WO2007023521A1 - Method of separating gold - Google Patents

Method of separating gold Download PDF

Info

Publication number
WO2007023521A1
WO2007023521A1 PCT/JP2005/015227 JP2005015227W WO2007023521A1 WO 2007023521 A1 WO2007023521 A1 WO 2007023521A1 JP 2005015227 W JP2005015227 W JP 2005015227W WO 2007023521 A1 WO2007023521 A1 WO 2007023521A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
adsorbent
adsorption
hydrochloric acid
concentration
Prior art date
Application number
PCT/JP2005/015227
Other languages
French (fr)
Japanese (ja)
Inventor
Katsutoshi Inoue
Hidetaka Kawakita
Kumiko Kajiyama
Daisuke Hirata
Original Assignee
Saga University
Muromachi Chemicals Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga University, Muromachi Chemicals Inc. filed Critical Saga University
Priority to PCT/JP2005/015227 priority Critical patent/WO2007023521A1/en
Priority to JP2007531965A priority patent/JP4827146B2/en
Publication of WO2007023521A1 publication Critical patent/WO2007023521A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/485Plants or land vegetals, e.g. cereals, wheat, corn, rice, sphagnum, peat moss

Definitions

  • the present invention relates to a technique for separating gold for the purpose of isolating, recovering, or purifying gold, and in particular, only gold from various metals dissolved in an aqueous hydrochloric acid solution.
  • the present invention relates to a technology for selectively and effectively separating particles as solid particles (gold particles).
  • Gold has been used in many fields in recent years as a jewelry material and electrical / electronic material in addition to jewelry. Since gold is expensive, recovery from various wastes and waste liquids has attracted attention. However, the amount of gold contained in the waste is very small, and it is easy to selectively separate and recover gold from other metals present in large excess.
  • Non-Patent Document 1 Junji Shibata, Akihiko Okuda “Precious Metal Recycling Technology” Resources and Materials, 118 ⁇ 1, p. 1 -8 (2002)
  • Non-Patent Document 2 Hideo Koshimura “Precious metals, present status of recovery technology” Chemical Technology Journal MOL, No. 4, p. 76 -81 (1986)
  • Tannin is one of the organic substances that make up plants, and has many phenol, catechol, and pyrogallol sites in its molecular structure.
  • Plant-derived natural substances rich in tannin include grapes, green tea, and red wine.
  • the amount of polyphenol contained in grapes is said to be about 200 times that of red wine.
  • Tannin is a component of plant bitterness and astringency, and what is particularly abundant in persimmon is called persimmon tannin.
  • Mature astringents at the right time for harvest contain 1-2% water-soluble tannins and immature astringents contain 5-6% persimmon tannins.
  • Non-Patent Document 3 T. Sakaguchi, A. Nakajima; separation Science and Technology, 29-2, p. 205-221 (1994)
  • non-patent documents 4 and 5 report the adsorption of metal ions by an adsorbent using mimosa tannin and watnoretannin as raw materials.
  • Non-Patent Document 4 Yamaguchi Tohiko, Iura Yoshinori, Higuchi Mitsuo, Sakata Isao; Journal of the Wood Society, 37 ⁇ 9, p. 815-820 (1991)
  • Non-patent document 5 Y. Nakano, K. Takeshita, T. Tsutsumi; Water Research, 35-2, p. 496-500 (2001)
  • these adsorbents are prepared by extracting the above tannin components from the plants containing them, and are expensive because they require the cost of extraction and recovery from those plants.
  • tannin components such as astringent peels were not used by using an adsorbent prepared by cost-effectively extracting tannin components from plants containing them. It has been found that uranium and thorium can be recovered by using as an adsorbent the plant part itself containing a large amount as a raw material. For example, Patent Document 1 has already reported it.
  • Patent Document 1 JP 2004-330005 A
  • Patent Document 1 enables efficient recovery of uranium and thorium using straw skin, but in order to prepare an insoluble adsorbent in water. It was difficult to use paraformaldehyde, which is a harmful chemical substance, in the crosslinking process. Disclosure of the invention
  • An object of the present invention is to prepare an adsorbent without using a material that is burdensome to the human body and the environment, and effectively collect gold from various wastes and waste liquids at an unprecedented low cost. It is to provide a new technology that can be separated.
  • the adsorbent obtained by treating sulfuric acid on the cocoon skin is brought into contact with an aqueous hydrochloric acid solution containing at least gold as a metal ion, whereby gold is added to the adsorbent.
  • a method for separating gold comprising a step of selectively adsorbing particles.
  • FIG. 1 is a chemical formula showing a repetitive structure of persimmon tannin that constitutes persimmon skin as a raw material of the adsorbent used in the present invention.
  • FIG. 2 Shows the relationship between adsorption percentage (A) of various metal ions and hydrochloric acid concentration ([HC1]).
  • FIG. 3 shows the relationship between the amount of gold adsorbed and the concentration of gold remaining in hydrochloric acid.
  • FIG. 4 is an X-ray diffraction pattern of the adsorbent after gold is adsorbed.
  • FIG. 5 is a digital micrograph of the adsorbent after gold adsorption.
  • the kakitannin ( ⁇ ⁇ tannin) as a raw material of the adsorbent used in the present invention is a substance in which four compounds of epicatechin 'catechin 3-gallate' epigallocatechin 'gallocatechin-3-gallate are chemically bound. It is. Their composition ratio is 1: 1: 2: 2 and has a repeating structure as shown in FIG. It is a high-molecular weight anthocyanin polymer with a molecular weight of about 15,000.
  • persimmon tannin is provided from persimmon skin, and astringent persimmon skin containing abundant persimmon tannin is particularly preferable.
  • This tannin is a water-soluble compound, and as it is, it elutes into an aqueous solution during the adsorption operation and significantly reduces the adsorption of the target substance.
  • Cross-linking treatment is necessary to prevent such elution of tannin.
  • crosslinking agents such as epichlorohydrin and norformaldehyde have been generally used for the crosslinking treatment, but these crosslinking agents are harmful and costly after use.
  • the present inventor is able to effectively absorb high-selective separation of gold by using only concentrated sulfuric acid in the cross-linking treatment of tannin without using a conventional cross-linking agent. It has been found that an agent can be obtained.
  • tannin has a large number of hydroxyl groups, so only a condensation reaction using concentrated sulfuric acid enables sufficient crosslinking, and the crosslinking reaction can be carried out between cellulose tannin molecules and also cellulose and hemisphere coexisting with tannin. It is thought to be performed between the polysaccharides of cellulose.
  • the cross-linking treatment for obtaining the adsorbent used in the present invention is carried out by pulverizing the astringent peel into a powder and then reacting it by stirring in an oil bath with concentrated sulfuric acid. After cross-linking treatment, neutralize with, for example, aqueous sodium hydrogen carbonate, wash thoroughly, for example, first with water, then with lmol / dm 3 hydrochloric acid, and finally with water again, then dry and then grind In this way, the target adsorbent is prepared.
  • the ratio of the mixture of astringent peel and concentrated sulfuric acid is 1.0 to 0.5 kg, preferably 0.7 to 0.8 kg with respect to concentrated sulfuric acid (generally 98 to 90% concentrated sulfuric acid) l dm 3 It is.
  • the temperature of the oil bath at this time is 80 to 120 ° C, preferably 90 to 1 10 ° C.
  • the reaction time is 12 to 48 hours, preferably 18 to 30 hours.
  • various forms of aqueous hydrochloric acid solutions containing various metal ions and conventional batch operations or column operations can be used. By contacting the adsorbent, gold can be selectively adsorbed and recovered.
  • Base metals such as zinc, iron, lead, copper, and cobalt and precious metals such as gold, palladium, and platinum exist as chloride complexes of anions in relatively high concentration aqueous chloride solutions.
  • anion exchange resins having primary to quaternary amino groups.
  • Dowe X 1 which is a quaternary ammonium salt type strongly basic ion exchange resin
  • Non-Patent Document 6 a very large number of metals are illustrated in Non-Patent Document 6 and the like.
  • Non-Patent Document 6 Edited by J. A. Marinsky, Ion Exchange, vol. 1, p. 317, Maec el Dekker, New York (1966)
  • the adsorbent of the present invention selectively adsorbs only gold from an aqueous chloride solution, and does not adsorb base metals as described above and noble metals other than gold at all.
  • the chloride concentration range for selectively adsorbing gold is 0.01 to 12 mol / dm 3 concentration range, preferably 0.0 to 8 mol / dm 3 when the aqueous chloride solution is hydrochloric acid. Concentration range.
  • an adsorbent derived from sulfuric acid-treated carp skin when brought into contact with an aqueous hydrochloric acid solution containing low concentrations of gold and other metal ions, only gold is selectively adsorbed.
  • the adsorbed gold is reduced and deposited as gold particles.
  • the average particle size of the gold particles is about several microns to several hundred microns, and can be easily separated from the adsorbent particles by existing methods such as sieving and gravity sorting (specific gravity difference sorting).
  • the astringent peel produced in the production of dried koji was powdered as it was, and 15 g was taken into 20 ml of 98% concentrated sulfuric acid, and the mixture was subjected to crosslinking treatment by heating and stirring at 100 ° C for 24 hours .
  • the reaction mixture was added to 500 ml of an aqueous sodium bicarbonate solution with a concentration of 100 g / dm 3 Was added to neutralize, and then washed with 1000 ml of distilled water at 50 ° C. and then with 1000 ml of distilled water at room temperature.
  • the mixture was stirred with 500 ml of hydrochloric acid having a concentration of ImolZdm 3 for 12 hours, filtered, and the filtrate was washed with distilled water until the pH became neutral. After that, it was put in a dryer at 70 ° C and dried for 24 hours. After that, it was pulverized with a ball mill, sieved, and a particle size of 150 microns or less was used as an adsorbent.
  • An aqueous hydrochloric acid solution of gold (III) having a concentration of 0.2 mmol / dm 3 was prepared by dissolving chloroauric acid in hydrochloric acid having a concentration of 0.:! To 8 mol / dm 3 . 10 ml of this aqueous solution and 10 mg of the adsorbent prepared in Example 1 were put into a triangular flask with a stopper, and adsorbed by shaking for 30 hours in a constant temperature water bath at 30 ° C. The concentration of gold in the solution before and after adsorption was measured with an AA-6650 type atomic absorption photometer manufactured by Shimadzu, and the amount of adsorption was determined. The concentration of hydrochloric acid in the solution was determined by neutralization titration. Also, the adsorption percentage (A) was obtained from the decrease in gold concentration in the solution by adsorption according to the following formula.
  • Adsorption percentage [(Gold concentration before adsorption-Gold concentration after adsorption) Gold concentration before Z adsorption) X 100
  • the base metals such as iron (III), zinc (II), copper (II), tin (IV) and the noble metals palladium (II) and Platinum (IV) was adsorbed. Some platinum adsorption was seen, but negligible compared to gold. There is very little adsorption of other metals.
  • Figure 3 shows the relationship between the gold adsorption amount (Q) and the gold concentration (Ce) in the solution after adsorption.
  • Q gold adsorption amount
  • Ce gold concentration
  • the yield of Japanese astringents is 117,900t / year, and many of them are peeled and removed, then processed into dried straw and used for food. About 9% of the skin generated when making dried straw is discarded.
  • the adsorbent used in the present invention can be prepared by applying a simple sulfuric acid treatment using such a material.
  • the present invention separates and recovers low-concentration gold in wastes and waste liquids in various industrial fields, such as anodic slime leachate produced in electrolytic ironmaking such as copper and nickel. Or, it can be refined and inexpensive and easy to handle. Can also be utilized as a gentle process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

A method in which using an inexpensive adsorbent, gold being present in a low concentration in an aqueous hydrochloric acid solution is separated and recovered as gold particles. An adsorbent obtained by sulfuric acid treatment of persimmon peel is brought into contact with an aqueous hydrochloric acid solution containing at least gold as a metal ion, thereby effecting selective adsorption of gold particles onto the adsorbent.

Description

明 細 書  Specification
金の分離方法  Gold separation method
技術分野  Technical field
[0001] 本発明は、金の単離、回収、または精製などの目的で金を分離する技術に関し、特 に、塩酸水溶液中からその中に溶解している様々な金属の中から、金のみを選択的 かつ効果的に固体の粒子(金粒子)として分離する技術に関するものである。  [0001] The present invention relates to a technique for separating gold for the purpose of isolating, recovering, or purifying gold, and in particular, only gold from various metals dissolved in an aqueous hydrochloric acid solution. The present invention relates to a technology for selectively and effectively separating particles as solid particles (gold particles).
技術背景  Technical background
[0002] 金は宝飾品の他、メツキ材料や電気'電子材料として近年多くの分野で利用されて いる。金は高価なことから様々な廃棄物、廃液中からの回収が注目されている。しか し廃棄物中に含まれる金の量は僅かであり、大過剰に存在する他の金属等からの金 の選択的な分離 ·回収は容易でなレ、。  [0002] Gold has been used in many fields in recent years as a jewelry material and electrical / electronic material in addition to jewelry. Since gold is expensive, recovery from various wastes and waste liquids has attracted attention. However, the amount of gold contained in the waste is very small, and it is easy to selectively separate and recover gold from other metals present in large excess.
[0003] 銅やニッケノレのアノードスライム中の貴金属の回収に近年溶媒抽出法やイオン交 換法が採用されつつある。これらの回収プロセスにおいては塩素ガスや次亜塩素酸 ナトリウムを含む塩酸水溶液で金属分を全溶解させた後、個々の貴金属が溶媒抽出 法やイオン交換法により回収される。貴金属の回収のための溶媒抽出法やイオン交 換法に関しては、例えば非特許文献 1等の総説等に詳細が記述されている。  [0003] In recent years, solvent extraction methods and ion exchange methods have been adopted for the recovery of precious metals in the anode slime of copper and nickel ole. In these recovery processes, metals are completely dissolved in an aqueous hydrochloric acid solution containing chlorine gas and sodium hypochlorite, and then each precious metal is recovered by solvent extraction or ion exchange. Details of the solvent extraction method and ion exchange method for the recovery of precious metals are described in, for example, a review in Non-Patent Document 1 and the like.
非特許文献 1 :芝田準次、奥田晃彦「貴金属のリサイクル技術」資源と素材、 118卷 1 号、 p. 1 -8 (2002)  Non-Patent Document 1: Junji Shibata, Akihiko Okuda “Precious Metal Recycling Technology” Resources and Materials, 118 卷 1, p. 1 -8 (2002)
[0004] 現行の回収プロセスにおいては金はジブチルカービトールゃメチルイソブチルケト ン、あるいは燐酸トリブチルを用いて溶媒抽出されている。このような溶媒抽出法につ レ、ては例えば非特許文献 2においても紹介されている。しかしこれらの溶媒抽出は他 の貴金属や卑金属も条件によりかなり抽出されるため、多段の抽出一逆抽出操作が 必要であり、分離'精製のコストの上昇を招く。  [0004] In the current recovery process, gold is solvent extracted using dibutyl carbitol, methyl isobutyl ketone, or tributyl phosphate. Such a solvent extraction method is also introduced in Non-Patent Document 2, for example. However, in these solvent extractions, other precious metals and base metals are also extracted depending on the conditions, so that a multi-stage extraction / back-extraction operation is necessary, which increases the cost of separation and purification.
非特許文献 2 :越村英雄「貴金属、回収技術の現状」化学技術誌 MOL、 4号、 p. 76 -81 (1986)  Non-Patent Document 2: Hideo Koshimura “Precious metals, present status of recovery technology” Chemical Technology Journal MOL, No. 4, p. 76 -81 (1986)
[0005] 塩基性シアン溶液からの金や銀の回収には活性炭を用いる吸着法、あるいは強塩 基性陰イオン交換樹脂を用いるイオン交換法が広く採用されている。しかしこれらの 方法においても活性炭や樹脂の選択性はそれ程高くないため、卑金属がかなり吸着 される。また活性炭や樹脂では吸着後の脱着、溶離が困難なため、吸着後にこれら を全て焼却して金属を回収するという非常に高コストな方法が用いられている。し力 活性炭や樹脂の焼却は容易でなぐ後処理が面倒なタールやコーク状の物質が発 生することが多い。 [0005] For the recovery of gold and silver from a basic cyan solution, an adsorption method using activated carbon or an ion exchange method using a strong basic anion exchange resin is widely employed. But these Even in the method, the selectivity of activated carbon and resin is not so high, so the base metal is adsorbed considerably. In addition, since activated carbon and resin are difficult to desorb and elute after adsorption, a very high cost method is used in which all of these are incinerated and the metal is recovered after adsorption. Intensity Activated charcoal and resin are easy to incinerate, and tar and coke-like substances are often generated that are cumbersome after treatment.
[0006] 最近、取扱いの容易な材料の一つとして植物に含まれるタンニンを利用する金属 の吸着分離技術が注目されている。タンニンは植物を構成する有機物の 1つで、そ の分子構造中に多くのフエノール、カテコール、およびピロガロールの部位を有して いる。このタンニンを多く含む植物由来の天然の物質には柿、緑茶、赤ワインなどが 挙げられる。特に柿に含まれるポリフエノールの量は赤ワインの約 200倍と言われて いる。タンニンは植物の苦味や渋みの成分であり、特に柿に多く含まれているものは 柿タンニンと呼ばれている。収穫適期の成熟した渋柿は 1〜2%の水に可溶性の柿タ ンニンを含有し、未熟な渋柿は 5〜6%の柿タンニンを含む。  [0006] Recently, a metal adsorption separation technique using tannin contained in plants has attracted attention as one of easy-to-handle materials. Tannin is one of the organic substances that make up plants, and has many phenol, catechol, and pyrogallol sites in its molecular structure. Plant-derived natural substances rich in tannin include grapes, green tea, and red wine. In particular, the amount of polyphenol contained in grapes is said to be about 200 times that of red wine. Tannin is a component of plant bitterness and astringency, and what is particularly abundant in persimmon is called persimmon tannin. Mature astringents at the right time for harvest contain 1-2% water-soluble tannins and immature astringents contain 5-6% persimmon tannins.
[0007] 例えば、坂口らは柿タンニンがウラニウムやトリウムの吸着 '除去に有効であることを 非特許文献 3等で報告してレ、る。  [0007] For example, Sakaguchi et al. Reported in Non-Patent Document 3 etc. that tannin is effective for the adsorption and removal of uranium and thorium.
非特許文献 3 : T. Sakaguchi, A. Nakajima ; separation Science and Te chnology, 29卷 2号、 p. 205— 221 (1994)  Non-Patent Document 3: T. Sakaguchi, A. Nakajima; separation Science and Technology, 29-2, p. 205-221 (1994)
[0008] また、ミモザタンニンやワットノレタンニンを原料とする吸着剤による金属イオンの吸着 が非特許文献 4と 5にそれぞれ報告されている。 [0008] In addition, non-patent documents 4 and 5 report the adsorption of metal ions by an adsorbent using mimosa tannin and watnoretannin as raw materials.
非特許文献 4 :山口東彦、井浦良徳、樋口光雄、坂田功;木材学会誌、 37卷 9号、 p. 815 - 820 (1991)  Non-Patent Document 4: Yamaguchi Tohiko, Iura Yoshinori, Higuchi Mitsuo, Sakata Isao; Journal of the Wood Society, 37 卷 9, p. 815-820 (1991)
非特霄午文献 5 : Y. Nakano, K. Takeshita, T. Tsutsumi; Water Research , 35卷 2号、 p. 496 - 500 (2001)  Non-patent document 5: Y. Nakano, K. Takeshita, T. Tsutsumi; Water Research, 35-2, p. 496-500 (2001)
[0009] し力 ながらこれらの吸着剤は上記のタンニン成分を、それらを含有する植物から 抽出して調製されたものであり、それらの植物から抽出 ·回収するコストを要するため 高価である。 However, these adsorbents are prepared by extracting the above tannin components from the plants containing them, and are expensive because they require the cost of extraction and recovery from those plants.
[0010] 本発明者等は以前の研究において、タンニン成分をそれらを含む植物から費用を 力けて抽出して調製される吸着剤を使用するのではなぐ渋柿の皮等のタンニン成 分を多く含有する植物の部分そのものを原料とする吸着剤として利用することにより、 ウラニウムやトリウムの回収が可能であることを見出し、例えば特許文献 1等で既に報 告している。 [0010] In previous researches, the present inventors found that tannin components such as astringent peels were not used by using an adsorbent prepared by cost-effectively extracting tannin components from plants containing them. It has been found that uranium and thorium can be recovered by using as an adsorbent the plant part itself containing a large amount as a raw material. For example, Patent Document 1 has already reported it.
特許文献 1 :特開 2004— 330005公報  Patent Document 1: JP 2004-330005 A
[0011] この特許文献 1に開示された吸着剤は、柿の皮を利用してウラニウムやトリウムの効 率的な回収を可能にするものではあるが、水に不溶な吸着剤を調製するための架橋 処理に、有害な化学物質であるパラホルムアルデヒドを使用するのが難点であった。 発明の開示 [0011] The adsorbent disclosed in Patent Document 1 enables efficient recovery of uranium and thorium using straw skin, but in order to prepare an insoluble adsorbent in water. It was difficult to use paraformaldehyde, which is a harmful chemical substance, in the crosslinking process. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 本発明の目的は、人体や環境への負荷の力かる材料を用いることなく吸着剤を調 製し、従来に無い安価な費用で各種の廃棄物や廃液等から金を効果的に分離する ことのできる新しい技術を提供することにある。 [0012] An object of the present invention is to prepare an adsorbent without using a material that is burdensome to the human body and the environment, and effectively collect gold from various wastes and waste liquids at an unprecedented low cost. It is to provide a new technology that can be separated.
課題を解決するための手段  Means for solving the problem
[0013] 本発明者は、前記課題を解決すべく鋭意検討を重ねた結果、柿の皮を硫酸のみで 架橋処理して得られる吸着剤を用いることにより、各種の金属を含有し得る特定の水 溶液から金を選択的に分離できることを見出し、本発明を完成するに至った。  [0013] As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that specific adsorbents containing various metals can be obtained by using an adsorbent obtained by cross-linking cocoon skin only with sulfuric acid. The inventors have found that gold can be selectively separated from an aqueous solution, and have completed the present invention.
[0014] 力べして、本発明に従えば、柿の皮を硫酸処理して得られた吸着剤を、金属イオン として少なくとも金を含有する塩酸水溶液と接触させることにより、該吸着剤に金の粒 子を選択的に吸着させる工程を含むことを特徴とする金の分離方法が提供される。 発明の効果  [0014] Forcibly, according to the present invention, the adsorbent obtained by treating sulfuric acid on the cocoon skin is brought into contact with an aqueous hydrochloric acid solution containing at least gold as a metal ion, whereby gold is added to the adsorbent. There is provided a method for separating gold, comprising a step of selectively adsorbing particles. The invention's effect
[0015] 本発明を用いれば、塩酸水溶液として供されることのできる様々な廃液や廃棄物か ら金のみを極めて選択的かつ効率的に高純度の金の粒子として回収することができ る。  [0015] By using the present invention, it is possible to recover only gold from various waste liquids and wastes that can be provided as an aqueous hydrochloric acid solution as highly pure gold particles in a very selective and efficient manner.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明において用いられる吸着剤の原料となる柿の皮を構成する柿タンニンの 繰り返し構造を示す化学式である。  [0016] [Fig. 1] is a chemical formula showing a repetitive structure of persimmon tannin that constitutes persimmon skin as a raw material of the adsorbent used in the present invention.
[図 2]各種の金属イオンの吸着百分率 (A)と塩酸濃度([HC1] )との関係を示す。 [図 3]金の吸着量と塩酸中に残存する金の濃度との関係を示す。 [Fig. 2] Shows the relationship between adsorption percentage (A) of various metal ions and hydrochloric acid concentration ([HC1]). FIG. 3 shows the relationship between the amount of gold adsorbed and the concentration of gold remaining in hydrochloric acid.
[図 4]金を吸着した後の吸着剤の X線回折図である。  FIG. 4 is an X-ray diffraction pattern of the adsorbent after gold is adsorbed.
[図 5]金の吸着後の吸着剤のデジタル顕微鏡写真である。  FIG. 5 is a digital micrograph of the adsorbent after gold adsorption.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本発明において用いる吸着剤の原料となるようなカキタンニン (柿タンニン)は、ェピ カテキン 'カテキン 3—ガレート'ェピガロカテキン 'ガロカテキンー 3—ガレートの 4 種の化合物が化学的に結合した物質である。それらの構成比率は 1: 1 : 2 : 2であり、 図 1に示すような繰り返し構造を有している。分子量は約 1万 5千前後の高分子のプ 口アントシァニンポリマーである。本発明の吸着剤においては、柿の皮から柿タンニン が供されるが、柿タンニンを豊富に含有する渋柿の皮が特に好ましい。  [0017] The kakitannin (ニ ン tannin) as a raw material of the adsorbent used in the present invention is a substance in which four compounds of epicatechin 'catechin 3-gallate' epigallocatechin 'gallocatechin-3-gallate are chemically bound. It is. Their composition ratio is 1: 1: 2: 2 and has a repeating structure as shown in FIG. It is a high-molecular weight anthocyanin polymer with a molecular weight of about 15,000. In the adsorbent of the present invention, persimmon tannin is provided from persimmon skin, and astringent persimmon skin containing abundant persimmon tannin is particularly preferable.
[0018] この柿タンニンは水溶性の化合物であり、そのままでは吸着操作に際して水溶液中 に溶出し、 目的物質の吸着を著しく低下させる。このような柿タンニンの溶出の防止 のために架橋処理の必要がある。架橋処理には従来より一般にェピクロロヒドリンや ノ ラホルムアルデヒドなどの架橋剤が使用されていたが、これらの架橋剤は、有害で あることに加えて、使用した後処理にコストを要する。本発明者は、驚くべきことに、柿 タンニンの架橋処理には、如上の従来から多用されている架橋剤を用いることなく濃 硫酸のみの処理で、金の高選択的分離に効果的な吸着剤が得られることを見出して いる。これは、柿タンニンは多数の水酸基を有するため、濃硫酸を用いた縮合反応だ けで充分な架橋が可能となり、架橋反応が柿タンニンの分子同士、更には柿タンニン と共存するセルロースやへミセルロースの多糖類との間で行われるものと考えられる。  [0018] This tannin is a water-soluble compound, and as it is, it elutes into an aqueous solution during the adsorption operation and significantly reduces the adsorption of the target substance. Cross-linking treatment is necessary to prevent such elution of tannin. In the past, crosslinking agents such as epichlorohydrin and norformaldehyde have been generally used for the crosslinking treatment, but these crosslinking agents are harmful and costly after use. Surprisingly, the present inventor is able to effectively absorb high-selective separation of gold by using only concentrated sulfuric acid in the cross-linking treatment of tannin without using a conventional cross-linking agent. It has been found that an agent can be obtained. This is because tannin has a large number of hydroxyl groups, so only a condensation reaction using concentrated sulfuric acid enables sufficient crosslinking, and the crosslinking reaction can be carried out between cellulose tannin molecules and also cellulose and hemisphere coexisting with tannin. It is thought to be performed between the polysaccharides of cellulose.
[0019] 本発明で用いる吸着剤を得るための架橋処理は渋柿の皮を粉砕して粉末状にした 後、濃硫酸と共に油浴中で撹拌して反応させることにより行われる。架橋処理の後、 例えば炭酸水素ナトリウム水溶液を用いて中和し、充分な洗浄、例えば、最初に水、 次に lmol/dm3の塩酸、最後に再び水で洗浄した後、乾燥、次いで粉砕することに より目的の吸着剤が調製される。この場合の渋柿の皮と濃硫酸の混合の割合は、濃 硫酸(一般に 98〜90%の濃硫酸) l dm3に対して 1 · 0〜0. 5kg、好ましくは 0. 7〜0 . 8kgである。またこのときの油浴の温度は 80〜: 120°C、好ましくは 90〜: 1 10°Cであ る。反応時間は 12〜48時間、好ましくは 18〜30時間である。 [0020] 以上のような、架橋処理により調製された柿皮由来の吸着剤を用いれば、様々な金 属イオンを含む様々な形態の塩酸水溶液と、従来行われているバッチ操作あるいは カラム操作によって該吸着剤を接触させることにより、金を選択的に吸着 ·回収するこ とがでさる。 [0019] The cross-linking treatment for obtaining the adsorbent used in the present invention is carried out by pulverizing the astringent peel into a powder and then reacting it by stirring in an oil bath with concentrated sulfuric acid. After cross-linking treatment, neutralize with, for example, aqueous sodium hydrogen carbonate, wash thoroughly, for example, first with water, then with lmol / dm 3 hydrochloric acid, and finally with water again, then dry and then grind In this way, the target adsorbent is prepared. In this case, the ratio of the mixture of astringent peel and concentrated sulfuric acid is 1.0 to 0.5 kg, preferably 0.7 to 0.8 kg with respect to concentrated sulfuric acid (generally 98 to 90% concentrated sulfuric acid) l dm 3 It is. The temperature of the oil bath at this time is 80 to 120 ° C, preferably 90 to 1 10 ° C. The reaction time is 12 to 48 hours, preferably 18 to 30 hours. [0020] By using the scab-derived adsorbent prepared by the cross-linking treatment as described above, various forms of aqueous hydrochloric acid solutions containing various metal ions and conventional batch operations or column operations can be used. By contacting the adsorbent, gold can be selectively adsorbed and recovered.
[0021] 亜鉛、鉄、鉛、銅、コバルト等の卑金属ならびに金、パラジウム、白金等の貴金属は 比較的高濃度の塩化物水溶液中では陰イオンの塩化物錯体として存在しており、こ れらは例えば 1級〜 4級のアミノ基を有する陰イオン交換樹脂等に吸着されることが 知られている。例えば 4級アンモニゥム塩型の強塩基性イオン交換樹脂である Dowe X 1による塩酸中からの吸着に関しては非特許文献 6等に極めて多数の金属につ いて図示されている。  [0021] Base metals such as zinc, iron, lead, copper, and cobalt and precious metals such as gold, palladium, and platinum exist as chloride complexes of anions in relatively high concentration aqueous chloride solutions. Is known to be adsorbed on, for example, anion exchange resins having primary to quaternary amino groups. For example, regarding adsorption from hydrochloric acid by Dowe X 1 which is a quaternary ammonium salt type strongly basic ion exchange resin, a very large number of metals are illustrated in Non-Patent Document 6 and the like.
非特許文献 6 :J. A. Marinsky編、 Ion Exchange, vol. 1, p. 317, Maec el Dekker, New York (1966)  Non-Patent Document 6: Edited by J. A. Marinsky, Ion Exchange, vol. 1, p. 317, Maec el Dekker, New York (1966)
[0022] これに対して本発明の吸着剤は金のみを塩化物水溶液中から選択的に吸着し、上 記のような卑金属ならびに金以外の貴金属は全く吸着しない。金を選択的に吸着す るための塩化物の濃度範囲は、塩化物水溶液が塩酸の場合、 0. 01〜: 12mol/dm 3の濃度範囲、好ましくは 0.:!〜 8mol/dm3の濃度範囲である。 [0022] On the other hand, the adsorbent of the present invention selectively adsorbs only gold from an aqueous chloride solution, and does not adsorb base metals as described above and noble metals other than gold at all. The chloride concentration range for selectively adsorbing gold is 0.01 to 12 mol / dm 3 concentration range, preferably 0.0 to 8 mol / dm 3 when the aqueous chloride solution is hydrochloric acid. Concentration range.
[0023] 本発明に従い、硫酸処理した柿の皮由来の吸着剤を、低濃度の金および他の金 属イオンを含有する塩酸水溶液と接触させると金のみが選択的に吸着される。吸着 された金は還元され、金の粒子として析出される。この金の粒子の平均粒径は数ミク ロン〜数百ミクロン程度であり、篩い分けや重力による選別(比重差選別)などの既存 の方法により吸着剤の粒子と容易に分離することができる。  [0023] According to the present invention, when an adsorbent derived from sulfuric acid-treated carp skin is brought into contact with an aqueous hydrochloric acid solution containing low concentrations of gold and other metal ions, only gold is selectively adsorbed. The adsorbed gold is reduced and deposited as gold particles. The average particle size of the gold particles is about several microns to several hundred microns, and can be easily separated from the adsorbent particles by existing methods such as sieving and gravity sorting (specific gravity difference sorting).
以下に実施例により本発明の実施の形態を更に詳細に説明するが、本発明はこれ らの実施例に制限されるものではない。  Hereinafter, embodiments of the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.
実施例 1  Example 1
[0024] 吸着剤の調製 [0024] Preparation of adsorbent
干し柿の製造において発生する渋柿の皮をそのままの状態で粉碎し、 15gを取つ て 20mlの 98%の濃硫酸中に入れ、 100°Cで 24時間加熱撹拌することにより架橋処 理を行った。 100g/dm3の濃度の炭酸水素ナトリウム水溶液 500mlに反応混合物 を加えて中和した後、最初に 50°Cの蒸留水 1000mlで、次いで常温の蒸留水 1000 mlで洗浄した。その後 ImolZdm3の濃度の塩酸 500mlと 12時間撹拌し、濾過した 後、濾過物を pHが中性になるまで蒸留水で洗浄した。しかる後に 70°Cの乾燥器に 入れ、 24時間乾燥した。その後ボールミルで粉砕し、篩い分けして粒径が 150ミクロ ン以下のものを吸着剤として用いた。 The astringent peel produced in the production of dried koji was powdered as it was, and 15 g was taken into 20 ml of 98% concentrated sulfuric acid, and the mixture was subjected to crosslinking treatment by heating and stirring at 100 ° C for 24 hours . The reaction mixture was added to 500 ml of an aqueous sodium bicarbonate solution with a concentration of 100 g / dm 3 Was added to neutralize, and then washed with 1000 ml of distilled water at 50 ° C. and then with 1000 ml of distilled water at room temperature. Thereafter, the mixture was stirred with 500 ml of hydrochloric acid having a concentration of ImolZdm 3 for 12 hours, filtered, and the filtrate was washed with distilled water until the pH became neutral. After that, it was put in a dryer at 70 ° C and dried for 24 hours. After that, it was pulverized with a ball mill, sieved, and a particle size of 150 microns or less was used as an adsorbent.
実施例 2  Example 2
[0025] 金の吸着に及ぼす塩酸濃度の影響  [0025] Effect of hydrochloric acid concentration on gold adsorption
0.:!〜 8mol/dm3の濃度の塩酸に塩化金酸を溶解させることにより 0. 2mmol/d m3の濃度の金 (III)の塩酸水溶液を調製した。この水溶液 10mlと実施例 1で調製し た吸着剤 10mgとを栓付きの 3角フラスコに入れ、 30°Cの恒温水槽中で 30時間振り 混ぜることにより吸着を行った。吸着前後の溶液中の金の濃度を島津製 AA—6650 型原子吸光光度計により測定し、吸着量を求めた。溶液中の塩酸濃度は中和滴定 により求めた。また吸着による溶液中の金の濃度の減少量より次式に従って吸着百 分率 (A)を求めた。 An aqueous hydrochloric acid solution of gold (III) having a concentration of 0.2 mmol / dm 3 was prepared by dissolving chloroauric acid in hydrochloric acid having a concentration of 0.:! To 8 mol / dm 3 . 10 ml of this aqueous solution and 10 mg of the adsorbent prepared in Example 1 were put into a triangular flask with a stopper, and adsorbed by shaking for 30 hours in a constant temperature water bath at 30 ° C. The concentration of gold in the solution before and after adsorption was measured with an AA-6650 type atomic absorption photometer manufactured by Shimadzu, and the amount of adsorption was determined. The concentration of hydrochloric acid in the solution was determined by neutralization titration. Also, the adsorption percentage (A) was obtained from the decrease in gold concentration in the solution by adsorption according to the following formula.
吸着百分率 =〔(吸着前の金の濃度一吸着後の金の濃度) Z吸着前の金の濃度〕 X 100  Adsorption percentage = [(Gold concentration before adsorption-Gold concentration after adsorption) Gold concentration before Z adsorption) X 100
結果は吸着百分率 (A)と塩酸の濃度([HC1] )の関係として図 2に示す。金は塩酸 の濃度にあまり影響されず、ほぼ定量的に吸着される。  The results are shown in Figure 2 as the relationship between the percentage of adsorption (A) and the concentration of hydrochloric acid ([HC1]). Gold is adsorbed almost quantitatively without much influence on the concentration of hydrochloric acid.
同様な方法により、本発明の吸着剤を用いて同じ濃度の塩酸中から卑金属である 鉄 (III)、亜鉛 (II)、銅(II)、錫 (IV)ならびに貴金属であるパラジウム(II)および白金 (IV)の吸着を行った。 白金の吸着は多少見られたが、金と比較すると無視できるほ ど僅かである。他の金属の吸着も非常に僅かである。  By the same method, the base metals such as iron (III), zinc (II), copper (II), tin (IV) and the noble metals palladium (II) and Platinum (IV) was adsorbed. Some platinum adsorption was seen, but negligible compared to gold. There is very little adsorption of other metals.
実施例 3  Example 3
[0026] 金の吸着量と金濃度との関係 [0026] Relationship between gold adsorption amount and gold concentration
0. lmol/dm3の濃度の塩酸に塩化金酸を溶解させることにより:!〜 60mmolZd m3の濃度の金の塩酸溶液を調製した。この水溶液 1 Omlと実施例 1で調製した吸着 剤 10mgとを栓付きの 3角フラスコに入れ、 30°Cの恒温水槽中で 30時間振り混ぜる ことにより吸着を行った。吸着前後の溶液中の金の濃度を島津製 AA— 6650型原子 吸光光度計により測定し、吸着量を求めた。 By dissolving chloroauric acid in hydrochloric acid at a concentration of 0.1 mol / dm 3, a solution of gold hydrochloric acid at a concentration of! ~ 60 mmol Zd m 3 was prepared. 1 Oml of this aqueous solution and 10 mg of the adsorbent prepared in Example 1 were placed in a stoppered triangular flask and adsorbed by shaking for 30 hours in a constant temperature water bath at 30 ° C. AA-6650 type atom made by Shimadzu The amount of adsorption was determined by measuring with an absorptiometer.
このようにして求めた金の吸着量 (Q)と吸着後の溶液中の金の濃度(Ce)との関係 を図 3に示す。金の吸着量は最初、金の濃度の増加と共に増加し、約 lOmmolZd m3以上の濃度ではでは濃度に依存せず一定値となる。この一定値よりこの濃度範囲 における飽和吸着量は約 4. 5mmolZgと求められた。他の吸着剤と比較してこの吸 着量の値は極めて大きな値である。さらに金の濃度を 30mmol/dm3以上にすると 吸着量はさらに増大するという BET型の吸着挙動が見られた。このように本発明の吸 着剤は金に対してきわめて優れた吸着能を有している。 Figure 3 shows the relationship between the gold adsorption amount (Q) and the gold concentration (Ce) in the solution after adsorption. At first, the amount of gold adsorbed increases as the gold concentration increases, and at a concentration of about lOmmolZd m 3 or more, it becomes a constant value regardless of the concentration. From this constant value, the saturated adsorption amount in this concentration range was determined to be about 4.5 mmol Zg. Compared with other adsorbents, this adsorption amount is extremely large. Furthermore, a BET-type adsorption behavior was observed in which the amount of adsorption increased further when the gold concentration was 30 mmol / dm 3 or more. Thus, the adsorbent of the present invention has an extremely excellent adsorption capacity for gold.
実施例 4  Example 4
[0027] 金の吸着形態 [0027] Gold adsorption form
金を吸着した後の吸着剤を水洗、乾燥した後、理学電機製 RINT—8829型 X線回 折装置を用いて X線回折の観察を行った。その結果を図 4に示す。  The adsorbent after adsorbing gold was washed with water and dried, and then X-ray diffraction was observed using a RINT-8829 type X-ray diffraction apparatus manufactured by Rigaku Corporation. The results are shown in Fig. 4.
2 Θ =83. 12、 44. 22、 64. 50、 77. 42におレヽて 4本の鋭レヽピークカ観察される 、これは元素状の金の存在を示すものである。  2 Four sharp peaks are observed at Θ = 83.12, 44.22, 64.50 and 77.42, indicating the presence of elemental gold.
実施例 5  Example 5
[0028] 金の粒子の生成 [0028] Formation of gold particles
金を吸着した後の吸着剤を水洗、乾燥したものをキーエンス製デジタル顕微鏡 VH X200を用いて観察したところ、図 5に示す画像が得られた。ここで白く輝いているの が金の粒子であり、黒い部分が柿皮の吸着剤である。数 100ミクロンの金の粒子が生 成していることが分かる。  When the adsorbent after adsorbing gold was washed with water and dried, it was observed using a Keyence digital microscope VH X200, and the image shown in FIG. 5 was obtained. Here, the gold particles are shining white, and the black part is the adsorbent of the crust. It can be seen that gold particles of several hundred microns are generated.
産業上の利用分野  Industrial application fields
[0029] 我が国の渋柿の収穫量は 117, 900t/年であり、多くは皮を剥いて取り除いた後、 干柿に加工され、食用に供されている。干し柿を製造する時に発生する皮はその約 9%であり、大部分は廃棄されている。本発明で用いられる吸着剤は、このような材料 を活用して簡単な硫酸処理を施すことによって調製することができる。  [0029] The yield of Japanese astringents is 117,900t / year, and many of them are peeled and removed, then processed into dried straw and used for food. About 9% of the skin generated when making dried straw is discarded. The adsorbent used in the present invention can be prepared by applying a simple sulfuric acid treatment using such a material.
力べして、本発明は、各種の産業分野における廃棄物や廃液、例えば、銅やニッケ ル等の電解製鍊において生ずるアノードスライムの浸出液ゃメツキ廃液等の中の低 濃度の金を分離、回収、または精製して低廉で取扱いが簡便であり、環境や人体に も優しいプロセスとして利用されることができる。 By virtue of this, the present invention separates and recovers low-concentration gold in wastes and waste liquids in various industrial fields, such as anodic slime leachate produced in electrolytic ironmaking such as copper and nickel. Or, it can be refined and inexpensive and easy to handle. Can also be utilized as a gentle process.

Claims

請求の範囲 The scope of the claims
[1] 柿の皮を硫酸処理して得られた吸着剤を、金属イオンとして少なくとも金を含有する 塩酸水溶液と接触させることにより、該吸着剤に金の粒子を選択的に吸着させるェ 程を含むことを特徴とする金の分離方法。  [1] The step of selectively adsorbing gold particles on the adsorbent is carried out by bringing the adsorbent obtained by subjecting the cocoon skin to sulfuric acid treatment with an aqueous hydrochloric acid solution containing at least gold as metal ions. A method for separating gold, comprising:
[2] 柿の皮が渋柿の皮である請求項 1に記載の金の分離方法。  [2] The method for separating gold according to [1], wherein the cocoon skin is an astringent skin.
[3] 塩酸水溶液の濃度が 0.:!〜 8mol/dm3である請求項 1または請求項 2に記載の金 の分離方法。 [3] The method for separating gold according to claim 1 or 2, wherein the concentration of the aqueous hydrochloric acid solution is from 0.:! To 8 mol / dm 3 .
[4] 金の粒子を吸着剤から分離する工程を更に含む請求項 1〜請求項 3のいずれかに 記載の金の分離方法。  [4] The method for separating gold according to any one of claims 1 to 3, further comprising a step of separating the gold particles from the adsorbent.
PCT/JP2005/015227 2005-08-22 2005-08-22 Method of separating gold WO2007023521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/015227 WO2007023521A1 (en) 2005-08-22 2005-08-22 Method of separating gold
JP2007531965A JP4827146B2 (en) 2005-08-22 2005-08-22 Gold separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015227 WO2007023521A1 (en) 2005-08-22 2005-08-22 Method of separating gold

Publications (1)

Publication Number Publication Date
WO2007023521A1 true WO2007023521A1 (en) 2007-03-01

Family

ID=37771279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015227 WO2007023521A1 (en) 2005-08-22 2005-08-22 Method of separating gold

Country Status (2)

Country Link
JP (1) JP4827146B2 (en)
WO (1) WO2007023521A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153160A (en) * 2010-03-17 2011-08-17 晋城市柿宝科技发展有限公司 Method for eliminating hexavalent chromium in waste liquid through adsorption by utilizing persimmon residues
JP2012024752A (en) * 2010-06-22 2012-02-09 Denso Corp Adsorbing agent for noble metal and method for recovering the noble metal
CN102534211A (en) * 2012-01-20 2012-07-04 北京科技大学 Method for selectively adsorbing and extracting gold by using mangosteen slag
JP2012170950A (en) * 2011-02-24 2012-09-10 Denso Corp Method for recovering adsorbent and noble metal
CN106582553A (en) * 2016-12-05 2017-04-26 长沙秋点兵信息科技有限公司 Preparation method of adsorbent for heavy metal waste liquid treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JPH0566291A (en) * 1991-07-09 1993-03-19 Mitsubishi Nuclear Fuel Co Ltd Manufacturing of metallic element absorbent, and absorption and separation of metallic element by use of the absorbent
JPH07313870A (en) * 1994-05-24 1995-12-05 Rengo Co Ltd Water-insoluble tannin adsorbent and its production
JP2003226923A (en) * 2002-02-04 2003-08-15 Mitsubishi Nuclear Fuel Co Ltd Method of recovering silver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215128A (en) * 1988-06-30 1990-01-18 Koji Sakaguchi Method of adsorbing and recovering metal element such as noble metal by utilizing hydrous gel composition consisting of astringent persimmon-aldehyde-water, astringent persimmon-acid-water
JPH0566291A (en) * 1991-07-09 1993-03-19 Mitsubishi Nuclear Fuel Co Ltd Manufacturing of metallic element absorbent, and absorption and separation of metallic element by use of the absorbent
JPH07313870A (en) * 1994-05-24 1995-12-05 Rengo Co Ltd Water-insoluble tannin adsorbent and its production
JP2003226923A (en) * 2002-02-04 2003-08-15 Mitsubishi Nuclear Fuel Co Ltd Method of recovering silver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153160A (en) * 2010-03-17 2011-08-17 晋城市柿宝科技发展有限公司 Method for eliminating hexavalent chromium in waste liquid through adsorption by utilizing persimmon residues
JP2012024752A (en) * 2010-06-22 2012-02-09 Denso Corp Adsorbing agent for noble metal and method for recovering the noble metal
JP2012170950A (en) * 2011-02-24 2012-09-10 Denso Corp Method for recovering adsorbent and noble metal
CN102534211A (en) * 2012-01-20 2012-07-04 北京科技大学 Method for selectively adsorbing and extracting gold by using mangosteen slag
CN106582553A (en) * 2016-12-05 2017-04-26 长沙秋点兵信息科技有限公司 Preparation method of adsorbent for heavy metal waste liquid treatment

Also Published As

Publication number Publication date
JPWO2007023521A1 (en) 2009-02-26
JP4827146B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
Shakoor et al. Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater
Fan et al. Selective adsorption and recovery of Au (III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from e-wastes
Wang et al. Equilibrium, kinetics and mechanism of Au3+, Pd2+ and Ag+ ions adsorption from aqueous solutions by graphene oxide functionalized persimmon tannin
Chand et al. Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk
Parajuli et al. Persimmon peel gel for the selective recovery of gold
Parajuli et al. Recovery of gold (III), palladium (II), and platinum (IV) by aminated lignin derivatives
Zhou et al. Biosorption of palladium (II) from aqueous solution by grafting chitosan on persimmon tannin extract
Paudyal et al. Adsorptive removal of fluoride from aqueous medium using a fixed bed column packed with Zr (IV) loaded dried orange juice residue
Xie et al. Adsorption recovery of Pd (II) from aqueous solutions by persimmon residual based bio-sorbent
JP6009735B2 (en) Precious metal recovery method
Mulani et al. Adsorption of chromium (VI) from aqueous solutions by coffee polyphenol-formaldehyde/acetaldehyde resins
Li et al. Simultaneous speciation of inorganic rhenium and molybdenum in the industrial wastewater by amino-functionalized nano-SiO2
Gong et al. Study on the adsorption behavior of modified persimmon powder biosorbent on Pt (IV)
JP4827146B2 (en) Gold separation method
CN102580698A (en) Persimmon tannin adsorption material and preparation method thereof
Sakti et al. Adsorption of gold (III) on ionic imprinted amino-silica hybrid prepared from rice hull ash
JP2006348359A (en) Metal recovery method
JP5711999B2 (en) Adsorbent and precious metal recovery method
CN111019147A (en) Metal organic framework adsorbent, one-step preparation method and application thereof
Basnet et al. Thermochemical study of Cr (VI) sequestration onto chemically modified Areca catechu and its recovery by desorptive precipitation method
CN113278815B (en) Method for recovering gold by using adsorption resin
Waweru et al. Remediation of lead, cadmium and copper polluted waters by onion skins (Allium Cepa)
KR20120107046A (en) Process for recovery of noble metals from functionalised, noble metal-containing adsorption materials
Parajuli et al. Reduction and accumulation of Au (III) by grape waste: A kinetic approach
CN108745305A (en) A kind of super-hydrophobicity carries zinc biomass adsorbent and its preparation and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531965

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05780520

Country of ref document: EP

Kind code of ref document: A1