WO2007023588A1 - Additive for livestock feeds - Google Patents

Additive for livestock feeds Download PDF

Info

Publication number
WO2007023588A1
WO2007023588A1 PCT/JP2006/305200 JP2006305200W WO2007023588A1 WO 2007023588 A1 WO2007023588 A1 WO 2007023588A1 JP 2006305200 W JP2006305200 W JP 2006305200W WO 2007023588 A1 WO2007023588 A1 WO 2007023588A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
acid
ability
microorganism
livestock
Prior art date
Application number
PCT/JP2006/305200
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuneo Hino
Original Assignee
Meiji University Legal Person
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji University Legal Person filed Critical Meiji University Legal Person
Priority to JP2007532019A priority Critical patent/JP4124478B2/en
Publication of WO2007023588A1 publication Critical patent/WO2007023588A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6431Linoleic acids [18:2[n-6]]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a livestock feed additive, a livestock feed, a method for producing an unsaturated compound, and a novel strain that can be used for them.
  • the amount of conjugated linoleic acid in milk and beef can be increased by providing the animal feed additive of the present invention to cows and the like. Further, by using the method for producing an unsaturated compound of the present invention, the unsaturated compound can be produced efficiently even in an environment where microorganisms that reduce the unsaturated compound exist.
  • Conjugated linoleic acid (CLA), an isomer of linoleic acid (LA; cis9, cisl2-C18: 2), has attracted a great deal of attention as a bioactive substance, especially cis9, transl-CLA ( c9, tl l-C18: 2) has anticancer activity (Pariza and Hargraves, 1985; Chin et al, 1992), antitumor development activity (Ha et al, 1990; Ip et al, 1991), antiarteriosclerosis
  • Various health promoting effects such as action (Lee et al, 1994), immune function activation (Cook et al., 1993; Miller et al "1994), improvement of hyperinsulinemia (Houseknecht et al” 1 998) (Pariza, 2004; Wahl e et al., 2004).
  • the present inventor has discovered a new strain (TH1 strain) of both B. vibrio fibrisolvens having both high LA-I activity and CLA-R activity, that is, high t-VA production ability (non-patent literature) 1).
  • clO, tl2-CLA can have a negative impact on health (Wahie et al. 2004) and can reduce milk fat in dairy cows (Peterson et al., 2004).
  • Butybribrio fibrisolvens with high t-VA production capacity increased production of c9, tl l-CLA only It is a precious fungus for the purpose of calorie.
  • Non-Patent Document 1 Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyriviono fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid J. Gen. Appl. Microbiol. 51: 105—113.
  • the present invention has been made under the technical background as described above, and provides means for preventing further hydrogenation in the lumen of t-VA and increasing the amount of accumulated t-VA.
  • the purpose is to do.
  • the present inventor has administered t-VA-producing bacteria together with t-VA-incorporating bacteria into the lumen. It has been found that the reduction to stearic acid can be prevented and the amount of accumulated t-VA in the lumen can be increased. In addition, a microorganism having a higher production ability than the conventionally known t-VA producing bacteria was also found. The present invention has been completed based on these findings.
  • the present invention provides the following (1) to (10).
  • a feed additive for livestock comprising a microorganism having an unsaturated compound or an unsaturated compound-producing ability, and a microorganism having an ability to take up an unsaturated compound.
  • the microorganism having an unsaturated compound-producing ability is a microorganism having a trans-paxenoic acid-producing ability
  • the microorganism having an unsaturated compound-capturing ability is a microorganism having a trans-paxenoic acid-taking ability.
  • Microbial ability having the ability to produce transbatacenoic acid Butyrivibrio 'Fibriosolvens MDT-10 strain or a mutant thereof, characterized in that it is a feed additive for livestock according to (2)
  • Microbial power having the ability to take up transbataenoic acid Bifidobatterium 'adrecentise HF-11 strain or a mutant thereof The livestock according to (2) or (3) For feed additive.
  • a livestock feed comprising the livestock feed additive according to any one of (1) to (5).
  • the livestock feed additive and livestock feed of the present invention By providing the livestock feed additive and livestock feed of the present invention to cattle and the like, the amount of CLA in milk and beef can be increased.
  • the unsaturated compound production method of the present invention makes it possible to efficiently produce unsaturated compounds even in an environment where microorganisms that reduce unsaturated compounds exist.
  • FIG. 1 Effects of butyrobibrio 'Fibriosolvens MDT-10 and bifu on the suppression of t-VA hydrogenation in batch culture of mixed rumen microorganisms (total viable count, 2 X 10 11 cfo / ml) The figure which showed the influence of the addition of Idbataterum vadrecentis HF-11 strain.
  • A is an additive-free group (control group)
  • B is a group with butyribibrio fibrisolvens MDT-10 (2 X 10 9 cfo / ml), and a group with butyribibrio fibrisolvens MDT-10 (2 X 10 9 cfo / ml) and Bifido butterium 'adrecentis HF-11 strain (2 X 10 9 clu / ml) added.
  • indicates LA
  • CLA CLA
  • indicates t-VA
  • SA indicates SA.
  • FIG.2 Butyribibrio fibriso in t-VA accessory zone (lane 2) and non-attached zone (lane 1) A thin-layer chromatogram of lipid bodies of Rubens HF-11 strain. The lipids from t-VA-added cocoon were subjected to weak alkaline hydrolysis (0.1N NaOH, 100 ° C, 1 hour) and were scored in lane 3. As the developing solvent, black mouth form + acetone (96: 4) was used for A, and black mouth form + ethanol (95: 5) was used for B.
  • Standard substances are triolein (TG), oleic acid (free FA), diolein (DG; mixture of 1,3-DG and 1,2-DG), 1-monoolein (1-MG), 2-molybdenum.
  • Nolein (2-MG) and phosphatidylcholine (PL) were purchased from Sigma.
  • FIG. 3 Diagram showing the effect of addition of Petribilli brio fibrisolvens MDT-10 and bifid baterilium adrecentis HF-11 on the t-VA content in the effluent in continuous culture of mixed rumen microorganisms ( (Total number of viable bacteria at the beginning, 1 X 10 11 ciu / ml) 0 A is the group to which both bacteria are not added (control group), B is Butyrivibrio 'Fibriosolvens MDT-10 strain (1 X 10 9 cfo / m 1 ), And C indicates the added force of butyricibrio 'Fibriosolvens (1 x 10 9 cfo / ml) and bifid bacterium' addressestis (1 x 10 9 cfo / ml), respectively.
  • LA, carbohydrates, and protein are added every 6 hours, and LA ( ⁇ ), t-VA (A), which flows out during 0-1, 2-3, and 5-6 hours after
  • the feed additive for livestock of the present invention is characterized by containing a microorganism having an ability to produce an unsaturated compound and a microorganism having an ability to take up an unsaturated compound.
  • a microorganism having an ability to produce an unsaturated compound instead of microorganisms having the ability to produce unsaturated compounds, the unsaturated compounds themselves should be included.
  • Examples of unsaturated compounds include t-VA.
  • the microorganism having the ability to produce t-VA to be used is not particularly limited.
  • a microorganism belonging to the genus Butyribibrio can be used, and the genus Eubacterium (Evssen et al., 1984), the genus Fusobacterium (Fusobacterium) (Harfoot et al, 1997), Megasufera (MeeasphaeralJ3 ⁇ 4 (Kim et al, 2002)), etc.
  • Microorganisms belonging to the genus Butyribibrio can be used as microorganisms belonging to Butyrivibrio 'Fibrisolvens.
  • Butyrivibrio 'Fibrisolvens TH1 Strain (Fukuda et al., 2005), butyribibrio 'Fibrio sorbens MDT-10, butyribibrio' Fibrino sorbens ATCC19171 (Fukuda et al., 2005), butyribibrio 'Fiber solvens ATCC 51255 (Fukuda et al. , 2005), butyribibrio 'Fibriosolvens A 38 strain (Fukuda et al., 2005), butyribibrio' Fibrisolvens OB156 strain (Fukuda et a 1., 2005), etc.
  • butyri vibrio 'Fiber sorbens MDT-10 strain was isolated by the inventor and is a patent biological deposit center of the National Institute of Advanced Industrial Science and Technology (Tsukuba Sakaihigashi 1-chome 1-chome 1 6) is deposited under the deposit number FERM BP-10540 (date of deposit: July 8, 2005). Further, a mutant strain of this strain may be used in place of the butyribibrio 'fibrinosorbens MDT-10 strain.
  • the “variant strain” refers to a strain originating from butyribibrio fibrisolvens MDT-10 strain, which has one or more mycological properties and is different from the above strain.
  • the microorganism having t-VA uptake ability to be used is not particularly limited.
  • enteric bacteria such as Bifidobacterium, Escherichia, and Lactob adll are used. Can do.
  • intestinal bacteria it is particularly preferable to use a microorganism belonging to Bifidobacterium adolescentis, which preferably uses a microorganism belonging to the genus Bifidobacterium.
  • the microorganisms of Bifidobacteria adrecentis it is preferable to use Bifidobacterium adrecente strain HF-11.
  • Bifido Batterium vadrecentis strain HF-11 is a strain isolated by the present inventor and deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the accession number FERM BP-10539. Day: 2 July 8, 005).
  • a mutant strain of this strain may be used in place of the Bifido Batterium 'adrecentis HF-11 strain.
  • the meaning of the “mutant strain” is the same as in the case of butyribibrio fibrisolvens MDT-10.
  • unsaturated compounds other than t-VA unsaturated fatty acids such as conjugated linoleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, vitamin A, ⁇ -power rotin, Examples thereof include carotenoids such as xanthophyll.
  • conjugated linoleic acid As a microorganism having a production ability, a strain (MDT-5 strain) belonging to Butyrivibrio fibrisolvens has been isolated by the present inventor.
  • microorganisms capable of producing docosahexaenoic acid or eicosapentaenoic acid include Vibrio genus T3615 (Yano et al., 1994), Moritella marina (M2l ki li l (Morita et al., 2005). ), And deep-sea microorganisms such as Shewanella marinintestina (Morita et al., 2005) and algae-like marine microorganisms collectively called Labyrinthura (Hiroshi Akikuma 'Kazuhisa Komine. 2005. Production of useful lipids by marine micro-organisms Application, Foods Food Ingredients J.
  • the microorganism used in the feed additive for livestock of the present invention may be a living bacterium, but is preferably a frozen and dried living bacterium.
  • the feed additive for livestock of the present invention may contain components other than the microorganisms described above.
  • the mixing ratio of the microorganism having the ability to produce unsaturated compounds and the microorganism having the ability to take up unsaturated compounds is not particularly limited.
  • the weight ratio of the former to the latter is 1 : 3 to: L: preferably in the range of 5.
  • the feed additive for livestock of the present invention is preferably used for an animal having rumen, that is, a ruminant such as a sushi, a hedge, a goat, etc., which has a strength that can be used for general livestock.
  • the amount of the livestock feed additive of the present invention added to the feed is not particularly limited.
  • the unsaturated compound is t-VA
  • the weight of both microorganisms relative to 100 g of a general mixed feed It is preferable to add so that the force is about 5 to 1 lg.
  • the feed additive of the present invention increases the amount of unsaturated compounds in the digestive tract of livestock by incorporating unsaturated compounds into microorganisms and preventing further reduction reaction.
  • the technique of incorporating such unsaturated compounds into microorganisms to prevent reduction produces unsaturated compounds in an environment where microorganisms that reduce unsaturated compounds exist (for example, juice of rumen contents). It can also be applied to methods. That is, in an environment where microorganisms that reduce unsaturated compounds exist, unsaturated microorganisms and unsaturated microorganisms By culturing both microorganisms having the ability to take up compounds, unsaturated compounds can be produced efficiently.
  • Butyribrio 'Fiber sorbens MDT-10 strain was newly isolated from the goat (Japanese native species) lumen by the roll tube method (Ogimoto and Imai, 1981) and identified according to Bryant's criteria (Bryant, 1986).
  • Bifidobacterium 'Adresentis JCM1275, Bifidobacterium bifidum TCM1255, Bifidoba cterium infantis JCM1222, Bifidobacterium longum J CM12 'Coli JCM 1649 and Lactobacillus' Farmentum JCM 1137 were purchased from the RIKEN Microbial System Storage Facility (JCM).
  • each strain was cultured in a 30 or 50 ml vial with 15 or 30 ml of growth medium.
  • the growth medium is a basal medium mixed with rumen centrifuge supernatant 3: 1 (Miyazaki et al., 1992).
  • the composition of the basal medium (g / L) was as follows. K HPO, 0.45; KH PO, 0.45; (NH) SO, 0.9; NaCl, 0.9; CaCl ⁇ 2 ⁇
  • N nitrogen
  • the amount of bacterial cells N was quantified by the Kjeldahl method.
  • the viable count of butyribibrio fibrisolvens and intestinal bacteria in mice was measured by a roll tube method using a growth medium supplemented with 2% (wt / vol) agar. Five test tubes were used for each sample, and the number of each colony was counted (Fukuda et al., 2005).
  • Luminous strength of goats Japanese native species
  • the middle layer of the lower layer solution was obtained by incubating the juice of the collected contents with quadruple gauze for 30 minutes in C 0 gas phase, and then removing the lifted feed pieces by suction.
  • Notch culture was performed in principle using the medium and method described above.
  • the modified basal medium was fed continuously with aeration.
  • the dilution rate was set to 0.1 / h.
  • Carbonate and protein were added to the fermentor every 6 hours. That is, 3 g of a mixture of 50 g starch, 10 g frutatooligosaccharide (Meiji Seika, Tokyo), 10 g cellulose powder (Advantech, Tokyo), 20 g casein, and 5 g trypticase 'peptone (BBL) Added.
  • These substrates can be clarified by placing them in a nozzle previously substituted with CO for 24 hours.
  • LA is adsorbed on these substrates and every 6 hours 2
  • Bacteria were isolated from more than 500 colonies each from goat lumen and adult feces by the roll tube method described above. Each isolate was cultured overnight in a growth medium (15 ml) supplemented with 5 ⁇ mol of t-VA / BSA and then spun down (20,000 ⁇ g, 10 minutes, 4 ° C.). Pellet twice with 15 ml of 50 mM potassium phosphate (KPi) buffer supplemented with 0.1% (vol / vol) Triton X-100 to remove t-VA attached to the surface of the precipitated cells. Wash 'centrifuged. Similarly, the pellet was washed with 15 ml of KPi buffer and spun down to remove Triton X-100.
  • KPi potassium phosphate
  • T-VA was quantified by gas chromatography (GLC) as described below.
  • bacteria identified as having high t-VA uptake ability and the top 4 species were identified, and then the t-VA uptake rate and the presence or absence of hydrogenation ability were examined.
  • the t-VA uptake rate was determined by culturing each bacterium to an OD value of 1.0, and then adding 5 ⁇ mol of t-VA / BSA to 15 ml of medium.
  • the amount of t-VA was quantified.
  • the amount of t-VA taken up during this time was divided by the average value of the amount of N cells before and after re-culture, and the value was expressed per hour.
  • the hydrogenation ability LA-I and CLA-R activities were measured using cells cultured separately by a usual method (described later).
  • Bifidobacterium 'adrecentiise HF-11 strain was cultured for 5 hours (until late logarithmic growth) in a growth medium (30 ml) supplemented with 5 ⁇ mol of t-VA / BSA. Cell strength after washing with% Triton X-100 solution Total lipid was extracted with black mouth form + methanol (2: 1). This total lipid was separated by thin layer chromatography (TLC), and the molecular species into which t-VA was incorporated was examined. Chromium form + acetone (96: 4) was used as the TLC developing solvent, and 50% (vol / vol) H 2 SO 4 was sprayed and heated for spot color development (Fukuda et al., 2002).
  • t-VA was incorporated in the spots presumed to be monoglyceride (MG) and diglyceride (DG).
  • the ratio of glycerol was measured. That is, after spotting MG and DG spots, extraction was performed several times with black mouth form + methanol (2: 1). The extract was divided into two equal parts, one for fatty acid (FA) quantification (described below) and the other for glycerol quantification.
  • FA fatty acid
  • glycerol quantification for the determination of glycerol, after distilling off the solvent, a blood triglyceride determination kit (Triglyceride E-Test Soichi, Wako Pure Chemicals, Tokyo) was used.
  • MG and DG were hydrolyzed with lipoprotein lipase, and the produced glycerol was phosphorylated with glycerol kinase.
  • the resulting glycerol-3-phosphate is acidified with glycerol-3-phosphate oxidase, and H 0 produced in the reaction is acidified with 4-aminoantipyrine with peroxidase to produce a blue color.
  • the blue light absorbance was measured at a wavelength of 600 to determine the amount of glycerol.
  • the total lipid or various lipids described above were transmethylated as follows.
  • the reaction is stopped by cooling the culture vial with ice, and in the case of continuous culture, the effluent is recovered in ice water and then chloroform + methanol (2 1)
  • An equal amount of the mixed solution was added, lauric acid was added as an internal standard, and the mixture was vigorously stirred for 5 minutes. After centrifuge (5,000 X g, 5 minutes), the black mouth form layer was recovered. After adding the same amount of Kuroguchi form to the recovered Kuroguchi form and stirring again, the Kuroguchi form layer was recovered in the same manner, and both recovered solutions were combined to obtain total lipid.
  • LA-I and CLA-R activities were measured using live bacteria. That is, the bacteria cultured until late in logarithmic growth were collected by centrifugation (20,000 ⁇ g, 10 minutes, 4 ° C.), suspended in 50 mM KPi buffer (pH 7.0), and used immediately.
  • KPi buffer 50 mM KPi buffer
  • For LA-I activity measurement add 0.1 ml of LA dimethyl sulfoxide (DMSO) solution (1.0 / z mol / ml reaction mixture) to KPi buffer (2.7 ml), and then the cell suspension (0.2 ml) was added to initiate the reaction and incubated at 30 ° C for 3 minutes (Hunter et al, 1976).
  • DMSO dimethyl sulfoxide
  • reaction mixture was ice-cooled, and 3 ml of the above lipid extraction solvent was added to stop the reaction.
  • lipid extraction and FA quantification were performed as described above to determine the amount of LA decrease and the amount of CLA produced. Since the LA isomerization reaction was linear for 3 minutes, this numerical force was also determined for enzyme activity.
  • CLA-R activity For measurement of CLA-R activity, a reaction mixture containing the above KPi buffer, CLA in DMSO (1.0 ⁇ mol / ml), 30 mM methylviologen, and 90 mM sodium dithionite solution The cell suspension (0.2 ml) was added to (2.8 ml) and the reaction was started. The reaction was performed anaerobically by incubating at 40 ° C for 5 minutes. The reaction was stopped as described above, and the amount of CLA decreased and the amount of t-VA produced were measured.
  • Example 1 Isolation of a new strain (MDT-10) of butyribibrio fibrisolvens with high t-VA production ability, and effect of addition of MDT-10 strain to batch culture system of mixed rumen microorganisms
  • Fukuda et al. reported the discovery of a new strain (TH1) of butyribibrio 'Fibriosolvens that has a high t-VA-producing ability, but the newly isolated strain (MDT-10) The t-VA production rate was about 30% higher than that of the TH1 strain (1.6 ⁇ mol / h / mg fungus-N versus 1.2).
  • LA-I activity of MDT-10 strain was not much different from TH1 strain (0.53 ⁇ mol / min / mg cell-N compared to 0.45), but CLA-R activity was nearly 40% higher (to 0.19) 0.26 ⁇ mol / min / mg bacterial cell-N). Therefore, this strain rapidly accumulates LA without tapping CLA. Converted.
  • MDT-10 strain is added to the mixed rumen microorganism batch culture system so that the total viable count of mixed bacteria is 1% (2 X 10 9 cfo / ml), and cultured in LA-added medium.
  • the conversion rate from LA to t-VA was remarkably increased, and the t-VA peak strength increased more than twice that of the case where no SMDT-10 strain was added ( Figures 1-A and B).
  • 10 hours later most of the t-VA produced was reduced to SA.
  • T-VA incorporated into the HF-11 strain is 62, 3, respectively, in free FA, DG (1,2-DG + 1,3-DG), MG (1-MG + 2-MG), and PL. 19 and 15% were incorporated ( Figure 2, Table 2).
  • the proportion of t-VA in total FA for each of the above lipid molecular species was 89, 78, 84, and 89%, respectively.
  • the HF-11 strain has a force of uptake of t-VA and oleic acid (c9-C18: l) into the cells at similar rates.
  • the uptake rate of SA (18: 0) is 1/3 that of C18: l. It was about.
  • the uptake rate of C18: 2 (LA and CLA) was about 1/10 of C18: 1, and the uptake of C18: 3 (linolenic acid and conjugated linolenic acid) was even slower.
  • C18: l has a very high uptake capacity and is not necessarily in parallel with the number of double bonds.
  • the HF-11 strain seemed to suppress de novo synthesis of FA when there was a large amount of externally supplied FA (Table 2). This is very interesting for the regulation of FA synthesis and the viewpoint power.
  • [Table 1] ⁇ -VA uptake capacity of isolated bacteria and specific activities of LA-I and CLA-R. ⁇ uptake of bacteria ⁇ -VA Activity 3 ⁇ 4
  • Activity is expressed as specific activity (/ • i mol / min / mg bacterial cell N).
  • (+) And (-) indicate addition and no addition, respectively.
  • Butyri vibrio 'Fibriosolvens MDT-10 and Bifidobatatrium adorescens HF-11 were grown individually, the growth rate as measured by OD was almost equal. .
  • the cell length of Butyrivibrio fibrisolvens is much shorter than that of bifidbacterium adrecentis.
  • the number of bacteria was about 2.5 times more vigorous in Butyri vibrio fibrisolvens than in Bifidobatterum adrecentis. When both bacteria were mixed and co-cultured at a ratio of 1: 1 in terms of OD value,
  • MDT-10 and HF-11 10 21 4 1 51 0 13 l After 16 hours of single culture or co-culture in the presence of LA (18 mol / 30 ml medium), 0.1% (v / v) Triton X Washed twice with buffer containing -100.
  • the table shows the percentage of fatty acids in total lipids.
  • Example 5 Effect of simultaneous loading of butyricum vibrio fibrisolvens and bifid baterium adorecentites on t-VA production and accumulation in a mixed rumen microbial culture system
  • Conjugated linoleic acid is synthesized primarily in lactating dairy cows by delta- 9 desaturase. J. Nutr. 130: 2285-2291.
  • CLA Conjugated Linoleic A cid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Feed For Specific Animals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to provide an additive for livestock feeds characterized by containing a microorganism capable of producing trans-vaccenic acid such as Butyrivibrio fibrisolvens MDT-10 strain and another microorganism capable of taking in trans-vaccenic acid such as Bifidobacterium adolescentis HF-11 strain. This additive for livestock feeds can inhibit further hydrogenation of trans-vaccenic acid in the lumen, elevate the amount of the accumulated trans-vaccenic acid and thus increase the amount of conjugated linoleic acid in livestock meat and milk.

Description

明 細 書  Specification
家畜用飼料添加物  Animal feed additives
技術分野  Technical field
[0001] 本発明は、家畜用飼料添加物、家畜用飼料、不飽和化合物の生産方法、及びこ れらに利用可能な新規菌株に関する。本発明の家畜用飼料添加物を牛などに与え ることにより、牛乳及び牛肉中の共役リノール酸量を増大させることができる。また、本 発明の不飽和化合物の生産方法を利用することにより、不飽和化合物を還元する微 生物が存在する環境下であっても、不飽和化合物を効率的に生産することができる。 背景技術  The present invention relates to a livestock feed additive, a livestock feed, a method for producing an unsaturated compound, and a novel strain that can be used for them. The amount of conjugated linoleic acid in milk and beef can be increased by providing the animal feed additive of the present invention to cows and the like. Further, by using the method for producing an unsaturated compound of the present invention, the unsaturated compound can be produced efficiently even in an environment where microorganisms that reduce the unsaturated compound exist. Background art
[0002] リノール酸 (LA; cis9, cisl2-C18:2)の異性体である共役リノール酸 (CLA)は生理活 性物質として多大な注目^^めている力 特に cis9, transl l-CLA (c9, tl l-C18:2)は 、抗癌作用(Pariza and Hargraves, 1985; Chin et al, 1992)、抗腫瘍开成作用 (Ha e t al, 1990; Ip et al, 1991)、抗動脈硬化作用 (Lee et al, 1994)、免疫機能賦活化 (C ook et al., 1993; Miller et al" 1994)、高インスリン血症の改善 (Houseknecht et al" 1 998)など、種々の健康増進作用を持つことが明らかにされている (Pariza, 2004; Wahl e et al., 2004)。 CLAには体脂肪低減効果もあると報告されているが (Nicolosi et al., 1 997)、最近の報告では、このような作用は clO, tl2-CLAでは確認されているけれども 、 c9, ti l- CLAではあまり顕著ではないようである(Perfield et al., 2004; Wang and Jo nes, 2004) o最近、 clO, tl2-CLAは健康にとって好ましくない影響を与える可能性が あると指摘されている (Rajakangas et al., 2003; Wahle et al., 2004)。  [0002] Conjugated linoleic acid (CLA), an isomer of linoleic acid (LA; cis9, cisl2-C18: 2), has attracted a great deal of attention as a bioactive substance, especially cis9, transl-CLA ( c9, tl l-C18: 2) has anticancer activity (Pariza and Hargraves, 1985; Chin et al, 1992), antitumor development activity (Ha et al, 1990; Ip et al, 1991), antiarteriosclerosis Various health promoting effects such as action (Lee et al, 1994), immune function activation (Cook et al., 1993; Miller et al "1994), improvement of hyperinsulinemia (Houseknecht et al" 1 998) (Pariza, 2004; Wahl e et al., 2004). Although CLA has also been reported to have a body fat reducing effect (Nicolosi et al., 1 997), a recent report confirms that this effect is observed in clO, tl2-CLA, but c9, ti l- CLA seems to be less prominent (Perfield et al., 2004; Wang and Jones, 2004) o Recently, clO, tl2-CLA has been pointed out to have a negative health impact (Rajakangas et al., 2003; Wahle et al., 2004).
[0003] CLA含量が高い食品としては、牛乳と牛肉がある力 その中の主要な CLA異性体 は c9, tl l-CLAであり、これは反芻動物の第一胃(ルーメン)内微生物による LAの異 性化反応により生成される (Harfoot and Hazlewood, 1997)。反芻動物ではこの CLAの 一部がそのまま小腸に流下して吸収される力 ルーメン内では CLAの大半が微生物 による還元(水素添加)反応を受けてトランスバタセン酸 (t-VA;tl 1-C 18: 1)になり、更 にその大半が更なる水素添カ卩を受けてステアリン酸 (SA; C18:0)〖こなる。しかし、 t-VA の段階で小腸に流下すれば、体内に吸収された後、 Δ 9不飽和化酵素によって CLA に再合成される (Griinari et al., 2000)。 [0003] As a food with high CLA content, milk and beef have the main CLA isomer, which is c9, tl l-CLA, which is LA by microorganisms in ruminant rumen. It is produced by the catabolism reaction (Harfoot and Hazlewood, 1997). In ruminants, a portion of this CLA flows down into the small intestine and is absorbed. In the lumen, most of the CLA undergoes a reduction (hydrogenation) reaction by microorganisms, resulting in transbataenoic acid (t-VA; tl 1-C 18: 1), and most of them are subjected to further hydrogenation to produce stearic acid (SA; C18: 0). However, if it flows down to the small intestine at the t-VA stage, it is absorbed into the body and then CLA is detected by Δ9 desaturase. (Griinari et al., 2000).
[0004] 最近、牛乳中の c9, tl l-CLAの 78〜93%が体組織中の Δ 9不飽和化酵素によって t- VAから生成されると報告された (Corl et al., 2001; Piperova et al., 2002)。また、肉 中の CLA含量も、 t-VAの吸収量を増加させれば増加するものと考えられている (Dani el et al., 2004)。従って、ルーメン内での t-VA生成を増加させ、し力もそれが更なる 水素添カ卩を受けないようにすれば、乳'肉中の c9, tl l-CLA含量を増加させ得るで あろう。 [0004] Recently, 78-93% of c9, tl l-CLA in milk was reported to be produced from t-VA by Δ9 desaturase in body tissues (Corl et al., 2001; Piperova et al., 2002). The CLA content in meat is also considered to increase with increasing t-VA absorption (Daniel et al., 2004). Therefore, if the t-VA production in the lumen is increased and the force is not subjected to further hydrogenation, the c9, tl l-CLA content in the milk can be increased. Let's go.
[0005] 乳 ·肉中の CLAを増加させる試みとして、飼料に大豆油、コーン油、ピーナッツ油、 ひまわり油、亜麻仁油、魚油などを添カ卩したところ、ルーメン内での t-VA生成量が増 加し、その結果乳'肉中の c9, tl l-CLA含量が増加したという報告がある(Dhiman et al., 2000; Chouinard et al" 2001; Duckett et al" 2002)。このような作用については 、多価不飽和脂肪酸は微生物の増殖を抑制するため (Harfoot and Hazlewood, 1997) 、油脂の添加がルーメン内の水素添加菌の活性や増殖を阻害した可能性がある。モ ネンシンなどのィオノフォア(Fellner et al., 1997; Sauer et al., 1998)や銅(Morales et al, 2000)などの添カ卩によっても同様の効果が観察されている力 これも結局は水素 添加菌が阻害された結果であろうと考えられる。このような、菌の増殖を抑えるような 手段を用いると、繊維消化率の低下などの悪影響が生じる可能性もあるので、好まし くない(Hino and Asanuma, 2003)。  [0005] As an attempt to increase CLA in milk and meat, when feed was supplemented with soybean oil, corn oil, peanut oil, sunflower oil, linseed oil, fish oil, etc., the amount of t-VA produced in the rumen Has been reported to result in an increase in c9, tl l-CLA content in milk 'meat (Dhiman et al., 2000; Chouinard et al "2001; Duckett et al" 2002). For these effects, polyunsaturated fatty acids inhibit the growth of microorganisms (Harfoot and Hazlewood, 1997), so the addition of fats and oils may inhibit the activity and growth of hydrogenated bacteria in the rumen. Forces that have been observed to have similar effects by ionophores such as monensin (Fellner et al., 1997; Sauer et al., 1998) and copper (Morales et al, 2000). It is thought that this was the result of inhibition of the added bacteria. Use of such means to suppress the growth of bacteria is not preferable because it may cause adverse effects such as a decrease in fiber digestibility (Hino and Asanuma, 2003).
[0006] LAを t-VAに水素添加する菌として、現在までに種々の菌が報告されて!ヽるが、そ の中でも特にその能力が高いのはブチリビブリオ *フイブリソルべンス (Butyrivibrio fib risolvens)で toる (Kepler et al., 1966; Eyssen and Verhuist, 1984; Jiang et ai., 1998; Kim et al., 2002)。本菌は LA異性化酵素 (LA-I)により LAを c9, tl l-CLAへと異性化し 、続いて CLA還元酵素 (CLA- R)により CLAを t-VAに還元する (Kepler et al., 1966)。 本発明者は LA-I活性と CLA-R活性の両方が高 、、つまり t-VA生成能の高 、ブチリ ビブリオ'フイブリソルべンスの新菌株 (TH1株)を発見している (非特許文献 1)。上述 のように、 clO, tl2-CLAは健康にとって好ましくない影響を与える可能性があるし (Wa hie et al. 2004)、乳牛の場合は乳脂肪を低下させるので(Peterson et al., 2004)、 t- VA生成能の高いブチリビブリオ'フイブリソルべンスは c9, tl l-CLAのみの生成を増 カロさせるという目的には貴重な菌である。 [0006] Various bacteria have been reported to date to hydrogenate LA to t-VA! Among them, the ability is particularly high, but butyrivibrio fib risolvens (Butyrivibrio fib risolvens) (Kepler et al., 1966; Eyssen and Verhuist, 1984; Jiang et ai., 1998; Kim et al., 2002). This bacterium isomerizes LA to c9, tl l-CLA with LA isomerase (LA-I), and subsequently reduces CLA to t-VA with CLA reductase (CLA-R) (Kepler et al. , 1966). The present inventor has discovered a new strain (TH1 strain) of both B. vibrio fibrisolvens having both high LA-I activity and CLA-R activity, that is, high t-VA production ability (non-patent literature) 1). As mentioned above, clO, tl2-CLA can have a negative impact on health (Wahie et al. 2004) and can reduce milk fat in dairy cows (Peterson et al., 2004). Butybribrio fibrisolvens with high t-VA production capacity increased production of c9, tl l-CLA only It is a precious fungus for the purpose of calorie.
[0007] 非特許文献 1 : Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyriviono fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J. Gen. Appl. Microbiol. 51:105—113.  [0007] Non-Patent Document 1: Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyriviono fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid J. Gen. Appl. Microbiol. 51: 105—113.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述したように t-VA生成能の高!、菌株は幾つか知られて!/、る。し力し、生成した t- VAはルーメン内の水素添加菌によってステアリン酸に還元されてしまうため、 t-VA生 成能の高い菌株を牛に与えるだけでは、牛肉及び牛乳中の CLA量を増大させること はできない。 [0008] As described above, t-VA production ability is high! Several strains are known! However, since the generated t-VA is reduced to stearic acid by hydrogenated bacteria in the rumen, simply giving the cow a strain with a high t-VA-producing ability will reduce the amount of CLA in beef and milk. It cannot be increased.
[0009] 本発明は、以上のような技術的背景の下になされたものであり、 t-VAのルーメン内 での更なる水素添加を妨げ、 t-VAの蓄積量を増大させる手段を提供することを目的 とする。  [0009] The present invention has been made under the technical background as described above, and provides means for preventing further hydrogenation in the lumen of t-VA and increasing the amount of accumulated t-VA. The purpose is to do.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者は、上記課題を解決するため鋭意検討を重ねた結果、 t-VA生成菌と共 に t-VA取り込み能を持つ菌をルーメン内に投与することにより、 t-VAのステアリン酸 への還元を防止し、ルーメン内の t-VAの蓄積量を増大させ得ることを見出した。また 、従来知られている t-VA生成菌よりも更に生成能の高い微生物も見出した。本発明 は、これらの知見に基づいて完成されたものである。  [0010] As a result of intensive studies to solve the above-mentioned problems, the present inventor has administered t-VA-producing bacteria together with t-VA-incorporating bacteria into the lumen. It has been found that the reduction to stearic acid can be prevented and the amount of accumulated t-VA in the lumen can be increased. In addition, a microorganism having a higher production ability than the conventionally known t-VA producing bacteria was also found. The present invention has been completed based on these findings.
[0011] 即ち、本発明は、以下の(1)〜(10)を提供するものである。  That is, the present invention provides the following (1) to (10).
[0012] (1)不飽和化合物又は不飽和化合物生成能を有する微生物、及び不飽和化合物取 り込み能を有する微生物を含有することを特徴とする家畜用飼料添加物。  [0012] (1) A feed additive for livestock, comprising a microorganism having an unsaturated compound or an unsaturated compound-producing ability, and a microorganism having an ability to take up an unsaturated compound.
[0013] (2)不飽和化合物生成能を有する微生物がトランスパクセン酸生成能を有する微生 物であり、不飽和化合物取り込み能を有する微生物がトランスパクセン酸取り込み能 を有する微生物であることを特徴とする(1)に記載の家畜用飼料添加物。  [0013] (2) The microorganism having an unsaturated compound-producing ability is a microorganism having a trans-paxenoic acid-producing ability, and the microorganism having an unsaturated compound-capturing ability is a microorganism having a trans-paxenoic acid-taking ability. The feed additive for livestock as described in (1) characterized by these.
[0014] (3)トランスバタセン酸生成能を有する微生物力 ブチリビブリオ'フイブリソルべンス MDT-10株又はその変異株であることを特徴とする(2)に記載の家畜用飼料添加物 [0015] (4)トランスバタセン酸取り込み能を有する微生物力 ビフイドバタテリゥム 'アドレセン テイス HF-11株又はその変異株であることを特徴とする(2)又は(3)に記載の家畜用 飼料添加物。 [0014] (3) Microbial ability having the ability to produce transbatacenoic acid Butyrivibrio 'Fibriosolvens MDT-10 strain or a mutant thereof, characterized in that it is a feed additive for livestock according to (2) [0015] (4) Microbial power having the ability to take up transbataenoic acid Bifidobatterium 'adrecentise HF-11 strain or a mutant thereof The livestock according to (2) or (3) For feed additive.
[0016] (5)家畜が、反芻動物であることを特徴とする(1)乃至 (4)のいずれかに記載の家畜 用飼料添加物。  [0016] (5) The feed additive for livestock according to any one of (1) to (4), wherein the livestock is a ruminant.
[0017] (6) (1)乃至(5)のいずれかに記載の家畜用飼料添加物を含む家畜用飼料。  [0017] (6) A livestock feed comprising the livestock feed additive according to any one of (1) to (5).
[0018] (7)不飽和化合物を還元する微生物が存在する環境で、不飽和化合物生成能を有 する微生物と不飽和化合物取り込み能を有する微生物を培養し、培養物力 不飽和 化合物を採取することを特徴とする不飽和化合物の生産方法。 [0018] (7) In an environment where microorganisms that reduce unsaturated compounds exist, cultivate microorganisms having an ability to produce unsaturated compounds and microorganisms having an ability to take in unsaturated compounds, and collect the unsaturated compounds. A method for producing an unsaturated compound.
[0019] (8)不飽和化合物が、トランスバタセン酸であることを特徴とする(7)に記載の不飽和 化合物の生産方法。 [0019] (8) The method for producing an unsaturated compound as described in (7), wherein the unsaturated compound is transbatacic acid.
[0020] (9)トランスバタセン酸生成能を有するブチリビブリオ.フイブリソルべンス MDT-10株。  [0020] (9) A butyribibrio fibrisolvens MDT-10 strain having the ability to produce transbatacenoic acid.
[0021] (10)トランスバタセン酸取り込み能を有するビフイドバクテリウム'ァドレセンティス HF -11株。 [0021] (10) Bifidobacterium 'adrecentis HF-11 strain having transbatacic acid uptake ability.
発明の効果  The invention's effect
[0022] 本発明の家畜用飼料添加物及び家畜飼料を牛などに与えることにより、牛乳及び 牛肉中の CLA量を増大させることができる。また、本発明の不飽和化合物の生産方 法により、不飽和化合物を還元する微生物が存在する環境であっても、不飽和化合 物を効率的に生産することが可能になる。  [0022] By providing the livestock feed additive and livestock feed of the present invention to cattle and the like, the amount of CLA in milk and beef can be increased. In addition, the unsaturated compound production method of the present invention makes it possible to efficiently produce unsaturated compounds even in an environment where microorganisms that reduce unsaturated compounds exist.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]混合ルーメン微生物(総生菌数、 2 X 1011 cfo/ml)のバッチ法培養における t-VA の水素添加の抑制に及ぼすブチリビブリオ'フイブリソルべンス MDT- 10株およびビフ イドバタテリゥム ·ァドレセンティス HF-11株の添加の影響を示した図。 Aは無添加区( 対照区)、 Bはブチリビブリオ'フイブリソルべンス MDT-10株 (2 X 109 cfo/ml)添加区、 まブチリビブリオ'フイブリソルべンス MDT- 10株(2 X 109 cfo/ml)およびビフイドバタ テリゥム 'ァドレセンティス HF- 11株(2 X 109 clu/ml)添加区をそれぞれ示す。また、〇 は LA、◊は CLA、▲は t— VA、□は SAをそれぞれ示す。 [0023] [Fig. 1] Effects of butyrobibrio 'Fibriosolvens MDT-10 and bifu on the suppression of t-VA hydrogenation in batch culture of mixed rumen microorganisms (total viable count, 2 X 10 11 cfo / ml) The figure which showed the influence of the addition of Idbataterum vadrecentis HF-11 strain. A is an additive-free group (control group), B is a group with butyribibrio fibrisolvens MDT-10 (2 X 10 9 cfo / ml), and a group with butyribibrio fibrisolvens MDT-10 (2 X 10 9 cfo / ml) and Bifido butterium 'adrecentis HF-11 strain (2 X 10 9 clu / ml) added. ○ indicates LA, ◊ indicates CLA, ▲ indicates t-VA, and □ indicates SA.
[図 2]t-VA添カ卩区 (レーン 2)および無添カ卩区 (レーン 1)のブチリビブリオ'フイブリソ ルベンス HF-11株の菌体脂質の薄層クロマトグラム。 t-VA添カ卩区の脂質を弱アルカリ 加水分解 (0.1N NaOH, 100°C, 1時間)したものをレーン 3に着点した。展開溶媒は 、 Aについてはクロ口ホルム +アセトン(96:4)を使用し、 Bについてはクロ口ホルム +メ タノール(95:5)を使用した。標準物質(Std)はトリオレイン(TG)、ォレイン酸(遊離 FA) 、ジォレイン(DG; 1,3-DGおよび 1,2- DGの混合物)、 1-モノォレイン(1- MG)、 2-モ ノォレイン(2- MG)、およびホスファチジルコリン(PL)を含み、それぞれシグマ社から 購入した。 [Fig.2] Butyribibrio fibriso in t-VA accessory zone (lane 2) and non-attached zone (lane 1) A thin-layer chromatogram of lipid bodies of Rubens HF-11 strain. The lipids from t-VA-added cocoon were subjected to weak alkaline hydrolysis (0.1N NaOH, 100 ° C, 1 hour) and were scored in lane 3. As the developing solvent, black mouth form + acetone (96: 4) was used for A, and black mouth form + ethanol (95: 5) was used for B. Standard substances (Std) are triolein (TG), oleic acid (free FA), diolein (DG; mixture of 1,3-DG and 1,2-DG), 1-monoolein (1-MG), 2-molybdenum. Nolein (2-MG) and phosphatidylcholine (PL) were purchased from Sigma.
[図 3]混合ルーメン微生物の連続培養における流出液中の t-VA量に及ぼすプチリビ ブリオ'フイブリソルべンス MDT- 10株およびビフイドバタテリゥム 'ァドレセンティス HF -11株の添加効果を示す図 (開始当初の生菌総数, 1 X 1011 ciu/ml)0 Aは両菌とも無 添加の区(対照区)、 Bはブチリビブリオ'フイブリソルべンス MDT-10株(1 X 109 cfo/m 1)の添加区、 Cはブチリビブリオ 'フイブリソルべンス (1 X 109 cfo/ml)およびビフイドバ クテリゥム'アドレセンティス (1 X 109 cfo/ml)の添力卩区をそれぞれ示す。 LA、炭水化 物、およびタンパク質を 6時間ごとに添加し、 LA添加後 0-1, 2-3,および 5-6時間 の間に流出した LA (〇), t-VA(A),および SA (口)の量をプロットした。 [Fig. 3] Diagram showing the effect of addition of Petribilli brio fibrisolvens MDT-10 and bifid baterilium adrecentis HF-11 on the t-VA content in the effluent in continuous culture of mixed rumen microorganisms ( (Total number of viable bacteria at the beginning, 1 X 10 11 ciu / ml) 0 A is the group to which both bacteria are not added (control group), B is Butyrivibrio 'Fibriosolvens MDT-10 strain (1 X 10 9 cfo / m 1 ), And C indicates the added force of butyricibrio 'Fibriosolvens (1 x 10 9 cfo / ml) and bifid bacterium' addressestis (1 x 10 9 cfo / ml), respectively. LA, carbohydrates, and protein are added every 6 hours, and LA (○), t-VA (A), which flows out during 0-1, 2-3, and 5-6 hours after LA addition. And the amount of SA (mouth) was plotted.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
[0025] 本発明の家畜用飼料添加物は、不飽和化合物生成能を有する微生物、及び不飽 和化合物取り込み能を有する微生物を含有することを特徴とするものである。また、 不飽和化合物生成能を有する微生物の代わりに、不飽和化合物自体を含んで 、て ちょい。  [0025] The feed additive for livestock of the present invention is characterized by containing a microorganism having an ability to produce an unsaturated compound and a microorganism having an ability to take up an unsaturated compound. In addition, instead of microorganisms having the ability to produce unsaturated compounds, the unsaturated compounds themselves should be included.
[0026] 不飽和化合物としては、まず t-VAを挙げることができる。  [0026] Examples of unsaturated compounds include t-VA.
[0027] 使用する t-VA生成能を有する微生物は特に限定されず、例えば、ブチリビブリオ 属の微生物を使用でき、また、ユウパクテリゥム(Eubacterium)属(Evssen et al., 1984 )、フソバタテリゥム (Fusobacterium)属 (Harfoot et al, 1997)、メガスフエラ (Meeasph aeralJ¾ (Kim et al, 2002 )の微生物なども使用できる。ブチリビブリオ属の微生物と しては、ブチリビブリオ'フイブリソルべンスに属する微生物を使用できる。ブチリビブリ ォ ·フイブリソルべンスに属する菌株としては、ブチリビブリオ'フイブリソルべンス TH1 株(Fukuda et al., 2005)、ブチリビブリオ 'フイブリソルべンス MDT- 10株、ブチリビブリ ォ'フイブリソルべンス ATCC19171株(Fukuda et al., 2005)、ブチリビブリオ'フイブリ ソルべンス ATCC51255株(Fukuda et al., 2005)、ブチリビブリオ 'フイブリソルべンス A 38株(Fukuda et al., 2005)、ブチリビブリオ 'フイブリソルべンス OB156株(Fukuda et a 1., 2005)などを例示でき、それらの中でもブチリビブリオ 'フイブリソルべンス MDT-10 株を使用することが好ましい。ブチリビブリオ'フイブリソルべンス MDT-10株は、本発 明者によって分離された菌株であり、独立行政法人産業技術総合研究所特許生物 寄託センター (日本国茨城県つくば巿東 1丁目 1番地 1中央第 6)に受託番号 FERM BP-10540として寄託されている(受託日: 2005年 7月 8日)。また、ブチリビブリオ'フィ ブリソルべンス MDT-10株の代わりに、この菌株の変異株を用いてもよい。ここで「変 異株」とは、ブチリビブリオ'フイブリソルべンス MDT-10株を起源とする菌株であって、 一つ以上の菌学的性質にお!、て前記菌株と異なる菌株を 、う。 [0027] The microorganism having the ability to produce t-VA to be used is not particularly limited. For example, a microorganism belonging to the genus Butyribibrio can be used, and the genus Eubacterium (Evssen et al., 1984), the genus Fusobacterium (Fusobacterium) (Harfoot et al, 1997), Megasufera (MeeasphaeralJ¾ (Kim et al, 2002)), etc. Microorganisms belonging to the genus Butyribibrio can be used as microorganisms belonging to Butyrivibrio 'Fibrisolvens. As a strain belonging to Fibriosorbens, Butyrivibrio 'Fibrisolvens TH1 Strain (Fukuda et al., 2005), butyribibrio 'Fibrio sorbens MDT-10, butyribibrio' Fibrino sorbens ATCC19171 (Fukuda et al., 2005), butyribibrio 'Fiber solvens ATCC 51255 (Fukuda et al. , 2005), butyribibrio 'Fibriosolvens A 38 strain (Fukuda et al., 2005), butyribibrio' Fibrisolvens OB156 strain (Fukuda et a 1., 2005), etc. It is preferable to use the MDT-10 strain. Butyri vibrio 'Fiber sorbens MDT-10 strain was isolated by the inventor and is a patent biological deposit center of the National Institute of Advanced Industrial Science and Technology (Tsukuba Sakaihigashi 1-chome 1-chome 1 6) is deposited under the deposit number FERM BP-10540 (date of deposit: July 8, 2005). Further, a mutant strain of this strain may be used in place of the butyribibrio 'fibrinosorbens MDT-10 strain. Here, the “variant strain” refers to a strain originating from butyribibrio fibrisolvens MDT-10 strain, which has one or more mycological properties and is different from the above strain.
[0028] 使用する t-VA取り込み能を有する微生物も特に限定されず、例えば、ビフイドパク テリゥム(Bifidobacterium)属、ェシエリキア(Escherichia)属、ラクトバチルス属(Lactob adll )などの腸内細菌を使用することができる。腸内細菌の中では、ビフイドパクテリ ゥム属に属する微生物を使用するのが好ましぐビフイドバタテリゥム 'アドレセンティス (Bifidobacterium adolescentis)に属する微生物を使用するのが特に好ましい。ビフィ ドバクテリゥム ·ァドレセンテイスの微生物の中では、ビフイドバタテリゥム ·ァドレセンテ イス HF-11株を使用することが好まし 、。ビフイドバタテリゥム ·ァドレセンティス HF-11 株は、本発明者によって分離された菌株であり、独立行政法人産業技術総合研究所 特許生物寄託センターに受託番号 FERM BP-10539として寄託されている(受託日: 2 005年 7月 8日)。また、ビフイドバタテリゥム 'ァドレセンティス HF- 11株の代わりに、この 菌株の変異株を用いてもよい。「変異株」の意味は、ブチリビブリオ'フイブリソルベン ス MDT- 10株の場合と同様である。 [0028] The microorganism having t-VA uptake ability to be used is not particularly limited. For example, enteric bacteria such as Bifidobacterium, Escherichia, and Lactob adll are used. Can do. Among intestinal bacteria, it is particularly preferable to use a microorganism belonging to Bifidobacterium adolescentis, which preferably uses a microorganism belonging to the genus Bifidobacterium. Among the microorganisms of Bifidobacteria adrecentis, it is preferable to use Bifidobacterium adrecente strain HF-11. Bifido Batterium vadrecentis strain HF-11 is a strain isolated by the present inventor and deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the accession number FERM BP-10539. Day: 2 July 8, 005). In addition, a mutant strain of this strain may be used in place of the Bifido Batterium 'adrecentis HF-11 strain. The meaning of the “mutant strain” is the same as in the case of butyribibrio fibrisolvens MDT-10.
[0029] t-VA以外の不飽和化合物としては、共役リノール酸、リノール酸、リノレン酸、ァラキ ドン酸、ドコサへキサェン酸、エイコサペンタエン酸などの不飽和脂肪酸やビタミン A 、 β -力ロチン、キサントフィルなどのカロチノイド類などを挙げることができる。これら の化合物の生成菌ゃ取り込み菌は、幾つか知られている。例えば、共役リノール酸 生成能を有する微生物としては、ブチリビブリオ'フイブリソルべンスに属する菌株 (M DT-5株)が本発明者によって単離されている。また、ドコサへキサェン酸ゃエイコサ ペンタエン酸の生成能を有する微生物としては、ビブリオ (Vibrio)属 T3615株 (Yano et al., 1994)、モリテラ'マリナ(M2l k i li l(Morita et al., 2005)、シュワネラ 'マ リニンテスティナ(Shewanella marinintestina) (Morita et al., 2005)などの深海微生物 やラビリンチユラと総称される藻類様海洋微生物 (秋庸裕 '小埜和久. 2005.海洋微 生物による有用脂質の生産と応用, Foods Food Ingredients J. Jpn., 210: 758-764.) などが知られている。また、ドコサへキサェン酸ゃエイコサペンタエン酸の取り込み能 を有する微生物としては、シュワネラ 'ベンティカ (Shewanella benthica)、シュワネラビオラセァ (Shewanella violacea)、モリテラ .ャヤノシ (Moritella vavanosii)などがその ような能力を持つと考えられている(Fang et al, 2004) 0 [0029] As unsaturated compounds other than t-VA, unsaturated fatty acids such as conjugated linoleic acid, linoleic acid, linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, vitamin A, β-power rotin, Examples thereof include carotenoids such as xanthophyll. Several bacteria that produce these compounds are known. For example, conjugated linoleic acid As a microorganism having a production ability, a strain (MDT-5 strain) belonging to Butyrivibrio fibrisolvens has been isolated by the present inventor. In addition, microorganisms capable of producing docosahexaenoic acid or eicosapentaenoic acid include Vibrio genus T3615 (Yano et al., 1994), Moritella marina (M2l ki li l (Morita et al., 2005). ), And deep-sea microorganisms such as Shewanella marinintestina (Morita et al., 2005) and algae-like marine microorganisms collectively called Labyrinthura (Hiroshi Akikuma 'Kazuhisa Komine. 2005. Production of useful lipids by marine micro-organisms Application, Foods Food Ingredients J. Jpn., 210: 758-764.) In addition, as a microorganism capable of taking up docosahexaenoic acid or eicosapentaenoic acid, Shuwanella benthica (Shewanella benthica) is known. Shewanella violacea and Moritella vavanosii are considered to have such abilities (Fang et al, 2004) 0
[0030] 本発明の家畜用飼料添加物に使用する微生物は、生菌であればよいが、特に凍 結乾燥した生菌であることが好ましい。また、本発明の家畜用飼料添加物は、前述し た微生物以外の成分を含んで 、てもよ 、。  [0030] The microorganism used in the feed additive for livestock of the present invention may be a living bacterium, but is preferably a frozen and dried living bacterium. Moreover, the feed additive for livestock of the present invention may contain components other than the microorganisms described above.
[0031] 不飽和化合物生成能を有する微生物と不飽和化合物取り込み能を有する微生物 の混合比は特に限定されないが、例えば、不飽和化合物が t-VAの場合、前者と後 者の重量比が 1: 3〜: L: 5の範囲内であることが好ましい。  [0031] The mixing ratio of the microorganism having the ability to produce unsaturated compounds and the microorganism having the ability to take up unsaturated compounds is not particularly limited. For example, when the unsaturated compound is t-VA, the weight ratio of the former to the latter is 1 : 3 to: L: preferably in the range of 5.
[0032] 本発明の家畜用飼料添加物は、家畜一般に対して使用可能である力 特にルーメ ンを持つ動物、即ち、ゥシ、ヒッジ、ャギなどの反芻動物に使用するのが好ましい。  [0032] The feed additive for livestock of the present invention is preferably used for an animal having rumen, that is, a ruminant such as a sushi, a hedge, a goat, etc., which has a strength that can be used for general livestock.
[0033] 本発明の家畜用飼料添加物の飼料への添加量は特に限定されないが、例えば、 不飽和化合物が t-VAの場合、一般的な配合飼料 100gに対し、両微生物の菌体重量 力 .5〜lg程度になるように添加することが好ましい。  [0033] The amount of the livestock feed additive of the present invention added to the feed is not particularly limited. For example, when the unsaturated compound is t-VA, the weight of both microorganisms relative to 100 g of a general mixed feed It is preferable to add so that the force is about 5 to 1 lg.
[0034] 本発明の飼料添加物は、不飽和化合物を微生物に取り込ませ、それ以上の還元 反応を防止することにより、家畜の消化管内の不飽和化合物の量を増大させるもの である。このような不飽和化合物を微生物に取り込ませ、還元を防止するという手法 は、不飽和化合物を還元する微生物が存在する環境 (例えば、ルーメン内容物の搾 汁液など)で、不飽和化合物を生産する方法にも応用できる。即ち、不飽和化合物を 還元する微生物が存在する環境で、不飽和化合物生成能を有する微生物と不飽和 化合物取り込み能を有する微生物の両者を培養することにより、効率的に不飽和化 合物を生産することができる。 [0034] The feed additive of the present invention increases the amount of unsaturated compounds in the digestive tract of livestock by incorporating unsaturated compounds into microorganisms and preventing further reduction reaction. The technique of incorporating such unsaturated compounds into microorganisms to prevent reduction produces unsaturated compounds in an environment where microorganisms that reduce unsaturated compounds exist (for example, juice of rumen contents). It can also be applied to methods. That is, in an environment where microorganisms that reduce unsaturated compounds exist, unsaturated microorganisms and unsaturated microorganisms By culturing both microorganisms having the ability to take up compounds, unsaturated compounds can be produced efficiently.
実施例  Example
[0035] 以下、実施例により本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
[0036] 最初に実験に用いた材料及び方法につ!、て説明する。  [0036] The materials and methods used in the experiment will be described first.
[0037] (1)供試菌および培養条件  [0037] (1) Test bacteria and culture conditions
ブチリビブリオ 'フイブリソルべンス TH1株の由来については、 Fukudaらが報告して いる (Fukuda et al., 2005)。ブチリビブリオ 'フイブリソルべンス MDT- 10株は、新たに ャギ(日本在来種)のルーメンからロールチューブ法 (Ogimoto and Imai, 1981)で分離 し、 Bryantの基準に従って同定した (Bryant, 1986)。同様に、ビフイドバタテリゥム 'アド レセンティス HF- 11株(Scardovi, 1986)、ェシエリキア 'コ1 Escherichia coli) HF- 23株 (Orskov, 1986)、ビフイドバクテリウム'ブレーべ (Bifidobacterium breve) HF- 31株(Sc ardovi, 1986)、およびラクトバチルス,フアーメンタム (Lactobacillus fermentum) HF- 3 株(Kandler and Weiss, 1986)は成人の糞便から新しく分離'同定した。ビフイドバクテ リウム 'ブレーべ TH1株の由来については、 Fukudaらが報告している (Fukuda et al, 2004)。ビフイドバタテリゥム 'アドレセンティス JCM1275、ビフイドバタテリゥム 'ビフイダ ム (Bifidobacterium bifidum) TCM1255,ビフィドノ クテリウム 'インファンテイス (Bifidoba cterium infantis) JCM1222, ビフイドバタテリゥムロンガム (Bifidobacterium longum) J CM1217,ェシエリキア'コリ JCM 1649およびラクトバチルス 'フアーメンタム JCM 1137 は理研 '微生物系統保存施設(JCM)から購入した。 Fukuda et al. (Fukuda et al., 2005) have reported the origin of the Butyri vibrio 'Fiber sorbens TH1 strain. Butyribibrio 'Fiber sorbens MDT-10 strain was newly isolated from the goat (Japanese native species) lumen by the roll tube method (Ogimoto and Imai, 1981) and identified according to Bryant's criteria (Bryant, 1986). Similarly, Biff id butter Teri © arm 'add Resentisu HF-11 strain (Scardovi, 1986), Eshierikia' co 1 Escherichia coli) HF- 23 strain (Orskov, 1986), Biff id Agrobacterium 'base blade (Bifidobacterium breve) HF -31 strains (Scardovi, 1986) and Lactobacillus fermentum HF-3 strains (Kandler and Weiss, 1986) were newly isolated and identified from adult feces. Fukuda et al. (Fukuda et al, 2004) have reported the origin of bifidobacterium 'breve TH1 strain. Bifidobacterium 'Adresentis JCM1275, Bifidobacterium bifidum TCM1255, Bifidoba cterium infantis JCM1222, Bifidobacterium longum J CM12 'Coli JCM 1649 and Lactobacillus' Farmentum JCM 1137 were purchased from the RIKEN Microbial System Storage Facility (JCM).
[0038] それぞれの菌株は、原則として 30または 50 ml容バイアルに 15または 30 mlの増殖 培地を入れて培養した。増殖培地は、基礎培地をルーメン液の遠沈上清液と 3:1で 混合したものである (Miyazaki et al., 1992)。基礎培地の組成 (g/L)は次の通りであつ た。すなわち、 K HPO , 0.45; KH PO , 0.45; (NH ) SO , 0.9; NaCl, 0.9; CaCl · 2Η  [0038] In principle, each strain was cultured in a 30 or 50 ml vial with 15 or 30 ml of growth medium. The growth medium is a basal medium mixed with rumen centrifuge supernatant 3: 1 (Miyazaki et al., 1992). The composition of the basal medium (g / L) was as follows. K HPO, 0.45; KH PO, 0.45; (NH) SO, 0.9; NaCl, 0.9; CaCl · 2Η
2 4 2 4 4 2 4 2 2 2 4 2 4 4 2 4 2 2
Ο, 0.12; MgSO · 7Η Ο, 0.19;グルコース, 2.0;セロビオース, 2.0;トリプチケース'ぺ Ο, 0.12; MgSO · 7Η Ο, 0.19; glucose, 2.0; cellobiose, 2.0; trypticase
4 2  4 2
プトン (BBL; Becton Dickinson, Cockeysville, MD, USA), 1.0;酵母エキス (Difco Lab oratories Inc., Detroit, MI, USA), 1.0;およびシスティン ' HC1, 0.6。培地の pHは、 7. 0に調整した (Miyazaki et al., 1992)。 LAおよび t- VAは、特にことわらない限り、牛血 清アルブミン (BSA)と 1 :3の割合で混合した後(それぞれ LA/BSAおよび t-VA/BSAと 略記)、培養液に添加した (Fukuda et al, 2005)。培養は嫌気的に 39°Cで行い、原則 として 3連で行った。 Puton (BBL; Becton Dickinson, Cockeysville, MD, USA), 1.0; Yeast extract (Difco Laboratories Inc., Detroit, MI, USA), 1.0; and Sistine 'HC1, 0.6. The pH of the medium was adjusted to 7.0 (Miyazaki et al., 1992). LA and t-VA are bovine blood unless otherwise stated After mixing with clear albumin (BSA) at a ratio of 1: 3 (abbreviated as LA / BSA and t-VA / BSA, respectively), it was added to the culture (Fukuda et al, 2005). The culture was anaerobically performed at 39 ° C, and in principle, performed in triplicate.
[0039] 菌の増殖は、 OD 値で見積もった。脂肪酸 (FA)を培養液に加えた場合には、菌体  [0039] The growth of the bacteria was estimated by the OD value. When fatty acids (FA) are added to the culture,
600  600
窒素 (N)量の測定により増殖を見積もった。菌体 N量は、ケルダール法により定量した 。ブチリビブリオ'フイブリソルべンスおよびマウスの腸内細菌の生菌数の計測には、 2 %(wt/vol)寒天を添カ卩した増殖培地を用い、ロールチューブ法で行なった。各試料に つき試験管を 5本用い、それぞれのコロニー数を数えた (Fukuda et al., 2005)。  Growth was estimated by measuring the amount of nitrogen (N). The amount of bacterial cells N was quantified by the Kjeldahl method. The viable count of butyribibrio fibrisolvens and intestinal bacteria in mice was measured by a roll tube method using a growth medium supplemented with 2% (wt / vol) agar. Five test tubes were used for each sample, and the number of each colony was counted (Fukuda et al., 2005).
[0040] (2)混合ルーメン微生物の培養 [0040] (2) Culture of mixed rumen microorganisms
ャギ(日本在来種)のルーメン力 採取した内容物を 4重ガーゼで搾った搾汁液を C 0気相下で 30分インキュベートした後、浮上した飼料片を吸引除去した中'下層の液 Luminous strength of goats (Japanese native species) The middle layer of the lower layer solution was obtained by incubating the juice of the collected contents with quadruple gauze for 30 minutes in C 0 gas phase, and then removing the lifted feed pieces by suction.
2 2
を混合ルーメン微生物として用いた (Hino et al, 1993)。ノ ツチ法培養は、原則として 上述の培地と方法で行なった。  Was used as a mixed rumen microorganism (Hino et al, 1993). Notch culture was performed in principle using the medium and method described above.
[0041] 連続培養には overflowタイプの発酵槽 3基をもつ装置を用いたが、その構造および 操作法については Hinoと Hamanoの報告 (Hino and Hamano, 1993)に従った。 CO 気 [0041] An apparatus having three overflow type fermenters was used for continuous culture, and the structure and operation method were in accordance with the report of Hino and Hamano (Hino and Hamano, 1993). CO ki
2 流下で、ルーメン内容物の搾汁液と修正基礎培地 (上記基礎培地力 糖とトリプチケ ース'ペプトンを除いた液)を 1 :2で混合し、発酵槽 (300 ml容)に注入した。 COを常時  2 Under the flow, the juice of the rumen contents and the modified basal medium (liquid excluding the basal medium sugar and trypticase 'peptone) were mixed at a ratio of 1: 2 and injected into the fermenter (300 ml capacity). CO always
2 通気しながら連続的に修正基礎培地を送液した。希釈率は、 0.1/hに設定した。炭水 化物およびタンパクを 6時間ごとに発酵槽に投入した。すなわち、デンプン 50 g、フル タトオリゴ糖(明治製菓、東京) 10 g、セルロースパウダー(アドバンテック、東京) 10 g 、カゼイン 20 g、およびトリプチケース'ペプトン (BBL)5 gを混合したものを 3 g添加した 。これらの基質は、前もって COで置換したノ ィアル内に 24時間入れることによりほと  2 The modified basal medium was fed continuously with aeration. The dilution rate was set to 0.1 / h. Carbonate and protein were added to the fermentor every 6 hours. That is, 3 g of a mixture of 50 g starch, 10 g frutatooligosaccharide (Meiji Seika, Tokyo), 10 g cellulose powder (Advantech, Tokyo), 20 g casein, and 5 g trypticase 'peptone (BBL) Added. These substrates can be clarified by placing them in a nozzle previously substituted with CO for 24 hours.
2  2
んどの 0を除去しておいた。 LAは、これらの基質に吸着させた状態で、 6時間ごとに 2 Most of the zeros were removed. LA is adsorbed on these substrates and every 6 hours 2
2 2
0 mg (70 μ mol)添カ卩した。培養は 39°Cで 24時間行い、 pHは 6.8前後に維持した。培 養中、 1時間ごとに蓄積した流出液を回収し、流出液中の LA、 t-VA、および SAを定 量した。ブチリビブリオ ·フイブリソルべンス MDT-10株およびビフイドバタテリゥム ·アド レセンティス HF-11株を添加した場合には、培養開始時に混合ルーメン細菌の総生 菌数 (1 X loH cfo/ml)の 1 %(1 x 109 cfo/ml)となるように発酵槽に注入した。連続培養 は、 3試験区を発酵槽 3基で同時に行い、同様の試験を 2回繰り返した。 0 mg (70 μmol) was added. The culture was performed at 39 ° C for 24 hours, and the pH was maintained at around 6.8. During cultivation, the effluent accumulated every hour was collected, and LA, t-VA, and SA in the effluent were quantified. Butyl vibrio fibrisolvens MDT-10 and bifidobacterium adrecentis HF-11 are added to the total viable count of mixed rumen bacteria (1 X loH cfo / ml) at the start of culture. It was poured into the fermenter so as to be% (1 × 10 9 cfo / ml). Continuous culture The same test was repeated twice, with 3 test sections performed simultaneously in 3 fermenters.
[0042] (3) t-VA取り込み能の高い菌の検索 [0042] (3) Search for bacteria with high t-VA uptake capacity
上記のロールチューブ法によって、ャギのルーメンおよび成人の糞便からそれぞれ 500個以上のコロニーから菌を分離した。 5 μ molの t-VA/BSAを添カ卩した増殖培地 (1 5 ml)で各単離菌を一晩培養した後、遠沈(20,000 x g, 10分, 4 °C)した。沈殿した菌 体の表面に付着した t-VAを除去するために、 0.1% (vol/vol) Triton X-100を添カ卩した 50 mMリン酸カリウム (KPi)緩衝液 15 mlで 2度ペレットを洗浄'遠沈した。同様に、その ペレットを KPi緩衝液 15 mlで洗浄'遠沈して Triton X-100を除去した。次いで、ペレ ットにクロ口ホルム +メタノール (2:1)を 10 ml添加し、 30分間激しく攪拌することで菌体 総脂質を抽出した。水を 5 ml加え、 5分間攪拌し、遠沈 (20,000 x g, 10分, 4 °C)した 。下層をサンプルバイアルに移し、 Nガスの通気によりクロ口ホルムを揮発させた後、  Bacteria were isolated from more than 500 colonies each from goat lumen and adult feces by the roll tube method described above. Each isolate was cultured overnight in a growth medium (15 ml) supplemented with 5 μmol of t-VA / BSA and then spun down (20,000 × g, 10 minutes, 4 ° C.). Pellet twice with 15 ml of 50 mM potassium phosphate (KPi) buffer supplemented with 0.1% (vol / vol) Triton X-100 to remove t-VA attached to the surface of the precipitated cells. Wash 'centrifuged. Similarly, the pellet was washed with 15 ml of KPi buffer and spun down to remove Triton X-100. Next, 10 ml of black mouth form + methanol (2: 1) was added to the pellet, and the total cell lipid was extracted by vigorous stirring for 30 minutes. 5 ml of water was added, stirred for 5 minutes, and spun down (20,000 x g, 10 minutes, 4 ° C). After transferring the lower layer to the sample vial and volatilizing the black mouth form by aeration of N gas,
2  2
後述のようにガスクロマトグラフィー(GLC)により t-VAを定量した。  T-VA was quantified by gas chromatography (GLC) as described below.
[0043] 次に、 t-VA取り込み能が高いと認められた菌、上位 4種について同定を行った後、 t-VA取り込み速度と水素添加能の有無を調べた。 t-VA取り込み速度については、 各菌を OD 値 1.0まで培養した後、 15mlの培地に 5 μ molの t-VA/BSAを添カ卩して 0 [0043] Next, bacteria identified as having high t-VA uptake ability and the top 4 species were identified, and then the t-VA uptake rate and the presence or absence of hydrogenation ability were examined. The t-VA uptake rate was determined by culturing each bacterium to an OD value of 1.0, and then adding 5 μmol of t-VA / BSA to 15 ml of medium.
600  600
D 値 1.5 (対数増殖後期)まで再培養した (2-3時間)。培養後、同上の方法で菌体 Re-cultured to a D value of 1.5 (late log phase) (2-3 hours). After incubation, use the same method as above
600 600
中の t-VAを定量した。取り込み速度は、この間に取り込まれた t-VA量を再培養前後 の菌体 N量の平均値で割り、その数値を 1時間あたりで表した。一方、水素添加能に ついては、別途通常の方法で培養した菌体を用いて、 LA-Iおよび CLA-Rの活性を 測定した (後述)。  The amount of t-VA was quantified. For the uptake rate, the amount of t-VA taken up during this time was divided by the average value of the amount of N cells before and after re-culture, and the value was expressed per hour. On the other hand, regarding the hydrogenation ability, LA-I and CLA-R activities were measured using cells cultured separately by a usual method (described later).
[0044] (4)ビフイドバクテリウム'ァドレセンティス HF-11株の菌体内に取り込まれた t-VAの分 子種の分析  [0044] (4) Analysis of molecular species of t-VA taken up into Bifidobacterium 'adrecentis HF-11 strain
5 μ molの t-VA/BSAを添カロした増殖培地(30 ml)でビフイドバタテリゥム 'ァドレセン テイス HF-11株を 5時間(対数増殖後期まで)培養し、上述のように、 0.1% Triton X-10 0溶液で洗浄した後の菌体力 クロ口ホルム +メタノール (2:1)で総脂質を抽出した。こ の総脂質を薄層クロマトグラフィー (TLC)で分離し、 t-VAがどのような分子種に取り込 まれるかを調べた。 TLCの展開溶媒としてクロ口ホルム +アセトン (96:4)を用い、スポッ トの発色のために 50% (vol/vol) H SOを噴霧して加熱した (Fukuda et al., 2002)。リ ン脂質(PL)の検出のため、 Dittmer-Lester試薬での呈色も行った(Dittmer and Lest er, 1964)。すなわち、 25 N-硫酸 100mlに 4 gの MoO3をカ卩え、緩やかに沸騰させながら 溶解したものを A液とした。 A液 50 mlに 0.18 gの粉末 Moをカ卩え、 15分間ゆっくりと沸騰 させ溶解したものを B液とし、 A液 + B液 + H20 (1:1:2)を混合したものを0辻1^61-1^3 6 r試薬とした。各スポット中の t-VA量を調べた時には、スポットの発色は省き、 Rf値に 基づいてスポットをかきとり、クロ口ホルム +メタノール (2:1)で脂質を抽出した後、 GLC で分析した。 Bifidobacterium 'adrecentiise HF-11 strain was cultured for 5 hours (until late logarithmic growth) in a growth medium (30 ml) supplemented with 5 μmol of t-VA / BSA. Cell strength after washing with% Triton X-100 solution Total lipid was extracted with black mouth form + methanol (2: 1). This total lipid was separated by thin layer chromatography (TLC), and the molecular species into which t-VA was incorporated was examined. Chromium form + acetone (96: 4) was used as the TLC developing solvent, and 50% (vol / vol) H 2 SO 4 was sprayed and heated for spot color development (Fukuda et al., 2002). Re For detection of lipid (PL), coloration with Dittmer-Lester reagent was also performed (Dittmer and Lester, 1964). That is, 4 g of MoO 3 was added to 100 ml of 25 N-sulfuric acid and dissolved while gently boiling to make A solution. A solution of 0.18 g of powdered Mo in 50 ml of solution A, slowly boiled for 15 minutes and dissolved is used as solution B, and a mixture of solution A + solution B + H 2 0 (1: 1: 2) 0 辻 1 ^ 61-1 ^ 3 6 r reagent was used. When the amount of t-VA in each spot was examined, spot color development was omitted, the spots were scraped based on the Rf value, lipids were extracted with black mouth form + methanol (2: 1), and analyzed by GLC.
[0045] TLCと GLCの結果から、 t- VAがモノグリセリド (MG)およびジグリセリド (DG)と推測さ れるスポットに取り込まれていたので、その確認のために以下の方法で加水分解した 後、 FAとグリセロールの比率を測定した。すなわち、 MGおよび DGのスポットを搔き取 つた後、クロ口ホルム +メタノール (2:1)で数回抽出した。抽出液を 2等分し、一方を脂 肪酸 (FA)定量(下述)、他方をグリセロール定量に用いた。グリセロールの定量には、 溶媒溜去後、血中トリグリセリド定量用キット(トリグリセライド E-テストヮコ一、和光純 薬、東京)を用いた。すなわち、リポプロテインリパーゼにより MGと DGを加水分解し、 生成されたグリセロールをグリセロールキナーゼによりリン酸ィ匕した。生成されたグリセ ロール- 3-リン酸をグリセロール- 3-リン酸ォキシダーゼにより酸ィ匕し、その反応で生じ た H 0をペルォキシダーゼにより 4-ァミノアンチピリンと酸ィ匕縮合させ、青色に発色さ [0045] From the results of TLC and GLC, t-VA was incorporated in the spots presumed to be monoglyceride (MG) and diglyceride (DG). The ratio of glycerol was measured. That is, after spotting MG and DG spots, extraction was performed several times with black mouth form + methanol (2: 1). The extract was divided into two equal parts, one for fatty acid (FA) quantification (described below) and the other for glycerol quantification. For the determination of glycerol, after distilling off the solvent, a blood triglyceride determination kit (Triglyceride E-Test Soichi, Wako Pure Chemicals, Tokyo) was used. That is, MG and DG were hydrolyzed with lipoprotein lipase, and the produced glycerol was phosphorylated with glycerol kinase. The resulting glycerol-3-phosphate is acidified with glycerol-3-phosphate oxidase, and H 0 produced in the reaction is acidified with 4-aminoantipyrine with peroxidase to produce a blue color.
2 2 twenty two
せた。この青色の吸光度を波長 600應で測定することによりグリセロール量を求めた。  Let The blue light absorbance was measured at a wavelength of 600 to determine the amount of glycerol.
[0046] (6) FAおよび有機酸の定量 [0046] (6) Determination of FA and organic acids
上記の総脂質または各種脂質については、下記のようにトランスメチルイ匕した。一 方、混合ルーメン微生物のバッチ培養の場合は培養バイアルを氷冷することにより反 応を停止させた後、また連続培養の場合は流出液を氷水中で回収した後、クロロホ ルム +メタノール (2:1)混液を等量カ卩え、更に内部標準としてラウリン酸を添加して 5分 間激しく撹拌した。遠沈 (5,000 X g, 5分)後クロ口ホルム層を回収した。回収したクロ口 ホルム量と等量のクロ口ホルムを再び添カ卩して撹拌した後、同様にしてクロ口ホルム 層を回収し、両回収液を合わせて総脂質とした。次に、溶媒溜去した総脂質に 5 % 塩酸-メタノールをカ卩えて 60 °Cで 20分間トランスメチル化した後、 GLCおよび GLC-マ ススペクトル分析により各 FAの同定と定量を行った(Fukuda et al., 2002) 0単離菌の 同定のため、および混合ルーメン微生物培養系における発酵の様相を知るために、 生成された有機酸を HPLCにより分析した(Fukuda et al, 2002) 0 The total lipid or various lipids described above were transmethylated as follows. On the other hand, in the case of batch culture of mixed rumen microorganisms, the reaction is stopped by cooling the culture vial with ice, and in the case of continuous culture, the effluent is recovered in ice water and then chloroform + methanol (2 1) An equal amount of the mixed solution was added, lauric acid was added as an internal standard, and the mixture was vigorously stirred for 5 minutes. After centrifuge (5,000 X g, 5 minutes), the black mouth form layer was recovered. After adding the same amount of Kuroguchi form to the recovered Kuroguchi form and stirring again, the Kuroguchi form layer was recovered in the same manner, and both recovered solutions were combined to obtain total lipid. Next, 5% hydrochloric acid-methanol was added to the total lipid distilled off from the solvent, transmethylated at 60 ° C for 20 minutes, and each FA was identified and quantified by GLC and GLC-mass spectrum analysis ( Fukuda et al., 2002) 0 of isolates The generated organic acids were analyzed by HPLC for identification and to know the aspects of fermentation in mixed rumen microbial culture systems (Fukuda et al, 2002) 0
[0047] (7) LA-Iおよび CLA-R活性の測定  [0047] (7) Measurement of LA-I and CLA-R activities
LA-Iおよび CLA-R活性は、生菌を用いて測定した。すなわち、対数増殖後期まで 培養した菌を遠沈(20,000 X g、 10分、 4 °C)により集め、 50 mM KPi緩衝液 (pH 7.0 )に懸濁して直ちに供試した。 LA-I活性測定の場合は、 KPi緩衝液 (2.7 ml)に LAの ジメチルスルフォキシド(DMSO)溶液(1.0 /z mol/ml反応混液) 0.1 mlをカ卩えた後、菌 細胞懸濁液(0.2 ml)を添カ卩して反応を開始し、 30 °Cで 3分間インキュベートした (Hun ter et al, 1976)。その後、反応混液を氷冷し、上記の脂質抽出溶媒 3 mlを加えて、 反応を停止させた。次に、内部標準としてラウリン酸 0.5 mgを添加した後に、上述のよ うにして脂質の抽出と FAの定量を行い、 LA減少量と CLA生成量を求めた。 LA異性 化反応は 3分間は直線的であったので、この数値力も酵素活性を求めた。  LA-I and CLA-R activities were measured using live bacteria. That is, the bacteria cultured until late in logarithmic growth were collected by centrifugation (20,000 × g, 10 minutes, 4 ° C.), suspended in 50 mM KPi buffer (pH 7.0), and used immediately. For LA-I activity measurement, add 0.1 ml of LA dimethyl sulfoxide (DMSO) solution (1.0 / z mol / ml reaction mixture) to KPi buffer (2.7 ml), and then the cell suspension (0.2 ml) was added to initiate the reaction and incubated at 30 ° C for 3 minutes (Hunter et al, 1976). Thereafter, the reaction mixture was ice-cooled, and 3 ml of the above lipid extraction solvent was added to stop the reaction. Next, after adding 0.5 mg of lauric acid as an internal standard, lipid extraction and FA quantification were performed as described above to determine the amount of LA decrease and the amount of CLA produced. Since the LA isomerization reaction was linear for 3 minutes, this numerical force was also determined for enzyme activity.
[0048] CLA- R活性測定の場合は、上記の KPi緩衝液、 CLAの DMSO溶液(1.0 μ mol/ml) 、 30 mMメチルバイオロジェン、および 90 mM亜ジチオン酸ナトリウム溶液を含む反 応混液 (2.8 ml)に菌体懸濁液 (0.2 ml)をカ卩え、反応を開始した。反応は、嫌気的に 40 °Cで 5分間インキュベートすることにより行った。上記と同様に反応を停止させ、 CLA の減少量と t-VAの生成量を測定した。  [0048] For measurement of CLA-R activity, a reaction mixture containing the above KPi buffer, CLA in DMSO (1.0 μmol / ml), 30 mM methylviologen, and 90 mM sodium dithionite solution The cell suspension (0.2 ml) was added to (2.8 ml) and the reaction was started. The reaction was performed anaerobically by incubating at 40 ° C for 5 minutes. The reaction was stopped as described above, and the amount of CLA decreased and the amount of t-VA produced were measured.
[0049] (8)データの評価  [0049] (8) Data evaluation
丁 ~~タは、 Sigma Stat statistical Analysis system Qandei Scientinc, San Rafael, CA )を用いて、 Tukeyの検定法または Studentの t検定法で解析した。  Using the Sigma Stat statistical analysis system Qandei Scientinc, San Rafael, CA), the analysis was performed by Tukey's test method or Student's t test method.
[0050] 〔実施例 1〕 t-VA生成能の高いブチリビブリオ'フイブリソルべンスの新菌株 (MDT-1 0)の分離、および混合ルーメン微生物のバッチ培養系への MDT-10株の添加効果 [0050] [Example 1] Isolation of a new strain (MDT-10) of butyribibrio fibrisolvens with high t-VA production ability, and effect of addition of MDT-10 strain to batch culture system of mixed rumen microorganisms
Fukudaらは t-VA生成能の高いブチリビブリオ 'フイブリソルべンスの新菌株 (TH1)を 見つけたことを報告したが (Fukuda et al, 2005)、今回新たに分離した菌株 (MDT-10) は、 TH1株よりも t-VA生成速度が約 30%高かった (1.2に対して 1.6 μ mol/h/mg菌体- N)。 MDT- 10株の LA-I活性は、 TH1株と大差がなかったが (0.45に対して 0.53 μ mol/ min/mg菌体- N)、 CLA- R活性が 40%近く高かった (0.19に対して 0.26 μ mol/min/mg 菌体- N)。従って、本菌株は CLAをほとんど蓄積することなぐ LAを速やかに t-VAに 転換した。 Fukuda et al. (Fukuda et al, 2005) reported the discovery of a new strain (TH1) of butyribibrio 'Fibriosolvens that has a high t-VA-producing ability, but the newly isolated strain (MDT-10) The t-VA production rate was about 30% higher than that of the TH1 strain (1.6 μmol / h / mg fungus-N versus 1.2). LA-I activity of MDT-10 strain was not much different from TH1 strain (0.53 μmol / min / mg cell-N compared to 0.45), but CLA-R activity was nearly 40% higher (to 0.19) 0.26 μmol / min / mg bacterial cell-N). Therefore, this strain rapidly accumulates LA without tapping CLA. Converted.
[0051] 混合ルーメン微生物のバッチ培養系に、混合細菌の総生菌数の 1%(2 X 109 cfo/ml )となるように MDT- 10株を添カ卩し、 LA添加培地で培養したところ、 LAから t-VAへの 転換速度が著しく速くなり、 t-VAのピーク量力 SMDT-10株無添加の場合の 2倍以上に 増加した (図 1-Aと B)。しかし、 10時間後には生成された t-VAのほとんどが SAに還元 された。 [0051] MDT-10 strain is added to the mixed rumen microorganism batch culture system so that the total viable count of mixed bacteria is 1% (2 X 10 9 cfo / ml), and cultured in LA-added medium. As a result, the conversion rate from LA to t-VA was remarkably increased, and the t-VA peak strength increased more than twice that of the case where no SMDT-10 strain was added (Figures 1-A and B). However, 10 hours later, most of the t-VA produced was reduced to SA.
[0052] 〔実施例 2〕 t-VA取り込み能の高い菌の単離  [Example 2] Isolation of bacteria having high t-VA uptake ability
上述のように、ルーメン微生物混合系では、 t-VA生成が増加してもやがては水素 添カ卩を受けてしまうので、生成された t-VAを細菌に取り込ませることによって、 t-VA を水素添加菌の作用力 保護することを試みた。ルーメン菌は全般に FAの取り込み 能が低いが(Hino et al, 1993)、ルーメン細菌から t-VA取り込み能の高い菌を見つ けることはできなかった。ブチリビブリオ 'フイブリソルべンス MDT-10株も t-VA生成能 が非常に高いにも拘わらず、 t-VAを菌体内にほとんど取り込まな力つた (表 1)。ブチリ ビブリオ'フイブリソルべンスの他菌株でも同様であった (データ省略)。  As mentioned above, in the rumen microorganism mixed system, even if t-VA production increases, it will eventually be subjected to hydrogenation, so t-VA can be reduced by incorporating the produced t-VA into bacteria. We tried to protect the action of hydrogenated bacteria. Rumen bacteria generally have a low FA uptake capacity (Hino et al, 1993), but we could not find a high t-VA uptake capacity from rumen bacteria. The butyribibrio 'Fibriosolvens MDT-10 strain was also highly capable of t-VA uptake in spite of its very high ability to produce t-VA (Table 1). The same was true for other strains of Butyri vibrio fibrisolvens (data not shown).
[0053] しかし、成人の糞便から t-VA取り込み能の高 、菌が 、くつか分離された。そのうち 能力の高い上位 4つの菌について、同定を行なった。その結果、 t-VAの取り込み能 が極めて高い菌として、ビフイドバタテリゥム 'ァドレセンティス HF-11株を見出した (表 Doまた、本菌株は t-VAだけでなく CLAの取り込み能も他菌よりもはるかに高ぐ例え ばェシエリキア 'コリ HF-23の 3倍も多くの CLAを取り込んだ(データ省略)。 HF-11株 は、ビフイドバタテリゥム 'ァドレセンティス JCM1275株 (標準菌株)よりも 10%程度多く の t-VAを取り込んだ (データ省略)。  [0053] However, some bacteria with high t-VA uptake ability were isolated from adult feces. Of these, the top four fungi with the highest potential were identified. As a result, we found Bifidobacterium 'adrecentis HF-11 strain as a bacterium with extremely high t-VA uptake capacity (Table Do. Also, this strain has not only t-VA but also other CLA uptake capacity. Much higher than that of Escherichia coli HF-23 (data not shown) .The HF-11 strain is more than Bifido Batterium 'adrecentis JCM1275 (standard strain) About 10% more t-VA was captured (data omitted).
[0054] しかし、ビフイドバタテリゥム'ビフィダム JCM1255株 (標準菌株)、ビフイドバタテリゥム  [0054] However, Bifido Batterium 'Bifidum JCM1255 strain (standard strain), Bifido Batterium
'インファンテイス JCM1222株 (標準菌株)、およびビフイドバタテリゥムロンガム JCM12 17株 (標準菌株)の t-VAの取り込み能は、ビフイドバクテリウム ·ァドレセンティス HF-11 株の半分以下であつたので (データ省略)、ビフイドバタテリゥム属が全般的に t-VAの 取り込み能が高いのではなさそうである。ェシエリキア'コリ JCM 1649株 (標準菌株)、 ビフイドバタテリゥム 'ブレーべ TH1株、およびラクトバチルス'フアーメンタム JCM 113 7株 (標準菌株)の t-VA取り込み能は、今回分離したそれぞれの同一種の菌株と大差 はなかった。以上より、ビフイドバタテリゥム 'ァドレセンティス HF-11株は特に t-VAの 取り込み能が高 、腸内細菌であると言えるであろう。 'Infantes JCM1222 strain (standard strain) and Bifidobatterum longum JCM12 17 strain (standard strain) had a t-VA uptake capacity of less than half that of Bifidobacterium adrecentis HF-11. (Data omitted) The bifidobatterium genus does not seem to have high t-VA uptake in general. The t-VA uptake capacities of Escherichia coli JCM 1649 (standard strain), Bifidobataterum breve TH1 and Lactobacillus fermentum JCM 113 7 (standard strain) One strain and large difference There was no. Based on the above, it can be said that the bifidobatterium 'adrecentis HF-11 strain is particularly an enteric bacterium with a high t-VA uptake capacity.
[0055] HF-11株を培養した後、菌体および培養液上清から回収された t-VAの量は、培地 に添加した量とほぼ等しかった (データ省略)。後述するように、本菌株は自身で t-v Aを合成しない (表 2)。従って、 HF-11株は t-VAを水素添カ卩しないと考えられる。すな わち、本菌株は t-VAを水素添加することなぐ菌体内に取り込む能力が高いという貴 重な特性を持つ菌と言える。なお、 HF-11株は LA-Iも CLA-Rも持っていな力つた (表 D o [0055] After culturing the HF-11 strain, the amount of t-VA recovered from the cells and the culture supernatant was almost equal to the amount added to the medium (data not shown). As described below, this strain does not synthesize t-v A by itself (Table 2). Therefore, it is considered that the HF-11 strain does not hydrogenate t-VA. In other words, it can be said that this strain has a precious property that it has a high ability to take up t-VA into the cells without hydrogenation. The HF-11 strain did not have both LA-I and CLA-R (Table D o
[0056] 5 μ molの t- VAを添カ卩した増殖培地(30 ml)で、ビフイドバタテリゥム ·ァドレセンティ ス HF-11を 8時間(増殖停止まで)培養したところ、 4.5 μ mol以上の t-VAが菌体内に 取り込まれていた。 HF-11株に取り込まれた t-VAは、遊離 FA、 DG (1,2-DG + 1,3-D G)、 MG (1-MG + 2-MG)、および PLにそれぞれ 62、 3、 19、および 15%取り込まれて いた (図 2、表 2)。また、上記の各脂質分子種における総 FA中の t-VAの割合は、それ ぞれ 89、 78、 84、および 89%であった。 t-VA無添カ卩の培地で培養した場合には、菌 体内だけでなく(表 2)、培養液上清中からも(データ省略)、 t-VAは検出されなかつ た。従って、 HF-11株は t-VAを合成しないと考えられる。  [0056] When Bifido Butterium adrecentis HF-11 was cultured in growth medium (30 ml) supplemented with 5 μmol t-VA for 8 hours (until growth stopped), 4.5 μmol or more T-VA was taken up into the fungus body. T-VA incorporated into the HF-11 strain is 62, 3, respectively, in free FA, DG (1,2-DG + 1,3-DG), MG (1-MG + 2-MG), and PL. 19 and 15% were incorporated (Figure 2, Table 2). In addition, the proportion of t-VA in total FA for each of the above lipid molecular species was 89, 78, 84, and 89%, respectively. When cultured in a culture medium without t-VA, t-VA was not detected not only in the cells (Table 2) but also in the culture supernatant (data not shown). Therefore, it is considered that the HF-11 strain does not synthesize t-VA.
[0057] なお、 TLCのスポットが DGと MGであることは、リポプロテインリパーゼによる加水分 解後の FAとグリセロールの比率力もも確認された。また、弱アルカリ加水分解 (0.1 N NaOH、 95°C、 1時間)の結果から、 PLの大部分がグリセ口 PLであろうと考えられた (図 2 )。以上のグリセ口脂質は小腸で消化され得るので、 HF-11細胞内の t-VAは大部分 が宿主に吸収されると考えられる。  [0057] The fact that the TLC spots were DG and MG also confirmed the specific force of FA and glycerol after hydrolysis with lipoprotein lipase. In addition, the results of weak alkaline hydrolysis (0.1 N NaOH, 95 ° C, 1 hour) suggested that most of PL would be glyceose PL (Fig. 2). Since these glyce mouth lipids can be digested in the small intestine, most of the t-VA in HF-11 cells is thought to be absorbed by the host.
[0058] HF-11株は t-VAとォレイン酸 (c9-C18:l)を同程度の速度で菌体に取り込んだ力 S A (18:0)の取り込み速度は C18:lの 1/3程度であった。また、 C18 : 2 (LAと CLA)の取り 込み速度は C18: 1の 1/10程度であり、 C18: 3 (リノレン酸と共役リノレン酸)の取り込み は更に遅かった。このように、 C18:lの取り込み能が非常に高ぐ 2重結合の数と必ず しも平行関係がないという点が興味深い。また、 HF-11株は外部力もの FAの供給が 多い場合には、 FAの de novo合成を抑制するようであった (表 2)。これは、 FA合成の 調節と 、う観点力もも非常に興味深 、。 [0059] [表 1] 単離菌の ί- VA取り込み能、 および LA- I と CLA- Rの比活性. υ 細菌 ί-VAの取り込み量 活性 ¾ [0058] The HF-11 strain has a force of uptake of t-VA and oleic acid (c9-C18: l) into the cells at similar rates. The uptake rate of SA (18: 0) is 1/3 that of C18: l. It was about. The uptake rate of C18: 2 (LA and CLA) was about 1/10 of C18: 1, and the uptake of C18: 3 (linolenic acid and conjugated linolenic acid) was even slower. In this way, it is interesting that C18: l has a very high uptake capacity and is not necessarily in parallel with the number of double bonds. In addition, the HF-11 strain seemed to suppress de novo synthesis of FA when there was a large amount of externally supplied FA (Table 2). This is very interesting for the regulation of FA synthesis and the viewpoint power. [0059] [Table 1] ί-VA uptake capacity of isolated bacteria and specific activities of LA-I and CLA-R. Υ uptake of bacteria ί-VA Activity ¾
( mol/mg菌体 N/5 h) LA - I CLA- R (mol / mg cell N / 5 h) LA-I CLA- R
Β. adolescentis Hi1 -11 0.76 ND ND A. Adolescentis Hi 1 -11 0.76 ND ND
E. coli HF-23 0.18 ND ND  E. coli HF-23 0.18 ND ND
B. breve HF-31 0.09 0.07 ND  B. breve HF-31 0.09 0.07 ND
L. fermentum HF-3 0.07 ND ND  L. fermentum HF-3 0.07 ND ND
B. fibrisolvens MDT- 10 ND 0.52 0.29 B. fibrisolvens MDT- 10 ND 0.52 0.29
1) 人の糞便から単離した ί-VA取り込み能の高い 4菌を示す。 ND は検出限界 以下(< 0,01)の意。 1) Four bacteria with high ί-VA uptake ability isolated from human feces. ND means below detection limit (<0,01).
2)活性は、 比活性 (/•i mol/min/mg菌体 N) で示す。 2) Activity is expressed as specific activity (/ • i mol / min / mg bacterial cell N).
[0060] [表 2] [0060] [Table 2]
ί-VA添加または無添加培地で培養した B. adolescentis HF-11の脂質画分中の FA 組成、 および各画分への f-VAの取り込み量 脂質画分 i-VA FAのモルパ'一センテ- シ FA総量 f - VA取り込み量 の添加  FA composition in the lipid fraction of B. adolescentis HF-11 cultured in medium with or without ί-VA, and the amount of f-VA incorporated into each fraction Lipid fraction i-VA FA Morpa -Addition of FA total amount f-VA uptake amount
14:0 16:0 18:0 C9-18: l ト VA その他 ( /i mol/容器) ( mol/容器 )(%) 遊離 FA 4 34 38 22 0 1 2.11  14: 0 16: 0 18: 0 C9-18: l To VA Other (/ i mol / container) (mol / container) (%) Free FA 4 34 38 22 0 1 2.11
+ 0 8 3 0 89 0 3.03 2.79 62 + 0 8 3 0 89 0 3.03 2.79 62
DG 17 48 35 0 0 0 0.73 DG 17 48 35 0 0 0 0.73
+ 0 8 8 0 84 0 0.23 0.15 3 + 0 8 8 0 84 0 0.23 0.15 3
MG ― 15 42 43 0 0 0 0.20 MG ― 15 42 43 0 0 0 0.20
+ 0 5 6 0 89 0 0.97 0.87 19 + 0 5 6 0 89 0 0.97 0.87 19
PL ― 13 58 6 7 0 16 1.90 PL ― 13 58 6 7 0 16 1.90
+ 0 7 2 0 78 13 0.88 0.69 15 + 0 7 2 0 78 13 0.88 0.69 15
(+) および(-)は、 それぞれ添加および無添加を示す。 (+) And (-) indicate addition and no addition, respectively.
〔実施例 3〕 ブチリビブリオ ·フイブリソルべンスとビフイドバタテリゥム ·ァドレセンティス の共存性 [Example 3] Coexistence of Butyri vibrio fibrisolvens and bifid butterium adrecentis
ブチリビブリオ'フイブリソルべンス MDT- 10株とビフイドバタテリゥム ·ァドレセンティス HF-11株をそれぞれ単培養した場合は、 OD 値で見た増殖速度はほぼ等しかった 。しかし、ブチリビブリオ'フイブリソルべンスの細胞長はビフイドバクテリウム'ァドレセ ンテイスよりもかなり短いため、鏡検により菌数を測定したところ、 OD 値が等しい時 When single cultures of Butyri vibrio 'Fibriosolvens MDT-10 and Bifidobatatrium adorescens HF-11 were grown individually, the growth rate as measured by OD was almost equal. . However, the cell length of Butyrivibrio fibrisolvens is much shorter than that of bifidbacterium adrecentis.
600  600
の菌数はブチリビブリオ'フイブリソルべンスの方がビフイドバタテリゥム ·ァドレセンティ スよりも約 2.5倍多力つた。両菌を OD 値で 1:1の割合で混合して共培養したところ、  The number of bacteria was about 2.5 times more vigorous in Butyri vibrio fibrisolvens than in Bifidobatterum adrecentis. When both bacteria were mixed and co-cultured at a ratio of 1: 1 in terms of OD value,
600  600
鏡検による両菌数の割合は常に約 2.5であり、これは増殖停止時まで変化しなかった (データ省略)。従って、両菌の増殖速度はほぼ等しぐまた両菌間に拮抗作用はな く共存可能と考えられる。  The ratio of both bacteria by microscopic examination was always about 2.5, which did not change until the growth was stopped (data not shown). Therefore, the growth rates of both bacteria are almost equal, and there is no antagonism between the two bacteria.
[0061] 〔実施例 4〕 ブチリビブリオ'フイブリソルべンスが生成した t-VAの、ビフイドバクテリウ ム'ァドレセンティスによる取り込み  [0061] [Example 4] Uptake of t-VA produced by Butyri vibrio fibrisolvens by bifidobacterium 'adrecentis'
ブチリビブリオ'フイブリソルべンス MDT- 10株とビフイドバタテリゥム ·ァドレセンティス HF-11株を別々に LAの存在下で単培養した場合には、洗浄後の菌体内に t-VAは 検出されなかった (表 3)。これは、前者の菌カ ¾-VAを菌体内に取り込む能力がないこ と、および後者の菌カ ¾-VAを生成する能力がないことによると考えられる。しかし、両 菌を共培養した場合には、両菌を合わせた菌体内の総 FAの 51%が t-VAであった。 培養終了時(16時間)には、添カ卩した LA(18 μ mol/30 ml培地)の約 80%力 ¾-VAに 転換されて菌体内に存在していた。また、別の実験で 5 μ mol/30 mlの LAの存在下で 両菌を 5時間(対数増殖後期まで)培養したところ、その 95%以上が t-VAの形で菌体 内から回収された (データ省略)。これらの結果は、 MDT-10株が生成した t-VAを HF -11株が効率よく菌体内に取り込んだことを示す。  Buty vibrio 'Fibrinosolvens MDT-10 strain and bified butteryrum adorestis HF-11 strain were separately cultured in the presence of LA, t-VA was not detected in the cells after washing (Table 3). This is considered to be due to the lack of the ability to take the former bacterial case-VA into the cells and the ability to produce the latter bacterial case-VA. However, when both bacteria were co-cultured, 51% of the total FA in the cells combined with both bacteria was t-VA. At the end of the culture (16 hours), it was converted to about 80% strength-VA of the added LA (18 μmol / 30 ml medium) and was present in the cells. In another experiment, when both bacteria were cultured in the presence of 5 μmol / 30 ml LA for 5 hours (until the late logarithmic growth phase), more than 95% of them were recovered from the cells in the form of t-VA. (Data omitted). These results indicate that the HF-11 strain efficiently incorporated t-VA produced by the MDT-10 strain.
[0062] [表 3] [0062] [Table 3]
LAの存在下で培養した β. /ifen' o/ve/w MDT-10および β. adolescentis HF-11の菌体 内総脂質の脂肪酸組成. 囷 脂肪酸組成 Fatty acid composition of total lipid in cells of β. / Ifen 'o / ve / w MDT-10 and β. Adolescentis HF-11 cultured in the presence of LA. 囷 Fatty acid composition
14:0 16:0 18:0 c9-18: l ill-18: l 18:2 その他 14: 0 16: 0 18: 0 c9-18: l ill-18: l 18: 2 Other
MDT-10 24 38 8 0 0 0 30MDT-10 24 38 8 0 0 0 30
HF-11 0 39 40 2 0 8 11HF-11 0 39 40 2 0 8 11
MDT-10 and HF-11 10 21 4 1 51 0 13 l LA (18 mol/30 ml培地) の存在下で 16時間単培養または共培養した後、 菌体を 0.1 % (v/v) Triton X-100 を含む緩衝液で 2度洗挣した。 表には、 総脂質 中の脂肪酸の割合を示した。 MDT-10 and HF-11 10 21 4 1 51 0 13 l After 16 hours of single culture or co-culture in the presence of LA (18 mol / 30 ml medium), 0.1% (v / v) Triton X Washed twice with buffer containing -100. The table shows the percentage of fatty acids in total lipids.
〔実施例 5〕 混合ルーメン微生物培養系における t-VAの生成 ·蓄積に及ぼすブチリ ビブリオ'フイブリソルべンスとビフイドバタテリゥム ·ァドレセンテイスの同時添力卩の効 果 [Example 5] Effect of simultaneous loading of butyricum vibrio fibrisolvens and bifid baterium adorecentites on t-VA production and accumulation in a mixed rumen microbial culture system
混合ルーメン微生物のバッチ培養系にブチリビブリオ'フイブリソルべンス MDT-10 株およびビフイドバタテリゥム ·ァドレセンティス HF-11株を混合ルーメン細菌の総生 菌数 (2 X loH cfo/ml)の 1 %となるように添カ卩し、 LA添加培地で培養したところ、ー且 蓄積した t-VAの減少速度が MDT-10株のみの添カ卩区より小さくなり (図 1-B vs. C)、 10時間後の t-VA蓄積量は 10倍以上に増加した (0.02 mM vs. 0.23 mM)。実際のルー メンでは内容物は常時流下するので、各時点でのルーメン内の t-VA量が多いほど t- VAの流下量が多いと考えられる。従って、 HF-11株の添カ卩によって t-VAの流下量が 増加することは明らかであり、いずれの菌も添加していない対照区と比べると、両菌 の添加効果は極めて大きいと思われる(図 1-A vs. C)。  In a batch culture system of mixed rumen microorganisms, butyral vibrio fibrisolvens MDT-10 and bifid butterium vadrentense HF-11 are combined with 1% of the total viable count of mixed rumen bacteria (2 X loH cfo / ml). When added to the culture medium and cultured in LA-added medium, the rate of decrease of accumulated t-VA was smaller than that of the MDT-10 strain alone (Figure 1-B vs. C). The amount of accumulated t-VA after 10 hours increased more than 10 times (0.02 mM vs. 0.23 mM). In actual lumens, the contents always flow down, so the larger the amount of t-VA in the lumen at each time point, the greater the amount of t-VA flowing. Therefore, it is clear that the amount of t-VA flowing increases with the addition of HF-11 strain, and the addition effect of both strains seems to be extremely large compared to the control group to which neither strain is added. (Figure 1-A vs. C).
混合ルーメン微生物の連続培養系に混合ルーメン細菌の総生菌数の 1%の MDT- 10株生菌を添加したところ、 24時間で流出した液中の t-VA総量は約 30%増加した( 図 3-A、 B)。また、後の時期に LAを添加した場合ほど、流出液中の LAの減少が速や 力となった(図 3-Bの LAのグラフの勾配が大きくなつた) 1S これは LAから t-VAへの 転換速度が後になるほど増加したことを示す。その理由は、 MDT-10株の菌数が増 カロしていったためと考えられる。つまり、 MDT-10株が希釈率よりも大きい速度で増殖 したことを示唆する。このことは、 t-VAの流出量が後の時期に増加したことと呼応する 。 SA量の増加よりも t-VA量の増加の方がはるかに大きかったことから(図 3-A vs. B) 、混合ルーメン微生物による t-VAの水素添加能に比べて、 MDT-10株による t-VA生 成の増大の方が大きかったと考えられる。 When 1% of the total viable count of mixed rumen bacteria was added to the continuous culture system of mixed rumen microorganisms, the total amount of t-VA in the effluent in 24 hours increased by about 30% ( Figure 3-A, B). In addition, the later LA was added, the faster the LA decreased in the effluent (the slope of the LA graph in Fig. 3-B became larger). It shows that the conversion rate to VA increased later. The reason for this is thought to be an increase in the number of MDT-10 strains. In other words, the MDT-10 strain grows at a rate greater than the dilution rate. Suggest that This corresponds to the increase in t-VA outflow at a later time. As the amount of t-VA increased much more than the amount of SA (Fig. 3-A vs. B), compared to the hydrogenation ability of t-VA by mixed rumen microorganisms, MDT-10 strain It is thought that the increase in t-VA production due to the was greater.
[0064] MDT- 10株の他に、混合ルーメン細菌の総生菌数の 1%の HF-11株生菌を添加し たところ、 24時間に流出した t-VAの量が MDT-10株だけの場合の約 2倍に増加した( 図 3-C)。また、 SAの流出量が顕著に減少した力 t-VAが増加したにも拘わらず SAが 減少したということは、 HF-11株力 ¾-VAを取り込んだために、 t-VAを水素添加する菌 の作用を受けに《なった結果と考えられる。両菌株を添加した場合の t-VA流出量 は、どちらも添加しな力つた対照区の 2.5倍であった。両菌株を添加した場合には、 M DT-10株だけの場合以上に、時期が後になるにつれて t-VAの流出量が大きく増加し たことから、 HF-11株も希釈率より大きい速度で増殖したと推測される。この実験では 両菌を総生菌数の 1%となるように添加した力 たとえ添加菌数が少なくても、時間と 共に菌数が増加し、効果を発揮することはあり得るであろう。  [0064] In addition to the MDT-10 strain, when 1% of the total viable count of the mixed rumen bacteria was added, the amount of t-VA that flowed out in 24 hours was reduced to the MDT-10 strain. It increased approximately twice as much as the case of only (Figure 3-C). In addition, the decrease in SA even though t-VA increased, which significantly reduced SA outflow. The fact that HF-11 stock power ¾-VA was taken in, so t-VA was hydrogenated. This is probably due to the action of the fungus. When both strains were added, the amount of t-VA efflux was 2.5 times that of the control group to which neither was added. When both strains were added, the t-VA efflux increased significantly over time compared to the MDT-10 strain alone. Presumed to have proliferated. In this experiment, it is possible that the effect of adding both bacteria to 1% of the total number of viable bacteria will increase the number of bacteria over time, even if the number of added bacteria is small.
[0065] なお、連続培養中、発酵産物 (有機酸)生成の様相はあまり変化せず、また両菌の 添カロによる大きな変化も認められな力つた (データ省略)。また鏡検によるプロトゾァ数 もそれほど減少しな力つた (データ省略)。従って、この培養条件で 24時間程度培養し た場合には、添加した菌以外は、それほど微生物相が大きく変化しな力 たと考えら れる。  [0065] During continuous culture, the appearance of fermentation product (organic acid) production did not change much, and no significant change was observed due to the addition of both bacteria (data not shown). In addition, the number of protozoa by microscopic examination did not decrease so much (data not shown). Therefore, when cultured for about 24 hours under these culture conditions, it is considered that the microbial flora did not change so much except for the added bacteria.
[0066] 〔参照文献〕  [0066] [References]
Bryant, M. P. 1986. Genus IV. Butyrivibrio. Bryant and Small 1956, 18, p. 1376-13 79. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's ma nual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore, USA.  Bryant, MP 1986. Genus IV. Butyrivibrio. Bryant and Small 1956, 18, p. 1376-13 79. In PHA Sneath, NS Mair, ME Sharpe, and JG Holt (ed.), Bergey's manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, USA.
Chin, S. F., W. Liu, J. M. Storkson, Y.し Ha, and M. W. Pariza. 1992. Dietary sour ces of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticar cinogens. J. Food Compos. Anal. 5:185—197.  Chin, SF, W. Liu, JM Storkson, Y. and Ha, and MW Pariza. 1992. Dietary sour ces of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticar cinogens. J. Food Compos. Anal. 5: 185-197.
Chouinard, P. Y., L. Corneau, W. R. Butler, Y. Chilliard, J. K. Drackley, and D. E. Bauman. 2001. Effect of dietary lipid source on conjugated linoleic acid concentratio ns in milk fat. J. Dairy Sci. 84:680—690· Chouinard, PY, L. Corneau, WR Butler, Y. Chilliard, JK Drackley, and DE Bauman. 2001. Effect of dietary lipid source on conjugated linoleic acid concentratio ns in milk fat. J. Dairy Sci. 84: 680—690 ·
Cook, M. Ε·, C. C. Miller, Y. Park, and M. W. Pariza. 1993. Immune modulation by- altered nutrient metabolism: nutritional control of immune-induced growth depressio n. Poult. Sci. 72:1301-1305.  Cook, M. Ε ·, C. C. Miller, Y. Park, and M. W. Pariza. 1993. Immune modulation by- altered nutrient metabolism: nutritional control of immune-induced growth depressio n. Poult. Sci. 72: 1301-1305.
Corl, B. A., L. H. Baumgard, D. A. Dwyer, J. M. Griinari, B. S. Phillips, and D. E. Bauman. 2001. The role of Delta (9)- desaturase in the production of cis- 9, trans- 11 CLA. J. Nutr. Biochem. 12:622-630.  Corl, BA, LH Baumgard, DA Dwyer, JM Griinari, BS Phillips, and DE Bauman. 2001. The role of Delta (9)-desaturase in the production of cis- 9, trans- 11 CLA. J. Nutr. Biochem. 12: 622-630.
Daniel, Z.C., R. J. Wynn, A. M. Salter, and P. J. Buttery. 2004. Differing effects of f orage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: the role of stearoyl-CoA desaturase. J. Anim. Sci. 82:747-758. Dhiman, T. R., し D. Satter, M. W. Pariza, M. P. Galli, K. Albright, and M. X. Tolo sa. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets ric h in linoleic and linolenic acid. J. Dairy Sci. 83:1016—1027.  Daniel, ZC, RJ Wynn, AM Salter, and PJ Buttery. 2004. Differing effects of f orage and concentrate diets on the oleic acid and conjugated linoleic acid content of sheep tissues: the role of stearoyl-CoA desaturase. J. Anim. Sci 82: 747-758. Dhiman, TR, D. Satter, MW Pariza, MP Galli, K. Albright, and MX Tolo sa. 2000. Conjugated linoleic acid (CLA) content of milk from cows offered diets ric h in linoleic and linolenic acid. J. Dairy Sci. 83: 1016—1027.
Dittmer, J. C., and R. L. Lester. 1964. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 15: 126—127.  Dittmer, J. C., and R. L. Lester. 1964. A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 15: 126—127.
Duckett, S. Κ·, J. G. Andrae, and F. N. Owens. 2002. Effect of high-oil corn or add ed corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid fo rmation in beef steers fed finishing diets. J. Anim. ¾ci. 80:3353—3360.  Duckett, S. Κ ·, JG Andrae, and FN Owens. 2002. Effect of high-oil corn or add ed corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid fo rmation in beef steers fed finishing diets. J. Anim. ¾ci. 80: 3353-3360.
Eyssen, Η·, and A. Verhulst. 1984. Biotransformation of linoleic acid and bile acids by Eubacterium lentum. Appl. Environ. Microbiol. 47:39-43.  Eyssen, Η ·, and A. Verhulst. 1984. Biotransformation of linoleic acid and bile acids by Eubacterium lentum. Appl. Environ. Microbiol. 47: 39-43.
Fang J, Kato C, Sato T, Chan〇, McKay D. 2004. Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp. Biochem. Physiol. Part B, 137: 455-461  Fang J, Kato C, Sato T, Chan〇, McKay D. 2004. Biosynthesis and dietary uptake of polyunsaturated fatty acids by piezophilic bacteria. Comp. Biochem. Physiol. Part B, 137: 455-461
Fellner, V., F. D. Sauer, and J. K. Kramer. 1997. Effect of nigericin, monensin, and tetronasin on Diohydrogenation in continuous flow-through ruminal fermenters. J. D airy Sci. 80:921-928.  Fellner, V., F. D. Sauer, and J. K. Kramer. 1997. Effect of nigericin, monensin, and tetronasin on Diohydrogenation in continuous flow-through ruminal fermenters. J. D airy Sci. 80: 921-928.
Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J. Gen. Appl. Microbiol. 51 : 105—113. Fukuda, S., H. Furuya, Y. Suzuki, N. Asanuma, and T. Hino. 2005. A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid. J. Gen. Appl. Microbiol. 51: 105—113.
Fukuda, S., N. Ninomiya, N. Asanuma, and T. Hino. 2002. Production of conjugated linoleic acid by intestinal bacteria in dogs and cats. J. Vet. Med. Sci. 64:987-992. Fukuda, S., Y. Suzuki, M. Murai, N. Asanuma, T. Hino. 2004. Effect of the simultan eous addition of Butyrivibrio fibrisolvens and Bifidobacterium breve on conjugated li noleic acid production in the intestinal microbiota of dogs. J. Pet Anim. Nutr. Qpn.) 7: 115-122.  Fukuda, S., N. Ninomiya, N. Asanuma, and T. Hino. 2002. Production of conjugated linoleic acid by intestinal bacteria in dogs and cats. J. Vet. Med. Sci. 64: 987-992. Fukuda, S ., Y. Suzuki, M. Murai, N. Asanuma, T. Hino. 2004. Effect of the simultan eous addition of Butyrivibrio fibrisolvens and Bifidobacterium breve on conjugated li noleic acid production in the intestinal microbiota of dogs. J. Pet Anim. Nutr. Qpn.) 7: 115-122.
Griinari, J. M., B. A. Corl, S. H. Lacy, P. Y. Chouinard, K. V. V. Nurmela, and D. E. Bauman. 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by delta- 9 desaturase. J. Nutr. 130:2285-2291.  Griinari, J. M., B. A. Corl, S. H. Lacy, P. Y. Chouinard, K. V. V. Nurmela, and D. E. Bauman. 2000. Conjugated linoleic acid is synthesized primarily in lactating dairy cows by delta- 9 desaturase. J. Nutr. 130: 2285-2291.
Ha, Y. L., J. Storkson, and M. W. Pariza. 1990. Inhibition of benzo (a) pyrene- indue ed mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. C ancer Res. 50: 1097-1101.  Ha, Y. L., J. Storkson, and M. W. Pariza. 1990. Inhibition of benzo (a) pyrene- indue ed mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. C ancer Res. 50: 1097-1101.
Harfoot, C. G., and G. P. Hazlewood. 1997. Lipid metabolism in the rumen, p. 382— 426. In P. N. Hobson and C. S. Stewart (ed.), The Rumen Microbial Ecosystem, 2n d ed. Blackie Academic & Professional, London.  Harfoot, C. G., and G. P. Hazlewood. 1997. Lipid metabolism in the rumen, p. 382— 426. In P. N. Hobson and C. S. Stewart (ed.), The Rumen Microbial Ecosystem, 2nd ed. Blackie Academic & Professional, London.
Hino, Τ·, K. Takeshi, M. Kumazawa, and M. Kanda. 1993. Effects of aibellin, a nove 1 peptide antibiotic, on rumen fermentation in vitro. J. Dairy ¾ci. 76:2213-2221. Hino, Τ·, N. Andoh, and H. Ohgi. 1993. Effects of β -carotene and a -tocopherol o n rumen bacteria in the utilization of long-chain fatty acids and cellulose. J. Dairy S ci. 76:600-605  Hino, Τ ·, K. Takeshi, M. Kumazawa, and M. Kanda. 1993. Effects of aibellin, a nove 1 peptide antibiotic, on rumen fermentation in vitro. J. Dairy ¾ci. 76: 2213-2221. Hino, Τ N. Andoh, and H. Ohgi. 1993. Effects of β -carotene and a -tocopherol on rumen bacteria in the utilization of long-chain fatty acids and cellulose.J. Dairy S ci. 76: 600-605
Hino, Τ·, and N. Asanuma. 2003. Suppression of ruminal methanogenesis by decreas ing the substrates available to methanogenic bacteria. Nutrition Abstracts and Revie ws (Series B), 73, 1R-8R.  Hino, Τ ·, and N. Asanuma. 2003. Suppression of ruminal methanogenesis by decreas ing the substrates available to methanogenic bacteria. Nutrition Abstracts and Revie ws (Series B), 73, 1R-8R.
Hino, Τ·, and S. Hamano. 1993. Effects of readily fermentable carbohydrate on nber digestion by rumen microbes in continuous culture. Anim. Sci. Technol. 64: 1070—1 078.  Hino, Τ ・, and S. Hamano. 1993. Effects of readily fermentable carbohydrate on nber digestion by rumen microbes in continuous culture. Anim. Sci. Technol. 64: 1070—1 078.
Houseknecht, K. L., J. P. Vanden Heuvel, S. Y. Moya-Cam arena, C. P. Portocarrer o, L. W. Peck, K. P. Nickel, and M. A. Belury. 1998. Dietary conjugated linoleic aci d normalizes impaired glucose tolerance in the Zucker diabetic fatty acid fa/fa rat. B iochem. Biophys. Res. Commun. 244:678-682. Houseknecht, KL, JP Vanden Heuvel, SY Moya-Cam arena, CP Portocarrer o, LW Peck, KP Nickel, and MA Belury. 1998. Dietary conjugated linoleic aci d normalizes impaired glucose tolerance in the Zucker diabetic fatty acid fa / fa rat. B iochem. Biophys. Res. Commun. 244: 678-682.
Hunter, W. J., F. C. Baker, I. S. Rosenfeld, J. B. Keyser, and S. B. Tove. 1976. Bio hydrogenation of unsaturated fatty acids. Hydrogenation by cell-free preparations of Butyrivibrio fibrisolvens. J. Biol. Chem. 251:2241-2247.  Hunter, W. J., F. C. Baker, I. S. Rosenfeld, J. B. Keyser, and S. B. Tove. 1976. Bio hydrogenation of unsaturated fatty acids. Hydrogenation by cell-free preparations of Butyrivibrio fibrisolvens. J. Biol. Chem. 251: 2241-2247.
Ip, C., S. F.し hin, J. A. Scimeca, and M. W. Pariza. 1991. Mammary cancer prevent ion by conjugated dienoic derivative of linoieic acid. Cancer Res. 51:6118—6124. Jiang, J., L. Bjorck, and R. Fonden. 1998. Production of conjugated linoleic acid by aairy starter cultures. J. Appl. Microbiol. 85:95—102.  Ip, C., SF, hin, JA Scimeca, and MW Pariza. 1991. Mammary cancer prevent ion by conjugated dienoic derivative of linoieic acid. Cancer Res. 51: 6118—6124. Jiang, J., L. Bjorck, and R 1998. Production of conjugated linoleic acid by aairy starter cultures. J. Appl. Microbiol. 85: 95—102.
Kandler,〇·, and N. Weiss. 1986. Genus Lactobacillus. Beijerinck 1901, 212, p. 120 9-1234. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey' s manual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore, USA. Kepler, C. R., K. P. Hirons, J. J. McNeil, and S. B. Tove. 1966. Intermediates and p roducts of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem. 241:1350-1354.  Kandler, 〇, and N. Weiss. 1986. Genus Lactobacillus. Beijerinck 1901, 212, p. 120 9-1234. In PHA Sneath, NS Mair, ME Sharpe, and JG Holt (ed.), Bergey 's manual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore, USA. Kepler, CR, KP Hirons, JJ McNeil, and SB Tove. 1966. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens. J. Biol. Chem 241: 1350-1354.
Kepler, C. R., W. P. Tucker, and S. B. Tove. 1970. Biohydrogenation of unsaturate d fatty acids: IV Substrate specificity and inhibition of linoleate Δ 12— cis, Δ 11— trans Kepler, C. R., W. P. Tucker, and S. B. Tove. 1970. Biohydrogenation of unsaturate d fatty acids: IV Substrate specificity and inhibition of linoleate Δ 12— cis, Δ 11— trans
-isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem. 245:3612-3620. -isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem. 245: 3612-3620.
Kim, Y. J., R. H. Liu, J. L. Rychlik, and J. B. Russell. 2002. The enrichment of a ru minal bacterium (Megasphaera elsdenii J- 4) that produces the trans- 10, cis- 12 iso mer of conjugated linoleic acid. J. Appl. Microbiol. 92:976-982.  Kim, YJ, RH Liu, JL Rychlik, and JB Russell. 2002. The enrichment of a ru minal bacterium (Megasphaera elsdenii J- 4) that produces the trans-10, cis-12 iso mer of conjugated linoleic acid. J. Appl. Microbiol. 92: 976-982.
Lee, K. Ν·, D. Kritchevsky, and M. W. Pariza. 1994. Conjugated linoleic acid and at herosclerosis in rabbits. Atherosclerosis 108:19—25.  Lee, K. Ν ·, D. Kritchevsky, and M. W. Pariza. 1994. Conjugated linoleic acid and at herosclerosis in rabbits. Atherosclerosis 108: 19—25.
Miller, C. C., Y. Park, M. W. Pariza, and M. E. Cook. 1994. Feeding conjugated lin oleic acid to animals partially overcomes catabolic responses due to endotoxin inject ion. Biochem. Biophys. Res. Commun. 198: 1107—1112.  Miller, C. C., Y. Park, M. W. Pariza, and M. E. Cook. 1994. Feeding conjugated lin oleic acid to animals partially overcomes catabolic responses due to endotoxin inject ion. Biochem. Biophys. Res. Commun. 198: 1107—1112.
Miyazaki, Κ·, T. Hino, and H. Itabashi. 1992. Effects of extracellular pH on the intr acellular pH and membrane potential of cellulolytic ruminal bacteria, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes. J. Gen. Appl. Micr obiol. 38:567-573. Miyazaki, Tsuji, T. Hino, and H. Itabashi. 1992. Effects of extracellular pH on the intr acellular pH and membrane potential of cellulolytic ruminal bacteria, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes. J. Gen. Appl. Micr obiol. 38: 567-573.
Morales, M. S., D. L. Palmquist, and W. P. Weiss. 2000. Effects of fat source and c opper on unsaturation of blood and milk triacylglycerol fatty acids in Holstein and Je rsey cows. J. Dairy Sci. 83:2105-2111·  Morales, M. S., D. L. Palmquist, and W. P. Weiss. 2000. Effects of fat source and c opper on unsaturation of blood and milk triacylglycerol fatty acids in Holstein and Jersey cows. J. Dairy Sci. 83: 2105-2111
Morita N, Nishida T, Tanaka M, Yano Y, Okuyama H. 2005. Enhancement of polyun saturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid -producing bacteria. Biotechnol Lett. 27:389 - 393.  Morita N, Nishida T, Tanaka M, Yano Y, Okuyama H. 2005. Enhancement of polyun saturated fatty acid production by cerulenin treatment in polyunsaturated fatty acid -producing bacteria. Biotechnol Lett. 27: 389-393.
Nicolosi, R. J., E. J. Rogers, D. Kritchevsky, J. A. Scimeca, and P. J. Huth. 1997. D ietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atheroscl erosis in hypercholesterolemic hamsters. Artery 22:266-277.  Nicolosi, R. J., E. J. Rogers, D. Kritchevsky, J. A. Scimeca, and P. J. Huth. 1997. D ietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atheroscl erosis in hypercholesterolemic hamsters. Artery 22: 266-277.
Ogimoto, Κ·, and S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Socie ties Press, Tokyo.  Ogimoto, Κ ·, and S. Imai. 1981. Atlas of Rumen Microbiology. Japan Scientific Societies Press, Tokyo.
Orskov, F. 1986. Genus I. Escherichia. Castellani and Chalmers 1919, 941, p. 420— 422. In P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's m anual of systematic bacteriology, vol. 1. Williams & Wilkins, Baltimore, USA.  Orskov, F. 1986. Genus I. Escherichia. Castellani and Chalmers 1919, 941, p. 420—422. In PHA Sneath, NS Mair, ME Sharpe, and JG Holt (ed.), Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, USA.
Pariza, M. W. 2004. Perspective on the safety and effectiveness of conjugated linolei c acid. Am. J. Clin. Nutr. 79:1132-1136. Pariza, M. W. 2004. Perspective on the safety and effectiveness of conjugated linolei c acid. Am. J. Clin. Nutr. 79: 1132-1136.
Pariza, M. W., and W. A. Har graves. 1985. A beef-derived mutagenesis modulator i nhibits initiation of mouse epidermal tumors by 7, 12— dimethylbenz [a] anthracene. Carcinogenesis 6:591 - 593.  Pariza, M. W., and W. A. Har graves. 1985. A beef-derived mutagenesis modulator i nhibits initiation of mouse epidermal tumors by 7, 12— dimethylbenz [a] anthracene. Carcinogenesis 6: 591-593.
Perfield, J. W. II, A. Saebo, and D. E. Bauman. 2004. Use of Conjugated Linoleic A cid (CLA) Enrichments to Examine the Effects of trans- 8, cis- 10 CLA, and cis- 11, trans— 13 CLA on Milk-Fat Synthesis. J. Dairy Sci. 87:1196-1202.  Perfield, JW II, A. Saebo, and DE Bauman. 2004. Use of Conjugated Linoleic A cid (CLA) Enrichments to Examine the Effects of trans-8, cis-10 CLA, and cis-11, trans— 13 CLA on Milk -Fat Synthesis. J. Dairy Sci. 87: 1196-1202.
Peterson, D.G., E. A. Matitashvili, and D. E. Bauman. 2004. The inhibitory effect of trans— 10, cis— 12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP— 1. J. Nutr. 134:25 23-2527. Peterson, DG, EA Matitashvili, and DE Bauman. 2004. The inhibitory effect of trans— 10, cis— 12 CLA on lipid synthesis in bovine mammary epithelial cells involves reduced proteolytic activation of the transcription factor SREBP— 1. J. Nutr. 134 :twenty five 23-2527.
Piperova, L. S., J. Sampugna, B. B. Teter, K. F. Kalscheur, M. P. Yurawecz, Y. Ku, K. M. Morehouse, and R. A. Erdman. 2002 Duodenal and milk trans octadecenoic a cid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesi s is the predominant source of cis— 9— containing CLA in lactating dairy cows. J. Nutr • 32:1235-1241.  Piperova, LS, J. Sampugna, BB Teter, KF Kalscheur, MP Yurawecz, Y. Ku, KM Morehouse, and RA Erdman. 2002 Duodenal and milk trans octadecenoic a cid and conjugated linoleic acid (CLA) isomers indicate that postabsorptive synthesi s is the predominant source of cis— 9— containing CLA in lactating dairy cows. J. Nutr • 32: 1235-1241.
Rajakangas, J., Basu, S., Salminen, I. and Mutanen, M. (2003) Adenoma growth stim ulation by the trans- 10, cis- 12 isomer of conjugated linoleic acid (CLA) is associate d with changes in mucosal NF— kappaB and cyclin Dl protein levels in the Min mous e. J. Nutr. 133:1943-1948.  Rajakangas, J., Basu, S., Salminen, I. and Mutanen, M. (2003) Adenoma growth stim ulation by the trans-10, cis-12 isomer of conjugated linoleic acid (CLA) is associate d with changes in mucosal NF— kappaB and cyclin Dl protein levels in the Min mous e. J. Nutr. 133: 1943-1948.
Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee, and S Sauer, F. D., V. Fellner, R. Kinsman, J. K. Kramer, H. A. Jackson, A. J. Lee, and S
. Chen. 1998. Methane output and lactation response in Holstein cattle with monens in or unsaturated fat added to the diet. J. Anim Sci. 76:906—914. Chen. 1998. Methane output and lactation response in Holstein cattle with monens in or unsaturated fat added to the diet. J. Anim Sci. 76: 906—914.
Scardovi, V. 1986. Genus Bifidobacterium. Orla— Jensen 1924, 472, p. 1418-1434. I n P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (ed.), Bergey's manual of systematic bacteriology, vol. 2. Williams & Wilkins, Baltimore, USA.  Scardovi, V. 1986. Genus Bifidobacterium. Orla— Jensen 1924, 472, p. 1418-1434. In PHA Sneath, NS Mair, ME Sharpe, and JG Holt (ed.), Bergey's manual of systematic bacteriology, vol. 2 Williams & Wilkins, Baltimore, USA.
Wahle, K. W., S. D. Heys, and D. Rotondo. 2004. Conjugated linoleic acids: are the y beneficial or detrimental to health? Prog. Lipid Res. 43:553—587.  Wahle, K. W., S. D. Heys, and D. Rotondo. 2004. Conjugated linoleic acids: are the y beneficial or detrimental to health? Prog. Lipid Res. 43: 553—587.
Wang, Υ·, and P. J. Jones. 2004. Dietary conjugated linoleic acid and body composit ion. Am. J. Clin. Nutr. 79:1153—1158.  Wang, Υ ·, and P. J. Jones. 2004. Dietary conjugated linoleic acid and body composit ion. Am. J. Clin. Nutr. 79: 1153—1158.
Yano Y, Nakayama A, ^aito H, Ishihara K. (1994) Production of docosahexaenoic aci d by marine bacteria isolated from deep sea fish. Lipids. 29:527-528.  Yano Y, Nakayama A, ^ aito H, Ishihara K. (1994) Production of docosahexaenoic aci d by marine bacteria isolated from deep sea fish. Lipids. 29: 527-528.
本明細書は、本願の優先権の基礎である日本国特許出願 (特願 2005-239274号) の明細書および Zまたは図面に記載されている内容を包含する。また、本発明で引 用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入 れるものとする。  This specification includes the contents described in the specification and Z or drawing of the Japanese patent application (Japanese Patent Application No. 2005-239274) which is the basis of the priority of the present application. In addition, all publications, patents, and patent applications cited in the present invention are incorporated herein by reference as they are.

Claims

請求の範囲 The scope of the claims
[1] 不飽和化合物又は不飽和化合物生成能を有する微生物、及び不飽和化合物取り 込み能を有する微生物を含有することを特徴とする家畜用飼料添加物。  [1] A feed additive for livestock, comprising a microorganism having an unsaturated compound or an unsaturated compound-producing ability, and a microorganism having an ability to take up an unsaturated compound.
[2] 不飽和化合物生成能を有する微生物がトランスパクセン酸生成能を有する微生物 であり、不飽和化合物取り込み能を有する微生物がトランスパクセン酸取り込み能を 有する微生物であることを特徴とする請求項 1に記載の家畜用飼料添加物。  [2] The microorganism having an ability to produce unsaturated compounds is a microorganism having an ability to produce transpaxenoic acid, and the microorganism having an ability to take unsaturated compounds is a microorganism having an ability to take up transpaxenoic acid. Item 2. The animal feed additive according to Item 1.
[3] トランスバタセン酸生成能を有する微生物力 ブチリビブリオ'フイブリソルべンス MD T-10株又はその変異株であることを特徴とする請求項 2に記載の家畜用飼料添加物  [3] The microbial power having the ability to produce transbatacenoic acid is the feed additive for livestock according to claim 2, which is a butyrivibrio 'Fibriosolvens MD T-10 strain or a mutant thereof
[4] トランスバタセン酸取り込み能を有する微生物力 ビフイドバタテリゥム 'アドレセンテ イス HF-11株又はその変異株であることを特徴とする請求項 2又は 3に記載の家畜用 飼料添加物。 [4] The feed additive for livestock according to claim 2 or 3, wherein the microorganism has a transbatacenoic acid uptake ability, and is Bifidobataterum 'Adrescentis HF-11 strain or a mutant thereof.
[5] 家畜が、反芻動物であることを特徴とする請求項 1乃至 4のいずれか一項に記載の 家畜用飼料添加物。  [5] The livestock feed additive according to any one of claims 1 to 4, wherein the livestock is a ruminant.
[6] 請求項 1乃至 5のいずれか一項に記載の家畜用飼料添加物を含む家畜用飼料。  [6] A livestock feed comprising the livestock feed additive according to any one of claims 1 to 5.
[7] 不飽和化合物を還元する微生物が存在する環境で、不飽和化合物生成能を有す る微生物と不飽和化合物取り込み能を有する微生物を培養し、培養物力 不飽和化 合物を採取することを特徴とする不飽和化合物の生産方法。 [7] Cultivate microorganisms capable of producing unsaturated compounds and microorganisms capable of incorporating unsaturated compounds in an environment where microorganisms that reduce unsaturated compounds exist, and collect culture force unsaturated compounds. A method for producing an unsaturated compound.
[8] 不飽和化合物が、トランスパクセン酸であることを特徴とする請求項 7に記載の不飽 和化合物の生産方法。 [8] The method for producing an unsaturated compound according to [7], wherein the unsaturated compound is transpacsenoic acid.
[9] トランスバタセン酸生成能を有するブチリビブリオ 'フイブリソルべンス MDT-10株。  [9] Butyrivibrio 'Fibriosolvens MDT-10 strain capable of producing transbatacenoic acid.
[10] トランスバタセン酸取り込み能を有するビフイドバタテリゥム ·ァドレセンティス HF-11 株。 [10] Bifidobataterum adrecentis HF-11 strain capable of incorporating transbatacenoic acid.
PCT/JP2006/305200 2005-08-22 2006-03-16 Additive for livestock feeds WO2007023588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532019A JP4124478B2 (en) 2005-08-22 2006-03-16 Animal feed additives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005239274 2005-08-22
JP2005-239274 2005-08-22

Publications (1)

Publication Number Publication Date
WO2007023588A1 true WO2007023588A1 (en) 2007-03-01

Family

ID=37771342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305200 WO2007023588A1 (en) 2005-08-22 2006-03-16 Additive for livestock feeds

Country Status (2)

Country Link
JP (1) JP4124478B2 (en)
WO (1) WO2007023588A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131001A (en) * 2008-11-05 2010-06-17 Meiji Shiryo Kk Method for increasing conjugated linoleic acid in milk or meat of rumination cattle
US9062276B2 (en) 2012-12-03 2015-06-23 Board Of Trustees Of The University Of Arkansas Conjugated linoleic acid rich vegetable oil production from linoleic rich oils by heterogeneous catalysis
KR20150112065A (en) * 2014-03-26 2015-10-07 고려대학교 산학협력단 Feed additive composition comprising Bifidobacterium breve LMC520

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304967A (en) * 1991-05-16 1993-11-19 Sagami Chem Res Center Microorganism, containing highly unsaturated fatty acids and capable of producing lactic acid and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304967A (en) * 1991-05-16 1993-11-19 Sagami Chem Res Center Microorganism, containing highly unsaturated fatty acids and capable of producing lactic acid and its production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUDA S. ET AL.: "A new strain of Butyrivibrio fibrisolvens that has high ability to isomerize linoleic acid to conjugated linoleic acid", J. GEN. APPL. MICROBIOL., vol. 51, no. 2, 31 May 2005 (2005-05-31), pages 105 - 113, XP003008691 *
FUKUDA S.: "Vaccenic acid Seiseino no Takai Butyrivibrio fibrisolvens no Shinkinkabu no Riyo ni yoru, Hansu Dobutsu ni okeru Kyoyaku Linoleic Acid Seisei no Zokyo", 2005 NENDO NIHON CHIKUSAN GAKKAI DAI 104 KAI TAIKAI KOEN YOSHI, 20 March 2005 (2005-03-20), pages 56 + ABSTR. NO. I27-29, XP003008690 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131001A (en) * 2008-11-05 2010-06-17 Meiji Shiryo Kk Method for increasing conjugated linoleic acid in milk or meat of rumination cattle
US9062276B2 (en) 2012-12-03 2015-06-23 Board Of Trustees Of The University Of Arkansas Conjugated linoleic acid rich vegetable oil production from linoleic rich oils by heterogeneous catalysis
KR20150112065A (en) * 2014-03-26 2015-10-07 고려대학교 산학협력단 Feed additive composition comprising Bifidobacterium breve LMC520
KR101694714B1 (en) * 2014-03-26 2017-01-11 고려대학교 산학협력단 Feed additive composition comprising Bifidobacterium breve LMC520

Also Published As

Publication number Publication date
JP4124478B2 (en) 2008-07-23
JPWO2007023588A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
Dewanckele et al. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update
Enjalbert et al. Rumen microbiota and dietary fat: a mutual shaping
US20210163878A1 (en) Modulation of tissue fatty acid composition of a host by human gut bacteria
US5856149A (en) Method of producing conjugated fatty acids
AbuGhazaleh et al. Fatty acid profiles of milk and rumen digesta from cows fed fish oil, extruded soybeans or their blend
Lawson et al. The role of dairy products in supplying conjugated linoleic acid to man's diet: a review
Wild et al. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions
Potu et al. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition
Adamczak et al. Properties and biotechnological methods to produce lipids containing conjugated linoleic acid
US7223543B2 (en) Conjugated linoleic acid isomerase and a process for the production of conjugated linoleic acid
JP4124478B2 (en) Animal feed additives
FI115842B (en) Process for the preparation of conjugated linoleic acid
Zhang et al. Probiotics increase intramuscular fat and improve the composition of fatty acids in Sunit sheep through the adenosine 5′-monophosphate-activated protein kinase (AMPK) signaling pathway
US6960456B1 (en) Method for preparing conjugated linoleic acid
Palachum et al. Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment
KR20060079789A (en) Use of a single-cell protein material
Dombar et al. Isolation and characterization of Butyrivibrio fibrisolvens from rumen of Murrah buffalo having high potential to isomerize linoleic acid to conjugated linoleic acid.
Benjamin et al. Biogenesis of conjugated linoleic acids
Premkumar et al. A REVIEW ON CHEMICAL AND BIOSYNTHESIS OF NUTRACEUTICAL CONJUGATED LINOLEIC ACID (CLA)
Dewanckele Novel approaches to elucidate shifts in ruminal biohydrogenation pathways associated with milk fat depression
Abouelwafa et al. Production of Conjugated Linoleic Acid from Safflower Oil as Precursor by Probiotic Cultures
Edwards Development of methodology and characterization of ruminal lipase-producing bacteria in vitro
MATULOVÁ et al. Composition of conjugated linoleic acid isomers formed by Lactobacillus and Bifidobacterium spp. in conversion media
Karri et al. An over view on conjugated linoleic acid (CLA): a dairy product derivative and its applications
Puniya et al. Conjugated linoleic acid: a multifunctional nutraceutical from the rumen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532019

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06729197

Country of ref document: EP

Kind code of ref document: A1