WO2007028303A1 - Procede de calcul de l'attenuation de la ligne d'abonne numerique exterieure - Google Patents

Procede de calcul de l'attenuation de la ligne d'abonne numerique exterieure Download PDF

Info

Publication number
WO2007028303A1
WO2007028303A1 PCT/CN2006/001568 CN2006001568W WO2007028303A1 WO 2007028303 A1 WO2007028303 A1 WO 2007028303A1 CN 2006001568 W CN2006001568 W CN 2006001568W WO 2007028303 A1 WO2007028303 A1 WO 2007028303A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
frequency
attenuation
calculating
loop resistance
Prior art date
Application number
PCT/CN2006/001568
Other languages
English (en)
French (fr)
Inventor
Sheng Li
Xiongwei Ren
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to DE602006003045T priority Critical patent/DE602006003045D1/de
Priority to CNA200680012196XA priority patent/CN101160934A/zh
Priority to EP06753102A priority patent/EP1786187B1/en
Publication of WO2007028303A1 publication Critical patent/WO2007028303A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/28Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor
    • H04M3/30Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop
    • H04M3/305Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance
    • H04M3/306Automatic routine testing ; Fault testing; Installation testing; Test methods, test equipment or test arrangements therefor for subscriber's lines, for the local loop testing of physical copper line parameters, e.g. capacitance or resistance for frequencies above the voice frequency, e.g. xDSL line qualification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/48Testing attenuation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements

Definitions

  • the invention relates to the field of broadband testing technology, in particular to a method for measuring the attenuation of an external line of a digital subscriber line. Background of the invention
  • Digital Subscriber Loop, DSL technology is one of the main technologies to solve this access bottleneck. It includes many types such as High Speed DSL (HDSL), Asymmetric DSL (ADSL), and Very High Speed DSL (VDSL). These types are collectively referred to as X Digital Subscriber Line (XDSL).
  • HDSL High Speed DSL
  • ADSL Asymmetric DSL
  • VDSL Very High Speed DSL
  • XDSL X Digital Subscriber Line
  • the broadband test system can quickly obtain information such as the quality of the DSL line, the maximum rate that can be carried, and the fault location.
  • Current mainstream broadband test system can be divided into time domain reflection
  • the (Time Domain Reflect, TDR) method is a scheme represented by the one-step parameter represented by the scheme and the test line.
  • the TDR scheme is to add a test signal on the line and detect the signal reflected on the line, and then directly calculate the attenuation of the line according to the characteristics of the transmitted signal and the characteristics of the detected reflected signal, and then combine the noise of the line. Calculate the maximum rate that the line can carry.
  • the first parameter of the test line is to test the primary parameters of the line itself, that is, the sum of the two-wire resistance of the twisted pair, the sum of the two-wire inductance of the twisted pair, the conductance value G between the two lines of the twisted pair, and the twisted pair.
  • Step 101 at high frequency / down, measure the primary parameters of the line, including ? (/), L (f), G and (.
  • the sum of the two-wire resistance of the twisted pair at the frequency/lower that is, the loop resistance, when the frequency/change, varies greatly with frequency.
  • Z(/) is the sum of the two-wire inductance of the twisted pair at the frequency/down.
  • ⁇ (/) also changes with frequency by 4 ⁇ .
  • G is the conductance value between the two wires of the twisted pair, and does not change with the frequency change, and is generally ignored.
  • C is the capacitance between the two wires of the twisted pair, that is, the integrated capacitance between the wires, and C does not change with the change of the frequency.
  • Step 102 Calculate a propagation constant ⁇ of the line according to the measured primary parameter.
  • the transmission constant ⁇ of the line can be obtained by the formula (1).
  • the propagation constant ⁇ determines the energy attenuation and transmission delay of the signal as it travels along the twisted pair. Based on the skin effect, the result of equation (1) is a complex variable function, so ⁇ can be decomposed into real and imaginary parts, ie:
  • // is the real part of ⁇ , which determines the energy attenuation of the signal, so a is also called the attenuation factor; for the imaginary part of ⁇ , the transmission phase delay of the signal is determined.
  • Step 103 Calculate the attenuation factor ⁇ of the line according to the propagation constant. It can be seen from equation (2) that ⁇ is equal to the real part of ⁇ multiplied by the length of the twisted pair / , and further combined with formula (1) and formula (2), it can be seen that ⁇ is equal to + jmL(f)) (G + j C) the real part, thus The attenuation factor ⁇ can be obtained by calculating the real part of the formula (1) or the real part of ⁇ /(R(/) + j L(f))(G + jmC). It should be noted that due to the formula (1)
  • is also a function of frequency / and can also be expressed as ⁇ (/).
  • Step 104 Calculate the attenuation at each frequency point according to the attenuation factor.
  • loglOe (/) represents a logarithmic value of base 10
  • loglOe represents the logarithm of e at base 10.
  • the present invention proposes a method for calculating the attenuation of the external line of a digital subscriber line, which is used to solve the four parameters of ?(/), L(f), G, and C at a specified frequency point/over to be calculated.
  • the problem of line attenuation According to the above object, the present invention provides a method for measuring DSL external line attenuation, the method comprising the following steps:
  • the attenuation of the line at the frequency to be tested is calculated according to the true attenuation of the line at the first frequency, the first frequency, and the frequency to be measured.
  • the step of calculating the true attenuation of the line at the first frequency according to the integrated capacitance between the line, the loop resistance and the first frequency comprises: calculating according to the integrated capacitance between the lines, the loop resistance and the first frequency Obtaining a preliminary attenuation result of the line at the first frequency; multiplying the preliminary attenuation result of the line at the first frequency by the first constant and adding the second constant to obtain a true attenuation of the line at the first frequency.
  • X1(f 0 ) ⁇ X2(f Q ) a constant of X1(f 0 ) ⁇ X2(f Q ), wherein k is the first constant, and const is the second constant, which is a first frequency, Xl(f.) is a preliminary attenuation result of the first line at the first frequency, and X2(f.) is a preliminary attenuation result of the second line at the first frequency, and Yl(f Q ) is the The true attenuation of the first line at the first frequency, ⁇ 2( ) is the true attenuation of the second line at the first frequency.
  • the frequency of the low frequency test signal is below 1000 Hz.
  • the first frequency is greater than or equal to 100 kHz and less than or equal to 500 kHz.
  • the DSL is an Asymmetric Digital Subscriber Line (ADSL), or a High Speed Digital Subscriber Line (HDSL), or a High Speed Digital Subscriber Line (VDSL).
  • ADSL Asymmetric Digital Subscriber Line
  • HDSL High Speed Digital Subscriber Line
  • VDSL High Speed Digital Subscriber Line
  • the present invention measures the loop resistance R and the inter-line integrated capacitance C under the low frequency signal, and then calculates the attenuation of the line at the frequency fo, and then estimates the line at other specified frequencies/ Under the attenuation.
  • the invention does not need to obtain the four parameters of /?(/), £(/), G, C at the specified frequency/point to be tested, and avoids the difficult measurement process.
  • the present invention only needs the loop resistance at low frequency and the integrated capacitance between the lines to obtain the attenuation of the line, which greatly simplifies the system design of the broadband test system and reduces the cost. Since R is hardly constant at low frequencies, the present invention also reduces the error of the result.
  • the invention can also calculate the attenuation of the mixed wire diameter line, and further solves the cumbersome calculation of the attenuation of the mixed wire diameter line. The result is a big error.
  • FIG. 1 is a schematic flow chart of obtaining a line attenuation characteristic in the prior art
  • FIG. 2 is a schematic flow chart of obtaining line attenuation characteristics in the present invention. Mode for carrying out the invention
  • the invention utilizes a loop resistance of a twisted pair line at a low frequency and an integrated line calculation circuit between lines
  • the first frequency f 100 kHz (kHz) ⁇ 500 kHz. Attenuation, and then calculate the attenuation of the line at other frequencies to be measured.
  • the process of this embodiment includes the following steps:
  • step 201 the inter-line integrated capacitance C of the twisted pair is measured, and the measurement method is the same as in the prior art. Since the inter-line capacitance C does not change with frequency, C can be measured at any frequency. In this embodiment, C is measured at a low frequency, that is, a low-frequency test signal with a frequency below 1000 Hz is added on the line, and the line-to-line integrated capacitance of the line is measured (3.
  • Step 202 Add a low frequency test signal on the line.
  • the frequency of the low frequency test signal is below 1000 Hz, and the loop resistance R of the line is measured. Since the frequency of the low frequency test signal is very low, the measured loop resistance R can be approximately equal to the DC loop resistance of the line.
  • step 201 and the step 202 of measuring the inter-line integrated capacitance C and the measuring loop resistance R are not in order, and the R may be measured after measuring C, or may be measured after measuring R, or simultaneously ( with.
  • Step 203 Calculate the line at the first frequency f according to the measured inter-line integrated capacitance C and the loop resistance R.
  • the initial attenuation result is X(f.).
  • the first frequency f D has a value range of 100 kHz or more and 500 kHz or less, that is, between 100 kHz and 500 kHz.
  • the initial attenuation result X(f Q ) at the first frequency f 0 is calculated using the equation (4) obtained from the wave equation of the signal processing, and the formula (4) is as follows:
  • Step 204 according to the line at the first frequency f.
  • the initial attenuation result under X(f.) is calculated at the first frequency f.
  • the empirical formula (5) is used here:
  • Y(f 0 ) kxX(f Q ) + comt (5)
  • k and const are constants and may be referred to as a first constant and a second constant, respectively.
  • steps 203 and 204 can also be combined into one step: the inter-line integrated capacitor C, the loop resistance R and the first frequency f. , Calculate the line at the first frequency f. True attenuation Y(fo), the formula used is formula (9).
  • the constants k and const can be obtained in advance by: measuring two lines at the first frequency fo to obtain true attenuations Yl(fo) and Y2(fo), and measuring the loop resistance Rl of the two lines, R2 and the line-to-line integrated capacitors Cl, C2, then substituting Yl(f Q ), Y2(fo) and Rl, Cl, R2, C2 into equation (9) to obtain equation (10):
  • ⁇ 71( 0 ) kx2 x log e ⁇ - ⁇ x / 0 x Rl x CI + const
  • Step 205 Calculate the attenuation of the line at the frequency/down according to the first frequency, the true attenuation Y(fo) of the line at the first frequency f G , and the frequency f to be measured.
  • the formula (13) is an engineering approximation formula of the line characteristic, the formula is effective when f G is higher than 100 kHz, so in step 203, fo is required to be greater than or equal to 100 kHz. As far as fo is less than 500 kHz, it is only a general requirement and is not necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Telephonic Communication Services (AREA)

Description

一种数字用户线路外线衰减的测算方法 技术领域
本发明涉及宽带测试技术领域, 特别是一种数字用户线路外线衰减 的测算方法。 发明背景
随着通信技术的不断发展,骨干网的传输速度巳经得到了很大提高, 而相比之下, 接入网的传输速率却始终是一个瓶颈。 数字用户线路
( Digital Subscriber Loop, DSL )技术, 就是解决这接入瓶颈的主要技 术之一。 它包括高速 DSL ( HDSL )、 非对称 DSL ( ADSL ) 以及甚高速 DSL ( VDSL )等多种类型, 这些类型统称为 X数字用户线路(XDSL )。
随着 XDSL用户数量的急剧增长, 电信运营商维护 XDSL用户线路 的负担越来越重, 因此对宽带测试系统的需求也越来越大。 宽带测试系 统能够快速地获取 DSL的线路质量、 能够承载的最大速率等信息, 并 且能够实现故障定位。 当前主流的宽带测试系统可以分为时域反射
( Time Domain Reflect, TDR )方式为代表的方案和测试线路一次参数 为代表的方案。 其中, TDR方案筒单地说就是在线路上加测试信号, 并 检测线路上反射回来的信号, 然后根据发送信号的特征和检测到的反射 信号的特征来直接计算线路的衰减, 再结合线路的噪声计算出线路能够 承载的最大速率。 测试线路一次参数的方案就是先测试线路本身的一次 参数, 即双绞线的两线电阻之和 R、 双绞线两线电感之和 L、 双绞线两 线间的电导值 G和双绞线两线间的电容值 C, 然后根据一次参数计算出 线路的衰减特性, 再结合线路的噪声计算出线路能够承载的最大速率。 上述两种测试方案的原理虽然不同, 但是两者都需要先获取线路的衰减 特性, 可见测算 XDSL线路的衰减特性是一个非常重要的技术问题。 假设所要测试的双绞线的长度为 米, 直径为 米。 图 1所示的是, 目前测试线路一次参数方案中获取线路衰减特性的流程。 参考图 1, 该 方法包括以下步骤:
步骤 101, 在高频 /下, 测量线路的一次参数, 包括 ?(/)、 L(f) , G 和(。
其中, 为在频率/下该双绞线的两线电阻之和, 即环路电阻, 当频率 /变化时, 随频率的变化很大。 Z(/)为在频率 /下该双绞线 的两线电感之和, 当频率 /变化时, Ζ(/)同样随频率的变化 4艮大。 G为 该双绞线两线间的电导值, 不随频率变化而变化, 一般忽略不计。 C为 该双绞线两线间的电容值, 即线间综合电容, C不随频率的变化而变化。
步骤 102, 根据测量得到的一次参数, 计算线路的传播常数 γ。 根据传输线理论, 线路的传输常数 γ可以通过公式 (1 )得到。
7(f) = ^(R(f) + jmL(f))(G + jmC)/l (1) 其中, m = l tf , π为圆周率。
传播常数 γ决定了信号沿着双绞线传输时的能量衰减以及传输时 延。 基于趋肤效应, 公式 (1 ) 的结果是一个复变函数, 因此 γ可以分 解为实部和虚部, 即有:
Figure imgf000004_0001
其中, //为 γ的实部, 决定了信号的能量衰减, 因此 a也被称为 衰减因子; 为 γ的虚部, 决定了信号的传输相位延迟。
步骤 103, 根据传播常数计算出线路的衰减因子 α。 从公式(2 )可 以看出 α等于 γ的实部乘以双绞线的长度 / , 进一步结合公式(1 )和公 式(2 ), 可以看出 α就等于 + jmL(f))(G + j C)的实部, 从而计 算出公式(1 ) 的实部或^/ (R(/) + j L(f))(G + jmC)的实部就可以获得 衰减因子 α。需要指出的是,由于公式( 1 )中
Figure imgf000005_0001
是频率 /的函数, 因此 α也是频率/的函数, 也可以表达成 α(/)。
步骤 104, 根据衰减因子 计算出各个频点上的衰减 } 。
计算衰减 所依据的是公式(3 ):
Figure imgf000005_0002
其中, e为自然对数常数, loglOe"(/)表示以 10为底的 的对数值, loglOe表示以 10为底的 e的对数值。
从上述技术方案可以看出, 计算频率 /上的衰减 r(/), 必须先得到
R(f) . J(/)、 G、 C这四个一次参数, 并且代入公式(1 )的 R(f)和 L(f) 必须是在指定频点/上测得的 i?(/)、 L(f) , 而实际所需的频率/通常较 高, 但是在高频下测量 等值是非常困难的, 并且由此会引起 最终得到的衰减存在较大的误差。
另夕卜, 当前很多用户线路都是 0.4mm线径的线路和 0.5mm线径的 线路组成的混合线径线路。 采用上述技术方案测算这种混合线径线路的 衰减时, 必须先测量各段线路的 R(/)、 L、f、、 G、 C, 计算出各段线路 的衰减后, 再计算各段线路衰减的总和, 测量和计算过程非常繁瑣。 并 且, 测量各段线路的一次参数也是非常困难的, 而且容易产生较大的误 差, 从而导致最终得到的总的衰减结果不准确。 发明内容
有鉴于此, 本发明提出了一种数字用户线路外线衰减的测算方法, 用以解决必须要获取指定频点/上的 ?(/)、 L(f) , G、 C四个一次参数 才能计算出线路衰减的问题。 根据上述目的, 本发明提供了一种 DSL外线衰减的测算方法, 该方 法包括以下步骤:
在用户线路上加低频测试信号, 测量得到线路的线间综合电容以及 环路电阻;
根据所述线间综合电容、 环路电阻和第一频率计算得到线路在第一 频率下的真实衰减;
根据所述线路在第一频率下的真实衰减、 第一频率以及待测频率, 计算得到线路在待测频率下的衰减。
较佳地, 所述根据线间综合电容、 环路电阻和第一频率计算得到线 路在第一频率下的真实衰减的步骤包括: 根据所述线间综合电容、 环路 电阻及笫一频率计算得到线路在第一频率下的初步衰减结果; 将所述线 路在第一频率下的初步衰减结果乘以第一常数后加上第二常数, 得到线 路在第一频率下的真实衰减。
在上述方案中, 在所述将线路在第一频率下的初步衰减结果乘以第 一常数后加上第二常数得到线路在第一频率下的真实衰减之前进一步 包括: 测量第一线路的环路电阻和线间综合电容以及第一线路在第一频 率下的真实衰减, 以及测量第二线路的环路电阻和线间综合电容以及第 二线路在第一频率下的真实衰减; 根据所述第一线路的线间综合电容和 环路电阻计算第一线路在第一频率下的初步衰减结果, 以及根据所述第 二线路的线间综合电容和环路电阻计算第二线路在第一频率下的初步 衰 减 结 果 ; 根 据 公 式 k = l f;\~Y^; , 和 公 式 議^ 1 一 , 计算得到所述第一常数和第二
Xl(f0) ~ X2(fQ) 常数, 其中, k为所述第一常数, const为所述第二常数, 为第一频率, Xl(f。)为所述第一线路在第一频率下的初步衰减结果, X2(f。)为所述第二 线路在第一频率下的初步衰减结果, Yl(fQ)为所述第一线路在第一频率 下的真实衰减, Υ2( )为所述第二线路在第一频率下的真实衰减。 在上述方案中,
Figure imgf000007_0001
路在待测频率下的衰减, 其中, f为所述待测频率, f。为所述第一频率, Y(f)为待测频率下的线路的衰减, γ( )为所述第一频率下的真实衰减。
较佳地, 所述低频测试信号的频率在 1000赫兹以下。
较佳地,所述第一频率大于等于 100千赫兹且小于等于 500千赫兹。 在上述技术方案中, 所述 DSL为非对称数字用户线路(ADSL )、 或 高速数字用户线路(HDSL )、 或甚高速数字用户线路(VDSL )。
从上述方案中可以看出, 由于本发明在低频信号下测量得到环路电 阻 R和线间综合电容 C, 然后计算该线路在频率 fo下的衰减, 再依此推 算该线路在其它指定频率 /下的衰减。 本发明不需要获取指定待测频点 /上的 /?(/)、 £(/)、 G、 C四个一次参数, 避免了艰难的测量过程。 并 且, 本发明仅需低频下的环路电阻和线间综合电容就能得到线路的衰 减, 大大简化了宽带测试系统的系统设计, 还降低了成本。 由于低频下 R几乎不变, 因此本发明还减小了结果的误差。 进一步, 由于本发明所 采用的公式在不同线径的线路或混合线径的线路有相同的常数, 因此本 发明还可以计算混合线径线路的衰减, 进一步解决了混合线径线路衰减 计算繁琐、 结果误差大的问题。 附图简要说明
图 1为现有技术中获取线路衰减特性的流程示意图;
图 2为本发明中获取线路衰减特性的流程示意图。 实施本发明的方式
为使本发明的目的、 技术方案和优点更加清楚, 以下举实施例对本 发明进一步详细说明。
本发明利用双绞线在低频下的环路电阻和线间综合电容计算线路在
100千赫兹(kHz ) ~500kHz的第一频率 f。的衰减, 然后再计算出线路在 其它待测频率下的衰减。
参照图 2, 本实施例的流程包括以下步骤:
步骤 201 , 测量得到双绞线的线间综合电容 C, 测量方法与现有技 术中一样。 由于线间综合电容 C不随频率的变化而变化, 因此可以在任 意频率下测量 C。本实施例在低频下测得 C,即:在线路上加频率在 1000 赫兹(Hz ) 以下的低频测试信号, 测量得到线路的线间综合电容(3。
步驟 202,在线路上加低频测试信号,该低频测试信号的频率在 1000 赫兹(Hz ) 以下, 测量得到线路的环路电阻 R。 由于低频测试信号的频 率很低, 因此测得的环路电阻 R可以近似和线路的直流环阻相等。
需要指出的是, 测量线间综合电容 C和测量环路电阻 R的步骤 201 和步骤 202没有先后次序之分, 可以先测量 C后测量 R, 也可以先测量 R后测量 C, 或者同时测量 ( 和 。
步驟 203 , 根据所测量得到的线间综合电容 C和环路电阻 R, 计算 线路在第一频率 f。下的初步衰减结果 X(f。)。第一频率 fD的取值范围是大 于等于 100kHz且小于等于 500kHz, 即在 100kHz〜500kHz之间。
这里采用根据信号处理中波方程所得到的公式(4 )计算第一频率 f0 上的初步衰减结果 X(fQ), 公式(4 )如下所示:
(/0) = 201og10 ^x ^ /0 x ^ x (4) 其中, e为自然对数常数, loglOe表示以 10为底的 e的对数值, f0 为一个在 100kHz~500kHz之间的频率值, R为环路电阻, C为线间综合 电容。
步骤 204, 根据线路在第一频率 f。下的初步衰减结果 X(f。)计算线路 在第一频率 f。下的真实衰减 Y(f。)。 这里采用的是经验公式(5):
Y(f0) = kxX(fQ) + comt (5) 其中, k和 const为常数, 可分别称为第一常数、 第二常数。 通过大 量的测试和模拟发现, 不论是针对 0.4mm线径的线路或 0.5mm线径的 线路, 还是 0.4mm线径和 0,5mm线径混合的线路, 在同一个频率 下, k和 const是基本不变的常数。那么,可以在第一频率 f。下对两条线路进 行测量得到真实衰减 Yl(fG)和 Y2(fQ), 并测量两条线路的 R和 C根据公 式(4)分别计算得到两条线路的初步衰减结果 Xl(fc)和 X2(fo), 然后将
Yl(f。)、 Y2(f。)和 Xl(f。)、 X2(f0)分别代入公式 (5)得到方程组 (6):
Yl(fQ) = kxXl(f0) + const
{Y2(f0) = kxX2(f0) + const 根据方程组(6)很容易得到常数 k和 const的值, 如公式(7)和 公式(8)所示:
Figure imgf000009_0001
on ― ^(Λ χ ^(Λ) - 0) χ π(/0)
Xl(f0)-X2(f0) 综合公式 (4)和公式 (5)可以看出, 这两个公式可以合并成为一 个公式, 如公式(9)所示:
Y(f0) = kxX(fQ) + const
.— \ } π f0 RxC + const 那么步驟 203和步骤 204也可以合成一个步骤: 才艮据线间综合电容 C、 环路电阻 R以及第一频率 f。, 计算线路在第一频率 f。下的真实衰减 Y(fo), 所采用的公式为公式(9)。
相应地, 常数 k和 const可以通过如下方法预先得到: 在第一频率 fo下对两条线路进行测量得到真实衰减 Yl(fo)和 Y2(fo),并测量两条线路 的环路电阻 Rl、 R2和线间综合电容 Cl、 C2, 然后将 Yl(fQ)、 Y2(fo)和 Rl、 Cl、 R2、 C2分别代入公式(9)得到方程组(10):
{ 71( 0) = kx2 x log e χ -^π x /0 x Rl x CI + const
72(/0) = kx20x log10 e x τ x fQxR2xC2+ const
根据方程组( 10)很容易得到常数 k和 const的值, 如公式( 11 )和 公式(12)所示:
Figure imgf000010_0001
、 const
Figure imgf000010_0002
步驟 205,根据第一频率 、线路在第一频率 fG下的真实衰减 Y(fo)、 以及待测频率 f , 计算得到线路在频率 /下的衰减。
这里采用公式(13)进行计算:
Figure imgf000010_0003
由于公式(13)是一个线路特性的工程近似公式, 该公式在 fG高于 100kHz时才有效, 因此在步骤 203中要求 fo要大于等于 100kHz。 至于 fo小于 500kHz只是一般性的要求, 不是必要的。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种数字用户线路 DSL外线衰减的测算方法, 其特征在于, 该 方法包括以下步骤:
在用户线路上加低频测试信号, 测量得到线路的线间综合电容以及 环路电阻;
根据所述线间综合电容、 环路电阻和第一频率计算得到线路在第一 频率下的真实衰减;
根据所述线路在第一频率下的真实衰减、 第一频率以及待测频率, 计算得到线路在待测频率下的衰减。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述根据线间综合 电容、 环路电阻和第一频率计算得到线路在第一频率下的真实衰减的步 驟包括:
根据所述线间综合电容、 环路电阻及第一频率计算得到线路在第一 频率下的初步衰减结果;
将所述线路在第一频率下的初步衰减结果乘以第一常数后加上第 二常数, 得到线路在第一频率下的真实衰减。
3、 根据权利要求 2所述的方法, 其特征在于, 在所述将线路在第 一频率下的初步衰减结果乘以第一常数后加上第二常数得到线路在第 一频率下的真实衰减之前进一步包括:
测量第一线路的环路电阻和线间综合电容以及第一线路在第一频 率下的真实衰减, 以及测量笫二线路的环路电阻和线间综合电容以及第 二线路在第一频率下的真实衰减;
根据所述第一线路的线间综合电容和环路电阻计算第一线路在第 一频率下的初步衰减结果, 以及根据所述第二线路的线间综合电容和环 路电阻计算第二线路在第一频率下的初步衰减结果; 根据公式 k = Π( θ) " Π(/θ)
Xl(f0) - X2(f0) 一 1(/;)χ 72(/0)- 2(/0)χ Π( 0)
, 计算得到所述第一常 Xl(/0)- X2(/0) 数和第二常数,
其中, k为所述第一常数, const为所述第二常数, f。为第一频率, Xl(f。)为所述第一线路在第一频率下的初步衰减结果, X2(fQ)为所述第二 线路在第一频率下的初步衰减结果, Yl(f。)为所述第一线路在第一频率 下的真实衰减, Y2(fo)为所述第二线路在第一频率下的真实衰减。
4、 根据权利要求 1所述的方法, 其特征在于, 在步骤 C中根据公 式: 计算得到线路在待测频率下的衰减,
Figure imgf000012_0001
其中, f为所述待测频率, 为所述第一频率, Y(f)为待测频率下的 线路的衰减, Y(fQ)为所述第一频率下的真实衰減。
5、 根据权利要求 1~4 中任一项所述的方法, 其特征在于, 所述低 频测试信号的频率在 1000赫兹以下。
6、 根据权利要求 1~4 中任一项所述的方法, 其特征在于, 所述第 一频率大于等于 100千赫兹且小于等于 500千赫兹。'
7、 根据权利要求 1所述的方法, 其特征在于, 所述 DSL为非对称 数字用户线路 ADSL、 或高速数字用户线路 HDSL、 或甚高速数字用户 线路 VDSL。
PCT/CN2006/001568 2005-09-08 2006-07-05 Procede de calcul de l'attenuation de la ligne d'abonne numerique exterieure WO2007028303A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602006003045T DE602006003045D1 (de) 2005-09-08 2006-07-05 Verfahren zur berechnung der dämpfung der aussenseitigen digitalen teilnehmerleitung
CNA200680012196XA CN101160934A (zh) 2005-09-08 2006-07-05 一种数字用户线路外线衰减的测算方法
EP06753102A EP1786187B1 (en) 2005-09-08 2006-07-05 A method for calculating the attanuation of the exterior digital subscriber line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510098378.0 2005-09-08
CNB2005100983780A CN100486273C (zh) 2005-09-08 2005-09-08 一种数字用户线路外线衰减的测算方法

Publications (1)

Publication Number Publication Date
WO2007028303A1 true WO2007028303A1 (fr) 2007-03-15

Family

ID=37133818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001568 WO2007028303A1 (fr) 2005-09-08 2006-07-05 Procede de calcul de l'attenuation de la ligne d'abonne numerique exterieure

Country Status (6)

Country Link
EP (1) EP1786187B1 (zh)
CN (2) CN100486273C (zh)
AT (1) ATE410881T1 (zh)
DE (1) DE602006003045D1 (zh)
ES (1) ES2314911T3 (zh)
WO (1) WO2007028303A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128619A (en) * 1989-04-03 1992-07-07 Bjork Roger A System and method of determining cable characteristics
US5465287A (en) * 1994-01-13 1995-11-07 Teledata Communication Ltd. Subscriber line impedance measurement device and method
US5548222A (en) * 1994-09-29 1996-08-20 Forte Networks Method and apparatus for measuring attenuation and crosstalk in data and communication channels
US20030173399A1 (en) * 2000-08-11 2003-09-18 Didier Le Henaff Method and device for measuring a line attenuation
US6687289B1 (en) * 1998-07-09 2004-02-03 Wandel & Goltermann Management Holding Gmbh Method for measuring the attenuation in digital transmission lines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355361B (en) * 1999-06-23 2004-04-14 Teradyne Inc Qualifying telephone lines for data transmission
US6487276B1 (en) * 1999-09-30 2002-11-26 Teradyne, Inc. Detecting faults in subscriber telephone lines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128619A (en) * 1989-04-03 1992-07-07 Bjork Roger A System and method of determining cable characteristics
US5465287A (en) * 1994-01-13 1995-11-07 Teledata Communication Ltd. Subscriber line impedance measurement device and method
US5548222A (en) * 1994-09-29 1996-08-20 Forte Networks Method and apparatus for measuring attenuation and crosstalk in data and communication channels
US6687289B1 (en) * 1998-07-09 2004-02-03 Wandel & Goltermann Management Holding Gmbh Method for measuring the attenuation in digital transmission lines
US20030173399A1 (en) * 2000-08-11 2003-09-18 Didier Le Henaff Method and device for measuring a line attenuation

Also Published As

Publication number Publication date
EP1786187B1 (en) 2008-10-08
EP1786187A4 (en) 2007-08-15
CN1852351A (zh) 2006-10-25
DE602006003045D1 (de) 2008-11-20
CN100486273C (zh) 2009-05-06
CN101160934A (zh) 2008-04-09
ES2314911T3 (es) 2009-03-16
EP1786187A1 (en) 2007-05-16
ATE410881T1 (de) 2008-10-15

Similar Documents

Publication Publication Date Title
KR101063653B1 (ko) 교란된 라인의 루프 테스트용 방법 및 장치
US6643266B1 (en) Method for qualifying a loop for DSL service
US8971500B2 (en) Communication channel capacity estimation
EP1300964A1 (en) A system and method for measuring crosstalk in XDSL networks
JP4495238B2 (ja) 通信伝送路の特性を推定するための方法、装置、およびコンピュータプログラム
JP2003520489A (ja) 伝送ラインのループ長・ブリッジタップ長を決定するためのシステムおよび方法
JP2013512616A (ja) デジタル加入者回線における配線不良を検出するための方法及び装置
WO2009135426A1 (zh) 一种线路拓扑管理方法及系统
WO2011053207A1 (en) Single ended estimation of far-end crosstalk in a digital subscriber line
WO2009067898A1 (fr) Procédé et dispositif de mesure de ligne
JP2015520542A (ja) ツイストペア電話回線に対するseltベースの診断方法およびシステム
US8705636B2 (en) Passive single-ended line test
US9054785B2 (en) Method and arrangement in a telecommunication system for estimating frequency dependent resistance
WO2009076882A1 (zh) 一种分离器的检测方法、装置和系统
JP5220928B2 (ja) 伝送回線分析方法およびデバイス
JP2015514379A (ja) ツイストペア電話回線のためのseltおよびdeltベースの診断方法およびシステム
US7263121B2 (en) Method and apparatus for determining a topology of a subscriber line loop
WO2007028303A1 (fr) Procede de calcul de l'attenuation de la ligne d'abonne numerique exterieure
CN103999441B (zh) 用于识别电信线路中的损坏的方法和装置
US20120232878A1 (en) Methods and systems for detecting metallic faults affecting communications links
WO2007112631A1 (fr) Procédé et dispositif pour tester le niveau d'équilibre longitudinal d'une ligne
Richard The Twisted-Pair Telephone Transmission Line

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006753102

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006753102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680012196.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE