemäßen Vorteile werden auch erzielt bei einem keramischen Körper aus Magnesium-Aluminium-Silikat, bevorzugt Cordierit, insbesondere einem Filterelement oder einer Trägerstruktur eines Katalysators für eine Abgasnachbehandlungseinrichtung einer Brennkraftmaschine, wenn er nach einem der vorhergehenden Verfahren hergestellt ist .The advantages of the invention are also achieved in a ceramic body of magnesium-aluminum-silicate, preferably cordierite, in particular a filter element or a support structure of a catalyst for an exhaust aftertreatment device of an internal combustion engine, if it is manufactured according to one of the preceding methods.
Eine besonders vorteilhafte Variante der Erfindung sieht vor, dass die Fasern aus einem temperaturbeständigenA particularly advantageous variant of the invention provides that the fibers of a temperature-resistant
Material bestehen. Es hat sich als besonders vorteilhaft erwiesen, wenn die Fasern aus Magnesium-Aluminium-Silikat, bevorzugt Cordierit, oder einem Material mit ähnlichen Eigenschaften bestehen, und dass das Material der Fasern mit einem Material dotiert ist, welches die Sinterung unterdrückt. Diese Dotierung unterdrückt die Sinterung beim Kalzinierungsvorgang, so dass die Fasern nach dem Kalzinierungsvorgang als solche erhalten bleiben.Material exist. It has proved particularly advantageous if the fibers consist of magnesium-aluminum-silicate, preferably cordierite, or a material with similar properties, and that the material of the fibers is doped with a material which suppresses the sintering. This doping suppresses the sintering in the calcination process, so that the fibers remain as such after the calcination process.
Als geeignete Materialen zum Dotieren der Fasern haben sich Zirkonium, Lanthan und/oder Cer erwiesen.Zirconium, lanthanum and / or cerium have proven to be suitable materials for doping the fibers.
Alternativ ist es auch möglich, dass die Fasern aus anderen keramischen Werkstoffen bestehen. Bezüglich der Abmessungen der Fasern hat sich eine Dicke von 3 μm - 6 μm, besonders bevorzugt von 3 μm - 5 μm, erwiesen. Für die Länge der Fasern haben sich Abmessungen von 10 μm - 100 μm, besonders bevorzugt von 10 μm - 20 μm, erwiesen.Alternatively, it is also possible that the fibers consist of other ceramic materials. With regard to the dimensions of the fibers, a thickness of 3 .mu.m-6 .mu.m, more preferably of 3 .mu.m-5 .mu.m, has proven. For the length of the fibers have dimensions of 10 .mu.m - 100 .mu.m, more preferably from 10 .mu.m - 20 .mu.m, proved.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Zeichnung, deren Beschreibung und den Patentansprüchen entnehmbar. Alle in der Zeichnung, deren Beschreibung und den Patentansprüchen beschriebenen Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein .Further advantages and advantageous embodiments of Invention are the following drawings, the description and the claims removable. All features described in the drawing, the description and the claims may be essential to the invention both individually and in any combination.
Zeichnungendrawings
Es zeigen:Show it:
Figur 1 eine schematische Darstellung einerFigure 1 is a schematic representation of a
Brennkraftmaschine mit einer erfindungsgemäßen Abgasnachbehandlungseinrichtung,Internal combustion engine with an exhaust aftertreatment device according to the invention,
Figur 2 ein erfindungsgemäßes Filterelement im Längsschnitt,FIG. 2 shows a longitudinal section of a filter element according to the invention,
Figur 3 ein Ablaufdiagramme eines Ausführungsbeispiels des erfindungsgemäßer Verfahrens undFIG. 3 shows a flow diagram of an exemplary embodiment of the method according to the invention and
Figur 4 die Struktur eines erfindungsgemäßen Körpers.Figure 4 shows the structure of a body according to the invention.
Beschreibung der AusführungsbeispieleDescription of the embodiments
In Figur 1 trägt eine Brennkraftmaschine das Bezugszeichen 10. Die Abgase werden über ein Abgasrohr 12 abgeleitet, in dem eine Filtereinrichtung 14 angeordnet ist. Mit dieser werden Rußpartikel aus dem im Abgasrohr 12 strömenden Abgas herausgefiltert. Dies ist insbesondere bei Diesel- Brennkraftmaschinen erforderlich, um gesetzliche Bestimmungen einzuhalten.In Figure 1, an internal combustion engine carries the reference numeral 10. The exhaust gases are discharged via an exhaust pipe 12, in which a filter device 14 is arranged. With this, soot particles are filtered out of the exhaust gas flowing in the exhaust pipe 12. This is particularly necessary in diesel engines to comply with legal requirements.
Die Filtereinrichtung 14 umfasst ein zylindrisches Gehäuse 16, in dem eine im vorliegenden Ausführungsbeispiel rotationssymmetrisches, insgesamt ebenfalls zylindrisches Filterelement 18 angeordnet ist.The filter device 14 comprises a cylindrical housing 16, in which one in the present embodiment rotationally symmetrical, also a total cylindrical filter element 18 is arranged.
In Figur 2 ist ein Querschnitt ein Filterelement 18 nach dem Stand der Technik dargestellt. Das Filterelement 18 ist als extrudierter Formkörper aus einem keramischen Material, wie zum Beispiel Cordierit, hergestellt. Das Filterelement 18 wird in Richtung der Pfeile 20 von nicht dargestelltem Abgas durchströmt. Eine Eintrittsfläche hat in Figur 2 das Bezugszeichen 22, während eine Austrittsfläche in Figur 2 das Bezugszeichen 24 hat.FIG. 2 shows a cross-section of a filter element 18 according to the prior art. The filter element 18 is manufactured as an extruded shaped body from a ceramic material, such as cordierite. The filter element 18 is flowed through in the direction of the arrows 20 of not shown exhaust gas. An entrance surface has the reference numeral 22 in FIG. 2, while an exit surface in FIG. 2 has the reference numeral 24.
Parallel zu einer Längsachse 26 des Filterelements 18 verlaufen mehrere Eintrittskanäle 28 im Wechsel mit Austrittskanälen 30. Die Eintrittskanäle 28 sind an derParallel to a longitudinal axis 26 of the filter element 18 extend a plurality of inlet channels 28 in alternation with outlet channels 30. The inlet channels 28 are at the
Austrittsfläche 24 verschlossen. Die Verschlussstopfen sind in Figur 2 ohne Bezugszeichen dargestellt. Im Gegensatz dazu sind die Austrittskanäle 30 an der Austrittsfläche 24 offen und im Bereich der Eintrittsfläche 22 verschlossen.Exit surface 24 closed. The sealing plugs are shown in FIG. 2 without reference numerals. In contrast, the outlet channels 30 are open at the outlet surface 24 and closed in the region of the inlet surface 22.
Der Strömungsweg des ungereinigten Abgases führt also in einen der Eintrittskanäle 28 und von dort durch eine Filterwand (ohne Bezugszeichen) in einen der Austrittskanäle 30. Exemplarisch ist dies durch die Pfeile 32 dargestellt.The flow path of the unpurified exhaust gas thus leads into one of the inlet channels 28 and from there through a filter wall (without reference numeral) into one of the outlet channels 30. This is illustrated by the arrows 32 by way of example.
In Figur 3 ist ein Ablaufdiagramm einesFIG. 3 is a flow chart of a
Ausführungsbeispiels eines erfindungsgemäßen Verfahrens dargestellt .Embodiment of a method according to the invention shown.
In einem ersten Schritt 34 werden die zur Herstellung eines keramischen Körpers erforderlichen Materialien in der gewünschten Zusammensetzung zusammengemischt. Daraufhin werden dieser Mischung temperaturbeständige keramische Fasern zugegeben. Anschließend wird in einem dritten Schritt 38 der Masse in einem formgebenden Verfahren die gewünschte Form gegeben. Bevorzugt kann die Formgebung durch Extrudieren erfolgen.In a first step 34, the materials required for producing a ceramic body are mixed together in the desired composition. Thereafter, temperature-resistant ceramic fibers are added to this mixture. Subsequently, in a third Step 38 of the mass given the desired shape in a molding process. Preferably, the shaping can be effected by extrusion.
Der durch den formgebenden Vorgang 38 entstandene Körper wird in einem weiteren Schritt 40 einer Wärmebehandlung, insbesondere einem Sinterprozess, unterzogen. Dabei behalten die Fasern ihre Form und Struktur und erhöhen die mechanische Belastbarkeit des keramischen Werkstoffs. Idealerweise bildet sich zwischen dem keramischen Werkstoff und den Fasern ein kleines Luftpolster aus, was die Eigendämpfung des nach dem erfindungsgemäßen Verfahren hergestellten keramischen Körpers weiter erhöht.The body resulting from the shaping process 38 is subjected to a heat treatment, in particular a sintering process, in a further step 40. The fibers retain their shape and structure and increase the mechanical strength of the ceramic material. Ideally, a small air cushion forms between the ceramic material and the fibers, which further increases the internal damping of the ceramic body produced by the process according to the invention.
In Figur 4 ist die Struktur eines nach dem erfindungsgemäßen Verfahren hergestellten keramischen Körpers schematisch dargestellt. Der keramische Werkstück ist in Figur 4 durch eine Schraffur dargestellt. In diese Matrix sind Fasern 42 eingebunden. Unterbrochen wird diese Struktur durch verschiedene Poren 44, welche die für ein Filterelement erforderliche Porosität des keramischen Körpers sicherstellen. Wie aus Figur 4 ersichtlich, ragen manche der Fasern 42 in die Poren 44. Dieser Effekt ist gewünscht, weil dadurch die Speicherfähigkeit des Filterelements, insbesondere für Ruß, zunimmt. Falls die Fasern 42 mit einer geeigneten Beschichtung versehen wurden, können die Enden der Fasern 42, die in die Poren 44 ragen, auch eine katalytische Wirkung haben.FIG. 4 schematically shows the structure of a ceramic body produced by the method according to the invention. The ceramic workpiece is shown in Figure 4 by hatching. Fibers 42 are incorporated in this matrix. This structure is interrupted by various pores 44, which ensure the required for a filter element porosity of the ceramic body. As can be seen in FIG. 4, some of the fibers 42 protrude into the pores 44. This effect is desirable because it increases the storage capacity of the filter element, in particular for soot. If the fibers 42 have been provided with a suitable coating, the ends of the fibers 42 which protrude into the pores 44 may also have a catalytic effect.
Im rechten Teil von Figur 4 ist durch eine gestrichelte Linie 46 exemplarisch angedeutet, dass sich durch die Beschichtung der Fasern 42 vor dem Sintervorgang beim Sintern ein Luftpolster 48 zwischen dem schraffiert dargestellten keramischen Körper und den Fasern 42 bildet. Dieses Luftpolster 48 erhöht die Eigendämpfung des keramischen Werkstoffs und ist deshalb vorteilhaft. In the right-hand part of FIG. 4, a dashed line 46 indicates by way of example that an air cushion 48 forms between the hatched ceramic body and the fibers 42 due to the coating of the fibers 42 before the sintering process. This air cushion 48 increases the internal damping of ceramic material and is therefore advantageous.

Claims

Ansprüche claims
1. Verfahren zur Herstellung von Körpern aus Magnesium- Aluminium-Silikat, bevorzugt Cordierit, oder einem Körper aus einem anderen keramischen Werkstoff, gekennzeichnet durch folgende Verfahrensschritte:1. A process for producing bodies of magnesium-aluminum-silicate, preferably cordierite, or a body of another ceramic material, characterized by the following process steps:
Mischen der Ausgangsmaterialien von Magnesium-Aluminium- Silikat oder eines anderen keramischen Werkstoffs zu einer formbaren Masse,Mixing the starting materials of magnesium aluminum silicate or another ceramic material into a moldable mass,
Zufügen von Fasern (42) zu der formbaren Masse,Adding fibers (42) to the moldable mass,
Formen eines Körpers aus der formbaren Masse undForms a body from the malleable mass and
Kalzinieren und/oder Sintern des Körpers.Calcining and / or sintering the body.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Fasern (42) vor dem Zufügen zu der formbaren Masse beschichtet werden.A method according to claim 1, characterized in that the fibers (42) are coated prior to being added to the moldable mass.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Fasern (42) mit Eisen (Fe), Cobalt (Co), Nickel3. The method according to claim 2, characterized in that the fibers (42) with iron (Fe), cobalt (Co), nickel
(Ni), Palladium (Pd), Platin (Pt) und/oder Titan (Ti) beschichtet werden.(Ni), palladium (Pd), platinum (Pt) and / or titanium (Ti) are coated.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Körper (18) durch Extrudieren geformt wird. 4. The method according to any one of the preceding claims, characterized in that the body (18) is formed by extrusion.
5. Keramischer Körper aus Magnesium-Aluminium-Silikat, bevorzugt Cordierit, insbesondere Filterelement (18) oder Trägerstruktur eines Katalysators für eine Abgasnachbehandlungseinrichtung einer Brennkraftmaschine, dadurch gekennzeichnet, dass er nach einem der vorhergehenden Verfahren hergestellt ist.5. Ceramic body made of magnesium-aluminum-silicate, preferably cordierite, in particular filter element (18) or support structure of a catalyst for an exhaust aftertreatment device of an internal combustion engine, characterized in that it is manufactured according to one of the preceding methods.
6. Keramischer Körper nach Anspruch 5, dadurch gekennzeichnet, dass die Fasern (42) aus einem temperaturbeständigen Material bestehen.6. Ceramic body according to claim 5, characterized in that the fibers (42) consist of a temperature-resistant material.
7. Keramischer Körper nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Fasern (42) aus Magnesium- Aluminium-Silikat, bevorzugt Cordierit, oder einem Material mit ähnlichen Eigenschaften besteht, und dass das Material der Fasern (42) mit einem Material dotiert ist, welches die Sinterung unterdrückt.A ceramic body according to claim 5 or 6, characterized in that the fibers (42) consist of magnesium-aluminum silicate, preferably cordierite, or a material having similar properties, and in that the material of the fibers (42) is doped with a material is, which suppresses the sintering.
8. Keramischer Körper nach Anspruch 7, dadurch gekennzeichnet, dass das Material der Fasern (42) mit Zirkonium (Zr), Lanthan (La) und/oder Cer (Ce) dotiert ist.A ceramic body according to claim 7, characterized in that the material of the fibers (42) is doped with zirconium (Zr), lanthanum (La) and / or cerium (Ce).
9. Keramischer Körper nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Fasern aus einem keramischen9. Ceramic body according to claim 5 or 6, characterized in that the fibers of a ceramic
Werkstoff, insbesondere aus Aluminiumoxid und/oder Alumosilikat, bestehen.Material, in particular of alumina and / or aluminosilicate exist.
10. Keramischer Körper nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Fasern (42) bevorzugt eine Dicke von 3 μm bis 6 μm, besonders bevorzugt von 3 μm bis 5 μm, aufweisen.10. Ceramic body according to one of claims 5 to 7, characterized in that the fibers (42) preferably have a thickness of 3 microns to 6 microns, more preferably from 3 microns to 5 microns.
11. Keramischer Körper nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Fasern (42) bevorzugt eine Länge von 10 μm bis 100 μm, besonders bevorzugt von 10 μm bis 20 μm, aufweisen. 11. Ceramic body according to one of claims 5 to 8, characterized in that the fibers (42) preferably have a length of 10 .mu.m to 100 .mu.m, particularly preferably from 10 .mu.m to 20 .mu.m.
PCT/EP2006/065824 2005-09-06 2006-08-30 Method for producing a filter element and a support structure for a catalyst with improved heat resistance WO2007028743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042209.8 2005-09-06
DE200510042209 DE102005042209A1 (en) 2005-09-06 2005-09-06 A method of manufacturing a filter element and a support structure for a catalyst having improved temperature resistance

Publications (1)

Publication Number Publication Date
WO2007028743A1 true WO2007028743A1 (en) 2007-03-15

Family

ID=37308897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065824 WO2007028743A1 (en) 2005-09-06 2006-08-30 Method for producing a filter element and a support structure for a catalyst with improved heat resistance

Country Status (2)

Country Link
DE (1) DE102005042209A1 (en)
WO (1) WO2007028743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789400B2 (en) 2006-11-16 2014-07-29 Johnson Controls Technology Company Modular seat back
CN111203034A (en) * 2019-12-31 2020-05-29 汉格斯特滤清系统(昆山)有限公司 Preparation method of high-temperature-resistant filter cylinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109851328A (en) * 2019-02-15 2019-06-07 江苏埃梯恩膜过滤技术有限公司 A kind of preparation process of high-performance ceramic flat membrane support

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107859A (en) * 1986-10-27 1988-05-12 株式会社神戸製鋼所 Ceramic formed body
US4921822A (en) * 1988-11-07 1990-05-01 General Electric Company Ceramic composite
JPH04357179A (en) * 1991-06-04 1992-12-10 Matsushita Electric Ind Co Ltd Heat-resistant inorganic composition and production of porous heat-resistant material using the same
EP0562597A1 (en) * 1992-03-27 1993-09-29 Nippon Soken, Inc. Fiber-reinforced porous body and particulate trap filter composed of the same
US5552352A (en) * 1991-06-17 1996-09-03 General Electric Company Silicon carbide composite with coated fiber reinforcement
US20020081445A1 (en) * 1997-01-29 2002-06-27 Shingo Kadomura Composite material manufacturing method thereof, substrate processing apparatus and manufacturing method thereof, substrate mouting stage and manufacturing method thereof, and substrate processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107859A (en) * 1986-10-27 1988-05-12 株式会社神戸製鋼所 Ceramic formed body
US4921822A (en) * 1988-11-07 1990-05-01 General Electric Company Ceramic composite
JPH04357179A (en) * 1991-06-04 1992-12-10 Matsushita Electric Ind Co Ltd Heat-resistant inorganic composition and production of porous heat-resistant material using the same
US5552352A (en) * 1991-06-17 1996-09-03 General Electric Company Silicon carbide composite with coated fiber reinforcement
EP0562597A1 (en) * 1992-03-27 1993-09-29 Nippon Soken, Inc. Fiber-reinforced porous body and particulate trap filter composed of the same
US20020081445A1 (en) * 1997-01-29 2002-06-27 Shingo Kadomura Composite material manufacturing method thereof, substrate processing apparatus and manufacturing method thereof, substrate mouting stage and manufacturing method thereof, and substrate processing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R.J. KERANS ET AL.: "Interface design for oxidation -resistant ceramic composite", J. AMER. CERAM. SOCIETY, vol. 85, no. 11, 2002, pages 2599 - 2632, XP002407397 *
WENDORFF J ET AL: "PLATINUM AS A WEAK INTERPHASE FOR FIBER-REINFORCED OXIDE-MATRIX COMPOSITES", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, BLACKWELL PUBLISHING, MALDEN, MA, US, vol. 81, no. 10, October 1998 (1998-10-01), pages 2738 - 2740, XP000784975, ISSN: 0002-7820 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789400B2 (en) 2006-11-16 2014-07-29 Johnson Controls Technology Company Modular seat back
CN111203034A (en) * 2019-12-31 2020-05-29 汉格斯特滤清系统(昆山)有限公司 Preparation method of high-temperature-resistant filter cylinder

Also Published As

Publication number Publication date
DE102005042209A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
DE602004011378T3 (en) Honeycomb structural body
DE602004011971T3 (en) hONEYCOMB STRUCTURE
EP2558691B1 (en) Diesel particulate filter coated with reduction catalyst with improved characteristics
DE60221512T2 (en) WABENSTRUCKTURKÖRPER AND ARRANGEMENT THEREFOR
EP1897603B1 (en) Composite honeycombs
EP2247385B1 (en) Method for coating a diesel particle filter and diesel particle filters produced thereby
DE102018203459A1 (en) Locked honeycomb structure
DE102016010594A1 (en) Locked honeycomb structure and closed honeycomb segment
EP2154343A1 (en) Particulate separator, in particular particulate filter for separating particulates from an exhaust gas flow of a combustion engine
DE102016010596A1 (en) Locked honeycomb structure and closed honeycomb segment
DE102016111766A1 (en) CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE
EP1433519B1 (en) Method for producing a particle filter with NOx storage function
WO2008025603A1 (en) Filter for removing particles from a gas stream and method for producing said filter
DE102006035052A1 (en) Filter element and filter for exhaust aftertreatment
DE102019204231A1 (en) honeycomb structure
DE60313151T2 (en) TREATMENT OF EXHAUST GASES FROM A COMBUSTION ENGINE
DE102017002529A1 (en) honeycombs
WO2008034664A1 (en) Filter element, in particular for filtering exhaust gases of an internal combustion engine
WO2007028743A1 (en) Method for producing a filter element and a support structure for a catalyst with improved heat resistance
EP1756402B1 (en) Filter device for an exhaust gas system of an internal combustion engine, and method for producing such a filter device
WO2007039579A1 (en) Filter element and filter for the aftertreatment of exhaust gases
EP3582876B1 (en) Soot particle filter with storage cells for a catalyst
DE102007039248A1 (en) Producing a catalytically active ceramic carrier, useful for a filter for removal of particles from gas stream, comprises applying a catalytically active coating material on a carrier substrate, drying and fixing the substrate with coating
DE102007039249A1 (en) Producing a ceramic carrier for a filter to remove soot particles from an exhaust-gas stream of an internal combustion engine, comprises applying a coating material or a precursor component on a carrier substrate made of a ceramic material
DE10351882A1 (en) Filter for removed particulates from the exhaust gas of a combustion process, especially for use in a motor vehicle, comprises an electrically conductive foam structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 06778405

Country of ref document: EP

Kind code of ref document: A1