WO2007018318A1 - Method for gene expression specific to cerebellar astrocyte and/or basket cell - Google Patents

Method for gene expression specific to cerebellar astrocyte and/or basket cell Download PDF

Info

Publication number
WO2007018318A1
WO2007018318A1 PCT/JP2006/316127 JP2006316127W WO2007018318A1 WO 2007018318 A1 WO2007018318 A1 WO 2007018318A1 JP 2006316127 W JP2006316127 W JP 2006316127W WO 2007018318 A1 WO2007018318 A1 WO 2007018318A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cerebellar
promoter
synapsin
vector
Prior art date
Application number
PCT/JP2006/316127
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Hirai
Takashi Torashima
Original Assignee
National University Corporation Kanazawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Kanazawa University filed Critical National University Corporation Kanazawa University
Publication of WO2007018318A1 publication Critical patent/WO2007018318A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Definitions

  • Cerebellar astrocytes and / X are sputum cell-specific gene expression methods
  • the present invention relates to a cerebellar stellate cell and / or sputum cell-specific gene expression method, a cerebellar function study using the same, and a vector, a transgenic animal, and the like. 'Ming
  • the cerebellum plays an important role in cooperative movements such as walking involving multiple muscles.
  • astrocytes In the cerebellar cortex, there are three types of neurons other than granule cells and Purkinje cells (see Fig. 1). These three types of cells: astrocytes, sputum cells, and Golgi cells are all interneurons, and have the role of regulating signals transmitted to mossy fibers, granule cells, and Purkinje cells.
  • Astrocytes exist in a part of the cerebellar cortex, called a molecular layer, that synapses with the Purkinje cell dendrites and regulates Purkinje cell activity in an inhibitory manner.
  • Vaginal cells are also present in the molecular layer, but unlike astrocytes, they exist near the Purkinje cell layer and form inhibitory synapses with Purkinje cell bodies.
  • cerebellar astrocytes and sputum cells control Purkinje cells in a suppressive manner, but how much these two cells have an effect on Purkinje cells. Contributing to controlled coordination or learning It is completely unknown whether it is.
  • cerebellar stellate cells and sputum cells have been analyzed for their functions by electrically stimulating these cells and recording their potential changes with Purkinje cells or stimulating parallel fibers. Only the method of recording potential changes in cells or sputum cells is known. In addition, since a promoter that specifically functions in cerebellar stellate cells and sputum cells has not been found, transgenic animals with these cell-specific genetic modifications are not known. '
  • Synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles.
  • synapsin I promoter In Expression analysis using adenoviral vector, synapsin I promoter is reported to function specifically in nerve Rereru (Kugler et al, Molecular and Cellular Neuroscience, 17, p78 -. 96, (2001)) 0 Analyzes using lentiviral vectors have also been remarkably reported that the synapsin I promoter functions in both excitatory and inhibitory neurons in the cerebral cortex (Dittgen et al., PNAS, Vol. 101, No. 52, pl8207-211, (2004)). However, there is no report on how the synapsin I promoter functions in the cerebellum.
  • cerebellum-specific expression vectors are those using adenovirus, adeno-associated virus, or lentivirus, but the promoters used are general CMV promoters, RSV promoters, etc.
  • a cell-specific one there is only a Purkinje cell-specific L7 promoter (Japanese Patent Publication No. 2 0 0 3-5 3 4 7 8 7, Japanese Patent Laid-Open No. 9-2 8 3 7 No. 8 Publication, Special Table 2 0 0 3-5 1 1 0 8 0 Publication).
  • the object of the present invention is to enable gene expression specific to cerebellar astrocytes and / or sputum cells, and to provide a new means for cerebellar function research and gene therapy.
  • synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles. In general, synapsin I is used as a marker of inspiring presynaptic terminals. Excitatory nerves in the cerebellar cortex are condyles Since it is only granule cells, the inventors considered using the synapsin I promoter as a granule cell-specific expression vector.
  • the synapsin I promoter gene isolated from the rat genome was incorporated into a lentivirus-derived vector, and the GFP gene was ligated downstream of it to infect cells in the cerebellar cortex molecular layer of a living mouse. Localization was observed. Contrary to expectations, no GFP expression was observed in the condylar cells, but instead, selective expression of GFP was confirmed in the astrocytes and sputum cells of the molecular layer.
  • lentiviral vector that expresses GFP under the control of a cell-nonselective CMV promoter or MSCV promoter 3 ⁇ 4 and condylar granule cells do not show GFP expression (the other four types of neurons have GFP Therefore, it was considered that the lentiviral vector does not have the ability to infect granule cells.
  • the present invention has been made based on the above findings, and can function a transgene under the control of the synapsin I promoter. Cerebellar astrocytes of the target animal
  • the present invention relates to a method for specifically expressing the transgene in Z or sputum cells.
  • the transgene is preferably a gene encoding a protein that controls cell survival, a cerebellar development, or a protein that controls physiological functions (for example, a therapeutic protein).
  • a protein that controls cell survival for example, selected from diphtheria toxin, diphtheria toxin receptor, simple herpes-derived thymidine kinase, glutamate receptor, GABA receptor, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and variants thereof
  • the gene which codes either can be mentioned.
  • the present invention also includes diphtheria toxin, simple herpes-derived thymidine kinase, glutamate receptor, GABA receptor, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor and variants thereof under the control of synapsin I promoter.
  • Lentivirus-derived vectors that contain a gene that encodes a selected gene or a gene that encodes various therapeutic proteins in a manner that can be linked together, or a transgenic animal into which the vector has been introduced To do.
  • the present invention can also function a transgene under the control of a synapsin I promoter.
  • a lentivirus-derived vector that is ligated and contained in a manner, is inserted into the target animal, and the transgene is specifically expressed in the cerebellar stellate cells and / or sputum cells of the target animal. Also provided are methods for analyzing physiological or pathological functions. .
  • transgenic work products in which a gene encoding one selected from diphtheria toxin, diphtheria toxin receptor, thymidine kinase, Lurcher mutation ⁇ 2 glutamate receptor and its variants is introduced, It is possible to selectively drop cerebellar astrocytes and / or sputum cells, which is useful for elucidating the physiological functions of these two cells and the cerebellum.
  • a lentiviral-derived vector containing a gene encoding a therapeutic protein such as brain-derived neurotrophic factor and glial cell-derived neurotrophic factor under the control of the synapsin I promoter is linked to the cerebellum. It is useful for gene therapy as a therapeutic protein delivery vector to astrocytes and cells or sputum cells.
  • the target animals used in the present invention are non-human mammals, particularly rodents such as mice and rats, in the research field.
  • rodents such as mice and rats
  • gene therapy it is possible to target all mammals including humans.
  • astrocytes and sputum cells can be selectively dropped, and the role of these two types of neurons can be elucidated at the action level such as coordinated movement and motor learning. It becomes.
  • gene expression is limited to astrocytes and Z or sputum cells, and functions of these inhibitory nerves can be regulated, providing a useful means for conducting cerebellar neural circuit research. It will be. Brief Description of Drawings
  • Figure 1 is a schematic diagram of the cerebellar neural circuit. .
  • FIG. 2 is a schematic diagram of pCL20cMS′CV-GFP.
  • FIG. 3A is a schematic diagram of pCL20cSynI, which is an example of the expression vector of the present invention.
  • FIG. 3B is a schematic diagram of pCL20cSynI-GFP, which is an example of the expression vector of the present invention.
  • Figure 3C is a schematic diagram of pCL20cSynI-DTR-HA, which is an example of the expression vector of the present invention. It is. ⁇
  • FIG. 4 is a fluorescence micrograph showing an example of expression of a GFP gene specific to cerebellar astrocytes and sputum cells by pCL20cSynI-GFP.
  • Fig. 5 is a confocal laser micrograph showing an example of expression of GFP gene specific to cerebellar astrocytes and sputum cells by pCL20cSynI-GFP.
  • FIG. 6A is a fluorescence micrograph showing an example of non-selective expression of GFP gene in cerebellar cells by pCL20cMSCV-GFP.
  • FIG. 6B is a confocal laser micrograph showing an example of non-selective expression of GFP gene in cerebellar cells by pCL20cMSCV-GFP.
  • Fig. 7 is a confocal laser micrograph showing an example of expression of GFP gene specific to cerebellar stellate vesicles and sputum cells by pCL20cSynI-DTR-HA.
  • This specification includes the contents described in the specification of Japanese Patent Application No. 2 0 0 5-2 3 1 5 1 4 which is the basis of the priority of the present application.
  • the vector according to the present invention is a lentivirus-derived vector containing a transgene linked in such a manner that it can function under the control of a synapsin I promoter.
  • the vector of the present invention is based on a lentiviral vector derived from human immunodeficiency virus. Unlike adenovirus vectors and herpes virus vectors, lentivirus vectors are advantageous in that they have a very weak immune response in the living body and little cytotoxicity. Examples of the vector derived from the lentivirus include pCL20c (provided by St. Jude Children's Research Hospital), pLenti6 / V5-DEST (manufactured by Invitrogen), and the like.
  • the “basic skeleton” means a structural unit containing factors sufficient to be maintained and replicated in a specific cell. Therefore, in the present invention, A product obtained by removing unnecessary portions from a general-purpose lentivirus-derived vector can also be used. From the viewpoint of improving the titer of the viral vector, for example, in the case of pLenti6 / V5-DEST, which is a lentivirus-derived vector, it is preferable that the portion having the base sequence represented by SEQ ID NO: 7 has been removed.
  • the nucleotide sequence shown in SEQ ID NO: 7 Expression vectors that do not contain are also included in the vector of the present invention.
  • the size of an insert that can be incorporated into a lentiviral vector is generally 8 kb, including plug motors. From the experiments conducted by the inventors so far, it is known that 4 to 5 kb is the limit in the high-titer lentil virus vector from which the portion having the base sequence of SEQ ID NO: 6 is removed. Therefore, in order to express a gene of 3 kb or more, it is necessary to use a neuron-specific promoter that does not exceed 1-2 kb.
  • the vector of the present invention contains a synapsin I promoter as a promoter.
  • the synapsin I promoter sequence is available through public databases such as GenBank.For example, the rat synapsin I promoter sequence is Accession No.
  • the human synapsin I promoter sequence is registered as Accession No. M58321, J05431, M57636.
  • Non-registered synapsin I promoter sequences of other animals can be easily obtained according to a well-known method by homology search based on the above synapsin I promoter sequences.
  • the synapsin I promoter of the present invention includes a modified form thereof (Pariant).
  • the variant may be artificially produced, for example, by a site-directed mutagenesis method according to a conventional method, or may be a naturally occurring variant.
  • SEQ ID NO: 1 shows the rat synapsin I promoter sequence used in the examples of the present efforts (sequence of positions ⁇ 225 to 105 of the rat synapsin I promoter:
  • the present invention is not limited to this sequence.
  • at least one nucleotide residue (preferably one or several) is a different base sequence.
  • it can be expressed specifically in cerebellar stellate cells and / or sputum cells as a synapsin I promoter, it can be expressed in synapsin as well.
  • I promoter It can be used as an I promoter. That is, multiple alignment by the ClustalW method by Higgins et al. (For example, Gappenalty5, Fixed Gap penaltylO, windowssize 5, Floating Gap 10) is aligned to an optimal state, and the calculated sequence identity is at least 80 %, Preferably 85% or more, more preferably 90% or more, and a transgene linked in such a manner that it can function downstream as a synapsin I promoter. Any one having such a base sequence can be used as the synapsin I promoter according to the present invention as long as it can be expressed specifically in cells and cells.
  • a sequence that can hybridize with the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 4 under stringent conditions is also used as a synapsin I promoter, and a transgene linked in a manner that can function downstream thereof is used as a cerebellar star.
  • Dendritic cells and or It can also be used as a synapsin I promoter as long as it can be expressed specifically in sputum cells.
  • the “stringent condition” means 6xSSC (composition of lxSSC: 0.15M NaCl, 0, 015M sodium quenate, ⁇ 7.0), 0.5% SDS, 5 ⁇ Den Hart and 100 / ml denatured fragmented salmon sperm DNA and 50. /.
  • a solution containing formamide together with the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 4, keep it at 55 ° C — low ionic strength, for example, 2xSSC, or more stringent, such as 0.lxSSC Conditions and Z or higher, 37 ° C or higher, stringent 42 ° C or higher, more stringent 50 ° C or higher, even more stringent 60 ° C or higher This can be achieved depending on the conditions under which washing is performed.
  • stringent such as 0.lxSSC Conditions and Z or higher
  • the length of the base sequence of the variant is not particularly limited as long as the desired promoter function is exhibited. However, from the viewpoint of the allowable size of the foreign gene incorporated into the vector, for example, it is 3000 nucleotides or less, preferably 2000 It is desirable that the length be less than or equal to the nucleotide length.
  • the function as a synapsin I promoter can be evaluated, for example, by detecting the presence or absence of binding between the RNA polymerase contained in the cerebellar astrocytes or sputum cells and the nucleic acid to be tested.
  • the presence or absence of binding can be detected by mobility in gel shift assembly, optical sensorgram or mass sensor in surface plasmon analysis, or footprint method.
  • the function of the variant as a promoter is, for example, by linking a reporter gene in a manner that allows it to function downstream of the nucleic acid to be tested, obtaining a construct, and then obtaining the construct from mouse or rat cerebellar glial cells + neurons. It can be assessed by infecting mixed cultures or by administering to the subarachnoid surface of the cerebellum of solid mice.
  • the reporter gene is expressed specifically in cerebellar stellate cells or sputum cells based on the above evaluation, the nucleic acid can be used as a synapsin I promoter suitable for the expression vector of the present invention.
  • synapsin I promoter it is desirable to use a synapsin I promoter sequence of the same species as that of the target animal to be used or a related species.
  • Synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles. Generally, synapsin I is an excitatory presynaptic Used as a terminal marker. Since the excitatory nerves in the cerebellar cortex are only granule cells, it was considered that the synapsin I promoter could be used as a granule cell-specific expression vector.
  • the inventors incorporated the rat synapsin I promoter gene (SEQ ID NO: 1 and SEQ ID NO: 4) into a vector derived from a lentivirus and ligated the GFP gene downstream thereof, so that the molecular layer of the cerebellar cortex of a living mouse When the cells were infected, no GFP expression was observed in the granule cells. Instead, selective expression of GFP was confirmed in the astrocytes and sputum cells of the molecular layer. That is, it was confirmed that the lentiviral vector using the synapsin I promoter is useful as an expression vector that can specifically function in S-shaped cells and sputum cells.
  • the vector of the present invention comprises a transgene linked in such a manner that it can function under the control of the synapsin I promoter.
  • “connected in a functional manner” means a state in which it is arranged to exert its original function, and is arranged so that the transgene is appropriately expressed under the control of the synapsin I promoter. It means the state that was done.
  • the transgene used in the present invention is not particularly limited.
  • a gene that affects cell survival specifically, a gene encoding a protein that is toxic to the cell
  • the cerebellum Genes encoding proteins that control the development and physiological functions of the genes, specifically genes encoding cerebellar synapse formation and plasticity control molecules, genes that can express proteins and siRNA that can be used for therapeutic purposes, specifically A gene that codes for an enzyme that breaks down or removes aggregates produced in the cell, a gene that encodes a protein that can capture the function of the cell in the cell, and an excessive function in the cell.
  • Genes that can express siRNA that can suppress development other genes that code for proteins related to substance production, and degradation of specific substances
  • Such as genes encoding protein is Chi like.
  • the gene to be introduced includes, for example, a gene encoding diphtheria toxin, a gene encoding diphtheria toxin receptor, and a simple herpes-derived thymidine kinase as a toxic protein.
  • Genes, cerebellum Sina Encodes NMDA glutamate receptor, AMPA glutamate receptor gene, GABA receptor gene, and brain-derived neurotrophic factor or Dariya cell-derived neurotrophic factor for treatment And a gene encoding a dominant negative for functional inhibition, and the like.
  • the expression vector of the present invention only needs to have the structure as described above, and examples thereof include a vector pCL20cSynI (FIG. 3A) having the base sequence shown in SEQ ID NO: 5.
  • the nucleic acid to be introduced can be inserted into the EcoRI and Notl recognition sites in the pCL20cSynI. .
  • the present invention provides a method for introducing a lentivirus-derived vector comprising a transgene linked in a manner capable of functioning under the control of a synapsin I promoter into a target animal, whereby the cerebellar astrocytes and Z or sputum cells of the target animal A method for specifically expressing a transgene is provided. '
  • This method enables the expression and delivery of specific genes specific to cerebellar stellate cells and sputum cells, which was not possible before, researching cerebellar function and treating diseases related to abnormalities of cerebellar stellate cells and sputum cells. And research becomes possible.
  • the vector of the present invention is used to express diphtheria toxin, herpes simplex virus-derived thymidine kinase, Lurcher mutation ⁇ .2 glutamate receptor specifically in cerebellar astrocytes and sputum cells, It is possible to specifically shed these cells: By observing changes due to dropout, it is possible to know the functions of cerebellar astrocytes and sputum cells in the cerebellum. For example, dropping cerebellar stellate cells and sputum cells using this method in young mice leads to the elucidation of the role in cerebellar transduction circuit formation. When used in mature mice, it is clear how these two types of nerves contribute to cerebellar function. In addition, various genes can be specifically expressed in cerebellar stellate cells and sputum cells, and it becomes possible to conduct extensive research on synaptic transmission between cerebellar stellate cells and sputum cells and Purkinje cells.
  • a transgene By injecting the vector of the present invention into the subarachnoid space, a transgene can be expressed specifically in a wide range of cerebellar astrocytes and / or sputum cells of the subject animal.
  • a transgenic animal can be used as, for example, a cerebellar function research model animal or a cerebellar disease model animal.
  • the target of the transgenic animal is not particularly limited, but non-small mammals represented by mice, rats, rabbits, horses, hidges, inu, cats, monkeys, etc. can be used, especially mice. Rodents such as rats are preferred. '3.
  • Lentiviral-derived vectors containing a gene encoding a therapeutic protein linked in a functional manner under the control of the synapsin I promoter are used as gene delivery vectors for cerebellar astrocytes and Z or sputum cells. Useful.
  • the vector of the present invention is dissolved and suspended in a suitable buffer together with a pharmacologically acceptable carrier, injected into the subarachnoid space on the surface of the cerebellum, cerebellar astrocytes and Z or sputum cells. It can be used as a therapeutic agent for diseases caused by disorders in Since the vector of the present invention can efficiently deliver and express a gene encoding a therapeutic protein to cerebellar stellate cells and / or sputum cells, diseases caused by disorders in these cells (as opposed to It is possible to achieve a therapeutic effect with efficiency.
  • Typical examples of secondary astrocyte and sputum cell damage following Purkinje cell degeneration / dropping include spinocerebellar degeneration.
  • Purkinje cell degeneration is prominent in spinocerebellar degeneration type 1, type 2 and type 6. Since astrocytes and sputum cells regulate Purkinje cell activity in a suppressive manner, it may be possible to suppress Purkinje cell degeneration by regulating these cell activities.
  • the pharmacological evaluation of gene therapy varies depending on the type of disease to be treated, but in the case of spinocerebellar degeneration, the vector is administered to the subarachnoid space on the surface of the cerebellum and then cytologically Purkinje cells, stars By preventing degeneration of neurons in the cerebellum, including dendritic cells and sputum cells, clinically (behaviorally in animals) to the extent of improvement in cerebellar ataxia More can be done.
  • the transgene to be incorporated into the vector can be appropriately selected according to the type of disease to be treated.
  • a nucleic acid encoding a brain-derived or glial cell-derived neurotrophic factor can be mentioned.
  • the vector can preferably be administered by injection into the subarachnoid space on the surface of the cerebellum.
  • the injected vector contains a small number of cerebellar astrocytes around the injection site and
  • the active ingredient can be delivered over a wide range with high affinity to cerebellar stellate cells and / or whole sputum cells.
  • injection of the vector of the present invention into the subarachnoid space on the surface of the cerebellum is superior in clinical application because it can suppress damage to the brain parenchyma compared to injection into the lower olive nucleus and the cerebellar nucleus.
  • a means capable of injection at a constant rate for example, a Norton syringe and the like. It is desirable to use a micromanipulator that can be used and a microinjection pump for injection.
  • the injection rate is not particularly limited as long as the brain pressure can be stably maintained, and can be appropriately set according to the age, weight, disease state, etc. of the individual. For example, it is desirable to be lOnl / min to 800 nl / min, preferably 50 nl / min to 400 nl / min, and more preferably lOOnl to 200 nl / min.
  • the dose of the vector of the present invention is not particularly limited as long as it is an amount suitable for exerting a therapeutic effect, and can be appropriately set according to the age, weight, disease state, etc. of the individual.
  • the number of administrations of the therapeutic agent of the present invention is sufficient as long as the therapeutic effect is exhibited.
  • This vector which uses lentivirus as the basic skeleton, can be administered once because the gene is integrated into the chromosome, but in order to increase the copy number of the integrated gene and introduce it into a wider range of cells. In some cases, the surface of the cerebellum may be changed (right, midline, left, etc.) about 3 times.
  • Example 1 Preparation of cerebellar stellate cell and sputum cell-specific expression vector (1) Virus production
  • HEK293T cells in logarithmic growth phase were dispersed in PB $ (—), and then seeded at 5 ⁇ 10 5 cells per l (km dish (manufactured by Falcon)).
  • PB $ (—) the medium in which the cells, 5 vol% C0 2, 37 ° were cultured in C. 24 hours later, the medium in the Deitsushu, new, medium ( was replaced with 10-fold bulk% ⁇ shea fetal serum-containing DMEM) 10 ml. cells then 5 volumes ./. C0 2, 37 ° and 0.5 hours at C.
  • pCL20cSynI-GFP Chil dren's Research Hospital (1 ⁇ g) and pCL20cSynI-GFP (5 g) were each dissolved in 450 to 1 sterile water to obtain a plasmid solution.
  • the pCL20cSynI-GFP is a part of the MSCV promoter of pCL20c MSCV-GFP (St. Jude Children's Research Hospital: SEQ ID NO: 8) shown in FIG. It is replaced with a synapsin I promoter having a base sequence.
  • gag encodes the structural protein of the virus
  • pol codes reverse transcriptase
  • VSVG stands for Vesicular somatitis virus, glycoprotein.
  • the original envelope of lentivirus can only infect CD4 positive cells. By substituting this with a VSV envelope that targets phospholipids, it becomes possible to infect various cells including nerves.
  • pCL20c Lentiviral main vector ", the region between the two LTRs is integrated into the host genome.
  • the medium in the dish was replaced with 10 ml of fresh medium (DMEM containing 10% by weight urchin fetal serum). 'Then cells, 5 volumes. /. They were cultured for 24 hours in C0 2, 37 ° C.
  • the medium was collected from the dish obtained in (1) above, transferred to a 50 ml centrifuge tube, and centrifuged at 1000 rpm (l20 ⁇ g) for 4 minutes to obtain a supernatant.
  • the obtained supernatant was passed through a filter (Millipore, 0.22 / z m diameter).
  • the obtained filtrate was subjected to ultracentrifugation (25,000 rpm, 2 hours, 4 ° C) using Beckman's mouthpiece SW28.1 to precipitate virus particles, and the supernatant was removed.
  • the resulting virus particle precipitate is suspended in phosphate buffered saline (not containing Mg 2+ and Ca 2+ ) [hereinafter PBS (-)] to a final volume of 200 ⁇ 1, for infection.
  • PBS (-) phosphate buffered saline
  • a virus solution was obtained.
  • the virus solution that was not used immediately was dispensed 20 ⁇ l at a time and stored at ⁇ 80 ° C.
  • HeLa cells are cultured in a 10cm dish and infected 24 hours after seeding. Sensation. Three days later, 5.0 ⁇ 10 6 cells were obtained. In parallel, the same number of LAV-8E5 cells (ATCC, Manassas, VA, USA) were obtained. LAV-8E5 cells have one copy of HIV type 1 provirus per cell, and this is the standard. Genomic DNA was extracted from these cells and finally dissolved in 100 1 TE buffer. Of these, 1 and 1 were used to amplify a 290 bp region contained in the HIV provirus RRE (nev responsive element) using the following primers:
  • the copy number of provirus integrated into the genome was determined by serial dilution of genomic DNA. That is, by determining the dilution ratio immediately before the panda disappeared and comparing it with the standard using LAV-8E5 cells, it was determined how many cells per 5.0 X 10 6 HeLa cells. It was calculated whether the provirus was integrated (genome copy number / virus solution lml).
  • the mouse after inoculation with the virus vector is a rack for infected animals equipped with a HEPA filter (trade name: Pioclean Gap Cellulite T- BCC-M4).
  • mice SLC supply, 4-10 weeks old
  • pentobarbital trade name: Nembutal
  • the mouse was fixed using a small animal fixing device [trade name: SG-4, manufactured by Narishige Co., Ltd.].
  • the body temperature of the mouse was maintained at 37 ° C with a body temperature controller [F 'S' T, product name: body temperature control system (for mouse) FST-HPSM].
  • F 'S' T body temperature controller
  • FST-HPSM body temperature control system
  • the skin was incised from the rostral side of several millimeters to just above the cerebellum.
  • a stereomicroscope Nekon Corporation, trade name: 1SMZ645
  • a micro drill Urawa Kogyo, trade name: power controller
  • UC100 + HB1 (drill)] was used to drill holes with an inner diameter of 2 to 3 mm.
  • a hole was made in the dura mater and spider under the bone using an injection needle.
  • the skin of the incised mouse was sutured with an ophthalmic microneedle with a suture thread (trade name. Ophthalmic weak needle C67-0, manufactured by Natsume Seisakusho Co., Ltd.). After that, remove the mouse from the fixing device, and on the heating pad (made by Showa Seiki Kogyo Co., Ltd., trade name: rubber mat heater 1 SG-15) And observed in a cage placed in the safety cabinet. After the mice woke up from anesthesia, the mouse cage was returned to the infected animal rack and maintained for 7-: 14 days.
  • mice were similarly inoculated using a lentiviral vector carrying the MSCV promoter instead of the synapsin I promoter.
  • mice 7 to 14 days after the inoculation the brain was removed after perfusion fixation with 4% formaldehyde-PB. After taking a fluorescent photograph of the whole brain using a fluorescent stereomicroscope, it was treated with 30% sucrose for 24 hours, and then a frozen section was prepared. The prepared brain sections were incubated with the primary antibody (Rat Anti-GFPAb: Nacalai) for 24 hours at room temperature, and then with the secondary antibody (Goat Anti- Rat IgGAb; manufactured by Molecular Probe) for 2 hours. Incubation at room temperature yielded a microscope specimen.
  • the primary antibody Racalai
  • Goat Anti- Rat IgGAb manufactured by Molecular Probe
  • Example 3 Selective elimination of astrocytes and sputum cells by diphtheria toxin GFP of lentiviral vector pCL20cSynI (SEQ ID NO: 5) prepared in Example 1
  • a vector pCL20cSynI-DTR-HA (FIG. 7, SEQ ID NO: 10) was prepared by substituting the cDNA sequence of the diphtheria toxin receptor (DTR) (SEQ ID NO: 9) '.
  • An HA tag sequence for antibody recognition was added to the carboxyl terminus of DTR. According to Example 1, a lentiviral vector for expression of diphtheria toxin receptor was obtained.
  • a lentiviral vector for diphtheria toxin receptor expression was administered into the subarachnoid space of an adult mouse (after 4 weeks of age). 7 days after inoculation 20 (day 9 am and 8 pm) Diphtheria toxin dissolved in PBS at a concentration of 1 ⁇ g / ml (manufactured by Rubiochem) 150 / zl (diphtheria toxin 150 ng) Inoculated intraperitoneally for a total of 7 days. Thereafter, perfusion fixation was performed with 4% formaldehyde-PB, and the brain was removed.
  • the diphtheria toxin receptor is selectively expressed in astrocytes and sputum cells, and this can be achieved by continuous administration of diphtheria toxin. It was thought that two types of cells had dropped out.
  • gene expression limited to astrocytes and sputum cells can be studied, and a useful means for studying the function of the cerebellum will be provided.
  • astrocytes and sputum cells by selectively dropping out astrocytes and sputum cells, it is possible to elucidate the role of these two types of neurons at the behavioral level such as coordinated movement and motor learning.
  • the present invention can be used for gene therapy targeting astrocytes and sputum cells.
  • SEQ ID NO: 1 rat synapsin I promoter (Synlp) _ 2 25 ⁇ : part of L05 position
  • SEQ ID NO: 2 rat of rat synapsin I promoter (Synlp) 2 2 5 to position 105 to 105 part, '
  • SEQ ID NO: 4 rat synapsin I promoter (Synlp)-941-105 position
  • SEQ ID NO: 5 artificial sequence description: pCL20cSynI (Synlp is rat 1046 bp)
  • SEQ ID NO: 6 artificial sequence description: pCL20cSynI-GFP (Synlp is 1046bp of rat)
  • SEQ ID NO: 7 Description of artificial sequence: Sequence containing SV40 promoter and Blasticidine resistance gene
  • SEQ ID NO: 8 Description of artificial sequence: pCL20cMSCV-GFP
  • SEQ ID NO: 9 Description of one artificial sequence: diphtheria toxin receptor (DTR) cDNA sequence
  • SEQ ID NO: 10 Description of one artificial sequence: diphtheria toxin receptor (DTR) cDNA sequence
  • DTR diphtheria toxin receptor
  • SEQ ID NO: 10 Description of one artificial sequence: pCL20cSynI DTR-HA (Synlp is rat 1046 bp)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Neurosurgery (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

Disclosed is a method for gene expression specific to a cerebellar astrocyte and/or a basket cell. A method for expressing a gene specifically in a cerebellar astrocyte and/or a basket cell of a target animal, comprising the step of introducing a lentivirus-derived vector carrying the gene into the target animal, wherein the gene is linked to the vector in such a manner that the gene is operable under the control of synapsin I promoter; a study on the function of the cerebellum using the method; and a vector, transgenic animal or the like for use in the method or study.

Description

小脳星状細胞及び /Xは籠細胞特異的な遺伝子発現方法 技術分野  Cerebellar astrocytes and / X are sputum cell-specific gene expression methods
本発明は、 小脳星状細胞及び/又は籠細胞特異的な遺伝子発現方法とこれを 利用した小脳の機能研究、 及ぴそのためのベクター、 トランスジェニック動物 等に関する。 ' 明  The present invention relates to a cerebellar stellate cell and / or sputum cell-specific gene expression method, a cerebellar function study using the same, and a vector, a transgenic animal, and the like. 'Ming
背 景技術 Background technology
小脳は複数の筋肉が関与する歩行などの協調運動に重要な役割を果たしてい 童  The cerebellum plays an important role in cooperative movements such as walking involving multiple muscles.
る。'小脳に損傷があると、 協調運動の調節がうまく行かず なめらかな動きが できなくなる。 大脳皮質からの運動の指令は脳幹を通って、 脊髄、 筋肉に伝え られるが、 同時に苔状線維を介して小脳皮質にも入る。 苔状線維は小脳皮質の 神経細胞である顆粒細胞との間に興奮性に入力する。 顆粒細胞はその軸索であ る平行線維を介してプルキンェ細胞との間にシナプスを形成する。 プルキンェ 細胞は小脳皮質からの唯一の出力神経細胞であり、 プルキンェ細胞がどのよう な入力を受け取り、 それをどのように統合して出力するかが小脳の機能の本質 と言える。 The 'If the cerebellum is damaged, coordinated movements do not work well, and smooth movements cannot be achieved. Movement commands from the cerebral cortex are transmitted to the spinal cord and muscles through the brain stem, but also enter the cerebellar cortex through mossy fibers. Mossy fibers enter excitability between granule cells, which are neurons in the cerebellar cortex. Granule cells form synapses with Purkinje cells via parallel fibers that are axons. Purkinje cells are the only output neurons from the cerebellar cortex, and what input the Purkinje cells receive and how they are integrated and output can be said to be the essence of cerebellar function.
小脳皮質には顆粒細胞、 プルキンェ細胞以外に 3種類の神経細胞が存在する (図 1参照)。 この 3種類の細胞:星状細胞、 籠細胞、 ゴルジ細胞はいずれも介 在神経細胞であり、 苔状線維一顆粒細胞一プルキンェ細胞と伝わる信号を調節 する役目を持つ。 星状細胞は小脳皮質の表層に近い分子層と呼ばれる部分に存 在し、 プルキンェ細胞樹状突起との閒にシナプス結合しプルキンェ細胞のはた らきを抑制性に制御する。 籠細胞も分子層に存在するが、. 星状細胞と異なり、 プルキンェ細胞層の'近くに存在し、 プルキンェ細胞の細胞体との間に抑制性シ ナプスを形成する。  In the cerebellar cortex, there are three types of neurons other than granule cells and Purkinje cells (see Fig. 1). These three types of cells: astrocytes, sputum cells, and Golgi cells are all interneurons, and have the role of regulating signals transmitted to mossy fibers, granule cells, and Purkinje cells. Astrocytes exist in a part of the cerebellar cortex, called a molecular layer, that synapses with the Purkinje cell dendrites and regulates Purkinje cell activity in an inhibitory manner. Vaginal cells are also present in the molecular layer, but unlike astrocytes, they exist near the Purkinje cell layer and form inhibitory synapses with Purkinje cell bodies.
このように小脳星状細胞と籠細胞がプルキンェ細胞のはたらきを抑制性に制 御していることは知られているが、 これら 2つの細胞のプルキンェ細胞に対す る影響が、 どの程度、 小脳が制御する協調運動あるいは運動学習に寄与してい るのかは全く不明である。 Thus, it is known that cerebellar astrocytes and sputum cells control Purkinje cells in a suppressive manner, but how much these two cells have an effect on Purkinje cells. Contributing to controlled coordination or learning It is completely unknown whether it is.
小脳星状細胞及び籠細胞の機能を解析する方法どしては、 これまで、 これら の細胞を電気的に刺激し、 プルキンェ細胞でその電位変化を記録、 あるいは平 行線維を刺激し、 星状細胞または籠細胞で電位変化を記録する方法しか知られ ていない。 また、 小脳星状細胞や籠細胞で特異的に機能するプロモーターが発 見されていないため、 これらの細胞特異的に遺伝子改変を加えたトランスジェ ニック動物も知られていない。 '  Until now, cerebellar stellate cells and sputum cells have been analyzed for their functions by electrically stimulating these cells and recording their potential changes with Purkinje cells or stimulating parallel fibers. Only the method of recording potential changes in cells or sputum cells is known. In addition, since a promoter that specifically functions in cerebellar stellate cells and sputum cells has not been found, transgenic animals with these cell-specific genetic modifications are not known. '
シナプシン Iは神経細胞の終末に存在し、 シナプス小胞の放出に重要な役割 を果たしているタンパク質である。 アデノウィルスベクターを用いた発現解析 において、 シナプシン Iプロモーターは神経で特異的に機能することが報告さ れてレヽる (Kugler et al. , Molecular and Cellular Neuroscience, 17, p78 - 96, (2001) ) 0またレンチウィルスベクターを用いた解析では、シナプシン Iプロモ 一ターは大脳皮質において興奮性及び抑制性の両方の神経細胞で機能すること が幸艮告されている (Dittgen et al. , PNAS, Vol. 101, No. 52, pl8207- 211, (2004) )。 しかしながら、シナプシン Iプロモーターが小脳でどのように機能す るか否かについては、 報告がない。 実際、 これまで知られている小脳特異的発 現ベクターは、 いずれもアデノウィルスやアデノ随伴ウィルス、 あるいはレン チウィルスを用いたものであるが、 使用されるプロモーターは CMVプロモータ 一、 RSV .プロモーター等の一般的なものであり、 細胞特異的なものとしてはプ ルキンェ細胞特異的 L7プロモーターがあるにすぎない(特表 2 0 0 3 - 5 3 4 7 8 7号公報、 特開平 9— 2 8 3 7 8号公報、 特表 2 0 0 3— 5 1 1 0 8 0号 公報)。 . 発 明 の 開 示 - 本発明の課題は、 小脳星状細胞及び 又は籠細胞に特異的な遺伝子発現を可 能にし、小脳機能研究や遺伝子治療のための新たな手段を提供することにある。 前述のとおり、 シナプシン Iは神経細胞の終末に存在し、 シナプス小胞の放 出に重要な役割を果たしているタンパク質である。 一般的にシナプシン Iは興 奮性シナプス前終末のマーカーとして用いられる。 小脳皮質の興奮性神経は顆 粒細胞のみであるため、 発明者らは、 シナプシン Iプロモーターを顆粒細胞特 異的発現ベクターとして利用することを考えた。 そして、 ラットゲノムより単 離したシナプシン Iプロモーター遺伝子をレンチウィルス由来のベクターに組 み込み、 その下流に GFP遺伝子を連結させて、 生体マウスの小脳皮質分子層の 細胞に感染させ、 蛍光顕微鏡でその局在を観察レた。 すると、 予想に反して顆 粒細胞には GFPの発現が全くみられず、 代わりに分子層の星状細胞と籠細胞に 選択的な GFP の発現が確認された。 細胞非選択的な CMV プロモーターや MSCV プロモータ一の制御下で GFPを発現するレンチウイルスべクタ一を用い ¾と顆 粒細胞に GFPの発現が見られない (その他の 4種の神経細胞には GFPの発現が 観察される) こと力 ら、 レンチウィルスベクターは顆粒細胞への感染能を有し ないと考えられた。 これらの結果は、 シナプシン Iプロモーターを用いたレン チウィルスベクターが、 星状細胞や籠細胞に特異的な発現ベクターとして利用 可能であることを示唆する。 Synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles. In Expression analysis using adenoviral vector, synapsin I promoter is reported to function specifically in nerve Rereru (Kugler et al, Molecular and Cellular Neuroscience, 17, p78 -. 96, (2001)) 0 Analyzes using lentiviral vectors have also been fortunately reported that the synapsin I promoter functions in both excitatory and inhibitory neurons in the cerebral cortex (Dittgen et al., PNAS, Vol. 101, No. 52, pl8207-211, (2004)). However, there is no report on how the synapsin I promoter functions in the cerebellum. In fact, all known cerebellum-specific expression vectors are those using adenovirus, adeno-associated virus, or lentivirus, but the promoters used are general CMV promoters, RSV promoters, etc. As a cell-specific one, there is only a Purkinje cell-specific L7 promoter (Japanese Patent Publication No. 2 0 0 3-5 3 4 7 8 7, Japanese Patent Laid-Open No. 9-2 8 3 7 No. 8 Publication, Special Table 2 0 0 3-5 1 1 0 8 0 Publication). Disclosure of Invention-The object of the present invention is to enable gene expression specific to cerebellar astrocytes and / or sputum cells, and to provide a new means for cerebellar function research and gene therapy. . As mentioned above, synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles. In general, synapsin I is used as a marker of inspiring presynaptic terminals. Excitatory nerves in the cerebellar cortex are condyles Since it is only granule cells, the inventors considered using the synapsin I promoter as a granule cell-specific expression vector. Then, the synapsin I promoter gene isolated from the rat genome was incorporated into a lentivirus-derived vector, and the GFP gene was ligated downstream of it to infect cells in the cerebellar cortex molecular layer of a living mouse. Localization was observed. Contrary to expectations, no GFP expression was observed in the condylar cells, but instead, selective expression of GFP was confirmed in the astrocytes and sputum cells of the molecular layer. Using a lentiviral vector that expresses GFP under the control of a cell-nonselective CMV promoter or MSCV promoter ¾ and condylar granule cells do not show GFP expression (the other four types of neurons have GFP Therefore, it was considered that the lentiviral vector does not have the ability to infect granule cells. These results suggest that the lentiviral vector using the synapsin I promoter can be used as an expression vector specific for astrocytes and sputum cells.
本発明は以上の知見に基づいてなされたものであり、 シナプシン Iプロモー タ一支配下に導入遺伝子を機能し得る.態様で連結して含むレンチウィルス由来 ベクターを対象動物に導入することにより、 前記対象動物の小脳星状細胞及ぴ The present invention has been made based on the above findings, and can function a transgene under the control of the synapsin I promoter. Cerebellar astrocytes of the target animal
Z又は籠細胞において前記導入遺伝子を特異的に発現させる方法に関する。 前記方法において、導入遺伝子としては、細胞の生存を制御するタンパク質、 小脳の発達、 生理機能を制御するタンパク質 (例えば、 治療用タンパク質) を コードする遺伝子が好ましい。 例えば、 ジフテリア毒素、 ジフテリア毒素受容 体、 単純へルぺス由来チミジンキナーゼ、 グルタミン酸受容体、 . G A B A受容 体、 脳由来神経栄養因子、 及ぴグリア細胞由来神経栄養因子並びにこれらの改 変体から選ばれるいずれかをコードする遺伝子を挙げることができる。 The present invention relates to a method for specifically expressing the transgene in Z or sputum cells. In the above-described method, the transgene is preferably a gene encoding a protein that controls cell survival, a cerebellar development, or a protein that controls physiological functions (for example, a therapeutic protein). For example, selected from diphtheria toxin, diphtheria toxin receptor, simple herpes-derived thymidine kinase, glutamate receptor, GABA receptor, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and variants thereof The gene which codes either can be mentioned.
本発明はまた、 シナプシン Iプロモーター支配下にジフテリア毒素、 単純へ ルぺス由来チミジンキナーゼ、 グルタミン酸受容体、 G A B A受容体、 脳由来 神経栄養因子、 及びグリア細胞由来神経栄養因子並びにこれらの改変体から選 ばれるレ、ずれかをコードする遺伝子、 あるいは各種治療用タンパク質をコード する遺伝子を機能し得る態様で'連結して含むレンチウィルス由来ベクターや、 該べクタ一を導入したトランスジエニック動物も提供する。  The present invention also includes diphtheria toxin, simple herpes-derived thymidine kinase, glutamate receptor, GABA receptor, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor and variants thereof under the control of synapsin I promoter. Lentivirus-derived vectors that contain a gene that encodes a selected gene or a gene that encodes various therapeutic proteins in a manner that can be linked together, or a transgenic animal into which the vector has been introduced To do.
本発明はまた、 シナプシン Iプロモーター支配下に導入遺伝子を機能し得る 態様で連結して含むレンチウィルス由来べクターを対象動物に^ 入し、 前記対 象動物の小脳星状細胞及び/又は籠細胞において前記導入遺伝子を特異的に発 現させ ¾ことにより、 小脳の生理学的又は病理学的機能を解析する方法も提供 する。 . The present invention can also function a transgene under the control of a synapsin I promoter. A lentivirus-derived vector that is ligated and contained in a manner, is inserted into the target animal, and the transgene is specifically expressed in the cerebellar stellate cells and / or sputum cells of the target animal. Also provided are methods for analyzing physiological or pathological functions. .
特に、 ジフテリア毒素、 ジフテリア毒素受容体、 チミジンキナーゼ、 及ぴ Lurcher変異導入 δ 2 グルタミン酸受容体並びにその改変体から選ばれるいず れかをコードする遺伝子を導入したトランスジヱニック勤物では、 その小脳星 状細胞及び/又は籠細胞を選択的に脱落させることが可能となり、 これ 2つ の細胞ひいては小脳の生理学的機能の解明に有用である。 . ' . また、 シナプシン Iプロモーター支配下に脳由来神経栄養因子、 グリア細胞 由来神経栄養因子等の治療用タンパク質をコードする遺伝子を機能し得る « で連結して含むレンチウィルス由来べクターは、 小脳星状細胞及ぴノ又は籠細 胞への治療用タンパク質送達ベクターとして、 遺伝子治療に有用である。  In particular, in transgenic work products in which a gene encoding one selected from diphtheria toxin, diphtheria toxin receptor, thymidine kinase, Lurcher mutation δ 2 glutamate receptor and its variants is introduced, It is possible to selectively drop cerebellar astrocytes and / or sputum cells, which is useful for elucidating the physiological functions of these two cells and the cerebellum. In addition, a lentiviral-derived vector containing a gene encoding a therapeutic protein such as brain-derived neurotrophic factor and glial cell-derived neurotrophic factor under the control of the synapsin I promoter is linked to the cerebellum. It is useful for gene therapy as a therapeutic protein delivery vector to astrocytes and cells or sputum cells.
本発明において用いられる対象動物は、 研究的分野においては非ヒト哺乳動 物、 特にマウス、 ラット等のげつ歯類である。 一方、 遺伝子治療の分野におい ては、 ヒトを含む哺乳動物全般を対象とすることが可能である。 本発明によれば、星状細胞や籠細胞を選択的に脱落させることが可能になり、 これら 2種の神経細胞め役割を、 協調運動、 運動学習などの行動レベルにおい て解明することが可能となる。 また、 星状細胞及び Z又は籠細胞に限局して遺 伝子発現させ、 これらの抑制性神経の機能調節が可能となることから、 小脳神 経回路研究を行うのに有用な手段を提供することとなる。 図面の簡単な説明  The target animals used in the present invention are non-human mammals, particularly rodents such as mice and rats, in the research field. On the other hand, in the field of gene therapy, it is possible to target all mammals including humans. According to the present invention, astrocytes and sputum cells can be selectively dropped, and the role of these two types of neurons can be elucidated at the action level such as coordinated movement and motor learning. It becomes. In addition, gene expression is limited to astrocytes and Z or sputum cells, and functions of these inhibitory nerves can be regulated, providing a useful means for conducting cerebellar neural circuit research. It will be. Brief Description of Drawings
図 1は、 小脳神経回路の模式図である。 .  Figure 1 is a schematic diagram of the cerebellar neural circuit. .
図 2は、 pCL20cMS'CV-GFPの概略図である。  FIG. 2 is a schematic diagram of pCL20cMS′CV-GFP.
図 3 Aは、 本発明の発現ベクターの 1例である pCL20cSynIの概略図である。 図 3 Bは、本発明の発現ベクターの 1例である pCL20cSynI- GFPの概略図であ る。  FIG. 3A is a schematic diagram of pCL20cSynI, which is an example of the expression vector of the present invention. FIG. 3B is a schematic diagram of pCL20cSynI-GFP, which is an example of the expression vector of the present invention.
図 3 Cは、 本発明の発現ベクターの 1例である pCL20cSynI- DTR- HAの概略図 である。 · Figure 3C is a schematic diagram of pCL20cSynI-DTR-HA, which is an example of the expression vector of the present invention. It is. ·
図 4は、 pCL20cSynI- GFPによる小脳星状細胞及び籠細胞特異的な GFP遺伝子 の発現例を示す蛍光顕微鏡写真である。  FIG. 4 is a fluorescence micrograph showing an example of expression of a GFP gene specific to cerebellar astrocytes and sputum cells by pCL20cSynI-GFP.
図 5.は、 pCL20cSynI-GFPによる小脳星状細胞及び籠細胞特異的な GFP遺伝子 の発現例を示す共焦点レーザー顕微鏡写真である。  Fig. 5 is a confocal laser micrograph showing an example of expression of GFP gene specific to cerebellar astrocytes and sputum cells by pCL20cSynI-GFP.
図 6 Aは、 pCL20cMSCV-GFPによる小脳細胞への非選択的な GFP遺伝子の発現 例を示す蛍光顕微鏡写真である。  FIG. 6A is a fluorescence micrograph showing an example of non-selective expression of GFP gene in cerebellar cells by pCL20cMSCV-GFP.
図 6 Bは、 pCL20cMSCV-GFPによる小脳細胞への非選択的な GFP遺伝子め発現 例を示す共焦点レーザー顕微鏡写真である。 . , 図 7は、 pCL20cSynI- DTR- HAによる小脳星状細'胞及ぴ籠細胞特異的な GFP遺 伝子の発現例を示す共焦点レーザー顕微鏡写真である (上段:ジフテリア毒素 を投与しなかったマウスの小脳皮質、 下段:ジフテリア毒素を 1'日 2回、 1週 間投与したマウスの小脳皮質)。 本明細書は、 本願の優先権の基礎である特願 2 0 0 5— 2 3 1 5 1 4号の明 細書に記載された内容を包含する。 · 発明を実施するための最良の形態 本発明にかかるベクターは、 シナプシン Iプロモーター支配下に導入遺伝子 を機能し得る態様で連結して含むレンチウィルス由来ベクターである。  FIG. 6B is a confocal laser micrograph showing an example of non-selective expression of GFP gene in cerebellar cells by pCL20cMSCV-GFP. , Fig. 7 is a confocal laser micrograph showing an example of expression of GFP gene specific to cerebellar stellate vesicles and sputum cells by pCL20cSynI-DTR-HA. (Upper: Diphtheria toxin not administered) Lower cerebellar cortex of mice, lower cerebellar cortex of mice administered diphtheria toxin twice a day for 1 week). This specification includes the contents described in the specification of Japanese Patent Application No. 2 0 0 5-2 3 1 5 1 4 which is the basis of the priority of the present application. · BEST MODE FOR CARRYING OUT THE INVENTION The vector according to the present invention is a lentivirus-derived vector containing a transgene linked in such a manner that it can function under the control of a synapsin I promoter.
( 1 ) レンチウィルス由来ベクター  (1) Lentiviral vector
本発明のベクターはヒト免疫不全ウィルス由来のレンチウィルスベクターを 基本骨格とする。 アデノウィルスベクターやへルぺスウィルスベクターと異な り、 レンチウィルスベクターは、 生体における免疫応答は極めて弱く、 細胞障 害性もほとんど無いという点で有利である。 前記レンチウイルス由来のベクタ 一としては、例えば、 pCL20c (St. Jude Children s Research Hospital 提供)、 pLenti6/V5-DEST (Invitrogen社製)等が挙げられる。  The vector of the present invention is based on a lentiviral vector derived from human immunodeficiency virus. Unlike adenovirus vectors and herpes virus vectors, lentivirus vectors are advantageous in that they have a very weak immune response in the living body and little cytotoxicity. Examples of the vector derived from the lentivirus include pCL20c (provided by St. Jude Children's Research Hospital), pLenti6 / V5-DEST (manufactured by Invitrogen), and the like.
本明細書において、 「基本骨格」 とは、 特定の細胞内において、 維持、複製さ れるに十分な因子を含む構成単位を意味する。したがって、本発明においては、 汎用のレンチウィルス由来のベクターにおける不要な部分を除去して得られた ものも用いられうる。 ウィルスベクターの力価を向上させる観点から、 例えば レンチウィルス由来のべクターである pLenti6/V5- DESTの場合、 配列番号 7で 示される塩基配列を有する部分が除去されていることが好ましい。したがって、 シナプシン Iプロモーターを含有したレンチウィルス由来のベクターであり、 かつ該プロモーターの下流に導入対象の導入遺伝子を機能しうる態様で連結し たレンチウィルスベクター骨格において、 配列番号 7に示される塩基配列を含 有しない発現ベクターも本発明のベクターに含まれる。 ' レンチウィルスベクターに組み込むことができるインサートのサイズは、 プ 口モーターも含めて一般的に 8kbと言われている。 発明者らのこれまでの実験 から、 上記配列番号 6の塩基配列を有する部分を除去した高力価レンチウィル スベクターでは、 45kb が限度であることがわかっている。 したがって、 3kb 以上の遺伝子を発現させるためには、 l〜2kbを超えない神経特異的プロモータ 一を使うことが必要となる。 In the present specification, the “basic skeleton” means a structural unit containing factors sufficient to be maintained and replicated in a specific cell. Therefore, in the present invention, A product obtained by removing unnecessary portions from a general-purpose lentivirus-derived vector can also be used. From the viewpoint of improving the titer of the viral vector, for example, in the case of pLenti6 / V5-DEST, which is a lentivirus-derived vector, it is preferable that the portion having the base sequence represented by SEQ ID NO: 7 has been removed. Therefore, in the lentiviral vector skeleton containing a synapsin I promoter and a lentiviral vector backbone in which the transgene to be introduced is linked downstream of the promoter in such a manner that it can function, the nucleotide sequence shown in SEQ ID NO: 7 Expression vectors that do not contain are also included in the vector of the present invention. 'The size of an insert that can be incorporated into a lentiviral vector is generally 8 kb, including plug motors. From the experiments conducted by the inventors so far, it is known that 4 to 5 kb is the limit in the high-titer lentil virus vector from which the portion having the base sequence of SEQ ID NO: 6 is removed. Therefore, in order to express a gene of 3 kb or more, it is necessary to use a neuron-specific promoter that does not exceed 1-2 kb.
( 2 ) シナプシン Iプロモーター .  (2) Synapsin I promoter.
本発明のベクターは、プロモーターとしてシナプシン Iプロモーターを含む。 シナプシン Iプロモーターの配列は、 GenBank等の公共データベースを通じて 利用可能であり、例えばラットシナプシン Iプロモーター配列は、 Accession No. The vector of the present invention contains a synapsin I promoter as a promoter. The synapsin I promoter sequence is available through public databases such as GenBank.For example, the rat synapsin I promoter sequence is Accession No.
M55300、.T05521、J05630として、ヒ トシナプシン Iプロモーター配列は Accession No. M58321、 J05431、 M57636として、 マウスシナプシン Iプロモーター配列は 登録されている。 登録されていない、 他の動物のシナプシン Iプロモーター配 列は、 上記シナプシン Iプロモーター配列に基づく相同性検索により、 周知の 方法に従つて容易に得ることができる。 As M55300, .T05521, J05630, the human synapsin I promoter sequence is registered as Accession No. M58321, J05431, M57636. Non-registered synapsin I promoter sequences of other animals can be easily obtained according to a well-known method by homology search based on the above synapsin I promoter sequences.
本発明のシナプシン Iプロモーターには、 その改変体 (パリアント) も含ま れる。 改変体は、 人為的に、 例えば常法により部位特異的変異導入方法等によ り作製されたものであっても、 自然発生的に生じた改変体であってもよい。 一例として、 配列番号 1に本努明の実施例で用いたラットシナプシン Iプロ モーター配列を示す(ラットシナプシン Iプロモーターの- 225〜105位の配列: The synapsin I promoter of the present invention includes a modified form thereof (Pariant). The variant may be artificially produced, for example, by a site-directed mutagenesis method according to a conventional method, or may be a naturally occurring variant. As an example, SEQ ID NO: 1 shows the rat synapsin I promoter sequence used in the examples of the present efforts (sequence of positions −225 to 105 of the rat synapsin I promoter:
Sauerwald A, Hoesche C, Osch ald R, Kilimann M ., J Biol Chem. 1990 Sep 5 ; 265 (25): 14932-7. The 5' -flanking region of the synapsin I gene. A G+C-rich, TATA- and CMT - less, phylogenetically conserved sequence with cell type-specific promoter function:前記文献には、 - 225〜105 の部分で neuron - specificに発現することが報告されている)。 また、配列番号 2及ぴ 3 に、 それぞれ前記ラット -225〜105位に該当するヒト及びマウスシナプシン I プロモーター配列を示す。 , Sauerwald A, Hoesche C, Osch ald R, Kilimann M., J Biol Chem. 1990 Sep 5; 265 (25): 14932-7. The 5 '-flanking region of the synapsin I gene. A G + C-rich, TATA- and CMT-less, phylogenetically conserved sequence with cell type-specific promoter function: In the above literature, it is reported that neuron-specific expression occurs in the region of -225 to 105). In addition, SEQ ID NOs: 2 and 3 show the human and mouse synapsin I promoter sequences corresponding to the aforementioned positions of rat -225 to 105, respectively. ,
上記の 330bp のシナプシン I プロモーターに加えて、 我々は Dittgen.ら (Dittgen et al. , PNAS,. Vol. 101, No. 52, pl8207-211, (2004) ) が用いてい る 1046bpのラットシナプシン Iプロモーターについても検討した。 その結果、 1046bp のラットシナプシンプロモーターを用いても小脳星状細胞及び/又は 籠細胞に特異的に外来遺伝子を発現することが明らかとなつた。 さらに小脳に おいては、 1046bpのラットシナプシンプロモーターは 330bpのシナプシン Iプ 口モーターよりもプロモーター活性がはるかに高いことがわかった。 配列番号 4に 1046bpのラットシナプシン Iプロモーター配列を示す。  In addition to the 330 bp synapsin I promoter described above, we used the 1046 bp rat synapsin used by Dittgen. Et al. (Dittgen et al., PNAS, Vol. 101, No. 52, pl8207-211, (2004)). The I promoter was also examined. As a result, it was clarified that a foreign gene is expressed specifically in cerebellar stellate cells and / or sputum cells even when a 1046 bp rat synapsin promoter is used. Furthermore, in the cerebellum, the 1046 bp rat synapsin promoter was found to have much higher promoter activity than the 330 bp synapsin I probe motor. SEQ ID NO: 4 shows the 1046 bp rat synapsin I promoter sequence.
しかしながら、 上記したように、 この配列に限定されず、 配列番号 1や配列 番号 4に示される塩基配列において、 少なくとも 1ヌクレオチド残基 (好まし くは、 1又は数個) が異なる塩基配列であっても、 それがシナプシン Iプロモ 一ターとして、 その下流に機能しうる態様で連結させた導入遺伝子を小脳星状 細胞及び/又は籠細胞において特異的に発現させうる限り、 同様にシナプシン However, as described above, the present invention is not limited to this sequence. In the base sequences shown in SEQ ID NO: 1 and SEQ ID NO: 4, at least one nucleotide residue (preferably one or several) is a different base sequence. However, as long as it can be expressed specifically in cerebellar stellate cells and / or sputum cells as a synapsin I promoter, it can be expressed in synapsin as well.
Iプロモーターとして使用可能である。 すなわち、 Higgins らによる ClustalW 法によるマルチプルァライメ ン ト (例えば、 Gappenalty5, Fixed Gap penaltylO, windowssize 5, Floating Gap 10)により、 最適な状態にァラインメ ントされ、 算出された配列同一性が少なく も 80%、 好ましくは、 85%以上、 よ り好ましくは、 90%以上である塩基配列であって、それがシナプシン Iプロモー ターとして、 その下流に機能しうる態様で連結させた導入遺伝子を小脳星状細 胞及ぴ 又は籠細胞において特異的に発現させうるようなものであれば、 その ような塩基配列を有するものも本発明にかかるシナプシン Iプロモーターとし て使用可能である。 It can be used as an I promoter. That is, multiple alignment by the ClustalW method by Higgins et al. (For example, Gappenalty5, Fixed Gap penaltylO, windowssize 5, Floating Gap 10) is aligned to an optimal state, and the calculated sequence identity is at least 80 %, Preferably 85% or more, more preferably 90% or more, and a transgene linked in such a manner that it can function downstream as a synapsin I promoter. Any one having such a base sequence can be used as the synapsin I promoter according to the present invention as long as it can be expressed specifically in cells and cells.
また、 配列番号 1や配列番号 4に示される配列とストリンジェントな条件下 でハイブリダィズしうる配列もまた、それがシナプシン Iプロモーターとして、 その下流に機能しうる態様で連結させた導入遺伝子を小脳星状細胞及びノ又は 籠細胞において特異的に発現させうる限り、 同様にシナプシン Iプロモーター として使用可能である。 . 本明細書において、 前記 「ストリンジェントな条件」 とは、 6xSSC (lxSSC の 組成: 0. 15M NaCl, 0, 015M クェン酸ナトリウム、 ρΗ7· 0)と 0. 5% SDSと 5χデン ハルトと 100 /ml変性断片化サケ精子 DNAと 50。/。ホルムァミドを含む溶液中、 配列番号 1や配列番号 4に示される塩基配列からなる核酸とともに 55°C — 晚保温し、低イオン強度、'例えば、 2xSSC、 よりストリンジェントには、 0. lxSSC 等の条件及び Z又はより高温、 37°C以上、 ストリンジェントには、 42°C以上、 よりストリンジェントには、 50°C以上、 より一層ストリンジェントには、 60°C 以上等の条件下での洗浄を行なう条件により達成されうる。 In addition, a sequence that can hybridize with the sequence shown in SEQ ID NO: 1 or SEQ ID NO: 4 under stringent conditions is also used as a synapsin I promoter, and a transgene linked in a manner that can function downstream thereof is used as a cerebellar star. Dendritic cells and or It can also be used as a synapsin I promoter as long as it can be expressed specifically in sputum cells. In the present specification, the “stringent condition” means 6xSSC (composition of lxSSC: 0.15M NaCl, 0, 015M sodium quenate, ρΗ7.0), 0.5% SDS, 5χ Den Hart and 100 / ml denatured fragmented salmon sperm DNA and 50. /. In a solution containing formamide, together with the nucleic acid consisting of the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 4, keep it at 55 ° C — low ionic strength, for example, 2xSSC, or more stringent, such as 0.lxSSC Conditions and Z or higher, 37 ° C or higher, stringent 42 ° C or higher, more stringent 50 ° C or higher, even more stringent 60 ° C or higher This can be achieved depending on the conditions under which washing is performed.
なお、 改変体の塩基配列の長さは、 所望のプロモーター機能が発揮される限 り特に限定されないが、ベクターに組み込む外来遺伝子の許容サイズ'の点から、 例えば 3000ヌクレオチド長以下、 好ましくは、 2000ヌクレオチド長以下であ ることが望ましい。  The length of the base sequence of the variant is not particularly limited as long as the desired promoter function is exhibited. However, from the viewpoint of the allowable size of the foreign gene incorporated into the vector, for example, it is 3000 nucleotides or less, preferably 2000 It is desirable that the length be less than or equal to the nucleotide length.
シナプシン Iプロモーターとしての機能は、 例えば、 小脳星状細胞又は籠細 胞中に含まれる RNAポリメラーゼと、 試験対象の核酸との結合の有無を検出す ることにより評価されうる。 結合の有無の検出は、 ゲルシフトアツセィにおけ る移動度、 表面プラズモン解析における光学的センサーグラム又は質量センサ 一グラム化、 フットプリント法等により行うことができる。  The function as a synapsin I promoter can be evaluated, for example, by detecting the presence or absence of binding between the RNA polymerase contained in the cerebellar astrocytes or sputum cells and the nucleic acid to be tested. The presence or absence of binding can be detected by mobility in gel shift assembly, optical sensorgram or mass sensor in surface plasmon analysis, or footprint method.
また改変体のプロモーターとしての機能は、 例えば、 試験対象の核酸の下流 にレポーター遺伝子を機能しうる態様で連結させ、 構築物を得、 得られた構築 物をマウスあるいはラット小脳グリア細胞 +神経細胞の混合培養に感染、 ある いは固体マウスの小脳表面クモ膜下腔に投与することにより評価されうる。 前 記評価により、 レポーター遺伝子が、.小脳星状細胞又は籠細胞特異的に発現し た場合、 当該核酸は本発明の発現ベクターに適したシナプシン Iプロモーター として使用可能である。  The function of the variant as a promoter is, for example, by linking a reporter gene in a manner that allows it to function downstream of the nucleic acid to be tested, obtaining a construct, and then obtaining the construct from mouse or rat cerebellar glial cells + neurons. It can be assessed by infecting mixed cultures or by administering to the subarachnoid surface of the cerebellum of solid mice. When the reporter gene is expressed specifically in cerebellar stellate cells or sputum cells based on the above evaluation, the nucleic acid can be used as a synapsin I promoter suitable for the expression vector of the present invention.
シナプシン Iプロモーターとしては、 用いる対象動物と同じか、 あるいは近 縁種のシナプシン Iプロモーター配列を用いることが望ましい。  As the synapsin I promoter, it is desirable to use a synapsin I promoter sequence of the same species as that of the target animal to be used or a related species.
シナプシン Iは神経細胞の終末に存在し、 シナプス小胞の放出に重要な役割 を果たしているタンパク質である。 一般的にシナプシン Iは興奮性シナプス前 終末のマーカーとして用いられる。 小脳皮質の興奮性神経は顆粒細胞のみであ るため、 シナプシン Iプロモーターを顆粒細胞特異的発現ベクターとして利用 しうるととが考えられた。 しかしながら、 発明者らがラットシナブシン Iプロ モーター遺伝子 (配列番号 1および配列番号 4 ) をレンチウィルス由来のべク ターに組み込み、 その下流に GFP遺伝子を連結させて、 生体マウスの小脳皮質 分子層の細胞に感染させたところ、 顆粒細胞には GFPの発現が全くみられず、 代わりに分子層の星状細胞と籠細胞に選択的な GFPの発現が確認された。 すな わち、 シナプシン Iプロモーターを用いたレンチウィルスベクターは、 S状細 胞及び籠細胞において特異的に機能しうる発現ベクターとして有用であること が確認された。 Synapsin I is a protein that exists at the end of neurons and plays an important role in the release of synaptic vesicles. Generally, synapsin I is an excitatory presynaptic Used as a terminal marker. Since the excitatory nerves in the cerebellar cortex are only granule cells, it was considered that the synapsin I promoter could be used as a granule cell-specific expression vector. However, the inventors incorporated the rat synapsin I promoter gene (SEQ ID NO: 1 and SEQ ID NO: 4) into a vector derived from a lentivirus and ligated the GFP gene downstream thereof, so that the molecular layer of the cerebellar cortex of a living mouse When the cells were infected, no GFP expression was observed in the granule cells. Instead, selective expression of GFP was confirmed in the astrocytes and sputum cells of the molecular layer. That is, it was confirmed that the lentiviral vector using the synapsin I promoter is useful as an expression vector that can specifically function in S-shaped cells and sputum cells.
( 3 ) 導入遺伝子 (3) Transgene
本発明のベクターは、 シナプシン Iプロモーターの支配下に導入遺伝子を機 能しうる態様で連結して含む。 ここで 「機能しうる態様で連結して」 とは、 本 来の機能を発揮するように配置された状態であって、 シナプシン Iプロモータ 一支配下において、 導入遺伝子が適切に発現するように配置された状態を意味 する。  The vector of the present invention comprises a transgene linked in such a manner that it can function under the control of the synapsin I promoter. Here, “connected in a functional manner” means a state in which it is arranged to exert its original function, and is arranged so that the transgene is appropriately expressed under the control of the synapsin I promoter. It means the state that was done.
本発明において用いられる導入遺伝子は特に限定されるものではないが、 例 えば、 細胞の生存に影響を与える遺伝子、 具体的には、 .細胞に対して毒性を持 つタンパク質をコードする遺伝子、 小脳の発達、 生理機能を制御するタンパク 質をコードする遺伝子、 具体的には、 小脳シナプス形成および可塑性制御分子 をコードする遺伝子、 治療用途に用いうるタンパク質や siRNAを発現させうる 遺伝子、 具体的には、 細胞内で生じた凝集体を分解若しくは除去する酵素をコ ードする遺伝子、 細胞内において、 俾下している機能を捕いうるタンパク質等 をコードする遺伝子、 細胞内において、 過剰な機能の発 を抑制しうる siRNA を発現させうる遺伝子等:その他物質生産に関連するタンパク質をコードする 遺伝子、 特定物質を分解するタンパク質をコードする遺伝子等が挙げちれる。 前記導入対象の遺伝子としては、 より具体的には、 例えば、 毒性タンパク質と して、 ジフテリア毒素をコードする遺伝子、 ジフテリア毒素受容体をコードす る遺伝子、 単純へルぺス由来チミジンキナーゼをコードする遺伝子、 小脳シナ プス形成および可塑性制御分子として NMDA型グルタミン酸受容体、 AMPA型グ ルタミン酸受容体をコードする遺伝子、 GABA受容体をコードする遺伝子、 治療 用として脳由来神経栄養因子あるいはダリァ細胞由来神経栄養因子をコードす る遺伝子、 さらに前記タンパク質の改変体、 機能阻害のためのドミナントネガ ティブ体をコードする遣伝子等が挙げられる。 . The transgene used in the present invention is not particularly limited. For example, a gene that affects cell survival, specifically, a gene encoding a protein that is toxic to the cell, the cerebellum Genes encoding proteins that control the development and physiological functions of the genes, specifically genes encoding cerebellar synapse formation and plasticity control molecules, genes that can express proteins and siRNA that can be used for therapeutic purposes, specifically A gene that codes for an enzyme that breaks down or removes aggregates produced in the cell, a gene that encodes a protein that can capture the function of the cell in the cell, and an excessive function in the cell. Genes that can express siRNA that can suppress development: other genes that code for proteins related to substance production, and degradation of specific substances Such as genes encoding protein is Chi like. More specifically, the gene to be introduced includes, for example, a gene encoding diphtheria toxin, a gene encoding diphtheria toxin receptor, and a simple herpes-derived thymidine kinase as a toxic protein. Genes, cerebellum Sina Encodes NMDA glutamate receptor, AMPA glutamate receptor gene, GABA receptor gene, and brain-derived neurotrophic factor or Dariya cell-derived neurotrophic factor for treatment And a gene encoding a dominant negative for functional inhibition, and the like. .
本発明の発現ベクターとしては、 上記のような構造を有しているもので れ ばよく、 例えば、 配列番号 5に示される塩基配列を有するベクター pCL20cSynI (図 3 A)、 が挙げられる。 なお、 前記 pCL20cSynI においては、 該 pCL20cSynI 中の EcoRI及ぴ Notl認識部位に導入対象の核酸が揷入されうる。 . .  The expression vector of the present invention only needs to have the structure as described above, and examples thereof include a vector pCL20cSynI (FIG. 3A) having the base sequence shown in SEQ ID NO: 5. In the pCL20cSynI, the nucleic acid to be introduced can be inserted into the EcoRI and Notl recognition sites in the pCL20cSynI. .
2 . 小脳の機能解析 2. Functional analysis of the cerebellum
( 1 ) 導入遺伝子の小脳星状細胞及び 又は籠細胞特異的発現  (1) Specific expression of transgenes in cerebellar astrocytes and / or sputum cells
本発明は、 シナプシン Iプロモーター支配下に導入遺伝子を機能し得る態様 で連結して含むレンチウィルス由来ベクターを対象動物に導入することにより、 前記対象動物の小脳星状細胞及び Z又は籠細胞において前記導入遺伝子を特異 的に発現させる方法を提供する。 '  The present invention provides a method for introducing a lentivirus-derived vector comprising a transgene linked in a manner capable of functioning under the control of a synapsin I promoter into a target animal, whereby the cerebellar astrocytes and Z or sputum cells of the target animal A method for specifically expressing a transgene is provided. '
この方法により、 これまで不可能であった小脳星状細胞や籠細胞特異的な特 定遺伝子の発現や送達が可能となり、 小脳機能の研究や小脳星状細胞や籠細胞 の異常に関する疾患の治療や研究が可能となる。  This method enables the expression and delivery of specific genes specific to cerebellar stellate cells and sputum cells, which was not possible before, researching cerebellar function and treating diseases related to abnormalities of cerebellar stellate cells and sputum cells. And research becomes possible.
特に、 本発明のベクターを用いて、 小脳星状細胞や籠細胞特異的にジフテリ ァ毒素、 単純へルぺスウィルス由来のチミジンキナーゼ、 Lurcher変異導入 δ.2 グルタミン酸受容体を発現させれば、 これらの細胞を特異的に脱落させること: が可能となる。 脱落による変化を観察することで、 小脳星状細胞や籠細胞の小 脳における機能を知ることができる。.例えば、 幼弱マウスに本方法を用いて小 脳星状細胞や籠細胞を脱落させれば、 小脳祌経回路形成における役割の解明に つながる。 また、 成熟マウスに用いれば、 この2種の^在神経が小脳機能にど のように貢献するのかが明らかとなる。 その他、 様々な遺伝子を小脳星状細胞 や籠細胞で特異的に発現させることが可能となり、 小脳星状細胞や籠細胞とプ ルキンェ細胞間のシナプス伝達に関して幅広く研究することが可能となる。 ( 2 ) トランスジエニック動物 In particular, if the vector of the present invention is used to express diphtheria toxin, herpes simplex virus-derived thymidine kinase, Lurcher mutation δ.2 glutamate receptor specifically in cerebellar astrocytes and sputum cells, It is possible to specifically shed these cells: By observing changes due to dropout, it is possible to know the functions of cerebellar astrocytes and sputum cells in the cerebellum. For example, dropping cerebellar stellate cells and sputum cells using this method in young mice leads to the elucidation of the role in cerebellar transduction circuit formation. When used in mature mice, it is clear how these two types of nerves contribute to cerebellar function. In addition, various genes can be specifically expressed in cerebellar stellate cells and sputum cells, and it becomes possible to conduct extensive research on synaptic transmission between cerebellar stellate cells and sputum cells and Purkinje cells. (2) Transgenic animals
本発明のベクターをクモ膜下腔に注入することにより、 対象動物の広範な小 脳星状細胞及び/又は籠細胞に特異的に導入遺伝子を発現させることができる。 このようなトランスジエニック動物は、 例えば、 小脳機能研究用モデル動物や 小脳疾患モデル動物として利用可能である。トランスジヱニック動物の対象は、 特に限定されないが、 マウス、 ラット、 ゥサギ、 ゥマ、 ヒッジ、 ィヌ、 ネコ、 サル等に代表される非ヒ小哺乳動物を用いることができ'、 特にマウス、 ラット 等のげつ歯類が好適である。 ' 3 . 遺伝子治療  By injecting the vector of the present invention into the subarachnoid space, a transgene can be expressed specifically in a wide range of cerebellar astrocytes and / or sputum cells of the subject animal. Such a transgenic animal can be used as, for example, a cerebellar function research model animal or a cerebellar disease model animal. The target of the transgenic animal is not particularly limited, but non-small mammals represented by mice, rats, rabbits, horses, hidges, inu, cats, monkeys, etc. can be used, especially mice. Rodents such as rats are preferred. '3. Gene therapy
シナプシン Iプロモ一ター支配下に治療用タンパク質をコードする遺伝子を 機能し得る態様で連結して含むレンチウィルス由来べクターは、 小脳星状細胞 及び Z又は籠細胞への送達ベクターとして、 遺伝子治療に有用である。  Lentiviral-derived vectors containing a gene encoding a therapeutic protein linked in a functional manner under the control of the synapsin I promoter are used as gene delivery vectors for cerebellar astrocytes and Z or sputum cells. Useful.
すなわち、 本発明のベクターは、 薬理学的に許容しうる担体とともに適当な パッファ一に溶解 ·懸濁され、 小脳表面のクモ膜下腔に注入され、 小脳星状細 胞及ぴ Z又は籠細胞における障害を病因とする疾患の治療剤として利用しうる。 本発明のベクターは、 治療用タンパク質をコードする遺伝子を効率的に小脳星 状細胞及び/又は籠細胞に送達し、 発現させることができるため、 これら細胞 における障害を病因とする疾患 (こ対し、 効率よレ、治療効果を達成することがで きる。,  That is, the vector of the present invention is dissolved and suspended in a suitable buffer together with a pharmacologically acceptable carrier, injected into the subarachnoid space on the surface of the cerebellum, cerebellar astrocytes and Z or sputum cells. It can be used as a therapeutic agent for diseases caused by disorders in Since the vector of the present invention can efficiently deliver and express a gene encoding a therapeutic protein to cerebellar stellate cells and / or sputum cells, diseases caused by disorders in these cells (as opposed to It is possible to achieve a therapeutic effect with efficiency.
これまでのところ小脳星状細胞及びノ又は籠細胞が特異的に障害される疾患 は明らかにされていない。 プルキンェ細胞の変性 ·脱落に続く 2次的な星状細 胞及ぴ籠細胞障害の代表的なものとしては脊髄小脳変性症を挙げることができ る。 脊髄小脳変性症 1型、 2型及び 6型ではプルキンェ細胞の変性が顕著であ る。 星状細胞及ぴ籠細胞はプルキンェ細胞活動を抑制的に調節するため、 これ らの細胞活動を調節することでプルキンェ細胞変性を抑制できる可能性がある。 遺伝子治療の薬理評価は、 治療対象となる疾患の種類により異なるが、 脊髄小 脳変性症の場合、 ベクターを、 小脳表面のクモ膜下腔に投与した後、 細胞学的 にはプルキンェ細胞、 星状細胞や籠細胞を含む小脳の神経細胞の変性脱落の防 止によって、 さらに臨床的(動物の場合は行動学的)には小脳失調の改善程度に より行われうる。 So far, there has been no known disease that specifically damages cerebellar astrocytes and cells. Typical examples of secondary astrocyte and sputum cell damage following Purkinje cell degeneration / dropping include spinocerebellar degeneration. Purkinje cell degeneration is prominent in spinocerebellar degeneration type 1, type 2 and type 6. Since astrocytes and sputum cells regulate Purkinje cell activity in a suppressive manner, it may be possible to suppress Purkinje cell degeneration by regulating these cell activities. The pharmacological evaluation of gene therapy varies depending on the type of disease to be treated, but in the case of spinocerebellar degeneration, the vector is administered to the subarachnoid space on the surface of the cerebellum and then cytologically Purkinje cells, stars By preventing degeneration of neurons in the cerebellum, including dendritic cells and sputum cells, clinically (behaviorally in animals) to the extent of improvement in cerebellar ataxia More can be done.
ベクターに組み込む導入遺伝子は、 治療対象となる疾患の種類等に応じ、'適 宜選択することができる。 例えば、 脳由来又はグリア細胞由来神経栄養因子を コードする核酸等が挙げられる。  The transgene to be incorporated into the vector can be appropriately selected according to the type of disease to be treated. For example, a nucleic acid encoding a brain-derived or glial cell-derived neurotrophic factor can be mentioned.
ベクターは、 好ましくは、 小脳表面のクモ膜下腔に注入することにより、 投 与されうる。 注入されたベクターは、 注入部位周辺の少数の小脳星状細胞及び The vector can preferably be administered by injection into the subarachnoid space on the surface of the cerebellum. The injected vector contains a small number of cerebellar astrocytes around the injection site and
Z又は籠細胞のみに限局することなく、 小脳星状細胞及び/又は籠細胞全体に 高い親和性で、 かつ広範囲に有効成分を送達することができる。 また、 小脳表 面のクモ膜下腔への本発明のベクターの注入は、 下オリーブ核ゃ小脳核への注 入に比べて脳実質の損傷を抑制できるため、 臨床応用に優れる。 Without being limited to Z or sputum cells alone, the active ingredient can be delivered over a wide range with high affinity to cerebellar stellate cells and / or whole sputum cells. Moreover, injection of the vector of the present invention into the subarachnoid space on the surface of the cerebellum is superior in clinical application because it can suppress damage to the brain parenchyma compared to injection into the lower olive nucleus and the cerebellar nucleus.
また、 本発明のベクターの投与には、 注入の際、 脳圧を安定して維持させる 観点から、 好ましくは、 一定した速度で注入可能な手段、 例えば、 ノヽミルトン シリンジとそれを取り.つけることができるマイクロマニピュレーター及び注入 のためのマイクルインジェクションポンプ等を用いることが望ましい。 注入速 度は、 脳圧を安定して維持できる範囲であれば特に限定されるものではなく、 個体の年齢、 体重、 疾患状態等に応じて、 適宜設定され得る。 例えば、 lOnl/ 分〜 800nl/分、 好ましくは、 50nl/分〜 400nl/分、 より好ましくは、 lOOnl分〜 200nl分であることが望ましい。  In addition, for the administration of the vector of the present invention, from the viewpoint of stably maintaining the brain pressure during the injection, it is preferable to attach a means capable of injection at a constant rate, for example, a Norton syringe and the like. It is desirable to use a micromanipulator that can be used and a microinjection pump for injection. The injection rate is not particularly limited as long as the brain pressure can be stably maintained, and can be appropriately set according to the age, weight, disease state, etc. of the individual. For example, it is desirable to be lOnl / min to 800 nl / min, preferably 50 nl / min to 400 nl / min, and more preferably lOOnl to 200 nl / min.
本発明のベクターの投与量は、'治療効果を発揮させるに適した量であれば特 に限定されるものではなく、 個体の年齢、 体重、 疾患状態等に応じて、 適宜設 定され得る。 また、 本発明の治療剤の投与回数は、 治療効果を発揮させるに十 分な回数であればよい。レンチウィルスを基本骨格とする本癸明のベクターは、 遺伝子が染色体に組み込まれることから、 1回の投与でもよいが、 組み込まれ る遺伝子のコピー数を増加させ、 より広範囲の細胞に導入させるためには、 小 脳表面の場所を変更して(右、 正中、 左など) 3回程度投与してもよい。 実施例  The dose of the vector of the present invention is not particularly limited as long as it is an amount suitable for exerting a therapeutic effect, and can be appropriately set according to the age, weight, disease state, etc. of the individual. In addition, the number of administrations of the therapeutic agent of the present invention is sufficient as long as the therapeutic effect is exhibited. This vector, which uses lentivirus as the basic skeleton, can be administered once because the gene is integrated into the chromosome, but in order to increase the copy number of the integrated gene and introduce it into a wider range of cells. In some cases, the surface of the cerebellum may be changed (right, midline, left, etc.) about 3 times. Example
以下、 実施例により本発明を詳細に説明するが、 本発明は、 かかる実施例に 限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the examples.
〔実施例 1〕 小脳星状細胞 ·籠細胞特異的発現ベクターの作製 (1)ウィルスの産生 [Example 1] Preparation of cerebellar stellate cell and sputum cell-specific expression vector (1) Virus production
以下の操作を、 P2実験室で行なった。  The following operations were performed in the P2 laboratory.
対数増殖期の HEK293T細胞を PB$ (—)に分散させ、ついで、 l(kmディッシュ(フ アルコン社製)あたり 5 X 105細胞となるように播種した。播種後の 10cmディッシ ュに、 10重量。/。ゥシ胎仔血清含有 DMEMlOmlを添カ卩し、その後、細胞を、 5体積%C02, 37°Cで培養した。 24時間後、 前記デイツシュ中の培地を、 新し 、培地(10重暈% ゥシ胎仔血清含有 DMEM) 10mlと交換した。 その後、 細胞を、 5体積。/。 C02, 37°Cで 0. 5時間培養した。 HEK293T cells in logarithmic growth phase were dispersed in PB $ (—), and then seeded at 5 × 10 5 cells per l (km dish (manufactured by Falcon)). In a 10 cm dish after seeding, 10 and添Ka卩weight ./. © Shi calf serum containing DMEMlOml, after which the cells, 5 vol% C0 2, 37 ° were cultured in C. 24 hours later, the medium in the Deitsushu, new, medium ( was replaced with 10-fold bulk% © shea fetal serum-containing DMEM) 10 ml. cells then 5 volumes ./. C0 2, 37 ° and 0.5 hours at C.
—方、 pCAG-KGPIR (St. Jude Chi ldren s Research Hospital) 3 μ g, pCAG - RTR2 (St. Jude Chi ldren' s Research Hospital) 1 μ g, pCAGGS-VSVG (St. Jude —PcAG-KGPIR (St. Jude Children's Research Hospital) 3 μg, pCAG-RTR2 (St. Jude Children's Research Hospital) 1 μg, pCAGGS-VSVG (St. Jude
Chi l dren' s Research Hospi tal) 1 μ g, pCL20cSynI- GFP 5 gそれぞれを 450〃 1 滅菌水に溶解させ、 プラスミ ド溶液を得た。 なお、 前記 pCL20cSynI- GFPは、 図 2に示される pCL20c MSCV-GFP (St. Jude Chi ldren' s Research Hospital :配列 番号 8 )の MSCVプ口モータ一部分を、配列番号 1あるいは配列番号 4に示される 塩基配列を有するシナプシン Iプロモーターに置き換えたものである。 Chil dren's Research Hospital (1 μg) and pCL20cSynI-GFP (5 g) were each dissolved in 450 to 1 sterile water to obtain a plasmid solution. The pCL20cSynI-GFP is a part of the MSCV promoter of pCL20c MSCV-GFP (St. Jude Children's Research Hospital: SEQ ID NO: 8) shown in FIG. It is replaced with a synapsin I promoter having a base sequence.
•pCAG-KGPIR : gag (ウィルスの構造タンパク質をコード)ど pol (逆転写酵素をコ 一ド)  • pCAG-KGPIR: gag (encodes the structural protein of the virus) pol (codes reverse transcriptase)
• pCAG- RTR2 : tat (転写調節遺伝子)  • pCAG- RTR2: tat (transcriptional regulatory gene)
• pCAGS - VSVG : VSVGは Vesicular somatitis virus, glycoproteinの略。 レンチ ウィルスの本来の Envelopeでは CD4陽性細胞にしか感染できない。これをリン脂 質をターゲットとする VSVの Envelopeに置換することで、神経を含むさまざまな 細胞に感染することが可能となる。  • pCAGS-VSVG: VSVG stands for Vesicular somatitis virus, glycoprotein. The original envelope of lentivirus can only infect CD4 positive cells. By substituting this with a VSV envelope that targets phospholipids, it becomes possible to infect various cells including nerves.
•pCL20c : レンチウィルスのメインべクタ"であり、 この中の 2つの LTRではさ まれる領域が宿主のゲノムに組み込まれる。  • pCL20c: Lentiviral main vector ", the region between the two LTRs is integrated into the host genome.
このようにウィルス産生に不可欠な遺伝子を 4つのプラスミ ドに分割すると 産生されたウイルスは感染能を持つ一方、 感染後は自己増殖能が欠如するため 安全性が増す。  In this way, when the gene essential for virus production is divided into four plasmids, the virus produced is infectious, but after infection there is a lack of self-propagating ability, increasing safety.
得られたプラスミド溶液に 2. 5M CaCl O ^u lを添カ卩し、 撹拝した。 得られた 混合物を、 5分間静置させた後、 前記混合物に、 '2xBBS 〔組成: 50mM N,N-ビス(2_ ヒ ドロキシェチル) - 2-アミノエタンスルホン酸 (BES)、 280mM NaCl, 1. 5mM Na2HP04 (pH6. 95) ] 500 μ 1を添カロし、 すばやく攪拌した。 その後、 得られた混合 物を、 室温で 30分間静置した。 . . 前記ディッシュにプラスミド溶液を均等に滴下し、 穏やかにディッシュ内の 培地と混合した。 その後、 細胞を、 3体積。/。 C02, 35°Cで培養した。 以下、 バイオ ' ハザード対策用安全キヤビネットの中で操作を行なった。 To the obtained plasmid solution, 2.5 M CaCl 2 O ^ ul was added and stirred. The obtained mixture was allowed to stand for 5 minutes, and then the mixture was mixed with 2 × BBS [composition: 50 mM N, N-bis (2_hydroxychetyl) -2-aminoethanesulfonic acid (BES), 280 mM NaCl, 1. 5mM Na 2 HP0 4 (pH 6.95)] 500 μ 1 was added and stirred rapidly. Thereafter, the obtained mixture was allowed to stand at room temperature for 30 minutes. The plasmid solution was evenly dropped onto the dish and gently mixed with the medium in the dish. Then cells, 3 volumes. /. The cells were cultured at C0 2 and 35 ° C. The following operation was performed in a safety cabinet for biohazard measures.
16時間後、 前記ディッシュ中の培地を、 新しい培地(10重量%ゥシ胎仔血清含 有 DMEM) 10mlと交換した。'その後、細胞を、 5体積。/。C02, 37°Cで 24時間培養した。After 16 hours, the medium in the dish was replaced with 10 ml of fresh medium (DMEM containing 10% by weight urchin fetal serum). 'Then cells, 5 volumes. /. They were cultured for 24 hours in C0 2, 37 ° C.
(2)濃縮 (2) Concentration
前記(1)で得られたディッシュから、 培地を回収して、 50ml遠心管に移し、 1000rpm(l20 X g) 4分間遠心分離して、 上清を得た。 得られた上清を、 フィル ター(ミリポア社製、 0. 22 /z m径)に通した。得られた濾液を、ベックマン社製口 一ター SW28. 1を用いた超遠心分離(25,000rpm, 2時間、 4°C)に供してウィルス粒 子を沈殿させ、 上清を除去した。  The medium was collected from the dish obtained in (1) above, transferred to a 50 ml centrifuge tube, and centrifuged at 1000 rpm (l20 × g) for 4 minutes to obtain a supernatant. The obtained supernatant was passed through a filter (Millipore, 0.22 / z m diameter). The obtained filtrate was subjected to ultracentrifugation (25,000 rpm, 2 hours, 4 ° C) using Beckman's mouthpiece SW28.1 to precipitate virus particles, and the supernatant was removed.
得られたウィルス粒子沈殿物をリン酸緩衝化生理食塩水 (Mg2+と Ca2+とを含有 しない) 〔以下、 PBS (-)〕 に懸濁し、 最終量を 200 μ 1とし、 感染用ウィルス液を 得た。 なお、 すぐに使用しないウィルス液を、 20 μ 1ずつ分注し、 - 80°Cで保存 した。 The resulting virus particle precipitate is suspended in phosphate buffered saline (not containing Mg 2+ and Ca 2+ ) [hereinafter PBS (-)] to a final volume of 200 μ1, for infection. A virus solution was obtained. In addition, the virus solution that was not used immediately was dispensed 20 μl at a time and stored at −80 ° C.
(3)ウィルス力価の測定  (3) Measurement of virus titer
HeLa細胞を 10cmディッシュで培養し、 播種 24時間後にウィルス液を感染させ る。 感.染 3日後に 5. 0 X 106個の細胞を得た。 これと平行して同数の LAV - 8E5細 胞(ATCC社, Manassas, VA, USA)を得た。 LAV- 8E5細胞は 1細胞に HIV1型のプロ ウィルスを 1コピー持っており、 これをスタンダードとした。 これらの細胞か らゲノム DNAを抽出し、 最終的に 100 1の TEバッファーに溶解した。 このうち 1 1を用い、 HIVプロウィルスの RRE (nev responsive element)に含まれる 290bp の領域を、 以下のプライマーを用いて増幅した: HeLa cells are cultured in a 10cm dish and infected 24 hours after seeding. Sensation. Three days later, 5.0 × 10 6 cells were obtained. In parallel, the same number of LAV-8E5 cells (ATCC, Manassas, VA, USA) were obtained. LAV-8E5 cells have one copy of HIV type 1 provirus per cell, and this is the standard. Genomic DNA was extracted from these cells and finally dissolved in 100 1 TE buffer. Of these, 1 and 1 were used to amplify a 290 bp region contained in the HIV provirus RRE (nev responsive element) using the following primers:
5, -ATGAGGGACAATTGGAGAAGTGAATTA-3 ' (配列番号 1 1 )、  5, -ATGAGGGACAATTGGAGAAGTGAATTA-3 '(SEQ ID NO: 1 1),
5 ' -CAGACTGTGAGTTGCAACAGATGCTGT-3 ' (配列番号 1 2 )。  5'-CAGACTGTGAGTTGCAACAGATGCTGT-3 '(SEQ ID NO: 1 2).
ゲノムに組み込まれるプロウィルスのコピー数はゲノム DNAを段階希釈して求 めた。 すなわち、パンドが現れなくなる直前の希釈倍率を決定し、 LAV- 8E5細胞 を用いたスタンダードと比較することで、 5. 0 X 106個の HeLa細胞あたり何個の プロウィルスが組み込まれているか(ゲノムコピー数/ウィルス液 lml)を計算 した。 The copy number of provirus integrated into the genome was determined by serial dilution of genomic DNA. That is, by determining the dilution ratio immediately before the panda disappeared and comparing it with the standard using LAV-8E5 cells, it was determined how many cells per 5.0 X 10 6 HeLa cells. It was calculated whether the provirus was integrated (genome copy number / virus solution lml).
〔実施例 2〕 マウス小脳クモ膜下腔へのベクターの接種 [Example 2] Inoculation of vector into mouse cerebellar subarachnoid space
以下の操作は、 P2実験室にて行い、 また、 ウィルスベクター接種後のマウス は HEPAフィルタ一付の感染動物用ラック(トキヮ科学器械株式会社製、 商品名: パイォクリーンガプセルュニット T - BCC- M4)内で飼育した。  The following operations are performed in the P2 laboratory. In addition, the mouse after inoculation with the virus vector is a rack for infected animals equipped with a HEPA filter (trade name: Pioclean Gap Cellulite T- BCC-M4).
マウス(SLC供給、 4〜10週齢)に、ペントバルビタール(商品名:ネンブタール) を、 体重 30gあたり 200 / 1、 腹腔内投与にて麻酔した。 · , なお、 以下の操作は、 バイオハザード対策用安全キャビネットの中で行なつ た。  Mice (SLC supply, 4-10 weeks old) were anesthetized by intraperitoneal administration of pentobarbital (trade name: Nembutal) at 200/1 per 30g body weight. ·, In addition, the following operations were performed in the safety cabinet for biohazard countermeasures.
麻酔後、 マウスを、 小動物固定装置 〔ナリシゲ社製、商品名: SG-4〕 を用いて 固定した。 また、 体温コントローラー 〔F' S 'T、 商品名:体温コントロールシス テム(マウス用) FST- HPSM〕 にて、 マウス体温を 37°Cとなるように維持した。 マ ウスの頭部の毛を刈った後、 Bregmaよ.り数ミリ吻側から小脳直上にかけて皮膚 を切開した。 ついで、 実体顕微鏡(ニコン社製、 商品名 1SMZ645)下で、 Bregma より 5- 5〜7- 5讓尾側の正中部の頭蓥骨に、 マイクロドリル 〔浦和工業社製、 商 品名:パワーコントローラー UC100+HB1 (ドリル)〕 を用いて、 内径 2〜3mmの穴を 開けた。 また、 注射針を用いて、 骨の下の硬膜及ぴクモ膜に穴を開けた。  After anesthesia, the mouse was fixed using a small animal fixing device [trade name: SG-4, manufactured by Narishige Co., Ltd.]. In addition, the body temperature of the mouse was maintained at 37 ° C with a body temperature controller [F 'S' T, product name: body temperature control system (for mouse) FST-HPSM]. After shaving the head of the mouse, the skin was incised from the rostral side of several millimeters to just above the cerebellum. Next, under a stereomicroscope (Nikon Corporation, trade name: 1SMZ645), a micro drill (Urawa Kogyo, trade name: power controller) UC100 + HB1 (drill)] was used to drill holes with an inner diameter of 2 to 3 mm. In addition, a hole was made in the dura mater and spider under the bone using an injection needle.
前記実施例 1で得 れたレンチウィルスベクターを、商品名:レックスフィル マイクロシリンジ(WPI社製、 10 /z l容量)に充填し、 フレックスフィルマイクロ シリンジをマイクロマニピュレーターに取りつけたウノレトラマイクロポンプ Unoletra micropump in which the lentiviral vector obtained in Example 1 was filled in a trade name: Rexfil microsyringe (manufactured by WPI, 10 / zl capacity), and the flexfil microsyringe was attached to the micromanipulator.
2 (WPI社製)にセットした。 2 (made by WPI).
マイクロシリンジの針先を No. 5の穴より約 0. 5瞧刺入し、クモ膜下腔に留置後、 外来遺伝子産物発現用レンチウィルスベクターを、 ウルトラマイクロポンプ 2 専用デジタルコントローラー Micro4 (商品名、 WPI社製)を用いて、 lOOnl/分の速 度で 40分間、 計 4 μ Ι注入した。  Insert the needle of the microsyringe through the hole No. 5 for about 0.5 mm and place it in the subarachnoid space, and then place the lentiviral vector for expressing the foreign gene product into the ultra micro pump 2 digital controller Micro4 (trade name) For 4 minutes at a rate of lOOnl / min for a total of 4 μΙ.
注入後、切開したマウスの皮膚を、縫合糸付き眼科用微小針 (夏目製作所社製、 商品名 .眼科用弱弩針 C67-0)で縫合した。その後、固定装置からマウスをはずし、 ヒーティングパッド(昭和精機工業社製、 商品名:ゴムマツトヒータ一 SG - 15)上 に置いたケージ (安全キャビネット内)で観察した。 マウスが、 '麻酔から覚醒し た後、 マウスケージを感染動物用ラックに戻し、 7〜: 14日間維持した。 After injection, the skin of the incised mouse was sutured with an ophthalmic microneedle with a suture thread (trade name. Ophthalmic weak needle C67-0, manufactured by Natsume Seisakusho Co., Ltd.). After that, remove the mouse from the fixing device, and on the heating pad (made by Showa Seiki Kogyo Co., Ltd., trade name: rubber mat heater 1 SG-15) And observed in a cage placed in the safety cabinet. After the mice woke up from anesthesia, the mouse cage was returned to the infected animal rack and maintained for 7-: 14 days.
なお、対照として、シナプシン Iプロモーターの代わりに MSCVプロモーターを 保持するレンチウィルスベクターを用いて、 同様に、 マウスに接種した。  As a control, mice were similarly inoculated using a lentiviral vector carrying the MSCV promoter instead of the synapsin I promoter.
接種後 7〜14日目におけるマウスについて、 4%ホルムアルデヒドー PBで灌流固 定後、脳を摘出した。 蛍光実体顕微鏡を用いて脳全体の蛍光写真を撮影後、 30% シユークロースで 24時間処理後、 凍結切片を作製した。 作製された脳切片を、 一次抗体 (Rat Anti-GFPAb :ナカライ社製)と共に 24時間室温でインキュベーシ ヨンし、 ついで、 二次抗体 (Goat Anti- Rat IgGAb ;モレキュラープローブ社製) で 2時間、 室温でインキュベーションし、 顕微鏡用標本を得た。 その後、蛍光顕 微鏡(ォリンパス社製 商品名: CKX41)及ぴ共焦点顕微鏡 (CarlZeiss社製 商品 名:' LSM5 Pascal) で標本の観察を行なうことにより発現タンパク質の局在を調 ベ 7こ。  For mice 7 to 14 days after the inoculation, the brain was removed after perfusion fixation with 4% formaldehyde-PB. After taking a fluorescent photograph of the whole brain using a fluorescent stereomicroscope, it was treated with 30% sucrose for 24 hours, and then a frozen section was prepared. The prepared brain sections were incubated with the primary antibody (Rat Anti-GFPAb: Nacalai) for 24 hours at room temperature, and then with the secondary antibody (Goat Anti- Rat IgGAb; manufactured by Molecular Probe) for 2 hours. Incubation at room temperature yielded a microscope specimen. Then, the localization of the expressed protein was investigated by observing the specimen with a fluorescence microscope (trade name: CKX41, manufactured by Olympus) and a confocal microscope (trade name: 'LSM5 Pascal, manufactured by Carl Zeiss).
その結果、図 4及ぴ 5 (シナプシン Iプロモーターを保持するレンチウィルス ベクターを用いた場合)および図 6 (MSCVプロモーターを保持するレンチウィル スベクターを用いた場合)に示されるように小脳直上クモ膜下腔へのウィルス 投与により、小脳に限局した GFPの発現が見られた。凍結切片では、 シナプシン Iプロモーターを保持するレンチウィルスベクター(本発明)を用いた場合、小脳 星状細胞及び 又は籠糸田胞に限局して遺伝子の発現が見られた(図 4及ぴ 5 )力 MSCVプ,口モーターを保持するレンチウィルスベクターを用いた場合、 小脳星状 細胞及び籠細胞に加えて、 プルキンェ細胞、 パーグマングリアへの発現も認め られた(図 6 )。実体顕微鏡写真において、シナプシン Iプロモーターを保持する レンチウィルスベクターを接種した小脳の GFP蛍光強度が弱い 1つの理由とし て、 遺伝子発現が小脳星状細胞及び籠細胞に限局していることが挙げられる。 また、 かかる方法により、 広範囲の小脳星状細胞及び籠細胞に遺伝子発現が 見られることより、 これら細胞特異的に導入遺伝子を発現させるトランスジェ ニック動物が作製できることがわかった。  As a result, as shown in Figs. 4 and 5 (when using a lentiviral vector that retains the synapsin I promoter) and Fig. 6 (when using a lentiviral vector that retains the MSCV promoter), the arachnoid membrane just above the cerebellum. GFP expression localized to the cerebellum was observed by administration of the virus into the lower space. In frozen sections, when a lentiviral vector carrying the synapsin I promoter (invention) was used, gene expression was restricted to cerebellar astrocytes and / or silkworm cysts (Figs. 4 and 5). In addition to cerebellar stellate cells and sputum cells, expression in Purkinje cells and Pergman glia was also observed when using a lentiviral vector that retained MSCV and mouth motor (Fig. 6). In stereomicrographs, one reason for the low GFP fluorescence intensity of cerebellum inoculated with a lentiviral vector carrying the synapsin I promoter is that gene expression is confined to cerebellar astrocytes and sputum cells. In addition, by this method, gene expression was observed in a wide range of cerebellar astrocytes and sputum cells, and it was found that transgenic animals that express transgenes specifically for these cells could be prepared.
〔実施例 3〕 ジフテリア毒素による星状細胞及び籠細胞の選択的 E落 実施例 1で作製したレンチウィルスベクター pCL20cSynI (配列番号 5 )の GFP 部分をジフテリァ毒素受容体 (DTR)の cDNA配列 (配列番号 9 ) 'に置換したベタ ター pCL20cSynI- DTR- HA (図 7、 配列番号 1 0 ) を調製した。 DTRのカルボキシ ル末端には抗体認識用の HAタグ配列を付加した。実施例 1に従い、ジフテリァ 毒素受容体発現用レンチウイ^^スベクターを得た。 [Example 3] Selective elimination of astrocytes and sputum cells by diphtheria toxin GFP of lentiviral vector pCL20cSynI (SEQ ID NO: 5) prepared in Example 1 A vector pCL20cSynI-DTR-HA (FIG. 7, SEQ ID NO: 10) was prepared by substituting the cDNA sequence of the diphtheria toxin receptor (DTR) (SEQ ID NO: 9) '. An HA tag sequence for antibody recognition was added to the carboxyl terminus of DTR. According to Example 1, a lentiviral vector for expression of diphtheria toxin receptor was obtained.
実施例 2に従い、 ジフテリア毒素受容体発現用レンチウィルスベクターを成 熟マウス (生後 4週以降) のくも膜下腔に投与した。. 接種後 7 日目から 1 日 2 0 (午前 9時と午後 8時) PBSに 1 μ g/mlの濃度で溶解したジフテリァ毒素(力 ルビオケム社製) を 150 /z l (ジフテリア毒素 150ng)を腹腔内に計 7日間接種し た。 その後、 4%ホルムアルデヒドー PBで灌流固定を行い、 脳を摘出した。 電動 スライサー(DTK-1000, 堂阪ィーェム社製)を用いて、常温で 100 / mの厚さの切 片を作製した。 作製された脳切片は、 一次抗体マウスモノ クローナル抗 parvalbumin抗体(シグマ社製)とラットモノクロ一ナル抗 HA抗体 (口ッシュ社 製) と共に 24時間室温でインキュベーションし、 ついで、 二次抗体 (568 Goat Anti-mouse IgG抗体;モレキュラープローブ社製おょぴ 488 Goat Anti-rat IgG 抗体)を加えて 2時間、室温でィンキュベーシヨンし、顕微鏡用標本を得た。 そ の後、 共焦点レーザー顕微鏡で標本の観察を行った。 結果を図 7に示す。  According to Example 2, a lentiviral vector for diphtheria toxin receptor expression was administered into the subarachnoid space of an adult mouse (after 4 weeks of age). 7 days after inoculation 20 (day 9 am and 8 pm) Diphtheria toxin dissolved in PBS at a concentration of 1 μg / ml (manufactured by Rubiochem) 150 / zl (diphtheria toxin 150 ng) Inoculated intraperitoneally for a total of 7 days. Thereafter, perfusion fixation was performed with 4% formaldehyde-PB, and the brain was removed. Using an electric slicer (DTK-1000, manufactured by Dosaka EM), a piece with a thickness of 100 / m was produced at room temperature. The prepared brain sections were incubated with the primary antibody mouse monoclonal anti-parvalbumin antibody (manufactured by Sigma) and rat monoclonal monoclonal anti-HA antibody (manufactured by Kuchish) for 24 hours, and then secondary antibody (568 Goat Anti-mouse IgG antibody; Opi 488 Goat Anti-rat IgG antibody manufactured by Molecular Probes) was added and incubated at room temperature for 2 hours to obtain a specimen for microscope. After that, the specimen was observed with a confocal laser microscope. The results are shown in FIG.
ジフテリア毒素を投与しなかったマウスでは分子層とプノレキンェ細胞層を中 心に、 抗 HA抗体で認識される DTRの発現 (緑) が観察された (図 7上段左)。 高倍率では、 DTR (緑) は主に星状細胞と籠細胞の細胞体の細胞膜に添って観察 された.(図 7上段中、右)。 さらに細かい顆粒状の染まりが分子層に認められた が(図 7上段右)、 これは星状細胞および籠細胞の樹状突起あるいは軸索内と推 測された。 ジフテリア毒素を 1 日 2回、 1週間投与したマウスの小脳皮質の蛍 光染色標本では、抗 HA抗体で認識される DTR (緑)は全く認められなかった(図 7下段左)。 同蛍光写真には、異なる 2つの小脳小葉が写っている力 S、左側の小 脳皮質では、 ジフテリア毒素を加えていないマウスの小脳皮質 (図 7上段左) と比べて、 星状細胞おょぴ籠細胞の数が減少しているのがわかる。 さらに右側 の小脳皮質ではこの 2つの細胞がほとんど認められなかった (星状細胞、 籠細 胞と思われる位置が黒く抜けている。 図 7下段中央はその拡大である)。  In mice that did not receive diphtheria toxin, DTR expression (green) recognized by anti-HA antibody was observed centered on the molecular layer and the Punoreckin cell layer (Figure 7, upper left). At high magnification, DTR (green) was observed mainly along the cell membranes of astrocytes and sputum cell bodies (right in the upper row of Fig. 7). A finer granular stain was observed in the molecular layer (Fig. 7, upper right), which was presumed to be in the dendrites or axons of astrocytes and sputum cells. DTR (green) recognized by anti-HA antibody was not observed at all in the cerebellar cortex fluorescently stained in mice administered with diphtheria toxin twice a day for 1 week (lower left in Fig. 7). In the same fluorescent photograph, the force S shows two different cerebellar lobules, and the left cerebellar cortex has astrocytes compared to the cerebellar cortex of the mouse without the addition of diphtheria toxin (upper left in Fig. 7). It can be seen that the number of pith cells is decreasing. In addition, these two cells were hardly observed in the cerebellar cortex on the right side (the positions that appear to be astrocytes and sputum cells are blackened out. The center in the lower part of Fig. 7 is an enlargement).
以上の結果から、 本ウィルスベクターを用いることで、 ジフテリア毒素受容 体が星状細胞と籠細胞に選択的に発現し、 ジフテリァ毒素の連続投与によりこ の 2種の細胞が脱落したと考えられた。 Based on the above results, by using this viral vector, the diphtheria toxin receptor is selectively expressed in astrocytes and sputum cells, and this can be achieved by continuous administration of diphtheria toxin. It was thought that two types of cells had dropped out.
成熟マウスの代わりに神経回路形成が完了していない幼弱マウス (生後 0日 から 1 4日ごろまで) を用いて同様の実験を行うことで、 星状細胞及び籠細 が発達期の小脳神経回路形成に果たす役割を調べることができる。これにより、 神経回路の形成は形態学的あるいは電気生理学的に調べることが可能である。 本明細書中で引用した全ての刊行物、 特許及び特許出 ¾をそのまま参考とし て本明細書中にとり入れるものとする。 ' 産業上の利用の可能性  By conducting similar experiments using young mice (0 to 14 days after birth) in which neural circuit formation has not been completed instead of mature mice, the cerebellar neural circuit in which astrocytes and cells are developing The role played in formation can be examined. As a result, the formation of neural circuits can be examined morphologically or electrophysiologically. All publications, patents and patent references cited in this specification are incorporated herein by reference. '' Possibility of industrial use
本発明により、星状細胞や籠細胞に限局した遺伝子発現の研究が可能となり、 小脳の機能研究に有用な手段を提供することとなる。 また、 星状細胞や籠細胞 を選択的に脱落させることにより、これら 2種の神経細胞の役割を、協調運動、 ' 運動学習などの行動レベルにおいて解明することが可能となる。 さらに、 本発 明は星状細胞や籠細胞をターゲットとする遺伝子治療にも利用できる。 配列表フリーテキスト  According to the present invention, gene expression limited to astrocytes and sputum cells can be studied, and a useful means for studying the function of the cerebellum will be provided. In addition, by selectively dropping out astrocytes and sputum cells, it is possible to elucidate the role of these two types of neurons at the behavioral level such as coordinated movement and motor learning. Furthermore, the present invention can be used for gene therapy targeting astrocytes and sputum cells. Sequence listing free text
配列番号 1ーラットシナプシン Iプロモーター (Synlp) _225〜: L05位の部分 配列番号 2—ヒ トシナプシン Iプロモーター (Synlp) のラット- 225〜105位該 当部分, ' SEQ ID NO: 1—rat synapsin I promoter (Synlp) _ 2 25 ~: part of L05 position SEQ ID NO: 2—rat of rat synapsin I promoter (Synlp) 2 2 5 to position 105 to 105 part, '
配列番号 3—マウスシナプシン Iプロモーター (Synlp) のラット -225〜: 105位 該当部分 SEQ ID NO: 3—Rat of mouse synapsin I promoter (Synlp) -225 ~: position 105
配列番号 4ーラットシナプシン Iプロモーター (Synlp) - 941〜105位の部分 配列番号 5—人工配列の説明: pCL20cSynI (Synlpはラットの 1046bpのもの) 配列番号 6—人工配列の説明: pCL20cSynI- GFP (Synlpはラットの 1046bpのも の) SEQ ID NO: 4—rat synapsin I promoter (Synlp)-941-105 position SEQ ID NO: 5—artificial sequence description: pCL20cSynI (Synlp is rat 1046 bp) SEQ ID NO: 6—artificial sequence description: pCL20cSynI-GFP (Synlp is 1046bp of rat)
配列番号 7—人工配列の説明: SV40プロモーターと Blasticidine耐性遺伝子 を含む配列 SEQ ID NO: 7—Description of artificial sequence: Sequence containing SV40 promoter and Blasticidine resistance gene
配列番号 8—人工配列の説明: pCL20cMSCV- GFP SEQ ID NO: 8—Description of artificial sequence: pCL20cMSCV-GFP
配列番号 9一人工配列の説明:ジフテリァ毒素受容体 (DTR) cDNA配列 配列番号 1 0—人工配列の説明: pCL20cSynI DTR-HA (Synlpはラットの 1046bp のもの) SEQ ID NO: 9 Description of one artificial sequence: diphtheria toxin receptor (DTR) cDNA sequence SEQ ID NO: 10—Description of artificial sequence: pCL20cSynI DTR-HA (Synlp is rat 1046 bp)
配列番号 1 1一人工配列の説明:.プライマー SEQ ID NO: 1 1 Description of one artificial sequence: Primer
配列番号 1 ' 2—人工配列の説明:プライマー SEQ ID NO: 1 '2—Description of artificial sequence: primer

Claims

請 求 の 範 囲 The scope of the claims
1 . シナプシン Iプロモーター支配下に導入遺伝子を機能し得る態様で連結し て含むレンチウィルス由来ベクターを対象動物に導入することにより、 前記対 象動物の小脳星状細胞及び Z又は籠細胞において前記導入遺伝子を特異的に発 現させる方法。 1. By introducing a lentivirus-derived vector containing a transgene linked in a manner capable of functioning under the control of the synapsin I promoter into the target animal, the introduction is performed in the cerebellar astrocytes and Z or sputum cells of the target animals. A method of specifically expressing a gene.
2 . 前記導入遺伝子が、 小脳神経細胞の発達または生理機能若しくは生 を制 御するタンパク質をコードする遺伝子である、 請求項 1に記載の方法。 . . 2. The method according to claim 1, wherein the transgene is a gene encoding a protein that controls development or physiological function or life of cerebellar neurons. .
3 . 前記小脳神経細胞の発達または生理機能若しくは生存を制御するタンパク 質をコードする遺伝子が、 ジフテリア毒素、 ジフテリア毒素受容体、 チミジン キナーゼ、 グルタミン酸受容体、 及び G A B A受容体、 脳由来神経栄養因子、' 及ぴグリア細胞由来神経栄養因子並びにこれらの改変体から選ばれるいずれか をコードする遺伝子である、 請求項 2に記載の方法。 3. A gene encoding a protein that controls the development or physiological function or survival of the cerebellar neurons is diphtheria toxin, diphtheria toxin receptor, thymidine kinase, glutamate receptor, and GABA receptor, brain-derived neurotrophic factor, 3. The method according to claim 2, which is a gene encoding any one selected from glia cell-derived neurotrophic factor and variants thereof.
4 . シナプシン Iプロモーター支配下にジフテリア毒素、 ジフテリア毒素受容 体、 チミジンキナーゼ、 グルタミン酸受容体、 及ぴ G A B A受容体、 脳由来神 経栄養因子、 及びグリア細胞由来神経栄養因子並びにこれらの改変体から選ば れるいずれかをコードする遺伝子を機能し得る態様で連結して含むレンチウイ ルス由来ベクター。 4. Selected from diphtheria toxin, diphtheria toxin receptor, thymidine kinase, glutamate receptor, GABA receptor, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor and variants thereof under the control of synapsin I promoter A vector derived from a lentivirus comprising a gene encoding any of the above linked in a functional manner.
5 . 請求項 4に記載のレンチウィルス由来ベクターを導入したトランスジェニ ック動物。 . 5. A transgenic animal into which the lentivirus-derived vector according to claim 4 is introduced. .
6 . シナプシン Iプロモーター支配下にジフテリア毒素、 ジフテリア毒素受容 体、 チミジンキナーゼ、 及ぴ Lurcher変異導入 δ 2グルタミン酸受容体並びに その改変体から選ばれるいずれかをコードする遺伝子を機能し得る態様で連結 して含むレンチウィルス由来ベクターを対象動物に導入することにより、 前記 対象動物の小脳星状細胞及びノ又は籠細胞を選択的に脱落させる方法。 6. A gene encoding any one selected from diphtheria toxin, diphtheria toxin receptor, thymidine kinase, Lurcher mutagenesis δ2 glutamate receptor and its variants is linked under the control of the synapsin I promoter in a manner capable of functioning. A method for selectively dropping off cerebellar astrocytes and cells of the subject animal by introducing a vector derived from lentivirus into the subject animal.
7 . 請求項 1〜 3のいずれか 1項に記載の方法、 又は請求項 6に記載の方法を 利用した小脳の機能解析方法。 7. A method for analyzing the function of the cerebellum using the method according to any one of claims 1 to 3 or the method according to claim 6.
PCT/JP2006/316127 2005-08-10 2006-08-10 Method for gene expression specific to cerebellar astrocyte and/or basket cell WO2007018318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005231514 2005-08-10
JP2005-231514 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007018318A1 true WO2007018318A1 (en) 2007-02-15

Family

ID=37727483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316127 WO2007018318A1 (en) 2005-08-10 2006-08-10 Method for gene expression specific to cerebellar astrocyte and/or basket cell

Country Status (1)

Country Link
WO (1) WO2007018318A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2318537A1 (en) * 2008-08-07 2011-05-11 Her Majesty The Queen In Right of Canada as represented by The Minister of Health Optimized promoter sequence
WO2015164739A1 (en) * 2014-04-25 2015-10-29 Bluebird Bio, Inc. Kappa/lambda chimeric antigen receptors
US10383929B2 (en) 2014-12-12 2019-08-20 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10479975B2 (en) 2014-06-06 2019-11-19 Bluebird Bio, Inc. Methods of making T cell compositions
US10774343B2 (en) 2014-04-25 2020-09-15 Bluebird Bio, Inc. MND promoter chimeric antigen receptors
US11299752B2 (en) 2015-05-13 2022-04-12 Csl Behring Gene Therapy, Inc. Bio-production of lentiviral vectors
US11479755B2 (en) 2015-12-07 2022-10-25 2Seventy Bio, Inc. T cell compositions
US12006369B2 (en) 2014-07-24 2024-06-11 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US12029784B2 (en) 2020-10-23 2024-07-09 2Seventy Bio, Inc. BCMA chimeric antigen receptors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000051A1 (en) * 1991-06-28 1993-01-07 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
JP2006050956A (en) * 2004-08-11 2006-02-23 Japan Science & Technology Agency Expression vector for expression of gene in purkinje cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000051A1 (en) * 1991-06-28 1993-01-07 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
JP2006050956A (en) * 2004-08-11 2006-02-23 Japan Science & Technology Agency Expression vector for expression of gene in purkinje cell

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BOULOS S. ET AL.: "Assessment of CMV, RSV and SYN1 promoters and the woodchuck post-transcriptional regulatory element in adenovirus vectors for transgene expression in cortical neuronal cultures", BRAIN RESEARCH, vol. 1102, June 2006 (2006-06-01), pages 27 - 38, XP005573371 *
DITTGEN T. ET AL.: "Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo", PROC. NATL. ACAD. SCI. U.S.A., vol. 101, 2004, pages 18206 - 18211, XP003003909 *
KOGLER S. ET AL.: "Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units", VIROLOGY, vol. 311, 2003, pages 89 - 95, XP004432847 *
KOGLER S. ET AL.: "Neuron-specific expression of therapeutic proteins: Evaluation of different cellular promoters in recombinant adenoviral vectors", MOLECULAR AND CELLULAR NEUROSCIENCE, vol. 17, 2001, pages 78 - 96, XP003003910 *
MORIMOTO S. ET AL.: "Glia- and neuron-specific expression of the rennin-angiotensin system in brain alters blood pressure, water intake, and salt preference", J. BIOL. CHEM., vol. 277, no. 36, 2002, pages 33235 - 33241, XP003003911 *
SCOTT B.B. AND LOIS C.: "Generation of tissue-specific transgenic birds with lentiviral vectors", PROC. NATL. ACAD. SCI. U.S.A., vol. 102, November 2005 (2005-11-01), pages 16443 - 16447, XP003003912 *
TORASHIMA T. ET AL.: "In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors", BRAIN RESEARCH, vol. 1082, March 2006 (2006-03-01), pages 11 - 22, XP005364137 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2318537A4 (en) * 2008-08-07 2012-01-18 Ca Minister Health & Welfare Optimized promoter sequence
EP2318537A1 (en) * 2008-08-07 2011-05-11 Her Majesty The Queen In Right of Canada as represented by The Minister of Health Optimized promoter sequence
US10774343B2 (en) 2014-04-25 2020-09-15 Bluebird Bio, Inc. MND promoter chimeric antigen receptors
WO2015164739A1 (en) * 2014-04-25 2015-10-29 Bluebird Bio, Inc. Kappa/lambda chimeric antigen receptors
US10479975B2 (en) 2014-06-06 2019-11-19 Bluebird Bio, Inc. Methods of making T cell compositions
US11560547B2 (en) 2014-06-06 2023-01-24 2Seventy Bio, Inc. Methods of making T cell compositions
US12006369B2 (en) 2014-07-24 2024-06-11 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US11020466B2 (en) 2014-12-12 2021-06-01 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10646558B2 (en) 2014-12-12 2020-05-12 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10639359B2 (en) 2014-12-12 2020-05-05 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US10639358B2 (en) 2014-12-12 2020-05-05 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US11351236B2 (en) 2014-12-12 2022-06-07 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US11382965B2 (en) 2014-12-12 2022-07-12 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US10624960B2 (en) 2014-12-12 2020-04-21 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US11633463B2 (en) 2014-12-12 2023-04-25 2Seventy Bio, Inc. BCMA chimeric antigen receptors
US10383929B2 (en) 2014-12-12 2019-08-20 Bluebird Bio, Inc. BCMA chimeric antigen receptors
US11299752B2 (en) 2015-05-13 2022-04-12 Csl Behring Gene Therapy, Inc. Bio-production of lentiviral vectors
AU2016261864B2 (en) * 2015-05-13 2022-05-26 Csl Behring Gene Therapy, Inc. Bio-production of lentiviral vectors
US11479755B2 (en) 2015-12-07 2022-10-25 2Seventy Bio, Inc. T cell compositions
US12029784B2 (en) 2020-10-23 2024-07-09 2Seventy Bio, Inc. BCMA chimeric antigen receptors

Similar Documents

Publication Publication Date Title
WO2007018318A1 (en) Method for gene expression specific to cerebellar astrocyte and/or basket cell
RU2737049C2 (en) Treatment of retinitis pigmentosa
JP2021097675A (en) Aav vectors targeted to the central nervous system
US20210128750A1 (en) Modulation of neural pathways
Blacklaws Small ruminant lentiviruses: Immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus
JP7430652B2 (en) Compositions and methods for delivering nucleic acids to cochlea and vestibular cells
US10259857B2 (en) Method for augmenting vision in persons suffering from photoreceptor cell degeneration
US9579362B2 (en) Splice variants of GDNF and uses thereof
CA3128525A1 (en) Interneuron-specific therapeutics for normalizing neuronal cell excitability and treating dravet syndrome
US8278284B2 (en) Therapeutic agents for diseases associated with apoptotic degeneration in ocular tissue cells that use SIV-PEDF vectors
KR20210132109A (en) DNA-binding domain transactivators and uses thereof
Sugano et al. Establishment of effective methods for transducing genes into iris pigment epithelial cells by using adeno-associated virus type 2
US20230181767A1 (en) Compositions and methods for promoting hair cell regeneration
KR20230041965A (en) Compositions and methods for treating SLC26A4-associated hearing loss
CN114555100A (en) Compositions and methods for treating alzheimer's disease
JP2006050956A (en) Expression vector for expression of gene in purkinje cell
JP2013034401A (en) Vector for expressing gene in astrocyte
US20230241166A1 (en) Ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation
US20240158810A1 (en) Compositions and methods for ameliorating anterodorsal thalamus hyperexcitability
CN117642187A (en) Gene therapy constructs and methods for treating hearing loss
CN116710566A (en) NEUROD1 vector
CN104017805B (en) Nucleotide, recombinant vector comprising nucleotide, cell, composition and applications of nucleotide, recombinant vector, cell and composition
CN116782921A (en) NEUROD1 combination carrier
JP2006223162A (en) Method for isolating and distinguishing renal macula densa cell, method for forming immortalized renal macula densa cell, cell strain thereof and transformed animal
CN116761812A (en) NEUROD1 and DLX2 vectors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP