WO2007013517A1 - Evaluation system for lymphangiogenesis - Google Patents
Evaluation system for lymphangiogenesis Download PDFInfo
- Publication number
- WO2007013517A1 WO2007013517A1 PCT/JP2006/314782 JP2006314782W WO2007013517A1 WO 2007013517 A1 WO2007013517 A1 WO 2007013517A1 JP 2006314782 W JP2006314782 W JP 2006314782W WO 2007013517 A1 WO2007013517 A1 WO 2007013517A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell line
- lymphatic
- endothelial cells
- cells
- lymphangiogenesis
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5082—Supracellular entities, e.g. tissue, organisms
- G01N33/5088—Supracellular entities, e.g. tissue, organisms of vertebrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2503/00—Use of cells in diagnostics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/04—Immortalised cells
Definitions
- the present invention relates to a rat thoracic lymphatic endothelial cell into which a large T antigen gene of the SV40 temperature-sensitive mutant tsA58 has been introduced, and a venous endothelial cell-derived strain that is parallel to the rat thoracic duct.
- the present invention relates to a lymphangiogenesis evaluation system characterized by observing the formation of a lumen in a test tube using a modified cell.
- the vascular system in a living body can be broadly classified into a vascular system composed of vascular endothelial cell force and a lymph vascular system composed of lymphatic endothelial cells.
- vasculature it has been clarified so far that the function of blood vessels in each organ is organ-specific at the molecular and gene level.
- angiogenesis occurs during menstruation in females under normal conditions, and angiogenesis occurs during wound healing, when rheumatism worsens, when tumors grow, and when metastases are formed.
- great interdisciplinary efforts have been expended, and it has been elucidated at the molecular and genetic levels that angiogenesis plays an important role in both physiological and pathological aspects.
- strategies to target these pathological new blood vessels including tumor growth and metastasis have been devised, and many angiogenesis inhibitors have already been put to practical use in the treatment of rheumatoid tumors. Yes.
- vascular endothelial cells are isolated from various organs and their culturing technology improved dramatically. 'The biggest factor is the ability to experiment on the genetic level.
- vascular endothelial cells are seeded and cultured on a gel to form a lumen that maintains the vascular system function in vivo, which has already been widely used as a model for in vitro angiogenesis.
- An angiogenesis inhibitor was developed by screening a small molecule organic compound that was randomly synthesized using an in vitro angiogenesis model using the inhibitory effect of vascular endothelial cell lumen formation as an indicator. It has reached practical use.
- lymphatic angiogenesis contributes positively and actively in disease states. Interdisciplinary progress has been slow compared to vascular and angiogenesis research. There are many pathologies that involve lymphangiogenesis, but it can be roughly divided into abnormalities in lymphangiogenic function and those caused by injured lymphangiogenic function. There is.
- Examples include lymph node metastasis of various cancer cells. Regarding the mechanism of lymph node metastasis
- Non-patent Document 1 Tumor vascular endothelial growth factor (VEGF-C, VEGF-D) induces tumor lymphangiogenesis, resulting in enhanced lymph node metastasis.
- VEGF-C Tumor vascular endothelial growth factor
- VEGF-D Tumor vascular endothelial growth factor
- Neoplasia and tumor lymph node metastasis are being elucidated at the molecular level.
- this is a major reason why research on the molecular and genetic level of tumor lymphangiogenesis and clinical application research on drug development, etc., do not progress due to a stable lymphangiogenesis evaluation system.
- lymphedema In many diseases, secondary lymphedema occurs. Lymphedema may be due to a congenital genetic disease or to acquired lymphatic vessel damage. A typical example is lymphedema of the upper limb or lower limb after cancer surgery, which has a therapeutic effect by inducing lymphangiogenesis by gene therapy with the VEGF-C gene ( Non-patent literature 2).
- lymphangiogenesis including lymphovascular function specificity and tumor lymphangiogenesis in each organ is mainly from the viewpoint of morphological 'anatomical macro using electron microscopes.
- the research using lymphatic endothelial cells is currently conducted in the primary culture system because the passage and maintenance of lymphatic endothelial cells is extremely difficult.
- cell lines of the third to fourth passages have been obtained by culturing rat lymphatic endothelial cells in endothelial growth medium EGM-2 (clontecs USA) in hypoxic air (patent document). 1).
- Patent Document 2 a method of isolating lymphatic endothelial cells from microvascular endothelial cells using a specific antibody that recognizes the extracellular domain of VEGFR-3 is known (Patent Document 2).
- primary cells are transformed by introducing oncogenic genes such as ras and cmyc, adenovirus El A gene, SV40 virus large T antigen gene, human papillomavirus HPV16 gene, etc. into primary cells. Attempts have been made to establish an immortalized cell line that retains the vigorous proliferative ability of the cell and does not lose its cell-specific characteristics even by substituting the force.
- Non-patent Document 3 Blood brain Vascular endothelial cells (Patent Document 3), retinal nerve cells (Patent Document 4), periodontal ligament cells (Patent Document 5) and the like are known.
- Patent Document 1 JP 2004-248577 A
- Patent Document 2 Special Table 2005-500045
- Patent Document 3 International Publication WOOOZ20599
- Patent Document 4 JP 2002-112764
- Patent Document 5 JP 2002-262862 A
- Non-patent literature l Nature Medcine 7, 186-191 (2001)
- Non-Patent Document 2 "Vessel research is powerful", p. 117, Yodosha, 2004
- Non-Patent Document 3 Transgenic Research 4, 215—225 (1995)
- Non-Patent Document 4 Genes to Cells 2, 235-244 (1997)
- an object of the present invention is to construct an evaluation system that can assess the formation of lymphocytes in a test chamber, to establish a cell line used for it, and to inhibit lymphangiogenesis by using the evaluation system.
- the aim is to find compounds, genes, proteins, etc. that have a promoting effect, and to develop new therapeutics for diseases involving lymphangiogenesis, such as cancer lymph node metastasis and lymphedema.
- the present inventors systemically express the large T antigen gene of SV40 temperature-sensitive mutant ts A58 effective in establishing an immortalized cell line under the control of an endogenous large T antigen gene promoter
- a collagenase solution is injected into the thoracic duct of Transgenic rats and the accompanying parallel vein, and the exfoliated lymph vessels and vascular endothelial cells are collected, and markers specific to the endothelial cells and lymph vessels are collected.
- An immortalized cell line was obtained by a method of selective cloning using.
- the SV40 temperature-sensitive mutant tsA58 large T antigen gene used in the present invention is a transgenic rat that expresses the tsA58 large T antigen gene in all cells.
- the modified fluorescent protein (EGFP) gene may be introduced into this rat!
- lymph vessels and intravascular cells that were detached in the enzyme solution were collected on a petri dish, and the collected lymphatic endothelial cells and vascular endothelial cells were subcultured twice, followed by colony formation and proliferation. A relatively fast colony is isolated from surrounding cells using a penicillin cup. Repeat this procedure three times to isolate the cell line.
- a known or commercially available medium may be used as appropriate for the culture.
- the cultured cells can be identified as lymphatic endothelial cells or vascular endothelial cells by a specific marker.
- the cell line can be identified as an endothelial cell by assaying the CD31 antigen, which is a marker for endothelial cells, by the FACS method (fluorescence-activated cell sorter).
- the FACS method fluorescence-activated cell sorter
- Prox-1 and LYVE1 which are markers of lymphatic endothelial cells, were assayed by Western blotting and RT-PCR to confirm that they were cell line endothelial cells obtained from the thoracic duct. Can be identified.
- An angiogenic system that is an in vitro lymphatic vessel and a control group includes, for example, the obtained lymphatic endothelial cells or vascular endothelial cells suspended in a medium, seeded on a gel-coated plate, Can be observed with an inverted microscope or the like.
- the lumen forming ability is obtained by attaching a camera to an inverted microscope, selecting several fields of view randomly from the photograph taken, and analyzing the length of the lumen formed by lymphatic endothelial cells and vascular endothelial cells by image analysis.
- the ratio of the lymphatic endothelial cell group to the vascular endothelial cell group may be calculated and used as an index.
- lymphangiogenesis system of the present invention when screening for a substance that inhibits lymphangiogenesis, screening of a substance of the present invention that has previously been enhanced with fibroblast growth factor 2 (FGF2) or the like.
- FGF2 fibroblast growth factor 2
- AMP endothelial cells can be used.
- FIG.4 Construction of lymphatic vessels in vitro using an established cell line and an angiogenesis model as a control (Photo 4)
- FIG. 5 Lymphangiogenesis-specific expression gene searched using the model of the present invention (Photo 5)
- FIG. 6 Effect of JNK, MEK, PI3K on the ability of FGF-induced cell lines to form cell lumens And the effects of FGFR-TK inhibitors
- the passable cell line derived from the thoracic lymphatic endothelial cell of the present invention is a thoracic endothelial cell derived from a transgenic mammal into which the large T antigen gene of SV40 temperature-sensitive mutant tsA58 has been introduced. Obtained by sampling.
- the passable cell line derived from the vascular endothelial cell of the present invention is parallel to the transmammalian mammalian thoracic duct into which the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 has been introduced. It is obtained by collecting veins.
- These endothelial cells can be obtained by treatment with collagenase ZEDTA solution to separate the endothelial cells.
- lymphatic endothelial cells After culturing thoracic duct or venous cells, the presence or absence of marker protein expression can be confirmed to identify the obtained cells as lymphatic endothelial cells or vascular endothelial cells. Specifically, for identification of lymphatic endothelial cells, it is confirmed that an endothelial cell marker is expressed and a lymphatic endothelial cell-specific marker is expressed. To identify vascular endothelial cells, it expresses an endothelial cell marker, but confirms that it expresses a lymphatic endothelial cell-specific marker.
- one or more selected from the group consisting of CD31 antigen, Tie-2, VEGFR-2, VEGFR-1, CD34, Notch, PDGFR, EGFR, and FGFR can be used.
- one or more selected from the group consisting of Prox-1, LYVE-1, VEGFR-3, Podoplanin, and SLC may be used. it can.
- the expression of the large T antigen protein is temperature sensitive. That is, it is desirable to confirm that the large T antigen protein is expressed under the culture condition of 33 ° C, but is not expressed under the culture condition of 37 ° C.
- Such SV40 temperature-sensitive mutant cell lines can control their growth depending on temperature conditions, i.e., retain permanent growth at 33-37 ° C and stop growing at 39 ° C. It is preferable because expression of cell-specific differentiation traits can be controlled.
- the cells thus obtained have the lumen forming ability of lymphatic vessels or vascular cells.
- the lumen forming ability can be confirmed by observation with a microscope or the like.
- the obtained lymphatic endothelial cell line and vascular endothelial cell line can be used for screening for a tube formation inhibitor or promoter.
- a test substance is added to a medium containing a cell growth factor such as FGF, and the tube formation of the lymphatic endothelial cell line or vascular endothelial cell line of the present invention is performed. This can be done by measuring the degree.
- the test substance can be a candidate for the tube formation inhibitor.
- screening of the luminal formation promoting agent can be performed by adding a test substance in the medium and measuring the degree of luminal formation of the lymphatic endothelial cell line or vascular endothelial cell line of the present invention. it can.
- the test substance can be used as a candidate for the lumen formation promoter.
- lymphatic endothelial cell line and vascular endothelial cell line of the present invention the genes or proteins expressed in lymphatic endothelial cells and vascular endothelial cells are compared. By identifying a gene or protein that is not expressed in cells, a lymphatic-related gene or protein or a gene or protein involved in lymphangiogenesis can be identified.
- D SV40 temperature-sensitive mutant tsA58 a cell collected from the thoracic duct of a rat into which a large T antigen gene was introduced, was used with markers specific to endothelial cells and lymphatic vessels.
- a lymphangiogenesis evaluation system characterized by using a cell line that can be maintained for passage from a thoracic lymphatic endothelial cell obtained by selective cloning, and observing the formation of the lumen of the cell line in a test tube.
- SV40 temperature-sensitive mutant tsA58 large T antigen gene-transduced rat thoracic duct and cells that also collected the inferior vena cava force that runs parallel to the thoracic duct were transferred to endothelial cells and lymphatic vessels.
- a thoracic duct obtained by selective cloning using a specific marker and a cell line that can be maintained for passage from venous endothelial cells that run parallel to the thoracic duct are used.
- a lymphangiogenesis evaluation system characterized in that formation is observed and compared in vitro
- SV40 temperature-sensitive mutant tsA58 large rat antigen-transfected rat thoracic duct and the inferior vena cava that accompanies the thoracic duct are used to identify markers specific to endothelial cells and lymphatic vessels.
- CD31 antigen and Prox-1 and Z or LYVE-1 are used, and cells are selected using antibodies against them, and veins that run parallel to the established lymphatic endothelial cell or thoracic duct Endothelial cells are obtained, The method as described in said (4) characterized by the above-mentioned.
- EDTA disodium ethylenediamine tetraacetate
- PBS phosphate buffered saline
- EGFP Enhanced Green Fluorescent Protein
- vascular endothelial cells from lymphatic endothelial cells with thoracic duct force and veins parallel to the thoracic duct was performed as follows.
- EGFP- SV40 temperature-sensitive mutant ts A58 large T-transgenic rat was introduced with anesthesia, and the inferior vena cava and its associated lymphatic vessels were detached from the connective tissue.
- the vein was dissociated using tweezers with a stereomicroscope.
- the upper ends of each of the thoracic duct and vein were ligated with sutures, and collagenase ZEDTA solution was injected from the lower end with a tuberculin needle.
- the collagenase / EDTA solution was contained in the thoracic duct and vein, the upper end from the entry portion of the injection needle was ligated with a suture, and the thoracic duct and vein containing the collagenase ZEDTA solution were removed.
- the excised thoracic duct and vein are left in a petri dish and left in a 37 ° C carbon dioxide incubator to detach lymphatic vessels and vascular endothelial cells from the thoracic duct and vein with the collagenase ZEDTA solution included. I let you.
- the encapsulated collagenase ZEDT A solution in which exfoliated lymphatic vessels and vascular endothelial cells are suspended is dispersed in 7 mL of culture medium (Hu-Media EG2, Kurabo Industries, Inc.).
- the seeds were seeded on a 100 mm ⁇ culture dish (Betaton's Dickinson). Colonies were formed by culturing (primary culturing) in a 37 ° C carbon dioxide incubator (5% carbon dioxide 95% air, saturated humidity). The medium was changed twice a week, and the relatively fast growing colonies that formed colonies after 7-10 days were isolated using the penicillin cup.
- Example 2 The obtained cells were again seeded in a 100 mm ⁇ culture dish and cultured in a carbon dioxide gas incubator at 33 ° C to form colonies. Furthermore, colonies with a relatively fast growth rate were isolated using a penicillin cup, and the surrounding cell force was isolated to obtain a thoracic duct-derived lymphatic cell line (B2 TD) and a vein-derived vascular endothelial cell line (P4IVC). ( Figure 1Z Photo 1) [0021]
- B2 TD thoracic duct-derived lymphatic cell line
- P4IVC vein-derived vascular endothelial cell line
- the obtained thoracic duct-derived cell line is a B2TD camper tube endothelial cell.
- the expression of the endothelial cell marker CD31 antigen was expressed by the FACS method, and the lymphoendothelial cell-specific marker Prox-1 was Western blotted. It was identified by testing by the Ting method.
- CD31 antigen was assayed by the FACS method.
- a thoracic duct-derived lymphatic cell line (B2TD) was cultured in a 60 mm ⁇ culture dish to 80% saturation. Collected cells 1 X 10 6 pieces of lmL of PBS (-) was suspended in, after centrifugation, the pellet O.lmL of PBS (-) was resuspended in the anti-rat CD31 antibody as a primary antibody (Chemicon Inc.) React with FITC-labeled anti-mouse IgG antibody (DakoCytomation) as a secondary antibody to express CD31 antigen-specific expression was detected using Betasonic FACS.
- Prox-1 a lymphatic endothelial cell-specific marker
- AngioBIo anti-rat PROX-1 antibody
- HRP-labeled anti-rabbit IgG antibody DakoCytomation
- the obtained blood vessel-derived cell line P4IVC is vascular endothelial cell, and the expression of endothelial cell marker CD31 antigen is assayed by FACS method and lymphatic endothelial cell specific marker Prox 1 is assayed by Western blotting method. Was identified.
- CD31 antigen was assayed by the FACS method.
- a blood vessel-derived lymphatic cell line (P41V C) was cultured in a 60 mm ⁇ culture dish to 80% saturation. Collected cells 1 X 10 6 pieces of lmL of PBS (-) was suspended in, after centrifugation, the pellet O.LmL PBS (-) was resuspended, with the primary antibody anti-rat CD31 antibody (Chemicon, Inc. ) was reacted, and FITC-labeled anti-mouse IgG antibody (DakoCytomation) was reacted as a secondary antibody, and CD31 protein-specific expression was detected with Betaton FACS.
- Prox-1 a lymphatic endothelial cell-specific marker
- AngioBIo anti-rat Prox-1 antibody
- HRP-labeled anti-rabbit Ig G antibody DakoCytomation
- PPN2106M1 ECL Western blotting detection system
- lymphangiogenesis evaluation system Whether or not both of the obtained cell lines possess lymphatic and vascular functions was tested using the ability to form a lumen on a gel as an index. That is, both cell lines were suspended in DMEM ZF-12 medium containing 0.2% FBS (6 ⁇ 10 4 ZmL) and seeded in a 48-well plate (No. 3548, manufactured by Costar) coated with gel (lmgZwell). Every 1 hour, the tube formation ability of lymphatic endothelial cells and vascular endothelial cells on the gel was observed with an inverted microscope and photographed (Fig. 4Z Photo 4). As a result, both cells formed a good lumen.
- the ability to form a lumen five random fields were selected from the images taken over time after cell seeding, and the length of the lumen formed by lymphatic endothelial cells and vascular endothelial cells as a control group was measured by image analysis. Evaluation was made by calculating the ratio to the control group.
- Serum-starved B2TD cells (1 X 10 4 ) are suspended in FGF2-containing DMEM medium, SP600 125 (JNK inhibitor), U0126 (MEK inhibitor), LY294002 (PIK inhibitor) or SU49 84 (FGFR—TK inhibition) Agent) was pretreated with 20 mM each for 5 minutes and then seeded in a 96-well plate coated with Matrigel. After culturing at 37 ° C for 3 hours, the length of the formed lumen was measured using a map meter. Data are shown as mean (4 holes) standard deviation. * p 0.05 indicates p value compared with FGF2 treatment group. ( Figure 6)
- Example 1 the thoracic duct-derived lymphatic cell line obtained in Example 1 was subject to inhibition of lumen formation by an existing inhibitor, and the thoracic duct-derived lymphatic cell line inhibited lymphatic lumen formation. It proved to be effective for screening substances.
- Example 5 The in vitro lymphangiogenesis evaluation system constructed in Example 5 was used to search for lymphangiogenesis-specific expressed genes. Immediately after seeding both cell lines on the gel and at the time of tube formation, both cell lines were collected and subjected to a comprehensive expression analysis using cDNA microarray (Agilent). As a result, about 400 lymphatic vessels and lymphangiogenesis-specific genes were identified. ( Figure 5Z Photo 5)
- Lymphatic endothelial cells having luminal formation ability and venous blood obtained by the method of the present invention An immortalized cell line of vascular endothelial cells is used to provide a lymphangiogenesis evaluation system characterized by observing the formation of a lumen in a test tube.
- the lymphangiogenesis evaluation system includes drug permeation research in lymphatic vessels, supply of various factors to lymphatic vessels, research on metabolites, and transport mechanism study of selective substance permeation existing in lymphatic endothelial cell membrane. It can be used to study the toxicity of drugs to lymphatic endothelial cells. Furthermore, the evaluation system is an evaluation system that conducts screening on the safety and efficacy of pharmaceuticals, maintenance of in vivo homeostasis, diagnosis of diseases related to dysfunction of lymphoid tissues, development of treatment methods, etc. at the cellular level. Available as
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Disclosed is a method for establishment of a cell strain derived from a thoracic duct or a vein passing along with the thoracic duct which can be maintained by passage. The method is characterized by performing a selective cloning by using a rat thoracic duct having a large T antigen gene of SV40 temperature-sensitive mutant stain tsA58 introduced therein and an inferior vena cava passing along with the thoracic duct and using markers specific to an endothelial cell and a lymph vessel cell. The resulting lymphatic endothelial cell or vascular endothelial cell is seeded on a gel, and the observation is made with respect to the formation of lumens. Thus, an evaluation system for lymphangiogenesis using the lumen-formation capability in vitro as a measure can be established.
Description
明 細 書 Specification
リンパ管新生評価系 Evaluation system for lymphangiogenesis
技術分野 Technical field
[0001] 本発明は、 SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入され たラットの胸管リンパ管内皮細胞および該ラット胸管に付随して並走する静脈の内皮 細胞由来の株化細胞を利用した、管腔形成を試験管内で観察することを特徴とする リンパ管新生評価系に関するものである。 [0001] The present invention relates to a rat thoracic lymphatic endothelial cell into which a large T antigen gene of the SV40 temperature-sensitive mutant tsA58 has been introduced, and a venous endothelial cell-derived strain that is parallel to the rat thoracic duct. The present invention relates to a lymphangiogenesis evaluation system characterized by observing the formation of a lumen in a test tube using a modified cell.
背景技術 Background art
[0002] 生体内の脈管系は血管内皮細胞力 構成される血管系と、リンパ管内皮細胞から 構成されるリンパ管系とに大別できる。血管系に関してはこれまでに、各臓器におけ る血管の機能は、臓器特異性を有することが分子および遺伝子のレベルでも明らか となってきている。また、正常状態では女性の月経時に血管新生が生じ、疾病状態 では損傷治癒時、リウマチの悪化時、腫瘍増殖時および転移形成時等に血管新生 が生じることが知られている。さらに学際的に多大な努力が費やされ、血管新生が生 理的および病理的にも重要な役割を果たしていることが、分子レベル、遺伝子レベル で解明されている。その結果、腫瘍の増殖'転移等を含むこれら病的な新生血管を 治療の標的とする戦略が考案されており、既に、数多くの血管新生阻害剤が、リウマ チゃ腫瘍治療に実用化されている。 [0002] The vascular system in a living body can be broadly classified into a vascular system composed of vascular endothelial cell force and a lymph vascular system composed of lymphatic endothelial cells. Regarding the vasculature, it has been clarified so far that the function of blood vessels in each organ is organ-specific at the molecular and gene level. It is also known that angiogenesis occurs during menstruation in females under normal conditions, and angiogenesis occurs during wound healing, when rheumatism worsens, when tumors grow, and when metastases are formed. Furthermore, great interdisciplinary efforts have been expended, and it has been elucidated at the molecular and genetic levels that angiogenesis plays an important role in both physiological and pathological aspects. As a result, strategies to target these pathological new blood vessels including tumor growth and metastasis have been devised, and many angiogenesis inhibitors have already been put to practical use in the treatment of rheumatoid tumors. Yes.
血管機能や血管新生機序を解明でき、医薬品が開発され、人類の福祉に貢献でき たのは、各種臓器より血管内皮細胞が単離され、その培養技術が飛躍的に向上した ことにより、細胞 '遺伝子レベルでの研究が試行できるようになったことが最大の要因 である。例えば、血管内皮細胞はゲル上に播種'培養することで、生体内での血管系 機能を維持した管腔を形成するが、これは試験管内血管新生のモデルとして既に汎 用されている。試験管内血管新生モデルを使用し、無作為に化学合成された低分子 有機化合物について、血管内皮細胞の管腔形成の阻害効果を指標にスクリ一ニン グすることで、血管新生阻害剤が開発され、実用化に至っている。 We were able to elucidate the vascular function and angiogenesis mechanism, develop pharmaceuticals, and contribute to the welfare of mankind because the vascular endothelial cells were isolated from various organs and their culturing technology improved dramatically. 'The biggest factor is the ability to experiment on the genetic level. For example, vascular endothelial cells are seeded and cultured on a gel to form a lumen that maintains the vascular system function in vivo, which has already been widely used as a model for in vitro angiogenesis. An angiogenesis inhibitor was developed by screening a small molecule organic compound that was randomly synthesized using an in vitro angiogenesis model using the inhibitory effect of vascular endothelial cell lumen formation as an indicator. It has reached practical use.
[0003] 一方、リンパ管系はこれまで、生体内での老廃物等を、ただ、受動的に排出するこ
とで生体の恒常性を保持するためだけに存在していると考えられてきた。従って、リン パ管ゃリンパ管新生が疾病状態において積極的かつ能動的に寄与することは、ほと んど想定されていな力つた。学際的にも血管系や血管新生研究と比較すると、その 進展はたち遅れている。リンパ管新生が関与している病態は多々あるが、リンパ管機 能の異常を基に大別すると、リンパ管新生機能の異常亢進に起因するものと、リンパ 管新生機能の傷害に起因するものがある。 [0003] On the other hand, the lymphatic system has so far passively excreted waste products in vivo. It has been thought that it exists only to maintain the homeostasis of the living body. Therefore, it has been largely unforeseen that lymphatic angiogenesis contributes positively and actively in disease states. Interdisciplinary progress has been slow compared to vascular and angiogenesis research. There are many pathologies that involve lymphangiogenesis, but it can be roughly divided into abnormalities in lymphangiogenic function and those caused by injured lymphangiogenic function. There is.
(1)リンパ管新生機能の異常亢進に起因する疾病 (1) Diseases resulting from abnormal enhancement of lymphangiogenic function
種々のがん細胞のリンパ節転移が挙げられる。リンパ節転移の機序に関して、最近 Examples include lymph node metastasis of various cancer cells. Regarding the mechanism of lymph node metastasis
、腫瘍が産生する脈管内皮成長因子 (VEGF— C、 VEGF-D)により腫瘍リンパ管 新生が惹起され、その結果、リンパ節転移が亢進する事など (非特許文献 1)、腫瘍リ ンパ管新生および腫瘍のリンパ節転移が分子レベルで解明されつつある。しかし、 安定したリンパ管新生評価系がなぐ腫瘍リンパ管新生の分子 ·遺伝子レベルでの研 究および医薬品開発等への臨床応用研究が発展しない大きな理由となっている。Tumor vascular endothelial growth factor (VEGF-C, VEGF-D) induces tumor lymphangiogenesis, resulting in enhanced lymph node metastasis (Non-patent Document 1). Neoplasia and tumor lymph node metastasis are being elucidated at the molecular level. However, this is a major reason why research on the molecular and genetic level of tumor lymphangiogenesis and clinical application research on drug development, etc., do not progress due to a stable lymphangiogenesis evaluation system.
(2)リンパ管新生機能が傷害される疾病 (2) Diseases with impaired lymphangiogenesis function
多くの疾病において、二次的に生じるリンパ浮腫が挙げられる。リンパ浮腫は先天 的な遺伝病によるものと後天的なリンパ管損傷によるものがある。代表的な例として、 がん手術後の上肢あるいは下肢のリンパ浮腫であり、これは、 VEGF— C遺伝子によ る遺伝子治療により、リンパ管新生を誘導することで、治療効果を得ている (非特許 文献 2)。 In many diseases, secondary lymphedema occurs. Lymphedema may be due to a congenital genetic disease or to acquired lymphatic vessel damage. A typical example is lymphedema of the upper limb or lower limb after cancer surgery, which has a therapeutic effect by inducing lymphangiogenesis by gene therapy with the VEGF-C gene ( Non-patent literature 2).
他方、各臓器におけるリンパ管の機能特異性や腫瘍リンパ管新生を初めとしたリン パ管新生の研究は、電子顕微鏡等を用いた形態学'解剖学的なマクロの視点に立つ た研究が主に進められているが、リンパ管内皮細胞を用いた研究は、リンパ管内皮 細胞の培養 ·維持 '継代は非常に困難であることから、初代培養系で行われているの が現状である。そうした中、ラットのリンパ管内皮細胞を低酸素空気中、内皮成長培 地 EGM— 2 (clontecs USA)で培養することで、第三から第四継代の細胞株が得 られている(特許文献 1)。また、微小血管内皮細胞から VEGFR— 3の細胞外ドメイ ンを認識する特定の抗体を利用してリンパ管内皮細胞を単離する方法が知られてい る (特許文献 2)。
[0004] また、初代細胞に rasや c mycなどの発癌遺伝子、アデノウイルスの El A遺伝子 、 SV40ウィルスのラージ T抗原遺伝子、ヒトパピローマウィルスの HPV16遺伝子等 を導入して細胞を形質転換し、初代細胞の有する活発な増殖能を継続的に保持し、 し力も継代することによつてもその細胞固有の特性を喪失しない不死化細胞株を榭 立する試みがなされている。しかし、この様な不死化細胞株においても、対象とする 臓器によっては、その初代細胞を調製し、これらの癌遺伝子やラージ T抗原遺伝子 を導入する時点で、すでに幾つ力の機能を喪失するため、本来の機能を保持する厳 密な意味での不死化細胞株の取得は困難であった。特に、増殖速度が非常に遅い 場合や微小器官に由来する場合の初代細胞を調製して株化することは極めて困難 であった。 On the other hand, the study of lymphangiogenesis including lymphovascular function specificity and tumor lymphangiogenesis in each organ is mainly from the viewpoint of morphological 'anatomical macro using electron microscopes. However, the research using lymphatic endothelial cells is currently conducted in the primary culture system because the passage and maintenance of lymphatic endothelial cells is extremely difficult. . Under such circumstances, cell lines of the third to fourth passages have been obtained by culturing rat lymphatic endothelial cells in endothelial growth medium EGM-2 (clontecs USA) in hypoxic air (patent document). 1). In addition, a method of isolating lymphatic endothelial cells from microvascular endothelial cells using a specific antibody that recognizes the extracellular domain of VEGFR-3 is known (Patent Document 2). [0004] In addition, primary cells are transformed by introducing oncogenic genes such as ras and cmyc, adenovirus El A gene, SV40 virus large T antigen gene, human papillomavirus HPV16 gene, etc. into primary cells. Attempts have been made to establish an immortalized cell line that retains the vigorous proliferative ability of the cell and does not lose its cell-specific characteristics even by substituting the force. However, even in such an immortal cell line, depending on the target organ, when the primary cells are prepared and these oncogenes and large T antigen genes are introduced, some functions are already lost. It was difficult to obtain an immortalized cell line in a strict sense that retains its original function. In particular, it was extremely difficult to prepare and establish primary cells when the growth rate was very slow or when they originated from micro-organs.
[0005] これに対し、近年確立された動物個体への遺伝子導入技術を用いて、個々の細胞 に癌遺伝子やラージ T抗原遺伝子を導入するかわりに、これらの遺伝子を安定的に 染色体に組み込んだ遺伝子導入動物を作出して、個体の発生時点において既に癌 遺伝子やラージ T抗原遺伝子を細胞の中に保有する動物の臓器から初代細胞を調 製して、これを継代することにより不死化細胞株を榭立する方法が報告されている。 特に、 SV40の温度感受性突然変異株 tsA58のラージ T抗原遺伝子を導入したトラ ンスジエニックラットは、その臓器力も不死化細胞株を容易に得ることができ、得られ た細胞の増殖や分化形質の発現は、温度を変えることによって操作することができる ため非常に有効である (非特許文献 3)、(非特許文献 4)、本ラットから、榭立された 細胞株としては、例えば、血液脳関門や血液網膜関門の血管内皮細胞 (特許文献 3 )、網膜神経細胞 (特許文献 4)、歯根膜細胞 (特許文献 5)などが知られて ヽる。 [0005] In contrast, instead of introducing oncogenes and large T antigen genes into individual cells, using these recently established gene transfer technologies for animal individuals, these genes were stably integrated into the chromosome. Immortalized cells are created by creating transgenic animals and preparing primary cells from the organs of animals that already have oncogenes or large T antigen genes in the cells at the time of the individual's development. Methods for establishing stocks have been reported. In particular, transgenic rats that have introduced the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 can easily obtain immortalized cell lines, and the growth and differentiation characteristics of the resulting cells can be obtained. Expression is very effective because it can be manipulated by changing the temperature (Non-patent Document 3), (Non-patent Document 4). As an established cell line from this rat, for example, blood brain Vascular endothelial cells (Patent Document 3), retinal nerve cells (Patent Document 4), periodontal ligament cells (Patent Document 5) and the like are known.
[0006] 特許文献 1 :特開 2004— 248577 [0006] Patent Document 1: JP 2004-248577 A
特許文献 2:特表 2005 - 500045 Patent Document 2: Special Table 2005-500045
特許文献 3:国際公開 WOOOZ20599 Patent Document 3: International Publication WOOOZ20599
特許文献 4:特開 2002— 112764 Patent Document 4: JP 2002-112764
特許文献 5:特開 2002— 262862 Patent Document 5: JP 2002-262862 A
非特許文献 l :Nature Medcine 7, 186— 191 (2001) Non-patent literature l: Nature Medcine 7, 186-191 (2001)
非特許文献 2 :「血管研究がわ力る」 117頁、洋土社、 2004年
非特許文献 3 : Transgenic Research 4, 215— 225 (1995) Non-Patent Document 2: "Vessel research is powerful", p. 117, Yodosha, 2004 Non-Patent Document 3: Transgenic Research 4, 215—225 (1995)
非特許文献 4 : Genes to Cells 2, 235 - 244 (1997) Non-Patent Document 4: Genes to Cells 2, 235-244 (1997)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] リンパ管新生の詳細な細胞 ·分子 ·遺伝子レベルでの機序解明の推進および種々 の病態に関与するリンパ管新生を抑制する薬剤の開発を行うには、リンパ管新生のメ 力-ズムに合わせたアツセィ系が必要となる。また、アツセィ系の構築にあたっては、 リンパ管と血管との差異の詳細も明確とはなっていないことから、常に対照群となる血 管内皮細胞を必要とするなど、血管新生の評価系の構築とは違ったアプローチが必 要である。 [0007] To promote the elucidation of detailed mechanisms of lymphangiogenesis at the cellular, molecular, and gene levels and to develop drugs that suppress lymphangiogenesis that are involved in various pathological conditions, An Atsei system that matches the rhythm is required. In addition, since the details of the difference between lymphatic vessels and blood vessels are not clear in the construction of the Atsey system, the establishment of an angiogenesis evaluation system, such as the necessity of vascular endothelial cells as a control group at all times, is required. A different approach is needed.
従って、本発明の目的は、リンパ細胞の管腔形成を試験化内でアツセィする評価 系の構築、それに使用する細胞株の榭立方法、さらにその評価系の利用によりリン パ管新生の阻害や促進効果を有する化合物、遺伝子、タンパク質等を見出し、癌の リンパ節転移やリンパ浮腫等、リンパ管新生が関与した疾患の新規な治療薬'治療 法を開発することにある。 Therefore, an object of the present invention is to construct an evaluation system that can assess the formation of lymphocytes in a test chamber, to establish a cell line used for it, and to inhibit lymphangiogenesis by using the evaluation system. The aim is to find compounds, genes, proteins, etc. that have a promoting effect, and to develop new therapeutics for diseases involving lymphangiogenesis, such as cancer lymph node metastasis and lymphedema.
課題を解決するための手段 Means for solving the problem
[0008] 本発明者らは、不死化細胞株の樹立に有効な SV40の温度感受性突然変異株 ts A58のラージ T抗原遺伝子を内在性のラージ T抗原遺伝子プロモーターの支配下で 全身性に発現するトランスジエニックラットの胸管およびそれに付随して並走する静 脈内にコラゲナーゼ溶液を注入し、剥離してきたリンパ管および血管内皮細胞を採 取し、内皮細胞およびリンパ管に特異的なマーカーを利用して選別クローユングする 方法により不死化細胞株を取得した。得られた不死化リンパ管内皮細胞および血管 内皮細胞をゲル上に播種することで、試験管内で管腔形成を観察するリンパ管新生 の評価系を構築し、本発明を完成させた。以下、本発明を詳細に説明する。 [0008] The present inventors systemically express the large T antigen gene of SV40 temperature-sensitive mutant ts A58 effective in establishing an immortalized cell line under the control of an endogenous large T antigen gene promoter A collagenase solution is injected into the thoracic duct of Transgenic rats and the accompanying parallel vein, and the exfoliated lymph vessels and vascular endothelial cells are collected, and markers specific to the endothelial cells and lymph vessels are collected. An immortalized cell line was obtained by a method of selective cloning using. By seeding the obtained immortalized lymphatic endothelial cells and vascular endothelial cells on a gel, an evaluation system for lymphangiogenesis in which tube formation was observed in a test tube was constructed, and the present invention was completed. Hereinafter, the present invention will be described in detail.
[0009] 本発明で使用する SV40温度感受性突然変異株 tsA58ラージ T抗原遺伝子が導 入されたラットは、全細胞に tsA58のラージ T抗原遺伝子が発現するトランスジェ-ッ クラットであり、その作成法などは特開 2000— 228930に記載されている。また、この ラットには、さらに改変型蛍光タンパク質 (EGFP)遺伝子が導入されて!ヽてもよ!/ヽ。
このラットから、リンパ管内皮細胞および血管内皮細胞を得るには、ラットの胸管お よびそれに付随して並走する下大静脈などの静脈内を結紮し、トリプシン、コラゲナ ーゼなどの酵素溶液を注入後、酵素溶液内に剥離したリンパ管および血管内細胞を シャーレ上に回収し、さらに、回収したリンパ管内皮細胞および血管内皮細胞を 2回 継代培養の後、コロニー形成を行い、増殖速度の比較的速いコロニーを、ペニシリン カップを用いて周囲の細胞から単離する。この操作を 3回繰り返して行い細胞株を単 離すればよい。また、培養に使用する培地は、公知のものあるいは市販のものを適宜 使用すればよい。 [0009] The SV40 temperature-sensitive mutant tsA58 large T antigen gene used in the present invention is a transgenic rat that expresses the tsA58 large T antigen gene in all cells. Are described in JP-A-2000-228930. In addition, the modified fluorescent protein (EGFP) gene may be introduced into this rat! To obtain lymphatic endothelial cells and vascular endothelial cells from this rat, ligate the thoracic duct of the rat and the accompanying vein such as the inferior vena cava, and an enzyme solution such as trypsin or collagenase. After injection, the lymph vessels and intravascular cells that were detached in the enzyme solution were collected on a petri dish, and the collected lymphatic endothelial cells and vascular endothelial cells were subcultured twice, followed by colony formation and proliferation. A relatively fast colony is isolated from surrounding cells using a penicillin cup. Repeat this procedure three times to isolate the cell line. In addition, a known or commercially available medium may be used as appropriate for the culture.
[0010] 培養された細胞は特異的なマーカーによりリンパ管内皮細胞あるいは血管内皮細 胞として同定することができる。例えば、内皮細胞のマーカーである CD31抗原を FA CS法 (fluorescence- activated cell sorter)で検定することにより、細胞株が内皮細胞 であることを同定できる。また、リンパ管内皮細胞のマーカーである Prox— 1、 LYVE 1をウェスタンブロティング法および RT—PCRで検定することにより、胸管より得ら れた細胞株カ^ンパ管内皮細胞であることを同定できる。 [0010] The cultured cells can be identified as lymphatic endothelial cells or vascular endothelial cells by a specific marker. For example, the cell line can be identified as an endothelial cell by assaying the CD31 antigen, which is a marker for endothelial cells, by the FACS method (fluorescence-activated cell sorter). In addition, Prox-1 and LYVE1, which are markers of lymphatic endothelial cells, were assayed by Western blotting and RT-PCR to confirm that they were cell line endothelial cells obtained from the thoracic duct. Can be identified.
[0011] 得られた細胞をゲル上で管腔形成能を指標に評価することにより、リンパ管および 血管内皮細胞本来の機能を保持することを確認することができる。 [0011] By evaluating the obtained cells on a gel using the lumen forming ability as an index, it can be confirmed that the original functions of lymphatic vessels and vascular endothelial cells are retained.
また、 33°Cにおけるラージ T抗原の発現と、 37°Cでの消失をウェスタンプロティング 法で検出することにより、両細胞株が温度感受性を有することを確認することができる In addition, by detecting the expression of large T antigen at 33 ° C and disappearance at 37 ° C by Western plotting, it is possible to confirm that both cell lines are temperature sensitive.
[0012] 試験管内リンパ管および対照群となる血管新生のアツセィ系は、例えば、得られた リンパ管内皮細胞あるいは血管内皮細胞を培地に懸濁し、ゲルをコートしたプレート に播種し、ゲル上での管腔形成能を倒立顕微鏡などで観察すればよい。管腔形成 能は、例えば、倒立顕微鏡にカメラを装着し、撮影した写真カゝらランダムに数視野を 選び、リンパ管内皮細胞および血管内皮細胞が形成した管腔の長さを画像解析によ り計測し、リンパ管内皮細胞群の血管内皮細胞群に対する割合を算出し指標とすれ ばよい。 [0012] An angiogenic system that is an in vitro lymphatic vessel and a control group includes, for example, the obtained lymphatic endothelial cells or vascular endothelial cells suspended in a medium, seeded on a gel-coated plate, Can be observed with an inverted microscope or the like. For example, the lumen forming ability is obtained by attaching a camera to an inverted microscope, selecting several fields of view randomly from the photograph taken, and analyzing the length of the lumen formed by lymphatic endothelial cells and vascular endothelial cells by image analysis. The ratio of the lymphatic endothelial cell group to the vascular endothelial cell group may be calculated and used as an index.
[0013] 本発明のリンパ管新生系において、リンパ管の新生を阻害する物質をスクリーニン グする場合、予め、線維芽細胞増殖因子 2 (FGF2)等で、増殖能を高めた本発明のリ
ンパ管内皮細胞を用いることができる。 [0013] In the lymphangiogenesis system of the present invention, when screening for a substance that inhibits lymphangiogenesis, screening of a substance of the present invention that has previously been enhanced with fibroblast growth factor 2 (FGF2) or the like. AMP endothelial cells can be used.
図面の簡単な説明 Brief Description of Drawings
[0014] [図 1]リンパ管内皮細胞およびそれに付随 ·並走する静脈力 のリンパ管および血管 内皮細胞の榭立方法 (写真 1) [0014] [Fig.1] Lymphatic endothelial cells and accompanying lymphatic and vascular endothelial cells with parallel venous force (Photo 1)
[図 2]榭立した細胞株におけるラージ T抗原タンパク質の確認 (写真 2) [Figure 2] Confirmation of large T antigen protein in an established cell line (Photo 2)
[図 3]榭立した細胞株における CD31および Prox— 1の発現の確認(写真 3) [Figure 3] Confirmation of CD31 and Prox-1 expression in an established cell line (Photo 3)
[図 4]榭立した細胞株を用いた試験管内リンパ管および対照となる血管新生モデル の構築 (写真 4) [Fig.4] Construction of lymphatic vessels in vitro using an established cell line and an angiogenesis model as a control (Photo 4)
[図 5]本発明のモデルを用いて探索されたリンパ管新生特異的発現遺伝子 (写真 5) [図 6]FGF誘導性の樹立した細胞株の細胞管腔形成能に及ぼす JNK、 MEK、 PI3Kお よび FGFR-TK阻害剤の効果 [Fig. 5] Lymphangiogenesis-specific expression gene searched using the model of the present invention (Photo 5) [Fig. 6] Effect of JNK, MEK, PI3K on the ability of FGF-induced cell lines to form cell lumens And the effects of FGFR-TK inhibitors
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 本発明の胸管リンパ内皮細胞に由来する継代可能な細胞株は、 SV40温度感受 性突然変異株 tsA58のラージ T抗原遺伝子が導入されたトランスジエニック哺乳動 物から胸管内皮細胞を採取して得られる。また、本発明の血管内皮細胞に由来する 継代可能な細胞株は、 SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子 が導入されたトランスジヱニック哺乳動物力 胸管に付随して並走する静脈を採取し て得られる。これらの内皮細胞は、コラゲナーゼ ZEDTA溶液で処理して内皮細胞 を分離することにより得られる。 [0015] The passable cell line derived from the thoracic lymphatic endothelial cell of the present invention is a thoracic endothelial cell derived from a transgenic mammal into which the large T antigen gene of SV40 temperature-sensitive mutant tsA58 has been introduced. Obtained by sampling. In addition, the passable cell line derived from the vascular endothelial cell of the present invention is parallel to the transmammalian mammalian thoracic duct into which the large T antigen gene of the SV40 temperature-sensitive mutant tsA58 has been introduced. It is obtained by collecting veins. These endothelial cells can be obtained by treatment with collagenase ZEDTA solution to separate the endothelial cells.
胸管又は静脈細胞を培養後、マーカー蛋白質の発現の有無を確認することにより 、得られた細胞について、リンパ管内皮細胞又は血管内皮細胞であると同定すること ができる。具体的には、リンパ管内皮細胞の同定には、内皮細胞マーカーを発現し、 かつ、リンパ管内皮細胞特異マーカーを発現することを確認する。血管内皮細胞の 同定には、内皮細胞マーカーを発現するが、リンパ管内皮細胞特異マーカーを発現 することを確認する。内皮細胞マーカーとしては、 CD31抗原、 Tie— 2、 VEGFR- 2、 VEGFR— 1、 CD34、 Notch, PDGFR、 EGFR、 FGFRからなる群から選択さ れる 1以上を用いることができ、リンパ管特異的マーカーとしては、 Prox— 1、 LYVE —1、 VEGFR-3、 Podoplanin、 SLCからなる群から選択される 1以上を用いることが
できる。 After culturing thoracic duct or venous cells, the presence or absence of marker protein expression can be confirmed to identify the obtained cells as lymphatic endothelial cells or vascular endothelial cells. Specifically, for identification of lymphatic endothelial cells, it is confirmed that an endothelial cell marker is expressed and a lymphatic endothelial cell-specific marker is expressed. To identify vascular endothelial cells, it expresses an endothelial cell marker, but confirms that it expresses a lymphatic endothelial cell-specific marker. As the endothelial cell marker, one or more selected from the group consisting of CD31 antigen, Tie-2, VEGFR-2, VEGFR-1, CD34, Notch, PDGFR, EGFR, and FGFR can be used. For example, one or more selected from the group consisting of Prox-1, LYVE-1, VEGFR-3, Podoplanin, and SLC may be used. it can.
[0016] 内皮細胞マーカー又はリンパ管内皮細胞特異的マーカーの発現の有無を確認す る前に、ラージ T抗原蛋白質の発現が温度感受性であることを確認することが望まし い。すなわち、ラージ T抗原蛋白質が 33°Cの培養条件では発現するが、 37°Cの培 養条件では発現しな!、ことを確認することが望ま 、。このような SV40温度感受性 突然変異細胞株は、温度条件によりその増殖を制御しうる、すなわち 33〜37°Cにお いて永久的増殖能を保持し、 39°Cにおいては増殖を停止するため、細胞固有の分 化形質の発現を制御することができることから好ましい。 [0016] Before confirming the presence or absence of expression of an endothelial cell marker or a lymphatic endothelial cell-specific marker, it is desirable to confirm that the expression of the large T antigen protein is temperature sensitive. That is, it is desirable to confirm that the large T antigen protein is expressed under the culture condition of 33 ° C, but is not expressed under the culture condition of 37 ° C. Such SV40 temperature-sensitive mutant cell lines can control their growth depending on temperature conditions, i.e., retain permanent growth at 33-37 ° C and stop growing at 39 ° C. It is preferable because expression of cell-specific differentiation traits can be controlled.
このようにして得られた細胞はリンパ管又は血管細胞が有する管腔形成能力を有 する。管腔形成能力は、顕微鏡による観察などにより確認することができる。 The cells thus obtained have the lumen forming ability of lymphatic vessels or vascular cells. The lumen forming ability can be confirmed by observation with a microscope or the like.
[0017] 得られたリンパ管内皮細胞株及び血管内皮細胞株は、管腔形成阻害剤又は促進 剤のスクリーニングに用いることができる。例えば、管腔形成阻害剤のスクリーニング には、 FGFなどの細胞増殖因子を含有する培地中に被検物質を添加し、本発明のリ ンパ管内皮細胞株又は血管内皮細胞株の管腔形成の程度を測定することにより行う ことができる。被検物質の添カロにより管腔形成がコントロールよりも低下した場合には 、被検物質を管腔形成阻害剤の候補とすることができる。また、管腔形成促進剤のス クリーニングには、培地中に被検物質を添加し、本発明のリンパ管内皮細胞株又は 血管内皮細胞株の管腔形成の程度を測定することにより行うことができる。被検物質 の添加により管腔形成がコントロールよりも向上した場合には、被検物質を管腔形成 促進剤の候補とすることができる。 [0017] The obtained lymphatic endothelial cell line and vascular endothelial cell line can be used for screening for a tube formation inhibitor or promoter. For example, for screening for a tube formation inhibitor, a test substance is added to a medium containing a cell growth factor such as FGF, and the tube formation of the lymphatic endothelial cell line or vascular endothelial cell line of the present invention is performed. This can be done by measuring the degree. In the case where the lumen formation is lower than the control due to the addition of the test substance, the test substance can be a candidate for the tube formation inhibitor. In addition, screening of the luminal formation promoting agent can be performed by adding a test substance in the medium and measuring the degree of luminal formation of the lymphatic endothelial cell line or vascular endothelial cell line of the present invention. it can. In the case where the formation of the lumen is improved as compared with the control by the addition of the test substance, the test substance can be used as a candidate for the lumen formation promoter.
また、本発明のリンパ管内皮細胞株及び血管内皮細胞株を用いて、リンパ管内皮 細胞と血管内皮細胞とで発現する遺伝子又は蛋白質を比較し、リンパ管内皮細胞で は発現されるが血管内皮細胞で発現されない遺伝子若しくは蛋白質を同定すること により、リンパ管関連遺伝子若しくは蛋白質又はリンパ管新生に関与する遺伝子若し くは蛋白質を同定することができる。 In addition, using the lymphatic endothelial cell line and vascular endothelial cell line of the present invention, the genes or proteins expressed in lymphatic endothelial cells and vascular endothelial cells are compared. By identifying a gene or protein that is not expressed in cells, a lymphatic-related gene or protein or a gene or protein involved in lymphangiogenesis can be identified.
[0018] 以下は、本発明の実施態様例である。 [0018] The following are examples of embodiments of the present invention.
(D SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたラット の胸管から採取した細胞を、内皮細胞およびリンパ管に特異的なマーカーを利用し
て選別クローユングして得られる胸管リンパ内皮細胞由来の継代維持可能な細胞株 を用い、該細胞株の管腔形成を試験管内で観察することを特徴とするリンパ管新生 評価系。 (D SV40 temperature-sensitive mutant tsA58, a cell collected from the thoracic duct of a rat into which a large T antigen gene was introduced, was used with markers specific to endothelial cells and lymphatic vessels. A lymphangiogenesis evaluation system characterized by using a cell line that can be maintained for passage from a thoracic lymphatic endothelial cell obtained by selective cloning, and observing the formation of the lumen of the cell line in a test tube.
(2) SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたラット の胸管および胸管に付随して並走する下大静脈力も採取した細胞を、内皮細胞およ びリンパ管に特異的なマーカーを利用して選別クロー-ングして得られる胸管および 胸管に付随して並走する静脈内皮細胞由来の継代維持可能な細胞株を用い、該細 胞株の管腔形成を試験管内で観察し比較することを特徴とするリンパ管新生評価系 (2) SV40 temperature-sensitive mutant tsA58 large T antigen gene-transduced rat thoracic duct and cells that also collected the inferior vena cava force that runs parallel to the thoracic duct were transferred to endothelial cells and lymphatic vessels. A thoracic duct obtained by selective cloning using a specific marker and a cell line that can be maintained for passage from venous endothelial cells that run parallel to the thoracic duct are used. A lymphangiogenesis evaluation system characterized in that formation is observed and compared in vitro
(3)内皮細胞のマーカーとして CD31抗原、リンパ管のマーカーとして Prox—lおよ び Zまたは LYVE— 1を使用し、それらに対する抗体を用いて細胞を選別することを 特徴とする上記(1)及び (2)に記載のリンパ管新生評価系。 (3) The above-mentioned (1), wherein CD31 antigen is used as a marker for endothelial cells, Prox-l and Z or LYVE-1 are used as markers for lymphatic vessels, and cells are selected using antibodies against them. And the lymphangiogenesis evaluation system according to (2).
(4) SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたラット の胸管および胸管に付随して並走する下大静脈を用い、内皮細胞およびリンパ管に 特異的なマーカーを利用して選別クローユングを行うことを特徴とする胸管由来また は胸管に付随して並走する静脈由来の継代維持可能な細胞株の榭立方法。 (4) SV40 temperature-sensitive mutant tsA58 large rat antigen-transfected rat thoracic duct and the inferior vena cava that accompanies the thoracic duct are used to identify markers specific to endothelial cells and lymphatic vessels. A method for establishing a cell line that can be maintained for passage from a thoracic duct or a vein that runs parallel to the thoracic duct, characterized by performing selective cloning.
(5)マーカーとして、 CD31抗原並びに Prox— 1および Zまたは LYVE— 1を使用し 、それらに対する抗体を用いて細胞を選別し、株化リンパ管内皮細胞または胸管に 付随して並走する静脈内皮細胞を得ることを特徴とする上記 (4)記載の方法。 (5) As a marker, CD31 antigen and Prox-1 and Z or LYVE-1 are used, and cells are selected using antibodies against them, and veins that run parallel to the established lymphatic endothelial cell or thoracic duct Endothelial cells are obtained, The method as described in said (4) characterized by the above-mentioned.
(6)上記 (4)または(5)記載の細胞株の榭立方法により得られるリンパ管内皮細胞由 来の株化細胞または胸管に付随して並走する静脈内皮細胞由来の株化細胞。 (6) A cell line derived from a lymphatic endothelial cell obtained by the method for establishing a cell line described in (4) or (5) above, or a cell line derived from a venous endothelial cell that runs parallel to the thoracic duct .
(7)上記(1)〜(3)の 、ずれかリンパ管評価系を用い、ラット胸管由来の細胞株の遺 伝子と (ii)ラット胸管に付随して並走する静脈皮内皮細胞の遺伝子またはタンパク質 を比較することを特徴とするラットのリンパ管関連またはリンパ管新生の遺伝子または タンパク質の同定もしくはその機能解析する方法。 (7) The gene of a rat thoracic duct-derived cell line using the lymphatic vessel evaluation system of (1) to (3) above, and (ii) the venous cutaneous endothelium that runs parallel to the rat thoracic duct A method for identifying or analyzing a gene or protein of a rat lymphatic-related or lymphangiogenesis, which comprises comparing cellular genes or proteins.
実施例 Example
以下の実施例によって本発明をより詳細に説明する力 これらは単に例示したのみ であり、本発明はこれらにより何ら限定されるものではない。
下記の例で使用する主な略号: The following examples illustrate the present invention in more detail. These are merely illustrative and the present invention is not limited thereto. The main abbreviations used in the examples below:
EDTA:エチレンジァミン四酢酸ニナトリウム EDTA: disodium ethylenediamine tetraacetate
PBS:リン酸緩衝生理食塩 PBS: phosphate buffered saline
EGFP: Enhanced Green Fluorescent Protein EGFP: Enhanced Green Fluorescent Protein
実施例 1 Example 1
トランスジェ-ックラットの胸管力 のリンパ管内皮細胞およびそれに付随して並走す る静脈力 の血管内皮細胞の分離 Isolation of thoracic force lymphatic endothelial cells and concomitant venous vascular endothelial cells in transgenic rats
胸管力 のリンパ管内皮細胞および胸管に付随して並走する静脈からの血管内皮 細胞の分離は 以下のように行なった。 EGFP— SV40の温度感受性突然変異株 ts A58のラージ T抗原遺伝子を導入したトランスジヱ-ックラットを麻酔ィ匕で開胸し、下 大静脈とそれに付随するリンパ管を結合組織より剥離し、リンパ管と静脈を実体顕微 鏡ィ匕でピンセットを用いて乖離した。次に、胸管および静脈のそれぞれの上端を縫合 糸で結紮し、下端より、ッベルクリン用注射針でコラゲナーゼ ZEDTA溶液を注入し た。コラゲナーゼ /EDTA溶液が胸管及び静脈内に含まれている状態のまま、注射 針の進入部より上端を縫合糸で結紮し、コラゲナーゼ ZEDTA溶液が内包されて ヽ る胸管および静脈を摘出した。摘出した胸管および静脈をシャーレ内に静置し、 37 °Cの炭酸ガス培養器内で放置することにより、内包されたコラゲナーゼ ZEDTA溶 液により胸管および静脈からリンパ管および血管内皮細胞を剥離させた。その後、剥 離したリンパ管および血管内皮細胞が浮遊している内包されたコラゲナーゼ ZEDT A溶液を 7mLの培養液 (Hu— Media EG2、クラボウ社製)に分散して 1枚の I型コラ 一ゲンをコートした 100mm φ培養シャーレ(ベタトン'ディッキンソン社製)に種播した。 37°Cの炭酸ガス培養器 (5%二酸ィヒ炭素 95%空気、飽和湿度)内で培養 (初代培 養)してコロニーを形成させた。培地を一週間に 2回交換し、 7〜10日後にコロニーを 形成した増殖速度の比較的速いコロニーを、ペニシリンカップを用いて周囲の細胞 力 単離した。得られた細胞を再び 100mm φ培養シャーレに播種して 33°Cの炭酸ガ ス培養器内で培養してコロニー形成を行った。さらにペニシリンカップを用いて増殖 速度の比較的速いコロニーを周囲の細胞力 単離して胸管由来リンパ管細胞株 (B2 TD)および静脈由来の血管内皮細胞株 (P4IVC)を得た。(図 1Z写真 1)
[0021] 実施例 2 Separation of vascular endothelial cells from lymphatic endothelial cells with thoracic duct force and veins parallel to the thoracic duct was performed as follows. EGFP- SV40 temperature-sensitive mutant ts A58 large T-transgenic rat was introduced with anesthesia, and the inferior vena cava and its associated lymphatic vessels were detached from the connective tissue. The vein was dissociated using tweezers with a stereomicroscope. Next, the upper ends of each of the thoracic duct and vein were ligated with sutures, and collagenase ZEDTA solution was injected from the lower end with a tuberculin needle. While the collagenase / EDTA solution was contained in the thoracic duct and vein, the upper end from the entry portion of the injection needle was ligated with a suture, and the thoracic duct and vein containing the collagenase ZEDTA solution were removed. The excised thoracic duct and vein are left in a petri dish and left in a 37 ° C carbon dioxide incubator to detach lymphatic vessels and vascular endothelial cells from the thoracic duct and vein with the collagenase ZEDTA solution included. I let you. Then, the encapsulated collagenase ZEDT A solution in which exfoliated lymphatic vessels and vascular endothelial cells are suspended is dispersed in 7 mL of culture medium (Hu-Media EG2, Kurabo Industries, Inc.). The seeds were seeded on a 100 mm φ culture dish (Betaton's Dickinson). Colonies were formed by culturing (primary culturing) in a 37 ° C carbon dioxide incubator (5% carbon dioxide 95% air, saturated humidity). The medium was changed twice a week, and the relatively fast growing colonies that formed colonies after 7-10 days were isolated using the penicillin cup. The obtained cells were again seeded in a 100 mm φ culture dish and cultured in a carbon dioxide gas incubator at 33 ° C to form colonies. Furthermore, colonies with a relatively fast growth rate were isolated using a penicillin cup, and the surrounding cell force was isolated to obtain a thoracic duct-derived lymphatic cell line (B2 TD) and a vein-derived vascular endothelial cell line (P4IVC). (Figure 1Z Photo 1) [0021] Example 2
ラージ T抗原タンパク質の確認 Large T antigen protein confirmation
実施例 1で得られた胸管由来リンパ管細胞株 (B2TD)および静脈由来の血管内皮 細胞株 (P4IVC)におけるラージ Τ抗原蛋白質の発現をウェスタンプロット法 (実験医 学別冊バイオマニュアル UPシリーズ「分子生物学的アプローチによる癌研究プロトコ 一ル」、 108〜115頁、羊土社、 1995年発行)により検討した。両細胞株 (継代数: 20) を 60mm φ培養シャーレで飽和まで培養した。回収した細胞を 3%SDS— PBS (pH7. 4)で可溶化した後、遠心(10000rpm、 10分間)して不溶画分を除去した後、フラッドフ オード法 (BIO—RAD社製プロテインアツセィキットを使用)で総蛋白質量を定量した 。それぞれ 20 gの蛋白質を SDSポリアクリルアミドゲル電気泳動で分離後、ニトロセ ルロース膜に転写した。 3%スキムミルク溶液でさらにブロッキングした後に、ニトロセ ルロース膜に一次抗体として抗 SV40ラージ T抗原抗体(DP02— C、 CALBIOCH EM社製)を、二次抗体として HRP標識抗マウス IgG抗体 (Amersham社製)を反応 させ、ラージ T抗原蛋白質特異的な反応を、アマシャム社製 ECLウェスタンブロティ ング検出システム (RPN2106M 1 )を用いて検出した。両細胞株にお 、てラージ T抗 原蛋白質が 33°Cでは発現する力 37°C以上ではその発現が消失することが確認さ れ、ラージ T抗原蛋白質の発現は温度感受性であることが確認された。(図 2Z写真 2) Western Plot (Experimental Medicine Bibliography UP Series “Moleculars”) Expression of large ラ ー antigen protein in thoracic duct-derived lymphatic cell line (B2TD) and venous-derived vascular endothelial cell line (P4IVC) obtained in Example 1 Cancer research protocol by biological approach ”, pages 108-115, Yodosha, 1995). Both cell lines (passage number: 20) were cultured in a 60 mm φ culture dish until saturation. The collected cells are solubilized with 3% SDS-PBS (pH 7.4), centrifuged (10000 rpm, 10 minutes) to remove insoluble fractions, and then flooded (BIO—RAD Protein Assay Kit). The total protein mass was quantified. 20 g of each protein was separated by SDS polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane. After further blocking with 3% skim milk solution, anti-SV40 large T antigen antibody (DP02-C, CALBIOCH EM) is used as the primary antibody on the nitrocellulose membrane, and HRP-labeled anti-mouse IgG antibody (Amersham) is used as the secondary antibody. The reaction specific to the large T antigen protein was detected using an ECL Western blotting detection system (RPN2106M1) manufactured by Amersham. In both cell lines, the expression of large T antigen protein at 33 ° C was confirmed to disappear at 37 ° C or higher, and the expression of large T antigen protein was confirmed to be temperature sensitive. It was done. (Figure 2Z Photo 2)
[0022] 実施例 3 [0022] Example 3
胸管由来細胞株におけるリンパ管内皮細胞の同定 Identification of lymphatic endothelial cells in thoracic duct-derived cell lines
得られた胸管由来細胞株 B2TDカ^ンパ管内皮細胞であることを、内皮細胞マー カーである CD31抗原の発現を FACS法にて、リンパ管内皮細胞特異マーカーの Pr ox— 1をウェスタンブロティング法で検定することにより同定した。 The obtained thoracic duct-derived cell line is a B2TD camper tube endothelial cell. The expression of the endothelial cell marker CD31 antigen was expressed by the FACS method, and the lymphoendothelial cell-specific marker Prox-1 was Western blotted. It was identified by testing by the Ting method.
先ず、 CD31抗原の発現を FACS法で検定した。胸管由来リンパ管細胞株 (B2T D)を 60mm φ培養シャーレで 80%飽和まで培養した。回収した細胞 1 X 106個を lmL の PBS (—)で懸濁し、遠心後、ペレットを O.lmLの PBS (—)で再懸濁し、一次抗体 として抗ラット CD31抗体 (Chemicon社製)を反応させ、二次抗体として FITC標識 抗マウス IgG抗体 (DakoCytomation社製)を反応させ、 CD31抗原特異的な発現
を、ベタトン社製 FACSを用いて検出した。 First, the expression of CD31 antigen was assayed by the FACS method. A thoracic duct-derived lymphatic cell line (B2TD) was cultured in a 60 mm φ culture dish to 80% saturation. Collected cells 1 X 10 6 pieces of lmL of PBS (-) was suspended in, after centrifugation, the pellet O.lmL of PBS (-) was resuspended in the anti-rat CD31 antibody as a primary antibody (Chemicon Inc.) React with FITC-labeled anti-mouse IgG antibody (DakoCytomation) as a secondary antibody to express CD31 antigen-specific expression Was detected using Betasonic FACS.
さらに、リンパ管内皮細胞特異マーカーの Prox— 1をウェスタンプロティング法で検 定を行った。実施例 2と同じ方法で作製した-トロセルロース膜を用いて、一次抗体と して抗ラット PROX— 1抗体 (AngioBIo社製)を、二次抗体として HRP標識抗ゥサギ IgG抗体 (DakoCytomation社製)を反応させた。 Prox— 1蛋白質特異的な反応を 、アマシャム社製 ECLウェスタンブロティング検出システム(RPN2106M1)を用い て検出した。 CD31抗原陽性かつ Prox— 1陽性であることから、得られた胸管由来 細胞株の細胞株 B2TDがリンパ管内皮細胞であることが同定された。(図 3Z写真 3) [0023] 実施例 4 Furthermore, Prox-1, a lymphatic endothelial cell-specific marker, was tested by Western plotting. Prepared in the same manner as in Example 2, using a trocellulose membrane, anti-rat PROX-1 antibody (AngioBIo) as the primary antibody, and HRP-labeled anti-rabbit IgG antibody (DakoCytomation) as the secondary antibody Was reacted. Prox-1 protein-specific reaction was detected using Amersham ECL Western Blotting Detection System (RPN2106M1). The CD31 antigen positive and Prox-1 positive were identified, and the cell line B2TD of the obtained thoracic duct-derived cell line was identified as a lymphatic endothelial cell. (Fig. 3Z Photo 3) [0023] Example 4
静脈由来細胞株における血管内皮細胞の同定 Identification of vascular endothelial cells in venous cell lines
得られた血管由来細胞株 P4IVCが血管内皮細胞であることを、内皮細胞マーカー である CD31抗原の発現を F ACS法にて、リンパ管内皮細胞特異マーカーの Prox 1をウェスタンブロティング法で検定することにより同定した。 The obtained blood vessel-derived cell line P4IVC is vascular endothelial cell, and the expression of endothelial cell marker CD31 antigen is assayed by FACS method and lymphatic endothelial cell specific marker Prox 1 is assayed by Western blotting method. Was identified.
先ず、 CD31抗原の発現を FACS法で検定した。血管由来リンパ管細胞株 (P41V C)を 60mm φ培養シャーレで 80%飽和まで培養した。回収した細胞 1 X 106個を lmL の PBS (―)で懸濁し、遠心後、ペレットを O.lmLの PBS (―)で再懸濁し、一次抗体と して抗ラット CD31抗体 (Chemicon社製)を反応させ、二次次抗体として FITC標識 抗マウス IgG抗体(DakoCytomation社製)を反応させ、 CD31蛋白質特異的な発 現をべタトン社製 FACSで検出した。 First, the expression of CD31 antigen was assayed by the FACS method. A blood vessel-derived lymphatic cell line (P41V C) was cultured in a 60 mm φ culture dish to 80% saturation. Collected cells 1 X 10 6 pieces of lmL of PBS (-) was suspended in, after centrifugation, the pellet O.LmL PBS (-) was resuspended, with the primary antibody anti-rat CD31 antibody (Chemicon, Inc. ) Was reacted, and FITC-labeled anti-mouse IgG antibody (DakoCytomation) was reacted as a secondary antibody, and CD31 protein-specific expression was detected with Betaton FACS.
さらに、リンパ管内皮細胞特異マーカーの Prox— 1をウェスタンプロティング法で検 定を行った。実施例 2と同じ方法で作製した-トロセルロース膜を用いて、一次抗体と して抗ラット Prox— 1抗体 (AngioBIo社製)を、二次抗体として HRP標識抗ゥサギ Ig G抗体 (DakoCytomation社製)を反応させた。 Prox- 1蛋白質特異的な反応を、 アマシャム社製 ECLウェスタンブロティング検出システム(RPN2106M1)を用いて 検出した。 CD31抗原陽性かつ Prox— 1陰性であることから、得られた静脈由来細 胞株の細胞株 P4IVCが血管内皮細胞であることが同定された。(図 3Z写真 3) [0024] 実施例 5 Furthermore, Prox-1, a lymphatic endothelial cell-specific marker, was tested by Western plotting. Using the trocellulose membrane prepared in the same manner as in Example 2, anti-rat Prox-1 antibody (AngioBIo) was used as the primary antibody, and HRP-labeled anti-rabbit Ig G antibody (DakoCytomation) was used as the secondary antibody. ) Was reacted. Prox-1 protein-specific reaction was detected using an ECL Western blotting detection system (RPN2106M1) manufactured by Amersham. Since CD31 antigen was positive and Prox-1 negative, it was identified that the obtained cell line P4IVC, which is a venous cell line, was a vascular endothelial cell. (Fig. 3Z Photo 3) [0024] Example 5
リンパ管新生評価系の構築
得られた両細胞株がリンパ管および血管機能を保有して 、るかどうかを、ゲル上で の管腔形成能力を指標に検定した。すなわち、両細胞株を 0.2%FBS含有 DMEM ZF—12培地に懸濁し(6 X 104ZmL)、ゲル(lmgZゥエル)をコートした 48穴プレート (No.3548、 Costar社製)に播種した。 1時間毎に、ゲル上でのリンパ管内皮細胞およ び血管内皮細胞の管腔形成能を倒立顕微鏡にて観察し写真撮影を行った (図 4Z 写真 4)。その結果、両細胞とも良好な管腔を形成していた。管腔形成能力は、細胞 播種後経時的に撮影像よりランダムな 5視野を選び、リンパ管内皮細胞および対照 群のとなる血管内皮細胞が形成した管腔の長さを画像解析により計測し、対照群に 対する割合を算出することにより評価した。 Construction of lymphangiogenesis evaluation system Whether or not both of the obtained cell lines possess lymphatic and vascular functions was tested using the ability to form a lumen on a gel as an index. That is, both cell lines were suspended in DMEM ZF-12 medium containing 0.2% FBS (6 × 10 4 ZmL) and seeded in a 48-well plate (No. 3548, manufactured by Costar) coated with gel (lmgZwell). Every 1 hour, the tube formation ability of lymphatic endothelial cells and vascular endothelial cells on the gel was observed with an inverted microscope and photographed (Fig. 4Z Photo 4). As a result, both cells formed a good lumen. As for the ability to form a lumen, five random fields were selected from the images taken over time after cell seeding, and the length of the lumen formed by lymphatic endothelial cells and vascular endothelial cells as a control group was measured by image analysis. Evaluation was made by calculating the ratio to the control group.
[0025] 実施例 6 [0025] Example 6
リンパ管管腔形成阻害物質のスクリーニング Screening for lymphatic tube formation inhibitors
血清飢餓状態の B2TD細胞 (1 X 104)を FGF2含有 DMEM培地に懸濁し、 SP600 125 (JNK阻害剤)、 U0126 (MEK阻害剤)、 LY294002 (PIK阻害剤)又は SU49 84 (FGFR— TK阻害剤)により、それぞれ 20 mMで 5分間前処理した後、マトリゲル をコートした 96穴プレートに播種した。 37°Cで 3時間培養した後に、 形成した管腔の 長さを、マップメーターを用いて測定した。データは平均 (4穴)士標準偏差で示した。 *pく 0.05は FGF2処理群と比較した p値を示す。(図 6) Serum-starved B2TD cells (1 X 10 4 ) are suspended in FGF2-containing DMEM medium, SP600 125 (JNK inhibitor), U0126 (MEK inhibitor), LY294002 (PIK inhibitor) or SU49 84 (FGFR—TK inhibition) Agent) was pretreated with 20 mM each for 5 minutes and then seeded in a 96-well plate coated with Matrigel. After culturing at 37 ° C for 3 hours, the length of the formed lumen was measured using a map meter. Data are shown as mean (4 holes) standard deviation. * p 0.05 indicates p value compared with FGF2 treatment group. (Figure 6)
したがって、実施例 1で得られた胸管由来リンパ管細胞株は既存の阻害物質により 管腔形成の阻害を受けることが示され、胸管由来リンパ管細胞株は、リンパ管管腔形 成阻害物質のスクリーニングに有効であることがわ力つた。 Therefore, it was shown that the thoracic duct-derived lymphatic cell line obtained in Example 1 was subject to inhibition of lumen formation by an existing inhibitor, and the thoracic duct-derived lymphatic cell line inhibited lymphatic lumen formation. It proved to be effective for screening substances.
[0026] リンパ管新生特異的発現遺伝子の探索 [0026] Search for genes specifically expressed in lymphangiogenesis
実施例 5で構築した試験管内リンパ管新生評価系を使用して、リンパ管新生特異 的発現遺伝子の探索を行った。両細胞株をゲル上に播種した直後および管腔形成 時に、両細胞株を回収し cDNAマイクロアレイ (Agilent社)を使用し、網羅的な発現 解析を行った。その結果、約 400個のリンパ管およびリンパ管新生特異的な遺伝子が 同定された。(図 5Z写真 5) The in vitro lymphangiogenesis evaluation system constructed in Example 5 was used to search for lymphangiogenesis-specific expressed genes. Immediately after seeding both cell lines on the gel and at the time of tube formation, both cell lines were collected and subjected to a comprehensive expression analysis using cDNA microarray (Agilent). As a result, about 400 lymphatic vessels and lymphangiogenesis-specific genes were identified. (Figure 5Z Photo 5)
産業上の利用可能性 Industrial applicability
[0027] 本発明の方法で得られた管腔形成能力を有するリンパ管内皮細胞および静脈血
管内皮細胞の不死化細胞株により、それらを用 、た管腔形成を試験管内で観察する ことを特徴とするリンパ管新生評価系が提供される。 [0027] Lymphatic endothelial cells having luminal formation ability and venous blood obtained by the method of the present invention An immortalized cell line of vascular endothelial cells is used to provide a lymphangiogenesis evaluation system characterized by observing the formation of a lumen in a test tube.
本発明により提供されるリンパ管新生評価系は、リンパ管での薬物透過研究、リン パ管に対する各種因子の供給や代謝物質の研究、リンパ管内皮細胞膜に存在する 選択的物質透過の輸送機構研究、リンパ管内皮細胞に対する薬物の毒性研究に活 用することできる。さらに該評価系は、医薬品の安全性や有効性に関するスクリー- ング、生体内恒常性維持、リンパ組織の機能障害に関連する疾患の診断およびその 治療方法の開発等を細胞レベルで研究する評価系として利用できる。
The lymphangiogenesis evaluation system provided by the present invention includes drug permeation research in lymphatic vessels, supply of various factors to lymphatic vessels, research on metabolites, and transport mechanism study of selective substance permeation existing in lymphatic endothelial cell membrane. It can be used to study the toxicity of drugs to lymphatic endothelial cells. Furthermore, the evaluation system is an evaluation system that conducts screening on the safety and efficacy of pharmaceuticals, maintenance of in vivo homeostasis, diagnosis of diseases related to dysfunction of lymphoid tissues, development of treatment methods, etc. at the cellular level. Available as
Claims
請求の範囲 The scope of the claims
[I] SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたトランス ジ ニック哺乳動物の胸管力 採取された胸管リンパ内皮細胞又は胸管に付随して 並走する下大静脈から採取された血管内皮細胞に由来する継代可能な細胞株。 [I] Thoracic force of a transgenic mammal introduced with a large T antigen gene of SV40 temperature-sensitive mutant tsA58 From the inferior vena cava that runs parallel to the collected thoracic lymphatic endothelial cells or thoracic duct A passable cell line derived from collected vascular endothelial cells.
[2] 胸管リンパ内皮細胞に由来することを特徴とする請求項 1に記載の継代可能な細 胞株。 [2] The passable cell line according to claim 1, wherein the cell line is derived from thoracic lymphatic endothelial cells.
[3] 哺乳動物がラットである請求項 1に記載の細胞株。 [3] The cell line according to claim 1, wherein the mammal is a rat.
[4] 内皮細胞およびリンパ管に特異的なマーカーの有無によりスクリーニングして得ら れた請求項 1に記載の細胞株。 [4] The cell line according to claim 1, obtained by screening according to the presence or absence of a marker specific to endothelial cells and lymphatic vessels.
[5] 内皮細胞に特異的なマーカー力 CD31抗原であり、リンパ管に特異的なマーカ 一が Prox— 1及び Z又は LYVE— 1であることを特徴とする請求項 4に記載の細胞 株。 [5] The cell line according to claim 4, wherein the marker force is a CD31 antigen specific to endothelial cells, and the specific marker specific to lymphatic vessels is Prox-1 and Z or LYVE-1.
[6] 前記マーカーの有無を抗体により確認する請求項 5に記載の細胞株。 6. The cell line according to claim 5, wherein the presence or absence of the marker is confirmed by an antibody.
[7] 請求項 1に記載のリンパ管細胞及び Z又は血管内皮細胞に由来する細胞株を含 んでなる、管腔形成を試験管内で観察することによるリンパ管新生の評価キット。 [7] A kit for evaluating lymphangiogenesis by observing tube formation in a test tube, comprising the lymphatic cell according to claim 1 and a cell line derived from Z or vascular endothelial cell.
[8] 請求項 2に記載のリンパ管細胞に由来する細胞株を含んでなる管腔形成を試験管 内で観察することによるリンパ管新生の評価キット。 [8] A kit for evaluating lymphangiogenesis by observing the formation of a lumen comprising the cell line derived from the lymphatic cell according to claim 2 in a test tube.
[9] SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたトランス ジェニック哺乳動物を準備するステップと、 [9] preparing a transgenic mammal into which the large T antigen gene of SV40 temperature sensitive mutant tsA58 has been introduced;
前記哺乳動物の胸管から内皮細胞を含む細胞を得るステップと、 Obtaining cells comprising endothelial cells from the mammalian thoracic duct;
内皮細胞およびリンパ管に特異的なマーカーの有無により前記内皮細胞を含む細 胞をスクリーニングし、内皮細胞およびリンパ管に特異的なマーカーが発現している 細胞をリンパ管内皮細胞と同定するステップと Screening cells containing endothelial cells based on the presence or absence of markers specific to endothelial cells and lymphatic vessels, and identifying cells expressing markers specific to endothelial cells and lymphatic vessels as lymphatic endothelial cells;
を含む、リンパ管内皮細胞株の榭立方法。 A method for establishing a lymphatic endothelial cell line, comprising:
[10] 哺乳動物がラットである請求項 9に記載のリンパ管内皮細胞株の榭立方法。 10. The method for establishing a lymphatic endothelial cell line according to claim 9, wherein the mammal is a rat.
[II] 内皮細胞に特異的なマーカー力 CD31抗原であり、リンパ管に特異的なマーカ 一が Prox— 1及び Z又は LYVE— 1であることを特徴とする請求項 9に記載のリンパ 管内皮細胞株の榭立方法。
[II] Endothelial cell specific marker force CD31 antigen, wherein the lymphatic vessel specific marker is Prox-1 and Z or LYVE-1 How to establish a cell line.
[12] 前記マーカーの有無を抗体により確認する請求項 9に記載のリンパ管内皮細胞株 の榭立方法。 12. The method for establishing a lymphatic endothelial cell line according to claim 9, wherein the presence or absence of the marker is confirmed with an antibody.
[13] 請求項 9の榭立方法により得られるリンパ管内皮細胞由来の株化細胞。 [13] A cell line derived from lymphatic endothelial cells obtained by the method according to claim 9.
[14] SV40温度感受性突然変異株 tsA58のラージ T抗原遺伝子が導入されたトランス ジェニック哺乳動物を準備するステップと、 [14] preparing a transgenic mammal into which the large T antigen gene of SV40 temperature sensitive mutant tsA58 has been introduced;
前記哺乳動物の胸管に付随して並走する下大静脈から内皮細胞を含む細胞を得 るステップと、 Obtaining cells including endothelial cells from the inferior vena cava that runs parallel to the mammalian thoracic duct;
内皮細胞およびリンパ管に特異的なマーカーの有無により前記内皮細胞を含む細 胞をスクリーニングし、内皮細胞に特異的なマーカーは発現している力 リンパ管に 特異的なマーカーは発現していない細胞を血管内皮細胞と同定するステップと を含む、血管内皮細胞株の榭立方法。 Screening cells containing endothelial cells based on the presence or absence of markers specific to endothelial cells and lymphatic vessels, and the ability to express markers specific to endothelial cells Cells not expressing markers specific to lymphatic vessels Identifying a vascular endothelial cell line, and a method for establishing a vascular endothelial cell line.
[15] 哺乳動物がラットである請求項 14に記載の血管内皮細胞株の榭立方法。 15. The method for establishing a vascular endothelial cell line according to claim 14, wherein the mammal is a rat.
[16] 内皮細胞に特異的なマーカー力 CD31抗原であり、リンパ管に特異的なマーカ 一が Prox— 1及び Z又は LYVE— 1であることを特徴とする請求項 14に記載の血管 内皮細胞株の榭立方法。 [16] The endothelial cell specific to endothelial cell according to claim 14, wherein the marker force is a CD31 antigen specific to endothelial cells, and the marker specific to lymphatic vessels is Prox-1 and Z or LYVE-1 How to establish a stock.
[17] 前記マーカーの有無を抗体により確認する請求項 16に記載の血管内皮細胞株の 樹立方法。 17. The method for establishing a vascular endothelial cell line according to claim 16, wherein the presence or absence of the marker is confirmed with an antibody.
[18] 請求項 14の榭立方法により得られる血管内皮細胞由来の株化細胞。 [18] A cell line derived from a vascular endothelial cell obtained by the method according to claim 14.
[19] 請求項 7に記載のリンパ管新生評価キットを用いるスクリーニング方法であって、被 検物質を前記細胞株と接触させ、管腔形成の程度を測定することを特徴とするリンパ 管新生阻害物質又は促進物質のスクリーニング方法。 [19] A screening method using the lymphangiogenesis evaluation kit according to claim 7, wherein the test substance is brought into contact with the cell line and the degree of lumen formation is measured. A screening method for substances or accelerators.
[20] 請求項 8に記載のリンパ管新生評価キットを用いるスクリーニング方法であって、被 検物質を前記細胞株と接触させ、管腔形成の程度を測定することを特徴とするリンパ 管新生阻害物質又は促進物質のスクリーニング方法。 [20] A screening method using the lymphangiogenesis evaluation kit according to claim 8, wherein the test substance is brought into contact with the cell line and the degree of lumen formation is measured. A screening method for substances or accelerators.
[21] 請求項 19に記載のリンパ管新生阻害物質又は促進物質のスクリーニング方法によ り得られるリンパ管新生阻害物質。 [21] A lymphangiogenesis inhibitor obtained by the method for screening a lymphangiogenesis inhibitor or promoter according to [19].
[22] 請求項 20に記載のリンパ管新生阻害物質又は促進物質のスクリーニング方法によ り得られるリンパ管新生阻害物質。
請求項 7に記載のリンパ管評価キットを用いて、(i)胸管由来の細胞株に発現する 遺伝子または蛋白質と、 (ii)血管内皮細胞由来の細胞株に発現する遺伝子または 蛋白質とを比較することを含む、リンパ管関連またはリンパ管新生に関与する遺伝子 またはタンパク質を同定する方法。
[22] A lymphangiogenesis inhibitor obtained by the method for screening a lymphangiogenesis inhibitor or promoter according to [20]. Using the lymphatic vessel evaluation kit according to claim 7, a comparison is made between (i) a gene or protein expressed in a thoracic duct-derived cell line and (ii) a gene or protein expressed in a vascular endothelial cell-derived cell line. A method of identifying a gene or protein involved in lymphangiogenesis or lymphangiogenesis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007526876A JPWO2007013517A1 (en) | 2005-07-26 | 2006-07-26 | Evaluation system for lymphangiogenesis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-215226 | 2005-07-26 | ||
JP2005215226 | 2005-07-26 | ||
JP2006-181570 | 2006-06-30 | ||
JP2006181570 | 2006-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007013517A1 true WO2007013517A1 (en) | 2007-02-01 |
Family
ID=37683408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314782 WO2007013517A1 (en) | 2005-07-26 | 2006-07-26 | Evaluation system for lymphangiogenesis |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2007013517A1 (en) |
WO (1) | WO2007013517A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019115394A1 (en) | 2017-12-11 | 2019-06-20 | Orano Cycle | Method for preparing a powder comprising particles of triuranium octoxide and particles of plutonium dioxide |
CN115404213A (en) * | 2022-09-16 | 2022-11-29 | 华中科技大学 | Sorting method, application and kit for hepatic lymphatic endothelial cells |
CN115531558A (en) * | 2022-09-16 | 2022-12-30 | 华中科技大学 | Method for marking animal liver lymphatic vasculature and three-dimensional atlas imaging |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228930A (en) * | 1998-02-27 | 2000-08-22 | Ys New Technology Kenkyusho:Kk | Transgenic rat introduced with immortalizing gene |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005500045A (en) * | 2001-07-12 | 2005-01-06 | ルードビッヒ、インスティテュート、フォー、キャンサー、リサーチ | Lymphatic endothelial cell material and method |
JP2004248577A (en) * | 2003-02-20 | 2004-09-09 | Toshio Ohashi | Tmethod for culturing endothelial cell of rat lymphatic vessel |
-
2006
- 2006-07-26 WO PCT/JP2006/314782 patent/WO2007013517A1/en active Application Filing
- 2006-07-26 JP JP2007526876A patent/JPWO2007013517A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000228930A (en) * | 1998-02-27 | 2000-08-22 | Ys New Technology Kenkyusho:Kk | Transgenic rat introduced with immortalizing gene |
Non-Patent Citations (6)
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019115394A1 (en) | 2017-12-11 | 2019-06-20 | Orano Cycle | Method for preparing a powder comprising particles of triuranium octoxide and particles of plutonium dioxide |
CN115404213A (en) * | 2022-09-16 | 2022-11-29 | 华中科技大学 | Sorting method, application and kit for hepatic lymphatic endothelial cells |
CN115531558A (en) * | 2022-09-16 | 2022-12-30 | 华中科技大学 | Method for marking animal liver lymphatic vasculature and three-dimensional atlas imaging |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007013517A1 (en) | 2009-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hackett et al. | Induction of epithelial–mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1 | |
Pulvirenti et al. | Dishevelled 2 signaling promotes self-renewal and tumorigenicity in human gliomas | |
Ueno et al. | Dependence of corneal stem/progenitor cells on ocular surface innervation | |
Choi et al. | Identification of brain tumour initiating cells using the stem cell marker aldehyde dehydrogenase | |
Pan et al. | Transplantation of neonatal gut neural crest progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon | |
Porcheri et al. | Dissecting integrin-dependent regulation of neural stem cell proliferation in the adult brain | |
Feeney et al. | Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery | |
Findlay et al. | Enteric neural progenitors are more efficient than brain-derived progenitors at generating neurons in the colon | |
Xiong et al. | Down-regulating ribonuclease inhibitor enhances metastasis of bladder cancer cells through regulating epithelial–mesenchymal transition and ILK signaling pathway | |
Fu et al. | 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development | |
US20160146815A1 (en) | Method for screeing cancer metastasis inhibitor using culture of cells or spheroidically aggregated cells in which lysyl-trna synthetase is regulated to be expressed or unexpressed | |
Singh et al. | Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS | |
WO2007013517A1 (en) | Evaluation system for lymphangiogenesis | |
Gao et al. | A Novel Magnetic Responsive miR‐26a@ SPIONs‐OECs for Spinal Cord Injury: Triggering Neural Regeneration Program and Orienting Axon Guidance in Inhibitory Astrocytic Environment | |
US20200017835A1 (en) | Identification, isolation, and therapeutic uses of endothelial stem cells that express the abcg2+ surface marker | |
CN112980948B (en) | Application of NFAT3 as therapeutic target in screening or preparing head and neck squamous cell carcinoma drugs | |
Ping et al. | Discovery of endothelium and mesenchymal properties of primo vessels in the mesentery | |
Wang et al. | Semaphorin 3A as an inhibitive factor for migration of olfactory ensheathing cells through cofilin activation is involved in formation of olfactory nerve layer | |
WO2016103529A1 (en) | Method for culturing salivary gland cells | |
CN115120723B (en) | Application of macrophage Piezo1 knockout in promoting ischemic tissue angiogenesis | |
WO2021246399A1 (en) | Therapeutic drug for disease caused by intestinal immune disorder | |
JP5058602B2 (en) | Angiogenesis model for imaging new blood vessels using nestin-expressing stem cells | |
Hettinger | Effects of Oxidative Stress on Exosome Release in Human Skeletal Muscle Satellite Cells | |
Kim et al. | Deciphering the impacts of modulating the Wnt-planar cell polarity (PCP) pathway on alveolar repair | |
O'Brien | Interrogating Cell-Specific Roles of Calcium/Calmodulin-Dependent Protein Kinase Delta Splice Variants in the Vascular Wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007526876 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781694 Country of ref document: EP Kind code of ref document: A1 |