WO2007025475A1 - Ion trap, multiple-electrode-pole system and electrode pole for mass spectrometic analysis - Google Patents

Ion trap, multiple-electrode-pole system and electrode pole for mass spectrometic analysis Download PDF

Info

Publication number
WO2007025475A1
WO2007025475A1 PCT/CN2006/002227 CN2006002227W WO2007025475A1 WO 2007025475 A1 WO2007025475 A1 WO 2007025475A1 CN 2006002227 W CN2006002227 W CN 2006002227W WO 2007025475 A1 WO2007025475 A1 WO 2007025475A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole
poles
ion trap
shape
mass spectrometry
Prior art date
Application number
PCT/CN2006/002227
Other languages
English (en)
French (fr)
Inventor
Xiang Fang
Chuanfan Ding
Original Assignee
Xiang Fang
Chuanfan Ding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200510093519 external-priority patent/CN1925102A/zh
Priority claimed from CN2005100935185A external-priority patent/CN1925103B/zh
Priority claimed from CN200610001017A external-priority patent/CN101005002B/zh
Application filed by Xiang Fang, Chuanfan Ding filed Critical Xiang Fang
Priority to EP06775544A priority Critical patent/EP1930937A4/en
Priority to US11/991,305 priority patent/US8395114B2/en
Priority to JP2008528321A priority patent/JP2009506506A/ja
Publication of WO2007025475A1 publication Critical patent/WO2007025475A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4255Device types with particular constructional features

Definitions

  • the present invention relates to the field of mass spectrometry techniques, and more particularly to an ion trap, a multipole rod, and a pole for mass spectrometry having an optimized field shape and easy processing. Background technique
  • the quadrupole ion trap is a special device that can be used as an ion storage device to confine gaseous ions to the quadrupole field in the ion trap for a certain period of time, and can be used as a shield analysis of the linguistic instrument.
  • the device performs mass spectrometry and has a fairly large mass range and variable mass resolution.
  • the quadrupole electrostatic field in the ion trap is generated by connecting an RF (radio frequency) voltage, a DC direct voltage, or a combination of the two on each pole of the ion trap device.
  • a conventional ion trap consists of two partial electrodes, a ring electrode and an end cap electrode. To produce a significant quadrupole field, a typical electrode shape is hyperbolic.
  • the early ion trap is a three-dimensional ion trap whose quadrupole field is generated in the direction of r and z (in the polar coordinate system).
  • the ions are subjected to a linear force in the quadrupole field, so that a certain mass-to-charge ratio m/z range can be obtained.
  • the ions inside are captured and stored in the ion trap.
  • the most typical three-dimensional ion trap consists of three silent electrodes, a ring electrode and two end cap electrodes. Such devices are commonly referred to as Paul-type ion traps or quadrupole ion traps.
  • a cylindrical ion trap is a simpler three-dimensional ion trap consisting of a bad electrode with a cylindrical surface on its inner surface and two end-plate electrodes with a flat structure.
  • the biggest drawback of the Paul-type ion trap and the cylindrical ion trap is that the number of ions trapped in the well is small, and the capture efficiency is low for incident ions ionized outside the well.
  • typical experiments in commercial speech instruments typically capture only 500 or even fewer ions.
  • the ions injected into the ion trap through the inlet on the end cap will be subjected to the RF (radio frequency) field, and only the ions incident on the proper RF phase can be effectively captured and stored in the well, and the total capture efficiency of the continuously incident ion stream Less than 5%, and in most cases even less than 5%.
  • the linear ion trap consists of a plurality of poles that are extended and placed in parallel. This pole will determine the volume of the ion trap. By connecting the RF voltage and the DC voltage to the pole, it can be perpendicular to the center of the ion trap. A two-dimensional quadrupole field is created on the plane of the axis. Since the intense focusing of the ions is achieved only in two dimensions, the trapped ions can be distributed near the central axis, greatly increasing the number of ion traps.
  • 5,420,425 describes a two-dimensional linear ion trap consisting of three sets of four poles, with a set of quadrupoles in the middle as the main quadrupole, wherein a pair of main poles are designed with slits through which ions can pass.
  • the slits are injected and exited; the two sets of quadrupoles at both ends can both capture the movement of ions in the axially confined trap and improve the quadrupole field in the main quadrupole.
  • Rod you can get a near-ideal quadrupole field.
  • U.S. Patent No. 6,838,666 B2 proposes a rectangular linear ion trap in which four rectangular plate electrodes are placed parallel to the axis, enclosing an ion trap having a rectangular cross section, and RF RF voltage and DC DC are applied to each plate electrode.
  • the voltage can generate a quadrupole field in the ion trap to achieve two-dimensional focusing of the ions; by introducing the terminal electrode, the ion motion is restricted in the axial direction.
  • the rectangular ion trap solves the high-precision machining problem of the linear ion trap, but at the same time brings a new problem, that is, the four-pole field generated by the four plate electrodes contains a relatively high-order field, such as a twelve-pole field. , Tetpole field, etc., make the ion motion have greater uncertainty, which affects the mass resolution of the ion trap mass analyzer.
  • the two-dimensional ion trap is a linear ion trap capable of realizing large capacity, which solves the problem of low ion trapping and low ion trapping efficiency of the three-dimensional ion trap, and the existing two-dimensional ion trap requires high precision.
  • the machining, or the presence of a relatively high-order field, will limit the development of small portable ion trap mass analyzers.
  • the introduction of high-order fields will be involved in the optimization of the field shape research of the quadrupole mass analyzer.
  • the existing patent results only involve the introduction of the octapole field, and do not provide a feasible solution for other high-order fields. Exploring an ion trap and its mass analyzer that is flexible, easy to process, and that can easily achieve the desired optimized field shape will greatly advance the development of small portable ion trap mass analyzers.
  • Multipole rods in ion optics are also often involved in mass spectrometry.
  • multipole rods are often used as ion optics systems, such as quadrupoles, hexapoles, octopoles, etc. as ion lenses or ion guiding systems. Fields in such multipole regions Shape is important for ion transport and focusing.
  • poles of the existing multi-pole system are cylindrical rods or double curved rods.
  • the double curved bar is recognized as a pole that is difficult to achieve high precision machining and assembly.
  • cylindrical rods can achieve high-precision machining, it is difficult to achieve high-precision assembly.
  • the processing and assembly of multipoles has become an important factor limiting their performance.
  • U.S. Patent No. 6,041,370 B1 proposes a rectangular linear multipole which can be used as an ion guide, ion trap.
  • the multipole uses a pole with a rectangular cross section, and the surface of the rectangular pole is superposed with a surface layer, which serves to improve the field shape.
  • the machining and assembly of multi-poles is greatly simplified, but the patent does not give a specific implementation to improve the field shape.
  • the surface layer can only qualitatively improve the field shape, and it is impossible to effectively quantify the field shape.
  • the technical problem to be solved by the present invention is to provide a pole for mass spectrometry, by which the mass spectrometer such as a multipole rod and an ion trap using the pole has an optimized field shape. Moreover, it is easy to process and has low production cost.
  • the technical problem to be solved by the present invention is also to provide a multi-pole rod system for mass spectrometry.
  • the multi-pole rod system By improving the structure of the pole rod, the multi-pole rod system not only has an optimized field shape, but also has a flexible structure and is easy to process. Production costs are low.
  • the technical problem to be solved by the present invention is to provide an ion trap for mass spectrometry, which improves the structure of the pole rod, so that the ion trap not only has an optimized field shape, but also has flexible structure, easy processing, and low production cost. .
  • a pole for mass spectrometry the pole being columnar, and at least one side of a cross section of the columnar pole has a shape of two or more steps.
  • the present invention also provides a multi-pole system for mass spectrometry, comprising two or more pairs of columnar poles, and a power source connected to the poles, the poles being parallel to the poles
  • the Z axis of the rod bus bar is a straight cylindrical shape in which the axial center is arranged in the circumferential direction, and at least one side of the cross section of at least one pair of columnar poles has a shape of two or more steps.
  • At least one side of the cross section of all the poles of the multipole system is in the form of two or more steps.
  • the multi-pole system can have two pairs of electrode poles to form a quadrupole.
  • the multi-pole system can have three pairs of electrode poles to form a hexapole system.
  • the multi-pole system can have four pairs of electrode poles to form an octopole system.
  • the poles are fixed to the same circumference centered on the Z-axis, and the circumferential angles of the gaps between the electrode poles are the same.
  • the power source provides a direct current signal or a radio frequency signal, or a combination of both.
  • the multipole system can obtain a mixed field of a multipole field having a determined contribution component by changing the order of the cross section of the pole and the shape parameter of each step.
  • the invention also provides an ion trap for mass spectrometry comprising:
  • a quadrupole with two pairs of cylindrical poles; a terminal electrode disposed at both ends of the quadrupole;
  • At least one side of the cross section of at least one of the columnar poles has a shape of two or more steps.
  • the terminal electrode may be a plate electrode.
  • the terminal electrode may be constituted by a quadrupole rod having two pairs of columnar poles, wherein at least one side of the pole cross section of at least one pair of poles The shape of the side is a two-order or two-stage or more class shape.
  • the terminal electrode may be formed by a quadrupole system having two pairs of columnar poles and a plate electrode at the end of the quadrupole. At least one side of the pole cross section of at least one of the poles has a shape of two or more steps.
  • At least one side of the cross section of the two pairs of poles has a shape of two or more steps.
  • At least one of the poles or the terminal electrodes has slits or small holes for ion implantation or ejection.
  • the ion trap obtains a mixed field of a multipole field having a determined contribution component by changing the order of the cross section of the pole and the shape parameters of each step.
  • the mixing field includes a quadrupole field and an eight pole field.
  • the plurality of ion traps of the present invention are connected in series to form a multi-stage ion treatment system for performing MS n analysis experiments.
  • the shape of both sides of the cross section of the pole is two or more steps.
  • the class width of the above-described pole having a class-like side shape is gradually reduced from the outside to the inside.
  • the sides of the cross section of the above-mentioned crucible are symmetrical in shape; or asymmetric.
  • the order of the both sides of the cross section of the columnar pole may be equal.
  • the two-stage or two-stage or more step-like sides of the pole are integrally processed; or the poles are separately processed by each step.
  • each of the side surface shapes of the stepped poles is a right-angled stepped surface, a cylindrical surface, a hyperboloid or an elliptical surface.
  • each step shape of the cross section of the above-described stepped pole is rectangular.
  • the ion trap, the multi-pole rod system and the pole rod for the shield analysis using the above structure of the present invention can effectively realize the columnar pole by adopting a step-like shape with two or more stages on the side of the cross section.
  • the shape of the field in the ion trap and in the multipole system is optimized.
  • the boundary shape of the RF electrode pole can be designed according to different field requirements, such as obtaining a field shape as close as possible to the ideal quadrupole field, or having a certain contribution.
  • the RF electrode composed of one pole can be assembled in a simple shape and easy to process.
  • the surface is composed of a plane, a round diagram, a diagram, a diagram, a diagram, a cylinder, and the like.
  • the class poles can greatly improve the precision of machining and assembly, and effectively solve the contradiction between the ideal field shape and the pole processing assembly in multi-pole and ion trap instruments.
  • the stepped pole of the present invention can have a class surface of any surface shape, by changing the order of the pole and the parameters of each class, the surface shape of the pole can be conveniently changed, that is, the boundary condition of the electric field is changed, thereby Realize the optimization of the field shape.
  • Optimizing field-shaped multipole rods and ion traps, using two-order or more-ordered poles, can solve the contradiction between the ideal field shape of existing multi-pole rods and ion traps and the processing and assembly of poles.
  • it is convenient and flexible to construct the pole boundary conditions of the required field shape, and effectively convert the high-order field theory results into actual devices.
  • the optimized field-shaped multipole system consisting of two-order or two-order stepped poles in the present invention also provides an achievable field for other ion optical systems such as ion guiding in quadrupole mass analyzers and qualitative instruments. Shape-optimized, easy to process, cost-effective, practical implementation.
  • FIG. 2 - Figure 9 is a schematic view showing several cross-sectional shapes of the stepped pole of the present invention.
  • FIG. 10 is a schematic structural view of a quadrupole system of the present invention.
  • FIG. 11 - Figure 16 is a schematic cross-sectional view of several quadrupole systems of the present invention.
  • 17 is a schematic diagram of the structure of the hexapole system of the present invention.
  • FIG. 18 is a schematic structural view of an octopole system of the present invention.
  • 21 is a schematic diagram of another ion trap structure of the present invention.
  • 22 is a schematic diagram of an ion trap structure having slits on a pole
  • 24 is a schematic diagram of the MS n implemented in series by three ion traps of the present invention.
  • FIG. 27 is a partial enlarged view of Fig. 26. detailed description
  • the pole structure for mass spectrometry of the present invention is shown in Figs. 1-9, and the pole 1 is columnar, and at least one side of the cross section has a shape of two or more steps.
  • Figures 1 - 9 show the structure of several poles 1 with a third-order class
  • Figures 11 - 16 show several poles with a two-step class.
  • the pole 1 of the present invention can also adopt other more orders such as 4th order, 5th order, etc., and the shape can also be various according to needs, no longer one here. An enumeration. As shown in Fig.
  • the electrode pole 1 can determine the class type of the class pole 1 according to the required field shape and establish a calculation model according to the condition, by changing the order and the size parameters of each step.
  • a mixed field of multipole fields having a determined contribution component, i.e., the desired optimized field shape can be obtained, and thereby the boundary conditions and optimal combination scheme of the electrode poles are determined.
  • the commonly used optimized field shape can be a quadrupole field, or a mixed field of a quadrupole field and an octapole field, or a mixed field of a quadrupole field and other multipole fields.
  • the shape of both sides of the cross section of the pole 1 may be two or more stages, and the sides of the cross section may have the same shape.
  • Figure 1-5 shows the symmetrical setting; it can also be set asymmetrically as shown in Figure 13, Figure 15, and Figure 16.
  • the class width of the pole 1 having a class-like side shape can be reduced step by step.
  • the order of the both sides of the cross section of the columnar pole 1 may be equal.
  • the poles 1 can be resolved stepwise into two or more thin layer units by using a set of parallel planes passing through the respective demarcation points.
  • the order of the sides of the cross section of the columnar pole 1 may be unequal as needed, for example, two sides on one side and third order on the other side (not shown).
  • the curve of each step side of the electrode pole 1 of the present invention may be an arbitrary function, that is, the side along each step may include any curved surface such as a plane, a cylindrical surface, a hyperboloid, an elliptical surface, and the like.
  • the cylindrical shape of the pole 1 composed of two or more stages or more is formed by the same curved surface or plane for each step, or different surfaces may be used for each step, so that the cylinder of the pole 1 is The above various curved surfaces are combined.
  • the pole 1 may be a cylindrical body in which a pair of parallel planes and a cylindrical surface, a hyperboloid, an elliptical surface or other curved surfaces are combined.
  • Each step of the pole 1 can have any surface shape, but from the viewpoint of obtaining good processing and assembly precision, a shape with a simple shape and easy assembly can be used, for example, a surface composed of a plane, a cylindrical surface, or the like.
  • Class electrode pole 1. Further, as a specific example, each of the poles 1 may have a rectangular plate shape for good processing and assembly precision.
  • the processing of the stepped electrode pole 1 of the present invention can be as shown in FIG. 2-6 and FIG. 8-9, and the method of processing each thin layer unit separately and then combining the thin layers can also be used as shown in FIG. As shown in Fig. 7, the multi-step pole 1 is integrally processed.
  • pole 1 has an ideal hyperbolic surface, it can be generated in the RF working area.
  • the field quadrupole is optimized as an ion trap ion mass analyzer or a linear ion trap, the ion trap constructed with the elementary electrode pole can contain a more significant quadrupole than a rectangular linear ion trap composed of a plate electrode.
  • the field component can more effectively achieve the separation and analysis of the target ions, so it can be considered to have an optimized electric field shape.
  • the present invention utilizes a plurality of class combinations to obtain a desired step-like pole 1 to constitute an RF electrode, and can optimize the field shape by increasing the order and adjusting the size parameters of each class.
  • a desired step-like pole 1 to constitute an RF electrode
  • an RF electrode having an ideal hyperbolic cross section can be combined.
  • each step will have a certain thickness.
  • the numerical simulation method can be used to calculate the composition of the electrode poles with two or more stages. Field shape in a musical instrument such as a polar rod and an ion trap.
  • the pole parameters corresponding to the optimum field shape such as the order, the size of each step, etc., can be obtained by numerical simulation, thereby producing the RF electrode pole 1 having an optimized field shape.
  • the multi-step electrode pole can adopt a simple and easy to process and assemble shape, for example, the surface is composed of a plane (including a right-angle step surface) and a cylindrical surface, and the electrode pole 1 is combined, thereby greatly improving the precision of processing and assembly.
  • the production cost of mass spectrometers such as ion traps and multipoles can be greatly reduced.
  • 10-18 shows a multipole rod system for mass spectrometry using the above-described stepped poles 1, which comprises two or more pairs of columnar poles 1, and is connected to the poles 1
  • the columnar poles 1 are arranged in a straight cylindrical shape in a circumferential direction parallel to the Z axis of the bus bar L of the pole 1 , wherein at least one side of the cross section of at least one of the columnar poles 1 has a shape of Two-stage or two-order or more class shape.
  • At least one side of the cross section of all of the poles 1 of the multipole rod system has a shape of two or more steps.
  • the multipole rod system of the present invention can be used in a quadrupole mass analyzer region, such as a quadrupole of a quadrupole mass analyzer, and can also be used in other ion optics of a linguistic instrument, such as an ion lens or ion guide.
  • a quadrupole mass analyzer region such as a quadrupole of a quadrupole mass analyzer
  • other ion optics of a linguistic instrument such as an ion lens or ion guide.
  • the quadrupole, hexapole, octopole, etc. of the lead system When optimizing the field-shaped multipole system as an optical system such as ion focusing or ion guiding, the voltage of DC DC voltage, RF voltage or other waveform can be connected to the pole to realize the focusing and transmission of ions.
  • the multi-pole system can have two pairs of electrode poles 1 to form a quadrupole system 10.
  • the multi-pole system can obtain a mixed field of a multi-stage field having a determined contribution component by changing the order of the cross-section of the pole 1 and the shape parameters of each step.
  • the following is an example of a quadrupole system.
  • Fig. 11-16 is a schematic cross-sectional view of a quadrupole system which can be used to form a plurality of mixed fields, which is composed of two rectangular flat plate unit layers which are rectangular in cross section and formed into a class of RF electrode poles 1.
  • figure 11 uses four identical RF electrode poles 1, the two stages of which have the same symmetry axis of the RF electrode pole;
  • Figure 12 uses two different RF electrode poles 1, two electrode poles of the same pair Exactly the same, the two classes of electrode poles have the same axis of symmetry;
  • Figures 13 and 15 use two different RF electrode poles 1, but the opposite two electrode poles 1 are identical, with a pair of electrode poles 1
  • the two classes have the same axis of symmetry, and the two classes of the other pair of electrodes have different axes of symmetry;
  • Figures 14 and 16 use three different RF electrode poles 1, one of which is identical, the other The two poles of the counter electrode are different. Different mixing fields can be obtained with different electrode parameters.
  • Fig. 11 can produce A2, A6, A8, A10, etc.
  • the structure shown in Fig. 12 can produce A2, A4, A6, A8, A10, etc.
  • the structure shown in Fig. 13 can produce A2, A3, A6, A8, A10, etc.
  • the structure shown in Fig. 14 can produce A2, A5, A6, A8, A10 and the like.
  • the structure shown in Fig. 15 can produce A2, A3, A4, A6, A8, A10 and the like.
  • the structure shown in Fig. 16 can produce A2, A3, A4, A5, A6, A8, A10 and the like.
  • An represents a multipole field, where n is the number of pairs of electrodes included, that is, An corresponds to a 2n pole field, such as A2, A3, A4, A5, and A6 correspond to a quadrupole field, a six-pole field, an eight-pole field, and a ten-pole. Field and twelve pole field. It can be seen from the variation of the above various quadrupole systems that the desired mixing field can be achieved by changing the class parameters of the electrode poles. The above description has been made only by taking a quadrupole system as an example, but it is conceivable that the variation of the electrode poles is also applicable to other multipole poles, which will not be explained one by one below.
  • the multi-pole lanthanum may have three pairs of electrode poles 1 to form a hexapole system 20.
  • the multipole rod system may have four pairs of electrode rods 1, thereby forming an octopole system 30.
  • the poles 1 can be fixed on the same circumference centered on the Z-axis, and the circumferential angles of the gaps between the electrode poles 1 are the same. .
  • the poles 1 can also be asymmetrically arranged around the Z axis as needed.
  • the power source provides a direct current signal or a radio frequency signal, or a combination of the two or other waveform signals, or a combination of a plurality of signals to effect focusing and transmission of ions and the like.
  • the present invention also provides an ion trap 40 for mass spectrometry using the above-described stepped pole 1 comprising: a quadrupole 10 having two pairs of cylindrical poles 1; a terminal electrode 21, 22 at both ends of the quadrupole 10; a radio frequency signal for generating a radio frequency ion trap electric field; and a DC signal for generating an axial ion trap potential well; wherein at least a pair of columnar poles 1 have at least a cross section
  • the shape of one side is two-stage or two-stage or more.
  • the main function of the terminal electrodes 21, 22 is to generate a potential well along the z-axis direction, confining the ions in the trapping region of the ion trap in the z-direction.
  • the terminal electrodes 21, 22 may be plate electrodes placed along the xy plane.
  • the terminal electrodes 21, 22 may be a quadrupole 10 having two pairs of cylindrical poles 1 parallel to the z-axis. Structure At least one side of the pole cross section of at least one of the poles 1 has a shape of two or more steps.
  • the terminal electrodes 21, 22 may also be a quadrupole 10 having two pairs of cylindrical poles 1 and located in the fourth The plate electrodes 211 at the ends of the poles 10 are combined, and at least one side of the pole cross section of at least one of the poles 1 has a shape of two or more steps.
  • the shape of one side or both sides of the cross section of the two pairs of poles 1 is two-order or two-order or more. .
  • the ion trap 40 can obtain a mixed field of a multi-stage field having a determined contribution component by changing the order of the cross-section of the pole 1 and the shape parameters of each step.
  • the mixed field includes a four-stage field and an eight-stage field.
  • a 2 is the expansion coefficient of the quadrupole component in the multipole expansion expression of the electric field
  • a and q are Mathieu
  • r () is the distance from the z-axis to the RF pole
  • is the frequency of the RF signal.
  • the existing ion trap theory shows that when the pole 1 has an ideal hyperbolic surface, an ideal quadrupole field can be generated in the ion trapping region, and a good ion analysis result can be obtained by using the quadrupole field.
  • the ion trap constructed by the element electrode rod 1 can realize a more significant quadrupole field component, and can more effectively realize the separation and analysis of the target ion, so that it can be considered as With optimized electric field shape.
  • the field shape can be optimized by increasing the order and adjusting the size parameters of each step. Theoretically, when the thickness of each step tends to be infinitely small, the RF electrode pole 1 having an ideal hyperbolic cross section can be combined. In actual machining, each step will have a certain thickness. When each step has a certain shape and parameters, a quadrupole system composed of electrode poles 1 that can be resolved into multiple steps can be calculated by numerical simulation. The shape of the field.
  • the pole parameters corresponding to the optimum field shape such as the order, the size of each step, etc.
  • the electrode-shaped electrode rod 1 can adopt a simple and easy-to-machine assembly shape, such as a surface composed of a flat surface, a cylindrical surface, etc., the precision of processing and assembly can be greatly improved, and the production cost of the ion trap can be greatly reduced.
  • the fundamental frequency of the ion in the quadrupole field 0) can be expressed as
  • a certain mass-to-charge ratio m/z has a certain a, q value.
  • the stability graph it will have a certain working point. If the operating point is within a stability triangle, the ion trap can trap the ions in the well and the trapped ions are called stable ions.
  • the mass-to-charge ratio of the stabilized ion /z is proportional to V RF and thus also proportional to U DC . Separation, emission, analysis and detection of trapped ions in the well can be achieved by the stability of the movement of ions in the ion trap.
  • the basic working process of the optimized field-shaped linear ion trap mass analyzer constructed by the element-shaped RF electrode pole 1 is that the sample gas to be analyzed is ionized in the well to generate ions to be analyzed, or the sample to be analyzed is to be analyzed after ionization outside the well.
  • the ions collide with the buffer gas to attenuate the kinetic energy, and are limited by the RF trapping electric field and the DC trapping electric field in the ion trapping region in the well.
  • the AC or other waveform signal is connected to the pole.
  • mass selective separation or excitation of ions can be achieved.
  • the scanning RF amplitude allows the ions to emit ion traps through the small holes or slits in the terminal electrodes 21, 22 along the z-axis direction.
  • the sweep RF amplitude allows the ion to exit the ion trap in the X or y direction through the slit on the x or y electrode.
  • the optimized field-shaped linear ion trap can have a slit 212 parallel to the z-axis on the RF electrode pole 1 and an AC signal on the X or y electrode pair to achieve X or Exciting ions in the y direction or ejecting ions out of the ion trap; opening holes 213 or slits in the plates of the terminal electrodes 21, 22 to excite ions in the z direction or to eject ions out of the ion trap; Any combination of modes can be used to excite ions in multiple directions or to eject ions out of the ion trap.
  • a multi-stage ion treatment system that is, a series ion trap mass analysis system, can be constructed by using a plurality of optimized field-shaped large-capacity linear ion traps.
  • the ion traps of the series ion trap mass spectrometry system are coupled back and forth, so that ions can flow sequentially along the ion traps of each stage, thus effectively carrying out the MS n analysis experiment.
  • Figure 24 shows a three-stage ion processing system using three optimized field-shaped large-capacity linear ion traps, which can effectively perform three-stage MS-MS analysis.
  • the optimized field-shaped large-capacity linear ion trap constructed by the RF electrode pole 1 composed of a rectangular plate electrode and a rectangular block electrode and its mass analyzer will be taken as an example to illustrate the ion proposed by the present invention.
  • Figure 22 shows an optimized field-shaped, large-capacity linear ion trap constructed using a combination of rectangular block-like RF electrode poles 1.
  • the ion trap comprises an RF electrode pole composed of X electrodes 11, 12 and y electrodes 13, 14 parallel to the z-axis, each electrode pole is composed of at least three stages, and the RF electrode poles are arranged in the xy plane.
  • 11-13-12-14 is placed 90 degrees apart in a counterclockwise direction to define an ion trapping region in which slits parallel to the z-axis are formed in the center of the X electrodes 11 and 12; one is connected to the X and y electrode pairs RF power supply, providing an RF voltage between the X electrode pair and the y electrode pair to generate an RF ion trapping electric field in the xy plane; a pair of end electrodes 21, 22 located at opposite ends of the ion trapping region defined by the x and y electrode pairs
  • the terminal electrodes 21, 22 include a plate 211 and a quadrupole 10 composed of a stepped electrode rod 1 in which a small hole 213 is formed in the center of the electrode plates of the terminal electrodes 21, 22; one is connected to the terminal electrode a pair of DC direct current power supplies, providing a DC trapping potential well between the two terminal electrodes 21, 22 along the z-axis direction to confine ions in the ion trapping region; an AC power source connected to
  • RF/DC separation There are two modes of operation for ion separation using an ion trap: RF/DC separation and AC waveform separation.
  • the RF/DC separation is based on the ion motion stability map, and the unstable ions are emitted out of the ion trap by shifting the ions from stable to unstable at the boundary of the stability map.
  • the working process of RF/DC separation is to select the ions to be retained in the ion trap according to the separation needs, and calculate the state parameter (a ⁇ di ) of the retained ions so that the state point (a ⁇ qj falls near the apex of the stable triangle, Then, according to the calculation result, the RF component on the y pole is adjusted and the DC component is simultaneously input, so that the target ion state point becomes di), at which time other ions fall into the unstable region, thereby the target ion and other ions.
  • the AC waveform separation is based on the relationship between the fundamental frequency of the ion motion and the ion state.
  • the amplitude response in the z direction after excitation is proportional to the Fourier transform of the excitation waveform itself.
  • the ion response is independent of the ion axis oscillation frequency, and also with the ion.
  • the mass-to-charge ratio has nothing to do.
  • the excitation of ions with a mass-to-charge ratio of m/z is determined only by the magnitude of the excitation amplitude at the frequency corresponding to the mass-to-charge ratio. Taking the fundamental frequency of ion motion as a link, the axial amplitude of the excited ions can be determined without accurately calculating the ion trajectory. As long as the AC waveform corresponding to the separation purpose is connected to the corresponding electrode pair, Simultaneous excitation and eviction of multiple target ions are simultaneously achieved.
  • Optimizing the field-shaped large-capacity linear ion trap often requires selective resonance excitation and eviction of a single target ion, called AC resonance excitation and eviction. It is essentially a special case of AC waveform separation, that is, the target ion motion fundamental frequency. Is a certain frequency value, not a certain frequency band.
  • the AC signal is applied to two X-poles, wherein the non-exit plate is a positive signal and the exit plate is a negative signal, which ensures Positive ions will be emitted from the exit plate out of the ion trap. If the ion to be measured is a negative ion, the non-exit plate should be a negative signal and the exit plate should be a positive signal.
  • the optimized field-shaped large-capacity linear ion trap mass analyzer realizes ion detection by selecting ions to make the target ions change from stable to unstable, thereby driving them out of the ion trap.
  • Selective instability detection can be divided into two ways: boundary emission and AC resonance eviction.
  • the boundary emission is based on the stable boundary point on the q-axis of the stability diagram shown in Figure 23, and the DC voltage amplitude is zero.
  • the ions are made small to large according to the mass-to-charge ratio.
  • the sequence enters an unstable state, and unstable ions will be ejected from the ion trap to reach the ion detection system outside the well.
  • the corresponding electric signal is received and amplified, and the corresponding mass spectrum is obtained.
  • the AC resonance eviction utilizes the relationship between the fundamental frequency of the ion motion and the state of the ion.
  • the fundamental frequency of the ion is changed.
  • the amplitude of the ion in the X direction It will increase rapidly and dramatically, leaving the ion trap from the slit in the center of the X-plate and entering the external detection circuit.
  • Optimized field-shaped large-capacity linear ion trap multi-stage series system can effectively carry out MS n analysis experiments.
  • Figure 24 shows a three-stage ion treatment system using three optimized field-shaped large-capacity linear ion traps, which can effectively perform three-stage MS-MS analysis experiments.
  • three optimized field-shaped large-capacity linear ion trap mass analyzers are connected in series to form a QqQ sequence.
  • the working mode can be: Q1 and Q3 are normal mass analyzers, and there is no DC DC voltage on q2. RF RF voltage that focuses all ions and allows all ions to pass. Therefore, ions can undergo metastable fragmentation or collision-induced dissociation in q2.
  • Q1 is able to select the ion of interest from the ion source, causing it to dissociate in q2, and finally send the dissociated product to Q3 for routine mass spectrometry to infer the molecular structure.
  • the optimized field ion trap and mass analyzer of the present invention employs a class electrode rod 1.
  • the design process of the element electrode rod 1 may be: according to the required field shape, determining the type of the class and establishing a calculation model according to the condition, and obtaining a certain contribution component by changing the size parameter, the order of each order and the like.
  • the mixed field of the multipole field ie the desired field shape, and thus the boundary conditions of the electrodes and the optimal combination scheme.
  • the commonly used optimized field shape can be a quadrupole field, or a mixed field of quadrupole field and octapole field, or a mixed field of quadrupole field and other multipole fields.
  • Figure 25 to 27 show the results of an ion trap mass spectrometer mass spectrometry experiment processed according to the structure shown in Fig. 11 of the present invention.
  • Figure 25 is a mass spectrum obtained by using the calibration mixture Ul tramarkl621 produced by American PCR Company as a sample, indicating that the ion trap of the present invention can be used as a mass analyzer with a mass range of 2000 Da.
  • Fig. 26 and Fig. 27 are mass spectra and partial enlarged views obtained by scanning the full spectrum of the refined acid as a sample. It is apparent from the figure that the peak shape and resolution can be obtained by using the ion trap.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

用于质谱分析的离子阱、 多极杆系以及极杆 技术领域
本发明涉及质谱分析技术领域, 具体地讲是一种具有优化场形且易于加 工的用于质谱分析的离子阱、 多极杆系以及极杆。 背景技术
四极离子阱是一种特别的装置, 它既可作为离子储存装置, 在一定的时 间周期内将气态离子限制在离子阱内的四极场区域中, 又可作为质语仪器的 盾量分析器开展质谱分析, 并具有相当大的质量范围和可变的质量分辨率。 离子阱中的四极静电场通过在离子阱装置各极杆上接入 RF (射频) 电压、 DC 直流电压或二者的组合信号而产生。 传统的离子阱由两部分电极组成, 即环 电极和端盖电极, 为了产生显著的四极场, 典型的电极形状为双曲型。
早期的离子阱为三维离子阱,其四极场在 r和 z (极坐标系中)方向产生, 离子在该四极场中受到线性力的作用, 从而可将一定质荷比 m/z 范围内的离 子捕获并储存在该离子阱中。 最典型的三维离子阱由三个默曲电极组成, 即 一个环电极和两个端盖电极,此类装置通常称为 Paul型离子阱或四极离子阱。 圆柱形离子阱是一种更简单的三维离子阱, 由一个内表面为圆柱面的坏电极 和两个平板结构的端盖电极组成。
Paul型离子阱和圆柱形离子阱最大的缺陷是阱中捕获的离子数少, 对于 在阱外电离的入射离子其捕获效率较低。 为减少空间电荷效应以获得高分辨 率, 商用质语仪器的典型实验中通常只捕获 500个, 甚至更少的离子。 通过 端盖上的入口注入离子阱的离子将受到 RF (射频)场的作用, 只有在恰当的 RF相位上入射的离子才能有效捕获并储存在阱中, 连续入射的离子流其总的 捕获效率低于 5%, 多数情况下甚至远小于 5%。
为了解决上述问题, 出现了另一类离子阱一一线性离子阱。 线性离子阱 由延长的且平行放置的多个极杆组成, 该极杆系将确定离子阱的容积, 通过 在极杆上接入 RF射频电压和 DC直流电压, 即可在垂直于离子阱中心轴的平 面上产生二维的四极场, 由于仅在二维实现离子的强聚焦, 所捕获的离子可 在中心轴附近分布, 大大提高了离子捕获数。 美国专利 5420425描述了一种 由三组四极^组成的二维线性离子阱, 中间的一组四极杆作为主四极杆 , 其 中一对主极杆上设计了狭缝, 离子可通过该狭缝实现注入与出射; 两端的两 组四极杆既可实现在轴向限制阱中捕获离子的运动, 又可改善主四极杆内的 四极场, 当各极杆均采用双曲极杆, 可获得近乎理想的四极场。
上述各离子阱中, 除圆柱形离子阱外, 均需要准确的机械加工过程, 如 加工、 装配等, 而这样高精度机械加工是相当复杂的, 也就成为了限制小型 便携离子阱质量分析器的主要因素。
美国专利 6838666 B2提出了一种矩形线性离子阱, 该离子阱中, 四片矩 形平板电极平行于轴线放置, 围成具有矩形截面的离子阱, 在各个平板电极 上接入 RF射频电压和 DC直流电压, 可在离子阱内产生四极场, 实现离子的 二维聚焦; 通过引入端电极, 实现在轴向限制离子运动。 矩形离子阱解决了 线性离子阱的高精度机械加工问题, 但同时又带来了新的问题, 即四个平板 电极所产生的四极场中含有较为显著的高阶场, 如十二极场, 二十极场等., 使得离子运动具有较大的不确定性, 从而影响离子阱质量分析器的质量分辨 率。
早期的场形研究结果认为高阶场的引入将会破坏四极质量分析器的质量 分辨率, 而最新的研究成果表明, 恰当的引入高阶场分量, 可有效改善四极 质量分析器的分辨率。 如, 美国专利 6897438 B2中通过改变四极杆系参数, 如, 两对极杆的杆半径或场半径之比, 在四极场中引入八极场, 改善了质量 分辨率。 该专利只给出了在四极场中引入八极场的一种方法, 即改变极杆半 径或场半径, 并未给出适用于引入其他高阶场的实现方法。
综上所述, 二维离子阱是一种可实现大容量的线性离子阱, 它解决了三 维离子阱离子捕获数少和离子捕获效率低的问题, 而已有的二维离子阱或者 需要高精度的机械加工, 或者含有较为显著的高阶场, 这些因素将会限制小 型便携离子阱质量分析器的发展。 同时, 在四极质量分析器优化场形研究中 将会涉及到引入高阶场的问题, 而已有的专利成果仅涉及八极场的引入, 并 未对其他高阶场提供可行的解决方案。 探索一种结构灵活、 易于加工, 且能 够便利地实现所需的优化场形的离子阱及其质量分析器, 将会有力推动小型 便携离子阱质量分析器的发展。
质谱仪器中还常常涉及到离子光学系统中的多极杆系。 在质语技术领域 中, 常采用多极杆系作为离子光学系统, 如采用四极杆、 六极杆、 八极杆等 作为离子透镜或离子导引系统, 此类多极杆区域内的场形对于离子传输和聚 焦等都具有重要意义。
已有的多极杆系的极杆多为圆柱杆或双曲杆。 双曲杆是公认的难以实现 高精度的加工与装配的极杆。 圆柱杆虽可实现高精度的加工, 但却难以实现 高精度的装配。 多极杆的加工与装配成为了限制其性能的重要因素。
美国专利 6441370 B1提出了一种矩形线性多极杆, 可用作离子导引、 离 子阱。 该多极杆采用截面为矩形的极杆, 矩形极杆的表面叠加了一个表面层, 该表面层起到改善场形的作用。 采用矩形极杆, 多极扞的加工与装配将大大 简化, 但该专利并未给出改善场形的具体实现方式, 表面层只能定性改善场 形, 无法实现有效定量改善场形。
无法实现所需的多极场形, 无法实现多极杆系的高精度机械加工, 包括 高精度的加工和装配, 将会严重影响多极杆系的性能, 从而影响质谱仪器的 离子光学系统。 因此, 有必要探索一种具有优化场形、 结构灵活、 易于加工、 生产成本低廉的多极杆系, 以构建性能稳定、 可准确控制离子轨迹的离子光 学系统。 发明内容
本发明所要解决的技术问题在于, 提供一种用于质谱分析的极杆, 通过 该极杆结构的改进, 使采用该极杆的多极杆系和离子阱等质谱仪器不但具有 优化场形, 而且易于加工, 生产成本低。
本发明所要解决的技术问题还在于, 提供一种用于质谱分析的多极杆系, 通过对其极杆结构的改进, 使该多极杆系不但具有优化场形, 而且结构灵活、 易于加工、 生产成本低。
本发明所要解决的技术问题还在于, 提供一种用于质谱分析的离子阱, 通过对其极杆结构的改进, 使该离子阱不但具有优化场形, 而且结构灵活、 易于加工、 生产成本低。
本发明的上述技术问题可采用如下技术方案来解决:
一种用于质谱分析的极杆, 该极杆为柱状, 所述柱状极杆的横截面的至 少一侧边的形状为两阶或者两阶以上的阶级状。
本发明还提供了一种用于质谱分析的多极杆系, 其包括有两对或者两对 以上的柱状极杆 , 以及连接于该极杆上的电源, 该些柱状极杆以平行于极杆 母线的 Z轴为轴心沿周向排列为直筒状, 其特征在于, 至少一对柱状极杆的 横截面的至少一侧边的形状为两阶或者两阶以上的阶级状。
在本发明中, 优选地, 所述多极杆系的所有极杆的横截面的至少一侧边 的形状均为两阶或者两阶以上的阶级状。
作为一个可选实施例, 所述的多极杆系可具有两对电极极杆, 从而形成 为四极杆系。
作为另一个可选实施例, 所述的多极杆系可具有三对电极极杆, 从而形 成为六极杆系。
作为再一个可选实施例, 所述的多极杆系可具有四对电极极杆, 从而形 成为八极杆系。
在本发明的多极杆系中, 所述的极杆固定在以 Z轴为中心的同一圆周上, 且各电极极杆之间间隔的圆周角相同。
在本发明的多极杆系中, 所述电源提供直流信号或射频信号, 或者二者 的組合。
在本发明中, 所述多极杆系可通过改变所述极杆的横截面的阶数以及每 一阶的形状参数来获得具有确定贡献分量的多极场的混合场。
本发明还提供了一种用于质谱分析的离子阱, 其包括:
具有两对柱状极杆的四极杆系; 设置于该四极杆系两端的端电极;
生成射频离子捕获电场的射频信号; 以及
生成轴向离子捕获电势阱的直流信号;
其中, 至少一对柱状极杆的横截面的至少一侧边的形状为两阶或者两阶 以上的阶级状。
在本发明的离子阱中, 作为一个可选的例子, 所述端电极可为平板电极。 在本发明的离子阱中, 作为另外一个可选的例子, 所述的端电极可由具 有两对柱状极杆的四极杆系构成, 其中至少一对极杆的极杆横截面的至少一 侧边的形状为两阶或者两阶以上的阶级状。
在本发明的离子阱中, 作为再一个可选的例子, 所述的端电极还可由具 有两对柱状极杆的四极杆系以及位于该四极杆系端部的平板电极組合而成, 其中至少一对极杆的极杆横截面的至少一侧边的形状为两阶或者两阶以上的 阶级状。
在本发明的离子阱中, 该两对极杆的横截面的至少一侧边的形状均为两 阶或者两阶以上的阶级状。
在本发明的离子阱中, 至少一个极杆或端电极上具有实现离子注入或者 逐出的狭缝或小孔。
在本发明的离子阱中, 所述离子阱通过改变所述极杆的横截面的阶数以 及每一阶的形状参数来获得具有确定贡献分量的多极场的混合场。 该混合场 包括四极场和八极场。
本发明的多个离子阱相串联可组成多级离子处理系统,用于开展 MSn分析 试验。
在本发明中, 上述极杆的横截面的两侧边的形状均为两阶或者两阶以上 的阶级状。
在本发明中, 上述具有阶级状侧边形状的极杆的阶级宽度由外向内逐阶 缩小。
在本发明中, 上述极杵的横截面的两侧边的形状相对称; 或者非对称。 在本发明中, 上述柱状极杆的横截面的两侧边的阶数可相等。
在本发明中 , 上述极杆的两阶或者两阶以上阶级状侧边一体加工而成; 或者上述极杆由每一阶分别加工后组合而成。
在本发明中, 上述阶级状极杆的每一阶侧面形状为直角台阶面、 圆柱面、 双曲面或椭圆面等。
作为一个具体例子 , 上述阶级状极杆的横截面的每一阶形状均为矩形。 采用本发明上述结构的用于盾谱分析的离子阱、 多极杆系以及极杆, 由 于柱状极杆采用了横截面的侧边为两阶或者两阶以上的阶级状形状, 能够有 效地实现离子阱内以及多极杆系内场形的优化, 射频电极极杆的边界形状可 根据不同的场形需求加以设计, 如, 获得尽可能接近理想四极场的场形, 或 具有确定贡献量的四极场与其他高阶场的混合场形。 并且, 由于该由阶级状 另
的一极种一杆构成的射频电极可以采用形状简单、 易于加工装配形状, 如表面由平 面、 样种圆图图图图图图图图图图图图图图图柱面等组合而成的阶级状极杆, 从而可大大提高加工与装配的精度, 有效解决了多极杆系和离子阱等质语仪器中的理想场形与极杆加工装配之间 的矛盾。
总之, 由于本发明的阶级状极杆可具有任意表面形状的阶级面, 通过改 变极杆的阶数和各阶级的参数, 可便利的改变极杆的表面形状, 即改变电场 的边界条件, 从而实现场形的优化。 优化场形多极杆系和离子阱等采用具有 两阶或两阶以上的阶级状极杆, 可以解决已有多极杆系和离子阱的理想场形 与极杆加工装配之间的矛盾, 同时, 还可根据高阶场理论研究的成果, 方便、 灵活地构造所需场形的极杆边界条件, 将高阶场理论成果有效地转化为实际 装置。 本发明中由两阶或者两阶阶级状极杆組成的优化场形多极杆系也为四 极质量分析器和质语仪器中诸如离子导引等其他离子光学系统提供了一种可 实现场形优化、 易于加工、 成本低廉的切实可行的实施方案。 附图说明
1 本发明的阶级状极杆结构示意图;
2 -图 9 本发明的阶级状极杆的几种截面形状示意图;
10 本发明的四极杆系结构示意图;
11 -图 16 本发明的几种四极杆系的截面结构示意图;
17 本发明的六极杆系结构示意图;
18 本发明的八极杆系结构示意图;
1 本发明的一种离子阱结构示意图;
20 本发明的另一种离子阱结构示意图;
21 本发明的再一种离子阱结构示意图;
22 本发明在极杆上具有狭缝的离子阱结构示意图;
23 本发明的离子阱中离子运动的稳定性图;
24 由本发明的三个离子阱串联实现 MSn的示意图;
25 根据图 11所示结构加工而成的离子阱质量分析器质语测量实验的 品质谱图;
26 根据图 11所示结构加工而成的离子阱质量分析器质谱测量实验的 样品质谱图;
27 是图 26的局部放大图。 具体实施方式
本发明的用于质谱分析的极杆结构如图 1 - 9所示, 该极杆 1为柱状, 其 横截面的至少一侧边的形状为两阶或者两阶以上的阶级状。 如图 1 - 9示出了 几种具有三阶阶级的极杆 1的结构, 图 11 - 16示出了几种具有两阶阶级的极 杆 1的结构, 但该些图只是一些示例, 本发明的极杆 1还可采用其他更多阶 数如 4阶、 5阶等, 其形状也可根据需要具有多种, 在此不再一一列举。 如图 1所示, 该极杆 1的柱面是由平行于定直线并沿极杆准线 f (x,y) = 0移动的 极杆母线 L所描绘出的轨迹, 极杆准线 f (x, y) = 0具有分段函数的形式。 该电极极杆 1在用于质谱分析仪器中时, 可根据所需场形, 确定阶级状极杆 1 的阶级类型并据此建立计算模型, 通过改变阶数以及每一阶的尺寸参数等条 件可莰得具有确定贡献分量的多极场的混合场, 即所需的优化场形, 并由此 确定电极极杵的边界条件和最佳组合方案。 常用的优化场形可以是四极场, 或者是四极场和八极场的混合场, 也可以是四极场和其他多极场的混合场。
在本发明中, 如图 1 - 9所示, 上述极杆 1的横截面的两侧边的形状可均 为两阶或者两阶以上的阶级状, 该横截面的两侧边的形状可如图 1 - 5所示相 对称设置; 也可如图 13、 图 15、 图 16所示非对称设置。 该具有阶级状侧边 形状的极杆 1的阶级宽度可逐阶缩小。
本发明中, 优选地, 上述柱状极杵 1 的横截面的两侧边的阶数可相等。 这样, 利用一组通过各相对应分界点的平行平面可将极杆 1按阶解析为两个 或者两个以上的薄层单元。 根据需要, 该柱状极杆 1 的横截面的两侧边的阶 数可不相等, 例如一侧为两阶而另一侧为三阶等 (图中未示出)。
本发明的电极极杆 1 的每一阶侧边的曲线可以是任意函数, 即沿每一阶 的侧面可包含任意曲面, 如平面、 圆柱面、 双曲面、 椭圆面等等。 这样, 由 两阶或者两阶以上阶级构成极杆 1 的柱面形状以是每一阶由相同的曲面或平 面构成, 也可以是各阶采用不同的曲面, 从而使极杆 1 的柱面由上述多种曲 面组合而成, 例如极 1 可以是一对平行平面与圆柱面、 双曲面、 椭圆面或 其他曲面组合而成的柱面体。 电极极杆准线 f (x, y) = 0 可以构造出多种柱 面形状, 通过选择适当的分段函数, 即采用适当的阶级形状, 可组合得到生 成优化电场场形所需的电场边界条件。 该极杆 1 的每一阶可具有任意表面形 状, 但从获得好的加工与装配精密度方面考虑, 可采用形状简单、 易于加工 装配的形状,如表面由平面、圆柱面等組合而成的阶级状电极极杆 1。进一步, 作为一个具体的例子, 该极杆 1 的每一阶形状均可为矩形平板状, 获得好的 加工与装配精密度。 多层阶级形状組合而成的电极极杆 1 , 可解决已有用于多 极杆系、 离子阱等质讲仪器中的理想场形与极杆加工装配之间的矛盾, 同时, 还可^ =艮据多极场理论研究的成果, 方便、 灵活地实现所需场形的电极极杆边 界条件, 将多极场理论成果有效地转化为实际装置。
本发明的的阶级状电极极杆 1的加工可如图 2 - 6、 图 8 - 9所示, 采用分 别加工各个薄层单元然后将个薄层组合起来的方式,也可以如图 1、图 7所示, 多阶极杆 1采用整体加工的方式。
已有四极理论表明, 当极杆 1具有理想双曲表面时可在 RF工作区域生成 理想的四极场, 利用该四极场可得到好的离子分析结果。 优化场形四极杆作 为离子阱离子质量分析器或线性离子阱时, 与平板.电极組成的矩形线性离子 阱相比较, 采用可阶级状电极极杆构建的离子阱可含有更显著的四极场分量, 能够更有效的实现目标离子的分离与分析, 因而可认为其具有优化的电场场 形。
在实际加工中, 要获得理想的双曲表面是相当困难的, 这就大大限制了 质量分析器的分析性能。 本发明利用多个阶级組合得到所需的阶级状极杆 1 来构成 RF电极, 并可通过增加阶数, 调整各阶级的尺寸参数, 可实现场形的 优化。 从理论上, 当每一阶的厚度趋于无限小时, 可組合得到具有理想双曲 截面的 RF电极。 在实际加工中, 每一阶将具有一定的厚度, 当各阶具有确定 的形状和参数时, 利用数值模拟的方法, 可计算出具有两阶或者两阶以上的 阶级状电极极杆組成的多极杆系和离子阱等质语仪器内的场形。 反之, 通过 数值模拟的方法可获得最佳场形所对应的极杆参数, 如阶数、 每一阶的尺寸 等, 由此可加工出具有优化场形的 RF电极极杆 1。 由于该多阶状电极极杆可 采用简单、 易于加工装配的形状, 如表面由平面 (包括直角台阶面)、 圆柱面 等组合而成电极极杆 1 ,从而可大大提高加工与装配的精度, 同时也可大大降 低离子阱和多极杆系等质谱仪器的生产成本。
如图 10 - 18示出了采用上述阶级状极杆 1的用于质谱分析的多极杆系, 其包括有两对或者两对以上的柱状极杆 1, 以及连接于该极杆 1上的电源, 该 些柱状极杆 1以平行于极杆 1母线 L的 Z轴为轴心沿周向排列为直筒状, 其 中, 至少一对柱状极杆 1 的横截面的至少一侧边的形状为两阶或者两阶以上 的阶级状。
在本发明中, 优选地, 所述多极杆系的所有极杆 1 的横截面的至少一侧 边的形状均为两阶或者两阶以上的阶级状。
本发明所涉及的多极杆系可用于四极质量分析器区域, 如, 四极杆质量 分析器的四极杆, 也可用于质语仪器的其他离子光学系统, 如作为离子透镜 或离子导引系统的四极杆、 六极杆、 八极杆等。 优化场形多极杆系作为离子 聚焦或离子导引等光学系统时, 可在极杆上接入 DC直流电压、 RF射频电压或 其他波形的电压, 实现离子的聚焦和传输。
如图 10 - 16所示, 作为一个可选实施例, 所述的多极杆系可具有两对电 极极杆 1 , 从而形成为四极杆系 10。
在本发明中, 所述多极杆系可通过改变所述极杆 1 的横截面的阶数以及 每一阶的形状参数来获得具有确定贡献分量的多级场的混合场。 下面以四极 杆系为例对此进行举例说明。
图 11-16 为采用由两个横截面为矩形的矩形平板薄层单元叠合而成阶级 状 RF电极极杆 1组成的可产生多种混合场的四极杆系截面示意图。 图中, 图 11采用了四个完全相同的 RF电极极杆 1, 其 RF电极极杆的两个阶级具有同 一对称轴; 图 12采用两种不同的 RF电极极杆 1, ^目对的两个电极极杆完全 相同, 电极极杆的两个阶级具有同一对称轴; 图 13和图 15采用两种不同的 RF电极极杆 1, 但相对的两个电极极杆 1完全相同, 其中一对电极极杆 1的 两个阶级具有同一对称轴, 另一对电极的两个阶级具有不同对称轴; 图 14和 图 16采用三种不同的 RF电极极杆 1, 其中一对电极极杆 1完全相同, 另一对 电极的两个极杆不相同。 采用不同的电极参数, 可获得不同的混合场。 数值 计算表明, 图 11所示的结构可产生 A2, A6, A8, A10等; 图 12所示的结构 可产生 A2, A4, A6, A8, A10等; 图 13所示的结构可产生 A2, A3, A6, A8, A10等。 图 14所示的结构可产生 A2, A5, A6, A8, A10等。 图 15所示的结 构可产生 A2, A3, A4, A6, A8, A10 等。 图 16所示的结构可产生 A2, A3, A4, A5, A6, A8, A10 等。 An代表多极场, n为所包含电极对的数目, 即 An 对应于 2n极场, 如 A2, A3, A4, A5和 A6分别对应于四极场, 六极场, 八极 场, 十极场和十二极场。 由上述多种四极杆系的变化可知, 通过改变各电极 极杆的阶级参数, 可实现所需的混合场。 以上仅以四极杆系为例进行了说明, 但可以想到的是, 该种电极极杆的变化同样适用于其他多极杆系, 下面不再 一一进行阐述。
作为另一个可选实施例, 如图 17所示, 所述的多极杵系可具有三对电极 极杆 1, 从而形成为六极杆系 20。
作为再一个可选实施例, 如图 18所示, 所述的多极杆系可具有四对电极 极杆 1, 从而形成为八极杆系 30。
如图 10- 18所示,在本发明的多极杆系中, 所述的极杆 1可固定在以 Z 轴为中心的同一圆周上, 且各电极极杆 1之间间隔的圆周角相同。 当然, 根 据需要该些极杆 1也可以在 Z轴周围不对称设置。
在本发明的多极杆系中, 所述电源提供直流信号或射频信号, 或者二者 的组合或其他波形信号, 或多种信号的组合, 以实现离子的聚焦和传输等。 如图 19 - 22所示, 本发明还提供了一种采用上述阶级状极杆 1的用于质谱分 析的离子阱 40, 其包括: 具有两对柱状极杆 1的四极杆系 10; 设置于该四极 杆系 10两端的端电极 21、 22; 生成射频离子捕获电场的射频信号; 以及生成 轴向离子捕获电势阱的直流信号; 其中, 至少一对柱状极杆 1 的横截面的至 少一侧边的形状为两阶或者两阶以上的阶级状。
端电极 21、 22的主要作用是产生沿 z轴方向的电势阱, 在 z方向上将离 子限制在离子阱的捕获区中。在本发明的离子阱 40中,作为一个可选的例子, 如图 19所示, 所述端电极 21、 22可为沿 xy平面放置平板电极。
在本发明的离子阱 40中, 作为另外一个可选的例子, 如图 20所示, 所 述的端电极 21、 22可由平行于 z轴的具有两对柱状极杆 1的四极杆系 10构 成, 其中至少一对极杆 1 的极杆横截面的至少一侧边的形状为两阶或者两阶 以上的阶级状。
在本发明的离子阱 40中, 作为再一个可选的例子, 如图 21所示, 所述 的端电极 21、 22还可由具有两对柱状极杆 1的四极杆系 10以及位于该四极 杆系 10端部的平板电极 211組合而成, 其中至少一对极杆 1的极杆横截面的 至少一侧边的形状为两阶或者两阶以上的阶级状。
在本发明的离子阱 40中, 如图 18 - 22所示, 优选地, 该两对极杆 1的 横截面的一侧边或者两侧边的形状均为两阶或者两阶以上的阶级状。
在本发明的离子阱 40中, 所述离子阱 40可通过改变所述极杆 1的横截 面的阶数以及每一阶的形状参数来获得具有确定贡献分量的多级场的混合 场。 该混合场包括四级场和八级场。
在优化场形线性离子阱 40中,被捕获离子的质荷比与离子阱的几何形状、 所接入的 RF和 DC电压之间的关系可表示为: e qr0 ω e qr^m
( 1 ) 其中, A2是电场多极展开表达式中四极分量的展开系数, VRF和 分别为 RF极杆上所接入射频信号的 RF分量和 DC分量的幅度, a和 q是 Mathieu系 数, r()是 z轴到 RF极杆的距离, ω为 RF信号的频率。
已有的离子阱理论表明, 当极杆 1 具有理想双曲表面时可在离子捕获区 域生成理想的四极场, 利用该四极场可得到好的离子分析结果。 与平板电极 組成的矩形线性离子阱相比较, 采用阶级状电极极杆 1构建的离子阱可实现 具有更显著的四极场分量, 能够更有效的实现目标离子的分离与分析, 因而 可认为其具有优化的电场场形。
在实际加工中, 要获得理想的双曲表面是相当困难的, 这就大大限制了 离子阱质量分析器的分析性能。 利用阶级状极杆 1, 通过增加阶数, 调整每一 阶的尺寸参数, 可实现场形的优化。 从理论上, 当每一阶的厚度趋于无限小 时, 可组合得到具有理想双曲截面的 RF电极极杆 1。 在实际加工中, 每一阶 将具有确定的厚度, 当各阶具有确定的形状和参数时, 利用数值模拟的方法, 可计算出可解析为多阶的电极极杆 1组成的四极杆系内的场形。 反之, 通过 数值模拟的方法可获得最佳场形所对应的极杆参数, 如阶数、 每一阶的尺寸 等, 由此可加工出具有优化场形的 RF电极极杆 1。 由于阶级状的电极极杆 1 可采用简单、 易于加工装配的形状, 如表面由平面、 圆柱面等组合而成, 从 而可大大提高加工与装配的精度, 同时也可大大降低离子阱的生产成本。
离子在四极场中运动基频 0)„可表示为
Figure imgf000012_0001
离子在离子阱中的运动稳定性图如图 23所示。
从上述表达式可知, 如果]:。, ω, U, V确定, 则某一质荷比 m/z的离子就 有一个确定的 a,q值。.在稳定性图上, 它将具有一个确定的工作点。 如果该 工作点在稳定性三角形内, 则离子阱可将该离子捕获在阱中, 被捕获的离子 称为稳定离子。 当 RF极杆 1上接入的 RF电压频率固定,且 VRF和 UM的比值固 定, 在稳定性图上的某一点, 即对应于固定的 a, q值, 稳定离子的质荷比 m/z 与 VRF成正比, 从而也与 UDC成正比。 利用离子在离子阱中运动的稳定性, 可实 现对阱中捕获离子的分离、 发射、 分析和检测。
利用阶级状的 RF电极极杆 1构建的优化场形线性离子阱质量分析器的基 本工作过程是待分析样品气体在阱内电离生成待分析离子, 或待分析样品在 阱外电离后将待分析离子注入阱内, 离子与緩冲气体发生碰撞动能衰减, 并 被 RF捕获电场和 DC捕获电场限制在阱内的离子捕获区域中, 当离子被捕获 后, AC或其他波形的信号接入到极杆 1或端电极 21、 22上, 即可实现离子的 质量选择性分离或激发。 当 AC电压接到端电极 21、 22上时, 扫描 RF幅度可 实现离子沿 z轴方向通过端电极 21、 22上的小孔或狭缝发射出离子阱。 当 AC 电压接到 X或 y电极对时, 扫描 RF幅度可实现离子沿 X或 y方向通过 x电极 或 y电极上的狭缝发射出离子阱。
在本发明的离子阱 40中, 如图 20 - 22所示, 至少一个极杆 1或端电极 2 22上具有实现离子注入或者逐出的狭缝 212或小孔 21 3。 如图 20 - 22所 示,优化场形线性离子阱中可在 RF电极极杆 1上开设平行于 z轴的狭缝 212, 并在 X或 y电极对上接入 AC信号, 实现沿 X或 y方向激发离子或将离子逐出 离子阱; 也可在端电极 21、 22的极板上开设小孔 213或狭缝, 实现沿 z方向 激发离子或将离子逐出离子阱; 还可将上述各方式任意组合, 实现多方向激 发离子或将离子逐出离子阱。
利用多个优化场形大容量线性离子阱可组成多级离子处理系统, 即串联 离子阱质量分析系统.。 串联离子阱质量分析系统的各级离子阱前后耦合, 使 得离子可沿各级离子阱顺序流通, 从而有效开展 MSn分析实验。 图 24所示为 采用三个优化场形大容量线性离子阱可组成三级离子处理系统, 可有效开展 三级 MS-MS分析实 r。
基于上述描述, 下面将以由矩形平板电极和矩形块状阶级组合而成的 RF 电极极杆 1 所构建的优化场形大容量线性离子阱及其质量分析器为例说明本 发明所提出的离子阱及其质量分析器的具体工作模式。 图 22所示的是采用矩形块状阶级組合而成的 RF电极极杆 1所构建的优 化场形大容量线性离子阱。 该离子阱包括平行于 z轴的 X电极 11、 12和 y电 极 13、 14組成的 RF电极极杆, 各电极极杆均由至少三个阶级组合而成, RF 电极极杆在 xy平面内按照 11-13-12-14逆时针方向各间隔 90度放置, 从而 定义一个离子捕获区域, 其中, 在 X电极 11和 12的中央开设平行于 z轴的 狭缝; 一个连接到 X和 y电极对的 RF射频电源, 提供 X电极对和 y电极对之 间的 RF电压从而在 xy平面内产生 RF离子捕获电场; 一对位于 x和 y电极对 所定义的离子捕获区域两端的端电极 21、 22 , 端电极 21、 22包括极板 211和 由阶级状的电极极杆 1组成的四极杆系 10 , 其中, 在端电极 21、 22的极板中 央开设小孔 213; —个连接到端电极对的 DC直流电源, 提供两个端电极 21、 22间沿 z轴方向的 DC捕获电势阱,从而将离子限制在离子捕获区域中; 一个 连接到 X电极对的 AC电源 ,提供 X电极 1和 2之间的 AC电压,从而实现沿 X 方向激发或逐出离子; AC电源也可连接到端电极 21、 22的极板上, 提供端电 极 21、 22之间的 AC电压, 从而实现沿 X方向激发或逐出离子。
与已有的离子阱相同, 优化场形大容量线性离子阱可实现离子的储存和 分离。 当离子阱所接入的 DC直流分量为零时, 工作状态对应于如图 23所示 的稳定性图中的 q轴。 初始 RF幅度将决定稳定离子质荷比的下限, 所有质荷 比大于或等于该下限的离子均可被离子阱捕获, 储存在离子阱中。
利用离子阱实现离子分离有两种工作方式: RF/DC分离与 AC波形分离。 如图 23所示, RF/DC分离以离子运动稳定性图为基础, 通过使离子在稳定性 图边界处运动状态由稳定变为不稳定, 从而将不稳定离子发射出离子阱。 RF/DC分离的工作过程是根据分离的需要选择要保留在离子阱中的离子,计算 所保留离子的状态参数(a^ di ), 使其状态点(a^ qj 落在稳定三角形顶点附 近, 然后才 据计算结果调整 y极杆上的 RF分量并同时接入 DC分量, 使目标 离子状态点变为 di ), 此时, 其他的离子就落入非稳定区域, 从而将目标 离子与其他离子分离开来。
AC波形分离是以离子运动基频与离子状态之间的关系为基础, 激发后 z 方向振幅响应正比于该激发波形本身的 Four ier 变换, 离子响应与离子轴向 振荡频率无关, 也与离子的质荷比无关。 质荷比为 m/z 的离子所受的激发仅 由在质荷比所对应频率下的激发幅度大小所决定。 以离子运动基频作为纽带, 并不需要对离子轨迹进行精确的计算就可以确定受激后离子的轴向振幅, 只 要在相应的电极对上接入与分离目的相对应的 AC波形, 即可同时实现对多个 目标离子的选择性激发与逐出。
优化场形大容量线性离子阱中常常需要对单个目标离子进行选择性共振 激发与逐出, 称为 AC共振激发与逐出, 其本质上是 AC波形分离的一个特例, 即目标离子运动基频为某一频率值, 而非某一频带。 在如图 22所示的优化场形大容量线性离子阱质量分析器中, AC信号加在 两个 X极上, 其中非出射极板为正信号, 出射极板为负信号, 这就保证了正 离子将从出口极板发射出离子阱。 若待测离子为负离子, 则非出射极板应为 负信号, 出射极板为正信号。
优化场形大容量线性离子阱质量分析器通过对离子进行选择, 使目标离 子由稳定变为不稳定, 从而将其逐出离子阱, 实现离子检测。 选择性不稳定 检测可分为边界发射与 AC共振逐出两种方式。
边界发射, 是以图 23所示的稳定性图 q轴上的稳定边界点作为工作点, DC电压幅度为零, 通过扫描 RF电压幅度(上升扫描), 使离子按照质荷比从 小到大的顺序进入不稳定状态, 不稳定离子将被逐出离子阱, 到达阱外的离 子检测系统, 接收并放大相应的电信号, 就可得到相应的质谱图。
AC共振逐出利用了离子运动基频与离子所处状态之间的关系, 通过扫描 RF, 改变离子的运动基频, 当离子的基频与 AC信号的频率相等时, 离子在 X 方向的振幅将迅速显著增大, 从 X极板中央的狭缝处离开离子阱, 进入外部 检测电路。 优化场形大容量线性离子阱多级串联系统可有效开展 MSn分析实 验。
图 24所示为采用三个优化场形大容量线性离子阱可组成三级离子处理系 统, 可有效开展三级 MS-MS分析实验。 三级串联系统中将三个优化场形大容 量线性离子阱质量分析器串联起来, 组成 QqQ序列, 其工作方式可以为: Q1 和 Q3是正常的质量分析器, q2上没有 DC直流电压而只有 RF射频电压, 该射 频场使所有离子聚焦并允许所有离子通过。 因此, 离子可在 q2中可发生亚稳 碎裂或碰撞诱导解离。 Q1能够从离子源中选择所感兴趣的离子, 使其在 q2中 发生解离反症, 最后将解离产物送至 Q3进行常规质谱分析, 从而可推断分子 的组成结构。
本发明所提的优化场形离子阱及质量分析器采用了阶级状电极极杆 1。阶 级状电极极杆 1 的设计过程可以是: 根据所需场形, 确定阶级的类型并据此 建立计算模型, 通过改变每一阶的尺寸参数、 阶数等条件获得可获得具有确 定贡献分量的多极场的混合场, 即所需的优化场形, 并由此确定电极的边界 条件和最佳组合方案。 常用的优化场形可以是四极场, 或者是四极场和八极 场的混合场 , 也可以是四极场和其他多极场的混合场。
图 25 -图 27示出了 ·据本发明图 11所示结构加工而成的离子阱质量分 析器质谱测量实验结果。 其中图 25 为以美国 PCR公司生产的校准混合物 Ul tramarkl621为样品所得到的质谱图,表明本发明的离子阱作为质量分析器 其质量范围可达到 2000Da。 图 26和图 27为以精氣酸为样品扫描全谱得到的 质谱图和局部放大图, 从该图中可以明显看出, 利用该离子阱可获得较好的 峰形和分辨率。

Claims

权利要求书
1、 一种用于质谱分析的极杆, 该极杆为柱状, 其特征在于, 所述柱状极 杆的横截面的至少一侧边的形状为两阶或者两阶以上的阶级状。
2、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述极杆的 横截面的两侧边的形状均为两阶或者两阶以上的阶级状。
3、 如权利要求 1或 2所述的用于质镨分析的极杆, 其特征在于, 所述具 有阶级状侧边形状的极杆的阶级宽度逐阶缩小。
4、 如权利要求 1所述的用于质借分析的极杆, 其特征在于, 所述极杆的 横截面的两侧边的形状相对称设置; 或者非对称设置。
5、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述极杆横 截面的两侧边的阶数相等。
6、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述极杆的 两阶或者两阶以上阶级状侧边一体加工而成。
7、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述极杆由 每一阶分别成型后组合而成。
8、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述具有阶 级状横截面的极杆的每一阶侧面形状为直角台阶面、 圆柱面、 汉曲面或椭圆 面。
9、 如权利要求 1所述的用于质谱分析的极杆, 其特征在于, 所述极杆的 横截面的每一阶形状均为矩形。
10、 一种用于质镨分析的多极杆系, 其包括有一对或者一对以上的柱状 极杆, 以及连接于该极杆上的电源, 该些柱状极杆以平行于极杵母线的 Z轴 为轴心沿周向排列为直筒状, 其特征在于, 至少一对柱状极杆的横截面的至 少一侧边的形状为两阶或者两阶以上的阶级状。
11、 如权利要求 10所述的用于质语分析的多极杆系, 其特征在于, 所述 多极杆系的所有极杆的横截面的至少一侧边的形状均为两阶或者两阶以上的 阶级状。
12、 如权利要求 10所述的用于质 i普分析的多极杆系, 其特征在于, 所述 阶级状极杆的横截面的两侧边的形状均为两阶或者两阶以上的阶级状。
13、 如权利要求 10或 11或 12所述的用于质语分析的多极杆系, 其特征 在于, 所述具有阶级状侧边形状的极杆的阶级宽度由外向内逐阶缩小。
14、 如权利要求 10所述的用于质 i普分析的多极杆系, 其特征在于, 所述 柱状极杆的横截面的两侧边的形状相对称设置; 或者非对称设置。
15、 如权利要求 12所述的用于质谱分析的多极杆系, 其特征在于, 所述 柱状极杆的横截面的两侧边的阶数相等。
16、 如权利要求 10所述的用于质傳分析的多极杆系, 其特征在于, 所述 极杆的两阶或者两阶以上阶级状侧边一体加工而成。
17、 如权利要求 10所述的用于质 "i普分析的多极杆系, 其特征在于, 所述 阶级状极杆由每一阶分别加工后组合而成。
18、 如权利要求 10所述的用于质语分析的多极杆系, 其特征在于, 所述 阶级状极杆的每一阶侧面形状为直角台阶面、 圆柱面、 双曲面或椭圆面。
19、 如权利要求 10所述的用于质语分析的多极杆系, 其特征在于, 所述 柱状极杆的横截面的每一阶形状均为矩形。
20、 如权利要求 10所述的用于质谱分析的多极杆系, 其特征在于, 所述 的多极杆系具有两对电极极杵, 从而形成为四极杆系。
21、 如权利要求 10所述的用于质谱分析的多极杆系, 其特征在于, 所述 的多极杆系具有三对电极极杆, 从而形成为六极杆系。
22、 如权利要求 10所述的用于质讲分析的多极杆系, 其特征在于, 该多 极杆系具有四对电极极杆, 从而形成为八极杆系。
23、 如权利要求 10所述的用于质谱分析的多极杆系, 其特征在于, 所述 的电极极杆固定在以 Z轴为中心的同一圆周上, 且各极杆之间间隔的圆周角 相同。
24、 如权利要求 10所述的用于质谱分析的多极杆系, 其特征在于, 所述 电源提供直流信号或射频信号, 或者二者的組合。
25、 如权利要求 10所述的用于质 i普分析的多极杆系, 其特征在于, 所述 多极杆系通过改变所述极杆的横截面的阶数以及每一阶的形状参数来获得具 有确定贡献分量的多极场的混合场。
26、 如权利要求 25所述的用于质谱分析的多极杆系, 其特征在于, 所述 混合场包括四极场和八极场。
27、 一种用于质谱分析的离子阱, 其包括:
具有两对柱状极杆的四极杆系;
设置于该四极杆系两端的端电极;
生成射频离子捕获电场的射频信号; 以及
生成轴向离子捕获电势阱的直流信号;
其特征在于, 至少一对柱状极杆的横截面的至少一侧边的形状为的两阶 或者两阶以上的阶级状。
28、 如权利要求 27所述的用于质潘分析的离子阱, 其特征在于, 所述端 电极为平板电极。
29、 如权利要求 27所述的用于质讲分析的离子阱, 其特征在于, 所述的 端电极由具有两对柱状极杆的四极杆系构成, 其中至少一对极杆的极杆横截 面的至少一侧边的形状为两阶或者两阶以上的阶级状。
30、 如权利要求 27所述的用于质镨分析的离子阱, 其特征在于, 所述的 端电极由具有两对柱状极杆的四极杆系以及位于该四极杆系端部的平板电极 组合而成, 其中至少一对极杆的横截面的至少一侧边的形状为两阶或者两阶 以上的阶级状。
31、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 该两对 极杆的横截面的至少一侧边的形状均为两阶或者两阶以上的阶级状。
32、 如权利要求 27所述的用于质齋分析的离子阱, 其特征在于, 所述极 杆的横截面的两侧边的形状均为两阶或者两阶以上的阶级状。
33、 如权利要求 27 - 32任一权利要求所述的用于质 i普分析的离子阱, 其 特征在于, 所述具有阶级状侧边形状的极杆的阶级宽度由外向内逐阶缩小。
34、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 所述阶 級状极杆的横截面的两侧边的形状相对称设置; 或者非对称设置。
35、 如权利要求 27所述的用于质谦分析的离子阱, 其特征在于, 所述柱 状极杆的横截面的两侧边的阶数相等。
36、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 所述极 杆的两阶或者两阶以上阶级状侧边一体加工而成。
37、 如权利要求 27所述的用于质 分析的离子阱, 其特征在于, 所述极 杆由每一阶分别加工后组合而成。
38、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 所述极 杆的每一阶侧面形状为直角台阶面、 圆柱面、 双曲面或椭圆面。
39、 如权利要求 27所述的用于质儔分析的离子阱, 其特征在于, 所述极 杆的横截面的每一阶形状均为矩形。
40、 如权利要求 27所述的用于质语分析的离子阱, 其特征在于, 至少一 个电极极杆或端电极上具有实现离子注入或者逐出的狭缝或小孔。
41、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 所述离 子阱通过改变所述极杆的横截面的阶数以及每一阶的形状参数来获得具有确 定贡献分量的多极场的混合场。
42、 如权利要求 27所述的用于质谱分析的离子阱, 其特征在于, 所述混 合场包括四极场和八极场。
43、 如权利要求 27所述的用于质语分析的离子阱, 其特征在于, 多个所 述的离子阱相串联组成多级离子处理系统, 用于开展 MSn分析试验。
PCT/CN2006/002227 2005-08-30 2006-08-30 Ion trap, multiple-electrode-pole system and electrode pole for mass spectrometic analysis WO2007025475A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06775544A EP1930937A4 (en) 2005-08-30 2006-08-30 ION TRAP, MULTIPLE ELECTRODE POLSYSTEM AND ELECTRODE POLAR FOR MASS SPECTROMETRIC ANALYSIS
US11/991,305 US8395114B2 (en) 2005-08-30 2006-08-30 Ion trap, multiple electrode system and electrode for mass spectrometric analysis
JP2008528321A JP2009506506A (ja) 2005-08-30 2006-08-30 マススペクトル解析用のイオントラップ、多重電極システム及び電極

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200510093519.X 2005-08-30
CN 200510093519 CN1925102A (zh) 2005-08-30 2005-08-30 优化场形线性离子阱及其质量分析器
CN2005100935185A CN1925103B (zh) 2005-08-30 2005-08-30 优化场形多极杆系
CN200510093518.5 2005-08-30
CN200610001017A CN101005002B (zh) 2006-01-16 2006-01-16 优化场形四极杆
CN200610001017.4 2006-01-16

Publications (1)

Publication Number Publication Date
WO2007025475A1 true WO2007025475A1 (en) 2007-03-08

Family

ID=37808472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002227 WO2007025475A1 (en) 2005-08-30 2006-08-30 Ion trap, multiple-electrode-pole system and electrode pole for mass spectrometic analysis

Country Status (4)

Country Link
US (1) US8395114B2 (zh)
EP (1) EP1930937A4 (zh)
JP (1) JP2009506506A (zh)
WO (1) WO2007025475A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099889A1 (en) 2010-02-11 2011-08-18 Shimadzu Corporation Electrode system of a linear ion trap
RU214177U1 (ru) * 2022-03-17 2022-10-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Квадрупольный фильтр масс на основе универсального гиперболического электрода

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011830B (zh) * 2011-12-29 2016-11-16 Dh科技发展私人贸易有限公司 用于改良质谱仪灵敏度的方法和设备
CN103367093B (zh) * 2012-03-30 2016-12-21 岛津分析技术研发(上海)有限公司 线型离子束缚装置及其阵列结构
CN103367094B (zh) * 2012-03-31 2016-12-14 株式会社岛津制作所 离子阱分析器以及离子阱质谱分析方法
US8921764B2 (en) * 2012-09-04 2014-12-30 AOSense, Inc. Device for producing laser-cooled atoms
DE102013201499A1 (de) * 2013-01-30 2014-07-31 Carl Zeiss Microscopy Gmbh Verfahren zur massenspektrometrischen Untersuchung von Gasgemischen sowie Massenspektrometer hierzu
US9355832B2 (en) 2013-05-30 2016-05-31 Perkinelmer Health Sciences, Inc. Reflectrons and methods of producing and using them
WO2014194172A2 (en) 2013-05-31 2014-12-04 Perkinelmer Health Sciences, Inc. Time of flight tubes and methods of using them
EP3005405B1 (en) 2013-06-02 2019-02-27 PerkinElmer Health Sciences, Inc. Collision cell
WO2014197348A2 (en) * 2013-06-03 2014-12-11 Perkinelmer Health Sciences, Inc. Ion guide or filters with selected gas conductance
US9805923B2 (en) * 2014-05-16 2017-10-31 Flir Detection, Inc. Mass separators, mass selective detectors, and methods for optimizing mass separation within mass selective detectors
US9312113B1 (en) * 2014-12-09 2016-04-12 Bruker Daltonics, Inc. Contamination-proof ion guide for mass spectrometry
WO2017094146A1 (ja) * 2015-12-02 2017-06-08 株式会社島津製作所 四重極マスフィルタ及び四重極型質量分析装置
WO2018069982A1 (ja) * 2016-10-11 2018-04-19 株式会社島津製作所 イオンガイド及び質量分析装置
CN108183061A (zh) * 2017-11-20 2018-06-19 上海裕达实业有限公司 八电极线性离子阱质量分析器
US10699893B1 (en) * 2019-12-20 2020-06-30 The Florida International University Board Of Trustees Ion trap with notched ring electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5625186A (en) * 1996-03-21 1997-04-29 Purdue Research Foundation Non-destructive ion trap mass spectrometer and method
US6441370B1 (en) 2000-04-11 2002-08-27 Thermo Finnigan Llc Linear multipole rod assembly for mass spectrometers
US6838666B2 (en) 2003-01-10 2005-01-04 Purdue Research Foundation Rectilinear ion trap and mass analyzer system and method
US6897438B2 (en) 2002-08-05 2005-05-24 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325731A (ja) * 1993-05-12 1994-11-25 Hitachi Ltd 四重極質量分析装置と補正電圧設定方法
JPH09213264A (ja) * 1996-01-30 1997-08-15 Shimadzu Corp 多重極マスフィルタ及びその製造方法
US6762406B2 (en) * 2000-05-25 2004-07-13 Purdue Research Foundation Ion trap array mass spectrometer
US6911651B2 (en) * 2001-05-08 2005-06-28 Thermo Finnigan Llc Ion trap
US7049580B2 (en) * 2002-04-05 2006-05-23 Mds Inc. Fragmentation of ions by resonant excitation in a high order multipole field, low pressure ion trap
EP1389797B1 (en) * 2002-08-13 2008-10-08 Carl Zeiss NTS GmbH Particle-optical apparatus and its use as an electron microscopy system
AU2003297655B2 (en) * 2002-12-02 2007-09-20 Griffin Analytical Technologies, Inc. Processes for designing mass separators and ion traps, methods for producing mass separators and ion traps. mass spectrometers, ion traps, and methods for analysing samples
US6730904B1 (en) * 2003-04-30 2004-05-04 Varian, Inc. Asymmetric-field ion guiding devices
EP1671348B1 (en) * 2003-10-08 2012-09-12 Agilent Technologies Australia (M) Pty Ltd Electrode for mass spectrometry
US7034293B2 (en) * 2004-05-26 2006-04-25 Varian, Inc. Linear ion trap apparatus and method utilizing an asymmetrical trapping field
US7456396B2 (en) * 2004-08-19 2008-11-25 Thermo Finnigan Llc Isolating ions in quadrupole ion traps for mass spectrometry
CN101063672A (zh) * 2006-04-29 2007-10-31 复旦大学 离子阱阵列

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5625186A (en) * 1996-03-21 1997-04-29 Purdue Research Foundation Non-destructive ion trap mass spectrometer and method
US6441370B1 (en) 2000-04-11 2002-08-27 Thermo Finnigan Llc Linear multipole rod assembly for mass spectrometers
US6897438B2 (en) 2002-08-05 2005-05-24 University Of British Columbia Geometry for generating a two-dimensional substantially quadrupole field
US6838666B2 (en) 2003-01-10 2005-01-04 Purdue Research Foundation Rectilinear ion trap and mass analyzer system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1930937A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099889A1 (en) 2010-02-11 2011-08-18 Shimadzu Corporation Electrode system of a linear ion trap
RU2466475C2 (ru) * 2010-02-11 2012-11-10 Симадзу Корпорейшн Система электродов линейной ионной ловушки
RU214177U1 (ru) * 2022-03-17 2022-10-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Квадрупольный фильтр масс на основе универсального гиперболического электрода

Also Published As

Publication number Publication date
US8395114B2 (en) 2013-03-12
EP1930937A4 (en) 2010-10-06
JP2009506506A (ja) 2009-02-12
US20090321624A1 (en) 2009-12-31
EP1930937A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2007025475A1 (en) Ion trap, multiple-electrode-pole system and electrode pole for mass spectrometic analysis
US7932488B2 (en) Concentrating mass spectrometer ion guide, spectrometer and method
US6417511B1 (en) Ring pole ion guide apparatus, systems and method
US7019289B2 (en) Ion trap mass spectrometry
JP4463271B2 (ja) 非対称電界イオンガイド装置
WO2007107106A1 (fr) Système de piège à ions linéaire multipolaire et procédé de fabrication associé avec des électrodes d'un seul tenant
US8299421B2 (en) Low-pressure electron ionization and chemical ionization for mass spectrometry
US9123517B2 (en) Ion guide with different order multipolar field order distributions across like segments
US20080017794A1 (en) Coaxial ring ion trap
WO2005119738A2 (en) Linear ion trap apparatus and method utilizing an asymmetrical trapping field
JP2007507064A (ja) 選択された六重極成分を有する2次元の実質的四重極電場を提供するための方法及び装置
US6759651B1 (en) Ion guides for mass spectrometry
CN104681392A (zh) 一种折线形杆状电极线形离子阱
WO2006099796A1 (fr) Dispositif d'analyse de masse de champ quadripolaire imparfait et son utilisation
US11881388B2 (en) Fourier transform mass spectrometers and methods of analysis using the same
US11756780B2 (en) Multipole assembly configurations for reduced capacitive coupling
RU2368980C1 (ru) Ионная ловушка, мультипольная электродная система и электрод для масс-спектрометрического анализа
CN110767526B (zh) 一种倾斜多极杆导引系统
He et al. Characteristics and comparison of different radiofrequency‐only multipole cooling cells
US9536723B1 (en) Thin field terminator for linear quadrupole ion guides, and related systems and methods
JPWO2020129199A1 (ja) 質量分析装置
CN218769410U (zh) 一种弯曲离子导引结构
Xu et al. Investigation of the effect of an octopole electric field on a linear ion trap and an asymmetric semi-circular linear ion trap analyzer
JP2024513225A (ja) 質量分析計及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008528321

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008108835

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2006775544

Country of ref document: EP

Ref document number: 2622/DELNP/2008

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2006775544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 11991305

Country of ref document: US