WO2007024014A1 - Method of measuring interaction between molecules and measurement apparatus using the method - Google Patents

Method of measuring interaction between molecules and measurement apparatus using the method Download PDF

Info

Publication number
WO2007024014A1
WO2007024014A1 PCT/JP2006/317151 JP2006317151W WO2007024014A1 WO 2007024014 A1 WO2007024014 A1 WO 2007024014A1 JP 2006317151 W JP2006317151 W JP 2006317151W WO 2007024014 A1 WO2007024014 A1 WO 2007024014A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecule
well
molecules
labeled
interaction
Prior art date
Application number
PCT/JP2006/317151
Other languages
French (fr)
Japanese (ja)
Inventor
Kiichi Fukui
Susumu Uchiyama
Shigeki Kawakami
Satoshi Nishikawa
Original Assignee
Osaka University
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University, Kansai Technology Licensing Organization Co., Ltd. filed Critical Osaka University
Priority to JP2007532222A priority Critical patent/JPWO2007024014A1/en
Publication of WO2007024014A1 publication Critical patent/WO2007024014A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to a method for measuring an intermolecular interaction such as between proteins and a measurement apparatus using the method.
  • a ⁇ ⁇ ⁇ substance such as an enzyme or a structural protein is bound to a fluorescently labeled antibody and detected under a fluorescent microscope, which is generally called a fluorescent antibody method.
  • the ligand molecule is fluorescently labeled, and the binding state to the active substance that becomes the receptor is detected by fluorescent color development (the ligand and the receptor may be reversed, but here the ligand is fluorescently labeled. To explain).
  • the binding action between the receptor and the ligand is determined by the correlation between the receptor-ligand conjugate concentration, the total ligand concentration, the total receptor concentration, and the dissociation constant.
  • the conjugate concentration itself of each sample can be compared and verified by the fluorescence intensity.
  • the receptor and ligand can be compared with each other.
  • This measurement method is a method in which a ligand molecule is immobilized and a receptor molecule that interacts with the immobilized ligand reacts, and the specificity between the ligand and the receptor, that is, the molecular interaction specificity and affinity. This is the point that we can obtain information such as strength, speed of bond-dissociation, and bond strength.
  • the present invention has been provided in view of the above circumstances, and it is possible to easily verify the bond strength between molecules, that is, the intermolecular interaction, from one measurement result, and greatly reduce the measurement cost. It is an object of the present invention to provide an intermolecular interaction measurement method and a measurement apparatus using this measurement method. Disclosure of the invention
  • one of the molecules for which the interaction is desired to be measured is labeled with a fluorescent dye, and at least the slumber containing this is ditched, and another molecule is added.
  • the immobilization step has a step of immobilizing a predetermined molecule in a region of the bottom of the well, and has an affinity for the predetermined molecule immobilized in a solution containing the molecule that is labeled.
  • the fixing may include a step of dripping the night containing the le, nare and molecules, and a step of drying the drenched night.
  • two or more nights are set with predetermined concentration conditions. By measuring the fluorescence concentration corresponding to each solution, an appropriate concentration condition / dissociation constant (Kd) of the interaction between molecules desired to be measured may be calculated.
  • the apparatus has a well that forms a recess capable of storing a solution, and the bottom force in the well is one of the molecules desired to measure the intermolecular interaction.
  • "I region for immobilizing a solution containing molecules that are not fluorescently labeled” and other molecules that are desired to measure intermolecular interactions with the one molecule and are fluorescently labeled It consists of other regions for receiving molecules-containing solutions
  • the ⁇ B region is a solid layer on which the solution containing molecules that are not fluorescently labeled is immobilized on the bottom of the well.
  • the other region formed is hollow upward from the bottom surface of the well, and the solid layer is dripped onto the layer containing molecules directly immobilized on the bottom surface of the tool. Includes molecules that are not fluorescently labeled? Is preferred, but it may also be formed by drying a solution containing non-fluorescent molecules on the bottom of the tiff itself, and there are several wells in the fc ⁇ and lateral directions, Furthermore, the self-solid layer in the ⁇ B region is labeled with a self-fluorescent material included in the solid layer, and is desired to measure interactions with molecules.
  • the infiltration of the tiff self fluorescently labeled molecule is not refused, but the Sift self fluorescent label included in the solid layer is not rejected. It is preferred that the structure is designed so that the molecular Sift itself does not penetrate into other areas.
  • the present invention provides a method for measuring an intermolecular interaction and a measuring apparatus used for the method for measuring an intermolecular interaction.
  • interacting receptor molecules are fixed and arranged only in one region of the bottom of the well, and ligand molecules are formed in the other region of the well (receptor molecule).
  • the ligand molecule may be reversed, that is, the ligand molecule may be immobilized in the U region (hereinafter, this ⁇ is referred to as “another case”).
  • the ligand molecule (in other cases ⁇ is a receptor molecule) is labeled with a fluorescent dye.
  • the receptor molecule-ligand molecule conjugate and state receptor molecule in other cases, the receptor molecule and ligand molecule
  • other states within the ue / re are 3 ⁇ 4
  • ⁇ state ligand molecules in other cases, free state receptor molecules.
  • the fluorescence concentration on one immobilized region becomes stronger than the fluorescence concentration on the other region, and the difference in concentration can be viewed at a glance.
  • the state of intermolecular interaction for example, antibody binding reaction
  • a special technique such as surface plasmon resonance method can be used.
  • the measurement method and measurement apparatus of the present invention can detect intermolecular interactions even in a microwell space (l rmi or less). Therefore, it can also be used for each microplate with a large number of holes! ⁇ , And together with the visibility of detection results (described above), the appropriate conditions for intermolecular interactions can be easily and quickly detected. Is possible.
  • the force that has been explained by the interaction between a receptor molecule and a ligand molecule in relation to the intermolecular interaction between two regions in the well can be widely used for general intermolecular interactions. That is, not only measuring the interaction between molecules that are expected to be bound in advance, such as receptor molecules and ligand molecules, but also measuring the force of interaction between molecules with unknown interaction. For example, it is possible to measure the presence or absence of interactions such as between different proteins, between nucleic acids, and between protein and nucleic acids.
  • the method and apparatus of the present invention has the effect that it is possible to detect intermolecular interactions even in a microscopic space (1 mm or less), and it is also used in each micro plate having a large number of holes.
  • the visual solubility of the detection results it is possible to detect many types of molecules (for example, proteins) and other molecules that interact with each other easily and quickly. Is possible. Brief Description of Drawings
  • FIG. 1 is a view showing a microplate used in the intermolecular interaction measuring apparatus of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a well disposed on the microphone opening plate of FIG.
  • FIG. 3 is a plan view of FIG.
  • FIG. 4 is a plan view showing one experimental result in the present embodiment.
  • FIG. 5 is a Scatehard plot diagram showing another experimental result in the present embodiment.
  • FIG. 6 is a schematic diagram showing an experimental process of another embodiment.
  • FIG. 7 is a square-corner image of an experimental result in another embodiment.
  • Fig. 8 is a Scatehard plot showing the experimental results of Fig. 7.
  • FIG. 9 is an angle Zhe image of an experimental result in still another embodiment.
  • FIG. 10 is a Scatehard plot showing the experimental results of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 an example of a microplate 1 used as an intermolecular interaction measurement apparatus of the present invention is shown (hereinafter, an embodiment of the intermolecular interaction measurement apparatus of the present invention will be described as a microphone port plate 1).
  • Fig. 1 (a) shows a side view of a conventional microphone plate
  • Fig. 1 (b) shows a plan view of a conventional microplate.
  • the microplate is a container that is widely used for clinical tests, tests and tests such as DNA analysis and amplification
  • the outer shape of the microplate is integrally attached to the base 3 and the base 3.
  • a cylindrical-shaped well 2 such as a cylindrical shape.
  • a large number of wels 2 are arranged in a matrix in the row or column direction with respect to the base 3.
  • the Uenore 2 is a hollow container having a concave portion 2a having a cylindrical shape or the like in which the upper part is opened at the base 3 and the ite is closed, like a normal test tube.
  • Four rims such as a circle projecting from the base 3 are formed at a portion opening to the base 3.
  • the well 2 is configured so that a sample can be stored for testing and inspection.
  • the rim 4 protrudes slightly from the upper surface of the base 3, which is used to prevent sample evaporation and sample mixing (cross contamination) between each well 2 during the test. .
  • a cap is attached to the rim 4 or an adhesive film is attached on one side to prevent sample mixing.
  • the distance between the centers of the adjacent wells 2 in the row and column directions is standardized, and the number of the wells 2 in one microplate 1 is 8 rows XI 2 columns. (9 6 pieces), 3 rows x 8 columns (2 4 pieces) etc.
  • the lower end of the wel 2 has a flat (or substantially spherical) bottom surface 2 b as shown in the side view of FIG.
  • the base 3 of the microplate 1 is flat as shown in FIG. 1 and extends downward from the peripheral edge of the flat plate. Some have a side wall (so-called skirt shape).
  • the microplate 1 is made of a transparent synthetic resin, glass or the like, and is preferably made of a low fluorescent material. The features of the microplate 1 described so far are also included in the conventional microplate.
  • Receptors are proteins in the cell membrane, cytoplasm, or nucleus that bind ligands (specific substances), that is, neurotransmitters, hormones, cell growth factors, and other substances to initiate cellular responses. have. This receptor and ligand bind to the state according to the law of mass action. This is shown in modeno below.
  • concentration of the receptor and ligand conjugate is It is given by the total ligand concentration, the total receptor concentration, and the dissociation constant. Therefore, the conjugate concentration ([R-L]) increases as the receptor concentration increases, and conversely
  • S has a method for fluorescently labeling a ligand.
  • fluorescent labeling there is also a case of fluorescent labeling).
  • a fluorescently labeled antibody is bound to an antigen in a sample typically corresponding to a receptor and detected by fluorescence microscopy.
  • a method is generally used in which the antibody is labeled with a fluorescent dye such as fluororesin sothiocyanate (FITC) or tetramethinororhodamine sothiocyanate (TRITC), and the fluorescence is detected.
  • FITC fluororesin sothiocyanate
  • TRITC tetramethinororhodamine sothiocyanate
  • an unlabeled antibody (referred to as a primary antibody) is reacted with, and a fluorescently labeled antibody (referred to as a secondary antibody) is bound to a conjugate with the 17-fire antibody.
  • a fluorescently labeled antibody (referred to as a secondary antibody) is bound to a conjugate with the 17-fire antibody.
  • FIG. 2 shows an enlarged sectional view of the vicinity of the bottom surface 2 b in the well 2.
  • This FIG. 2 is identical to the cross-sectional view of FIG. 3 schematically shows the plan view of FIG. 2, which is identical to FIG. 1 (b).
  • the bottom surface of the well 2 is solidified with a desired receptor molecule in a part of the region 2d, here, in the vicinity of the center.
  • a mouse antibody is used as a receptor molecule and an anti-mouse antibody is used as a ligand molecule, and a predetermined amount of a solution containing the mouse antibody at a desired concentration in a region 2 d of the bottom surface 2 b of the microplate 1 is used.
  • the other area 2 c of the bottom surface 2 b is originally blank.
  • the immobilization of the receptor molecule a method in which the solution dropped on the bottom surface 2 d of the well is dried and directly immobilized, a predetermined molecule is immobilized on the bottom surface 2 d of the well, and then the predetermined molecule is immobilized.
  • a method in which a liquid containing a molecule having a high affinity is mixed with a solution containing a mouse antibody and dropped on the bottom 2d of the well is advantageous in that protein degradation due to drying can be suppressed.
  • a method of dropping GST protein or metal / polyhistidine peptide on the bottom 2d of the well in the night including mouse antibody is used. .
  • the principle of this method is that the GST protein, etc.
  • the dripping solution is immobilized on the dwell bottom 2d by affinity with gnolethione etc. on the surface 2d.
  • a dwell containing ligand molecules is dropped on the well 2 formed in this state and stored in the well 2.
  • the internal protein molecules here, the anti-mouse antibody as a ligand molecule and the mouse antibody as a single receptor molecule
  • dripping mineral ino-cetyl alcohol onto the surface of the liquid layer to coat the surface of the liquid layer is a method of physically sealing the well 2.
  • an anti-mouse antibody corresponding to a mouse antibody is used as a ligand molecule, and a night of a desired concentration including the anti-mouse antibody labeled with a fluorescent dye such as FITC is ditched, Drop it into the Uenore 2 and store it. Therefore, in the 2a in the well, the U region 2d on the bottom surface of the mouse antibody as a receptor binds to a part of the mouse antibody as a receptor, and in the other part, only the mouse antibody is formed, In the other region 2c, only the released anti-mouse antibody is included (see the model equation above).
  • the fluorescent dye labeled with the anti-mouse antibody is excited and develops color.
  • the fluorescence intensity is proportional to the ligand concentration. Specifically, in the region 2d, the fluorescence intensity is proportional to the conjugate concentration of the mouse antibody and the anti-mouse antibody ([R ⁇ L] in the above model equation). Then, it is proportional to the concentration of the released anti-mouse antibody ([L] in Modeno ⁇ : mentioned above). Therefore, there is a difference in the fluorescence concentration between the regions 2d and 2c depending on the respective concentrations.
  • a different concentration of receptor and ligand can be ⁇ for each well.
  • concentration condition for each well in the case of microplate 1 in Fig. 1, the concentration is set so that the ligand concentration becomes larger or smaller for each row (each row A to H) in the vertical direction. It is suitable for understanding the measurement results if the receptor concentration is arranged so that the receptor concentration is increased or decreased in each row (every 1 to 12 rows) in the horizontal direction.
  • a solution containing a mouse antibody is immobilized in region 2d, and in region 2c, a night of night containing anti-mouse antibody (with FITC label) is stored for verification.
  • An excerpt of the result is shown in Fig. 4 (actually, it was verified with 96 holes, but only a part is shown for the purpose of helping to summarize the invention).
  • the mouse antibody concentration is unified at 10 g / ml, and the anti-mouse antibody concentration is 0.25, 0.4, 0.5, 0. 75, 1, 1.25 / ig / ml, 1.5, 1.75, 2, 3, 4, 5 / ig / ml from upper right to lower.
  • the fluorescence concentration is greatly different between the mouse antibody concentration lO zg / ral and the anti-mouse antibody concentration 0.4 g / ra l. The interaction is active.
  • [A-B] Z [A] displays the ratio ([R / L] / [R]) between the ligand 'receptor binding molecule and the escape ligand molecule, and the horizontal axis [ ⁇ B] is the ligand 'Receptor binding molecule concentration ([R ⁇ L]: mol / 1) is displayed.
  • ⁇ AJ ConcanavalinA
  • RNaseB glycoprotein glycoprotein
  • BSA bovine serum albumin
  • FITC-labeled Aurora was distributed to concentrations of 1, 2, 3, 4, 5, and 6 ⁇ g / ml, and each was placed in a separate well 2 and incubated at room temperature. After about 24 hours, measurements and image analysis were performed, and a scatter plot was created. The horned eyelid image and scutchyard plot are shown in Fig. 9 and Fig. 10, respectively. As a result of measuring this manner, the dissociation constant of the Aurora and Histone (Kd) was calculated to be 1. 5 X 10- 7, known in the literature indicating the dissociation 3 ⁇ 4m value because it does not exist, the result is O look new onset Is done. In addition, the Kakuzhe images in Fig. 7 are numbered sequentially from the top.
  • the embodiment using the microplate 1 as the intermolecular interaction measuring apparatus of the present invention has been described as an example.
  • the present invention is not limited to this, and the bottom surface of at least one well (not a plane) Other regions configured to have different molecules to be included in some of the regions and other regions, and verified by the above-described example reaction with the antibody.
  • it can be used for the measurement of two or more molecules for which interaction is desired.
  • the interaction between two molecules! Although only ⁇ is illustrated, it can also be applied to a method in which other ligand molecules (unlabeled) are included in the solution stored in the area inside the well other than the solidification area to cause a competitive reaction.
  • a non-labeled seven-antibody is bound to (receptor), and the desired antibody (ligand) is labeled as a secondary antibody and bound to a conjugate of the antigen and the seven-antibody.
  • This method can also be applied to the so-called fluorescence measurement method, which is a method of measuring one of the interacting molecules with the emitted fluorescence ( ⁇ ! ⁇ ).
  • the fluorescent dye is not particularly limited to FITC, and other fluorescent dyes such as cy 5 may be used.
  • the expression of receptor and ligand has been used, but this is used for the convenience of explanation according to the binding action (equilibrium action) in the law of mass action (see the model formula).

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

It is intended to provide a method of measuring an interaction between molecules such as proteins and a measurement apparatus therefor. In this method, a solution containing one of molecules, the interaction between which is to be measured, having been labeled with a fluorescent dye and another solution containing the other molecule not labeled with a fluorescent dye are prepared. Next, the solution containing the unlabeled molecule is immobilized to an area in the bottom face of a well. Then, the solution containing the labeled molecule is reacted with the immobilized solution containing the unlabeled molecule followed by photo irradiation. As a result, there arises a difference in fluorescent intensity between the above-described area and the other area in the bottom face of the well. By measuring the difference between the fluorescent intensities, the interaction between the molecules is measured.

Description

m 糸田 分子間相互作用測定方法及びこの方法を用いた測定装置 技術分野  m Itoda Intermolecular interaction measurement method and measurement device using this method
本発明は、 タンパク質相互間等の分子間相互作用を測定する方法及びその方法を利用し た測定装置に関する。 背景技術  The present invention relates to a method for measuring an intermolecular interaction such as between proteins and a measurement apparatus using the method. Background art
近年、 生命活動の解明するために生体細胞中のタンパク質間等の分子間相互作用を検出 ことが所望されている。 この検出方法の一つとして従来より、 酵素、 構造タンパク質等の ^ϊί^性物質を、 蛍光標識抗体と結合させ、 蛍光顕微鏡下に検出する方法が存在し、 一般に 蛍光抗体法と称されている。 この方法では、 リガンドとなる分子を蛍光標識し、 レセプタ 一となる 性物質への結合状態を蛍光発色により検出する方法である (リガンドとレセ プターとが逆でも良いが、 ここではリガンドに蛍光標識するとして説明する) 。 レセプタ 一とリガンドとの結合を検出するには、 レセプターと結合されたリガンドの蛍光発色を検 出する必要があり、 非結合の遊離リガンドによる発色を除外する必要がある。 また、 レセ プターとリガンドとの結合作用は、 レセプターとリガンドの結合体濃度、 総リガンド濃度、 総レセプター濃度、 解離定数の相関により決定されるものであり、 解離定数が小さい程、 レセプターとリガンドとの結合が強い (分子間相互作用が強レ、) と理角军されるところ、 従 来の方法では蛍光強度により各試料の結合体濃度自身を比較検証することはできるが、 レ セプターとリガンドの結合 ί«度と、 遊離リガンド濃度との比較検証が難しく、 解離定数 に依拠するレセプターとリガンドの結合強度の絶対的な検証が困難という問題があった。 また、 このような問題を解決するために表面プラズモン共鳴を利用した分子間相互作用 測定方法も存在する。 この測定方法は、 リガンドとなる分子を固定化し、 固定化されたリ ガンドと相互作用するレセプター分子を反応させる方法であり、 リガンドとレセプターと の間、 すなわち分子相互作用の特異性、 親和性の強弱、 結合-解離の速さ、 結合 ί機度な どの情報を得ることができる点で^ ¾である。 しかしながら、 この測定方法では、 専用の 設備'施設が必須となり測定コストが高いこと、 ノイズ除去が困難であること等の問題を 有している。 例えば、 「特開 2 0 0 0— 2 8 3 9 8 4号公報」 や 「実験医学別冊 クローズァップ実 験法総鐘」 羊土社 (2002)、 Biacoreを用いた低ァフィ二ティー相互作用の検出、 稲川 淳ー、 l43-150や 「実験医学別冊 ボストゲノム時代の実験講座 3 GFPとバイオイメー ジング」 羊土社 (2000)、 蛍光相関分光法金城政孝 吉田直人 野村保友、 p2 - 222に開 示されている。 発明力 s解決しょうとする In recent years, in order to elucidate life activities, it has been desired to detect intermolecular interactions such as proteins in living cells. As one of the detection methods, there is a conventional method in which a ^ ϊί ^ substance such as an enzyme or a structural protein is bound to a fluorescently labeled antibody and detected under a fluorescent microscope, which is generally called a fluorescent antibody method. . In this method, the ligand molecule is fluorescently labeled, and the binding state to the active substance that becomes the receptor is detected by fluorescent color development (the ligand and the receptor may be reversed, but here the ligand is fluorescently labeled. To explain). In order to detect the binding of the receptor to the ligand, it is necessary to detect the fluorescence of the ligand bound to the receptor, and it is necessary to exclude the coloration of the unbound free ligand. The binding action between the receptor and the ligand is determined by the correlation between the receptor-ligand conjugate concentration, the total ligand concentration, the total receptor concentration, and the dissociation constant. In the conventional method, the conjugate concentration itself of each sample can be compared and verified by the fluorescence intensity. However, the receptor and ligand can be compared with each other. There is a problem that it is difficult to verify and compare the degree of binding of the ligand and the concentration of free ligand, and it is difficult to verify the binding strength between the receptor and the ligand depending on the dissociation constant. In addition, there is a method for measuring intermolecular interactions using surface plasmon resonance to solve such problems. This measurement method is a method in which a ligand molecule is immobilized and a receptor molecule that interacts with the immobilized ligand reacts, and the specificity between the ligand and the receptor, that is, the molecular interaction specificity and affinity. This is the point that we can obtain information such as strength, speed of bond-dissociation, and bond strength. However, this measurement method has problems such as the need for dedicated equipment and facilities, high measurement costs, and difficulty in removing noise. For example, “Japanese Laid-Open Patent Publication No. 2 00 0-2 8 3 9 8 4”, “Experimental Medicine Separate Volume, Close-up Experiment Method”, Yodosha (2002), Biacore-based low affinity interaction Detection, Satoshi Inagawa, l43-150, "Experimental Medicine Separate Volume: Experimental Course in the Age of Genome 3 GFP and Bioimaging" Yodosha (2000), Fluorescence Correlation Spectroscopy Masataka Kaneshiro Naoto Yoshida, Yasutomo Nomura, p2-222 It is shown. Invention s try to solve
以上の事情に鑑みて本発明は提供されたものであり、 一つの測定結果から分子間の結合 強度、 すなわち分子間相互作用を簡単に検証することができ、 且つ測定コストを大幅に減 少させることが可能な分子間相互作用測定方法及びこの測定方法を用いた測定装置を « することを目的とする。 発明の開示  The present invention has been provided in view of the above circumstances, and it is possible to easily verify the bond strength between molecules, that is, the intermolecular interaction, from one measurement result, and greatly reduce the measurement cost. It is an object of the present invention to provide an intermolecular interaction measurement method and a measurement apparatus using this measurement method. Disclosure of the invention
課題を角军決するための手段 Means for deciding a task
本発明の分子間相互作用測定方法によれば、 相互作用の測定を所望する分子のうち一つ の分子を蛍光色素により標識して少なくともこれを含む溜夜を溝蓆し、 さらに他の分子を 蛍光色素により標識しない状態でこれを含む溶液を、 する裔夜 β工程と、 上方に開放 されたゥエルの底面の一領域に l己溝蓆工程により ' 蓆された標識していない分子を含む 溜夜を固定化する固定化工程と、 髓己準備工程により βされた標識された分子を含む溶 液を前記ゥエル内に貯留させ、 l己固定化工程により固定化された溶液と反応させる反応 工程と、 該反応工程により反応させた溶液に対して光を照射する照射工程と、 前記固定化 工程で標識してレ、なレ、分子を含む激夜が固定化された i !己ゥエルの底面の" "IS域における 蛍光濃度と、 ΙΪΓΪΒί累識された分子を含む溜夜力 宁留された前記 U域以外の領域における 蛍光濃度と、 を比較測定する蛍光測定工程と、 を有している。 また、 固定化工程は、 ゥェ ルの底面の一領域に所定の分子を固定化する工程と、 標識されてレヽな 、分子を含む溶液に 該固定化された所定の分子と親和性を有する分子を含ませる工程と、 ゥエルの底面のー領 域に標識されていない分子を含む?額夜を滴下する工程とを有することが好ましいが、 ゥェ ノレの底面の一領域に前 fBI票識されてレ、なレ、分子を含む 夜を滴下する工程と、 滴下された 溜夜を乾燥させる工程とを有する固定でも良い。 さらに、 上記窗夜準備工程において 2Ρϋ される 夜は、 予め定められた濃度条件で複数設定され、 それぞれ設定された濃度条件の 溶液ごとに対応する蛍光濃度を測定することによって測定を所望する分子間の相互作用の うち適正な濃度条件 ·解離定数 (Kd)を算出しても良い。 According to the intermolecular interaction measurement method of the present invention, one of the molecules for which the interaction is desired to be measured is labeled with a fluorescent dye, and at least the slumber containing this is ditched, and another molecule is added. A solution containing this solution without labeling with a fluorescent dye, and a step containing a non-labeled molecule that has been trapped by a self-groove step in one region of the bottom surface of the well that is opened upward. An immobilization process for immobilizing the night, and a reaction process in which a solution containing the labeled molecule β in the self-preparation process is stored in the well and reacted with the solution immobilized in the self-immobilization process. And an irradiation step of irradiating the solution reacted in the reaction step with light, and the bottom of the i! Well where the intense night containing the label, label, and molecule is immobilized in the immobilization step. "" Fluorescence density in the IS region, ΙΪΓΪΒί It has a fluorescence measurement step of comparing measured and fluorescence concentration, in the identification the region other than the U gamut is reservoir night force 宁留 containing molecules are, the. In addition, the immobilization step has a step of immobilizing a predetermined molecule in a region of the bottom of the well, and has an affinity for the predetermined molecule immobilized in a solution containing the molecule that is labeled. It is preferable to include a step of including a molecule and a step of dripping a frame containing a molecule that is not labeled in the region of the bottom of the well. Further, the fixing may include a step of dripping the night containing the le, nare and molecules, and a step of drying the drenched night. Furthermore, in the night preparation process described above, two or more nights are set with predetermined concentration conditions. By measuring the fluorescence concentration corresponding to each solution, an appropriate concentration condition / dissociation constant (Kd) of the interaction between molecules desired to be measured may be calculated.
また、 本発明の分子間相互作用測定装置によれば、 溶液を貯留可能な凹部を形成するゥ エルを有し、 該ゥエル内の底面力 分子間相互作用の測定を所望する分子のうち一つの分 子であって蛍光標識されていない分子を含む溶液を固定化するための" I域と、 該一つの 分子との分子間相互作用の測定を所望する他の分子であって蛍光標識された分子を含む溶 液を受容するための他の領域とで構成されている。 上記^ B域は、 ゥエルの底面上で蛍光 標識されていない分子を含む溶液を固定化させた固層をなして形成され、 他の領域は、 前 記ゥエルの底面上から上方に中空である。 また、 固層は、 前記ゥヱルの底面上に直接固定 化された分子を含む層と、 該層に滴下された編己蛍光標識されていない分子を含む?親夜の 層とで形成されることが好ましいが、 蛍光されていない分子を包含する溶液を tiff己ゥエル の底面上で乾燥させることにより形成されても良い。 また、 ゥエルは、 fc^向および横方 向にそれぞ^数個、 整列配置されていることが好ましい。 さらに、 前記^ B域における 廳己固層は、 該固層に包含される編己蛍光標識されてレ、なレ、分子との相互作用の測定を所 望する分子であって蛍光標識された分子を含む溶液を前記他の領域に貯留させたときに、 tiff己蛍光標識された分子の浸入は拒まないが、 前記固層に包含される Sift己蛍光標識されて いなレ、分子の Sift己他の領域への侵入はなさないように構成されていることが好ましレ、。 発明の効果  In addition, according to the intermolecular interaction measuring apparatus of the present invention, the apparatus has a well that forms a recess capable of storing a solution, and the bottom force in the well is one of the molecules desired to measure the intermolecular interaction. "I region for immobilizing a solution containing molecules that are not fluorescently labeled" and other molecules that are desired to measure intermolecular interactions with the one molecule and are fluorescently labeled It consists of other regions for receiving molecules-containing solutions The ^ B region is a solid layer on which the solution containing molecules that are not fluorescently labeled is immobilized on the bottom of the well. The other region formed is hollow upward from the bottom surface of the well, and the solid layer is dripped onto the layer containing molecules directly immobilized on the bottom surface of the tool. Includes molecules that are not fluorescently labeled? Is preferred, but it may also be formed by drying a solution containing non-fluorescent molecules on the bottom of the tiff itself, and there are several wells in the fc ^ and lateral directions, Furthermore, the self-solid layer in the ^ B region is labeled with a self-fluorescent material included in the solid layer, and is desired to measure interactions with molecules. When the solution containing the fluorescently labeled molecule is stored in the other region, the infiltration of the tiff self fluorescently labeled molecule is not refused, but the Sift self fluorescent label included in the solid layer is not rejected. It is preferred that the structure is designed so that the molecular Sift itself does not penetrate into other areas.
本発明は、 分子間相互作用を測定する方法と分子間相互作用の測定方法に使用する測定 装置を提供している。 この測定方法および測定装置によれば、 相互作用するレセプター分 子がゥエル底面の一領域のみに固定化されて配設され、 ゥェル内の他の領域にはリガンド 分子が することとなる (レセプター分子とリガンド分子とが逆、 すなわちリガンド分 子が U域に固定化されても良い (以下、 この^を 「他ケース」 と記 ^る) ) 。 また、 リガンド分子 (他ケースの^はレセプター分子) は蛍光色素によって標識される。 従つ て、 レセプター'リガンド間で相互に結合 asした場合、 固定化された^ S域においては レセプター分子とリガンド分子の結合体および 状態のレセプター分子 (他ケースの場 合はレセプター分子とリガンド分子の結合体および 状態のリガンド分子) が包含され ることとなり、 ゥェ /レ内の他の領域にぉ ヽては ¾|隹状態のリガンド分子 (他ケースの場合 は遊離状態のレセプター分子) が存在することとなる。 このような状態で、 蛍光色素を励 起すべく光照射した場合、 固定化された 域で蛍光発色をなすのはレセプター'リガン ド結合体であり、 他の領域では職 t状態のリガンド分子 (他ケースの場合は遊離状態のレ セプター分子) である。 従って、 分子間相互作用が活発な場合には、 固定化された一領域 上における蛍光濃度が他の領域上における蛍光濃度に比して強くなり、 濃度差を一見して 視認することが可能となる。 換言すれば、 本発明を使用すれば、 同一ゥエル内で分子間相 互反応 (例えば、 抗体 結合反応) の状態を視認レベルで明確に測定することができ、 且つ表面プラズモン共鳴法のような専門■高額な設備を用いる必要がなく大幅に測定コス トを減じることが可能となる。 さらに、 原理的に本発明の測定方法および測定装置では、 微小ゥエル空間内 (l rmi以下) でも分子間相互作用を検出することが可能である。 従つ て、 多数穴を有するマイクロプレートの各ウエノ!^でも活用することができ、 検出結果の 視認容易性 (上述) とも相まって分子間相互作用の適正条件を容易カゝっ迅速に検出するこ とが可能となる。 The present invention provides a method for measuring an intermolecular interaction and a measuring apparatus used for the method for measuring an intermolecular interaction. According to this measuring method and measuring apparatus, interacting receptor molecules are fixed and arranged only in one region of the bottom of the well, and ligand molecules are formed in the other region of the well (receptor molecule). And the ligand molecule may be reversed, that is, the ligand molecule may be immobilized in the U region (hereinafter, this ^ is referred to as “another case”). The ligand molecule (in other cases ^ is a receptor molecule) is labeled with a fluorescent dye. Therefore, when the receptor 'ligands are bound to each other as a result, in the immobilized ^ S region, the receptor molecule-ligand molecule conjugate and state receptor molecule (in other cases, the receptor molecule and ligand molecule) And other states within the ue / re are ¾ | 隹 state ligand molecules (in other cases, free state receptor molecules). Will exist. In this state, excite the fluorescent dye. When irradiated to cause light, it is the receptor 'ligand conjugate that forms a fluorescent color in the immobilized region, and in other regions it is a ligand molecule in the t-state (in other cases, a free receptor molecule). ). Therefore, when the intermolecular interaction is active, the fluorescence concentration on one immobilized region becomes stronger than the fluorescence concentration on the other region, and the difference in concentration can be viewed at a glance. Become. In other words, if the present invention is used, the state of intermolecular interaction (for example, antibody binding reaction) can be clearly measured at a visual level in the same well, and a special technique such as surface plasmon resonance method can be used. ■ It is not necessary to use expensive equipment, and the measurement cost can be greatly reduced. Furthermore, in principle, the measurement method and measurement apparatus of the present invention can detect intermolecular interactions even in a microwell space (l rmi or less). Therefore, it can also be used for each microplate with a large number of holes! ^, And together with the visibility of detection results (described above), the appropriate conditions for intermolecular interactions can be easily and quickly detected. Is possible.
なお、 上記本発明の効果の説明では、 ゥエル内の 2つの領域間における分子間相互作用 につレ、てレセプタ一分子とリガンド分子との間での相互作用により説明してきた力 本発 明は広く分子間相互作用全般に利用できる。 すなわち、 レセプター分子とリガンド分子の ように予め結合が予定されている分子間の相互作用測定のみならず、 相互作用の有無が不 明な分子間におレヽて相互作用する力 かを測定することができ、 例えば、 異なるタンパク 質相互間、核酸相互間、 タンパク質 '核酸相互間等の相互作用の有無を測定することがで きる。 特に、 本発明の方法および装置では微少ゥュル空間内 (1 mm以下) でも分子間相 互作用を検出することが可能という効果を有しており、 多数穴を有するマイクロプレート の各ウエノ でも活用することができ、 検出結果の視認溶易性 (上述) とも相俟って多数 種の分子 (例えば、 タンパク質) カゝら相互に作用する分子をスクリーニングする等を容易 力、つ迅速に検出することが可能となる。 図面の簡単な説明  In the above description of the effect of the present invention, the force that has been explained by the interaction between a receptor molecule and a ligand molecule in relation to the intermolecular interaction between two regions in the well. It can be widely used for general intermolecular interactions. That is, not only measuring the interaction between molecules that are expected to be bound in advance, such as receptor molecules and ligand molecules, but also measuring the force of interaction between molecules with unknown interaction. For example, it is possible to measure the presence or absence of interactions such as between different proteins, between nucleic acids, and between protein and nucleic acids. In particular, the method and apparatus of the present invention has the effect that it is possible to detect intermolecular interactions even in a microscopic space (1 mm or less), and it is also used in each micro plate having a large number of holes. In addition to the visual solubility of the detection results (described above), it is possible to detect many types of molecules (for example, proteins) and other molecules that interact with each other easily and quickly. Is possible. Brief Description of Drawings
図 1は、 本発明の分子間相互作用測定装置に使用するマイクロプレートを示した図であ る。  FIG. 1 is a view showing a microplate used in the intermolecular interaction measuring apparatus of the present invention.
図 2は、 図 1のマイク口プレートに配設されるゥエルの拡大断面図である。  FIG. 2 is an enlarged cross-sectional view of a well disposed on the microphone opening plate of FIG.
図 3は、 図 2の平面図である。  FIG. 3 is a plan view of FIG.
図 4は、 本実施形態での一の実験結果を示した平面図である。 図 5は、 本実施形態での他の実験結果を示した Scatehardプロット図である。 FIG. 4 is a plan view showing one experimental result in the present embodiment. FIG. 5 is a Scatehard plot diagram showing another experimental result in the present embodiment.
図 6は、 他の本実施形態の実験工程を示す略図である。  FIG. 6 is a schematic diagram showing an experimental process of another embodiment.
図 7は、 他の本実施形態における実験結果の角晰画像である。  FIG. 7 is a square-corner image of an experimental result in another embodiment.
図 8は、 図 7の実験結果を示した Scatehardプロット図である。  Fig. 8 is a Scatehard plot showing the experimental results of Fig. 7.
図 9は、 さらに他の本実施形態における実験結果の角浙画像である。  FIG. 9 is an angle Zhe image of an experimental result in still another embodiment.
図 1 0は、 図 9の実験結果を示した Scatehardプロット図である。 発明を実施するための最良の形態  FIG. 10 is a Scatehard plot showing the experimental results of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照すれば、 本発明の分子間相互作用測定装置として使用されるマイクロプレー ト 1の一例を示している (以下、 本発明の分子間相互作用測定装置の実施形態をマイク口 プレート 1として説明する) 1の一例を示している。 具体的には、 図 1 ( a ) は従来のマ イク口プレートの側面図を示しており、 図 1 ( b ) は従来のマイクロプレート の平面図 を示している。 ここでマイクロプレートとは、 臨床検査、 D N Aの分析や増幅等の試験や 検査に広く利用されている容器であり、 外形が «方形状の基部 3と、 基部 3に一体に取 り付けられた円筒形等の筒形状のゥエル 2とを有している。 また、 ゥエル 2は、 基部 3に 対し行又は列方向にマトリックス状に多数配設されている。  Referring to FIG. 1, an example of a microplate 1 used as an intermolecular interaction measurement apparatus of the present invention is shown (hereinafter, an embodiment of the intermolecular interaction measurement apparatus of the present invention will be described as a microphone port plate 1). 1) An example is shown. Specifically, Fig. 1 (a) shows a side view of a conventional microphone plate and Fig. 1 (b) shows a plan view of a conventional microplate. Here, the microplate is a container that is widely used for clinical tests, tests and tests such as DNA analysis and amplification, and the outer shape of the microplate is integrally attached to the base 3 and the base 3. And a cylindrical-shaped well 2 such as a cylindrical shape. A large number of wels 2 are arranged in a matrix in the row or column direction with respect to the base 3.
さらに、 ウエノレ 2は、 図 1 ( b ) の 锒で示すように、 通常の試験管と同様に、 上方が 基部 3に開口され iteが閉鎖された円筒形等の凹部 2 aを有する中空容器で、 基部 3に開 口する部分に、 基部 3から突出した円形等のリム 4カ形成されている。 このようにゥエル 2内には、試験や検査をする場合に、試料を収納できる構成になっている。  Furthermore, as shown in FIG. 1 (b), the Uenore 2 is a hollow container having a concave portion 2a having a cylindrical shape or the like in which the upper part is opened at the base 3 and the ite is closed, like a normal test tube. Four rims such as a circle projecting from the base 3 are formed at a portion opening to the base 3. In this way, the well 2 is configured so that a sample can be stored for testing and inspection.
また、 リム 4は、 基部 3の上面よりわずかに突出しているが、 これは試験中に試料の蒸 発及び各ゥエル 2間での試料の混合 (クロスコンタミネーシヨン) を防止するために利用 する。 具体的には、 リム 4にキャップを装着したり、 一面に粘着性フィルムを貼り付けて 試料の混合を防止するが、 リム 4を設けることで、 キャップまた tt¾着フィルムとの密着 性を向上させることができる。  The rim 4 protrudes slightly from the upper surface of the base 3, which is used to prevent sample evaporation and sample mixing (cross contamination) between each well 2 during the test. . Specifically, a cap is attached to the rim 4 or an adhesive film is attached on one side to prevent sample mixing. By providing the rim 4, the adhesion to the cap or tt adherence film is improved. be able to.
ここで、 図 1に示すようなマイクロプレート 1は、 隣接するゥエル 2の行および列方 向の中心間距離が標準化され、 1枚のマイクロプレート 1が有するゥエル 2の数は 8行 X I 2列 (9 6個) 、 3行 X 8列 (2 4個) 等で構成されている。 また、 ゥエル 2の下端 は図 1 ( a ) の側面図に示すように平坦 (又は略球形) の底面 2 bを有している。 さらに、 マイクロプレート 1の基部 3は図 1のように平板状の他、 平板の周縁部から下方に延び る側壁を有する形状 (いわゆるスカート形状) のものがある。 また、 マイクロプレート 1は、 透明な合成樹脂やガラス等により形成されており、 低蛍光物質で形成されているこ とが好ましい。 ここまでで説明されるマイクロプレート 1の特徴は従来型のマイクロプレ ートにおいても包摂されるものである。 Here, in the microplate 1 as shown in FIG. 1, the distance between the centers of the adjacent wells 2 in the row and column directions is standardized, and the number of the wells 2 in one microplate 1 is 8 rows XI 2 columns. (9 6 pieces), 3 rows x 8 columns (2 4 pieces) etc. The lower end of the wel 2 has a flat (or substantially spherical) bottom surface 2 b as shown in the side view of FIG. Furthermore, the base 3 of the microplate 1 is flat as shown in FIG. 1 and extends downward from the peripheral edge of the flat plate. Some have a side wall (so-called skirt shape). Further, the microplate 1 is made of a transparent synthetic resin, glass or the like, and is preferably made of a low fluorescent material. The features of the microplate 1 described so far are also included in the conventional microplate.
ここで、 本実施形態の特徴を説明する前提として本発明の分子間相互作用測定方法の基 本原理について本実施形態における具体的実験例に基づいて説明する。 まず、 レセプター (受容体) とリガンドとの間の分子間相互作用について概説する。 レセプターとは、 細胞 膜、 細胞質または核内にある蛋白質で、 これにリガンド (特異的な物質) 、 すなわち神経 伝達物質、 ホルモン、 細胞増殖因子その他の物質を結合し、 細胞の反応を開始させる働き を有している。 このレセプターとリガンドとは、 質量作用の法則に従い 状態に結合す る。 これをモデノ で示したものが以下に示される。  Here, as a premise for explaining the characteristics of the present embodiment, the basic principle of the intermolecular interaction measurement method of the present invention will be described based on specific experimental examples in the present embodiment. First, an overview of the intermolecular interactions between receptors and ligands. Receptors are proteins in the cell membrane, cytoplasm, or nucleus that bind ligands (specific substances), that is, neurotransmitters, hormones, cell growth factors, and other substances to initiate cellular responses. have. This receptor and ligand bind to the state according to the law of mass action. This is shown in modeno below.
(数式)  (Formula)
R + L R · L  R + L R L
解離定数を ¾とすれば,  If the dissociation constant is ¾,
[ 3 [L] 一 (ER]T- [R-L]) [L] [3 [L] Ichi (ER) T- [RL]) [L]
KA一 [R-L] - R ] K A one [RL] - R]
ここで [R]Tは Rの全濃度([R]T= [R] + [R'L])である. このモデル式からも明らかなようにレセプタ一と,リガンドとの結合体濃度は、 総リガン ド濃度、 総レセプター濃度、 解離定数により与えられるものである。 従って、 結合体濃度 ([R - L]) は、 レセプター濃度が増加するとこれに従って増加し、 逆に霸隹リガンドWhere [R] T is the total concentration of R ([R] T = [R] + [R'L]). As is clear from this model equation, the concentration of the receptor and ligand conjugate is It is given by the total ligand concentration, the total receptor concentration, and the dissociation constant. Therefore, the conjugate concentration ([R-L]) increases as the receptor concentration increases, and conversely
([L]) は、 レセプター濃度が増加すると減少する性質を有することがわかっている。 こ こで、 レセプターとリガンドとカ S結合し易レ、:^、 すなわち分子間相互作用が強い ¾ ^と は解離定数が小さい状態である。 また、 解離 はレセプターと対応するリガンドにより 決定される固定値である。 このことから鑑みてレセプターとリガンドとの両者の結合がし 易い場合には、 結合体濃度 ([R ' L]) に比して遊離リガンド濃度 ([L]) が小さい状態で あることが判る。 従って、 レセプターとリガンドとの結合のし易さ、 すなわち分子間相互 作用の強度を検証するには、 レセプターとリガンドの結合体濃度と ¾ϋリガンド濃度とを —の ^において同時に比較することが必要とされることが麵 される。 ([L]) has been shown to have the property of decreasing with increasing receptor concentration. Here, the receptor and ligand can be easily bonded to each other with a bond: ^, that is, a strong intermolecular interaction ¾ ^ is a state with a small dissociation constant. Dissociation is a fixed value determined by the ligand corresponding to the receptor. From this, it can be seen that the free ligand concentration ([L]) is small compared to the conjugate concentration ([R'L]) when both the receptor and the ligand are easily bound. . Therefore, in order to verify the ease of binding between the receptor and the ligand, that is, the strength of the intermolecular interaction, it is necessary to simultaneously compare the receptor and ligand conjugate concentration and the ¾ϋ ligand concentration in It is tempted to be done.
次に、 レセプターとリガンドの結合状態を測定するための基本原理について説明する。 従来より知られている方法としてリガンドを蛍光標識する方法力 S存在する (レセプターを 蛍光標識する場合も存在する) 。 とりわけ、 代表的にレセプターに相当する試料中の抗原 に対して蛍光標識した抗体を結合させ、 蛍光顕 »で検出する方法が存在する。 この方法 では、 抗体をフルォレセィンィソチオシァネート (FITC) ゃテトラメチノレローダミンィソ チオシァネート (TRITC) 等の蛍光色素により標識し、 蛍光検出する方法が一般的である。 また、 検出感度を増大させるため非標識抗体 (一次抗体と称する) を と反応させ、 蛍 光標識した抗体 (二次抗体と称する) を、 と一 7火抗体との結合体に結合させ を追 跡する方法も存在し、 マウス抗体と抗マウス抗体との結合等が揚げられる (後述するが本 実施形態では、 これを活用している) 。 Next, the basic principle for measuring the binding state between the receptor and the ligand will be described. As a conventionally known method, S has a method for fluorescently labeling a ligand. There is also a case of fluorescent labeling). In particular, there is a method in which a fluorescently labeled antibody is bound to an antigen in a sample typically corresponding to a receptor and detected by fluorescence microscopy. In this method, a method is generally used in which the antibody is labeled with a fluorescent dye such as fluororesin sothiocyanate (FITC) or tetramethinororhodamine sothiocyanate (TRITC), and the fluorescence is detected. In addition, in order to increase the detection sensitivity, an unlabeled antibody (referred to as a primary antibody) is reacted with, and a fluorescently labeled antibody (referred to as a secondary antibody) is bound to a conjugate with the 17-fire antibody. There is also a method of tracing, and the binding between the mouse antibody and the anti-mouse antibody is raised (this is used in the present embodiment as described later).
しかしながら、 従来の方法のみでは既に分子間相互作用が判明している場合、 例えば、 特定のレセプター抗原の存在を試料内で検証するために対応するリガンド抗体を付与する こは ^iJであるが、 レセプターとリガンドの結合 «度と翻隹リガンド濃度との比較 検証が困難であるため新たにレセプターとリガンドとの相互作用を検証するには不十分で ある。  However, when the intermolecular interaction is already known only by the conventional method, for example, it is ^ iJ to give the corresponding ligand antibody to verify the presence of a specific receptor antigen in the sample, Comparison of receptor-ligand binding strength and reciprocal ligand concentration Since verification is difficult, it is not sufficient to newly verify the interaction between receptor and ligand.
これに対して本発明の測定方法および測定装置では、 レセプターとリガンドの結合体濃 度と纖隹リガンド濃度との比較検証が容易に可能な構成を樹共している。 再びマイクロプ レート 1の説明に戻れば、 図 2ではゥエル 2内の底面 2 b近傍の拡大断面図が示されてレヽ る。 この図 2は、 図 1 ( a ) の断面図と同一視である。 また、 図 3は図 2の平面図を略示 しており、 図 1 ( b ) と同一視である。 これらの図に示すようにゥエル 2内の底面はその 一部の領域 2 d、 ここでは中心近傍に所望のレセプター分子を固体化させている。 本実施 形態にぉレヽてはレセプター分子としてマウス抗体、 リガンド分子として抗マウス抗体を用 いており、 マイクロプレート 1のゥエル底面 2 bの一領域 2 dにマウス抗体を所望濃度含 む溶液を所定量 (1 μ 1 ) 滴下し、 固体ィ匕している。 また、 ゥエル底面 2 bの他の領域 2 cは原始的にはブランクである。 ここで、 レセプター分子の固定化について言及すれば、 ウエノレ底面 2 dに滴下された溶液を乾燥させて直接的に固定化する方 、 ウエノレ底面 2 dに所定分子を固定化させた後に該所定分子と親和性が高い分子を含む窗夜をマウス抗体 を含む溶液と混合させてゥエル底面 2 d上に滴下する方法等力 ¾Εする。 とりわけ後者の 方法は、 乾燥によるタンパク質の変質を抑制することができる点で有利である。 例えば、 ゥエル底面 2 dにダルタチオンやニッケルを固定した後に、 マウス抗体を含む溜夜に G S Tタンパク質や金属 ·ポリヒステジンペプチドを含ませたものをゥエル底面 2 d上に滴下 する方法が ^される。 この方法の原理は、 滴下溶液内の G S Tタンパク質等とゥエル底 面 2 d上のグノレタチオン等との親和性により滴下溶液をゥエル底面 2 dに固定化させるも のである。 On the other hand, the measurement method and measurement apparatus of the present invention share a configuration that allows easy comparison and verification of the receptor-ligand conjugate concentration and the soot-ligand concentration. Returning to the description of the microplate 1 again, FIG. 2 shows an enlarged sectional view of the vicinity of the bottom surface 2 b in the well 2. This FIG. 2 is identical to the cross-sectional view of FIG. 3 schematically shows the plan view of FIG. 2, which is identical to FIG. 1 (b). As shown in these figures, the bottom surface of the well 2 is solidified with a desired receptor molecule in a part of the region 2d, here, in the vicinity of the center. In this embodiment, a mouse antibody is used as a receptor molecule and an anti-mouse antibody is used as a ligand molecule, and a predetermined amount of a solution containing the mouse antibody at a desired concentration in a region 2 d of the bottom surface 2 b of the microplate 1 is used. (1 μ 1) Dropped and solidified. In addition, the other area 2 c of the bottom surface 2 b is originally blank. Here, with regard to the immobilization of the receptor molecule, a method in which the solution dropped on the bottom surface 2 d of the well is dried and directly immobilized, a predetermined molecule is immobilized on the bottom surface 2 d of the well, and then the predetermined molecule is immobilized. A method in which a liquid containing a molecule having a high affinity is mixed with a solution containing a mouse antibody and dropped on the bottom 2d of the well. In particular, the latter method is advantageous in that protein degradation due to drying can be suppressed. For example, after fixing dartathione or nickel on the bottom 2d of the well, a method of dropping GST protein or metal / polyhistidine peptide on the bottom 2d of the well in the night including mouse antibody is used. . The principle of this method is that the GST protein, etc. The dripping solution is immobilized on the dwell bottom 2d by affinity with gnolethione etc. on the surface 2d.
次に、 このような状態で形成されたゥエル 2にリガンド分子を含む溜夜を滴下し、 ゥェ ル 2内に貯留する。 このときゥエル 2内に貯留された溜夜 (及ぴゥエル底面 2 dに固定化 されたレセプター分子を含む溶液) を密閉することが好ましい。 前述するように溶液が乾 燥すると内部のタンパク質分子 (ここではリガンド分子たる抗マウス抗体およぴレセプタ 一分子たるマウス抗体) が変質せしめるおそれがあり、 これを抑制することができるから である。 例えば、 液層表面にミネラルオイノ^セチルアルコールを滴下して表面被覆する 方法ゃゥエル 2を物理的に密閉する方法力 される。 ここでは、 リガンド分子として前 述するようにマウス抗体に対応する抗マウス抗体を用いており、 この抗マウス抗体を F I T C等の蛍光色素で標識したものを含む所望濃度の激夜を溝蓆し、 ウエノレ 2内に滴下して 貯留させる。 従って、 ゥエル内 2 aでは、 その底面の U域 2 dではレセプターとしての マウス抗体の一部にリガンドとしての抗マウス抗体力結合し他の部分ではマウス抗体のみ 趣隹された状態を形成し、 他の領域 2 cでは遊離された抗マウス抗体のみが包摂されてい ることとなる (前述のモデル式参照) 。 このような状態で、 ゥエル底面 2 bを上方又は下 方から所定強度の光照 I れば、 抗マウス抗体に標識した蛍光色素が励起され発色する。 その 、 蛍光強度はリガンド濃度に比例し、 具体的には領域 2 dではマウス抗体と抗マ ウス抗体との結合体濃度 (前述のモデル式における [R■ L]) に比例し、 領域 2 cでは遊 離された抗マウス抗体濃度 (前述のモデノ^:における [ L] ) に比例することとなる。 従つ て、 それぞれの濃度により領域 2 d、 2 cとでの蛍光濃度に差が生じることとなり、 領域 2 dの蛍光濃度力 S領域 2 cの蛍光濃度よりも大きければ大きいほどレセプターとしてのマ ウス抗体とリガンドとしての抗マウス抗体との結合強度が大きい (解離 が小さい) こ とが判別できる。 従って、 2つの分子間の相互作用が強いか否かを各領域 2 d、 2 cの蛍 光濃度差を一見するだけで測定することが可能となり、 レセプターとリガンドの結合濃度 [R ■ L]、 解離定数 Kが不明な場合であっても、 総レセプター濃度、 総リガンド濃度 (そ れぞれ溶液を ¾Pf蓆する段階で既知である) が決定されれば、 この条件に対応するレセプタ 一とリガンドの結合強度を容易に辆军することができる。  Next, a dwell containing ligand molecules is dropped on the well 2 formed in this state and stored in the well 2. At this time, it is preferable to seal the night (the solution containing the receptor molecule immobilized on the bottom surface 2d) stored in the well 2. This is because if the solution is dried as described above, the internal protein molecules (here, the anti-mouse antibody as a ligand molecule and the mouse antibody as a single receptor molecule) may be altered, and this can be suppressed. For example, dripping mineral ino-cetyl alcohol onto the surface of the liquid layer to coat the surface of the liquid layer is a method of physically sealing the well 2. Here, as described above, an anti-mouse antibody corresponding to a mouse antibody is used as a ligand molecule, and a night of a desired concentration including the anti-mouse antibody labeled with a fluorescent dye such as FITC is ditched, Drop it into the Uenore 2 and store it. Therefore, in the 2a in the well, the U region 2d on the bottom surface of the mouse antibody as a receptor binds to a part of the mouse antibody as a receptor, and in the other part, only the mouse antibody is formed, In the other region 2c, only the released anti-mouse antibody is included (see the model equation above). In such a state, when the illuminant bottom surface 2b is irradiated with light of a predetermined intensity I from above or below, the fluorescent dye labeled with the anti-mouse antibody is excited and develops color. The fluorescence intensity is proportional to the ligand concentration. Specifically, in the region 2d, the fluorescence intensity is proportional to the conjugate concentration of the mouse antibody and the anti-mouse antibody ([R ■ L] in the above model equation). Then, it is proportional to the concentration of the released anti-mouse antibody ([L] in Modeno ^: mentioned above). Therefore, there is a difference in the fluorescence concentration between the regions 2d and 2c depending on the respective concentrations. The greater the fluorescence concentration of the region 2d, It can be discriminated that the binding strength between the mouse antibody and the anti-mouse antibody as a ligand is large (dissociation is small). Therefore, it is possible to measure whether the interaction between two molecules is strong or not by simply looking at the difference in fluorescence concentration between the regions 2d and 2c. The receptor and ligand binding concentrations [R ■ L] Even if the dissociation constant K is unknown, if the total receptor concentration and total ligand concentration (known at the time of ¾ Pf solution for each solution) are determined, the receptor corresponding to this condition The binding strength of the ligand can be easily reduced.
さらに、 図 1〜 3に示す本実施形態のように多数のゥエル 2を配設するマイクロプレー ト 1を用 ヽれば、 それぞれのゥエルごとに異なる濃度のレセプタ一、 リガンドを、βする ことで、 両者を反応させた に種々の濃度条件における分子間相互作用を一見して理解 することができる。 このようなゥエルごとの濃度条件の設定として、 図 1のマイクロプレ ート 1で例示すれば、 縦方向では行ごと (A〜H行ごと) にリガンド濃度が大きく又は小 さくなるように設定 G 夜 蓆) し、 横方向では列ごと (1〜1 2列ごと) にレセプター 濃度が大きく又は小さくなるように整列すれば、 測 诘果の理解に好適である。 Furthermore, if a microplate 1 having a large number of wells 2 is used as in the present embodiment shown in FIGS. 1 to 3, a different concentration of receptor and ligand can be β for each well. At first glance, understand the interaction between molecules under various concentration conditions. can do. As an example of setting the concentration condition for each well, in the case of microplate 1 in Fig. 1, the concentration is set so that the ligand concentration becomes larger or smaller for each row (each row A to H) in the vertical direction. It is suitable for understanding the measurement results if the receptor concentration is arranged so that the receptor concentration is increased or decreased in each row (every 1 to 12 rows) in the horizontal direction.
なお、 上述するようにレセプタ一として領域 2 dにはマゥス抗体を含む溶液を固定化さ せて、 領域 2 cでは抗マウス抗体 (F I T C標識有り) を含む激夜を貯留させて検証して おり、 その結果の一部を抜粋したものが図 4に示している (実際には 9 6穴で検証したが 発明の纏爭を助ける趣旨のもと一部のみを示すこととする) 。 この実^;裙果において、 マ ウス抗体濃度は 10 g/mlで統一されており、 抗マウス抗体濃度は、 左上方から下方に従 つて 0. 25、 0. 4、 0. 5、 0. 75、 1、 1. 25/i g/ml, 右上方から下方に従って 1. 5、 1. 75、 2、 3、 4、 5 /i g/mlとなっている。 この図から考察するに蛍光濃度は、 マウス抗体濃度 lO z g/ral, 抗マウス抗体濃度 0. 4 g/ralの条件の場合に大きく差が出ており、 マウス抗体 と抗マウス抗体の分子間相互作用が活発であることが趣 される。 As described above, as a receptor, a solution containing a mouse antibody is immobilized in region 2d, and in region 2c, a night of night containing anti-mouse antibody (with FITC label) is stored for verification. An excerpt of the result is shown in Fig. 4 (actually, it was verified with 96 holes, but only a part is shown for the purpose of helping to summarize the invention). In this fruit, the mouse antibody concentration is unified at 10 g / ml, and the anti-mouse antibody concentration is 0.25, 0.4, 0.5, 0. 75, 1, 1.25 / ig / ml, 1.5, 1.75, 2, 3, 4, 5 / ig / ml from upper right to lower. Considering this figure, the fluorescence concentration is greatly different between the mouse antibody concentration lO zg / ral and the anti-mouse antibody concentration 0.4 g / ra l. The interaction is active.
また、 他の実験結果を用いた解離定数 (Kd) の算出について説明する。 図 5を参照すれ ば、 レセプター分子 (ここではマウス抗体) とリガンド分子 (ここでは抗マウス抗体) と の結合を示したスカツチヤード (Scatchard)プロットが »されており、 各ウエノレ 2ごと のデータをそれぞれプロットし、 これに基づく 線グラフが得られている。 この縦軸  We also explain the calculation of dissociation constant (Kd) using other experimental results. Referring to Figure 5, a Scatchard plot showing the binding of a receptor molecule (here mouse antibody) and a ligand molecule (here anti-mouse antibody) is shown. A line graph based on this is obtained. This vertical axis
[A - B]Z[A]は、 リガンド'レセプター結合分子と避隹リガンド分子との比値 ([R/ L] /[R] ) を表示し、横軸 [Α · B]は、 リガンド' レセプター結合分子の濃度 ([R · L]: mol/ 1 ) を表示している。 ここでスカツチヤードプロットの特性に言及すれば、 得 られた ia線の傾きは解離 に反比例してレヽる。 具体的には、 傾き =— 1 ZKd となる。 従って、 図 5から明らかなようにマウス抗体と抗マウス抗体との相互作用におレ、て得られ た直線の傾きは、 一 2 X 1 0 8 (=xの係数) であるため、 Kd=0. 5X 1 0一8と算出される。 このようにして、 各ゥエル内の分子濃度を測定すれば解離 Kdを算出することができ、 具体的な分子間相互作用を測定することができる。 [A-B] Z [A] displays the ratio ([R / L] / [R]) between the ligand 'receptor binding molecule and the escape ligand molecule, and the horizontal axis [Α B] is the ligand 'Receptor binding molecule concentration ([R · L]: mol / 1) is displayed. If we refer to the characteristics of the scatter plot here, the slope of the ia line obtained will be inversely proportional to the dissociation. Specifically, the slope = — 1 ZKd. Therefore, as is clear from FIG. 5, since the slope of the straight line obtained in the interaction between the mouse antibody and the anti-mouse antibody is 1 2 X 1 0 8 (= coefficient of x), Kd = 0. is calculated as 5X 1 0 one 8. In this way, the dissociation Kd can be calculated by measuring the molecular concentration in each well, and a specific intermolecular interaction can be measured.
次に、 さらに詳細な他の ϋ¾口実^結果について言及しておく。 図 6に示す参照番号は図 Next, I will mention other more detailed results. Reference numbers shown in Figure 6 are figures
2および図 3に示す参照番号要素と同一を意味する。 ここでは、 ConcanavalinA (以下 Γϋοη AJ と称する) と糖タンパク質 (RNaseB glycoprotein:以下、 「RNaseBj と る) との相互作用を検出している。 まず、 図 6 ( a ) に示すように 100 i g/ml の濃度の Con Aをゥエル 2の中心の領域 2 dに 1 μ ΐ滴下した後に、 風乾させて固定した。 次に、 図 6 ( b ) に示すようにタンパク 質回収率を向上させるためにブロッキング処理を行う。 具体的には、 ブロッキング溶液 (Blocking buffer) として 10mg/ml濃度の BSA (牛血清アルブミン) を 60 μ ΐ程、 ゥエル 2内の前記領域 2 dに加え、 20分禾1¾温で培養 (インキュベート) した。 その後、 図 6 ( c ) に示すように洗浄液 (Washing buffer) を 100 μ 1力 0え、 1度目は加えられた洗浄 液を直ちに捨て、 さらに洗浄液を加えた後 (2度目) 、 10分禾! ¾温で培養した。 次に、 蛍 光標識 (FITCラベル) した RNaseBを 0. 5, 1, 1. 5, 2, 2. 5, 3, 3. 5, 4, 4. 5, 5 μ g/mlの 濃度に振り分けて、 それぞれ別途のゥエル 2にカロえたあと室温で培養した。 そして、 2 4 時間 怪過した後に測定および画像角晰を行い上述と同様にスカツチヤードプロット Means the same as the reference number element shown in 2 and FIG. Here, the interaction between ConcanavalinA (hereinafter referred to as Γϋοη AJ) and glycoprotein (RNaseB glycoprotein: hereinafter referred to as “RNaseBj”) is detected. First, as shown in Fig. 6 (a), 1 μ の of Con A having a concentration of 100 ig / ml was dropped onto the central region 2 d of the well 2 and then air-dried and fixed. Next, as shown in Fig. 6 (b), blocking treatment is performed to improve the protein recovery rate. Specifically, add 10 mg / ml BSA (bovine serum albumin) as a blocking buffer to the region 2d in the well 2 and incubate (incubate) for 20 minutes at 1¾ temperature. did. Then, as shown in Fig. 6 (c), wash the washing buffer (100 μm), discard the added washing solution for the first time, and add the washing solution (second time) for 10 minutes. ¾ Cultivated at temperature. Next, RNaseB labeled with a fluorescent label (FITC label) was distributed to concentrations of 0.5, 1, 1. 5, 2, 2.5, 3, 3.5, 4, 4.5, 5 μg / ml. Then, after cultivating each in separate wel 2, it was incubated at room temperature. Then, after 24 hours of injury, perform measurement and image cornering, and perform a scatter plot as described above.
(Scatchard plot) を作製した。 その角浙画像およびスカツチヤードプロットがそれぞれ 図 7および図 8に示されてレ、る。 このようにして計測した結果、 Con A と RNaseBの角早離 定数 (Kd) は 2. 6 X 10"6と算出され、 文献値 (1. 64X 10"6) と略一 ることが麵军されよ 。 (Scatchard plot) was prepared. The angle Zhe image and scutchyard plot are shown in Figure 7 and Figure 8, respectively. As a result of the measurement, the angular separation constant (Kd) of Con A and RNase B is calculated as 2.6 X 10 " 6, which is almost the same as the literature value (1. 64X 10" 6 ). Be.
なお、 図 7の角浙画像は、 上から順に番号が付されており、 それぞれ RNaseB を 0. 5, 1, 1. 5, 2, 2. 5, 3, 3. 5, 4, 4. 5, 5 μ g/mlのものを示している。 また、 図 8のスカツチヤ一 ドプロットについては、 各ウエノレ 2ごとのデータをそれぞれプロットし、 縦軸 [A · B]/ [A]は、 リガンド'レセプター結合分子と趣隹リガンド分子との比値 ([R/ L]/[R]) を表示し、 横軸 [A■ B]は、 リガンド ·レセプター結合分子の濃度 ( [R · L]) を表示し ており、 得られた ¾線の傾きが解離 に反比例していることは既に言及したとおりであ る (このことは後述する図 9および図 1 0も同様) 。  In addition, the Kakuzhe images in Fig. 7 are numbered in order from the top, and RNaseB is assigned to 0.5, 1, 1. 5, 2, 2. 5, 3, 3. 5, 4, 4. 5 respectively. , 5 μg / ml. In addition, for the scatter plot of Fig. 8, the data for each of the two well plots are plotted, and the vertical axis [A · B] / [A] is the ratio value of the ligand 'receptor binding molecule and the taste ligand molecule ( [R / L] / [R]) is displayed, and the horizontal axis [A ■ B] indicates the concentration of ligand / receptor binding molecule ([R · L]), and the slope of the obtained ¾ line As mentioned earlier, is inversely proportional to dissociation (this is also true for Fig. 9 and Fig. 10 described later).
次に図 9に示す実験では Auroraキナーゼ抗体 (以下、 「Aurora」 と称する) と hi stone H3抗体 (以下、 「HiStone」 と称する) との相互作用を検出している。 Next, in the experiment shown in FIG. 9, the interaction between the Aurora kinase antibody (hereinafter referred to as “Aurora”) and the hi stone H3 antibody (hereinafter referred to as “Hi S tone”) is detected.
まず、 図 6 ( a ) に示すように 10 μ g/mlの濃度の Histoneをゥエル 2の中心の領域 2 dに 1 x l滴下した後に、 風乾させて固定した。 次に、 図 6 ( b ) に示すようにブロッキ ング、赚として 10mg/ml濃度の BSAを 60 μ ΐ程、 ゥエル 2内の編己領域 2 dに加え、 20 分程室温でインキュベートした。 その後、 図 6 ( c ) に示すように洗浄液を 100 μ ΐカロえ、 1度目 えられた洗浄液を直ちに捨て、 さらに洗浄液を加えた後 (2度目) 、 10分 @¾ 温でインキュベートした。 次に、 蛍光標識 (FITCラベル) した Auroraを 1, 2, 3, 4, 5, 6 μ g/mlの濃度に振り分けて、 それぞれ別途のゥエル 2にカ卩えたあと室温で培養した。 そして、 2 4時間程経過した後に測定および画像解析を行いスカツチヤードプロットを作 製した。 その角科斤画像およびスカツチヤードプロットがそれぞれ図 9および図 1 0に示さ れている。 このようにして計測した結果、 Auroraと Histone と の解離定数 (Kd) は 1. 5 X 10—7と算出され、 この解離 ¾m値を示す公知文献は存在しないため、 この結果が新規発 見とされる。 なお、 図 7の角浙画像は、 上から順に番号が付されており、 それぞれ First, as shown in FIG. 6 (a), 1 xl of Histone having a concentration of 10 μg / ml was dropped on the central region 2 d of the well 2 and then air-dried and fixed. Next, as shown in Fig. 6 (b), blocking was performed, and as a sputum, BSA at a concentration of 10 mg / ml was added to the knitting area 2 d in the well 2 and incubated for 20 minutes at room temperature. Thereafter, as shown in FIG. 6 (c), the washing solution was 100 μΐ, the first washing solution was immediately discarded, and further the washing solution was added (second time), followed by incubation at a temperature of 10 minutes at 3 ° C. Next, fluorescently labeled (FITC-labeled) Aurora was distributed to concentrations of 1, 2, 3, 4, 5, and 6 μg / ml, and each was placed in a separate well 2 and incubated at room temperature. After about 24 hours, measurements and image analysis were performed, and a scatter plot was created. The horned eyelid image and scutchyard plot are shown in Fig. 9 and Fig. 10, respectively. As a result of measuring this manner, the dissociation constant of the Aurora and Histone (Kd) was calculated to be 1. 5 X 10- 7, known in the literature indicating the dissociation ¾m value because it does not exist, the result is O look new onset Is done. In addition, the Kakuzhe images in Fig. 7 are numbered sequentially from the top.
Auroraを 1, 2, 3, 4, 5, 6 g/mlに振り分けたものを示しており、 図 1 0のスカツチヤ ードプロットについては前述のとおりである。  Aurora is distributed to 1, 2, 3, 4, 5, 6 g / ml, and the scatchart plot in Fig. 10 is as described above.
以上、 本発明の分子間相互作用測定装置としてマイクロプレート 1を用いた実施形態を 一例として説明してきたが、 本発明はこれに限定されるものではなく、 少なくとも 1つの ゥエルの底面 (平面でなくとも良い) の一部領域と他の領域とで包含する分子が異なつて いるように構成された他の装置であつても良く、 また、 上述の抗体での実例反応で検証し たが本発明の思想に鑑みれば相互作用を所望する 2つ以上の分子の測定全般に活用するこ とができることが できよう。 また、 本実施形態では 2つの分子間の相互作用の!^の みを例示したが、 他の固体化領域以外のゥエル内領域に貯留させる溶液に他のリガンド分 子 (非標識) を包含させて競合反応させる方法にも応用することができ、 又反応感度を高 めるために標識しない一 7火抗体を (レセプター) に結合させ、 所望する抗体 (リガン ド) を二次抗体として標識し抗原と一 7火抗体との結合体に結合させて反応させる方法に応 用しても良く、 いわゆる蛍光測定法 湘互作用させる一方の分子を標識し、 発する蛍光で 測定する方法^!殳) に応用することができる。 さらに、 蛍光色素としては F I T Cに特に 限定されるものでなく、 他の蛍光色素、 例えば、 c y 5のごときでも差し支えない。 なお、 本明細書においてレセプターとリガンドとの表現を用いてきたが、 これは質量作用の法則 (モデ 式参照) における結合作用 (平衡作用) に従って説明する便宜上用いたものであ り、 レセプターとリガンドとを逆に当てはめても良く、 相互作用の有無が不明な分子間に おいて相互作用する力否かを測定することであっても (例えば、 異なるタンパク質相互間、 核酸相互間、 タンパク質 '核酸相互間等の相互作用の有無を測定する) 本発明の特徴 (異 なる分子が包含される領域を形成して反応させる構成) およびその思想を逸脱するもので はないことが当業者には容易に理解できるであろう。  As described above, the embodiment using the microplate 1 as the intermolecular interaction measuring apparatus of the present invention has been described as an example. However, the present invention is not limited to this, and the bottom surface of at least one well (not a plane) Other regions configured to have different molecules to be included in some of the regions and other regions, and verified by the above-described example reaction with the antibody. In view of this idea, it can be used for the measurement of two or more molecules for which interaction is desired. In this embodiment, the interaction between two molecules! Although only ^ is illustrated, it can also be applied to a method in which other ligand molecules (unlabeled) are included in the solution stored in the area inside the well other than the solidification area to cause a competitive reaction. In order to increase the sensitivity, a non-labeled seven-antibody is bound to (receptor), and the desired antibody (ligand) is labeled as a secondary antibody and bound to a conjugate of the antigen and the seven-antibody. This method can also be applied to the so-called fluorescence measurement method, which is a method of measuring one of the interacting molecules with the emitted fluorescence (^! 殳). Further, the fluorescent dye is not particularly limited to FITC, and other fluorescent dyes such as cy 5 may be used. In this specification, the expression of receptor and ligand has been used, but this is used for the convenience of explanation according to the binding action (equilibrium action) in the law of mass action (see the model formula). May be applied in reverse, and even measuring the force of interaction between molecules with unknown interaction (for example, between different proteins, between nucleic acids, protein 'nucleic acid It is easy for those skilled in the art not to deviate from the characteristics of the present invention (configuration in which different molecules are included and reacted) and the idea thereof. Will understand.

Claims

言青 求 の 範 囲 Scope of wording
1. 相互作用の測定を戶望する分子のうち一つの分子を蛍光色素により標識して少なく ともこれを含む溶液を衝蓆し、 さらに他の分子を蛍光色素により標識しない状態でこれを 含む齒夜を 蓆する溶液樹蓆工程と、  1. One of the molecules for which interaction is desired to be measured is labeled with a fluorescent dye, and at least a solution containing the same is impregnated, and another molecule is included without being labeled with a fluorescent dye. A solution tree-making process to delight the night,
上方に開放されたゥエルの底面の 域に tiff己 ¾1工程により ^(蓆された標識していない 分子を含む溶液を固定化する固定化工程と、 Immobilization step of immobilizing a solution containing a non-labeled molecule ^ (tagged) by the tiff self ¾1 step in the area of the bottom of the well opened upward,
前記 工程により準備された標識された分子を含む溜夜を廳己ゥエル内に貯留させ、 前 記固定化工程により固定化された'鹿夜と させる反応工程と、 A reaction step in which the stagnation night containing the labeled molecule prepared in the above step is stored in the frog well, and the stagnation is fixed by the immobilization step, and
該反応工程により^ 5させた溶液に対して光を照射する照射工程と、 An irradiation step of irradiating light to the solution ^ 5 produced by the reaction step;
tiff己固定化工程で標識して ヽな 、分子を含む ΐ 夜が固定化された編己ゥエルの底面のー領 域における蛍光濃度と、 前言 票識された分子を含む溶液が貯留された l己 域以外の領 域における蛍光濃度と、 を比較測定する蛍光測定工程と、 tiff self-immobilization process labeled ヽ containing molecules ΐ Fluorescence concentration in the region of the bottom of the knitting well where the night was immobilized, and a solution containing the molecules identified in the previous statement were stored l A fluorescence measurement process for comparing and measuring the fluorescence concentration in a region other than its own region,
を有することを特徴とする分子間相互作用測定方法。 A method for measuring an intermolecular interaction, comprising:
2. 編己固定化工程は、 前記ゥエルの底面の U域に所定の分子を固定化する工程と、 前記標識されていなレ、分子を含む窗夜に該固定化された所定の分子と親和性を有する分子 を含ませる工程と、 前記ゥエルの底面の" ϋ域に前言 票識されて!/ヽなレヽ分子を含む窗夜を 滴下する工程とを有する、 ことを特徴とする請求項 1に記載の分子間相互作用測定方法。 2. The self-immobilization step includes a step of immobilizing a predetermined molecule in the U region on the bottom surface of the well, and an affinity for the predetermined molecule immobilized on the night containing the unlabeled molecule. The method includes a step of including a molecule having a property, and a step of dripping a night containing a molecule that has been preliminarily identified in the region of the bottom surface of the well. A method for measuring an intermolecular interaction described in 1.
3 . 前記固定化工程は、 編己ゥエルの底面の ~ R域に編 S標識されていない分子を含む ? 夜を滴下する工程と、 滴下された溜夜を乾燥させる工程とを有する、 ことを特徴とする 請求項 1に記載の分子間相互作用測定方法。 -3. Does the immobilization process include molecules that are not S-labeled in the ~ R region of the bottom of the knitting well? The method for measuring an intermolecular interaction according to claim 1, further comprising a step of dripping night and a step of drying the drenched night. -
4. 編己溶液精工程において聰される溶液は、 予め定められた濃度条件で複数設定 され、 それぞれ設定された濃度条件の溶液ごとに対応する蛍光濃度を測定することによつ て測定を所望する分子間の相互作用のうち適正な濃度条件■解離 を算出する、 ことを 特徴とする請求項 1 ~ 3のレ、ずれ力に記載の分子間相互作用測定方法。 4. Multiple solutions to be drowned in the knitting solution purification process are set under a predetermined concentration condition, and measurement is desired by measuring the fluorescence concentration corresponding to each solution under the set concentration condition. The method for measuring intermolecular interactions according to (1) to (3), characterized in that the appropriate concentration condition ■ dissociation is calculated among the interactions between molecules.
5. 瘤夜を貯留可能な凹部を形成するゥエルを有し、 ― 該ゥエル内の底面が、 分子間相互作用の測定を所望する分子のうち一つの分子であって蛍 光標識されていない分子を含む?薪夜を固定化するための^ B域と、 前記一つの分子との分 子間相互作用の測定を所望する他の分子であって蛍光標識された分子を含む溶液を受容す るための他の頁域とで構成され、 5. It has a well that forms a recess capable of storing the night, and the bottom of the well is one of the molecules for which intermolecular interaction is desired to be measured and is not fluorescently labeled. Accepts a solution containing a fluorescently labeled molecule, which is the other molecule for which measurement of molecular interaction with the one molecule is desired, and the ^ B region for immobilizing the night And consists of other page areas for
藤己 U域は、 藤己ゥエルの底面上で前記蛍光標識されていな!/、分子を含む溶液を固定化 させた固層をなして形成され、 SiifS他の領域は、 前記ゥエルの底面上から上方に中空であ る、 ことを特徴とする分子間相互作用測定装置。 Fujimi U area is not fluorescently labeled on the bottom of Fujimiwell! /, An intermolecular interaction measurement device, characterized in that it is formed as a solid layer in which a molecule-containing solution is fixed, and the SiifS and other regions are hollow upward from the bottom surface of the well.
6 . tiff己固層は、 前記ゥエルの底面上に直接固定化された分子を含む層と、 該層に滴下 された嫌己蛍光標識されていない分子を含む ί薪夜の層とで形成される、 ことを特徴とする 請求項 5に記載の分子間相互作用測定装置。 6. The tiff self-solid layer is formed of a layer containing molecules directly immobilized on the bottom surface of the well and a layer containing a molecule not labeled with self-fluorescence dropped onto the layer. The intermolecular interaction measuring device according to claim 5, wherein
7. tiff己固層は、 前記蛍光されてレヽなレ、分子を包含する溶液を tfif己ゥエルの底面上で乾 燥させることにより形成される、 ことを特徴とする請求項 5に記載の分子間相互作用測定 装置。 7. The molecule according to claim 5, wherein the tiff self-solid layer is formed by drying the solution containing the fluorescent layer and molecules on the bottom surface of the tfif self-well. Interaction measurement device.
8 . 觸己ゥエルを縦方向および; (^向にそれぞ 复数個、 整列配置される、 ことを特徴 とする請求項 5〜 7のいずれかに記載の分子間相互作用測定装置。 8. The intermolecular interaction measuring device according to any one of claims 5 to 7, characterized in that a plurality of self-wels are arranged in a longitudinal direction and;
9. 歯己一領域における編己固層は、 該固層に包含される ΙίίΙΒ蛍光標識されていない分 子との相互作用の測定を所望する分子であって蛍光標識された分子を含む溜夜を tiff己他の 領域に貯留させたときに、 藤己蛍光標識された分子の浸入は拒まないが、 前記固層に包含 される tiff己蛍光標識されていない分子の歯己他の領域への侵入はなさないように構成され ている、 ことを特徴とする請求項 5〜8に記載の分子間相互作用測定装置。 9. The braided self-solid layer in the region of the tooth is a reservoir containing a molecule that is desired to measure the interaction with the non-fluorescently labeled molecule contained in the solid layer. Is not allowed to enter the molecule labeled with Fujimi, but the tiff is not labeled with the molecule contained in the solid layer. The intermolecular interaction measuring device according to claim 5, wherein the intermolecular interaction measuring device is configured not to intrude.
PCT/JP2006/317151 2005-08-24 2006-08-24 Method of measuring interaction between molecules and measurement apparatus using the method WO2007024014A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532222A JPWO2007024014A1 (en) 2005-08-24 2006-08-24 Method for measuring intermolecular interaction and measuring apparatus using this method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005242273 2005-08-24
JP2005-242273 2005-08-24

Publications (1)

Publication Number Publication Date
WO2007024014A1 true WO2007024014A1 (en) 2007-03-01

Family

ID=37771740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317151 WO2007024014A1 (en) 2005-08-24 2006-08-24 Method of measuring interaction between molecules and measurement apparatus using the method

Country Status (2)

Country Link
JP (1) JPWO2007024014A1 (en)
WO (1) WO2007024014A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245157A (en) * 1988-01-19 1989-09-29 Idexx Corp Kit for immunological analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245157A (en) * 1988-01-19 1989-09-29 Idexx Corp Kit for immunological analysis

Also Published As

Publication number Publication date
JPWO2007024014A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US7201836B2 (en) Multiaperture sample positioning and analysis system
US20140249056A1 (en) Bilayers
Steller et al. Natural and artificial ion channels for biosensing platforms
CN103502795B (en) The fast quantification of the biomolecule in the nano-fluid biology sensor of selectively functionalized and method thereof
ES2754814T3 (en) DRPS Nanomarker Assays
SK8362000A3 (en) Continuous format high throughput screening
JP2006505278A (en) Multi-layer concave body integration device that enables label-free detection of objects such as cells
Bright et al. Time-resolved fluorescence spectroscopy for illuminating complex systems
JP2010019553A (en) Specific bonding riaction detecting method of molecule by monomolecular fluorometric analysis
WO2017043530A1 (en) Method for detecting biological substance
US10191037B2 (en) Methods of and systems for improved detection sensitivity of assays
JP2002535655A (en) Methods for detecting changes to cellular components
US20100092341A1 (en) Biochip for fluorescence analysis of individual transporters
JP2012523549A (en) Apparatus and method for the verification and quantitative analysis of analytes, in particular mycotoxins
US6790632B2 (en) Membrane receptor reagent and assay
JP2017508993A (en) Methods and devices for analyzing biological specimens
JP2005528612A (en) A novel method for monitoring biomolecular interactions
SG194413A1 (en) Bio-assay using liquid crystals
US20150338401A1 (en) Multiplexed bioassay techniques
BR112012012787B1 (en) biosensor for the detection of diffusion of fluorescent biomolecules, arrangement, assembly and method for the detection and measurement of diffusion of fluorescent biomolecules
US10352932B2 (en) Methods and systems for analyzing a sample with a construct comprising a fluorescent moiety and a magnetic moiety
WO2007024014A1 (en) Method of measuring interaction between molecules and measurement apparatus using the method
WO2014013372A1 (en) Processing of a sample fluid with target components
US9285322B2 (en) pH modulation methods and systems for detecting binding events
WO2009150583A1 (en) Diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007532222

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783132

Country of ref document: EP

Kind code of ref document: A1