WO2007027781A2 - Systemes de virure et procedes correspondants - Google Patents
Systemes de virure et procedes correspondants Download PDFInfo
- Publication number
- WO2007027781A2 WO2007027781A2 PCT/US2006/033872 US2006033872W WO2007027781A2 WO 2007027781 A2 WO2007027781 A2 WO 2007027781A2 US 2006033872 W US2006033872 W US 2006033872W WO 2007027781 A2 WO2007027781 A2 WO 2007027781A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- structural element
- roller
- strake
- ramp
- platforms
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 26
- 230000007704 transition Effects 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 4
- 230000008676 import Effects 0.000 claims description 4
- 210000002435 tendon Anatomy 0.000 claims description 4
- 239000012530 fluid Substances 0.000 description 15
- -1 polypropylene Polymers 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000284 resting effect Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/10—Influencing flow of fluids around bodies of solid material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/04—Fastening or guiding equipment for chains, ropes, hawsers, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/03—Pipe-laying vessels
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L1/00—Laying or reclaiming pipes; Repairing or joining pipes on or under water
- F16L1/12—Laying or reclaiming pipes on or under water
- F16L1/123—Devices for the protection of pipes under water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/006—Rigid pipes specially profiled
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B21/502—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
- B63B2021/504—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs comprising suppressors for vortex induced vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B21/502—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
Definitions
- the present disclosure relates to strake systems and methods. Background:
- Structural elements can be installed at sea from a floating vessel using a J-lay configuration where the structural element is held vertically on the vessel and dropped vertically into the water and then when it reaches the bottom of the body of water, it lays horizontal, or alternatively structural elements can be installed in a S-lay configuration where the structural element is held horizontally on the vessel, drops to vertical through the body of water, and then rests on the bottom of the body of water in a horizontal configuration.
- Other configurations for installing a structural element from a vessel in a body of water are also known.
- System 100 for installing structural element 114 on bottom 116 of body of water 112 is illustrated.
- System 100 includes vessel 110 with tensioner 120 and stinger 118.
- Tensioner 120 holds structural element 114 in a horizontal configuration as it enters water, and then structural element 114 rolls down stinger 118, then drops to a vertical configuration, and then back to a horizontal configuration as it lays on bottom 116.
- Tensioner 120 and vessel 110 have a sufficient capacity to support structural element 114 as it is being installed.
- VIV vortex-induced vibrations
- These vibrations may be caused by oscillating dynamic forces on the surface which can cause substantial vibrations of the structural element, especially if the forcing frequency is at or near a structural natural frequency.
- the vibrations may be larger in the transverse (to flow) direction; however, inline vibrations can also cause stresses, which may sometimes be larger than those in the transverse direction.
- the magnitude of the stresses on a structural element is generally a function of and increases with the velocity of the water current passing these structural elements and the length of the structural element.
- the first kind of stress is caused by vortex-induced alternating forces that vibrate the structural element ("vortex-induced vibrations") in a direction perpendicular to the direction of the current.
- vortex-induced vibrations When fluid flows past the structural element, vortices maybe alternately shed from each side of the structural element. This produces a fluctuating force on the structural element transverse to the current. If the frequency of this harmonic load is near the resonant frequency of the structural element, large vibrations transverse to the current can occur. These vibrations can, depending on the stiffness and the strength of the structural element and any welds, lead to unacceptably short fatigue lives.
- stresses caused by high current conditions in marine environments have been known to cause structural elements such as risers to break apart and fall to the ocean floor.
- the second type of stress is caused by drag forces which push the structural element in the direction of the current due to the structural element's resistance to fluid flow.
- the drag forces may be amplified by vortex induced vibrations of the structural element. For instance, a riser pipe that is vibrating due to vortex shedding will disrupt the flow of water around it more than a stationary riser. This may result in more energy transfer from the current to the riser, and hence more drag.
- Some devices used to reduce vibrations caused by vortex shedding from sub-sea structural elements operate by modifying the boundary layer of the flow around the structural element to prevent the correlation of vortex shedding along the length of the structural element.
- Examples of such devices include sleeve-like devices such as helical strake elements, shrouds, fairings and substantially cylindrical sleeves.
- strake elements and fairings cover an entire circumference of a cylindrical element or may be clamshell shaped to be installed about the circumference.
- Some VTV and drag reduction devices can be installed on risers and similar structural elements before those structural elements may be deployed underwater. Alternatively, VIV and drag reduction devices can be installed on structural elements after those structural elements may be deployed underwater.
- the structural element When installing a structural element in an S-lay configuration, the structural element may travel over a stinger and encounter one or more rollers on the stinger. A pre- installed strake may be damaged if it passes over the stinger.
- One alternative is to install the stakes on the structural element after it passes over the rollers and the stinger.
- Another alternative is to protect the stakes as they are passed over the rollers and the stinger.
- U.S. Patent Number 6,896,447 discloses a vortex induced vibration suppressor and method.
- the apparatus includes a body that is a flexible member of a polymeric (e.g., polyurethane) construction.
- a plurality of helical vanes on the body extend longitudinally along and helically about the body.
- Each vane has one or more openings extending transversely there through.
- a longitudinal slot enables the body to be spread apart for placing the body upon a riser, pipe or pipeline.
- Tensile members that encircle the body and pass through the vane openings enable the body to be secured to the pipe, pipeline or riser.
- U.S. Patent Number 6,896,447 is herein incorporated by reference in its entirety.
- One aspect of the invention provides a system comprising a structural element, at least one helical stake about the structural element, and at least one ramp to provide a transition from the structural element to the helical stake.
- Another aspect of the invention provides a method of installing a structural element in a body of water comprising attaching at least one helical stake about the structural element, attaching at least one ramp to the structural element and/or the at least one helical stake, the at least one ramp to provide a transition from the structural element to the helical stake, and moving the structural element, the ramp, and the strake over a roller, so that the at least one ramp provides a transition from the structural element to the helical strake where the roller interfaces with the structural element, the ramp, and the strake.
- Advantages of the invention include one or more of the following: improved apparatuses and methods for suppressing vibration; improved methods of installing strake elements for suppressing vibration in a flowing fluid environment; improved methods of installing strake elements for suppressing vibration in a flowing fluid environment on a structural element before the structural element is installed over a ramp or roller; and improved methods of installing strake elements for suppressing vibration in a flowing fluid environment on a structural element before the structural element is installed in the flowing fluid environment which does not require intervention or adjustment of the strake elements once the structural element is in the flowing fluid environment.
- Figure 1 illustrates a system for installing a structural element in a body of water in an S-lay configuration.
- Figure 2 illustrates a system for installing a structural element in a body of water in an S-lay configuration.
- Figures 3a and 3b illustrate a structural element with strakes.
- Figures 4a-4c illustrate a structural element with strakes and ramps traveling over a stinger.
- Figures 4d and 4e illustrate a structural element with strakes and ramps. Detailed Description of the Invention
- a system comprising a structural element, at least one helical strake about the structural element, and at least one ramp to provide a transition from the structural element to the helical strake.
- the structural element is selected from the group consisting of a shell, a collar, an oil flowline, a pipeline, a drilling riser, a production riser, a steel tubular, import and export risers, subsea pipelines, tendons for tension leg platforms, legs for traditional fixed and for compliant platforms, space-frame members for platforms, cables, umbilicals, mooring elements for deepwater platforms, hull structures for tension leg platforms and for spar type structures, and column structures for tension leg platforms and for spar type structures.
- the structural element comprises a plurality of sections welded to each other. In some embodiments, the structural element comprises a plurality of sections threaded to each other. In some embodiments, the at least one helical strake about the structural element comprises at least three helical strakes about the structural element. In some embodiments, the at least one ramp comprises a plurality of ramps aligned along a longitudinal axis of the structural element, the ramps adapted to interface with a stinger and/or a roller.
- the at least one ramp comprises a first set of ramps and a second set of ramps, the first set and the second set aligned along a longitudinal axis of the structural element, the first set adapted to interface with a first roller, and the second set adapted to interface with a second roller azimuthally spaced apart from the first roller.
- a first end of the at least one helical strake is attached to a first collar, and a second end of the at least one helical strake is attached to a second collar, the first collar and the second collar attached about the structural element.
- a method of installing a structural element in a body of water comprising attaching at least one helical strake about the structural element, attaching at least one ramp to the structural element and/or the at least one helical strake, the at least one ramp to provide a transition from the structural element to the helical strake, and moving the structural element, the ramp, and the strake over a roller, so that the at least one ramp provides a transition from the structural element to the helical strake where the roller interfaces with the structural element, the ramp, and the strake.
- the structural element is selected from the group consisting of a shell, a collar, an oil fiowline, a pipeline, a drilling riser, a production riser, a steel tubular, import and export risers, subsea pipelines, tendons for tension leg platforms, legs for traditional fixed and for compliant platforms, space-frame members for platforms, cables, umbilicals, mooring elements for deepwater platforms, hull structures for tension leg platforms and for spar type structures, and column structures for tension leg platforms and for spar type structures.
- the structural element comprises a plurality of sections welded to each other, hi some embodiments, the structural element comprises a plurality of sections threaded to each other.
- attaching at least one helical strake about the structural element comprises attaching at least three helical strakes about the structural element
- the at least one ramp comprises a plurality of ramps aligned along a longitudinal axis of the structural element, where the roller interfaces with the structural element.
- the at least one ramp comprises a first set of ramps and a second set of ramps, the first set and the second set aligned along a longitudinal axis of the structural element, the first set adapted to interface with a first roller, and the second set adapted to interface with a second roller azimuthally spaced apart from the first roller.
- the first roller is azimuthally spaced apart from the second roller by 90 to 150 degrees measured as an arc angle of the structural element.
- System 200 includes vessel 210 in body of water 212, installing structural element 204 in body of water 212 and resting a portion of structural element 204 on bottom 216.
- Vessel 210 may include tensioner 220 to keep tension on structural element 204 so that it does not sink in water 212.
- Strakes 206 are attached to structural element 204 to dampen any vortex induced vibration of structural element 204.
- Structural element 304 encloses passage 302.
- Strake elements 306a, 306b, and 306c may be mounted about the circumference of structural element 304. Strake elements 306a-306c serve to inhibit vortex induced vibration when structural element 304 is in a flowing fluid stream.
- Structural element 304 has outside diameter D 328. Strake elements 306a-306c have height H 330. Adjacent strake elements may be spaced apart by a pitch L 332.
- outside diameter D 328 maybe from about 2 to 60 cm.
- height H 330 may be from about 5% to about 50% of outside diameter D 328.
- height H 330 may be from about 1 to about 15 cm.
- pitch L 332 may be from about ID to about 10D. hi some embodiments of the invention, pitch L 332 may be from about 10 to about 500 cm.
- strakes 306a-306c may be made of a polymer, such as a thermoplastic polymer or a thermosetting polymer, for example polypropylene, polyethylene, other polyolefms, or co-polymers of olefins.
- strakes 306a-306c maybe made of a composite, such as fiberglass or carbon fiber composite. In some embodiments of the invention, strakes 306a- 306c may be made of a metal, such as steel or aluminum.
- strakes 306a-306c may be attached to a collar, pipe, shell, or other support apparatus. The support apparatus and strakes 306a- 306c may then be installed about structural element 304.
- stinger 418 and structural element 404 are illustrated.
- Stinger 418 includes roller 419a and roller 419b which are adapted to transport structural element 404.
- Structural element 404 is able to roll down stinger 418 while resting on rollers 419a and 419b.
- rollers 419a and 419b maybe azimuthally spaced from about 90 to about 150 degrees apart, measured as an arc-angle of structural element 404.
- Structural element 404 encloses passage 402 and has attached to its exterior strakes 406a, 406b, and 406c.
- Stinger has rollers 419a and 419b, which interface with an exterior of structural element 404 to support structural element 404 and allow structural element to roll along stinger 418.
- structural element 404 of Figure 4b has moved further along so that strake 406b is interfacing with roller 419b, and strake 406c is interfacing with roller 419a.
- Ramps 408b are provided adjacent strake 406b, and ramps 408c are provided adjacent strake 406c.
- Ramps 408b and 408c are adapted to interface with rollers 419a and 419b to lift structural element 404 and provide a smooth transition from the outside surface of structural element 404 to the height of strakes 406b and 406c, so that the strakes are not damaged when they encounter the rollers.
- Line 405 indicates where roller 419b encounters structural element 404.
- Ramps 408a, 408b, 408c, and 408d are provided along line 405, to provide a smooth transition of lifting and lowering structural element when it encounters roller 419b, so that strakes 406a, 406b, and 406c are not damaged. Similar ramps maybe provided on the opposite side of structural element 404 where roller 419a encounters structural element 404.
- FIG. 4e a different side view of the structural element 404 illustrated in Figure 4d is shown.
- line 405 where roller 419b encounters the structural element is at the top, so that the tapering of ramps 408a, 408b, 408c, and 408d may be seen.
- the ramps provide a smooth transition from the outside surface of structural element 404 to the height of each of the strakes, and then back to the outside surface of the structural element 404 to the roller 419b, so that the strakes are not damaged when they encounter the roller.
- strakes 406a-406c may be attached to a collar, pipe, shell, or other support apparatus.
- the support apparatus and strakes 406a- 406c may then be installed about structural element 404.
- the ramps provide a smooth transition from the outside surface of the support apparatus to the height of each of the strakes, and then back to the outside surface of the support apparatus to the roller 419b, so that the strakes are not damaged when they encounter the roller.
- clamshell type strake elements may be mounted around a structural element according to the method disclosed in United States Patent No. 6,695,539, which is herein incorporated by reference in its entirety.
- strake elements may be installed about a structural element according to the method disclosed in United States Patent No. 6,561,734, which is herein incorporated by reference in its entirety.
- strake elements maybe installed about a structural element according to the method disclosed in United States Patent Application Publication No. 2003/0213113, which is herein incorporated by reference in its entirety.
- the outside diameter of a structural element to which strake elements can be attached may be from about 10 to about 50 cm.
- the height of strake elements may be from about 5% to about 50% of the structural element's outside diameter, hi some embodiments of the invention, the height of strake elements may be from about 5 to about 20 cm.
- the structural element maybe cylindrical, or have an elliptical, oval, or polygonal cross-section, for example a square, pentagon, hexagon, or octagon.
- portions of structural element 204 may be lowered onto bottom 216 of water 212.
- water 212 has a depth of at least about 1000 meters, at least about 2000 meters, at least about 3000 meters, or at least about 4000 meters. In some embodiments, water 212 has a depth up to about 10,000 meters.
- structural element 204 maybe a pipeline, a crude oil flowline, a mooring line, a riser, a tubular, or any other structural element installed in a body of water.
- structural element 204 may have a diameter from about 0.1 to about 5 meters, and a length from about 10 to about 200 kilometers (km), hi some embodiments, structural element 204 may have a length to diameter ratio from about 100 to about 100,000.
- structural element 204 may be composed from about 50 to about 30,000 tubular sections, each with a diameter from about 10 cm to about 60 cm and a length from about 5 m to about 50 m, and a wall thickness from about 0.5 cm to about 5 cm.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Radar Systems Or Details Thereof (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0615319A BRPI0615319A2 (pt) | 2005-09-02 | 2006-08-30 | sistema, e, método de instalação de um elemento estrutural em um corpo de água |
GB0802933A GB2442694B (en) | 2005-09-02 | 2006-08-30 | Strake systems and methods |
US12/065,548 US20090220307A1 (en) | 2005-09-02 | 2006-08-30 | Strake systems and methods |
NO20081612A NO20081612L (no) | 2005-09-02 | 2008-04-01 | Bordgangsystemer og -fremgangsmater |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US71398105P | 2005-09-02 | 2005-09-02 | |
US60/713,981 | 2005-09-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007027781A2 true WO2007027781A2 (fr) | 2007-03-08 |
WO2007027781A3 WO2007027781A3 (fr) | 2007-05-03 |
Family
ID=37684976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/033872 WO2007027781A2 (fr) | 2005-09-02 | 2006-08-30 | Systemes de virure et procedes correspondants |
Country Status (4)
Country | Link |
---|---|
US (2) | US20070125546A1 (fr) |
BR (1) | BRPI0615319A2 (fr) |
GB (1) | GB2442694B (fr) |
WO (1) | WO2007027781A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213646A (zh) * | 2010-04-09 | 2011-10-12 | 中国海洋石油总公司 | 铺管船托管架动力子结构实验装置及实验方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007106736A2 (fr) * | 2006-03-13 | 2007-09-20 | Shell Oil Company | Systemes et procedes de cramponnage |
GB2455951A (en) * | 2006-11-22 | 2009-07-01 | Shell Int Research | Systems and methods for reducing drag and/or vortex induced vibration |
BRPI0807475A2 (pt) * | 2007-02-15 | 2014-05-13 | Shell Int Research | Sistema, e, método. |
AU2008225139A1 (en) * | 2007-03-14 | 2008-09-18 | Shell Internationale Research Maatschappij B.V. | Vortex induced vibration suppression systems and methods |
US8593905B2 (en) * | 2009-03-09 | 2013-11-26 | Ion Geophysical Corporation | Marine seismic surveying in icy or obstructed waters |
US9085995B2 (en) | 2012-04-18 | 2015-07-21 | Hamilton Sundstrand Corporation | Anti-vortex shedding generator for APU support |
IN2014KN02894A (fr) * | 2012-06-28 | 2015-05-08 | Univ Danmarks Tekniske | |
IN2014KN02896A (fr) * | 2012-06-28 | 2015-05-08 | Univ Danmarks Tekniske | |
US20140044489A1 (en) * | 2012-08-13 | 2014-02-13 | Chevron U.S.A. Inc. | Conduit displacement mitigation apparatus, methods and systems for use with subsea conduits |
US20140044488A1 (en) * | 2012-08-13 | 2014-02-13 | Chevron U.S.A. Inc. | Conduit displacement mitigation apparatus, methods and systems for use with subsea conduits |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6561734B1 (en) | 1999-05-07 | 2003-05-13 | Shell Oil Company | Partial helical strake for vortex-induced-vibrationsuppression |
US20030213113A1 (en) | 2001-10-19 | 2003-11-20 | Mcmillan David Wayne | Apparatus and methods for remote installation of devices for reducing drag and vortex induced vibration |
US6695539B2 (en) | 2001-10-19 | 2004-02-24 | Shell Oil Company | Apparatus and methods for remote installation of devices for reducing drag and vortex induced vibration |
US6896447B1 (en) | 2000-11-14 | 2005-05-24 | Weldon Taquino | Vortex induced vibration suppression device and method |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3899991A (en) * | 1973-12-17 | 1975-08-19 | Us Navy | Weather resistant segmented fairing for a tow cable |
US4398487A (en) * | 1981-06-26 | 1983-08-16 | Exxon Production Research Co. | Fairing for elongated elements |
US5421413A (en) * | 1993-11-02 | 1995-06-06 | Shell Oil Company | Flexible fairings to reduce vortex-induced vibrations |
US5410979A (en) * | 1994-02-28 | 1995-05-02 | Shell Oil Company | Small fixed teardrop fairings for vortex induced vibration suppression |
US5875728A (en) * | 1994-03-28 | 1999-03-02 | Shell Oil Company | Spar platform |
US6347911B1 (en) * | 1996-06-11 | 2002-02-19 | Slickbar Products Corp. | Vortex shedding strake wraps for submerged pilings and pipes |
US6010278A (en) * | 1996-07-19 | 2000-01-04 | Shell Oil Company | Fairings for deepwater drilling risers |
US6179524B1 (en) * | 1996-11-15 | 2001-01-30 | Shell Oil Company | Staggered fairing system for suppressing vortex-induced-vibration |
US6196768B1 (en) * | 1996-11-15 | 2001-03-06 | Shell Oil Company | Spar fairing |
US6223672B1 (en) * | 1996-11-15 | 2001-05-01 | Shell Oil Company | Ultrashort fairings for suppressing vortex-induced-vibration |
US6263824B1 (en) * | 1996-12-31 | 2001-07-24 | Shell Oil Company | Spar platform |
US6227137B1 (en) * | 1996-12-31 | 2001-05-08 | Shell Oil Company | Spar platform with spaced buoyancy |
US6092483A (en) * | 1996-12-31 | 2000-07-25 | Shell Oil Company | Spar with improved VIV performance |
US6309141B1 (en) * | 1997-12-23 | 2001-10-30 | Shell Oil Company | Gap spar with ducking risers |
US7017666B1 (en) * | 1999-09-16 | 2006-03-28 | Shell Oil Company | Smooth sleeves for drag and VIV reduction of cylindrical structures |
US6571878B2 (en) * | 1999-09-16 | 2003-06-03 | Shell Oil Company | Smooth buoyancy system for reducing vortex induced vibration in subsea systems |
US6551029B2 (en) * | 2000-01-31 | 2003-04-22 | Hongbo Shu | Active apparatus and method for reducing fluid induced stresses by introduction of energetic flow into boundary layer around an element |
US6644894B2 (en) * | 2000-01-31 | 2003-11-11 | Shell Oil Company | Passive apparatus and method for reducing fluid induced stresses by introduction of energetic flow into boundary layer around structures |
US20020035957A1 (en) * | 2000-02-04 | 2002-03-28 | Fischer Ferdinand J. | Thruster apparatus and method for reducing fluid-induced motions of and stresses within an offshore platform |
GB2364557A (en) * | 2000-07-08 | 2002-01-30 | Allbrown Universal Components | A strake receptor for a pipe |
US6702026B2 (en) * | 2000-07-26 | 2004-03-09 | Shell Oil Company | Methods and systems for reducing drag and vortex-induced vibrations on cylindrical structures |
US6685394B1 (en) * | 2000-08-24 | 2004-02-03 | Shell Oil Company | Partial shroud with perforating for VIV suppression, and method of using |
US6695540B1 (en) * | 2000-11-14 | 2004-02-24 | Weldon Taquino | Vortex induced vibration suppression device and method |
US6565287B2 (en) * | 2000-12-19 | 2003-05-20 | Mcmillan David Wayne | Apparatus for suppression of vortex induced vibration without aquatic fouling and methods of installation |
US6761505B2 (en) * | 2002-01-15 | 2004-07-13 | Torch Offshore, Inc. | Reel type pipeline laying ship and method |
US7070361B2 (en) * | 2003-03-06 | 2006-07-04 | Shell Oil Company | Apparatus and methods for providing VIV suppression to a riser system comprising umbilical elements |
US20060021560A1 (en) * | 2004-05-02 | 2006-02-02 | Mcmillan David W | Tail fairing designed with features for fast installation and/or for suppression of vortices addition between fairings, apparatus incorporating such fairings, methods of making and using such fairings and apparatus, and methods of installing such fairings |
US8029210B2 (en) * | 2004-05-17 | 2011-10-04 | Shell Oil Company | Methods and apparatus for installation of VIV suppression during installation of marine pipeline |
BRPI0517922A (pt) * | 2004-11-03 | 2008-10-21 | Shell Int Research | sistema para retroativamente equipar um sensor e sistema de comunicação de sensor para monitorar um elemento estrutural instalado, e, método para monitorar mudanças fìsicas em um elemento submarino |
AU2006203991B2 (en) * | 2005-01-07 | 2009-03-26 | Shell Internationale Research Maatschappij B.V. | Vortex induced vibration optimizing system |
-
2006
- 2006-08-30 GB GB0802933A patent/GB2442694B/en not_active Expired - Fee Related
- 2006-08-30 BR BRPI0615319A patent/BRPI0615319A2/pt not_active IP Right Cessation
- 2006-08-30 US US11/468,690 patent/US20070125546A1/en not_active Abandoned
- 2006-08-30 US US12/065,548 patent/US20090220307A1/en not_active Abandoned
- 2006-08-30 WO PCT/US2006/033872 patent/WO2007027781A2/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6561734B1 (en) | 1999-05-07 | 2003-05-13 | Shell Oil Company | Partial helical strake for vortex-induced-vibrationsuppression |
US6896447B1 (en) | 2000-11-14 | 2005-05-24 | Weldon Taquino | Vortex induced vibration suppression device and method |
US20030213113A1 (en) | 2001-10-19 | 2003-11-20 | Mcmillan David Wayne | Apparatus and methods for remote installation of devices for reducing drag and vortex induced vibration |
US6695539B2 (en) | 2001-10-19 | 2004-02-24 | Shell Oil Company | Apparatus and methods for remote installation of devices for reducing drag and vortex induced vibration |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102213646A (zh) * | 2010-04-09 | 2011-10-12 | 中国海洋石油总公司 | 铺管船托管架动力子结构实验装置及实验方法 |
Also Published As
Publication number | Publication date |
---|---|
GB0802933D0 (en) | 2008-03-26 |
GB2442694B (en) | 2010-02-24 |
BRPI0615319A2 (pt) | 2016-09-13 |
WO2007027781A3 (fr) | 2007-05-03 |
US20090220307A1 (en) | 2009-09-03 |
GB2442694A (en) | 2008-04-09 |
US20070125546A1 (en) | 2007-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090220307A1 (en) | Strake systems and methods | |
AU2007284295B2 (en) | Twin fin fairing | |
US20070003372A1 (en) | Systems and methods for reducing drag and/or vortex induced vibration | |
US8029210B2 (en) | Methods and apparatus for installation of VIV suppression during installation of marine pipeline | |
US7406923B2 (en) | Systems and methods for reducing vibrations | |
US20060280559A1 (en) | Apparatus with strake elements and methods for installing strake elements | |
US20100061809A1 (en) | Systems and methods for reducing drag and/or vortex induced vibration | |
US20090133612A1 (en) | Dynamic motion suppression of riser, umbilical and jumper lines | |
US20100215440A1 (en) | Catenary Line Dynamic Motion Suppression | |
US6644894B2 (en) | Passive apparatus and method for reducing fluid induced stresses by introduction of energetic flow into boundary layer around structures | |
US20110200396A1 (en) | Systems and methods for reducing drag and/or vortex induced vibration | |
WO2009070483A1 (fr) | Systèmes de liston et procédés | |
US20090242207A1 (en) | Strake systems and methods | |
US20180180073A1 (en) | Flow modification device, system, and method | |
USRE48123E1 (en) | Twin fin fairing | |
AU2009272589A1 (en) | Underwater hydrocarbon transport apparatus | |
WO2009134287A1 (fr) | Systèmes et procédés de sélection de dispositifs de suppression | |
US20100014922A1 (en) | Viv and/or drag reduction device installation systems and methods | |
WO2009046166A1 (fr) | Systèmes et procédés de réduction des vibrations induites par tourbillon et/ou traînée | |
US20100050921A1 (en) | Subsea installation systems and methods | |
WO2008064104A2 (fr) | Système et procédé de réduction de la traînée et/ou des vibrations induites par vortex | |
WO2010129222A2 (fr) | Systèmes et procédés pour réduire une vibration induite par une traînée et/ou un tourbillon | |
WO2009102711A1 (fr) | Systèmes et procédés pour réduire une vibration induite par la traînée et/ou par un vortex |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 0802933 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20060830 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0802933.2 Country of ref document: GB |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06813955 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12065548 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0615319 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080229 |