WO2007015494A1 - Ofdm communication apparatus - Google Patents

Ofdm communication apparatus Download PDF

Info

Publication number
WO2007015494A1
WO2007015494A1 PCT/JP2006/315235 JP2006315235W WO2007015494A1 WO 2007015494 A1 WO2007015494 A1 WO 2007015494A1 JP 2006315235 W JP2006315235 W JP 2006315235W WO 2007015494 A1 WO2007015494 A1 WO 2007015494A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm
length
cyclic prefix
ofdm symbol
channel
Prior art date
Application number
PCT/JP2006/315235
Other languages
French (fr)
Japanese (ja)
Inventor
Haitao Li
Jifeng Li
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007015494A1 publication Critical patent/WO2007015494A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes

Definitions

  • the present invention relates to an OFDM communication apparatus, and more particularly to a transmission system such as a wireless local area network, mobile communication, and terrestrial digital broadcasting! It relates to OFDM communication equipment that is used.
  • next generation wireless communication system new technology will be adopted for its physical structure and media access control power to the network.
  • OFDM orthogonal frequency division multiplexing
  • OFDM In OFDM, a channel is divided into a plurality of mutually orthogonal subchannels in the frequency domain. Thus, the broadband selective channel becomes a relatively flat subchannel. Also, in OFDM, inter symbol interference (ISI) can be significantly reduced by inserting a CP (Cyclic Prefix) as a guard interval (GI) between each OFDM symbol. it can. For this reason, OFDM has already been successfully applied to systems such as ADSL, VDSL, DVB, and WLAN, which are already highly multi-pathable, and OFDM is the core technology for next-generation wireless transmission systems.
  • ISI inter symbol interference
  • GI guard interval
  • the ISI that occurs when a multipath channel is delayed and spread can be reduced using CP.
  • the CP length (CP duration) is usually set to a fixed length that is larger than the maximum delay spread time of the channel and is 2 to 4 times the RMS (Root Mean Square) value of the delay spread.
  • the RMS value of delay spread is about 35 ns in an indoor environment such as an office, whereas the RMS value of delay spread is 300 ns in a factory environment. . Therefore, if the CP length is designed in advance assuming an indoor environment such as an office, when the user equipment (User Equipment: UE) enters a place such as a factory, the CP length becomes insufficient and severe ISI occurs. On the other hand, if the CP length is designed in advance in an environment such as a factory, when the user terminal enters a place such as an office, a surplus in the CP length occurs, and extra power is consumed.
  • UE User Equipment
  • Patent Document 1 discloses adjusting the CP length based on a signal sample.
  • Patent Document 2 discloses changing the CP length and the carrier period in an OFDM system that transmits a television signal.
  • Patent Document 3 discloses that the CP length is determined based on the correlation value between the N samples at the CP end and the N samples at the end of the effective symbol.
  • Patent Document 4 discloses that the minimum CP length for canceling ISI is calculated based on the channel quality situation.
  • FIG. 5 shows an example of the operation flow of the conventional OFDM system.
  • the receiving side estimates the channel quality from the received signal.
  • the minimum CP length for canceling ISI is calculated according to the channel quality.
  • the CP length is adjusted to the length calculated in step S502.
  • Patent Document 1 US Pat. No. 6,535,550 Specification
  • Patent Document 2 European Patent No. 1439679 Specification
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-152670
  • Patent Document 4 European Patent No. 1014639
  • An object of the present invention is to improve spectral efficiency and data transmission efficiency.
  • the OFDM communication apparatus of the present invention includes a generating means for generating an OFDM symbol, an OFDM symbol, It adopts a configuration comprising an inserting means for inserting a cyclic prefix between the symbols and a control means for controlling the cyclic prefix length and the OFDM symbol length according to the channel quality.
  • FIG. 2 is a block diagram showing an OFDM system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a configuration of an OFDM symbol used in an OFDM system according to an embodiment of the present invention.
  • FIG. 4 is an operation flow diagram of an OFDM system according to an embodiment of the present invention.
  • the first channel environment there are two channel environments, the first channel environment and the second channel environment.
  • the maximum RMS value of the delay spread in the first channel environment is ⁇
  • the maximum delay spread in the second channel environment is Assume that the RMS value is ⁇ (where ⁇ ⁇ ).
  • the CP length is 1, as shown in Fig. 1A. Meanwhile, ⁇
  • the CP length is 1 as shown in Figure 1B. That is, 1
  • the CP length is adaptively adjusted according to changes in the channel environment, and the first
  • Data is transmitted when the CP length is changed to 1 in the second channel environment.
  • Subcarriers can be increased by 1 minute. Therefore, in the present invention, resources are wasted.
  • the OFDM symbol length is increased by the CP length reduction to improve the data transmission rate.
  • FIG. 2 is a block diagram of an OFDM system according to an embodiment of the present invention.
  • an IDFT (Inverse Discrete Fourier Transform) unit 201 inputs the input baseband data stream to a plurality of subcarriers and performs IDFT to generate an OFDM symbol. .
  • CP insertion section 202 inserts a CP as a GI between all OFDM symbols.
  • Transmission RF section 203 modulates the OFDM symbol after CP insertion into a radio frequency band and transmits it from antenna 204.
  • the reception RF unit 207 down-converts the signal received via the antenna 206 into a baseband signal.
  • CP removing section 208 removes baseband signal power CP.
  • a DFT (Discrete Fourier Transform) unit 209 performs DFT on the OFDM symbol after CP removal, and demodulates the data stream of each subcarrier.
  • Channel quality estimation section 210 estimates the channel delay spread RMS value, user terminal transmission rate, and Doppler frequency shift as channel quality using the pilot signal of the received signal, The estimated information is output to the control unit 211 as control information.
  • Control unit 211 outputs this control information to CP removal unit 208 and also transmits it to control unit 205 on the base station side via a feedback channel. Further, the control unit 211 controls processing of the CP removal unit 208 and the DFT unit 209.
  • control unit 205 adjusts the CP length according to the control information.
  • the number of data subcarriers, that is, the OFDM symbol length is adjusted.
  • the base station transmitting side
  • an IFFT Inverse Fast Fourier Transfer m
  • the user terminal receiving side
  • an FFT Fast t Fourier Transform
  • the CP length is set using the RMS value of the delay spread estimated in the stationary multipath channel environment.
  • Channel bandwidth is B
  • number of system subcarriers is N
  • number of modulation subcarriers number of data subcarriers of IFFT is N (mod
  • N Number of carriers (number of CP subcarriers) is N, modulation constellation stage is C, subcarrier
  • the period is T. Therefore, the OFDM symbol period (CP length + OFDM symbol length) is T
  • Equation (1) shows the spectral efficiency of the OFDM system. Equation (1) shows the transmission rate of one OFDM symbol block (CP + OFDM symbol).
  • equation (2) becomes equation (3).
  • ⁇ 1 ⁇ 4 is set to reduce the overhead of CP.
  • the CP length is 800 ns and the OFDM symbol period is 4 / z s, 1Z5, that is, 1/5.
  • FIGS. 3A and 3B are diagrams showing configurations of OFDM symbols in the OFDM system shown in FIG.
  • the OFDM symbol period that is, the total number of subcarriers
  • the CP length that is, the number of CP subcarriers
  • the OFDM symbol length that is, the data subcarriers. The number varies with the line quality.
  • FIG. 4 is a flowchart showing the operation of the OFDM system according to one embodiment of the present invention.
  • the channel quality estimation unit 210 of the user terminal uses a pilot sequence transmitted from the base station (transmitting side) based on the prior art, for example, Osvaldo Simeone , Yeheskel Bar-Ness, Umberto Spagnolini, Pilot-based chan nel estimation for OFDM systems by tracking the delay- subspace ", IEEE Trans activations on Wireless Communications, vol.3, no.l, Jan 2004 pp.315—325, Also proposed in i3 ⁇ 4 Pilot ton e selection for channel estimation in a mobile OFDM system “Negi, R .; shi loffi, J. Consumer Electronics, IEEE Transactions on Volume 44, Issue 3, Aug 1998 Page (s): 1122 -1128 In this way, the RMS value of the maximum delay spread of the multipath channel is estimated.
  • a pilot sequence transmitted from the base station transmitting side
  • step S 402 user terminal control section 211 and base station control section 205 set the CP length within a range of 2 to 4 times the RMS value of the maximum delay spread.
  • step S403 the lower limit (equation (4)) of the OFDM symbol period is determined based on the ratio between the control unit 205 force CP length of the base station and the OFDM symbol period.
  • step S404 the channel quality estimation unit 210 of the user terminal (receiving side) Estimate the maximum Doppler frequency shift of the channel using a no- til sequence where the ground station (transmitter) force is also transmitted.
  • step S405 the control unit 213 of the base station determines the upper limit of the OFDM symbol period (Equation (7)) based on the ratio of the maximum carrier frequency shift according to the system and the maximum Doppler frequency shift of the channel. ) Is confirmed.
  • step S406 the control unit 213 of the base station determines the OFDM symbol period based on the upper and lower limits of the OFDM symbol period.
  • step S407 the total number of subcarriers, the number of CP subcarriers, and the number of data subcarriers are calculated based on the control unit 213 power channel bandwidth, OFDM symbol period, and bandwidth efficiency coefficient of the base station.
  • step S408 user terminal control section 211 and base station control section 20
  • the RMS value of the maximum delay spread and the maximum Doppler frequency shift that are estimated as the channel quality.
  • the number of CP subcarriers and the number of data subcarriers are adjusted based on the channel quality indicated by these parameters.
  • the CP length that is, the number of CP subcarriers
  • the OFDM symbol length that is, the number of data subcarriers
  • the OFDM symbol length is also adjusted based on the channel quality.
  • the OFDM communication apparatus of the present invention is suitable for a communication system that requires high transmission efficiency in an environment in which channel quality changes, particularly a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An OFDM Communication apparatus capable of improving the spectrum efficiency and data transmission efficiency of the OFDM system. In this apparatus, an IDFT part (201) generates OFDM symbols. A CP inserting part (202) inserts a cyclic prefix among the OFDM symbols. A transport RF part (203) modulates the OFDM symbols, among which the cyclic prefix has been inserted, into a radio frequency band. An antenna (204) transmits the modulated signal. A control part (205) controls the cyclic prefix length and the OFDM symbol length in accordance with the network quality. An antenna (206) receives the signal, which is then down-converted by a received RF part (207) to the baseband signal. A CP removing part (208) removes CP from the baseband signal. A DFT part (209) performs DFT to demodulate the data streams of the respective subcarriers. A network quality estimating part (210) uses a received pilot signal to estimate, as network qualities, the Doppler frequency shift and the delay spread RMS value of a channel. A control part (211) controls the processings of the CP removing part (208) and DFT part (209).

Description

明 細 書  Specification
OFDM通信装置  OFDM communication equipment
技術分野  Technical field
[0001] 本発明は、 OFDM通信装置に関し、特に無線ローカルエリアネットワーク、移動通 信、地上デジタル放送等の伝送システムにお!ヽて使用される OFDM通信装置に関 する。  [0001] The present invention relates to an OFDM communication apparatus, and more particularly to a transmission system such as a wireless local area network, mobile communication, and terrestrial digital broadcasting! It relates to OFDM communication equipment that is used.
背景技術  Background art
[0002] 無線ネットワーク、マルチメディア及びインターネットの融合につれ、無線通信の品 質に対する要求が高まってきて 、る。無線マルチメディアと高 、伝送レートでのデー タ伝送とに対する要求を満たすため、次世代の無線通信システムを開発する必要が ある。次世代の無線通信システムでは、その物理的構造から、メディアアクセス制御 力もネットワークまでに対し新しい技術を採用する。その新しい技術として、例えば O FDM (urthogonal Frequency Division Multiplexing)力ある。  [0002] With the fusion of wireless networks, multimedia, and the Internet, demands for the quality of wireless communication are increasing. In order to meet the demand for wireless multimedia and data transmission at high transmission rates, it is necessary to develop a next generation wireless communication system. In the next generation wireless communication system, new technology will be adopted for its physical structure and media access control power to the network. As the new technology, for example, there is OFDM (urthogonal frequency division multiplexing) power.
[0003] OFDMでは、周波数領域において、チャネルが複数の互いに直交するサブチヤネ ルに分割される。よって、広帯域の選択性チャネルが相対的にフラットなサブチヤネ ルになる。また、 OFDMでは、それぞれの OFDMシンボルの間に保護区間(Guard I nterval : GI)として CP (Cyclic Prefix)を挿入することによって、シンボル間干渉(Inter symbol Interference :ISI)を大幅に低減することができる。このため、 OFDMはマル チパスに対する而性が高ぐ既に ADSL、 VDSL, DVBおよび WLAN等のシステム への OFDMの適用が成功し、 OFDMは次世代の無線伝送システムのコア技術であ る。  [0003] In OFDM, a channel is divided into a plurality of mutually orthogonal subchannels in the frequency domain. Thus, the broadband selective channel becomes a relatively flat subchannel. Also, in OFDM, inter symbol interference (ISI) can be significantly reduced by inserting a CP (Cyclic Prefix) as a guard interval (GI) between each OFDM symbol. it can. For this reason, OFDM has already been successfully applied to systems such as ADSL, VDSL, DVB, and WLAN, which are already highly multi-pathable, and OFDM is the core technology for next-generation wireless transmission systems.
[0004] OFDMにおける重要な特徴の 1つは、マルチパスチャネルが遅延拡散する場合に 弓 Iき起こる ISIを CPを利用して低減することができることである。一般的な OFDMシ ステムでは、 CP長(CPの持続時間)はチャネルの最大遅延拡散時間より大きぐ通 常では遅延拡散の RMS (Root Mean Square)値の 2〜4倍の固定長に設計される。  [0004] One of the important features in OFDM is that the ISI that occurs when a multipath channel is delayed and spread can be reduced using CP. In a typical OFDM system, the CP length (CP duration) is usually set to a fixed length that is larger than the maximum delay spread time of the channel and is 2 to 4 times the RMS (Root Mean Square) value of the delay spread. The
[0005] 実際のテストにより、オフィス等の室内環境では遅延拡散の RMS値は約 35nsであ るのに対して、工場等の環境では遅延拡散の RMS値は 300nsであることが分かった 。よって、オフィス等の室内環境を想定して CP長を予め設計すると、ユーザ端末 (Us er Equipment :UE)が工場等の場所に入ると CP長が足りなくなってひどい ISIが生じ る。一方、工場等の環境を想定して CP長を予め設計すると、ユーザ端末がオフィス 等の場所に入ると CP長に余剰が生じて余計な電力を消費してしまう。 [0005] According to actual tests, the RMS value of delay spread is about 35 ns in an indoor environment such as an office, whereas the RMS value of delay spread is 300 ns in a factory environment. . Therefore, if the CP length is designed in advance assuming an indoor environment such as an office, when the user equipment (User Equipment: UE) enters a place such as a factory, the CP length becomes insufficient and severe ISI occurs. On the other hand, if the CP length is designed in advance in an environment such as a factory, when the user terminal enters a place such as an office, a surplus in the CP length occurs, and extra power is consumed.
[0006] CP長が固定であることに起因する上記問題を解決するための従来技術として、例 えば、特許文献 1には、信号サンプルに基づいて CP長を調節することが開示されて いる。また、特許文献 2には、テレビ信号を伝送する OFDMシステムにおいて、 CP 長とキャリア周期とを変更することが開示されている。また、特許文献 3には、 CP末端 の N個のサンプルと有効シンボル末端の N個のサンプルとの間の相関値に基づいて CP長を決定することが開示されている。また、特許文献 4には、回線品質状況に基 づ 、て、 ISIをキャンセルするための最小の CP長を計算することが開示されて 、る。  [0006] As a conventional technique for solving the above-mentioned problem caused by the fixed CP length, for example, Patent Document 1 discloses adjusting the CP length based on a signal sample. Patent Document 2 discloses changing the CP length and the carrier period in an OFDM system that transmits a television signal. Patent Document 3 discloses that the CP length is determined based on the correlation value between the N samples at the CP end and the N samples at the end of the effective symbol. Patent Document 4 discloses that the minimum CP length for canceling ISI is calculated based on the channel quality situation.
[0007] 図 5に従来の OFDMシステムの動作フローの一例を示す。ステップ S501では、受 信側は受信した信号から回線品質を推定する。ステップ S502では、回線品質に応じ て、 ISIをキャンセルするのに最小の CP長を算出する。ステップ S503では、ステップ S502で算出された長さに CP長を調節する。  FIG. 5 shows an example of the operation flow of the conventional OFDM system. In step S501, the receiving side estimates the channel quality from the received signal. In step S502, the minimum CP length for canceling ISI is calculated according to the channel quality. In step S503, the CP length is adjusted to the length calculated in step S502.
特許文献 1:米国特許第 6535550号明細書  Patent Document 1: US Pat. No. 6,535,550 Specification
特許文献 2:欧州特許第 1439679号明細書  Patent Document 2: European Patent No. 1439679 Specification
特許文献 3:特開 2003— 152670号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-152670
特許文献 4:欧州特許第 1014639号明細書  Patent Document 4: European Patent No. 1014639
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、従来は、 CP長を変更する場合でもデータを伝送するサブキャリア数However, conventionally, the number of subcarriers for transmitting data even when the CP length is changed.
、すなわち、 OFDMシンボル長を変更しないため、スペクトル効率およびデータ伝送 効率が悪!、と!/、う問題がある。 That is, since the OFDM symbol length is not changed, there is a problem that spectrum efficiency and data transmission efficiency are bad!
[0009] 本発明の目的は、スペクトル効率およびデータ伝送効率を改善することができる O[0009] An object of the present invention is to improve spectral efficiency and data transmission efficiency.
FDM通信装置を提供することである。 To provide an FDM communication device.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の OFDM通信装置は、 OFDMシンボルを生成する生成手段と、 OFDMシ ンボル間にサイクリック 'プリフィクスを挿入する挿入手段と、回線品質に応じてサイク リック ·プリフィクス長及び OFDMシンボル長を制御する制御手段と、を具備する構成 を採る。 [0010] The OFDM communication apparatus of the present invention includes a generating means for generating an OFDM symbol, an OFDM symbol, It adopts a configuration comprising an inserting means for inserting a cyclic prefix between the symbols and a control means for controlling the cyclic prefix length and the OFDM symbol length according to the channel quality.
発明の効果  The invention's effect
[0011] 本発明によれば、 OFDMシステムのスペクトル効率およびデータ伝送効率を改善 することができる。  [0011] According to the present invention, it is possible to improve the spectrum efficiency and data transmission efficiency of an OFDM system.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 l]OFDMシンボルの一例を示す図 [0012] [Fig.l] An example of an OFDM symbol
[図 2]本発明の一実施の形態に係る OFDMシステムを示すブロック図  FIG. 2 is a block diagram showing an OFDM system according to an embodiment of the present invention.
[図 3]本発明の一実施の形態に係る OFDMシステムに使用される OFDMシンボル の構成を示す図  FIG. 3 is a diagram showing a configuration of an OFDM symbol used in an OFDM system according to an embodiment of the present invention.
[図 4]本発明の一実施の形態に係る OFDMシステムの動作フロー図  FIG. 4 is an operation flow diagram of an OFDM system according to an embodiment of the present invention.
[図 5]従来の OFDMシステムの動作フロー図  [Figure 5] Operation flow diagram of conventional OFDM system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、こ こで説明する実施の形態は、本発明を限定するものではなぐまたここで記述する数 値も限定されるものではなぐ当業者は必要に応じて適宜変更することができる。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that the embodiments described here are not intended to limit the present invention, and the numbers described here are not limited, and those skilled in the art can appropriately change them as necessary.
[0014] ユーザ端末が移動する場合、チャネル環境が常に変動するため、チャネルの遅延 拡散の RMS値も変化する。 [0014] When the user terminal moves, the channel environment always fluctuates, so the RMS value of the delay spread of the channel also changes.
[0015] ここで、第 1チャネル環境と第 2チャネル環境の 2つのチャネル環境が存在し、第 1 チャネル環境における遅延拡散の最大 RMS値は τ であり、第 2チャネル環境に おける遅延拡散の最大 RMS値は τ であるとする(ただし、 τ < < τ )。 τ に基づいて CPを設計する場合は、図 1Aに示すように、 CP長は 1となる。一方、 τ[0015] Here, there are two channel environments, the first channel environment and the second channel environment. The maximum RMS value of the delay spread in the first channel environment is τ, and the maximum delay spread in the second channel environment is Assume that the RMS value is τ (where τ <<τ). When designing a CP based on τ, the CP length is 1, as shown in Fig. 1A. Meanwhile, τ
1 1 max に基づいて CPを設計する場合は、図 1Bに示すように、 CP長は 1となる。つまり、 1 When designing a CP based on 1 1 max, the CP length is 1 as shown in Figure 1B. That is, 1
1 1
>1となる。このようにチャネル環境の変化に応じて適応的に CP長を調節し、第 1チ> 1. In this way, the CP length is adaptively adjusted according to changes in the channel environment, and the first
2 2
ャネル環境では 1である CP長を第 2チャネル環境では 1に変更すると、データを伝送  Data is transmitted when the CP length is changed to 1 in the second channel environment.
1 2  1 2
するサブキャリアを 1 1分だけ増加可能である。そこで、本発明では、資源の無駄  Subcarriers can be increased by 1 minute. Therefore, in the present invention, resources are wasted.
1 2  1 2
使いを防ぐために、データを伝送するサブキャリア数 (データサブキャリア数)、すな わち、 OFDMシンボル長を CP長減少分だけ増加させてデータの伝送レートを向上 させる。 To prevent usage, the number of subcarriers that transmit data (number of data subcarriers) In other words, the OFDM symbol length is increased by the CP length reduction to improve the data transmission rate.
[0016] 具体的には、本発明では図 2に示すような OFDMシステムを提案する。図 2は本発 明の一実施の形態に係る OFDMシステムのブロック図である。  [0016] Specifically, the present invention proposes an OFDM system as shown in FIG. FIG. 2 is a block diagram of an OFDM system according to an embodiment of the present invention.
[0017] 基地局(送信側)では、 IDFT(Inverse Discrete Fourier Transform)部 201力 入力 されたベースバンドのデータストリームを複数のサブキャリアに配置して IDFTを行つ て変調し OFDMシンボルを生成する。 [0017] At the base station (transmission side), an IDFT (Inverse Discrete Fourier Transform) unit 201 inputs the input baseband data stream to a plurality of subcarriers and performs IDFT to generate an OFDM symbol. .
[0018] CP挿入部 202は、すべての OFDMシンボル間に GIとして CPを挿入する。 CP insertion section 202 inserts a CP as a GI between all OFDM symbols.
[0019] 送信 RF部 203は、 CP挿入後の OFDMシンボルを無線周波数帯域に変調してァ ンテナ 204から送信する。 Transmission RF section 203 modulates the OFDM symbol after CP insertion into a radio frequency band and transmits it from antenna 204.
[0020] ユーザ端末 (受信側)では、受信 RF部 207により、アンテナ 206を介して受信され た信号に対してダウンコンバートが行われベースバンド信号にされる。 In the user terminal (reception side), the reception RF unit 207 down-converts the signal received via the antenna 206 into a baseband signal.
[0021] CP除去部 208は、ベースバンド信号力 CPを除去する。 [0021] CP removing section 208 removes baseband signal power CP.
[0022] DFT (Discrete Fourier Transform)部 209は、 CP除去後の OFDMシンボルに対し て DFTを行ってそれぞれのサブキャリアのデータストリームを復調する。  [0022] A DFT (Discrete Fourier Transform) unit 209 performs DFT on the OFDM symbol after CP removal, and demodulates the data stream of each subcarrier.
[0023] 回線品質推定部 210は、受信された信号のパイロット信号を利用して、回線品質と して、チャネルの遅延拡散の RMS値、ユーザ端末の伝送レート、ドップラー周波数シ フトを推定し、これら推定された情報を制御情報として制御部 211に出力する。 Channel quality estimation section 210 estimates the channel delay spread RMS value, user terminal transmission rate, and Doppler frequency shift as channel quality using the pilot signal of the received signal, The estimated information is output to the control unit 211 as control information.
[0024] 制御部 211は、この制御情報を CP除去部 208に出力するとともに、フィードバック チャネルを介して基地局側の制御部 205にも送信する。また、制御部 211は CP除去 部 208及び DFT部 209の処理を制御する。 Control unit 211 outputs this control information to CP removal unit 208 and also transmits it to control unit 205 on the base station side via a feedback channel. Further, the control unit 211 controls processing of the CP removal unit 208 and the DFT unit 209.
[0025] 基地局 (送信側)では、制御部 205が、制御情報に応じて CP長を調節するとともに[0025] In the base station (transmission side), the control unit 205 adjusts the CP length according to the control information.
、データサブキャリア数、すなわち、 OFDMシンボル長を調節する。 The number of data subcarriers, that is, the OFDM symbol length is adjusted.
[0026] なお、基地局(送信側)では IDFT部に代えて IFFT (Inverse Fast Fourier Transfer m)部を用いることができ、また、ユーザ端末 (受信側)では DFT部に代えて FFT (Fas t Fourier Transform)部を用いることができる。 [0026] It should be noted that the base station (transmitting side) can use an IFFT (Inverse Fast Fourier Transfer m) unit instead of the IDFT unit, and the user terminal (receiving side) can replace the DFT unit with an FFT (Fast t Fourier Transform) part can be used.
[0027] 本発明では、まず、静止状態のマルチパスチャネル環境にお!、て推定された遅延 拡散の RMS値を利用して CP長を設定する。以下、 OFDMシステムの各パラメータ を用いて、スペクトル効率が高 、OFDMシステムにつ!/、て説明する。 [0027] In the present invention, first, the CP length is set using the RMS value of the delay spread estimated in the stationary multipath channel environment. Below, each parameter of OFDM system We will explain the high spectral efficiency and OFDM system!
[0028] まず、以下のパラメータを定義する。チャネル帯域幅は B、システムサブキャリア数( 総サブキャリア数)は N、 IFFTの変調サブキャリア数 (データサブキャリア数)は N ( mod[0028] First, the following parameters are defined. Channel bandwidth is B, number of system subcarriers (total number of subcarriers) is N, number of modulation subcarriers (number of data subcarriers) of IFFT is N (mod
IFFT計算を行う際にゼロ充填する可能性があるため、 N ≤N)、 CP部分のサブキ mod Because there is a possibility of zero filling when performing IFFT calculation, N ≤ N)
ャリア数(CPサブキャリア数)は N 、変調コンステレーシヨンステージは C、サブキヤリ  Number of carriers (number of CP subcarriers) is N, modulation constellation stage is C, subcarrier
CP  CP
ァ周期は Tである。よって、 OFDMシンボル周期(CP長 + OFDMシンボル長)は T The period is T. Therefore, the OFDM symbol period (CP length + OFDM symbol length) is T
=NT、サブキャリア間周波数間隔は Δ ί = 1/T、 CP長は Τ — Ν Τとなる。この c s CP CP = NT, subcarrier frequency interval is Δ ί = 1 / T, CP length is Τ — Τ Τ. This c s CP CP
場合の OFDMシステムのスペクトル効率を式(1)に示す。式(1)は 1つの OFDMシ ンボルブロック(CP + OFDMシンボル)の伝送レートを示す。  Equation (1) shows the spectral efficiency of the OFDM system. Equation (1) shows the transmission rate of one OFDM symbol block (CP + OFDM symbol).
[数 1]  [Number 1]
, l g, ( 1 ) , lg, (1)
' N + NCP BT 'N + N CP BT
[0029] 帯域幅 α =Ν Δ ί ΖΒを導入すると、スペクトル効率は式(2)で示すことができる [0029] When bandwidth α = Ν Δ ί 導入 is introduced, the spectral efficiency can be expressed by equation (2).
[数 2] [Equation 2]
" = \ + Ν。ΡΛΘ 2 t"= \ + Ν. Ρ / Ν ΛΘ 2 t ,
CP ( 2 ) CP (2)
log2 Clog 2 C
+ TCP/TS + T CP / T S
[0030] さらに、 ζ =Τ ΖΤと定義すると、式(2)は式(3)となる。 [0030] Furthermore, if ζ = Τ 定義, equation (2) becomes equation (3).
CP s  CP s
[数 3]  [Equation 3]
[0031] 帯域幅効率係数 exが固定の場合、最も高 、スペクトル効率を得るために、できるだ け ζを小さくする。よって、ユーザ端末が遅延拡散が大きいチャネル力も遅延拡散が 小さいチャネルへ移動する場合、適応的に CP長を減少させる。それと同時に、 OFD Mシンボル周期が一定で変化しな!、場合、 CP長の減少とともに OFDMシンボル長 を増加させると、 ζが小さくなり、 OFDMシステムのスペクトル効率が向上する。そし て、 Τ =(2〜4)· τ とすると、 OFDMシンボル周期を式 (4)で示すことができる。 [0031] When the bandwidth efficiency factor ex is fixed, ζ is made as small as possible in order to obtain the highest spectral efficiency. Therefore, when the user terminal moves to a channel with a small delay spread even with a large delay spread, the CP length is adaptively reduced. At the same time, the OFD M symbol period is constant and does not change! If the CP length decreases, the OFDM symbol length Increasing ζ decreases ζ and improves the spectral efficiency of the OFDM system. Then, assuming that Τ = (2-4) · τ, the OFDM symbol period can be expressed by Equation (4).
し P max  P max
 Picture
Ts = 2~4 t / ζ (4) T s = 2 ~ 4 t / ζ (4)
[0032] 通常、 CPのオーバヘッドを小さくするために、 ζ≤1Ζ4と設定する。例えば、 ΙΕΕ E802.11a標準では、 CP長は 800nsで OFDMシンボル周期 4/z sの 1Z5であり、つ まり =1/5である。 [0032] Usually, ζ≤1Ζ4 is set to reduce the overhead of CP. For example, in the E802.11a standard, the CP length is 800 ns and the OFDM symbol period is 4 / z s, 1Z5, that is, 1/5.
[0033] 以上、静止状態のマルチパスチャネル環境におけるパラメータ設定にっ 、て説明 した。  [0033] The parameter setting in the stationary multipath channel environment has been described above.
[0034] 次 、で、変動状態のマルチパスチャネル環境におけるパラメータ調節にっ 、て説 明する。この場合、ユーザ端末の移動によるキャリア周波数ずれ εに起因するキヤリ ァ間干渉(Inter Carrier Interference: ICI)を考慮しなければならない。 ICI効率の上 限を式 (£»ノで す (Hyunsoo Cheon, Daesik Hong, Effect of channel estimation erro r in OFDM-based WLAN", IEEE Communications Letters, vol.6, no.5, May 2002 p p.190-192参照)。式(5)より、キャリア周波数ずれ εが小さいほど ICIがより低い。  [0034] Next, parameter adjustment in a multipath channel environment in a variable state will be described. In this case, it is necessary to consider Inter Carrier Interference (ICI) due to carrier frequency shift ε due to movement of user terminals. The upper limit of the ICI efficiency is the expression (£ »no (Hyunsoo Cheon, Daesik Hong, Effect of channel estimation erro r in OFDM-based WLAN", IEEE Communications Letters, vol.6, no.5, May 2002 p. (See 190-192.) From equation (5), the smaller the carrier frequency deviation ε, the lower the ICI.
[数 5] 今 (5)  [Number 5] Now (5)
[0035] 式 (6)に示すように、最大ドップラー周波数シフトが f となると、最大キャリア周波数 d [0035] As shown in Equation (6), when the maximum Doppler frequency shift is f, the maximum carrier frequency d
ずれは ε =f  Deviation is ε = f
d ΖΔί cとなる。よって、 Τ = ε  d ΖΔί c. Therefore, Τ = ε
s Zf dが得られる。  s Zf d is obtained.
[数 6] e = fdTs (6) [Equation 6] e = f d T s (6)
[0036] ε力 、さいほど、 OFDMの性能がよいため、 Tの上限が T = ε /ίなる。すなわ s s d [0036] The ε force, the OFDM performance is good, so the upper limit of T is T = ε / ί. S s s d
ち、式 (7)で示すことができる。  That is, it can be expressed by equation (7).
[数 7]  [Equation 7]
Ts≤s/fd (7) [0037] 式 (4)と式(7)と力ら、変動状態のマルチパスチャネル環境における OFDMシンポ ル周期は式 (8)に示される条件を満たすと!ヽぅ結果が得られる。 T s ≤s / f d (7) [0037] Based on Eqs. (4) and (7), the OFDM symbol period in the variable multipath channel environment satisfies the condition shown in Eq. (8).
[数 8]  [Equation 8]
(2〜 4)τ / ( 8 ) (2-4) τ / (8)
[0038] 上述のように、チャネルパラメータとシステムパラメータの両方を考慮して OFDMシ ンボル長を設定することによって、スペクトル効率が高ぐかつ、ロバスト性が強い OF DMシステムを実現することができる。 [0038] As described above, by setting the OFDM symbol length in consideration of both channel parameters and system parameters, an OFDM system with high spectral efficiency and strong robustness can be realized.
[0039] 図 3A, Bは図 2に示した OFDMシステムにおける OFDMシンボルの構成を示す 図である。図 3A, Bに示すように、本発明では、 OFDMシンボル周期(すなわち、総 サブキャリア数)は一定となる力 CP長(すなわち、 CPサブキャリア数)と OFDMシン ボル長(すなわち、データサブキャリア数)は回線品質に応じて変化する。  [0039] FIGS. 3A and 3B are diagrams showing configurations of OFDM symbols in the OFDM system shown in FIG. As shown in FIGS. 3A and 3B, in the present invention, the OFDM symbol period (that is, the total number of subcarriers) is constant. The CP length (that is, the number of CP subcarriers) and the OFDM symbol length (that is, the data subcarriers). The number varies with the line quality.
[0040] 図 4は本発明の一実施の形態に係る OFDMシステムの動作を示すフロー図である  FIG. 4 is a flowchart showing the operation of the OFDM system according to one embodiment of the present invention.
[0041] まず、ステップ S401では、ユーザ端末 (受信側)の回線品質推定部 210が、基地 局 (送信側)から送信されるパイロットシーケンスを利用して、従来技術に基づき、例 は、 Osvaldo Simeone, Yeheskel Bar-Ness, Umberto Spagnolini, Pilot-based chan nel estimation for OFDM systems by tracking the delay- subspace", IEEE Trans actio ns on Wireless Communications, vol.3, no.l, Jan 2004 pp.315— 325、また i¾ Pilot ton e selection for channel estimation in a mobile OFDM system"Negi, R.; し loffi, J. Cons umer Electronics, IEEE Transactions on Volume 44, Issue 3, Aug 1998 Page(s): 1122 -1128に提案された方法により、マルチパスチャネルの最大遅延拡散の RMS値を推 定する。 [0041] First, in step S401, the channel quality estimation unit 210 of the user terminal (receiving side) uses a pilot sequence transmitted from the base station (transmitting side) based on the prior art, for example, Osvaldo Simeone , Yeheskel Bar-Ness, Umberto Spagnolini, Pilot-based chan nel estimation for OFDM systems by tracking the delay- subspace ", IEEE Trans activations on Wireless Communications, vol.3, no.l, Jan 2004 pp.315—325, Also proposed in i¾ Pilot ton e selection for channel estimation in a mobile OFDM system “Negi, R .; shi loffi, J. Consumer Electronics, IEEE Transactions on Volume 44, Issue 3, Aug 1998 Page (s): 1122 -1128 In this way, the RMS value of the maximum delay spread of the multipath channel is estimated.
[0042] ステップ S402では、ユーザ端末の制御部 211および基地局の制御部 205が、最 大遅延拡散の RMS値の 2倍以上 4倍以下という範囲内で CP長を設定する。  In step S 402, user terminal control section 211 and base station control section 205 set the CP length within a range of 2 to 4 times the RMS value of the maximum delay spread.
[0043] ステップ S403では、基地局の制御部 205力 CP長と OFDMシンボル周期との比 によって、 OFDMシンボル周期の下限(式 (4) )を確定する。  [0043] In step S403, the lower limit (equation (4)) of the OFDM symbol period is determined based on the ratio between the control unit 205 force CP length of the base station and the OFDM symbol period.
[0044] 同時に、ステップ S404では、ユーザ端末 (受信側)の回線品質推定部 210が、基 地局(送信側)力も送信されるノ ィロットシーケンスを利用して、チャネルの最大ドッブ ラー周波数シフトを推定する。 At the same time, in step S404, the channel quality estimation unit 210 of the user terminal (receiving side) Estimate the maximum Doppler frequency shift of the channel using a no- til sequence where the ground station (transmitter) force is also transmitted.
[0045] ステップ S405では、基地局の制御部 213が、システムに応じた最大キャリア周波数 ずれとチャネルの最大ドップラー周波数シフトとの比に基づ 、て、 OFDMシンボル周 期の上限 (式 (7) )を確定する。  [0045] In step S405, the control unit 213 of the base station determines the upper limit of the OFDM symbol period (Equation (7)) based on the ratio of the maximum carrier frequency shift according to the system and the maximum Doppler frequency shift of the channel. ) Is confirmed.
[0046] ステップ S406では、基地局の制御部 213が、 OFDMシンボル周期の上限と下限 とに基づいて、 OFDMシンボル周期を確定する。 [0046] In step S406, the control unit 213 of the base station determines the OFDM symbol period based on the upper and lower limits of the OFDM symbol period.
[0047] ステップ S407では、基地局の制御部 213力 チャネル帯域幅、 OFDMシンボル周 期および帯域幅効率係数に基づき、総サブキャリア数、 CPサブキャリア数およびデ ータサブキャリア数を計算する。 [0047] In step S407, the total number of subcarriers, the number of CP subcarriers, and the number of data subcarriers are calculated based on the control unit 213 power channel bandwidth, OFDM symbol period, and bandwidth efficiency coefficient of the base station.
[0048] 最後に、ステップ S408では、ユーザ端末の制御部 211および基地局の制御部 20[0048] Finally, in step S408, user terminal control section 211 and base station control section 20
5が、それぞれのパラメータの制御情報を対応するモジュールに出力してパラメータ を調節する。 5 outputs the control information of each parameter to the corresponding module and adjusts the parameter.
[0049] 上記のように本発明にお 、て回線品質として推定するのは最大遅延拡散の RMS 値と最大ドップラー周波数シフトである。そして、本発明では、これらのパラメータで示 される回線品質に基づいて、 CPサブキャリア数とデータサブキャリア数を調節する。 従来は、静止状態におけるチャネルの最大遅延拡散の RMS値のみに基づいて CP 長(すなわち、 CPサブキャリア数)が設定される一方で、 OFDMシンボル長(すなわ ち、データサブキャリア数)に対しては如何なる調節も行われていな力つたのに対し、 本発明では、回線品質に基づいて、 OFDMシンボル長(すなわち、データサブキヤリ ァ数)も調節する。  [0049] As described above, in the present invention, it is the RMS value of the maximum delay spread and the maximum Doppler frequency shift that are estimated as the channel quality. In the present invention, the number of CP subcarriers and the number of data subcarriers are adjusted based on the channel quality indicated by these parameters. Conventionally, the CP length (that is, the number of CP subcarriers) is set only based on the RMS value of the maximum delay spread of the channel in the stationary state, while the OFDM symbol length (that is, the number of data subcarriers) is set. However, in the present invention, the OFDM symbol length (that is, the number of data subcarriers) is also adjusted based on the channel quality.
[0050] 以下、本発明による OFDMシステムを適用した具体的な実施例を説明する。  [0050] Hereinafter, specific embodiments to which the OFDM system according to the present invention is applied will be described.
[0051] チャネルの最大遅延拡散の RMS値は τ = 200ns、動作キャリア帯域は f = 5G max c[0051] RMS value of maximum delay spread of channel is τ = 200 ns, operating carrier band is f = 5G max c
Hz、ユーザ端末の移動速度は v= 30mZs、最大ドップラー周波数シフトは f =v/ Hz, user terminal moving speed is v = 30mZs, maximum Doppler frequency shift is f = v /
d λ =ν · ί /c = 30 X 5 X 109/3 X 108 = 500Hz、チャネル帯域幅 Β= 15ΜΗζであ り、 QPSK変調を使用するものとする。 ζ = 0.2、帯域幅効率係数 α = 0.8、周波数 ずれ ε ≤0. 005を選択すれば、 CP長 Τ =4 て = 800nsが得られ、 OFDMシン d λ = ν · ί / c = 30 X 5 X 10 9/3 X 10 8 = 500Hz, channel bandwidth Β = 15ΜΗζ der is, shall use the QPSK modulation. Choosing ζ = 0.2, bandwidth efficiency factor α = 0.8, frequency shift ε ≤ 0.005 gives CP length Τ = 4 = 800 ns,
CP max  CP max
ボル周期の範囲 4 τ / ζ ≤Ύ≤ ε /ί = 800ns/0. 2≤Τ≤0.005/500 =4 s≤T≤ sが得られる。 T =4μ sを選択する場合、 OFDMシンボル長は 4— 0Bol period range 4 τ / ζ ≤ Ύ ≤ ε / ί = 800ns / 0. 2 ≤ Τ ≤ 0.005 / 500 = 4 s≤T≤ s is obtained. When T = 4μ s is selected, the OFDM symbol length is 4— 0
.8 = 3.2^ 5,変調サブキャリア数(データサブキャリア数)は N = αΤΒ = 0.8Χ4 .8 = 3.2 ^ 5, modulation subcarrier number (data subcarrier number) is N = αΤΒ = 0.8Χ4
mod s  mod s
X10— 6X15X106=48、総サブキャリア数は N=N Z α =48/0.8 = 60となる。 X10- 6 X15X10 6 = 48, the total number of sub-carrier becomes N = NZ α = 48 / 0.8 = 60.
mod  mod
FFTを実現しやすくするため、 4つのヌルサブキャリア(データを伝送しな!、サブキヤ リア)を挿入し、 N = 64を選択すれば、 CPサブキャリア数は式(9)となり、 12をとる。よ つて、システムのスペクトル効率は式(10)となる。  In order to make FFT easier, if 4 null subcarriers (data not transmitted !, subcarrier) are inserted and N = 64 is selected, the number of CP subcarriers becomes Equation (9) and takes 12. . Therefore, the spectral efficiency of the system is given by equation (10).
[数 9]
Figure imgf000011_0001
[Equation 9]
Figure imgf000011_0001
[数 10]  [Equation 10]
一— 48 ― log22 1-48-log 2 2
" 64 + 12 15xl06x4xl0-b/64 0.67 bps/Hz (10) ユーザ端末が異なる環境に移動すると、チャネルの最大遅延拡散の RMS値は τ 64 + 12 15xl0 6 x4xl0- b / 64 0.67 bps / Hz (10) When the user terminal moves to a different environment, the RMS value of the maximum delay spread of the channel is τ
ma ma
= 50nsであり、この RMS値に応じた調節を行うと、 CPCP長は T =4 τ =200η χ CP max s、 OFDMシンボル周期の範囲は 4 τ / ζ =200ns/0.2≤T =1μ s≤Tとなる。 = 50 ns, the CPCP length is T = 4 τ = 200 η χ CP max s, and the OFDM symbol period range is 4 τ / ζ = 200 ns / 0.2 ≤ T = 1 μ s ≤ T.
max s s  max s s
上記環境と同様に T =4/z sを選択する場合、 OFDMシンボル長は 4 0.2 = 3.8 If T = 4 / z s is selected as in the above environment, the OFDM symbol length is 4 0.2 = 3.8
s  s
sとなる。よって、上記の環境と比べて OFDMシンボル長は 0.6 μ s増加される。そこ で、この増加された時間を利用して、データキャリア数を増加することができるため、 大きめの帯域効率係数 α =0.95を選択する。よって、変調サブキャリア数 (データサ ブキャリア数)は Ν = αΤΒ = 0.95Χ4Χ10— 6Χ15Χ106 = 57、総サブキャリア数 s. Therefore, the OFDM symbol length is increased by 0.6 μs compared to the above environment. Therefore, since this increased time can be used to increase the number of data carriers, a larger band efficiency coefficient α = 0.95 is selected. Thus, the modulation sub-carrier number (Detasa subcarriers number) is Ν = αΤΒ = 0.95Χ4Χ10- 6 Χ15Χ10 6 = 57, the total number of sub-carrier
mod s  mod s
は Ν=Ν Ζα =57Z0.95 = 60となる。 FFTを実現しやすくするため、 4つのヌル mod Is Ν = Ν Ζα = 57Z0.95 = 60. 4 null mods to make FFT easier to implement
サブキャリアを挿入し、 N = 64を選択すれば、 CPサブキャリア数は式(11)となり、 4 をとる。よって、システムのスペクトル効率は式(12)となる。 If subcarriers are inserted and N = 64 is selected, the number of CP subcarriers is given by equation (11), which is 4. Therefore, the spectral efficiency of the system is expressed by equation (12).
[数 11]
Figure imgf000011_0002
[Equation 11]
Figure imgf000011_0002
[数 12] η^-^7- °g22 , 0.89 bps/Hz (1 2)[Equation 12] η ^ - ^ 7 - ° g22 , 0.89 bps / Hz (1 2)
64 + 4 15xl06x4xl0_6/64 64 + 4 15xl0 6 x4xl0 _6 / 64
[0053] このようにチャネル環境に応じて、適応的に CP長と OFDMシンボル長を調節する ことによって、システムのスペクトル効率が 0.89— 0.67 = 0.22bpsZHz向上され、 従ってデータ伝送レートが 0.22X15 X106 = 3.3Mbps向上されるとともに、 ISIを防 ぐ条件も満たすことができる。 [0053] In this way, by adjusting the CP length and OFDM symbol length adaptively according to the channel environment, the spectral efficiency of the system is improved by 0.89—0.67 = 0.22bpsZHz, so the data transmission rate is 0.22X15 X106 = In addition to improving 3.3 Mbps, it can also meet the requirements to prevent ISI.
[0054] 以上、典型的な実施の形態について説明したが、本発明の主旨と範囲力も逸脱し ない限り、種々の変更、置き換え及び追加をすることができる。そのため、本発明は 上記の実施の形態に拘らず、請求の範囲及びそれに均等する範囲によって限定さ れるものである。  [0054] While typical embodiments have been described above, various changes, substitutions, and additions can be made without departing from the spirit and scope of the present invention. Therefore, the present invention is not limited to the above-described embodiments, but is limited by the scope of the claims and the scope equivalent thereto.
[0055] 本明細書は、 2005年 8月 2曰出願の中国出願番号 200510088291.5に基づくも のである。その内容は、全てここに含めておく。  [0055] This specification is based on Chinese Application No. 200510088291.5 filed on August 2, 2005. The contents are all included here.
産業上の利用可能性  Industrial applicability
[0056] 本発明の OFDM通信装置は、回線品質が変化する環境において高い伝送効率 が要求される通信システム、特に移動体通信システム等に好適である。 The OFDM communication apparatus of the present invention is suitable for a communication system that requires high transmission efficiency in an environment in which channel quality changes, particularly a mobile communication system.

Claims

請求の範囲 The scope of the claims
[1] OFDMシンボルを生成する生成手段と、 [1] generation means for generating OFDM symbols;
OFDMシンボル間にサイクリック ·プリフィクスを挿入する挿入手段と、  An insertion means for inserting a cyclic prefix between OFDM symbols;
回線品質に応じてサイクリック ·プリフィクス長及び OFDMシンボル長を制御する制 御手段と、  A control means for controlling the cyclic prefix length and the OFDM symbol length according to the channel quality;
を具備する OFDM通信装置。  An OFDM communication apparatus comprising:
[2] 前記制御手段は、 [2] The control means includes
サイクリック ·プリフィクス長を減少させる場合、その減少分だけ OFDMシンボル長 を増加させる、  When the cyclic prefix length is decreased, the OFDM symbol length is increased by the decrease,
請求項 1記載の OFDM通信装置。  The OFDM communication apparatus according to claim 1.
[3] 前記制御手段は、 [3] The control means includes
チャネルの最大遅延拡散の RMS値及び最大ドップラー周波数シフトに基づいてサ イクリック ·プリフィクス長及び OFDMシンボル長を設定する、  Set cyclic prefix length and OFDM symbol length based on RMS value of maximum delay spread of channel and maximum Doppler frequency shift.
請求項 2記載の OFDM通信装置。  The OFDM communication apparatus according to claim 2.
[4] 前記制御手段は、 [4] The control means includes
最大キャリア周波数ずれと最大ドップラー周波数シフトとの比に基づいて OFDMシ ンボル周期の上限を設定する、  Set the upper limit of the OFDM symbol period based on the ratio between the maximum carrier frequency deviation and the maximum Doppler frequency shift.
請求項 2記載の OFDM通信装置。  The OFDM communication apparatus according to claim 2.
[5] 前記制御手段は、 [5] The control means includes
チャネルの最大遅延拡散の RMS値に基づ 、てサイクリック ·プリフィクス長を設定し 、設定したサイクリック 'プリフィクス長と OFDMシンボル周期との比に基づいて、 OF DMシンボル周期の下限を設定する、  The cyclic prefix length is set based on the RMS value of the maximum delay spread of the channel, and the lower limit of the OF DM symbol period is set based on the ratio between the set cyclic 'prefix length and the OFDM symbol period.
請求項 2記載の OFDM通信装置。  The OFDM communication apparatus according to claim 2.
[6] 前記制御手段は、 [6] The control means includes
サイクリック ·プリフィクス長をチャネルの最大遅延拡散の RMS値の 2倍以上 4倍以 下に設定する、  Set the cyclic prefix length to at least 2 to 4 times the RMS value of the maximum delay spread of the channel.
請求項 5記載の OFDM通信装置。  The OFDM communication apparatus according to claim 5.
[7] OFDMシンボルを生成するステップと、 OFDMシンボル間にサイクリック ·プリフィクスを挿入するステップと、 [7] generating an OFDM symbol; Inserting a cyclic prefix between OFDM symbols;
回線品質に応じてサイクリック ·プリフィクス長及び OFDMシンボル長を制御するス テツプと、  A step for controlling the cyclic prefix length and the OFDM symbol length according to the channel quality;
を具備する OFDM通信方法。  An OFDM communication method comprising:
PCT/JP2006/315235 2005-08-02 2006-08-01 Ofdm communication apparatus WO2007015494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNA2005100882915A CN1909534A (en) 2005-08-02 2005-08-02 Reconstructional OFDM system and its operation method for transmitting and receiving
CN200510088291.5 2005-08-02

Publications (1)

Publication Number Publication Date
WO2007015494A1 true WO2007015494A1 (en) 2007-02-08

Family

ID=37700525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315235 WO2007015494A1 (en) 2005-08-02 2006-08-01 Ofdm communication apparatus

Country Status (2)

Country Link
CN (1) CN1909534A (en)
WO (1) WO2007015494A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517533A (en) * 2004-10-14 2008-05-22 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Method and apparatus for adjusting bandwidth allocation in a wireless communication system
FR2932933A1 (en) * 2008-06-18 2009-12-25 Canon Kk Data packets transmitting method for e.g. wired or wireless communication network, involves varying size of redundancy sequence of transmitted symbol based on information representative of reception quality of transmitted symbol
US7969858B2 (en) 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
JP2011188247A (en) * 2010-03-09 2011-09-22 Kddi Corp Device and method for orthogonal frequency division multiplexing communication
WO2016068072A1 (en) * 2014-10-31 2016-05-06 三菱電機株式会社 Communication system
WO2017219215A1 (en) * 2016-06-20 2017-12-28 华为技术有限公司 Method and apparatus for transmitting ofdm symbol

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101282320B (en) * 2007-04-03 2013-02-27 中兴通讯股份有限公司 Method for expanding band width of broadband radio communication system based on OFDM technique
CN101383799B (en) * 2007-09-04 2014-07-16 南开大学 OFDM system synchronization, channel estimation and peak average ratio reduction combined highly effective algorithm
CN101616113B (en) * 2008-06-24 2012-06-06 展讯通信(上海)有限公司 Transmitting method based on sub-band and device thereof
CN101651647B (en) * 2008-08-12 2011-12-28 清华大学 Method and device for reconstructing CP-OFDM signal in time-domain synchronous orthogonal frequency-division multiplexing system
WO2017219320A1 (en) * 2016-06-23 2017-12-28 华为技术有限公司 Method and device for waveform configuration and waveform indication
US10715392B2 (en) 2016-09-29 2020-07-14 Qualcomm Incorporated Adaptive scalable numerology for high speed train scenarios
CN113660068B (en) * 2021-07-08 2022-11-01 南京邮电大学 Multi-user uplink dynamic pilot frequency distribution method and system in OTFS system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345035A (en) * 2001-05-16 2002-11-29 Matsushita Electric Ind Co Ltd Radio base station device and communication terminal device
WO2005004428A1 (en) * 2003-06-27 2005-01-13 Intel Corporation Adaptive guard intervals in ofdm systems
JP2005150850A (en) * 2003-11-11 2005-06-09 Ntt Docomo Inc Ofdm transmitter and ofdm receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345035A (en) * 2001-05-16 2002-11-29 Matsushita Electric Ind Co Ltd Radio base station device and communication terminal device
WO2005004428A1 (en) * 2003-06-27 2005-01-13 Intel Corporation Adaptive guard intervals in ofdm systems
JP2005150850A (en) * 2003-11-11 2005-06-09 Ntt Docomo Inc Ofdm transmitter and ofdm receiver

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517533A (en) * 2004-10-14 2008-05-22 クゥアルコム・フラリオン・テクノロジーズ、インコーポレイテッド Method and apparatus for adjusting bandwidth allocation in a wireless communication system
US7969858B2 (en) 2004-10-14 2011-06-28 Qualcomm Incorporated Wireless terminal methods and apparatus for use in wireless communications systems supporting different size frequency bands
FR2932933A1 (en) * 2008-06-18 2009-12-25 Canon Kk Data packets transmitting method for e.g. wired or wireless communication network, involves varying size of redundancy sequence of transmitted symbol based on information representative of reception quality of transmitted symbol
JP2011188247A (en) * 2010-03-09 2011-09-22 Kddi Corp Device and method for orthogonal frequency division multiplexing communication
WO2016068072A1 (en) * 2014-10-31 2016-05-06 三菱電機株式会社 Communication system
US10674514B2 (en) 2014-10-31 2020-06-02 Mitsubishi Electric Corporation Communication system
US11006427B2 (en) 2014-10-31 2021-05-11 Mitsubishi Electric Corporation Communication system, base station, and communication terminal for controlling interference from neighboring cells
WO2017219215A1 (en) * 2016-06-20 2017-12-28 华为技术有限公司 Method and apparatus for transmitting ofdm symbol
CN109156019A (en) * 2016-06-20 2019-01-04 华为技术有限公司 A kind of OFDM symbol transmission method and device
CN109156019B (en) * 2016-06-20 2020-09-29 华为技术有限公司 OFDM symbol transmission method and device

Also Published As

Publication number Publication date
CN1909534A (en) 2007-02-07

Similar Documents

Publication Publication Date Title
WO2007015494A1 (en) Ofdm communication apparatus
EP2378701B1 (en) Uplink pilot and signaling transmission in wireless communication systems
US8149969B2 (en) Apparatus and method for reduced peak-to-average-power ratio in a wireless network
KR101215297B1 (en) Apparatus and method for transmitting/receiving channel quality information adaptively in multicarrier wireless network
US8630359B2 (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
CN101682588B (en) Channel estimator for OFDM systems
Zhang et al. A novel OFDM transmission scheme with length-adaptive cyclic prefix
US20170310509A1 (en) Method and apparatus for signal detection in a wireless communication system
EP1873989A1 (en) Radio transmission apparatus and method of inserting guard interval
KR101459014B1 (en) Apparatus and method for frequency control in mobile communication system
WO2006020336A1 (en) Channel estimation for a wireless communication system
EP2957081A1 (en) Zero insertion for isi free ofdm reception
EP1732244B1 (en) Doppler dependent power control and sub-carrier allocation in OFDM multiple access systems
US20070104280A1 (en) Wireless data transmission method, and corresponding signal, system, transmitter and receiver
JPWO2006072980A1 (en) Wireless communication system
EP2163060B1 (en) Setting the power level of the information elements in the ofdma map according to the channel condition
CN108418772A (en) A kind of OFDM-IM system frequency deviation estimating methods
US20120183107A1 (en) Method and system for adaptive guard interval (gi) combining
Mizutani et al. Time-domain Windowing Design for IEEE 802.11 af based TVWS-WLAN Systems to Suppress Out-of-band Emission
WO2007023530A1 (en) Wireless communication system and communication apparatus
WO2007078097A1 (en) Apparatus and method for controlling ranging of mobile terminals in wireless communication system
JP2003158499A (en) Method and equipment for communication
US8345791B2 (en) Methods for transmitting and receiving a multicarrier signal comprising isolated pilots, corresponding devices and computer program products
KR20060005219A (en) Apparatus and method for synchronizing of optic repeater in a communication system using time division orthogonal frequency division multiplexing scheme
ZA200505657B (en) Wireless data transmission method, and corresponding signal, system, transmitter and receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP