WO2007015509A1 - Immunoassay reagent - Google Patents

Immunoassay reagent Download PDF

Info

Publication number
WO2007015509A1
WO2007015509A1 PCT/JP2006/315283 JP2006315283W WO2007015509A1 WO 2007015509 A1 WO2007015509 A1 WO 2007015509A1 JP 2006315283 W JP2006315283 W JP 2006315283W WO 2007015509 A1 WO2007015509 A1 WO 2007015509A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen
antibody
immunoassay
fluorescent
binding fragment
Prior art date
Application number
PCT/JP2006/315283
Other languages
French (fr)
Japanese (ja)
Inventor
Aki Iwasaki
Koji Suzuki
Takayuki Ishiuchi
Hiroko Kogo
Original Assignee
Japan Science And Technology Agency
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Keio University filed Critical Japan Science And Technology Agency
Publication of WO2007015509A1 publication Critical patent/WO2007015509A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching

Definitions

  • the present invention relates to a competitive immunoassay reagent using fluorescence resonance energy transfer (FRET).
  • FRET fluorescence resonance energy transfer
  • an immunoassay method using an antibody against the protein is widely used.
  • the ELISA method is widely used for basic research, clinical examination, environmental research, and the like as a method capable of quantifying a target protein with high sensitivity.
  • the Western Plot method is a method that detects specific proteins using a combination of the excellent resolution of electrophoresis and the high and specificity of antigen-antibody reaction, and the protein mixture force, and is mainly used in basic research. .
  • a labeled antibody to act on the tissue specimen, the localization of the target protein in the tissue or cells can be observed.
  • GFP green fluorescent protein
  • the target protein in the method using such a fluorescent protein, the target protein must be expressed in a form fused with the fluorescent protein in the living cell!
  • the foreign antigen in the cell cannot be visualized.
  • Non-Patent Document 1 Science. 1999 Oct 29; 286 (5441): 952-4., TCR-Mediated internalizatio n of peptide— MHC complexes acquired by T cells. Huang JF, Yang Y, Sepulveda H,
  • An object of the present invention is to provide a reagent for a rapid and simple immunoassay that can omit a washing step generally required for an immunoassay. Furthermore, another object of the present invention is to provide an immunoassay reagent capable of visualizing a foreign antigen in a cell.
  • the inventors of the present application have made fluorescent substances that cause FRET bind to the antibody or antigen-binding fragment thereof used for immunoassay and the antigen to be measured, respectively. It was found that by using a coexisting reagent as an immunoassay reagent and bringing it into contact with a specimen, the binding and washing steps generally required for immunoassay methods can be omitted.
  • the antibody or antigen-binding fragment thereof and the antigen are bound via a linker, and the entire component is prepared as a single molecule fusion protein by using a fluorescent protein as a fluorescent substance. The inventors found that it is possible to visualize foreign antigens and completed the present invention.
  • the present invention relates to an antibody or antigen-binding fragment thereof, a first fluorescent substance bound to the antibody or antigen-binding fragment thereof, and an antigen-antibody reaction with the antibody or antigen-binding fragment thereof.
  • An immunoassay reagent comprising an antigen and a second fluorescent substance bound to the antigen, wherein the antibody or antigen-binding fragment thereof and the antigen are linked to each other to form one molecule, and the antibody
  • the present invention provides an immunoassay reagent in which fluorescence resonance energy transfer occurs between the first and second fluorescent substances when an antigen-antibody reaction occurs between the antigen-binding fragment thereof and the antigen.
  • the present invention also includes a step of bringing the immunoassay reagent of the present invention into contact with a test sample that may contain a test substance that competes with the antigen, and fluorescence resonance energy transfer of the immunoassay reagent at that time
  • a method for measuring the test substance in the test sample using the change in efficiency of the test as an index is provided.
  • the present invention provides a method for imaging a test substance present in a cell, which comprises contacting the reagent for immunoassay of the present invention with a test substance that competes with the antigen contained in the cell.
  • the present invention while maintaining the high sensitivity of an immunoassay method using an antigen-antibody reaction, a washing step generally required in such an immunoassay method is eliminated.
  • an immunoassay reagent that enables a rapid and simple immunoassay has been provided.
  • the present invention provides for the first time an immunoassay reagent capable of visualizing a foreign antigen in a living cell using antibody specificity, which has been impossible until now.
  • FIG. 1 is a schematic view of the structure of an immunoassay reagent constructed in an example of the present invention.
  • FIG. 2 is a gene map of a nucleic acid encoding an immunoassay reagent prepared in an example of the present invention.
  • FIG. 3 is a fluorescence spectrum of a reaction mixture prepared in Example of the present invention when reagent KCS-03 is brought into contact with FLAG peptide to cause competition.
  • the immunoassay reagent of the present invention binds a fluorescent substance that causes FRET to each of an antibody or an antigen-binding fragment thereof and an antigen that reacts with the antibody or the antigen-binding fragment thereof.
  • the antibody or antigen-binding fragment thereof and the antigen are linked together to form a molecule, and may preferably be constructed as a molecule by binding via an appropriate linker. ! / ⁇ . In the state in which binding due to an antigen-antibody reaction occurs between the antibody or antigen-binding fragment thereof and the antigen, FRET occurs between the fluorescent substances bound to each antigen.
  • the antibody or antigen-binding fragments thereof bind to the test substance by antigen-antibody reaction. Since the test substance is not fluorescently labeled, the antibody or antigen-binding fragment thereof bound to the test substance does not produce FRET. The proportion of the antibody or antigen-binding fragment thereof that binds to the test substance increases as the amount of the test substance in the test sample increases. For this reason, by observing how the FRET efficiency changes when the immunoassay reagent of the present invention is brought into contact with the test sample, the presence or absence of the test substance in the test sample and its presence are observed. The amount can be measured.
  • the antibody used in the present invention or an antigen-binding fragment thereof may be a Fab fragment or F () having binding properties to the antibody molecule itself and the corresponding antigen. ab ')
  • antigen-binding fragments include artificial single-chain antibodies such as ScFV (single chain fragment of variable region) constructed by linking the variable regions of the L and H chains of the antibody, for example.
  • Single chain antibodies are preferred because they can be expressed in cells other than mammalian animals such as prokaryotic cells such as E. coli and plant cells.
  • the production method of a single chain antibody such as ScFV itself is well known, and is also described in the following examples.
  • the antibody or antigen-binding fragment thereof used in the present invention is not limited as long as it retains the binding property by the antigen-antibody reaction with the antigen described later. It is not limited to fragments. Since the reagent for immunoassay of the present invention performs immunoassay based on the competition method, the antibody used and the like reacts with the test substance by antigen-antibody reaction.
  • the antigen used in the present invention undergoes an antigen-antibody reaction with the above-described antibody or antigen-binding fragment thereof, and the antigen molecule itself that can be used as an immunogen for inducing the production of the antibody, an antigenic determinant. Includes retained antigen fragments and non-immunogenic haptens. Furthermore, the antigen used in the present invention is not limited to an immunogen or a fragment thereof that induces the production of the antibody as long as it retains the binding property of the corresponding antibody by the antigen-antibody reaction. It may cross-react with the antibody or antigen-binding fragment thereof.
  • FRET itself is well known, and donors and acceptors for FRET Are commercially available.
  • a donor and an acceptor any combination can be used as long as FRET occurs between the donor and acceptor, and the donor and acceptor can be freely selected on the basis of information such as literature or commercially available products.
  • CFP CFP
  • cyan fluorescent protein ⁇ YFP
  • yellow fluorescent protein ⁇ GFP
  • BFP blue fluorescent protein
  • a suitable fluorescent protein can be preferably used. Note that FRET between CFP-YFP, GFP-BFP, and FRET between these variants are widely known, and these fluorescent proteins are also commercially available.
  • a fluorescent protein If a fluorescent protein is used, it can be produced as a single molecule fusion protein by linking with a labeling antibody or the like, and when used in a living cell, a gene encoding the fusion protein may be introduced. Fluorescent proteins are convenient when used in living cells. Nucleic acids encoding these fluorescent proteins are well known, and various vectors including them are also available for sale. Therefore, fluorescently labeled proteins in which fluorescent proteins are fused to desired polypeptides can be obtained from commercially available vectors. It can be easily prepared by using. In addition, you may couple
  • the method of labeling a fluorescent dye with an antibody or the like or an antigen is appropriately selected depending on the type of fluorescent dye used.
  • the fluorescent dye is a non-peptidic compound, it can be labeled by a known method such as chemical modification by attaching a reducing group such as maleimide to the thiol-amino group of the antibody.
  • the fluorescent dye is a peptide compound such as a fluorescent protein, it can be produced as an antibody or a fusion protein with an antigen as described above.
  • the method for producing the fusion protein is also described in the following examples, but is not limited thereto, and can be produced using any known method.
  • the first and second fluorescent dyes bind to the position where FRET occurs when the antibody or the like and the antigen are bound by the antigen-antibody reaction.
  • the fluorescent dye may be bound directly to an antibody or an antigen or an antigen via a linker (spacer). By using such a linker (spacer), it is possible to appropriately adjust the position of the fluorescent dye so that FRET occurs when the antibody and the antigen are bound by an antigen-antibody reaction. .
  • the antibody or the like and the antigen are linked to each other to form one molecule, and preferably, the antibody or the like and the antigen are combined via a linker to form one molecule To do.
  • a fluorescent protein is used as the fluorescent dye, all the components of the immunoassay reagent of the present invention can be produced as a single molecule protein.
  • the structure of the linker is not limited as long as the antibody or the like and the antigen have a distance sufficient to form a bond by an antigen-antibody reaction in the molecule by folding the linker part. It is not a thing.
  • the polypeptide chain has an amino acid strength of about 3 to 200 residues, preferably about 7 to 30 residues, the distance between the antibody and the antigen is appropriately maintained, Allows antigen-antibody reaction. It also prevents non-specific binding within the linker or between the linker and other sites in the molecule, and does not affect the antigen-antibody reaction between the antibody and antigen and has a low amino acid strength.
  • a linker having an amino acid having no side chain as a main component ie, more than 50% in terms of the number of amino acids
  • glycine is preferable.
  • FIG. 1 A preferred embodiment of the immunoassay reagent of the present invention is shown in FIG.
  • the reagent in Fig. 1 consists of two types of fluorescent proteins (YFP and CFP in the figure) that cause FRET in each other, as well as the antibody site (ScFv in the figure) and antigen site (in the figure, "ScFv"). It is a single molecule fusion protein consisting of an antigen ").
  • the fluorescent protein linked to the antigen site is the FRET donor
  • the fluorescent protein linked to the antibody site is the FRET acceptor.
  • the fusion protein In the normal state, the fusion protein is folded at the partial position of the linker, and binding between the antibody site and the antigen site is caused by the antigen-antibody reaction.
  • the immunoassay reagent is brought into contact with the test sample, and then irradiated with light having the excitation wavelength of the FRET donor, and the wavelength of the resulting fluorescence is measured. It is done by setting.
  • the contact time between the immunoassay reagent and the test sample is not particularly limited, but it is usually about 5 to 120 minutes.
  • the concentration of the reagent to be used is a force that can be appropriately set according to the expected concentration of the test substance, etc. Usually, it is about lfM to: LmM
  • the test substance measured by immunoassay using the immunoassay reagent of the present invention reacts with the antibody or the like in an antigen-antibody reaction. That is, as the above-described antibody or the like, an antibody that undergoes an antigen-antibody reaction with a desired test substance is employed.
  • the antigen may be the same substance as the test substance, or a substance different from the test substance as long as it has an antigen-antibody reaction with the antibody or the like (that is, has the same or similar epitope). It may be.
  • fluorescence is measured as described above for a plurality of standard samples containing antigens of known concentrations, and the measurement results are plotted with the horizontal axis representing the antigen concentration in the standard sample and the vertical axis representing the measured fluorescence intensity.
  • a calibration curve is created by plotting, and the concentration of antigen in the test sample can be quantified by applying the measured fluorescence intensity to the test sample of unknown concentration. .
  • the present invention also provides a method for imaging a test substance present in a cell, which comprises contacting the immunoassay reagent of the present invention with a test substance that competes with the antigen contained in the cell. Is. In this case, it is necessary to express a reagent constructed as a fusion protein with a fluorescent protein in living cells, but all the components of the immunoassay reagent can be expressed in one gene.
  • the donor and acceptor in the same amount, and the knock ground can be suppressed, which is preferable.
  • the immunoassay reagent of the present invention expressed in a living cell encounters a test substance in the cell, the test substance and the antigen compete with each other, and an antibody or the like that binds to the test substance is also generated.
  • the distance between the FRET donor and the acceptor increases. Therefore, when irradiated with light of the excitation wavelength of the donor and observed, the fluorescence of the acceptor is observed at the site where there is almost no test substance, but the fluorescence of the donor is observed mainly at the site where the target antigen is present. .
  • the FLAG peptide was conjugated with a linker. Details will be described below.
  • Total RNA was extracted from 6 cells of 4E11 cells (ATCC Cat. No. H B9259) 1.2 X 10 6 which are B cell hyperpridoma producing anti-FLAG antibody using SV Total Isolation System (Promega). Immediately after extraction, TAKARA RNA PCR Kit (AMV) (Takara Shuzo) and oligo_dT primer One was used to obtain cDNA from total RNA by reverse transcription.
  • AMV TAKARA RNA PCR Kit
  • AMV Takara Shuzo
  • oligo_dT primer One was used to obtain cDNA from total RNA by reverse transcription.
  • a gene encoding the Fab region was specifically amplified from the obtained cDNA by PCR.
  • Primers 1 and 2 in Table 1 were used for amplification of antibody heavy chains, and primers 3 and 4 of Table 1 were used for amplification of antibody light chains.
  • the reaction conditions are as follows: 95 ° C for 5 minutes, 95 ° C for 1 minute, 63 ° C for 1 minute, 72 ° C for 2 minutes, 95 ° C for 1 minute, 55 ° C for 1 minute, 72 ° C for 2 minutes, then 72 ° C for 10 minutes .
  • a target fragment of about 700 Kb was recovered from the gel by a conventional method, and cloned using pCR2.1-TOPO (Invitrogen) according to the attached manual to confirm the base sequence.
  • primers for H chain and L chain were designed and amplified as follows.
  • Sense primer for H chain 5'-GGC T ⁇ C TAG "AGC GTA ATA GGT CCG ATT TCT GGC-3 '(SEQ ID NO: 23) (Primer 5, added to Xbal site.
  • each fragment was reacted with Xbal at 37 ° C for 1 hour, and each treated fragment was electrophoresed and recovered from the gel.
  • the reaction was performed at 16 ° C for a whole day and night.
  • PCR was performed using primers 6 and 7 with the ligation sample as a saddle type (98 ° C 10 seconds 60 ° C 30 seconds 72 ° C 1 minute after 30 cycles, 72 ° C 10 minutes).
  • gel electrophoresis and fragment collection were performed, and TA cloning was performed by a conventional method.
  • the cloung product was transferred to a competent cell (One shot TOP10 (Invitrogen)) by the heat shock method (42 ° C for 30 seconds) and pre-cultured according to the manual attached to the competent cell. After incubation, apply culture medium 50 1 to the surface of ampicillin-containing LB agar medium coated with 40 ⁇ l of 40 mg / ml X-gal and 40 1 of 100 mM IPTG. From this, a white single colony was selected and further cultured to recover the plasmid. The sequence of the inserted fragment is determined, and the presence of the target fragment, that is, the heavy chain variable region is upstream and the light chain variable region is downstream, and the (GGGGS) linker is
  • each tool was washed 3 times with 200 ⁇ 1 Tween20-containing phosphate buffer (PBS-T), blocked with 1% urine serum albumin (BSA) -containing PBS for 2 hours at room temperature, and then 100 A 1: 100 diluted biotinylated FLAG was added to the wells and incubated for 2 hours at 4 ° C.
  • PBS-T Tween20-containing phosphate buffer
  • BSA urine serum albumin
  • ScFv was obtained by treating the vector of 1.4) above with Hindlll.
  • the ScFv was ligated to the Hindlll site of the pECFP-Nl vector (Clontech). After ligation, the plasmid vector is transferred to a competent cell according to the description in 1.4), and a LB agar medium containing kanamycin is used for blue / white determination, followed by cultivation and extraction to obtain the desired plasmid. Obtained .
  • the presence of ScFv in the plasmid was confirmed by sequencing.
  • the YFP gene was obtained by PCR using the pEYFP-Nl vector (Clontech) as a saddle and using primers 9 and 10 in Table 1 (98 ° C for 10 seconds 66 ° C for 30 seconds 72 ° C for 1 minute) After 30 cycles, 72 ° C for 10 minutes).
  • the target band around 700 bp was collected from the electrophoresis gel, treated with BglII and Sad, and ligated to the ScFv-introduced pECFP-Nl vector according to the above.
  • the FLAG peptide was prepared as follows: 5 -gat ccg atg gac as DNA corresponding to the FLAG peptide fragment so that the sticky end complementary to BamH I was exposed in the sequence encoding the FLAG peptide.
  • tac aag gat gac gat gac aag gga tec egg- 3 (Self number 29) and 5 — g ate ccg gga tec ctt gtc ate gtc ctt gta gtc cat eg— 3 (3 ⁇ 4 ⁇ iO)
  • Each 10 1 (lOOpmol / 1) was reacted at 30 ° C. for 30 minutes to form a duplex.
  • the fragment was ligated to the BamHI site of the above-mentioned ScFvZYFP-introduced pECFP-Nl vector plasmid to construct an intramolecular competitive FRET probe gene (Fig. 2, KCS-01) o In Fig. 2, "MCS" It is a vector cloning site and functions as a linker.
  • the MCS Shiomi-Kami line is as follows.
  • the plasmid encoding KCS-03 constructed in 2 above was transferred to 293FT cells (Invitrogen) using Lipofectamine 2000 (Invitrogen). Each FRET probe and control protein was expressed in 293FT cells using 24 well plates by incubating each well with 0.8 g of plasmid and 293FT cells. The fluorescence image of the cells was observed using an inverted fluorescence microscope. As a result, it was confirmed that CFP and YFP were expressed in all cells.
  • Each concentrated protein solution is divided into 20 1 cells, and a fluorescent plate reader (Molecular Devices SPECTRA max GEMIN lx) is used with a 384-well plate in a 40 1 volume system. sK / R). FLAG peptide (custom synthesis by SIGMA Genosys) to LxlO 4 or al 1x10- 3 M added 30 minutes followed by culturing, and Do include peptides! / ⁇ was measured sample (blank). The results are shown in Figure 3.
  • the immunoassay reagent of the present invention enables visualization of foreign proteins, and is particularly useful for basic research such as protein functional analysis.
  • the competitive FRET probe of the present invention does not require the binding and washing operations that are generally required in the assembly using conventional antigen-antibody reactions such as ELISA, so that rapid measurement is possible. It is useful for clinical examinations and environmental measurements.

Abstract

A reagent for a rapid and convenient immunoassay method whereby the washing step generally required in immunoassay methods can be omitted. Use is made of an immunoassay reagent containing an antibody or an antigen-binding fragment thereof to be used in the immunoassay together with an antigen to be assayed which are respectively bound to fluorescent substances undergoing FRET with each other. By contacting the reagent with a specimen, the binding and washing steps generally required in immunoassay methods can be omitted. Further, the antibody or an antigen-binding fragment thereof is bound to the antigen via a linker and fluorescent proteins are employed as the fluorescent substances and all of the constituting elements are made into a fused protein as a single molecule. Thus, a foreign antigen can be visualized in a cell.

Description

明 細 書  Specification
免疫測定用試薬  Reagent for immunoassay
技術分野  Technical field
[0001] 本発明は、蛍光共鳴エネルギー転移 (FRET)を利用した、競合型の免疫測定用 試薬に関する。 背景技術  [0001] The present invention relates to a competitive immunoassay reagent using fluorescence resonance energy transfer (FRET). Background art
[0002] 基礎研究や臨床検査などにおいて、タンパク質を検出する方法として、そのタンパ ク質に対する抗体を用いた免疫測定方法が広く用いられて 、る。例えば ELISA法は 、 目的タンパク質を高感度で定量することができる方法として、基礎研究や臨床検査 、環境調査等に広く用いられている。ウェスタンプロット法は、電気泳動の優れた分 離能と抗原抗体反応の高 、特異性を組み合わせて、タンパク質混合物力も特定のタ ンパク質を検出する手法であり、主に基礎研究で利用されている。また、組織標本試 料に対して標識抗体を作用させることにより、組織内あるいは細胞内における目的タ ンパク質の局在を観察することもできる。  [0002] In basic research and clinical examinations, as a method for detecting a protein, an immunoassay method using an antibody against the protein is widely used. For example, the ELISA method is widely used for basic research, clinical examination, environmental research, and the like as a method capable of quantifying a target protein with high sensitivity. The Western Plot method is a method that detects specific proteins using a combination of the excellent resolution of electrophoresis and the high and specificity of antigen-antibody reaction, and the protein mixture force, and is mainly used in basic research. . In addition, by allowing a labeled antibody to act on the tissue specimen, the localization of the target protein in the tissue or cells can be observed.
[0003] し力しながら、これらの免疫化学的方法では、抗体の結合及びその後の洗浄などの 煩雑な作業が必要である。  However, these immunochemical methods require complicated operations such as antibody binding and subsequent washing.
[0004] 一方、生体内におけるタンパク質の動態観察方法としては、緑色蛍光タンパク質 (g reen fluorescent protein; GFP)に代表される種々の蛍光タンパク質を用いた方法が 知られている。これらの蛍光タンパク質は、遺伝子操作により生体中で発現させること ができるため、内在性タンパク質の組織内や細胞内の局在、及びその動態を観察す るのに有用である。  [0004] On the other hand, methods using various fluorescent proteins typified by green fluorescent protein (GFP) are known as methods for observing protein dynamics in vivo. Since these fluorescent proteins can be expressed in vivo by genetic manipulation, they are useful for observing the localization and dynamics of endogenous proteins in tissues and cells.
[0005] し力しながら、こうした蛍光タンパク質を利用した方法では、生細胞中にお!、て目的 タンパク質をあら力じめ蛍光タンパク質と融合させた形態で発現させなければならず [0005] However, in the method using such a fluorescent protein, the target protein must be expressed in a form fused with the fluorescent protein in the living cell!
、細胞内の外来抗原を可視化することはできない。 The foreign antigen in the cell cannot be visualized.
[0006] 非特許文献 1: Science. 1999 Oct 29;286(5441):952-4., TCR- Mediated internalizatio n of peptide— MHC complexes acquired by T cells. Huang JF, Yang Y, Sepulveda H,[0006] Non-Patent Document 1: Science. 1999 Oct 29; 286 (5441): 952-4., TCR-Mediated internalizatio n of peptide— MHC complexes acquired by T cells. Huang JF, Yang Y, Sepulveda H,
Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z. 発明の開示 Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z. Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 本願発明の目的は、免疫測定法に一般に必要とされる洗浄工程を省略し得る、迅 速で簡便な免疫測定法のための試薬を提供することである。さらに、本願発明のもう 1つの目的は、細胞内の外来性抗原を可視化することが可能な免疫測定用試薬を提 供することである。  [0007] An object of the present invention is to provide a reagent for a rapid and simple immunoassay that can omit a washing step generally required for an immunoassay. Furthermore, another object of the present invention is to provide an immunoassay reagent capable of visualizing a foreign antigen in a cell.
課題を解決するための手段  Means for solving the problem
[0008] 本願発明者らは、鋭意研究の結果、免疫測定に用いる抗体又はその抗原結合性 断片と、測定対象である抗原とのそれぞれに、互いに FRETを起こす蛍光物質をそ れぞれ結合させて共存させたものを免疫測定用試薬として用い、これを検体と接触さ せることにより、免疫測定法に一般に必要とされる結合や洗浄の工程を省略すること ができることを見出した。また、前記抗体又はその抗原結合性断片と前記抗原をリン カーを介して結合させるとともに、蛍光物質として蛍光タンパク質を用いて、構成要素 全体を一分子の融合タンパク質として作製することにより、細胞内において外来抗原 を可視化することが可能であることを見出し、本願発明を完成した。  [0008] As a result of intensive research, the inventors of the present application have made fluorescent substances that cause FRET bind to the antibody or antigen-binding fragment thereof used for immunoassay and the antigen to be measured, respectively. It was found that by using a coexisting reagent as an immunoassay reagent and bringing it into contact with a specimen, the binding and washing steps generally required for immunoassay methods can be omitted. In addition, the antibody or antigen-binding fragment thereof and the antigen are bound via a linker, and the entire component is prepared as a single molecule fusion protein by using a fluorescent protein as a fluorescent substance. The inventors found that it is possible to visualize foreign antigens and completed the present invention.
[0009] すなわち、本願発明は、抗体又はその抗原結合性断片と、該抗体又はその抗原結 合性断片に結合した第一の蛍光物質と、前記抗体又はその抗原結合性断片と抗原 抗体反応する抗原と、該抗原に結合した第 2の蛍光物質を含む免疫測定用試薬で あって、前記抗体又はその抗原結合性断片と、前記抗原は互いに連結して一分子を 構成しており、前記抗体又はその抗原結合性断片と前記抗原との間で抗原抗体反 応が起きた場合に、前記第 1及び第 2の蛍光物質間で蛍光共鳴エネルギー転移が 起こる免疫測定用試薬を提供する。また、本発明は、前記抗原と競合する被検物質 を含み得る被検試料に、前記本発明の免疫測定用試薬を接触させる工程を含み、 その際の該免疫測定用試薬の蛍光共鳴エネルギー転移の効率の変化を指標として 、前記被検試料中の前記被検物質を測定する方法を提供する。さらに、本発明は、 上記本発明の免疫測定用試薬を、細胞内に含まれる前記抗原と競合する被検物質 と接触させることを含む、細胞内に存在する被検物質のイメージング方法を提供する 発明の効果 That is, the present invention relates to an antibody or antigen-binding fragment thereof, a first fluorescent substance bound to the antibody or antigen-binding fragment thereof, and an antigen-antibody reaction with the antibody or antigen-binding fragment thereof. An immunoassay reagent comprising an antigen and a second fluorescent substance bound to the antigen, wherein the antibody or antigen-binding fragment thereof and the antigen are linked to each other to form one molecule, and the antibody Alternatively, the present invention provides an immunoassay reagent in which fluorescence resonance energy transfer occurs between the first and second fluorescent substances when an antigen-antibody reaction occurs between the antigen-binding fragment thereof and the antigen. The present invention also includes a step of bringing the immunoassay reagent of the present invention into contact with a test sample that may contain a test substance that competes with the antigen, and fluorescence resonance energy transfer of the immunoassay reagent at that time A method for measuring the test substance in the test sample using the change in efficiency of the test as an index is provided. Furthermore, the present invention provides a method for imaging a test substance present in a cell, which comprises contacting the reagent for immunoassay of the present invention with a test substance that competes with the antigen contained in the cell. The invention's effect
[0010] 本発明により、抗原抗体反応を用いた免疫測定法の感度の高さを保持しながらも、 そのような免疫測定法の際に一般的に必要とされる、洗浄工程を不要にした、迅速 且つ簡便な免疫測定法を可能にする免疫測定用試薬が提供された。さらに、本発明 により、これまで不可能であった、生細胞内における外来抗原を抗体特異性を利用し て可視化できる免疫測定用試薬が初めて提供された。  [0010] According to the present invention, while maintaining the high sensitivity of an immunoassay method using an antigen-antibody reaction, a washing step generally required in such an immunoassay method is eliminated. Thus, an immunoassay reagent that enables a rapid and simple immunoassay has been provided. Furthermore, the present invention provides for the first time an immunoassay reagent capable of visualizing a foreign antigen in a living cell using antibody specificity, which has been impossible until now.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の実施例で構築した免疫測定試薬の構造の概略図である。  FIG. 1 is a schematic view of the structure of an immunoassay reagent constructed in an example of the present invention.
[図 2]本発明の実施例において作成した免疫測定試薬をコードする核酸の遺伝子地 図である。  FIG. 2 is a gene map of a nucleic acid encoding an immunoassay reagent prepared in an example of the present invention.
[図 3]本発明の実施例で作成した、試薬 KCS-03を FLAGペプチドと接触させて競合 させた場合の、反応混合物の蛍光スペクトルである。  FIG. 3 is a fluorescence spectrum of a reaction mixture prepared in Example of the present invention when reagent KCS-03 is brought into contact with FLAG peptide to cause competition.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の免疫測定用試薬は、抗体又はその抗原結合性断片と、該抗体又はその 抗原結合性断片と抗原抗体反応する抗原とのそれぞれに、互いに FRETを起こす 蛍光物質を結合させたものを含む。該抗体又はその抗原結合性断片と該抗原は、互 いに連結して一分子を構成しており、好ましくは、適切なリンカ一を介して結合させ一 分子として構築したものであってもよ!/ヽ。該抗体又はその抗原結合性断片と該抗原と の間に抗原抗体反応による結合が生じている状態では、それぞれに結合した蛍光物 質間で FRETが生じる。一方、該抗原と競合する物質 (被検物質)がさらに存在する 状態では、前記抗体又はその抗原結合性断片のうち、被検物質と抗原抗体反応して 結合するものも生じる。被検物質は蛍光標識されていないので、前記抗体又はその 抗原結合性断片のうち被検物質と結合したものは FRETを生じない。そして、前記抗 体又はその抗原結合性断片のうち被検物質と結合するものの割合は、被検試料中 の被検物質の量が多いほど大きくなる。このため、本発明の免疫測定試薬を被検試 料と接触させた際に、 FRETの効率がどのように変化するかを観察することにより、被 検試料中の被検物質の有無やその存在量を測定することができる。なお、「測定」に は検出と定量の両者が包含される。 [0013] 本発明で用いる抗体又はその抗原結合性断片(以下、「抗体等」 t 、うことがある) は、抗体分子そのもの及び対応する抗原との結合性を有した、 Fab断片や F(ab') [0012] The immunoassay reagent of the present invention binds a fluorescent substance that causes FRET to each of an antibody or an antigen-binding fragment thereof and an antigen that reacts with the antibody or the antigen-binding fragment thereof. Including things. The antibody or antigen-binding fragment thereof and the antigen are linked together to form a molecule, and may preferably be constructed as a molecule by binding via an appropriate linker. ! / ヽ. In the state in which binding due to an antigen-antibody reaction occurs between the antibody or antigen-binding fragment thereof and the antigen, FRET occurs between the fluorescent substances bound to each antigen. On the other hand, in the state where a substance competing with the antigen (test substance) is further present, some of the antibodies or antigen-binding fragments thereof bind to the test substance by antigen-antibody reaction. Since the test substance is not fluorescently labeled, the antibody or antigen-binding fragment thereof bound to the test substance does not produce FRET. The proportion of the antibody or antigen-binding fragment thereof that binds to the test substance increases as the amount of the test substance in the test sample increases. For this reason, by observing how the FRET efficiency changes when the immunoassay reagent of the present invention is brought into contact with the test sample, the presence or absence of the test substance in the test sample and its presence are observed. The amount can be measured. “Measurement” includes both detection and quantification. [0013] The antibody used in the present invention or an antigen-binding fragment thereof (hereinafter sometimes referred to as “antibody etc.” t) may be a Fab fragment or F () having binding properties to the antibody molecule itself and the corresponding antigen. ab ')
2断 片のような抗体断片 (本明細書にぉ ヽて「抗原結合性断片」 t ヽぅ)を包含する。さら に、抗原結合性断片は、例えば抗体の L鎖及び H鎖それぞれの可変領域をつない で構築した、 ScFV (single chain Fragment of variable region)等の人工的な一本鎖抗 体をも包含する。一本鎖抗体は、大腸菌などの原核細胞や植物細胞などの哺乳動 物以外の細胞中でも発現できるため好ましい。なお、 ScFVのような一本鎖抗体の作 製方法自体は周知であり、下記実施例にも記載されている。本発明に用いる抗体又 はその抗原結合性断片は、後述する抗原との抗原抗体反応による結合性を保持し たものであればよぐ必ずしも該抗原を免疫原として得られる抗体やその抗原結合性 断片に限定されるものではない。なお、本発明の免疫測定用試薬は、競合法に基づ く免疫測定を行うものであるから、用いる抗体等は、被検物質とも抗原抗体反応する ものである。  2 includes antibody fragments (such as “antigen-binding fragments” t ぉ herein). Furthermore, antigen-binding fragments include artificial single-chain antibodies such as ScFV (single chain fragment of variable region) constructed by linking the variable regions of the L and H chains of the antibody, for example. . Single chain antibodies are preferred because they can be expressed in cells other than mammalian animals such as prokaryotic cells such as E. coli and plant cells. In addition, the production method of a single chain antibody such as ScFV itself is well known, and is also described in the following examples. The antibody or antigen-binding fragment thereof used in the present invention is not limited as long as it retains the binding property by the antigen-antibody reaction with the antigen described later. It is not limited to fragments. Since the reagent for immunoassay of the present invention performs immunoassay based on the competition method, the antibody used and the like reacts with the test substance by antigen-antibody reaction.
[0014] 本発明で用いる抗原は、上記した抗体又はその抗原結合性断片と抗原抗体反応 するものであり、該抗体の産生を誘起する免疫原として用いることができる抗原分子 そのもの、抗原決定基を保持した抗原断片、及び免疫原性を有しないハプテンを包 含する。さらに、本発明に用いられる抗原は、対応する抗体への抗原抗体反応による 結合性を保持したものであればよく、必ずしも前記抗体の産生を誘起する免疫原や その断片に限定されるものではなぐ前記抗体又はその抗原結合性断片と交差反応 するものであってもよい。  [0014] The antigen used in the present invention undergoes an antigen-antibody reaction with the above-described antibody or antigen-binding fragment thereof, and the antigen molecule itself that can be used as an immunogen for inducing the production of the antibody, an antigenic determinant. Includes retained antigen fragments and non-immunogenic haptens. Furthermore, the antigen used in the present invention is not limited to an immunogen or a fragment thereof that induces the production of the antibody as long as it retains the binding property of the corresponding antibody by the antigen-antibody reaction. It may cross-react with the antibody or antigen-binding fragment thereof.
[0015] 本発明で用いる第 1及び第 2の蛍光色素は、相互に FRETを起こす蛍光色素であ る。 FRETは、励起波長が異なる 2つの蛍光色素(ドナー及びァクセプター)間で励 起工ネルギ一が移動する現象である。ドナーの励起波長の光を照射した場合、ドナ 一とァクセプターが近距離にあるときは FRETが起こり、ドナーの蛍光は減少してァク セプターの蛍光が増大するが、両者が離れると FRETが起こらなくなり、ドナーの蛍 光が増大してァクセプターの蛍光が減少する。従って、ドナーの励起波長の光を照 射した場合に生じる蛍光を観察することにより、ドナーとァクセプター間の距離を知る ことができる。 FRET自体は周知であり、 FRETのためのドナー及びァクセプターも種 々市販されている。ドナー及びァクセプターとしては、両者間に FRETが起こる組み 合わせであれば、いずれの組み合わせでも利用可能であり、文献等の情報に基づき 、又は市販品から自由に選択できる。生細胞中で利用する場合には細胞毒性の低 ヽもの力望よし \、 CFP、cyan fluorescent protein) ^ YFP、yellow fluorescent protein) ^ GFP、 BFP(blue fluorescent protein),並びにこれらの改変体のような蛍光タンパク 質を好ましく用いることができる。なお、 CFP-YFP間の FRETや GFP-BFP間、並びに これらの改変体間の FRETは広く知られており、これらの蛍光タンパク質は巿販もされ ている。蛍光タンパク質を用いれば、標識する抗体等と連結させて一分子の融合タン ノ ク質として生産でき、生細胞中で用いる場合には該融合タンパク質をコードする遺 伝子を導入すればよいため、生細胞中で利用する場合には蛍光タンパク質が便利 である。これらの蛍光タンパク質をコードする核酸も周知であり、それらを含むベクタ 一も種々巿販もされているので、所望のポリペプチドに蛍光タンパク質を融合させた 蛍光標識タンパク質は、それらの市販のベクターを利用して容易に調製することがで きる。なお、抗体等と、抗原のどちらにドナーを結合してもよい。 [0015] The first and second fluorescent dyes used in the present invention are fluorescent dyes that cause mutual FRET. FRET is a phenomenon in which the excitation energy moves between two fluorescent dyes (donor and acceptor) with different excitation wavelengths. When light with the excitation wavelength of the donor is irradiated, FRET occurs when the donor and the acceptor are at a short distance, and the donor fluorescence decreases and the acceptor fluorescence increases, but when both are separated, FRET occurs. The donor fluorescence increases and the acceptor fluorescence decreases. Therefore, the distance between the donor and the acceptor can be known by observing the fluorescence generated when the light having the excitation wavelength of the donor is irradiated. FRET itself is well known, and donors and acceptors for FRET Are commercially available. As a donor and an acceptor, any combination can be used as long as FRET occurs between the donor and acceptor, and the donor and acceptor can be freely selected on the basis of information such as literature or commercially available products. When used in living cells, it is hopeful for low cytotoxicity \, CFP, cyan fluorescent protein) ^ YFP, yellow fluorescent protein) ^ GFP, BFP (blue fluorescent protein), and their variants A suitable fluorescent protein can be preferably used. Note that FRET between CFP-YFP, GFP-BFP, and FRET between these variants are widely known, and these fluorescent proteins are also commercially available. If a fluorescent protein is used, it can be produced as a single molecule fusion protein by linking with a labeling antibody or the like, and when used in a living cell, a gene encoding the fusion protein may be introduced. Fluorescent proteins are convenient when used in living cells. Nucleic acids encoding these fluorescent proteins are well known, and various vectors including them are also available for sale. Therefore, fluorescently labeled proteins in which fluorescent proteins are fused to desired polypeptides can be obtained from commercially available vectors. It can be easily prepared by using. In addition, you may couple | bond a donor with either an antibody etc. and an antigen.
[0016] 蛍光色素を抗体等又は抗原に標識する方法は、用いる蛍光色素の種類によって 適宜選択される。蛍光色素が非ペプチド性の化合物である場合には、抗体のチォー ル基ゃァミノ基にマレイミドなどの還元基をつけて化学修飾する等の公知の方法によ り標識できる。蛍光色素が蛍光タンパク質などのペプチド性の化合物である場合には 、上記したとおり、抗体等又は抗原との融合タンパク質として生産することができる。 融合タンパク質の作製方法は、下記実施例にも記載されているが、それに限定され ず、公知のいかなる方法を用いても作製することができる。なお、第 1及び第 2の蛍光 色素は、上記抗体等と抗原とが抗原抗体反応により結合した際に FRETが起きる位置 に結合する。蛍光色素を抗体等又は抗原は、直接結合してもよいしリンカ一 (スぺ一 サー)を介して結合してもよ 、。このようなリンカ一 (スぺーサ一)を用いることにより、 上記抗体等と抗原とが抗原抗体反応により結合した際に FRETが起きるように、蛍光 色素の位置を適宜調節することも可能である。 [0016] The method of labeling a fluorescent dye with an antibody or the like or an antigen is appropriately selected depending on the type of fluorescent dye used. When the fluorescent dye is a non-peptidic compound, it can be labeled by a known method such as chemical modification by attaching a reducing group such as maleimide to the thiol-amino group of the antibody. When the fluorescent dye is a peptide compound such as a fluorescent protein, it can be produced as an antibody or a fusion protein with an antigen as described above. The method for producing the fusion protein is also described in the following examples, but is not limited thereto, and can be produced using any known method. The first and second fluorescent dyes bind to the position where FRET occurs when the antibody or the like and the antigen are bound by the antigen-antibody reaction. The fluorescent dye may be bound directly to an antibody or an antigen or an antigen via a linker (spacer). By using such a linker (spacer), it is possible to appropriately adjust the position of the fluorescent dye so that FRET occurs when the antibody and the antigen are bound by an antigen-antibody reaction. .
[0017] 本発明の免疫測定試薬では、上記抗体等と抗原とが互いに連結して一分子を構 成し、好ましくは、上記抗体等と抗原を、リンカ一を介して結合させて一分子とする。 蛍光色素として蛍光タンパク質を用いれば、本発明の免疫測定用試薬の構成要素 全てを一分子のタンパク質として生産することができる。一分子の免疫測定用試薬と することにより、使用時に複数の試薬成分を混合する必要がなぐまた、これをコード する核酸を生細胞中で発現させることで、ドナーとァクセプターを等量発現できるの で、ノ ックグラウンドを抑えることもでき、生細胞中で本発明の免疫測定用試薬を用い る際には非常に有利である。 [0017] In the immunoassay reagent of the present invention, the antibody or the like and the antigen are linked to each other to form one molecule, and preferably, the antibody or the like and the antigen are combined via a linker to form one molecule To do. If a fluorescent protein is used as the fluorescent dye, all the components of the immunoassay reagent of the present invention can be produced as a single molecule protein. By using a single-molecule immunoassay reagent, it is not necessary to mix multiple reagent components at the time of use, and by expressing the nucleic acid encoding this in living cells, donors and acceptors can be expressed in equal amounts. Thus, the knock ground can be suppressed, which is very advantageous when the immunoassay reagent of the present invention is used in living cells.
[0018] 前記リンカ一は、抗体等及び抗原が、リンカ一部分の折り畳みによって分子内で抗 原抗体反応による結合を形成できるだけの距離を保持するものであればよぐその構 造は何ら限定されるものではない。通常、 3残基〜 200残基程度、好ましくは 7残基 〜30残基程度のアミノ酸力も成るポリペプチド鎖であれば、抗体等と抗原の間の距 離を適切に保ち、分子内での抗原抗体反応を可能にする。また、リンカ一内での又 はリンカ一と分子内の他の部位との非特異的な結合を防ぎ、抗体等と抗原の間の抗 原抗体反応に影響しないよう、側鎖の少ないアミノ酸力 成るリンカ一が好ましぐ中 でもグリシンのように側鎖のないアミノ酸を主成分 (すなわち、アミノ酸数で 50%超)と したリンカ一が好ましい。  [0018] The structure of the linker is not limited as long as the antibody or the like and the antigen have a distance sufficient to form a bond by an antigen-antibody reaction in the molecule by folding the linker part. It is not a thing. In general, if the polypeptide chain has an amino acid strength of about 3 to 200 residues, preferably about 7 to 30 residues, the distance between the antibody and the antigen is appropriately maintained, Allows antigen-antibody reaction. It also prevents non-specific binding within the linker or between the linker and other sites in the molecule, and does not affect the antigen-antibody reaction between the antibody and antigen and has a low amino acid strength. Among them, a linker having an amino acid having no side chain as a main component (ie, more than 50% in terms of the number of amino acids) such as glycine is preferable.
[0019] 本発明の免疫測定試薬の好ましい態様を図 1に示す。図 1の試薬は、互いに FRE Tを起こす二種類の蛍光タンパク質(図中、 YFP及び CFP)、並びに、リンカ一を介して 連結した抗体部位 (図中、 ScFv)及び抗原部位 (図中、「抗原」)から成る、一分子の融 合タンパク質である。図 1中では、抗原部位に連結している蛍光タンパク質が FRET ドナー、抗体部位に連結している蛍光タンパク質が FRETァクセプターである。該融 合タンパク質は、通常の状態では、リンカ一部位で折り畳まれ、抗体部位と抗原部位 との間で抗原抗体反応による結合を生じており、その結果、二つの蛍光タンパク質が 近傍に存在することとなり、 FRETが起きてァクセプター蛍光が観察される(図 1上段 )。しかし、系内に遊離の抗原 (被検物質)が存在すると(図 1下段)、その被検物質が 抗原部位と競合的に抗体部位に結合するため、抗原の量に応じて抗体部位と抗原 部位との間の抗原抗体反応が解消される。よって FRETが解消し、ァクセプターの蛍 光は減少してドナーの蛍光が増大する。この蛍光強度の変化により、抗体と抗原ダミ 一の結合を定量的に分析できる。 [0020] 本発明の免疫測定用試薬を用いた測定は、該免疫測定用試薬を被検試料と接触 させた後、 FRETドナーの励起波長の光を照射し、それにより生じる蛍光の波長を測 定することにより行う。免疫測定用試薬と被検試料との接触時間は、特に限定されな いが、通常、 5分〜 120分程度がよい。また、使用する試薬の濃度は、予想される被 検物質濃度等に応じて適宜設定することができる力 通常、 lfM〜: LmM程度である A preferred embodiment of the immunoassay reagent of the present invention is shown in FIG. The reagent in Fig. 1 consists of two types of fluorescent proteins (YFP and CFP in the figure) that cause FRET in each other, as well as the antibody site (ScFv in the figure) and antigen site (in the figure, "ScFv"). It is a single molecule fusion protein consisting of an antigen "). In FIG. 1, the fluorescent protein linked to the antigen site is the FRET donor, and the fluorescent protein linked to the antibody site is the FRET acceptor. In the normal state, the fusion protein is folded at the partial position of the linker, and binding between the antibody site and the antigen site is caused by the antigen-antibody reaction. As a result, the two fluorescent proteins are present in the vicinity. Then, FRET occurs and acceptor fluorescence is observed (top of Fig. 1). However, when a free antigen (test substance) is present in the system (lower part of Fig. 1), the test substance binds to the antibody site competitively with the antigen site, so that the antibody site and the antigen depend on the amount of antigen. Antigen-antibody reaction with the site is eliminated. Thus, FRET is eliminated, and the fluorescence of the acceptor decreases and the fluorescence of the donor increases. This change in fluorescence intensity enables quantitative analysis of the binding between the antibody and the antigen. [0020] In the measurement using the immunoassay reagent of the present invention, the immunoassay reagent is brought into contact with the test sample, and then irradiated with light having the excitation wavelength of the FRET donor, and the wavelength of the resulting fluorescence is measured. It is done by setting. The contact time between the immunoassay reagent and the test sample is not particularly limited, but it is usually about 5 to 120 minutes. The concentration of the reagent to be used is a force that can be appropriately set according to the expected concentration of the test substance, etc. Usually, it is about lfM to: LmM
[0021] 上記の通り、本発明の免疫測定試薬を用いた免疫測定により測定される被検物質 は、上記抗体等と抗原抗体反応するものである。すなわち、上記した抗体等としては 、所望の被検物質と抗原抗体反応する抗体等を採用する。また、上記抗原は、被検 物質と同一の物質であってもよいし、上記抗体等と抗原抗体反応するもの (すなわち 、同一又は類似のェピトープを有するもの)であれば被検物質と異なる物質であって もよい。被検試料中に被検物質が存在すると、該被検物質が本発明の免疫測定用 試薬中の抗原と競合し、本発明の免疫測定用試薬中の抗体等のうち、被検物質と抗 原抗体反応して結合するものも生じる。そして、該抗体等のうち、被検物質と抗原抗 体反応して結合するものの割合は、被検試料中の被検物質の量が多くなるほど大き くなる。一方、抗体等が被検物質と結合した場合には、試薬中の抗原は抗体等と結 合できなくなり、また、被検物質には蛍光色素が結合されていないので、 FRETは起き なくなるので、ドナーの蛍光が大きくなる。したがって、被検試料の蛍光を測定するこ とにより、被検物質を検出又は定量することができる。定量を行なう場合には、既知濃 度の抗原を含む複数の標準試料について、上記の通り蛍光を測定し、標準試料中 の抗原濃度を横軸、測定された蛍光強度を縦軸にとって測定結果をプロットして検 量線を作成し、未知濃度の被検試料につ!ヽて測定された蛍光強度を該検量線に当 てはめることにより被検試料中の抗原の濃度を定量することができる。 [0021] As described above, the test substance measured by immunoassay using the immunoassay reagent of the present invention reacts with the antibody or the like in an antigen-antibody reaction. That is, as the above-described antibody or the like, an antibody that undergoes an antigen-antibody reaction with a desired test substance is employed. Further, the antigen may be the same substance as the test substance, or a substance different from the test substance as long as it has an antigen-antibody reaction with the antibody or the like (that is, has the same or similar epitope). It may be. When a test substance is present in the test sample, the test substance competes with the antigen in the immunoassay reagent of the present invention, and among the antibodies and the like in the immunoassay reagent of the present invention, Some of them bind by reacting with the original antibody. The ratio of the antibody or the like that binds to the test substance by reacting with the antigen antibody increases as the amount of the test substance in the test sample increases. On the other hand, when an antibody or the like binds to a test substance, the antigen in the reagent cannot bind to the antibody or the like, and since no fluorescent dye is bound to the test substance, FRET does not occur. Donor fluorescence increases. Therefore, the test substance can be detected or quantified by measuring the fluorescence of the test sample. When quantification is performed, fluorescence is measured as described above for a plurality of standard samples containing antigens of known concentrations, and the measurement results are plotted with the horizontal axis representing the antigen concentration in the standard sample and the vertical axis representing the measured fluorescence intensity. A calibration curve is created by plotting, and the concentration of antigen in the test sample can be quantified by applying the measured fluorescence intensity to the test sample of unknown concentration. .
[0022] また、生細胞中で本発明の免疫測定用試薬を発現させ、該細胞に FRETドナーの 励起波長の光を照射し、適切なフィルターを装着した蛍光顕微鏡で観察することによ り、生細胞中における目的物質の局在等を観察することができる。すなわち、本発明 は、本発明の免疫測定用試薬を、細胞内に含まれる前記抗原と競合する被検物質と 接触させることを含む、細胞内に存在する被検物質のイメージング方法をも提供する ものである。この場合には、蛍光タンパク質との融合タンパク質として構築した試薬を 生細胞中で発現させる必要があるが、免疫測定用試薬の全ての構成要素を一遺伝 子力 発現させることができるため、原理的にドナーとァクセプターを等量ずつ発現さ せることが可能であり、ノ ックグラウンドを抑えることができ、好ましい。生細胞中で発 現した本発明の免疫測定用試薬は、細胞内で被検物質と出会うと、被検物質と抗原 が競合し、被検物質と結合する抗体等も生じ、抗体等が被検物質と結合した場合に は、 FRETドナーとァクセプター間の距離が増大する。そのため、ドナーの励起波長 の光を照射して観察すると、被検物質がほとんどな 、部位ではァクセプターの蛍光 が観察されるが、目的抗原が多く存在する部位では主にドナーの蛍光が観察される 。例えば、ドナーとして CFP、ァクセプターとして YFPを用いた場合には、被検物質 がほとんどない部位では YFPによる黄色〜黄緑色の蛍光が観察され、被検物質が 多く存在する部位では CFPによる青色の蛍光が観察される。 [0022] Further, by expressing the immunoassay reagent of the present invention in living cells, irradiating the cells with light having an excitation wavelength of FRET donor, and observing with a fluorescence microscope equipped with an appropriate filter, The localization of the target substance in living cells can be observed. That is, the present invention also provides a method for imaging a test substance present in a cell, which comprises contacting the immunoassay reagent of the present invention with a test substance that competes with the antigen contained in the cell. Is. In this case, it is necessary to express a reagent constructed as a fusion protein with a fluorescent protein in living cells, but all the components of the immunoassay reagent can be expressed in one gene. It is possible to express the donor and acceptor in the same amount, and the knock ground can be suppressed, which is preferable. When the immunoassay reagent of the present invention expressed in a living cell encounters a test substance in the cell, the test substance and the antigen compete with each other, and an antibody or the like that binds to the test substance is also generated. When bound to the test substance, the distance between the FRET donor and the acceptor increases. Therefore, when irradiated with light of the excitation wavelength of the donor and observed, the fluorescence of the acceptor is observed at the site where there is almost no test substance, but the fluorescence of the donor is observed mainly at the site where the target antigen is present. . For example, when CFP is used as the donor and YFP is used as the acceptor, yellow to yellow-green fluorescence is observed at the site where there is almost no test substance, and blue fluorescence from CFP is observed at the site where there is a lot of test substance. Is observed.
[0023] 以下、実施例に基づき、本発明をより具体的に説明する。ただし、本発明はこれら に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these.
実施例 1  Example 1
[0024] プローブの構築及び競合試験  [0024] Probe construction and competition test
図 1に示す構造を有するプローブを構築した。抗原としては FLAGペプチド (MDK YDDDDK (配列番号 33)、図 1中「抗原」と記載)、抗体等としては FLAGペプチドに 对する一本鎖饥'体 (single chain Fragment of variable region; ScFvノ、 光色素として はシアン蛍光タンパク質 (CFP)をドナー、黄色蛍光タンパク質 (YFP)をァクセプタ 一として用い、 FLAGペプチドをァクセプターと、 ScFvをドナーと連結させて、さらに S cFvと  A probe having the structure shown in FIG. 1 was constructed. The antigen is a FLAG peptide (MDK YDDDDK (SEQ ID NO: 33), described as “antigen” in FIG. 1), and the antibody is a single chain fragment of variable region (ScFv), Using cyan fluorescent protein (CFP) as the donor and yellow fluorescent protein (YFP) as the acceptor as the photochromic dye, FLAG peptide and acceptor, ScFv and donor, and ScFv
FLAGペプチドをリンカ一で結合した。以下、詳述する。  The FLAG peptide was conjugated with a linker. Details will be described below.
[0025] 1. ScFvの作製 [0025] 1. Production of ScFv
1) 抗 FLAG抗体 cDNAの調製  1) Preparation of anti-FLAG antibody cDNA
抗 FLAG抗体を生産する B細胞ハイプリドーマである 4E11細胞 (ATCC Cat.No.H B9259)1.2 X 106個より、 SV Total Isolation System (Promega)を用いて総 RNAを抽出 した。抽出後ただちに、 TAKARA RNA PCR Kit (AMV) (宝酒造)と oligo_dTプライマ 一を用いて、逆転写によって総 RNAから cDNAを得た。 Total RNA was extracted from 6 cells of 4E11 cells (ATCC Cat. No. H B9259) 1.2 X 10 6 which are B cell hyperpridoma producing anti-FLAG antibody using SV Total Isolation System (Promega). Immediately after extraction, TAKARA RNA PCR Kit (AMV) (Takara Shuzo) and oligo_dT primer One was used to obtain cDNA from total RNA by reverse transcription.
[0026] 2) Fab領域の増幅  [0026] 2) Amplification of Fab region
PCRにより、得られた cDNAから Fab領域をコードする遺伝子を特異的に増幅した。 抗体 H鎖の増幅には表 1のプライマー 1及び 2を、抗体 L鎖の増幅には表 1のプライ マー 3及び 4を使用した。反応条件は次の通り; 95°C5分、 95°C1分、 63°C1分、 72°C2 分の後、 95°C1分 55°C1分 72°C2分を 25サイクル、次いで 72°C10分。泳動後、 目 的とする約 700Kbの断片を常法によりゲルから回収し、 pCR2.1-TOPO (Invitrogen)を 用いて添付のマニュアルに従ってクローユングし、塩基配列を確認した。  A gene encoding the Fab region was specifically amplified from the obtained cDNA by PCR. Primers 1 and 2 in Table 1 were used for amplification of antibody heavy chains, and primers 3 and 4 of Table 1 were used for amplification of antibody light chains. The reaction conditions are as follows: 95 ° C for 5 minutes, 95 ° C for 1 minute, 63 ° C for 1 minute, 72 ° C for 2 minutes, 95 ° C for 1 minute, 55 ° C for 1 minute, 72 ° C for 2 minutes, then 72 ° C for 10 minutes . After electrophoresis, a target fragment of about 700 Kb was recovered from the gel by a conventional method, and cloned using pCR2.1-TOPO (Invitrogen) according to the attached manual to confirm the base sequence.
[0027] 3) 可変領域の増幅  [0027] 3) Variable region amplification
前記 PCR産物力も更に可変領域のみを得るため、 H鎖用、 L鎖用のプライマーをそ れぞれ次の通り設計し、増幅を行った。 H鎖用センスプライマー; 5'-GGC T^C TAG " AGC GTA ATA GGT CCG ATT TCT GGC- 3' (配列番号 23) (プライマー 5、 Xbal サイト付加。なお、配列中の は制限酵素で切断される部位を表す (アンチセンス鎖 の切断される部位も表示))、 H鎖用アンチセンスプライマー; 5'-A CGT A^AG CTT ATG CTT AAG GCC CAA CCG GCC 3' (配列番号 24) (プライマー 6、 Hindlllサイ ト付加)、 L鎖用センスプライマー; 5し ACG TA^A GOT TTA TTT CCA GCT TGG T CC CCC-3' (配列番号 25) (プライマー 7、 Hindlllサイト付加)、 L鎖用アンチセンス プライマー; 5し T~ CTA G'AG GGT GGC GGT GGC TCG GGC GGT GGT GGG T CG GGT GGC G GC GGA TCT TCC GCT AGC GGG GAC ATT GTG- 3' (配列番 号 26) (プライマー 8、 Xbalサイト及び (GGGGS) (配列番号 34)のリンカ  In order to obtain only the variable region of the PCR product power, primers for H chain and L chain were designed and amplified as follows. Sense primer for H chain; 5'-GGC T ^ C TAG "AGC GTA ATA GGT CCG ATT TCT GGC-3 '(SEQ ID NO: 23) (Primer 5, added to Xbal site. 5) -A CGT A ^ AG CTT ATG CTT AAG GCC CAA CCG GCC 3 '(SEQ ID NO: 24) (Primer 6, Hindlll site addition), L chain sense primer; 5 ACG TA ^ A GOT TTA TTT CCA GCT TGG T CC CCC-3 '(SEQ ID NO: 25) (Primer 7, Hindlll site addition), L chain anti Sense primer; 5 ~ T ~ CTA G'AG GGT GGC GGT GGC TCG GGC GGT GGT GGG T CG GGT GGC G GC GGA TCT TCC GCT AGC GGG GAC ATT GTG-3 '(SEQ ID NO: 26) (Primer 8, Xbal site And a linker of (GGGGS) (SEQ ID NO: 34)
3 一を付加)。増 幅はグラジェント PCRにより行った。反応条件は次の通り; 98°C10秒 60〜70°C30秒 — 72°C1分を 30サイクル、次いで 72°C10分。グラジェント PCRの各カラムの温度は 60. 0°C, 60.3°C, 60.8°C, 61.7°C, 62.9°C, 64.3°C, 66.0°C, 67.5°C, 68.5°C, 69.3°C, 69.8 °C, 70.0°Cとした。ァガロースゲル電気泳動の結果、 350Kb付近に H鎖可変領域断片 、 400Kb付近に L鎖可変領域断片が認められた。各断片をゲル力も回収した。  3 Add one). Amplification was performed by gradient PCR. The reaction conditions are as follows: 98 ° C for 10 seconds 60-70 ° C for 30 seconds — 72 ° C for 1 minute for 30 cycles, then 72 ° C for 10 minutes. The temperature of each column of gradient PCR is 60.0 ° C, 60.3 ° C, 60.8 ° C, 61.7 ° C, 62.9 ° C, 64.3 ° C, 66.0 ° C, 67.5 ° C, 68.5 ° C, 69.3 ° C , 69.8 ° C, 70.0 ° C. As a result of agarose gel electrophoresis, an H chain variable region fragment was observed near 350 Kb, and an L chain variable region fragment was observed near 400 Kb. Each fragment was also recovered for gel strength.
[0028] 4) H鎖可変領域断片と L鎖可変領域断片のライゲーシヨン [0028] 4) Ligation of H chain variable region fragment and L chain variable region fragment
前記の各断片を Xbalで 37°C、 1時間反応し、各処理断片を泳動してゲルから回収し た。 H鎖可変領域断片 0.78pmol、 L鎖可変領域断片 0.69 pmolを、 20 1の系でライゲ ーシヨン反応した。反応は 16°C、一昼夜行なった。反応後ただちに、ライゲーシヨンサ ンプルを铸型として、プライマー 6と 7を用いて PCRを行った(98°C10秒 60°C30秒 72°C1分を 30サイクル後、 72°C10分)。 PCR終了後ただちにゲル電気泳動及び断片 の回収を行い、常法により TAクローユングした。クローユング産物をコンビテントセル( One shot TOP10 (Invitrogen))にヒートショック法(42°C30秒)でトランスフエタトし、コン ピテントセル添付のマニュアルに従い前培養した。培養後、 40 μ 1の 40 mg/ml X- gal と 40 1の 100 mM IPTGを塗ったアンピシリン含有 LB寒天培地の表面に培養液 50 1を塗布して培養し、翌日、青白のコロニーのうちから白色の単独コロニーを選んで 更に培養し、プラスミドを回収した。挿入断片の配列を決定して、 目的断片の存在、 すなわち、 H鎖可変領域を上流、 L鎖可変領域を下流とし、 (GGGGS)のリンカ Each fragment was reacted with Xbal at 37 ° C for 1 hour, and each treated fragment was electrophoresed and recovered from the gel. In the system of 20 1 lye the heavy chain variable region fragment 0.78 pmol and the light chain variable region fragment 0.69 pmol. -Reacted. The reaction was performed at 16 ° C for a whole day and night. Immediately after the reaction, PCR was performed using primers 6 and 7 with the ligation sample as a saddle type (98 ° C 10 seconds 60 ° C 30 seconds 72 ° C 1 minute after 30 cycles, 72 ° C 10 minutes). Immediately after the completion of PCR, gel electrophoresis and fragment collection were performed, and TA cloning was performed by a conventional method. The cloung product was transferred to a competent cell (One shot TOP10 (Invitrogen)) by the heat shock method (42 ° C for 30 seconds) and pre-cultured according to the manual attached to the competent cell. After incubation, apply culture medium 50 1 to the surface of ampicillin-containing LB agar medium coated with 40 μl of 40 mg / ml X-gal and 40 1 of 100 mM IPTG. From this, a white single colony was selected and further cultured to recover the plasmid. The sequence of the inserted fragment is determined, and the presence of the target fragment, that is, the heavy chain variable region is upstream and the light chain variable region is downstream, and the (GGGGS) linker is
3 一を介 して結合して 、る断片の存在を確認した。  3 The presence of the fragments was confirmed through binding.
[0029] 5) 結合能評価  [0029] 5) Evaluation of binding ability
結合能の確認を ELISAにより確認した。 ELISA用 96ゥエルプレートに 50 mM炭酸水 素塩緩衝液 (pH 9.6)に溶媒置換した回収物 50 1を一晩結合させた。このとき回収 物の濃度は濃縮した原液, 10倍希釈, 100倍希釈, 1000倍希釈の 4種類用意した。翌 日各ゥヱルを 200 μ 1の Tween20含有リン酸緩衝液(PBS-T)で 3回洗浄し, 1%ゥシ血 清アルブミン (BSA)含有 PBSで 2時間、室温にてブロッキングした後, 100倍希釈した 1 00 1のピオチン化 FLAGをゥエルに加えて 2時間, 4°Cでインキュベートした。その後 各ゥエルを 200 μ 1の PBS-Tで 3回洗浄し, 1000倍希釈のアルカリフォスファターゼ標識 アビジンを 50 1加えて, 30分, 4°Cでインキュベートし,最後に ρ-ニトロフエ-ルフォ スフエートを 50 μ 1カ卩えて 1時間室温でインキュベートして、プレートリーダーで吸光度 を測定した。その結果、十分な結合能を有することが確認された。  Confirmation of the binding ability was confirmed by ELISA. Recovered 501, which had been solvent-substituted with 50 mM bicarbonate buffer (pH 9.6), was bound overnight to a 96-well plate for ELISA. At this time, four types of concentrations were obtained: concentrated stock solution, 10-fold dilution, 100-fold dilution, and 1000-fold dilution. The next day, each tool was washed 3 times with 200 µ 1 Tween20-containing phosphate buffer (PBS-T), blocked with 1% urine serum albumin (BSA) -containing PBS for 2 hours at room temperature, and then 100 A 1: 100 diluted biotinylated FLAG was added to the wells and incubated for 2 hours at 4 ° C. Each well is then washed 3 times with 200 µl PBS-T, 50 1 of 1000-fold diluted alkaline phosphatase-labeled avidin is added, and incubated at 4 ° C for 30 minutes. Finally, ρ-nitrophenol phosphate is added. The plate was incubated for 1 hour at room temperature, and the absorbance was measured with a plate reader. As a result, it was confirmed that it has sufficient binding ability.
[0030] 2. 分子内競合 FRETプローブの作製  [0030] 2. Intramolecular competition FRET probe preparation
1) 分子内競合 FRETプローブ遺伝子の構築 (KCS-03)  1) Intramolecular competition FRET probe gene construction (KCS-03)
ScFvは、上記 1. 4)のベクターを Hindlll処理して得た。該 ScFvを pECFP-Nlベクター (Clontech)の Hindlllサイトにライゲーシヨンした。ライゲーシヨン後のプラスミドベクタ 一は、 1. 4)の記載に準じてコンビテントセルにトランスフエタトし、カナマイシン含有 L B寒天培地を用いて、青白判定を行い、培養、抽出を行って所望のプラスミドを得た 。該プラスミド中の ScFvの存在を、配列決定を行って確認した。 ScFv was obtained by treating the vector of 1.4) above with Hindlll. The ScFv was ligated to the Hindlll site of the pECFP-Nl vector (Clontech). After ligation, the plasmid vector is transferred to a competent cell according to the description in 1.4), and a LB agar medium containing kanamycin is used for blue / white determination, followed by cultivation and extraction to obtain the desired plasmid. Obtained . The presence of ScFv in the plasmid was confirmed by sequencing.
[0031] YFP遺伝子は、 pEYFP-Nlベクター(Clontech)を铸型として、表 1のプライマー 9及 び 10を用いて PCRを行なうことにより得た(98°C10秒 66°C30秒 72°C1分を 30サイ クル後、 72°C10分)。 700bp付近の目的バンドを泳動ゲルより回収し、 BglII、 Sad処理 後、前記の ScFv導入 pECFP-Nlベクターに、上記に準じてライゲーシヨンした。 [0031] The YFP gene was obtained by PCR using the pEYFP-Nl vector (Clontech) as a saddle and using primers 9 and 10 in Table 1 (98 ° C for 10 seconds 66 ° C for 30 seconds 72 ° C for 1 minute) After 30 cycles, 72 ° C for 10 minutes). The target band around 700 bp was collected from the electrophoresis gel, treated with BglII and Sad, and ligated to the ScFv-introduced pECFP-Nl vector according to the above.
[0032] FLAGペプチドは、次の通りに調製した; FLAGペプチドをコードする配列に BamH I と相補的な粘着末端が露出するように、 FLAGペプチド断片に相当する DNAとして、 5 -gat ccg atg gac tac aag gat gac gat gac aag gga tec egg- 3 (酉己列番号 29)および 5 — g ate ccg gga tec ctt gtc ate gtc ate ctt gta gtc cat eg— 3 (¾歹 号iO)を合成し 、これら各 10 1 (lOOpmol/ 1)ずつを 30°C、 30分反応させ、二重鎖を形成させた。該 断片を、前記の ScFvZYFP導入 pECFP-Nlベクタープラスミドの BamHIサイトにライ ゲーシヨンし、分子内競合 FRETプローブ遺伝子を構築した(図 2、 KCS-01) oなお、 図 2中、「MCS」は、ベクターのマルチクロー-ングサイトであり、リンカ一として機能す る。 MCSの塩 酉己列は、次の通りである。 g cta gcg cta ccg gac tea gat etc gag etc aa g ctt cga att ctg cag tcg acg gta ccg egg gcc egg gat cca ccg gtc gcc acc atg gtg (IS 列番号 35) [0032] The FLAG peptide was prepared as follows: 5 -gat ccg atg gac as DNA corresponding to the FLAG peptide fragment so that the sticky end complementary to BamH I was exposed in the sequence encoding the FLAG peptide. tac aag gat gac gat gac aag gga tec egg- 3 (Self number 29) and 5 — g ate ccg gga tec ctt gtc ate gtc ate ctt gta gtc cat eg— 3 (¾ 歹 iO) Each 10 1 (lOOpmol / 1) was reacted at 30 ° C. for 30 minutes to form a duplex. The fragment was ligated to the BamHI site of the above-mentioned ScFvZYFP-introduced pECFP-Nl vector plasmid to construct an intramolecular competitive FRET probe gene (Fig. 2, KCS-01) o In Fig. 2, "MCS" It is a vector cloning site and functions as a linker. The MCS Shiomi-Kami line is as follows. g cta gcg cta ccg gac tea gat etc gag etc aa g ctt cga att ctg cag tcg acg gta ccg egg gcc egg gat cca ccg gtc gcc acc atg gtg (IS column number 35)
[0033] 次に、このようにして得られた KCS-01の MCSを Hindlll及び BamHIで切り出し、この 間に 5し A ATT CTG ATG GGT GGC GGT GGC TCG GGC GGT GGT GGG TCG GGT GGC GGC GGA TCT G-3' (配列番号 31)の配列を有するリンカ一を挿入した 。また、 KSC- 01を Sadで切断し、 YFPと ScFv領域の間に 5'- AA TTC AGA TCC GCC GCC ACC CGA CCC ACC ACC GCC CGA GCC ACC GCC ACC CAT CAG- 5' (配列番号 32)という配列のリンカ一を導入した(図 2、 KCS-03) o [0033] Next, the MCS of KCS-01 obtained in this way was cut out with Hindlll and BamHI, and during this time, A ATT CTG ATG GGT GGC GGT GGC TCG GGC GGT GGT GGG TCG GGT GGC GGC GGA TCT G A linker having the sequence -3 ′ (SEQ ID NO: 31) was inserted. In addition, KSC-01 is cut with Sad, and the sequence 5'- AA TTC AGA TCC GCC GCC ACC CGA CCC ACC ACC GCC CGA GCC ACC GCC ACC CAT CAG-5 '(SEQ ID NO: 32) between YFP and ScFv region (Fig. 2, KCS-03) o
[0034] なお、本実験で用いたプライマーは以下の表 1の通りである。  [0034] The primers used in this experiment are shown in Table 1 below.
[0035] [表 1]
Figure imgf000014_0001
[0035] [Table 1]
Figure imgf000014_0001
[0036] 3. 細胞内発現 [0036] 3. Intracellular expression
上記 2.で構築した KCS-03をコードするプラスミドを、リポフエクタミン 2000 (Invitroge n)を用いて 293FT細胞(Invitrogen)にトランスフエタトした。 24ゥエルプレートを用いて 、各ゥエルに 0.8 gのプラスミドと 293FT細胞をカ卩えてインキュベートすることにより、 各 FRETプローブ及び対照タンパク質を 293FT細胞中で発現させた。倒立型蛍光顕 微鏡を用いて、該細胞の蛍光画像の観察を行った。その結果、全ての細胞で CFP 及び YFPが発現して 、ることが確認された。  The plasmid encoding KCS-03 constructed in 2 above was transferred to 293FT cells (Invitrogen) using Lipofectamine 2000 (Invitrogen). Each FRET probe and control protein was expressed in 293FT cells using 24 well plates by incubating each well with 0.8 g of plasmid and 293FT cells. The fluorescence image of the cells was observed using an inverted fluorescence microscope. As a result, it was confirmed that CFP and YFP were expressed in all cells.
[0037] 4. 競合試験  [0037] 4. Competition test
トランスフエクシヨンの 24時間後、細胞をトリプシン EDTAで処理し 10cmシャーレ 3枚 に植えついだ。さらに 24時間後、細胞を M-PER (Piece)によって破砕し、プロトコルに 従いタンパク質溶液を 3mlずつ得た。 Amicon ultra (100,000 MWCO, Millipore)を 400 Orpmで 40分遠心して、該タンパク質溶液を約 15倍濃縮した。  Twenty-four hours after transfection, cells were treated with trypsin EDTA and planted in three 10 cm dishes. After another 24 hours, the cells were disrupted with M-PER (Piece), and 3 ml of protein solution was obtained according to the protocol. Amicon ultra (100,000 MWCO, Millipore) was centrifuged at 400 Orpm for 40 minutes, and the protein solution was concentrated about 15 times.
[0038] 各濃縮タンパク質溶液を 20 1ずつセルにわけ、溶液量 40 1の系で 384ゥエルのプ レートを用いて、蛍光プレートリーダー (Molecular Devices SPECTRA max GEMIN lx s-K/R)を用いて測定した。 FLAGペプチド(SIGMA Genosysにて受託合成)を lxlO4か ら 1x10— 3M加えて 30分培養したもの、及びペプチドを含まな!/ヽサンプル(ブランク)を 測定した。結果を図 3に示す。 [0038] Each concentrated protein solution is divided into 20 1 cells, and a fluorescent plate reader (Molecular Devices SPECTRA max GEMIN lx) is used with a 384-well plate in a 40 1 volume system. sK / R). FLAG peptide (custom synthesis by SIGMA Genosys) to LxlO 4 or al 1x10- 3 M added 30 minutes followed by culturing, and Do include peptides! /ヽwas measured sample (blank). The results are shown in Figure 3.
[0039] 図 3より、ブランク(FLAGペプチド添加せず)と比較して FLAGペプチドを 1x10— 3M 加えた場合に YFPの蛍光(529 nm)が減少しており、 FRETが解消していることがわ かった。よって、これを用いれば競合法により免疫測定が可能であることが明らかに なった。 [0039] From FIG. 3, the blank fluorescence YFP when (FLAG peptide was not added) was added FLAG peptide 1X10- 3 M compared to (529 nm) has decreased, the FRET is eliminated I understood. Therefore, it was clarified that immunoassay can be performed by a competitive method using this.
産業上の利用可能性  Industrial applicability
[0040] 本発明の免疫測定用試薬は、外来性タンパク質の可視化を可能にするものであり 、特に、タンパク質の機能解析などの基礎研究に有用である。また、本発明の競合型 FRETプローブは、 ELISA法などのような従来の抗原抗体反応を用いたアツセィで一 般的に必要とされる結合と洗浄の作業は不要なので、迅速な測定が可能となり、臨 床検査や環境測定などに有用である。 [0040] The immunoassay reagent of the present invention enables visualization of foreign proteins, and is particularly useful for basic research such as protein functional analysis. In addition, the competitive FRET probe of the present invention does not require the binding and washing operations that are generally required in the assembly using conventional antigen-antibody reactions such as ELISA, so that rapid measurement is possible. It is useful for clinical examinations and environmental measurements.

Claims

請求の範囲 The scope of the claims
[1] 抗体又はその抗原結合性断片と、該抗体又はその抗原結合性断片に結合した第 一の蛍光物質と、前記抗体又はその抗原結合性断片と抗原抗体反応する抗原と、 該抗原に結合した第 2の蛍光物質を含む免疫測定用試薬であって、前記抗体又は その抗原結合性断片と、前記抗原は互いに連結して一分子を構成しており、前記抗 体又はその抗原結合性断片と前記抗原との間で抗原抗体反応が起きた場合に、前 記第 1及び第 2の蛍光物質間で蛍光共鳴エネルギー転移が起こる免疫測定用試薬  [1] An antibody or an antigen-binding fragment thereof, a first fluorescent substance bound to the antibody or the antigen-binding fragment thereof, an antigen that undergoes an antigen-antibody reaction with the antibody or the antigen-binding fragment thereof, and the binding to the antigen An immunoassay reagent comprising the second fluorescent substance, wherein the antibody or antigen-binding fragment thereof and the antigen are linked to each other to form one molecule, and the antibody or antigen-binding fragment thereof. Reagent for immunoassay in which fluorescence resonance energy transfer occurs between the first and second fluorescent substances when an antigen-antibody reaction occurs between the antigen and the antigen
[2] 前記抗体又はその抗原結合性断片と、前記抗原カ^ンカ一を介して結合することに より一分子として構成される請求項 1記載の免疫測定用試薬。 [2] The reagent for immunoassay according to claim 1, wherein the reagent is constituted as a molecule by binding to the antibody or antigen-binding fragment thereof via the antigen carrier.
[3] 前記抗体若しくはその抗原結合性断片が一本鎖抗体である請求項 1又は 2記載の 免疫測定用試薬。 [3] The immunoassay reagent according to claim 1 or 2, wherein the antibody or antigen-binding fragment thereof is a single-chain antibody.
[4] 前記第 1及び Z又は第 2の蛍光物質が蛍光タンパク質である請求項 1ないし 3のい ずれか 1項に記載の免疫測定用試薬。  [4] The immunoassay reagent according to any one of claims 1 to 3, wherein the first and Z or second fluorescent substances are fluorescent proteins.
[5] 前記第 1及び Z又は第 2の蛍光タンパク質が、前記抗体若しくはその抗原結合性 断片、及び Z又は前記抗原との融合タンパク質の形態にある請求項 4記載の免疫測 定用試薬。 [5] The immunoassay reagent according to claim 4, wherein the first and Z or second fluorescent proteins are in the form of a fusion protein with the antibody or antigen-binding fragment thereof and Z or the antigen.
[6] 前記抗体又はその抗原結合性断片と、前記抗原カ^ンカ一を介して結合して 1分 子を構成しており、前記第 1及び第 2の蛍光物質が第 1及び第 2の蛍光タンパク質で あり、前記抗体又はその抗原結合性断片、前記第 1の蛍光タンパク質、前記リンカ一 、前記抗原及び前記第 2の蛍光タンパク質が融合タンパク質の形態にある請求項 5 記載の免疫測定用試薬。  [6] The antibody or the antigen-binding fragment thereof is bound via the antigen handler to form a molecule, and the first and second fluorescent materials are the first and second fluorescent substances. The immunoassay reagent according to claim 5, wherein the reagent is a fluorescent protein, and the antibody or antigen-binding fragment thereof, the first fluorescent protein, the linker, the antigen, and the second fluorescent protein are in the form of a fusion protein. .
[7] 請求項 5又は 6記載の融合タンパク質をコードする核酸。 [7] A nucleic acid encoding the fusion protein according to claim 5 or 6.
[8] 請求項 7記載の核酸を含み、該核酸を宿主細胞内で発現できるベクター。 [8] A vector comprising the nucleic acid according to claim 7 and capable of expressing the nucleic acid in a host cell.
[9] 前記抗原と競合する被検物質を含み得る被検試料に、請求項 1な!ヽし 8の ヽずれ 力 1項に記載の免疫測定用試薬を接触させる工程を含み、その際の該免疫測定用 試薬の蛍光共鳴エネルギー転移の効率の変化を指標として、前記被検試料中の前 記被検物質を測定する方法。 [9] The method includes a step of contacting the immunoassay reagent according to claim 1 with a test sample that may contain a test substance that competes with the antigen. A method for measuring the test substance in the test sample, using the change in the efficiency of fluorescence resonance energy transfer of the immunoassay reagent as an index.
[10] 請求項 1ないし 8のいずれか 1項に記載の免疫測定用試薬を、細胞内に含まれる前 記抗原と競合する被検物質と接触させることを含む、細胞内に存在する被検物質の イメージング方法。 [10] A test that exists in a cell, comprising contacting the immunoassay reagent according to any one of claims 1 to 8 with a test substance that competes with the antigen contained in the cell. Substance imaging method.
[11] 請求項 8記載のベクターを導入した細胞内において請求項 7記載の核酸を発現さ せ、生成した免疫測定用試薬を細胞内に含まれる前記抗原と競合する被検物質と接 触させることを含む、請求項 10記載の方法。  [11] The nucleic acid according to claim 7 is expressed in a cell into which the vector according to claim 8 is introduced, and the generated immunoassay reagent is brought into contact with a test substance that competes with the antigen contained in the cell. The method of claim 10, comprising:
PCT/JP2006/315283 2005-08-03 2006-08-02 Immunoassay reagent WO2007015509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005225577A JP2007040834A (en) 2005-08-03 2005-08-03 Immunoassay reagent
JP2005-225577 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007015509A1 true WO2007015509A1 (en) 2007-02-08

Family

ID=37708789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315283 WO2007015509A1 (en) 2005-08-03 2006-08-02 Immunoassay reagent

Country Status (2)

Country Link
JP (1) JP2007040834A (en)
WO (1) WO2007015509A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236575B2 (en) 2007-11-22 2012-08-07 Fujifilm Corporation Carrier for analysis of an analyte and process for producing the same
WO2015124690A1 (en) * 2014-02-24 2015-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composition comprising a fret pair with a defined geometry

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140242606A1 (en) * 2011-06-23 2014-08-28 Korea Research Institute Of Bioscience And Biotechnology PROBE FOR iFRET AND USE THEREOF
JP6082996B2 (en) * 2011-11-22 2017-02-22 パナソニックIpマネジメント株式会社 Biomolecule single molecule detection method, single molecule detection apparatus, and disease marker inspection apparatus
JP6551923B2 (en) * 2014-05-12 2019-07-31 学校法人東日本学園 Test substance measurement FRET molecular sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124770A (en) * 1999-08-18 2001-05-11 Japan Science & Technology Corp Method for measuring concentration of substance
JP2003042955A (en) * 2001-07-30 2003-02-13 Sekisui Chem Co Ltd Phosphor for molecular recognition, and method for measuring target substance using the same
JP2003513271A (en) * 1999-11-05 2003-04-08 アイシス・イノベーション・リミテッド General purpose fluorescent sensor
JP2006505774A (en) * 2002-11-07 2006-02-16 エラスムス ユニフェルシテイト ロッテルダム Methods and probes for detection of tumor-specific fusion proteins
JP2006506634A (en) * 2002-11-18 2006-02-23 ヴァルション テクニリネン ツッキムスケスクス Non-competitive immunoassay for small analytes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124770A (en) * 1999-08-18 2001-05-11 Japan Science & Technology Corp Method for measuring concentration of substance
JP2003513271A (en) * 1999-11-05 2003-04-08 アイシス・イノベーション・リミテッド General purpose fluorescent sensor
JP2003042955A (en) * 2001-07-30 2003-02-13 Sekisui Chem Co Ltd Phosphor for molecular recognition, and method for measuring target substance using the same
JP2006505774A (en) * 2002-11-07 2006-02-16 エラスムス ユニフェルシテイト ロッテルダム Methods and probes for detection of tumor-specific fusion proteins
JP2006506634A (en) * 2002-11-18 2006-02-23 ヴァルション テクニリネン ツッキムスケスクス Non-competitive immunoassay for small analytes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236575B2 (en) 2007-11-22 2012-08-07 Fujifilm Corporation Carrier for analysis of an analyte and process for producing the same
WO2015124690A1 (en) * 2014-02-24 2015-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Composition comprising a fret pair with a defined geometry

Also Published As

Publication number Publication date
JP2007040834A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US7741128B2 (en) Cooperative reporter systems, components, and methods for analyte detection
EP2577309B1 (en) Targeted probes of cellular physiology
Söderberg et al. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay
US9310372B2 (en) Method for the selection of specific affinity binders by homogeneous noncompetitive assay
AU2022201442A1 (en) Antigen-coupled immunoreagents
JP2007529747A (en) Sensor structure and detection method
CA2744003A1 (en) Biosensor for detecting multiple epitopes on a target
CN103959063B (en) The method being measured for the glycosylation of antagonist
JP6967246B2 (en) Epitope tags, as well as methods for detection, capture and / or purification of tagged polypeptides.
Banala et al. No washing, less waiting: engineering biomolecular reporters for single-step antibody detection in solution
CN112352055A (en) Bioluminescent biosensors for detecting and quantifying biomolecules or ligands in solution
CN105652015A (en) Multifunctional fluorescent protein nanowire and nanowire-mediated immunoassay method
WO2007015509A1 (en) Immunoassay reagent
JP4133344B2 (en) Analysis method using reporter (label) intermolecular interaction
KR20170028637A (en) Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays
EP2685260A1 (en) Direct and quantitative detection of targets in living cells
Chung et al. Development of a fluorescent protein-antibody Förster resonance energy transfer probe for the detection and imaging of osteocalcin
CN101278194A (en) Cooperative reporter systems, components, and methods for analyte detection
Yu et al. Fc-specific and covalent conjugation of a fluorescent protein to a native antibody through a photoconjugation strategy for fabrication of a novel photostable fluorescent antibody
WO2002077623A1 (en) Probe for visualizing phosphorylation/dephosphorylation of protein and method of detecting and quantifying phosphorylation/dephosphorylation of protein
WO2007033514A1 (en) Protein combination characterized in fluorescence resonance energy transfer, and the use thereof
KR102572075B1 (en) Target Analytes Detection Method based on Proximity Proteolysis Reaction
WO2021093787A1 (en) Luciferase-complementation-based biosensor, preparation method therefor and use thereof
JP5576585B2 (en) Phosphorylated protein immunoassay reagent
KR102050213B1 (en) Probe system for rapid detecting influenza virus using biomolecular fluorescence complementation and rapid detection method of influenza virus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782152

Country of ref document: EP

Kind code of ref document: A1