WO2007015467A1 - Method and device for detecting fracture or clogging of optical fiber - Google Patents

Method and device for detecting fracture or clogging of optical fiber Download PDF

Info

Publication number
WO2007015467A1
WO2007015467A1 PCT/JP2006/315170 JP2006315170W WO2007015467A1 WO 2007015467 A1 WO2007015467 A1 WO 2007015467A1 JP 2006315170 W JP2006315170 W JP 2006315170W WO 2007015467 A1 WO2007015467 A1 WO 2007015467A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
hollow optical
microphone
hollow
sound wave
Prior art date
Application number
PCT/JP2006/315170
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Sakamoto
Original Assignee
Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University filed Critical Niigata University
Priority to JP2007529260A priority Critical patent/JP4719894B2/en
Publication of WO2007015467A1 publication Critical patent/WO2007015467A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • A61B2018/2222Fibre material or composition
    • A61B2018/2227Hollow fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Definitions

  • the present invention relates to a method and an apparatus for detecting a loss or clogging of an optical fiber.
  • a carbon dioxide laser (CO laser) with a wavelength in the infrared region is used for laser treatment.
  • Such laser treatment devices are known.
  • light is guided to the handpiece through the laser light source power light guide optical system.
  • Hollow optical fibers are excellent in condensing characteristics with a small beam divergence angle, and can transmit lasers in the infrared wavelength region, and are excellent as, for example, medical laser transmission systems. This is because, in surgery, dermatology or dentistry, there are advantages such as less bleeding, faster healing, shorter operation time, and wider range of applicable patients.
  • Carbon dioxide laser treatment is one of the laser surgical devices.
  • a carbon dioxide laser surgical device is known as an instrument.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-221108
  • Patent Document 2 JP-A-6-300664
  • Patent Document 3 Japanese Patent Laid-Open No. 7-284539
  • the hollow optical fiber becomes unhealthy when melted and clogged at the fiber melting stage.
  • a problem to be solved is that a hollow optical fiber used for detecting perforation, breakage, or clogging of a hollow optical fiber in a carbon dioxide laser treatment device of a type that transmits carbon dioxide laser light using a hollow optical fiber.
  • the defect or clogging of the hollow optical fiber is detected without impairing the degree of freedom of the hollow optical fiber.
  • Claim 1 of the present invention is a method of transmitting laser light using a hollow optical fiber, wherein a sound wave is incident from a primary side of the hollow optical fiber and the sound wave is detected from a secondary side.
  • the hollow optical fiber is detected for defects or clogging.
  • a sound wave is incident from the primary side of the hollow optical fiber and the sound wave is detected from the secondary side,
  • the primary side acoustic wave and the secondary side acoustic wave are compared to detect a defect or clogging of the hollow optical fiber.
  • Claim 3 of the present invention is characterized in that the primary side sound wave and the secondary side sound wave signal are electrically detected. This method detects defects in optical fibers.
  • Claim 4 of the present invention is as described in any one of claims 1 to 3, wherein the sound wave is generated by a speaker and the secondary side sound wave is detected by a microphone. Light This is a method for detecting the loss or clogging of Aiba.
  • Claim 5 of the present invention is characterized in that the primary side acoustic wave has a low frequency of 1kHz or less, and the force of any one of claims 1 to 4 is detected. It is a method to do.
  • Claim 6 of the present invention is characterized in that the primary side sound wave has a plurality of frequencies, and the method for detecting a loss or clogging of an optical fiber according to any one of claims 1 to 5. It is.
  • Claim 7 of the present invention is a hollow light characterized in that a sound source for making a sound wave incident on the primary side of the hollow optical fiber is provided, and a detecting means for detecting the sound wave is provided on the secondary side. This is a fiber loss and clogging detection device.
  • a hollow optical fiber according to Claim 7 wherein a speaker is connected to the gas laser generator, and a secondary microphone is connected to the hollow optical fiber. This is a device for detecting missing or clogged bars.
  • Claim 9 of the present invention is the hollow optical fiber defect or clogging detection device according to claim 8, wherein the hollow optical fiber 1 is provided with a primary microphone.
  • the tenth aspect of the present invention is the hollow according to any one of the seventh to ninth aspects, wherein the secondary side is a handpiece side that is connected to a hollow optical fiber and emits laser light. This is an optical fiber defect detection device.
  • a sound wave is incident from the primary side of the optical fiber, and the sound wave is detected from the secondary side.
  • the propagation state of the sound wave in the hollow optical fiber changes, and this detects the perforation, breakage, or clogging of the hollow optical fiber. Therefore, an expensive optical system on the secondary side of the hollow optical fiber is not necessary, and the handling ability of the operator is not impaired.
  • the sound wave is generated by a speaker, and the secondary side sound wave is By detecting by iku, it can be manufactured relatively inexpensively.
  • the reliability of measurement can be increased by monitoring using a plurality of frequencies other than only one frequency.
  • a change in the propagation state of the sound wave in the hollow optical fiber is detected by making a sound wave incident from the primary side of the hollow optical fiber and detecting the sound wave from the secondary side.
  • a change in the propagation state of the sound wave in the hollow optical fiber is detected by making a sound wave incident from the primary side of the hollow optical fiber and detecting the sound wave from the secondary side.
  • a sound wave is incident from the primary side of the hollow optical fiber by a speaker, and the sound wave is detected from the secondary side by a secondary microphone.
  • the detection of the primary side microphone and the detection of the secondary side microphone can be compared to detect perforation, breakage or clogging of the hollow optical fiber.
  • the sound wave passes through the hollow portion of the optical fiber and exits from the outlet of the handpiece 6.
  • FIGS. 1 and 2 show Example 1, which is used for laser treatment.
  • the advantages of laser treatment are less bleeding, faster healing, shorter surgical time, and wider range of patients.
  • a carbon dioxide laser surgical device is known as one of laser surgical devices.
  • the hollow optical fiber 1 In the carbon dioxide laser, by using the hollow optical fiber 1 for the light guide portion, the flexibility and handling properties can be made excellent. As shown in Fig. 1, the hollow optical fiber 1 has a metal mirror surface layer 3 formed on the inner surface of a hollow glass pipe 2, and an outer coating layer on the outer surface. 4 is formed. The carbon dioxide laser beam B travels while being reflected by the mirror surface layer 3.
  • the primary side that is the entrance of the hollow optical fiber 1 is connected to the carbon dioxide laser generator 5, and the secondary side that is the exit is connected to the node piece 6.
  • the carbon dioxide laser generator 5 is connected to a loudspeaker 7 that is a speaker, and an oscillator 8 is connected to the loudspeaker 7.
  • the secondary microphone 9 is connected directly or indirectly to the hollow optical fiber 1 to the hand piece 6 so that the sound of the hollow portion 1A can be captured.
  • the secondary microphone 9 has a meaning of the secondary side downstream from the primary side, and the secondary microphone 9 that receives the sound incident on the primary side is not an outlet but a hollow optical fiber 1.
  • An amplifier circuit 10, a filter circuit 11, and a voltmeter 12 are connected to the secondary microphone 9.
  • 10A indicates an amplifier circuit connected to the loudspeaker 7.
  • the loudspeaker 7 and the secondary microphone 9 need to be provided in the hollow optical fiber 1 so that the laser beam B is not affected.
  • the loudspeaker 7 and the secondary microphone 9 are placed in an optically shaded area. This is narrowed by a lens (not shown) when the laser beam B is incident on the hollow optical fiber 1 from the tube inlet II side or output from the tube outlet lO side. Therefore, the sound can be received by the loudspeaker 7 or the sound can be received by the secondary microphone 9 from the optically shaded area.
  • the loudspeaker 7 is made to enter the hollow portion 1 A on the carbon dioxide laser generator 5 or the tube inlet II side through the sound path 7 A, and the sound is incident on the secondary microphone 9. The sound is received with the other end of the sound path 9A having one end connected to the receiving portion of the side microphone 9 facing the hollow portion 1A.
  • the hollow portion 1A side of the sound passage 9A is connected to the tube outlet 10 side.
  • the operation of the above configuration will be described.
  • the carbon dioxide laser beam B generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1.
  • the loudspeaker 7 is operated by the oscillator (oscillator) 8 to generate a sound wave, and this sound wave passes through the hollow part 1A of the optical fiber 1 and exits from the outlet of the handpiece 6. It has become.
  • This sound wave is captured by the secondary microphone 9, and the sound wave signal input to the secondary microphone 9 is electrically converted and displayed by the voltmeter 12 via the amplifier circuit 10 and the filter circuit 11. Is done.
  • the sound wave is an elastic wave generated by the vibration of the generator (loud speaker 7) in the air or other sound medium, and includes not only the audible frequency region but also other frequency regions.
  • the hollow portion 1A functions as a low-pass filter with respect to the frequency of sound, and therefore passes only a low frequency. Therefore, this method mainly uses a low frequency of 1kHz or less.
  • the secondary microphone 9 On the secondary side.
  • the hole P opens or breaks in the middle of the hollow optical fiber 1
  • the acoustic power leaks from the hole P in the defective part, so the acoustic power transmitted to the secondary microphone 9 is extremely attenuated. Therefore, the abnormal force can be confirmed by the secondary microphone 9. Therefore, the laser may be stopped immediately.
  • the hollow optical fiber 1 can be bent freely, but the force that may change the sound pressure in the bent state is very small at such a very loose curvature even if it is affected. The measurement error is below. If the hollow optical fiber 1 is bent at an acute angle, there is little force and an effect can be considered. However, in the hollow optical fiber 1, the curvature limit is 200 times or more of the inner diameter, and the bending is very loose. This is practically acceptable.
  • the hollow optical fiber 1 is melted by the laser B, and the hollow optical fiber 1 is melted.
  • the inside is blocked, no sound reaches the exit side, and the sound pressure drops when the sound pressure drops rather than the sound pressure drop due to the leak.
  • the gain waveform of the secondary microphone 9 changes depending on the leak position where the hole P is opened in the middle of the hollow optical fiber 1, so that the leak position can also be detected.
  • FIG. 3 shows a second embodiment.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a primary microphone 13 is provided on the primary side that is the entrance of the hollow optical fiber 1.
  • the primary microphone 13 is connected directly or indirectly to the hollow fiber 1 so that the sound of the hollow portion 1A can be captured.
  • the transmitter 17 is connected to the loudspeaker 7, the primary microphone 13 is connected to the A channel 15 of the analyzer (FFT analyzer 1) 14, and the B channel 16 of the analyzer (1 FFT analyzer) 14 is connected.
  • FFT analyzer 1 FFT analyzer
  • 10A indicates an amplifier circuit between the loudspeaker 7 and the oscillator 17
  • 10B indicates an amplifier circuit between the primary microphone 13 and the A channel 15.
  • the primary side microphone 13 is optically arranged so as not to be affected by the laser beam B. Install in the shaded area.
  • a sound path (not shown) may be provided similarly to the secondary microphone 9.
  • the carbon dioxide laser generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1. Furthermore, the loudspeaker 7 is operated by the oscillator 17 to generate sound waves, and these sound waves also come out from the outlet of the handpiece 6 through the hollow portion 1A!
  • FIG. 4 shows a third embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the primary side microphone 13 is provided on the primary side which is the entrance of the hollow optical fiber 1, the transmitter 17 is connected to the loudspeaker 7, and the primary side is connected to the A channel 15 of the analyzer (FFT analyzer) 14. A microphone 13 is connected.
  • the carbon dioxide laser generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1. Furthermore, the loudspeaker 7 is activated by the transmitter 7A to generate sound waves, and these sound waves also come out from the outlet of the handpiece 6 through the hollow portion 1A!
  • FIG. 5 shows a fourth embodiment.
  • the loudspeaker 7 is connected to the tube inlet II of the hollow optical fiber 1 via the sound passage 7A, and the secondary microphone 9 is provided to the tube outlet lO side via the sound passage 9A. It is a thing.
  • the hollow optical fiber 1 was replaced with a stainless steel pipe. This is because the tube material is treated as a rigid boundary condition (sound does not propagate and is reflected), and the glass pipe 2 and the stainless steel pipe mentioned above are acoustic when viewed from the air where impedance is about 4 orders of magnitude higher when viewed from the air. This is because they are equivalent.
  • Experimental example 1
  • the hollow optical fiber 1 was replaced with a stainless steel pipe. This is because the tube material is treated as a rigid boundary condition (sound does not propagate and is reflected), and the glass pipe 2 and the stainless steel pipe mentioned above are acoustic when viewed from the air where impedance is about 4 orders of magnitude higher when viewed from the air. This is because they are equivalent.
  • FIGS. 6 to 8 show Experimental Example 1, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, a primary microphone 13 is provided at the inlet of the pipe 21, and the inlet of the pipe 21 is shown.
  • Fig. 8 shows the spectrum of 13 primary power microphones formed from a simulated leak hole P.
  • FIGS. 9 to 13 show Experimental Example 2, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, and the secondary microphone 9 and the primary microphone are connected to the outlet and inlet of the pipe 21. 13 and 13 and a simulated leak hole P is formed from the inlet of the pipe 21, and the gains using two of the secondary microphone 9 and the primary microphone 13 are shown in FIGS. It is.
  • Experimental example 3 shows Experimental Example 2, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, and the secondary microphone 9 and the primary microphone are connected to the outlet and inlet of the pipe 21. 13 and 13 and a simulated leak hole P is formed from the inlet of the pipe 21, and the gains using two of the secondary microphone 9 and the primary microphone 13 are shown in FIGS. It is.
  • Experimental example 3 shows Experimental Example 2, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, and the secondary microphone 9 and the primary microphone are connected to the outlet and inlet of the pipe 21. 13 and 13 and a
  • FIGS. 14 to 18 show Experimental Example 3, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, a secondary microphone 9 is provided at the inlet of the pipe 21, and the inlet of the pipe 21 is shown.
  • a simulated leak hole P is formed from Fig. 15 and Fig. 18 shows the spectrum from the secondary microphone 9.
  • the hollow portion 1A functions as a low-pass filter with respect to the sound frequency, so that only a low frequency is obtained.
  • the reason for adopting a low frequency of 1kHz or less mainly in this method appears because a wide frequency range from a very low frequency to about 1kHz appears. Therefore, it is possible to monitor by using a plurality of frequencies or a frequency range that is not a single frequency. This can increase the reliability of the measurement.
  • FIGS. 19 to 24 show Experimental Example 4, and when the primary microphone 13 is connected to the pipe 21, the tip of the primary microphone 13, that is, the hole formed in the sound collecting portion 13 A and the pipe 21.
  • a pipe-like vibration insulation relay member 22 such as silicon or rubber is interposed.
  • a pipe-shaped vibration insulation relay member 23 such as silicon or rubber is interposed between the loudspeaker 7 and the hole formed in the pipe 21 to insulate vibration, and the tip of the secondary microphone 9
  • a pipe-shaped vibration insulation relay member 24 such as silicon or rubber is interposed between the sound collecting portion 9A and the hole formed in the pipe 21 in order to provide vibration insulation.
  • Figs. 22 and 23 show the air column of the pipe 21 as a transfer matrix using the wave equation. The derivation of the equation for theoretically determining the sound pressure ratio G (gain) between the inlet side (primary side) and the outlet side (secondary side) is shown.
  • P is the sound pressure
  • U is the volume velocity
  • Z is the impedance
  • L1 is the length to the loudspeaker 7 (or microphone 13) force hole P in the pipe 21
  • L2 is the length from the hole P to the microphone 9 in the pipe 21, and A, B, C, and D are four-terminal constants.
  • Fig. 24 shows a comparison between the theoretical values and the experimental results, comparing the theoretical values and the previous experimental values for the leak positions 200mm, 500mm, and 1 000mm.
  • the theoretical value and the experimental value at each leak position In the frequency band of about 200 to 800 Hz, the trends agree, and the secondary microphone 9 at the exit picks up the sound incident in the pipe 21 and agrees well in the frequency band.
  • the experimental value is also considered to be large (as in the theoretical value), and the gain is considered to decrease.
  • the signal from the exit microphone (secondary microphone 9) becomes smaller than the noise floor, and the exit microphone ( This is because the signal from the secondary microphone 9) becomes the noise floor!
  • FIGS. 25 to 26 show Experimental Example 5, which is a configuration diagram at the time of leak detection using only the outlet side microphone (secondary side microphone 9), and the outlet side microphone (secondary side microphone 9). ), And a pipe-shaped vibration insulation relay member 23 such as silicon or rubber is interposed between the loudspeaker 7 and the hole formed in the pipe 21 for vibration insulation. is there.
  • leak can be detected by obtaining the gain of the transfer function in Neuve 21.
  • the amount of gain reduction due to leakage can be predicted by theoretical analysis, and leakage can also be detected by measuring the spectrum with the secondary microphone 9 or by changing the voltage.
  • FIGS. 27 to 28 show Experimental Example 6, which is a configuration diagram of leak detection using only the outlet microphone (secondary microphone 9) (assumed in practical use), and the outlet microphone (2 Since leak detection is possible only with the secondary microphone 9), a simple and practical leak detection device can be constructed.
  • FIG. 27 is a configuration diagram thereof.
  • FIG. 1 is a cross-sectional view of an optical fiber showing Example 1 of the present invention
  • FIG. 1 (A) is a cross-sectional view at normal time
  • FIG. 1 (B) is a cross-sectional view at the time of laser light leakage
  • FIG. 2 is an explanatory view showing Example 1 of the present invention.
  • FIG. 3 is an explanatory view showing Example 2 of the present invention.
  • FIG. 4 is an explanatory view showing Example 3 of the present invention.
  • FIG. 5 is an explanatory view showing Example 4 of the present invention.
  • FIG. 6 is an explanatory view showing Experimental Example 1 of the present invention.
  • FIG. 7 is an explanatory view of the position of a simulated leak hole showing Experimental Example 1 of the present invention.
  • FIG. 8 is a graph of an experiment with a primary side (inlet side) microphone showing Experimental Example 1 of the present invention.
  • FIG. 9 is an explanatory view showing Experimental Example 2 of the present invention.
  • FIG. 10 is a graph of an experiment with a leak position of 100 to 500 mm using two microphones showing Experimental Example 2 of the present invention.
  • FIG. 11 is a graph of an experiment with a leak position of 600 to 1000 mm using two microphones showing Experimental Example 2 of the present invention.
  • FIG. 12 is a graph of an experiment in which a leak position is 1100 to 1500 mm using two microphones showing Experimental Example 2 of the present invention.
  • FIG. 13 is a graph of an experiment in which a leak position is 1600 to 1900 mm using two microphones showing Experimental Example 2 of the present invention.
  • FIG. 14 is an explanatory view showing Experimental Example 3 of the present invention.
  • FIG. 15 is a graph of an experiment in which the leak position at the secondary side (exit side) microphone showing Experimental Example 3 of the present invention is 100 to 500 mm.
  • FIG. 16 is a graph of an experiment with a leak position of 600 to 1000 mm in a secondary side (exit side) microphone showing Experimental Example 3 of the present invention.
  • FIG. 17 is a graph of an experiment in which the leak position at the secondary side (exit side) microphone showing Experiment Example 3 of the present invention is 1100 to 1500 mm.
  • FIG. 18 The leak position at the secondary side (exit side) microphone showing Experimental Example 3 of the present invention is 1600. ⁇ 1900mm experiment graph.
  • FIG. 19 is an explanatory diagram of an experimental apparatus in which microphones are installed on the primary side and the secondary side, showing Experimental Example 4 of the present invention.
  • FIG. 20 is an explanatory view showing measurement conditions showing Experimental Example 4 of the present invention.
  • FIG. 21 is a gain graph using two microphones showing Experimental Example 4 of the present invention.
  • FIG. 22 shows experimental example 4 of the present invention
  • FIG. 22 (A) is a plan view of a pipe
  • FIG. 22 (B) is an explanatory diagram of a transfer matrix
  • FIG. 22 (C) is a formula of a transfer matrix. Yes.
  • FIG. 23 shows another transfer matrix formula showing Experimental Example 4 of the present invention.
  • FIG. 25 is an explanatory diagram of an experimental apparatus in which a microphone is installed on the secondary side, showing Experimental Example 5 of the present invention.
  • FIG. 26 is a graph showing a spectrum of a secondary microphone showing Experimental Example 5 of the present invention.
  • FIG. 27 is an explanatory diagram of an experimental apparatus showing Experimental Example 6 of the present invention.
  • FIG. 28 is a graph of leak detection by measurement showing Experimental Example 6 of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Fracture or clogging of a hollow optical fiber is detected without damaging the degree of freedom of the hollow optical fiber. A carbon dioxide gas laser generator (5) is connected with the inlet or the primary side of a hollow optical fiber (1) having an outlet or a secondary side connected with a hand piece (6). The carbon dioxide gas laser generator (5) is connected with a loud speaker (7) which is connected with an oscillator (8). In the hand piece (6), the hollow optical fiber (1) is connected with a secondary side microphone (9). When a hole is opened in the middle of the hollow optical fiber (1) or when the hollow optical fiber (1) is broken, acoustic power leaks from the hole in a defect portion and acoustic power transmitted to the secondary side microphone (9) attenuates extremely, therefore abnormality can be checked by means of the secondary side microphone (9).

Description

明 細 書  Specification
光ファイバの欠損や詰りを検出する方法及びその装置  Method and apparatus for detecting loss or clogging of optical fiber
技術分野  Technical field
[0001] 本発明は、光ファイバの欠損や詰りを検出する方法及びその装置に関するもので ある。  [0001] The present invention relates to a method and an apparatus for detecting a loss or clogging of an optical fiber.
背景技術  Background art
[0002] レーザ治療するために、赤外域に波長を持つ炭酸ガスレーザ (COレーザ)を使用  [0002] A carbon dioxide laser (CO laser) with a wavelength in the infrared region is used for laser treatment.
2  2
したレーザ治療装置が知られている。このようなレーザ治療装置においては、レーザ 光源力 導光光学系を介してハンドピースまで導光するようになって 、る。  Such laser treatment devices are known. In such a laser treatment apparatus, light is guided to the handpiece through the laser light source power light guide optical system.
[0003] 中空光ファイバは、ビームの拡がり角が小さぐ集光特性に優れ、さらに赤外波長 域のレーザの伝送が可能であり、例えば医療用レーザの伝送システムとして優れて いる。この背景としては外科、皮膚科或いは歯科医療などにおいて、出血が少ない、 治りが早い、手術時間が短い、さらには適応患者の幅が広い利点があり、レーザ手 術装置の一つに炭酸ガスレーザ治療器としての炭酸ガスレーザ手術装置が知られて いる。 [0003] Hollow optical fibers are excellent in condensing characteristics with a small beam divergence angle, and can transmit lasers in the infrared wavelength region, and are excellent as, for example, medical laser transmission systems. This is because, in surgery, dermatology or dentistry, there are advantages such as less bleeding, faster healing, shorter operation time, and wider range of applicable patients. Carbon dioxide laser treatment is one of the laser surgical devices. A carbon dioxide laser surgical device is known as an instrument.
[0004] 従来の炭酸ガスレーザ治療器では、複数の光学ミラーを取り付けた多関節アーム を用いて反射させることにより光伝送して 、る。この方法は光学ミラーや精密な多関 節アームなどによるコスト高と、アームの存在による術者のハンドリング性が問題であ つた o  [0004] In a conventional carbon dioxide laser treatment device, light is transmitted by reflection using an articulated arm equipped with a plurality of optical mirrors. This method has a problem of high cost due to optical mirrors and precise multi-joint arms, and handling of the operator due to the presence of the arm.
[0005] これらを解決するため、光ファイバ健全性検査装置、光ファイバの破断検出方法、 医療用光ケーブルのように内面を鏡面にした中空光ファイバの中で炭酸ガスレーザ を伝送する方法が知られて ヽる(例えば特許文献 1〜3)。  In order to solve these problems, an optical fiber soundness inspection device, an optical fiber breakage detection method, and a method of transmitting a carbon dioxide laser in a hollow optical fiber whose inner surface is a mirror surface, such as a medical optical cable, are known. Speak (for example, Patent Documents 1 to 3).
特許文献 1:特開 2000— 221108号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-221108
特許文献 2:特開平 6 - 300664号公報  Patent Document 2: JP-A-6-300664
特許文献 3:特開平 7— 284539号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-284539
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 前記中空光ファイバを導光光学系に用いたものにおいては、中空光ファイバ内面 の鏡面に欠陥が生じた場合は、炭酸ガスレーザがガラスを溶力して穴が開き想定外 の箇所を焼損させる危険性がある。この危険性は中空光ファイバが折れた場合も同 様に存在する。 Problems to be solved by the invention [0006] In the case where the hollow optical fiber is used for a light guide optical system, when a defect occurs on the mirror surface of the hollow optical fiber, a carbon dioxide laser melts the glass to open a hole and open an unexpected part. Risk of burning. This danger is also present when the hollow optical fiber is broken.
[0007] このような問題を解決する手段として中空光ファイバ出口に光学系を設置すること で、レーザ出力をモニタする方式が考えられる力 このような方法では中空光ファイバ を用いる最大の利点であるハンドリング性、すなわち操作の自由度を損なう問題があ り、また光学系部品の増加によるコスト増も問題となるおそれがある。  [0007] By installing an optical system at the exit of the hollow optical fiber as a means for solving such problems, a method for monitoring the laser output can be considered. This method has the greatest advantage of using the hollow optical fiber. There is a problem that the handling property, that is, the degree of freedom of operation is impaired, and the cost increase due to the increase in the number of optical system components may also be a problem.
[0008] さらに、中空光ファイバにおいて穴が開かなくともファイバの溶融の段階で溶けて詰 まった場合も中空光ファイバは健全でなくなる。  [0008] Further, even if the hollow optical fiber does not have a hole, the hollow optical fiber becomes unhealthy when melted and clogged at the fiber melting stage.
[0009] 解決しょうとする問題点は、炭酸ガスレーザ光を中空光ファイバを用いて伝送させ るタイプの炭酸ガスレーザ治療器における中空光ファイバの穴あきや折れ或いは詰り などの検出に利用する中空光ファイバの欠損を検出する方法及びその装置に関す るものにおいて、中空光ファイバの自由度を損なうことなく中空光ファイバの欠損や詰 りを検出する点である。  [0009] A problem to be solved is that a hollow optical fiber used for detecting perforation, breakage, or clogging of a hollow optical fiber in a carbon dioxide laser treatment device of a type that transmits carbon dioxide laser light using a hollow optical fiber. In the method and apparatus for detecting defects in a hollow optical fiber, the defect or clogging of the hollow optical fiber is detected without impairing the degree of freedom of the hollow optical fiber.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の請求項 1は、中空光ファイバを用いてレーザ光を伝送させる方法において 、前記中空光ファイバの 1次側から音波を入射させると共に 2次側より前記音波を検 知することで中空光ファイバの欠損や詰りを検出する方法である。  [0010] Claim 1 of the present invention is a method of transmitting laser light using a hollow optical fiber, wherein a sound wave is incident from a primary side of the hollow optical fiber and the sound wave is detected from a secondary side. In this method, the hollow optical fiber is detected for defects or clogging.
[0011] 本発明の請求項 2は、中空光ファイバを用いてレーザ光を伝送させる方法において 、前記中空光ファイバの 1次側から音波を入射させると共に 2次側より前記音波を検 知し、前記 1次側音波と前記 2次側音波を比較して中空光ファイバの欠損や詰りを検 出する方法である。  [0011] According to a second aspect of the present invention, in the method of transmitting laser light using a hollow optical fiber, a sound wave is incident from the primary side of the hollow optical fiber and the sound wave is detected from the secondary side, In this method, the primary side acoustic wave and the secondary side acoustic wave are compared to detect a defect or clogging of the hollow optical fiber.
[0012] 本発明の請求項 3は、前記 1次側の音波と前記 2次側の音波の信号を電気的に検 出することを特徴とする請求項 1〜2のいずれか 1項に記載の光ファイバの欠損を検 出する方法である。  [0012] Claim 3 of the present invention is characterized in that the primary side sound wave and the secondary side sound wave signal are electrically detected. This method detects defects in optical fibers.
[0013] 本発明の請求項 4は、前記音波をスピーカ一により発生させ、前記 2次側音波をマ イク口ホンにより検知することを特徴とする請求項 1〜3のいずれか 1項に記載の光フ アイバの欠損や詰りを検出する方法である。 [0013] Claim 4 of the present invention is as described in any one of claims 1 to 3, wherein the sound wave is generated by a speaker and the secondary side sound wave is detected by a microphone. Light This is a method for detecting the loss or clogging of Aiba.
[0014] 本発明の請求項 5は、前記 1次側音波を 1kHz以下の低い周波数とすることを特徴 とする請求項 1〜4のいずれ力 1項に記載の光ファイバの欠損や詰りを検出する方法 である。  [0014] Claim 5 of the present invention is characterized in that the primary side acoustic wave has a low frequency of 1kHz or less, and the force of any one of claims 1 to 4 is detected. It is a method to do.
[0015] 本発明の請求項 6は、前記 1次側音波を複数の周波数とすることを特徴とする請求 項 1〜5のいずれか 1項に記載の光ファイバの欠損や詰りを検出する方法である。  [0015] Claim 6 of the present invention is characterized in that the primary side sound wave has a plurality of frequencies, and the method for detecting a loss or clogging of an optical fiber according to any one of claims 1 to 5. It is.
[0016] 本発明の請求項 7は、中空光ファイバの 1次側に音波を入射させる音源を設けると 共に、 2次側に前記音波を検知する検知手段を設けたことを特徴とする中空光フアイ バの欠損や詰り検出装置である。 [0016] Claim 7 of the present invention is a hollow light characterized in that a sound source for making a sound wave incident on the primary side of the hollow optical fiber is provided, and a detecting means for detecting the sound wave is provided on the secondary side. This is a fiber loss and clogging detection device.
[0017] 本発明の請求項 8は、ガスレーザ発生装置にスピーカーを接続し、前記中空光ファ ィバに 2次側マイクロホンが接続していることを特徴とする請求項 7記載の中空光ファ ィバの欠損や詰り検出装置である。 [0017] According to Claim 8 of the present invention, a hollow optical fiber according to Claim 7, wherein a speaker is connected to the gas laser generator, and a secondary microphone is connected to the hollow optical fiber. This is a device for detecting missing or clogged bars.
[0018] 本発明の請求項 9は、中空光ファイバ 1に 1次側マイクロホンを設けることを特徴とす る請求項 8記載の中空光ファイバの欠損や詰り検出装置である。 [0018] Claim 9 of the present invention is the hollow optical fiber defect or clogging detection device according to claim 8, wherein the hollow optical fiber 1 is provided with a primary microphone.
[0019] 本発明の請求項 10は、前記 2次側が、中空光ファイバに接続されレーザ光が出る ハンドピース側であることを特徴とする請求項 7〜9のいずれか 1項に記載の中空光 ファイバの欠損検出装置である。 [0019] The tenth aspect of the present invention is the hollow according to any one of the seventh to ninth aspects, wherein the secondary side is a handpiece side that is connected to a hollow optical fiber and emits laser light. This is an optical fiber defect detection device.
発明の効果  The invention's effect
[0020] 請求項 1の発明では、音響を利用して中空光ファイバの穴あきや折れを検出する方 法では、光ファイバの 1次側から音波を入射させ、 2次側より前記音波を検知する。も し、中空光ファイバに穴あきや折れや詰りが生じた場合は、中空光ファイバ内の音波 の伝搬状態が変化するため、これにより中空光ファイバの穴あきや折れや詰りを検知 する。したがって、中空光ファイバの 2次側の高価な光学系が不要となり、また術者の ハンドリング性を損なうことがな 、。  [0020] In the first aspect of the invention, in the method of detecting perforation or breakage of the hollow optical fiber using sound, a sound wave is incident from the primary side of the optical fiber, and the sound wave is detected from the secondary side. To do. If the hollow optical fiber is perforated, bent, or clogged, the propagation state of the sound wave in the hollow optical fiber changes, and this detects the perforation, breakage, or clogging of the hollow optical fiber. Therefore, an expensive optical system on the secondary side of the hollow optical fiber is not necessary, and the handling ability of the operator is not impaired.
[0021] 請求項 2の発明では、 1次側音波と 2次側音波とを測定しゲインを測定して光フアイ バの欠損や詰りを検出できる。  [0021] According to the invention of claim 2, it is possible to detect the loss or clogging of the optical fiber by measuring the primary side sound wave and the secondary side sound wave and measuring the gain.
[0022] 請求項 3の発明では、電圧計などによって欠損や詰りを検出することができる。  [0022] In the invention of claim 3, it is possible to detect a defect or clogging with a voltmeter or the like.
[0023] 請求項 4の発明では、前記音波をスピーカ一により発生させ、前記 2次側音波をマ イクにより検知することで、比較的安価に製造することができる。 In the invention of claim 4, the sound wave is generated by a speaker, and the secondary side sound wave is By detecting by iku, it can be manufactured relatively inexpensively.
[0024] 請求項 5の発明では、中空部の内径が細い中空光ファイバであっても、このような 中空部は音の周波数に対してローパスフィルタの働きをすることがあっても確実に音 を通すことができる。  [0024] In the invention of claim 5, even if the hollow optical fiber has a hollow inner diameter that is thin, such a hollow portion can function as a low-pass filter with respect to the sound frequency. Can pass through.
[0025] 請求項 6の発明では、 1つの周波数だけでなぐ複数の周波数を用いて監視するこ とで測定の信頼性を増すことができる。  [0025] In the invention of claim 6, the reliability of measurement can be increased by monitoring using a plurality of frequencies other than only one frequency.
[0026] 請求項 7の発明では、中空光ファイバの 1次側から音波を入射させると共に 2次側よ り前記音波を検知することで、中空光ファイバ内の音波の伝搬状態が変化を検知し て、これにより中空光ファイバの穴あきや折れや詰りを検知することができる。 [0026] According to the invention of claim 7, a change in the propagation state of the sound wave in the hollow optical fiber is detected by making a sound wave incident from the primary side of the hollow optical fiber and detecting the sound wave from the secondary side. Thus, it is possible to detect perforation, breakage or clogging of the hollow optical fiber.
[0027] 請求項 8の発明では、中空光ファイバの 1次側からスピーカ一により音波を入射させ ると共に 2次側より前記音波を 2次側マイクロホンにより検知する。 [0027] In the invention of claim 8, a sound wave is incident from the primary side of the hollow optical fiber by a speaker, and the sound wave is detected from the secondary side by a secondary microphone.
[0028] このように請求項 9の発明では、 1次側マイクロホンの検出と 2次側マイクロホンの検 出を比較して中空光ファイバの穴あきや折れや詰りを検知することができる。 [0028] Thus, in the invention of claim 9, the detection of the primary side microphone and the detection of the secondary side microphone can be compared to detect perforation, breakage or clogging of the hollow optical fiber.
[0029] 請求項 10の発明では、音波は光ファイバの中空部を通ってハンドピース 6の出口よ り出るようになつている。 In the invention of claim 10, the sound wave passes through the hollow portion of the optical fiber and exits from the outlet of the handpiece 6.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本発明における好適な実施の形態について、添付図面を参照して説明する。尚、 以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定 するものではない。また、以下に説明される構成の全て力 本発明の必須要件である とは限らない。 [0030] Preferred embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. Further, all the configurations described below are not necessarily essential to the present invention.
実施例 1  Example 1
[0031] 図 1〜図 2は実施例 1を示しており、この実施例はレーザ治療に利用されるものであ る。レーザ治療の利点としては、出血が少ない、直りが早い、手術時間が短い、適用 患者の幅が広いというものである。そしてレーザ手術装置の一つに炭酸ガスレーザ手 術装置が知られている。  FIGS. 1 and 2 show Example 1, which is used for laser treatment. The advantages of laser treatment are less bleeding, faster healing, shorter surgical time, and wider range of patients. A carbon dioxide laser surgical device is known as one of laser surgical devices.
[0032] 炭酸ガスレーザにあって、中空光ファイバ 1を導光部に用いることによって、フレキ シブル性、ハンドリング性を優れたものとすることができる。図 1に示すように中空光フ アイバ 1は中空なガラスパイプ 2の内面に金属製鏡面層 3を形成し、外面に外被覆層 4を形成したものである。そして、炭酸ガスレーザ光 Bは鏡面層 3で反射しながら進行 するようになっている。 In the carbon dioxide laser, by using the hollow optical fiber 1 for the light guide portion, the flexibility and handling properties can be made excellent. As shown in Fig. 1, the hollow optical fiber 1 has a metal mirror surface layer 3 formed on the inner surface of a hollow glass pipe 2, and an outer coating layer on the outer surface. 4 is formed. The carbon dioxide laser beam B travels while being reflected by the mirror surface layer 3.
[0033] そして、図 2に示すように炭酸ガスレーザ発生装置 5に中空光ファイバ 1の入口であ る 1次側を接続すると共に、出口である 2次側をノヽンドピース 6に接続している。炭酸 ガスレーザ発生装置 5には、スピーカーであるラウドスピーカー 7を接続すると共に、 このラウドスピーカー 7には発振器 (oscillator) 8が接続されている。一方、ハンドピ ース 6には中空光ファイバ 1に直接或いは間接的に 2次側マイクロホン 9が接続して、 中空部 1Aの音をとらえることができるようになつている。この 2次側マイクロホン 9は 1 次側に対して下流側である 2次側の意味をなし、 1次側で入射した音を受波する 2次 側マイクロホン 9は出口ではなく中空光ファイバ 1の途中に設けられていてもよいもの であり、この 2次側マイクロホン 9には、アンプ回路 10、フィルター回路 11、さらに電圧 計 12が接続されている。尚、図中 10Aはラウドスピーカー 7に接続したアンプ回路を 示している。  Then, as shown in FIG. 2, the primary side that is the entrance of the hollow optical fiber 1 is connected to the carbon dioxide laser generator 5, and the secondary side that is the exit is connected to the node piece 6. The carbon dioxide laser generator 5 is connected to a loudspeaker 7 that is a speaker, and an oscillator 8 is connected to the loudspeaker 7. On the other hand, the secondary microphone 9 is connected directly or indirectly to the hollow optical fiber 1 to the hand piece 6 so that the sound of the hollow portion 1A can be captured. The secondary microphone 9 has a meaning of the secondary side downstream from the primary side, and the secondary microphone 9 that receives the sound incident on the primary side is not an outlet but a hollow optical fiber 1. An amplifier circuit 10, a filter circuit 11, and a voltmeter 12 are connected to the secondary microphone 9. In the figure, 10A indicates an amplifier circuit connected to the loudspeaker 7.
[0034] 尚、レーザ光 Bの影響がないようにラウドスピーカー 7や 2次側マイクロホン 9が中空 光ファイバ 1に設ける必要がある。このためにラウドスピーカー 7や 2次側マイクロホン 9は光学的に陰になる領域に設置する。これはレーザ光 Bの中空光ファイバ 1内への 管入口 II側からの入射時や管出口 lO側からの出力時は、レンズ(図示せず)によつ て絞られている。よって,光学的に陰になる領域から、ラウドスピーカー 7により音を入 射、あるいは 2次側マイクロホン 9により音を受波できるようにする。実施例ではラウド スピーカー 7を炭酸ガスレーザ発生装置 5又は管入口 II側における中空部 1 Aに音 通路 7Aを介して臨ませて音を入射しており、一方 2次側マイクロホン 9においては該 2次側マイクロホン 9の受波する部位に一端を接続した音通路 9Aの他端を中空部 1 Aに臨ませて音を受波している。尚、音通路 9Aにおける中空部 1A側はほぼ管出口 lO側に向けてレ接続して 、る。  Note that the loudspeaker 7 and the secondary microphone 9 need to be provided in the hollow optical fiber 1 so that the laser beam B is not affected. For this purpose, the loudspeaker 7 and the secondary microphone 9 are placed in an optically shaded area. This is narrowed by a lens (not shown) when the laser beam B is incident on the hollow optical fiber 1 from the tube inlet II side or output from the tube outlet lO side. Therefore, the sound can be received by the loudspeaker 7 or the sound can be received by the secondary microphone 9 from the optically shaded area. In the embodiment, the loudspeaker 7 is made to enter the hollow portion 1 A on the carbon dioxide laser generator 5 or the tube inlet II side through the sound path 7 A, and the sound is incident on the secondary microphone 9. The sound is received with the other end of the sound path 9A having one end connected to the receiving portion of the side microphone 9 facing the hollow portion 1A. The hollow portion 1A side of the sound passage 9A is connected to the tube outlet 10 side.
[0035] 前記構成についてその作用を説明する。炭酸ガスレーザ発生装置 5により発生され た炭酸ガスレーザ光 Bは中空光ファイバ 1の中空部 1Aを通ってハンドピース 6の出口 より出る。さらに、発振器 (oscillator) 8によりラウドスピーカー 7が作動して音波が発 生し、この音波は光ファイバ 1の中空部 1Aを通ってハンドピース 6の出口より出るよう になっている。そして、この音波は 2次側マイクロホン 9でとらえられ、この 2次側マイク 口ホン 9に入力した音波の信号は電気的に変換されてアンプ回路 10、フィルター回路 11を介して電圧計 12によって表示される。尚、前記音波は、空気或いはその他の音 の媒体が、発生体 (ラウドスピーカー 7)の振動を受けて生ずる弾性波動であって、可 聴周波数領域に限らずそれ以外の周波数領域を含むものである。 [0035] The operation of the above configuration will be described. The carbon dioxide laser beam B generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1. Furthermore, the loudspeaker 7 is operated by the oscillator (oscillator) 8 to generate a sound wave, and this sound wave passes through the hollow part 1A of the optical fiber 1 and exits from the outlet of the handpiece 6. It has become. This sound wave is captured by the secondary microphone 9, and the sound wave signal input to the secondary microphone 9 is electrically converted and displayed by the voltmeter 12 via the amplifier circuit 10 and the filter circuit 11. Is done. The sound wave is an elastic wave generated by the vibration of the generator (loud speaker 7) in the air or other sound medium, and includes not only the audible frequency region but also other frequency regions.
[0036] そして、中空光ファイバ 1に中空部 1Aから外部に連通する穴 Pが仮に形成されてし まったときには、この穴 Pによって炭酸ガスレーザ Bが漏洩して、人的、物的な焼損事 故を招く危険性が生ずるが、このようなときには、穴 Pより音波の一部が漏洩すること で、低下した音波が 2次側マイクロホン 9でとらえられ、この 2次側マイクロホン 9に入 力した音波の信号は電気的に変換されてアンプ回路 10、フィルター回路 11を介して 電圧計 12によって通常時よりも低い電圧となって表示されるようになる。したがって、 通常時よりも低い電圧が表示されたときには、炭酸ガスレーザ Bの漏洩のおそれがあ るので、例えば炭酸ガスレーザ発生装置 5に接続した制御手段(図示せず)を作動し てレーザを停止するなど直ちに適正な対応を取ることができる。  [0036] When a hole P communicating from the hollow portion 1A to the outside is temporarily formed in the hollow optical fiber 1, the carbon dioxide laser B leaks through the hole P, and human and material burnout is caused. However, in such a case, a part of the sound wave leaks from the hole P, so that the lowered sound wave is captured by the secondary microphone 9 and input to the secondary microphone 9. The sound wave signal is electrically converted and is displayed as a voltage lower than normal by the voltmeter 12 through the amplifier circuit 10 and the filter circuit 11. Therefore, when a voltage lower than normal is displayed, the carbon dioxide laser B may be leaked. For example, a control means (not shown) connected to the carbon dioxide laser generator 5 is activated to stop the laser. It is possible to take appropriate measures immediately.
[0037] このように中空部 1 Aの内径が lmmに満たない細い中空光ファイバ 1では、中空部 1 Aは音の周波数に対してローパスフィルタの働きをするため、低い周波数しか通さ ない。そこで、本方法では主に 1kHz以下の低い周波数を採用する。これらの周波数 において、正常時は音源から中空光ファイバ 1の 1次側から入射された音は、 2次側 で 2次側マイクロホン 9により十分な強度で確認することができる。ここで、中空光ファ ィバ 1の途中に穴 Pが開くか、折れた場合は、欠陥部分の穴 Pから音響パワーが漏れ るために、 2次側マイクロホン 9に伝わる音響パワーが極端に減衰するために、異常 力^次側マイクロホン 9により確認できる。そこで、直ちにレーザを停止すればよい。  [0037] Thus, in the thin hollow optical fiber 1 in which the inner diameter of the hollow portion 1A is less than 1 mm, the hollow portion 1A functions as a low-pass filter with respect to the frequency of sound, and therefore passes only a low frequency. Therefore, this method mainly uses a low frequency of 1kHz or less. At these frequencies, normally, sound incident from the primary side of the hollow optical fiber 1 from the sound source can be confirmed with sufficient intensity by the secondary microphone 9 on the secondary side. Here, if the hole P opens or breaks in the middle of the hollow optical fiber 1, the acoustic power leaks from the hole P in the defective part, so the acoustic power transmitted to the secondary microphone 9 is extremely attenuated. Therefore, the abnormal force can be confirmed by the secondary microphone 9. Therefore, the laser may be stopped immediately.
[0038] 尚、中空光ファイバ 1は自由に曲げることが出来るが,曲げた状態では音圧は変化 してしまうおそれがある力 仮に影響はあったとしてもこのような非常に緩い曲率では 微小で、測定誤差以下である。もし、中空光ファイバ 1が鋭角に曲がっていれば,少 な力もず影響が考えられるが,当該中空光ファイバ 1では内径の 200倍以上が曲率限 界であり、非常に緩い曲がり方であり、実用上差し支えないものである。  [0038] It should be noted that the hollow optical fiber 1 can be bent freely, but the force that may change the sound pressure in the bent state is very small at such a very loose curvature even if it is affected. The measurement error is below. If the hollow optical fiber 1 is bent at an acute angle, there is little force and an effect can be considered. However, in the hollow optical fiber 1, the curvature limit is 200 times or more of the inner diameter, and the bending is very loose. This is practically acceptable.
[0039] さらに、レーザ Bによって,中空光ファイバ 1が溶け,溶けたもので中空光ファイバ 1 内が塞がった場合、出口側に全く音が届力なくなり,リークによる音圧低下よりも、もつ と音圧が下がるので、リーク時と同様に異常として検出できる。これは中空光ファイバ[0039] Further, the hollow optical fiber 1 is melted by the laser B, and the hollow optical fiber 1 is melted. When the inside is blocked, no sound reaches the exit side, and the sound pressure drops when the sound pressure drops rather than the sound pressure drop due to the leak. This is a hollow optical fiber
1内に音が入射されて 、な 、状態と全く同様なものになる。 When sound is incident in 1, it becomes exactly the same as the state.
[0040] 特にレーザ手術装置に前述の音響による検知にあっては、レーザ手術装置と同時 に使用可能となり、手元に邪魔な装置が付かなくなり、さらに小型ハンドピースへの 内蔵が可能でノ、ンドリング性を損ねないものである。 [0040] Particularly, in the case of the above-described acoustic detection in a laser surgical device, it can be used at the same time as the laser surgical device, so that no disturbing device is attached to the hand, and it can be built in a small handpiece. It does not impair the sex.
[0041] しかも、中空光ファイバ 1の途中に穴 Pが開いてリークした瞬間にリーク検出でき,そ れにより直ちにレーザを遮断することが出来るので,リーク事故を防ぐ方法として,十 分に有効である。 [0041] Moreover, since the leak can be detected at the moment when the hole P is opened in the middle of the hollow optical fiber 1 and the laser is immediately shut off, this is a sufficiently effective method to prevent a leak accident. is there.
[0042] また、例えば実際の術中の騒音は検出に影響を与えるおそれがあるが、 2次側マイ クロホン 9が拾った信号にフィルター回路 11によるフィルターを掛けて周波数弁別を 行うので,他の周波数の騒音は問題にならない。さらに、音の種類を例えば「250Hzと 400Hz」の様に複数の周波数を用いて検出を行えば誤動作の可能性は殆ど無くすこ とが出来る。  [0042] In addition, for example, actual intraoperative noise may affect detection, but the frequency picked up by the secondary microphone 9 is filtered by the filter circuit 11 to perform frequency discrimination. Noise is not a problem. Furthermore, if the sound type is detected using a plurality of frequencies such as “250 Hz and 400 Hz”, the possibility of malfunction can be almost eliminated.
[0043] 尚、中空光ファイバ 1の途中に穴 Pが開いたリーク位置によって, 2次側マイクロホン 9による Gainの波形が変化するので,リーク位置の検出も可能である。  [0043] The gain waveform of the secondary microphone 9 changes depending on the leak position where the hole P is opened in the middle of the hollow optical fiber 1, so that the leak position can also be detected.
実施例 2  Example 2
[0044] 図 3は実施例 2を示しており、前記実施例 1と同一部分には同一符号を付し、その 詳細な説明を省略する。  FIG. 3 shows a second embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0045] 中空光ファイバ 1の出口に設けた 2次側マイクロホン 9の他に、中空光ファイバ 1の 入口である 1次側に 1次側マイクロホン 13を設ける。 1次側マイクロホン 13は中空光フ アイバ 1に直接或いは間接的に接続して、中空部 1Aの音をとらえることができるように なっている。そして、ラウドスピーカー 7に発信器 17を接続し、分析器 (FFTアナライ ザ一) 14の Aチャンネル 15に 1次側マイクロホン 13を接続すると共に、分析器 (FFTァ ナライザ一) 14の Bチャンネル 16に 2次側マイクロホン 9を接続したものである。尚、図 中 10Aはラウドスピーカー 7と発振器 17間のアンプ回路、 10Bは 1次側マイクロホン 13 と Aチャンネル 15間のアンプ回路を示している。  In addition to the secondary microphone 9 provided at the exit of the hollow optical fiber 1, a primary microphone 13 is provided on the primary side that is the entrance of the hollow optical fiber 1. The primary microphone 13 is connected directly or indirectly to the hollow fiber 1 so that the sound of the hollow portion 1A can be captured. The transmitter 17 is connected to the loudspeaker 7, the primary microphone 13 is connected to the A channel 15 of the analyzer (FFT analyzer 1) 14, and the B channel 16 of the analyzer (1 FFT analyzer) 14 is connected. To which a secondary microphone 9 is connected. In the figure, 10A indicates an amplifier circuit between the loudspeaker 7 and the oscillator 17, and 10B indicates an amplifier circuit between the primary microphone 13 and the A channel 15.
[0046] 尚、実施例 1と同様にレーザ光 Bの影響がないように 1次側マイクロホン 13を光学的 に陰になる領域に設置する。例えば 2次側マイクロホン 9と同様に音通路(図示せず) を設けるなどしてもよい。 It should be noted that, as in the first embodiment, the primary side microphone 13 is optically arranged so as not to be affected by the laser beam B. Install in the shaded area. For example, a sound path (not shown) may be provided similarly to the secondary microphone 9.
[0047] したがって、炭酸ガスレーザ発生装置 5により発生された炭酸ガスレーザは中空光 ファイバ 1の中空部 1Aを通ってハンドピース 6の出口より出る。さらに、発振器 17によ りラウドスピーカー 7が作動して音波が発生し、この音波も中空部 1 Aを通ってハンド ピース 6の出口より出るようになって!/、る。  Accordingly, the carbon dioxide laser generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1. Furthermore, the loudspeaker 7 is operated by the oscillator 17 to generate sound waves, and these sound waves also come out from the outlet of the handpiece 6 through the hollow portion 1A!
[0048] そして、中空光ファイバ 1に中空部 1Aから外部に連通する穴 Pが仮に形成されてし まったときには、穴 Pより音波の一部が漏洩することで、低下した音波が 2次側マイク 口ホン 9でとらえられ、この 2次側マイクロホン 9に入力した音波の信号は電気的に変 換されて分析器 14に入力される。一方 1次側マイクロホン 13に入力した音波の信号は 電気的に変換されて分析器 14に入力される。そして 2次側マイクロホン 9からの入力 信号と 1次側マイクロホン 13からの入力信号とを、分析器 14が比較演算することで、 穴がな 、状態とある状態を分析することができる。  [0048] When a hole P communicating from the hollow portion 1A to the outside is temporarily formed in the hollow optical fiber 1, a part of the sound wave leaks from the hole P, so that the lowered sound wave is generated on the secondary side. The sound wave signal input to the secondary microphone 9 is detected by the microphone mouthphone 9 and is electrically converted and input to the analyzer 14. On the other hand, the sound wave signal input to the primary microphone 13 is electrically converted and input to the analyzer 14. Then, the analyzer 14 compares the input signal from the secondary microphone 9 and the input signal from the primary microphone 13 so that the state without a hole can be analyzed.
[0049] このようにすることで、前記実施例と同様な効果などを奏することができる。  [0049] By doing so, the same effects as the above-described embodiment can be obtained.
実施例 3  Example 3
[0050] 図 4は実施例 3を示しており、前記実施例と同一部分には同一符号を付し、その詳 細な説明を省略する。  FIG. 4 shows a third embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0051] 中空光ファイバ 1の入口である 1次側に 1次側マイクロホン 13を設け、ラウドスピーカ 一 7に発信器 17を接続し、分析器 (FFTアナライザー) 14の Aチャンネル 15に 1次側 マイクロホン 13を接続したものである。  [0051] The primary side microphone 13 is provided on the primary side which is the entrance of the hollow optical fiber 1, the transmitter 17 is connected to the loudspeaker 7, and the primary side is connected to the A channel 15 of the analyzer (FFT analyzer) 14. A microphone 13 is connected.
[0052] したがって、炭酸ガスレーザ発生装置 5により発生された炭酸ガスレーザは中空光 ファイバ 1の中空部 1Aを通ってハンドピース 6の出口より出る。さらに、発信器 7Aによ りラウドスピーカー 7が作動して音波が発生し、この音波も中空部 1 Aを通ってハンド ピース 6の出口より出るようになって!/、る。  Accordingly, the carbon dioxide laser generated by the carbon dioxide laser generator 5 exits from the outlet of the handpiece 6 through the hollow portion 1A of the hollow optical fiber 1. Furthermore, the loudspeaker 7 is activated by the transmitter 7A to generate sound waves, and these sound waves also come out from the outlet of the handpiece 6 through the hollow portion 1A!
[0053] そして、中空光ファイバ 1に中空部 1Aから外部に連通する穴が仮に形成されてしま つたときには、穴より音波の一部が漏洩することで、低下した音波が 2次側マイクロホ ン 9でとらえられ、この 2次側マイクロホン 9に入力した音波の信号は電気的に変換さ れて分析器 14に入力される。そして 2次側マイクロホン 9からの入力信号の変化を通 常時と比較演算することで、穴 Pがな!/、状態とある状態を分析することができる。 [0053] When a hole communicating from the hollow portion 1A to the outside is temporarily formed in the hollow optical fiber 1, a part of the sound wave leaks from the hole, so that the lowered sound wave is generated by the secondary microphone 9 The sound wave signal input to the secondary microphone 9 is electrically converted and input to the analyzer 14. Then, the change of the input signal from the secondary microphone 9 is passed. By performing a comparison operation at all times, it is possible to analyze the state of hole P!
[0054] このようにすることで、前記実施例と同様な効果などを奏することができる。 [0054] By doing so, the same effects as the above-described embodiment can be obtained.
実施例 4  Example 4
[0055] 図 5は実施例 4を示しており、前記実施例と同一部分には同一符号を付し、その詳 細な説明を省略する。実施例 4においては、中空光ファイバ 1の管入口 IIにラウドス ピーカー 7を音通路 7Aを介して接続したものであり、管出口 lO側に音通路 9Aを介 して 2次側マイクロホン 9を設けたものである。  FIG. 5 shows a fourth embodiment. The same reference numerals are given to the same parts as those in the previous embodiment, and detailed description thereof will be omitted. In Example 4, the loudspeaker 7 is connected to the tube inlet II of the hollow optical fiber 1 via the sound passage 7A, and the secondary microphone 9 is provided to the tube outlet lO side via the sound passage 9A. It is a thing.
[0056] このような実施例 4においても前記実施例と同様な効果を奏することができる。 [0056] In the fourth embodiment as well, the same effects as in the first embodiment can be obtained.
[0057] 次に実験例について説明する。実験例は中空光ファイバ 1に代えてステンレス製パ イブにより行ったものである。これは管の材料は剛体の境界条件 (音は伝搬せず反射 する)として扱っており、前述のガラスパイプ 2もステンレス製パイプも空気から見れば 4桁ほどインピーダンスが大きぐ空気から見れば音響的には等価なためである。 実験例 1 Next, experimental examples will be described. In the experimental example, the hollow optical fiber 1 was replaced with a stainless steel pipe. This is because the tube material is treated as a rigid boundary condition (sound does not propagate and is reflected), and the glass pipe 2 and the stainless steel pipe mentioned above are acoustic when viewed from the air where impedance is about 4 orders of magnitude higher when viewed from the air. This is because they are equivalent. Experimental example 1
[0058] 次に実験例について説明する。実験例は中空光ファイバ 1に代えてステンレス製パ イブにより行ったものである。これは管の材料は剛体の境界条件 (音は伝搬せず反射 する)として扱っており、前述のガラスパイプ 2もステンレス製パイプも空気から見れば 4桁ほどインピーダンスが大きぐ空気から見れば音響的には等価なためである。  Next, experimental examples will be described. In the experimental example, the hollow optical fiber 1 was replaced with a stainless steel pipe. This is because the tube material is treated as a rigid boundary condition (sound does not propagate and is reflected), and the glass pipe 2 and the stainless steel pipe mentioned above are acoustic when viewed from the air where impedance is about 4 orders of magnitude higher when viewed from the air. This is because they are equivalent.
[0059] 図 6〜図 8は実験例 1を示しており、ステンレス製パイプ 21の入口にラウドスピーカ 一 7を接続し、パイプ 21の入口に 1次側マイクロホン 13を設け、そしてパイプ 21の入口 から模擬リーク穴 Pを形成し、 1次側マイクロホン 13力ものスペクトルをあらわしたもの を図 8に示したものである。  FIGS. 6 to 8 show Experimental Example 1, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, a primary microphone 13 is provided at the inlet of the pipe 21, and the inlet of the pipe 21 is shown. Fig. 8 shows the spectrum of 13 primary power microphones formed from a simulated leak hole P.
実験例 2  Example 2
[0060] 図 9〜図 13は実験例 2を示しており、ステンレス製パイプ 21の入口にラウドスピーカ 一 7を接続し、パイプ 21の出口と入口に、 2次側マイクロホン 9と 1次側マイクロホン 13 を設け、そしてパイプ 21の入口から模擬リーク穴 Pを形成し、 2次側マイクロホン 9と 1 次側マイクロホン 13の 2本を用いたゲインをあらわしたものを図 10〜図 13に示したも のである。 実験例 3 FIGS. 9 to 13 show Experimental Example 2, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, and the secondary microphone 9 and the primary microphone are connected to the outlet and inlet of the pipe 21. 13 and 13 and a simulated leak hole P is formed from the inlet of the pipe 21, and the gains using two of the secondary microphone 9 and the primary microphone 13 are shown in FIGS. It is. Experimental example 3
[0061] 図 14〜図 18は実験例 3を示しており、ステンレス製パイプ 21の入口にラウドスピー カー 7を接続し、パイプ 21の入口に 2次側マイクロホン 9を設け、そしてパイプ 21の入 口から模擬リーク穴 Pを形成し、 2次側マイクロホン 9からのスペクトルをあらわしたもの を図 15〜図 18に示したものである。  FIGS. 14 to 18 show Experimental Example 3, in which a loudspeaker 7 is connected to the inlet of the stainless steel pipe 21, a secondary microphone 9 is provided at the inlet of the pipe 21, and the inlet of the pipe 21 is shown. A simulated leak hole P is formed from Fig. 15 and Fig. 18 shows the spectrum from the secondary microphone 9.
[0062] 以上の実験より、前述の中空部 1 Aの内径が lmmに満たない細い中空光ファイバ 1では、中空部 1Aは音の周波数に対してローパスフィルタの働きをするため、低い周 波数しか通さないので、本方法では主に 1kHz以下の低い周波数を採用する、とした 根拠は、非常に低い周波数から 1kHz程度まで、広い周波数に亘つて現れる。その ため、 1つの周波数だけでなぐ複数の周波数、或いは周波数範囲、を用いて監視 することができる。このことで測定の信頼性を増すことができる。実験では 2本のマイク 口ホンを用いたデータを採取したが、マイクロホンは音源と反対側に一つでも十分で ある。  [0062] From the above experiment, in the hollow optical fiber 1 having the hollow portion 1A whose inner diameter is less than 1 mm, the hollow portion 1A functions as a low-pass filter with respect to the sound frequency, so that only a low frequency is obtained. The reason for adopting a low frequency of 1kHz or less mainly in this method appears because a wide frequency range from a very low frequency to about 1kHz appears. Therefore, it is possible to monitor by using a plurality of frequencies or a frequency range that is not a single frequency. This can increase the reliability of the measurement. In the experiment, we collected data using two microphone-headphones, but one microphone is sufficient on the opposite side of the sound source.
実験例 4  Example 4
[0063] さらに、他の実験例について説明する。尚、前記実施例、実験例と同一部分につい ては同一符号を付して説明する。  [0063] Further, other experimental examples will be described. The same parts as those in the above-described examples and experimental examples will be described with the same reference numerals.
[0064] 図 19〜図 24は実験例 4を示しており、パイプ 21に 1次側マイクロホン 13を接続する 場合、 1次側マイクロホン 13の先端、すなわち集音部 13Aとパイプ 21に形成した穴 21 Aとの間に、振動絶縁を図るためにシリコンやゴムなどのパイプ状の振動絶縁用中継 部材 22を介在するようにして 、る。同様にラウドスピーカー 7とパイプ 21に形成した穴 との間に、振動絶縁を図るためにシリコンやゴムなどのパイプ状の振動絶縁用中継部 材 23を介在すると共に、 2次側マイクロホン 9の先端、すなわち集音部 9Aとパイプ 21 に形成した穴との間に、振動絶縁を図るためにシリコンやゴムなどのパイプ状の振動 絶縁用中継部材 24を介在するようにして 、る。  FIGS. 19 to 24 show Experimental Example 4, and when the primary microphone 13 is connected to the pipe 21, the tip of the primary microphone 13, that is, the hole formed in the sound collecting portion 13 A and the pipe 21. In order to insulate vibration between 21 A, a pipe-like vibration insulation relay member 22 such as silicon or rubber is interposed. Similarly, a pipe-shaped vibration insulation relay member 23 such as silicon or rubber is interposed between the loudspeaker 7 and the hole formed in the pipe 21 to insulate vibration, and the tip of the secondary microphone 9 In other words, a pipe-shaped vibration insulation relay member 24 such as silicon or rubber is interposed between the sound collecting portion 9A and the hole formed in the pipe 21 in order to provide vibration insulation.
[0065] そして、図 21に示すように 2本のマイクロホン 9, 13を用いた実験結果、リーク穴から 音圧が漏れることにより、出口側での音圧が下がり,伝達関数 (Gain)の低下が見られ る。  [0065] As shown in Fig. 21, as a result of experiments using two microphones 9, 13, the sound pressure leaks from the leak hole, so that the sound pressure at the outlet side decreases and the transfer function (Gain) decreases. Can be seen.
[0066] 図 22、図 23はパイプ 21の気柱を波動方程式を用いた伝達マトリクスで表したもので 、入口側(1次側)と出口側(2次側)の音圧比 G (ゲイン)を理論的に求める式の導出 を示している。 [0066] Figs. 22 and 23 show the air column of the pipe 21 as a transfer matrix using the wave equation. The derivation of the equation for theoretically determining the sound pressure ratio G (gain) between the inlet side (primary side) and the outlet side (secondary side) is shown.
[0067] 尚、図中 Pは音圧、 Uは体積速度、 Zはインピーダンス、 L1は、パイプ 21におけるラ ウドスピーカー 7 (又はマイクロホン 13)力 穴 Pまでの長さ、  [0067] In the figure, P is the sound pressure, U is the volume velocity, Z is the impedance, L1 is the length to the loudspeaker 7 (or microphone 13) force hole P in the pipe 21,
L2は、パイプ 21における穴 Pからマイクロホン 9までの長さ、 A, B, C, Dは、四端子 定数を示している。  L2 is the length from the hole P to the microphone 9 in the pipe 21, and A, B, C, and D are four-terminal constants.
[0068] 図 24は理論値と実験結果の比較を示したものであり、リーク位置 200mm, 500mm, 1 000mmの場合の理論値と先の実験値の比較.各リーク位置における理論値と実験値 は,約 200〜800Hzの周波数帯において,傾向が一致している.そして出口の 2次側 マイク 9がパイプ 21内に入射された音を拾えて 、る周波数帯ではよく一致して 、る。  [0068] Fig. 24 shows a comparison between the theoretical values and the experimental results, comparing the theoretical values and the previous experimental values for the leak positions 200mm, 500mm, and 1 000mm. The theoretical value and the experimental value at each leak position In the frequency band of about 200 to 800 Hz, the trends agree, and the secondary microphone 9 at the exit picks up the sound incident in the pipe 21 and agrees well in the frequency band.
[0069] 左の円で囲んだ低周波数帯での理論値と測定値の差異について.  [0069] The difference between the theoretical value and the measured value in the low frequency band enclosed by the left circle.
本来は実験値も(理論値のように)大きく Gainが低下するものと考えられるが,リークに より出口マイク(2次側マイクロホン 9)の信号がノイズフロアより小さくなつてしまい,出 口マイク(2次側マイクロホン 9)の信号がノイズフロアとなって!/、るためである。  Originally, the experimental value is also considered to be large (as in the theoretical value), and the gain is considered to decrease. However, due to the leak, the signal from the exit microphone (secondary microphone 9) becomes smaller than the noise floor, and the exit microphone ( This is because the signal from the secondary microphone 9) becomes the noise floor!
[0070] 右の円で囲んだ差異について.  [0070] About the difference in the right circle.
1kHzまでの結果で十分であるが,参考のため 2kHzまで測定している.細管(パイプ 2 1)内では,高周波数ほど音が伝藩されにくく,結果として出口側マイク(2次側マイク 口ホン 9)では SN比が低下する.この領域では,出口マイク(2次側マイクロホン 9)の 信号の信頼性は低い.この事は,どのリーク位置においても, 円で囲んだ部分で変 わらな 、傾向を示して 、ることからも,ノイズフロアを拾って!/、ることが判る。  The result up to 1kHz is sufficient, but it is measured up to 2kHz for reference. In the narrow tube (pipe 2 1), the sound is less likely to be transmitted at higher frequencies, and as a result, the outlet microphone (secondary microphone mouth) In this area, the signal-to-noise ratio is low.In this region, the reliability of the signal from the outlet microphone (secondary microphone 9) is low, and this does not change in the circled part at any leak position. From the fact that it shows a tendency, it can be seen that it picks up the noise floor!
実験例 5  Experimental Example 5
[0071] 図 25〜図 26は実験例 5を示しており、出口側マイクロホン(2次側マイクロホン 9)の みを使ったリーク検出時の構成図であり、出口側マイクロホン(2次側マイクロホン 9) を設置すると共に、ラウドスピーカー 7とパイプ 21に形成した穴との間に、振動絶縁を 図るためにシリコンやゴムなどのパイプ状の振動絶縁用中継部材 23を介在した状態 を示したものである。  FIGS. 25 to 26 show Experimental Example 5, which is a configuration diagram at the time of leak detection using only the outlet side microphone (secondary side microphone 9), and the outlet side microphone (secondary side microphone 9). ), And a pipe-shaped vibration insulation relay member 23 such as silicon or rubber is interposed between the loudspeaker 7 and the hole formed in the pipe 21 for vibration insulation. is there.
[0072] そして、出口側マイクロホン(2次側マイクロホン 9)のみを使ったスペクトル実験結果 では、リークによって音圧が低下するため,リークが有る場合には,リークが無い場合 に比べ,スペクトル (音圧レベル)が低下し,リークの検出が可能である。先の実験と 同様に,グラフに無いリーク位置においても,同様な音圧の低下を確認している。 [0072] In the spectrum experiment results using only the exit side microphone (secondary side microphone 9), the sound pressure is reduced by the leak, so if there is a leak, there is no leak. Compared to, the spectrum (sound pressure level) is reduced, and leak detection is possible. Similar to the previous experiment, a similar drop in sound pressure was confirmed at the leak position not shown in the graph.
[0073] リークが有る場合には, 「グラフ左右両端の赤破線のような音圧 (この赤破線だけは 説明のため模式的に仮想したもの)」に低下していると考えられるが,ノイズフロアの ほう力 音圧が大きいために,マイクロホン(2次側マイクロホン 9)はノイズフロアを拾 い,実験結果のようなスペクトルになったと考えられる.また,ノイズフロアの測定は, 「 実験装置全体のノイズの底」を見るために、スピーカを駆動せずに,音圧を測定した  [0073] If there is a leak, it is thought that the sound pressure has dropped to “sound pressure as shown by red dashed lines at the left and right ends of the graph (only this red broken line is virtually assumed for explanation)”. Floor force Because the sound pressure is high, the microphone (secondary microphone 9) picked up the noise floor, and it was thought that the spectrum was similar to the experimental results. Sound pressure was measured without driving the speaker to see the bottom of noise.
[0074] このように、ノイブ 21内の、伝達関数のゲインを得ることでリークの検出が可能となる 。また理論解析によってリークによるゲインの低下量を予測することもでき、さらに 2次 側マイクロホン 9によるスペクトル測定や、電圧の変化などでもリークの検出が可能と なる。 In this way, leak can be detected by obtaining the gain of the transfer function in Neuve 21. In addition, the amount of gain reduction due to leakage can be predicted by theoretical analysis, and leakage can also be detected by measuring the spectrum with the secondary microphone 9 or by changing the voltage.
実験例 6  Experimental Example 6
[0075] 図 27〜図 28は実験例 6を示しており、出口側マイクロホン(2次側マイクロホン 9)の みによるリーク検出の構成図(実用時想定)の場合であり、出口側マイクロホン(2次 側マイクロホン 9)のみでもリークの検出が可能なことから、簡素で実用的なリーク検出 装置が構築できる。図 27はその構成図である。  [0075] FIGS. 27 to 28 show Experimental Example 6, which is a configuration diagram of leak detection using only the outlet microphone (secondary microphone 9) (assumed in practical use), and the outlet microphone (2 Since leak detection is possible only with the secondary microphone 9), a simple and practical leak detection device can be constructed. FIG. 27 is a configuration diagram thereof.
[0076] ステンレス管 (パイプ 21)内には,一周波数音のみを入射させ,出口側のマイクロホ ン(2次側マイクロホン 9)でその音を拾う.マイク(2次側マイクロホン 9)は拾った音を 電気信号に変換するので,増幅器 10、フィルター 25を介してその電圧を電圧計 26に てモニタリングする。したがって,高価な測定機が不要であり,マイクロホン(2次側マ イク口ホン 9)も周波数特性が平坦である必要がない。簡単で安価な機材のみでリー ク検出が可能になる。  [0076] In the stainless steel pipe (pipe 21), only one frequency sound is incident, and the sound is picked up by the outlet microphone (secondary microphone 9). The microphone (secondary microphone 9) is picked up. Since the sound is converted into an electrical signal, the voltage is monitored by the voltmeter 26 via the amplifier 10 and the filter 25. Therefore, an expensive measuring instrument is unnecessary, and the microphone (secondary microphone 9) does not need to have a flat frequency characteristic. Leak detection is possible only with simple and inexpensive equipment.
[0077] 図 28に示すように、 250Hzの正弦波(純音)をステンレス管(パイプ 21)内に入射さ せたときの電圧測定結果.グラフのように,音がリークすると,どのリーク位置において も電圧が大きく低下するため,リークの検出は容易である。  [0077] As shown in Fig. 28, the voltage measurement results when a 250Hz sine wave (pure sound) was made to enter the stainless steel pipe (pipe 21). However, since the voltage drops greatly, it is easy to detect leaks.
産業上の利用可能性  Industrial applicability
[0078] 以上のように本発明に力かる方法及びその装置は、種々の用途に適用できる。 図面の簡単な説明 [0078] As described above, the method and apparatus according to the present invention can be applied to various applications. Brief Description of Drawings
[図 1]本発明の実施例 1を示す光ファイバの断面図であり、図 1 (A)は通常時の断面 図、図 1 (B)はレーザ光漏洩時の断面図、図 1 (C)はレーザ光漏洩時の一部切り欠き 斜視図である。 FIG. 1 is a cross-sectional view of an optical fiber showing Example 1 of the present invention, FIG. 1 (A) is a cross-sectional view at normal time, FIG. 1 (B) is a cross-sectional view at the time of laser light leakage, ) Is a partially cutaway perspective view when a laser beam leaks.
[図 2]本発明の実施例 1を示す説明図である。  FIG. 2 is an explanatory view showing Example 1 of the present invention.
[図 3]本発明の実施例 2を示す説明図である。  FIG. 3 is an explanatory view showing Example 2 of the present invention.
[図 4]本発明の実施例 3を示す説明図である。  FIG. 4 is an explanatory view showing Example 3 of the present invention.
[図 5]本発明の実施例 4を示す説明図である。  FIG. 5 is an explanatory view showing Example 4 of the present invention.
[図 6]本発明の実験例 1を示す説明図である。  FIG. 6 is an explanatory view showing Experimental Example 1 of the present invention.
[図 7]本発明の実験例 1を示す模擬リーク穴の位置の説明図である。  FIG. 7 is an explanatory view of the position of a simulated leak hole showing Experimental Example 1 of the present invention.
[図 8]本発明の実験例 1を示す 1次側 (入口側)マイクロホンでの実験のグラフである。  FIG. 8 is a graph of an experiment with a primary side (inlet side) microphone showing Experimental Example 1 of the present invention.
[図 9]本発明の実験例 2を示す説明図である。  FIG. 9 is an explanatory view showing Experimental Example 2 of the present invention.
[図 10]本発明の実験例 2を示すマイクロホンを 2本用いたリーク位置が 100〜500m mの実験のグラフである。 FIG. 10 is a graph of an experiment with a leak position of 100 to 500 mm using two microphones showing Experimental Example 2 of the present invention.
[図 11]本発明の実験例 2を示すマイクロホンを 2本用いたリーク位置が 600〜1000m mの実験のグラフである。 FIG. 11 is a graph of an experiment with a leak position of 600 to 1000 mm using two microphones showing Experimental Example 2 of the present invention.
[図 12]本発明の実験例 2を示すマイクロホンを 2本用いたリーク位置が 1100〜1500 mmの実験のグラフである。  FIG. 12 is a graph of an experiment in which a leak position is 1100 to 1500 mm using two microphones showing Experimental Example 2 of the present invention.
[図 13]本発明の実験例 2を示すマイクロホンを 2本用いたリーク位置が 1600〜1900 mmの実験のグラフである。  FIG. 13 is a graph of an experiment in which a leak position is 1600 to 1900 mm using two microphones showing Experimental Example 2 of the present invention.
[図 14]本発明の実験例 3を示す説明図である。  FIG. 14 is an explanatory view showing Experimental Example 3 of the present invention.
[図 15]本発明の実験例 3を示す 2次側(出口側)マイクロホンでのリーク位置が 100〜 500mmの実験のグラフである。  FIG. 15 is a graph of an experiment in which the leak position at the secondary side (exit side) microphone showing Experimental Example 3 of the present invention is 100 to 500 mm.
[図 16]本発明の実験例 3を示す 2次側(出口側)マイクロホンでのリーク位置が 600〜 1000mmの実験のグラフである。  FIG. 16 is a graph of an experiment with a leak position of 600 to 1000 mm in a secondary side (exit side) microphone showing Experimental Example 3 of the present invention.
[図 17]本発明の実験例 3を示す 2次側(出口側)マイクロホンでのリーク位置が 1100 〜 1500mmの実験のグラフである。  FIG. 17 is a graph of an experiment in which the leak position at the secondary side (exit side) microphone showing Experiment Example 3 of the present invention is 1100 to 1500 mm.
[図 18]本発明の実験例 3を示す 2次側(出口側)マイクロホンでのリーク位置が 1600 〜 1900mmの実験のグラフである。 [FIG. 18] The leak position at the secondary side (exit side) microphone showing Experimental Example 3 of the present invention is 1600. ~ 1900mm experiment graph.
圆 19]本発明の実験例 4を示す 1次側と 2次側にマイクロホンを設置した状態の実験 装置の説明図である。 FIG. 19 is an explanatory diagram of an experimental apparatus in which microphones are installed on the primary side and the secondary side, showing Experimental Example 4 of the present invention.
圆 20]本発明の実験例 4を示す測定条件を示す説明図である。 FIG. 20 is an explanatory view showing measurement conditions showing Experimental Example 4 of the present invention.
[図 21]本発明の実験例 4を示すマイクロホンを 2本用いたゲインのグラフである。  FIG. 21 is a gain graph using two microphones showing Experimental Example 4 of the present invention.
[図 22]本発明の実験例 4を示し、図 22 (A)はパイプの平面図、図 22 (B)は伝達マトリ タスの説明図、図 22 (C)は伝達マトリクスの数式を示している。  FIG. 22 shows experimental example 4 of the present invention, FIG. 22 (A) is a plan view of a pipe, FIG. 22 (B) is an explanatory diagram of a transfer matrix, and FIG. 22 (C) is a formula of a transfer matrix. Yes.
[図 23]本発明の実験例 4を示す他の伝達マトリクスの数式を示している。  FIG. 23 shows another transfer matrix formula showing Experimental Example 4 of the present invention.
圆 24]本発明の実験例 4を示す理論解析と実験結果の比較を示したグラフである。 24] A graph showing the comparison between the theoretical analysis and experimental results showing Experimental Example 4 of the present invention.
[図 25]本発明の実験例 5を示す 2次側にマイクロホンを設置した状態の実験装置の 説明図である。  FIG. 25 is an explanatory diagram of an experimental apparatus in which a microphone is installed on the secondary side, showing Experimental Example 5 of the present invention.
[図 26]本発明の実験例 5を示す 2次側マイクロホンでのスペクトルを示したグラフであ る。  FIG. 26 is a graph showing a spectrum of a secondary microphone showing Experimental Example 5 of the present invention.
圆 27]本発明の実験例 6を示す実験装置の説明図である。 FIG. 27 is an explanatory diagram of an experimental apparatus showing Experimental Example 6 of the present invention.
圆 28]本発明の実験例 6を示す測定によるリーク検出のグラフである。 [28] FIG. 28 is a graph of leak detection by measurement showing Experimental Example 6 of the present invention.
符号の説明 Explanation of symbols
1 中空光ファイバ  1 Hollow optical fiber
5 炭酸ガスレーザ発生装置  5 Carbon dioxide laser generator
7 ラウドスピーカー  7 Loudspeaker
9 2次側マイクロホン  9 Secondary microphone

Claims

請求の範囲 The scope of the claims
[1] 中空光ファイバを用いてレーザ光を伝送させる方法において、前記中空光ファイバ の 1次側から音波を入射させると共に 2次側より前記音波を検知することで中空光フ アイバの欠損や詰りを検出する方法。  [1] In a method of transmitting laser light using a hollow optical fiber, a sound wave is incident from the primary side of the hollow optical fiber and the sound wave is detected from the secondary side, whereby the hollow light fiber is lost or clogged. How to detect.
[2] 中空光ファイバを用いてレーザ光を伝送させる方法において、前記中空光ファイバ の 1次側から音波を入射させると共に 2次側より前記音波を検知し、前記 1次側音波 と前記 2次側音波を比較して中空光ファイバの欠損や詰りを検出する方法。 [2] In the method of transmitting laser light using a hollow optical fiber, a sound wave is incident from the primary side of the hollow optical fiber and the sound wave is detected from the secondary side, and the primary side sound wave and the secondary sound wave are detected. A method for detecting defects and clogging of hollow optical fibers by comparing side acoustic waves.
[3] 前記 1次側の音波と前記 2次側の音波の信号を電気的に検出することを特徴とする 請求項 1〜2のいずれか 1項に記載の光ファイバの欠損や詰りを検出する方法。 [3] The optical fiber defect or clogging according to any one of claims 1 to 2, wherein the primary side acoustic wave signal and the secondary side acoustic wave signal are electrically detected. how to.
[4] 前記音波をスピーカ一により発生させ、前記 2次側音波をマイクロホンにより検知す ることを特徴とする請求項 1〜3のいずれか 1項に記載の光ファイバの欠損や詰りを 検出する方法。 4. The optical fiber according to any one of claims 1 to 3, wherein the sound wave is generated by a speaker and the secondary sound wave is detected by a microphone. Method.
[5] 前記 1次側音波を 1kHz以下の低い周波数とすることを特徴とする請求項 1〜4の いずれか 1項に記載の光ファイバの欠損や詰りを検出する方法。  [5] The method for detecting a loss or clogging of an optical fiber according to any one of claims 1 to 4, wherein the primary side acoustic wave has a low frequency of 1 kHz or less.
[6] 前記 1次側音波を複数の周波数とすることを特徴とする請求項 1〜5のいずれか 1 項に記載の光ファイバの欠損や詰りを検出する方法。 6. The method for detecting an optical fiber defect or clogging according to any one of claims 1 to 5, wherein the primary side acoustic wave has a plurality of frequencies.
[7] 中空光ファイバの 1次側に音波を入射させる音源を設けると共に、 2次側に前記音 波を検知する検知手段を設けたことを特徴とする中空光ファイバの欠損や詰り検出 装置。 [7] A hollow optical fiber loss / clogging detection device, characterized in that a sound source for making sound waves incident on the primary side of the hollow optical fiber is provided, and a detection means for detecting the sound wave is provided on the secondary side.
[8] ガスレーザ発生装置側にスピーカーを接続し、前記中空光ファイバに 2次側マイク 口ホンが接続して ヽることを特徴とする請求項 7記載の中空光ファイバの欠損や詰り 検出装置。  8. The hollow optical fiber loss or clogging detection device according to claim 7, wherein a speaker is connected to the gas laser generator side, and a secondary microphone port is connected to the hollow optical fiber.
[9] 中空光ファイバに 1次側マイクロホンを設けることを特徴とする請求項 8記載の中空 光ファイバの欠損や詰り検出装置。  [9] The hollow optical fiber defect or clogging detection device according to [8], wherein the hollow optical fiber is provided with a primary microphone.
[10] 前記 2次側が、中空光ファイバに接続されレーザ光が出るハンドピース側であること を特徴とする請求項 7〜9のいずれか 1項に記載の中空光ファイバの欠損や詰り検出 装置。 10. The hollow optical fiber defect or clogging detection device according to any one of claims 7 to 9, wherein the secondary side is a handpiece side that is connected to the hollow optical fiber and emits laser light. .
PCT/JP2006/315170 2005-08-01 2006-07-31 Method and device for detecting fracture or clogging of optical fiber WO2007015467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529260A JP4719894B2 (en) 2005-08-01 2006-07-31 Method and apparatus for detecting loss or clogging of optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005223428 2005-08-01
JP2005-223428 2005-08-01

Publications (1)

Publication Number Publication Date
WO2007015467A1 true WO2007015467A1 (en) 2007-02-08

Family

ID=37708747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315170 WO2007015467A1 (en) 2005-08-01 2006-07-31 Method and device for detecting fracture or clogging of optical fiber

Country Status (2)

Country Link
JP (1) JP4719894B2 (en)
WO (1) WO2007015467A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145964A (en) * 1984-08-10 1986-03-06 Anritsu Corp Method and device for inspecting optical fiber with ultrasonic wave
JPS61292551A (en) * 1985-06-20 1986-12-23 Matsushita Electric Ind Co Ltd Optical fiber state monitor
JPH06300664A (en) * 1993-04-14 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Breakage detection method for optical fiber
JP2000221108A (en) * 1999-01-29 2000-08-11 Kawasaki Heavy Ind Ltd Soundness inspection instrument for optical fibers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6301418B1 (en) * 1997-10-24 2001-10-09 3M Innovative Properties Company Optical waveguide with diffuse light extraction
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145964A (en) * 1984-08-10 1986-03-06 Anritsu Corp Method and device for inspecting optical fiber with ultrasonic wave
JPS61292551A (en) * 1985-06-20 1986-12-23 Matsushita Electric Ind Co Ltd Optical fiber state monitor
JPH06300664A (en) * 1993-04-14 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Breakage detection method for optical fiber
JP2000221108A (en) * 1999-01-29 2000-08-11 Kawasaki Heavy Ind Ltd Soundness inspection instrument for optical fibers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUYAMA E. ET AL.: "Kannai Heimenha no Gensui Teisu (Gensui Denpa o Tomonau Shoonkei no Onkyo Tokusei Dai 1 PO)", JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN, vol. 35, no. 4, 1979, pages 152 - 164 *
THE JAPAN SOCIETY OF MECHANICAL ENGINEERS HOKURIKU SHINETSU BRANCH SOKAI KOEN RONBUNSHU, 1 March 2006 (2006-03-01) *

Also Published As

Publication number Publication date
JPWO2007015467A1 (en) 2009-02-19
JP4719894B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP7097296B2 (en) Detection of blockages in porous members
US11839498B2 (en) Robust alarm system
US20200368469A1 (en) Acoustic detection for respiratory treatment apparatus
WO1991004477A1 (en) Piping abnormality monitoring apparatus
ES2688736T3 (en) Acoustic emission system and method to predict explosions in dissolution tank
AU2799601A (en) Air filtration system with filter efficiency management
JP5586009B2 (en) Vibration detection system, apparatus using the system, and vibration detection method
US20150349480A1 (en) Laser waveguide device and laser waveguide system
JP2013253831A (en) Abnormal sound detection device and method
JP4719894B2 (en) Method and apparatus for detecting loss or clogging of optical fiber
EP2480870A1 (en) Heat sensitive sensor for flexible waveguides
JP3236067B2 (en) Insufflation device
AU2014271343A1 (en) Acoustic Detection for Respiratory Treatment Apparatus
CN113631114A (en) Optical fiber state detection system
AU2013201312B2 (en) Acoustic Detection for Respiratory Treatment Apparatus
US4980674A (en) Acoustic ash deposition monitor apparatus and method
JP3802594B2 (en) Wound inspection apparatus and endoscope apparatus provided with the same
RU2241901C2 (en) Tube burst detector
JPS61292551A (en) Optical fiber state monitor
JP3920907B2 (en) Wound inspection apparatus and endoscope apparatus provided with the wound inspection apparatus
JPS6177758A (en) Monitoring unit for optical fiber state
WO2022234517A1 (en) Laser system monitoring using detection of back reflection
JPS614938A (en) Monitoring device for state of optical fiber
JPH06250670A (en) Diagnostic device for active noise eliminating device
JP2013156181A (en) Cave blockage detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007529260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782048

Country of ref document: EP

Kind code of ref document: A1