WO2007013384A1 - Variable resistor - Google Patents

Variable resistor Download PDF

Info

Publication number
WO2007013384A1
WO2007013384A1 PCT/JP2006/314543 JP2006314543W WO2007013384A1 WO 2007013384 A1 WO2007013384 A1 WO 2007013384A1 JP 2006314543 W JP2006314543 W JP 2006314543W WO 2007013384 A1 WO2007013384 A1 WO 2007013384A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
substrate
resistors
conductor
insulating substrate
Prior art date
Application number
PCT/JP2006/314543
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kanzaki
Jun Yashiro
Original Assignee
Alps Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co., Ltd. filed Critical Alps Electric Co., Ltd.
Publication of WO2007013384A1 publication Critical patent/WO2007013384A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/02Liquid resistors
    • H01C10/025Electrochemical variable resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/16Adjustable resistors including plural resistive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/10Adjustable resistors adjustable by mechanical pressure or force
    • H01C10/12Adjustable resistors adjustable by mechanical pressure or force by changing surface pressure between resistive masses or resistive and conductive masses, e.g. pile type

Definitions

  • the present invention relates to a variable resistor that can be used in an information input device capable of tactile input of analog information to an electronic control device.
  • a pressure contact type variable resistor is used for such an information input device.
  • FIG. 9 is a configuration diagram of a pressing contact type variable resistor described in Patent Document 1 above.
  • the variable resistor 100 includes a resistive element 101 having a predetermined length, and a flexible short circuit element 102 disposed spaced apart and opposed to the resistive element 101, and one end of the resistive element 101.
  • the positive terminal of the battery 104 is connected to the terminal 103 on the side, and the terminal 105 on the other end side of the resistance element 101 is grounded.
  • the shorting element 102 when the shorting element 102 is pressed toward the resistance element 101 at an arbitrary position, the shorting element 102 and the resistance element 101 conduct at the contact point P corresponding to the pressed position. Pass through.
  • the total resistance value of the resistance element 101 is R
  • the DC voltage of the battery 104 is Vs
  • the output voltage Vout of the short-circuit element 102 (Vs / R) XR2 and appears at the output terminal 106.
  • the output voltage V out is converted into a digital signal by the AZD conversion 107, taken into the CPU 109 via the input / output interface 108, and used for various control.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-53015
  • variable resistor 100 Since the variable resistor 100 described above always applies a voltage (V s) between both ends of the resistive element 101 while applying force, power is not supplied from the resistive element 101 even during non-operation. There is a problem of being consumed. For example, like a portable device terminal, a battery In the device to be used, the standby power of the variable resistor 100 shortens the usage time of the device, so it is desirable to suppress the standby power of the variable resistor 100 also in order to extend the usable time of the portable device terminal. .
  • the present invention has been made in view of the problem, and it is an object of the present invention to provide a variable resistor capable of suppressing power consumption in a resistive element at the time of non-operation.
  • the variable resistor according to the present invention is characterized in that the first substrate having flexibility as the operation side on the side where one surface is pressed and operated, and the other surface of the first substrate is separated from the other surface of the first substrate.
  • the first substrate having flexibility as the operation side on the side where one surface is pressed and operated, and the other surface of the first substrate is separated from the other surface of the first substrate.
  • the first and second resistors being provided and insulated from each other And the other surface of the first substrate and the other surface of the second substrate, and the pressing position according to the pressing operation to the operation side surface of the first substrate.
  • a conductor for electrically connecting the corresponding position of the first resistor and the second resistor wherein a part of the first resistor is connected to a first voltage application unit, and the second resistor is connected to the first resistor.
  • a part is connected to the second voltage application unit, and a voltage can be applied between the first voltage application unit and the second voltage application unit.
  • the operation side of the first substrate is pressed, In the standby state, the first and second resistors are kept in the non-conductive state, and power consumption in the first and second resistors does not occur.
  • the conductor causes the first and second resistors to conduct at a position corresponding to the pressed position, and an output voltage corresponding to the pressed position is obtained.
  • the pressing region of the operation side face of the first substrate is extended with one end and the other end, and the first voltage application unit is A second voltage applying portion is electrically connected to the first resistor at a position corresponding to one end of the pressing area, and the second voltage applying portion is connected to the second resistor at a position corresponding to the other end of the pressing area; It is characterized in that it is conductively connected to the resistor.
  • the first voltage application unit is disposed at a position corresponding to one end side of the pressing area. Since the second voltage application unit is connected to the resistor at a position corresponding to the other end of the pressing area, the second voltage applying section is connected to the second resistor. Output voltage can be changed.
  • variable resistor it is desirable that the first and second resistors and the conductor are disposed opposite to each other so as to be able to contact and separate. Thereby, a miniaturized variable resistor can be realized.
  • the first and second resistors are respectively formed in a band shape, and the conductor has any width of the first and second resistors. It is desirable to be set wider than that. Thus, in the pressed state, the wide conductor can be reliably brought into contact with the first and second resistors, and the first and second resistors can be reliably conducted.
  • variable resistor any one surface of the other surface of the first substrate or one surface of the second substrate on which the first and second resistors are provided.
  • an output conductive pattern electrically connected to the conductor is provided in a state where at least the operation side surface is pressed.
  • the same substrate power as the first or second substrate on which the first and second resistors are formed can also take out the output voltage through the output conductive pattern, and a lead wire or a lead wire can be obtained. Processing of the delivery pattern is facilitated.
  • the present invention is characterized in that, in the variable resistor, the first and second resistors are formed in the same printing step.
  • the resistivities of the first and second resistors can be equalized, and the variation in output voltage can be suppressed.
  • waste of power consumption in the standby state can be eliminated, and the usable time can be extended by using it for a portable device terminal or the like.
  • FIG. 1 shows a state in which the electronic control unit is connected to the variable resistor that is applied to the present embodiment. It is structure explanatory drawing shown. The first and second substrates are omitted in FIG.
  • the resistance element is divided into a first resistor 11 and a second resistor 12, and a conductor 13 for the first resistor 11 and the second resistor 12 is provided. Are arranged opposite to each other.
  • the first resistor 11 and the second resistor 12 both have a strip shape linearly extending in one direction, and they are arranged in a state of being insulated and separated from each other by a predetermined width.
  • a first voltage application unit 14 serving as an electrode unit is conductively connected to one end of the first resistor 11, and is an end of the second resistor 12 opposite to an end where the first voltage application unit 14 is provided.
  • a second voltage application unit 15 serving as an electrode unit is electrically connected to the side.
  • the first and second voltage application units 14 and 15 are provided directly to a part of the resistors 11 and 12, respectively.
  • the first and second voltage application units 14 and 15 are connected to the resistors 11 and 12, respectively. It can be provided at a distant position, and can be configured to be connected via a conductive pattern or conductor with good conductivity.
  • the first voltage application unit 14 of the first resistor 11 is applied with a predetermined potential (Vin) that is the first potential
  • the second voltage application unit 15 of the second resistor 12 is A ground potential (GROUND) is applied which is a second potential different from the first potential.
  • Vin predetermined potential
  • GROUND ground potential
  • P1 in the figure indicates the pressing range at the pressing position.
  • the pressing range P1 is an area where the conductor 13 contacts the first and second resistors 11 and 12 simultaneously.
  • variable resistor 1 The configuration of the variable resistor 1 will be described in more detail with reference to FIGS. 2 (a) and 2 (b) and FIG. Figure 2
  • FIG. 2 (a) is a plan view of the first resistor 11 and the second resistor 12 formed on the substrate
  • FIG. 2 (b) is a plan view of the conductor 13 formed on the substrate.
  • a first resistive antibody 11 and a second resistor 12 are formed on the substrate surface of a second insulating substrate 17 as a second substrate.
  • the first resistor 11 and the second resistor 12 have a rectangular shape extending in the left-right direction in the figure, and are separated from each other by a predetermined width and insulated. In the present embodiment, the separation width between the first resistor 11 and the second resistor 12 is made to be close to the extent that short circuiting does not occur except during pressing operation.
  • a first voltage application unit 14 to which a predetermined potential Vin is applied is formed at the right end of the first resistor 11 corresponding to one end of the pressing region described later, and a second resistor 12 of the second resistor 12 corresponding to the other end of the pressing region.
  • a second voltage application unit 15 to which the ground potential is applied is formed at the left end portion.
  • a rectangular conductor 13 made of a highly conductive material is formed on the substrate surface of a first insulating substrate 18 as a first substrate. It is done. First The side opposite to the side on which the conductor 13 is formed, which is one side of the insulating substrate 18, is the operation side. The first insulating substrate 18 is flexible. In a pressed state where a pressing force is applied to the operation side surface of the first insulating substrate 18, the conductor 13 deforms to such an extent that it contacts the first and second resistors 11 and 12 sufficiently.
  • a highly conductive material for example, a silver pattern
  • the conductor 13 is separated from the first and second resistors 11 and 12 to return to the original state.
  • a flexible substrate can be used as the first insulating substrate 18.
  • a voltage extracting portion 16 of a conductive pattern for extracting the output voltage Vout to the outside is connected conductively.
  • the rectangular conductor 13 and the formation region of the first and second resistors 11 and 12 have substantially the same shape. Even if the position of the displacement of the formation region of the conductor 13 is pressed from the operation side, the conductor 13 is brought into contact with the corresponding positions of the first and second resistors 11 and 12 at the same time according to the pressed position.
  • the width of the conductor 13 and the separation width of the first and second resistors 11 and 12 are set so as to obtain.
  • the conductor 13 which is wider in the pressed state is used as the first and second resistors 11 and 12.
  • the first and second resistors 11 and 12 can be reliably brought into contact with each other.
  • FIG. 3 is a view schematically showing a side cross sectional structure of the variable resistor 1.
  • the opposing substrates 18 are spaced apart from each other.
  • the conductor 13 is made of the first and second resistors 11 and 12 due to the pressing deformation of the first insulating substrate 18.
  • the outer peripheral portions of the second insulating substrate 17 and the first insulating substrate 18 are held by a holding member 20.
  • a region where the first and second resistors 11 and 12 and the conductor 13 are disposed so as to be opposite to each other so as to be contactable and releasable is a pressing region, and in the present embodiment, substantially the same shape as the conductor It has a rectangular shape. And this pressing area has one end and the other end in the longitudinal direction of the first and second resistors 11 and 12
  • various displays including the operation area (press area) are marked.
  • the printed flexible printing sheet is placed or adhered on the operation side of the first insulating substrate 18.
  • a screen (printing mask) on which patterns corresponding to the shapes and the separation widths of the first and second resistors 11 and 12 are formed is disposed on the resistor forming surface of the second insulating substrate 17.
  • a resistor material for example, carbon ink
  • the electric resistance of the first resistor 11 and the second resistor 12 can be reduced. Characteristics can be made uniform, and variations in the output voltage Vout can be suppressed.
  • the variable resistor 1 configured as described above includes a first and a second first voltage application unit 14 with respect to a resistance element formed of the first and second resistors 11 and 12. Although a predetermined voltage (Vin-GROUND) is applied via the 15, when the conductor 13 is separated from the divided first and second resistors 11 and 12 (non-pressed state), Since the first resistor 11 and the second resistor 12 remain nonconductive, no power consumption occurs in the resistor elements (the first resistor 11 and the second resistor 12).
  • Vin-GROUND a predetermined voltage
  • the electronic control unit 2 sets a predetermined voltage between the first voltage application unit 14 connected to the first resistor 11 of the variable resistor 1 and the second voltage application unit 15 connected to the second resistor 12.
  • a voltage output unit 21 to be applied is provided.
  • the applied potential to the first voltage application unit 14 connected to the first resistor 11 is Vin
  • the applied potential to the second voltage application unit 15 connected to the second resistor 12 is the ground potential. (GROUND).
  • the output voltage (Vout) appearing in the voltage extraction unit 16 connected to the conductor 13 is input to the analog input terminal of the AZD conversion unit 22.
  • the AZD conversion unit 22 converts the output voltage (Vout) into a digital value and inputs the digital value to the CPU unit 23.
  • the CPU unit 23 has an arithmetic function for calculating the touch position on the operation side of the first insulating substrate 18 of the value of the output voltage (Vout).
  • variable resistor 1 an operation example when the variable resistor 1 is operated will be described with reference to FIGS. 4 (a) to 4 (c) and FIGS. 5 (a) and 5 (b).
  • FIG. 4 (a) shows the non-use state (standby state), and the operation side of the first insulating substrate 18 is The state before pressing is shown. Since the operation side of the first insulating substrate 18 is not pressed, the conductor 13 is kept apart from the first and second resistors 11 and 12.
  • FIG. 5 (a) is a schematic circuit diagram of the variable resistor 1 in the standby state. In the standby state, the conductor 13 is not in contact with both the first resistor 11 and the second resistor 12. Since the first resistor 11 and the second resistor 12 are separated and insulated, they are in a non-conductive state. Therefore, although a voltage is applied from the voltage output unit 21 between the first resistor 11 and the second resistor 12, current flows in both the first resistor 11 and the second resistor 12. Because there is no power consumption in the first resistor 11 and the second resistor 12 occurs.
  • FIG. 4 (b) shows a state of use, in which the operation side of the first insulating substrate 18 is pressed.
  • the first insulating substrate 18 is deformed toward the second insulating substrate 17 at the pressing position of the operation side, and the conductor 13 formed on the first insulating substrate 18 is at the pressing position.
  • FIG. 5 (b) is a schematic circuit diagram at the time of pressing in which the variable resistor 1 is in use.
  • the first resistor 11 and the second resistor 12 are electrically connected via the conductor 13 at a position corresponding to the pressing position.
  • the distance from the voltage application end (first voltage application unit 14) of the first resistor 11 to the pressing position and the distance from the voltage application end (second voltage application unit 15) of the second resistor 12 to the pressing position The output voltage Vout corresponding to the distance appears in the voltage output portion 16 connected to the conductor 13.
  • the first resistor 11 and the second resistor 12 have the same size, and all resistance values are made to be the same value R, respectively.
  • R resistance value from the voltage application unit 14 to the pressing position of 1
  • R2 resistance value from the second voltage application unit 15 of the second resistor 12 to the pressing position
  • both resistivities are the same.
  • R R1 + R2
  • Vout (Vin / R) ⁇ R2. That is, the respective distances from the voltage application end of the first resistor 11 and the voltage application end of the second resistor 12 to the pressing position can be treated as resistance values, and the pressing position is detected from the output voltage Vout. It will be possible.
  • the output voltage Vout is converted to a digital signal by the AZD converter 22 and taken into the CPU 23 to calculate the pressed position.
  • the pressing position is changed by sliding the finger as it is.
  • the contact position (conductive position) between the first resistor 11 and the conductor 13 of the second resistor 12 changes. That is, the values of Rl and R2 change according to the slide of the finger, and the output voltage Vout changes.
  • the voltage application end (first voltage application unit 14) of the first resistor 11 and the voltage application end (second voltage application unit 15) of the second resistor 12 are resistances.
  • the slide range in which the output voltage changes can be made the longest by providing the opposing ends located in the longitudinal direction of the body (pressing area) and located on one end side and the other end side of the pressing area. The longer the sliding range and the larger the amount of change in output voltage, the more accurate information input becomes possible.
  • the resistive element for converting the touch position into the output voltage Vout in the variable resistor 1 is divided into a plurality of resistive elements, and separated by a predetermined width. Since the divided resistors are made conductive only at the time of operation to be able to detect the output voltage Vout, it is possible to eliminate the power consumption of the resistors in the standby state. Therefore, if the information input device using such a variable resistor 1 is used for a portable device terminal, the use time of the portable device terminal can be extended.
  • the distance between the first and second resistors 11 and 12 is made close to the extent not to cause a short circuit, and the first and second resistors 11 and 12 directly face each other.
  • the area of the variable resistor 1 can be made smaller compared to the arrangement in which the first and second resistors 11 and 12 and the conductor 13 are shifted in the horizontal direction.
  • the conductor 13 is formed on the first insulating substrate 18 having flexibility, but the first insulating substrate 18 is formed with the first and second resistors 11 and 12. And the conductor 13 may be formed on the second insulating substrate 17.
  • the first and second resistors 11 and 12 are displaced toward the conductor 13 and contact the conductor 13 in the pressure state, but other functions
  • the effects are the same as in the above embodiment.
  • voltage application to the variable resistor 1 is performed to the first and second voltage application units 14 and 15 formed on the second insulating substrate 17, and
  • the output voltage Vo ut of the vessel 1 was taken out from the voltage take-out portion 16 formed on the first insulating substrate 18. That is, from the first and second voltage application units 14 and 15 of the second insulating substrate 17, a conducting wire or a conductive pattern The lead (not shown) was pulled out, and the lead wire or the conductive pattern (not shown) was pulled out from the voltage lead-out portion 16 of the first insulating substrate 18. It is also possible to construct such that a conductive pattern (not shown) can be drawn out only from the side of the insulating substrate on which the first and second resistors 11 and 12 are formed.
  • FIGS. 6 (a) and 6 (b) are diagrams showing a configuration in which a voltage application unit for applying a voltage to the resistive element of the variable resistor and a voltage extraction unit for extracting the output voltage Vout are provided on the same substrate.
  • the output conductive portion 31 is formed along the direction in which the first and second resistors 11 and 12 are formed.
  • a voltage takeout portion 32 is provided at one end of the output conductive portion 31.
  • the output conductive portion 31 is set to have substantially the same height as the first and second resistors 11 and 12. Further, as shown in FIG. 6 (b), the voltage extracting portion is eliminated from the conductor 33.
  • the first and second resistors 11 and 12 and the output conductive portion 31 contact the conductor 33 at the pressed position.
  • the first and second resistors 11 and 12 conduct at the contact point with the conductor 33, and an output voltage corresponding to the contact point appears at the voltage output portion 32 of the output conductive portion 31.
  • the lead wire or pattern for the variable resistor 1 can be combined on the same substrate, and thus the lead wire or the lead wire can be obtained. Pattern processing can be facilitated and work efficiency can be improved.
  • the conductive pattern connected to the voltage lead-out portion 32 is formed by printing, for example, on the second insulating substrate 17 on which the first and second resistors 11 and 12 are formed. . In this case, it is preferable that the conductive patterns connected to the first and second voltage application units 14 and 15 be similarly printed.
  • first and second resistors 11 and 12 and the conductor 13 are directly opposed to each other.
  • first and second resistors 11 and 12 may not necessarily be opposed to each other.
  • 12 can be conducted at the pressing position.
  • FIG. 7 is a view showing an arrangement example in which the first and second resistors and the conductor do not face each other.
  • the second resistor 42 having the comb teeth 44 of the second embodiment is disposed in such a manner that the second teeth 43 and 44 of the other do not contact each other.
  • the conductor 45 is disposed to face each other so as to face the comb teeth 43 and 44 engaged with each other.
  • the conductor 45 is formed on the substrate surface of the first insulating substrate 18 (not shown).
  • the comb teeth 43 of the second insulating substrate 17 and the comb teeth 44 of the second resistor 42 in the pressed position are brought into contact with the conductor 45 displaced by the press and are conducted.
  • the positions of the comb teeth 43 and 44 in which the first resistor 41 and the second resistor 42 are in conduction are the short circuit points.
  • the output voltage Vout corresponding to the short circuit point is taken out from the voltage extraction portion 16 of the conductor 45.
  • the formation region of the conductor 45 disposed so as to be in contact with and separated from the comb teeth 43 and 44 engaged with each other is the pressing region.
  • the output voltage Vout can be obtained in accordance with the pressed position, and both can not be arranged opposite to each other. Or, it is possible to cope with the case where there is no restriction, as opposed to facing each other, which is preferable.
  • the first and second resistors 11 and 12 and the like have a long rectangular shape, but the present invention is not limited to such a linear shape.
  • the first and second antibodies 11 and 12 may be in the form of a meandering shape, a shape curved in an arc shape, or a non-linearly extending strip shape including a shape bent in a U-shape.
  • the first and second resistors 11 and 12 which are not band-shaped, for example, semi-circular may be arranged to be close to each other with their straight portions close to each other.
  • FIGS. 8 (a) and 8 (b) are diagrams showing a modified example in which the shape of the first resistor is roughly deformed into a U shape.
  • the first resistor 51 is bifurcated into a substantially U-shape, and a long rectangular second resistor 52 is disposed so as to fit between the first resistors 51.
  • the conductor 13 formed on the first insulating substrate 18 is set to have a size such that the separation region (substantially U-shaped) between the first resistor 51 and the second resistor 52 is a force bar.
  • the area of the conductor 13 in the portion disposed opposite to the first resistor 51 and the second resistor 52 in a contactable / removable manner is the pressing area, and the pressing area is the same as in the present embodiment.
  • the second resistor 52 is disposed between the two branches of the first resistor 51 in a substantially U shape. By doing this, it is possible to widely distribute the conductive area over the entire operation surface. Therefore, for example, as shown in FIG. 8A, even when the position P1 or P2 near the end of the operation side is pressed, the first resistor 51 and the second resistor 52 can be reliably made. It can be made conductive and stable analog input is possible.
  • the second insulating substrate 17 and the first insulating substrate 18 need not necessarily be separate separate substrates.
  • a flexible substrate having a force of one polyester film may be folded in half. It is good.
  • the present invention is applicable to an information input apparatus capable of inputting analog information in a touch-type manner.
  • FIG. 1 is a block diagram of an information input device according to an embodiment.
  • FIG. 2 (a) A plan view of the insulating substrate on the resistance element forming side of the variable resistor shown in FIG. 1, (b) A plan view of the insulating substrate on the conductor forming side of the variable resistor shown in FIG.
  • FIG. 3 A diagram showing the cross-sectional structure of the variable resistor shown in FIG.
  • FIG. 4 (a) A diagram showing a non-use state before touching on the operating surface of the variable resistor in the above embodiment, (b) showing a using state in which the operating surface of the variable resistor is touching in the above embodiment (C) In the above embodiment, a sliding view of the touch position of the operation surface of the variable resistor.
  • FIG. 5 (a) Equivalent circuit diagram of variable resistor in non-use state corresponding to FIG. 4 (a), (b) Equivalent circuit diagram of variable resistor in use state corresponding to FIG. 4 (b)
  • FIG. 6 (a) A plan view of the insulating substrate on the resistance element forming side in a modification in which the output voltage outlet is changed, a plan view of the insulating substrate on the conductor formation side in the same modification
  • FIG. 7 A plan view of the insulating substrate on the resistance element forming side in a modification in which the arrangement relationship between the resistor and the conductor is changed
  • FIG. 8 (a) A plan view of the insulating substrate on the resistance element forming side in a modification in which the first resistor is changed to a U shape, (b) a plane of the insulating substrate on the conductor forming side in the same modification Figure [Fig. 9] Configuration diagram of a conventional pressing contact type variable resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Adjustable Resistors (AREA)
  • Push-Button Switches (AREA)

Abstract

[PROBLEMS] To suppress power consumption in a resistor element in a variable resistor during a non-operation state. [MEANS FOR SOLVING PROBLEMS] On a substrate surface of a second insulating substrate (17), a first resistor (11) and a second resistor (12) are arranged side by side in an insulating state. On a first insulating substrate (18) arranged to oppose to the second insulating substrate (17), a conductor (13) is formed on the surface opposing to the second insulating substrate (17). The second insulating substrate (17) and the first insulating substrate (18) are formed by flexible substrates so that the first resistor (11), the second resistor (12), and the conductor (13) may be brought into a pressed contact. Voltage is applied from a voltage output unit (21) across a first voltage application unit (14) of the first resistor (11) and a voltage application unit (15) of the second resistor (12). When in a non-pressed state, i.e., in a wait state, the first resistor (11) and the second resistor (12) are not electrically connected, thereby causing no power consumption.

Description

明 細 書  Specification
可変抵抗器  Variable resistor
技術分野  Technical field
[0001] 本発明は、電子制御装置に対してアナログ情報をタツチ式で入力可能な情報入力 装置に使用することのできる可変抵抗器に関する。  [0001] The present invention relates to a variable resistor that can be used in an information input device capable of tactile input of analog information to an electronic control device.
背景技術  Background art
[0002] 各種機器の電子制御装置に対して所望のアナログ情報をタツチ式で入力するため に可変抵抗器を用いた情報入力装置がある(例えば、特許文献 1参照)。かかる情報 入力装置には押圧接触型の可変抵抗器が用いられている。  There is an information input device using a variable resistor in order to input desired analog information to an electronic control device of various devices in a touch type (see, for example, Patent Document 1). A pressure contact type variable resistor is used for such an information input device.
[0003] 図 9は上記特許文献 1に記載された押圧接触型の可変抵抗器の構成図である。同 図に示すように、可変抵抗器 100は、所定長さの抵抗素子 101と、該抵抗素子 101 に離間して対向配置された可撓性の短絡素子 102とを備え、抵抗素子 101の一端 側の端子 103に対して電池 104の正極を接続し、抵抗素子 101の他端側の端子 10 5を接地した構成となって 、る。  [0003] FIG. 9 is a configuration diagram of a pressing contact type variable resistor described in Patent Document 1 above. As shown in the figure, the variable resistor 100 includes a resistive element 101 having a predetermined length, and a flexible short circuit element 102 disposed spaced apart and opposed to the resistive element 101, and one end of the resistive element 101. The positive terminal of the battery 104 is connected to the terminal 103 on the side, and the terminal 105 on the other end side of the resistance element 101 is grounded.
[0004] 図 9に示すように、短絡素子 102を任意の位置で抵抗素子 101に向力つて押圧し た場合、押圧位置に対応した接触点 Pにて短絡素子 102と抵抗素子 101とが導通す る。抵抗素子 101の全抵抗値を Rとし、接触点 Pの両側の抵抗値を Rl、 R2 (R=R1 +R2)、電池 104の直流電圧を Vsとすると、短絡素子 102の出力電圧 Voutは、 Vou t= (Vs/R) XR2となって、出力端子 106に現れる。図 9に示す例では、出力電圧 V outを AZD変翻 107でデジタル信号に変換し、入出力インターフェース 108を介 して CPU109に取り込んで各種制御に用いている。  As shown in FIG. 9, when the shorting element 102 is pressed toward the resistance element 101 at an arbitrary position, the shorting element 102 and the resistance element 101 conduct at the contact point P corresponding to the pressed position. Pass through. Assuming that the total resistance value of the resistance element 101 is R, the resistance values on both sides of the contact point P are Rl, R2 (R = R1 + R2), and the DC voltage of the battery 104 is Vs, the output voltage Vout of the short-circuit element 102 is Vout = (Vs / R) XR2 and appears at the output terminal 106. In the example shown in FIG. 9, the output voltage V out is converted into a digital signal by the AZD conversion 107, taken into the CPU 109 via the input / output interface 108, and used for various control.
特許文献 1:特開平 6— 53015号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 6-53015
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] し力しながら、上述した可変抵抗器 100は、抵抗素子 101の両端間に常に電圧 (V s)を印加している構成であるので、非操作時においても抵抗素子 101で電力が消費 されてしまうという課題がある。例えば、携帯機器端末のように、電源としてバッテリを 用いる機器では、可変抵抗器 100の待機電力が機器の使用時間を短縮させることに なるので、携帯機器端末の使用可能時間を延ばすためにも可変抵抗器 100の待機 電力を抑制することが望まれる。 Since the variable resistor 100 described above always applies a voltage (V s) between both ends of the resistive element 101 while applying force, power is not supplied from the resistive element 101 even during non-operation. There is a problem of being consumed. For example, like a portable device terminal, a battery In the device to be used, the standby power of the variable resistor 100 shortens the usage time of the device, so it is desirable to suppress the standby power of the variable resistor 100 also in order to extend the usable time of the portable device terminal. .
[0006] 本発明は、力かる点に鑑みてなされたものであり、非操作時における抵抗素子での 消費電力を抑えることができる可変抵抗器を提供することを目的とする。  [0006] The present invention has been made in view of the problem, and it is an object of the present invention to provide a variable resistor capable of suppressing power consumption in a resistive element at the time of non-operation.
課題を解決するための手段  Means to solve the problem
[0007] 本発明の可変抵抗器は、一面が押圧操作される側の操作側面とされた可撓性を有 する第 1の基板と、この第 1の基板の他面に対して一面が離間して対向配置された第 2の基板と、前記第 1の基板の他面と前記第 2の基板の一面とのうち何れか一方に設 けられ互いに絶縁された第 1と第 2の抵抗体と、前記第 1の基板の他面と前記第 2の 基板の一面とのうち何れか他方に設けられ、前記第 1の基板の操作側面への押圧操 作に伴って、押圧位置に応じた前記第 1の抵抗体と前記第 2の抵抗体の対応位置を 導通させる導電体とを備え、前記第 1の抵抗体の一部は第 1の電圧印加部に、前記 第 2の抵抗体の一部は第 2の電圧印加部にそれぞれ導通接続されており、前記第 1 の電圧印加部と第 2の電圧印加部との間に電圧を印加可能に構成したことを特徴と する。  The variable resistor according to the present invention is characterized in that the first substrate having flexibility as the operation side on the side where one surface is pressed and operated, and the other surface of the first substrate is separated from the other surface of the first substrate. Of the first substrate, the other surface of the first substrate, and one surface of the second substrate, the first and second resistors being provided and insulated from each other And the other surface of the first substrate and the other surface of the second substrate, and the pressing position according to the pressing operation to the operation side surface of the first substrate. And a conductor for electrically connecting the corresponding position of the first resistor and the second resistor, wherein a part of the first resistor is connected to a first voltage application unit, and the second resistor is connected to the first resistor. A part is connected to the second voltage application unit, and a voltage can be applied between the first voltage application unit and the second voltage application unit. To.
[0008] 以上の構成によれば、可変抵抗器の抵抗素子を構成する第 1と第 2の抵抗体は互 いに絶縁されて 、るので、第 1の基板の操作側面が押圧されて 、な 、待機状態では 第 1、第 2の抵抗体は非導通状態に保たれ、第 1と第 2の抵抗体での消費電力は生じ ないこととなる。一方、第 1の基板の操作側面が押圧された使用状態では導電体によ り第 1と第 2の抵抗体が押圧位置に対応した位置で導通し、押圧位置に応じた出力 電圧が得られる。  According to the above configuration, since the first and second resistors constituting the resistance element of the variable resistor are mutually insulated, the operation side of the first substrate is pressed, In the standby state, the first and second resistors are kept in the non-conductive state, and power consumption in the first and second resistors does not occur. On the other hand, when the operation side of the first substrate is pressed, the conductor causes the first and second resistors to conduct at a position corresponding to the pressed position, and an output voltage corresponding to the pressed position is obtained. .
[0009] また本発明は、上記可変抵抗器において、前記第 1の基板の操作側面の押圧領 域が一端と他端とを有して延在されており、前記第 1の電圧印加部は、前記押圧領 域の一端側に対応した位置で前記第 1の抵抗体と導通接続され、前記第 2の電圧印 加部は、前記押圧領域の他端側に対応した位置で前記第 2の抵抗体と導通接続さ れていることを特徴とする。  Further, according to the present invention, in the variable resistor described above, the pressing region of the operation side face of the first substrate is extended with one end and the other end, and the first voltage application unit is A second voltage applying portion is electrically connected to the first resistor at a position corresponding to one end of the pressing area, and the second voltage applying portion is connected to the second resistor at a position corresponding to the other end of the pressing area; It is characterized in that it is conductively connected to the resistor.
[0010] この構成により、第 1の電圧印加部が押圧領域の一端側に対応した位置で第 1の 抵抗体と接続され、第 2の電圧印加部が押圧領域の他端側に対応した位置で第 2の 抵抗体と接続されるので、押圧領域の一端側から他端側に亘り押圧位置に応じて出 力電圧を変化させることができる。 According to this configuration, the first voltage application unit is disposed at a position corresponding to one end side of the pressing area. Since the second voltage application unit is connected to the resistor at a position corresponding to the other end of the pressing area, the second voltage applying section is connected to the second resistor. Output voltage can be changed.
[0011] また本発明は、上記可変抵抗器において、前記第 1と第 2の抵抗体と、前記導電体 とが接離可能に対向配置されることが望ましい。これにより、小型化された可変抵抗 器を実現できる。 Furthermore, in the variable resistor according to the present invention, it is desirable that the first and second resistors and the conductor are disposed opposite to each other so as to be able to contact and separate. Thereby, a miniaturized variable resistor can be realized.
[0012] また本発明は、上記可変抵抗器において、前記第 1と第 2の抵抗体は、それぞれ帯 状に形成され、前記導電体は、前記第 1と第 2の抵抗体のいずれの幅よりも幅広に設 けられることが望ましい。これにより、押圧状態では幅広の導電体を第 1と第 2の抵抗 体に対して確実に接触させることができ、第 1と第 2の抵抗体を確実に導通させること ができる。  Further, in the variable resistor according to the present invention, the first and second resistors are respectively formed in a band shape, and the conductor has any width of the first and second resistors. It is desirable to be set wider than that. Thus, in the pressed state, the wide conductor can be reliably brought into contact with the first and second resistors, and the first and second resistors can be reliably conducted.
[0013] また本発明は、上記可変抵抗器において、前記第 1の基板の他面又は前記第 2の 基板の一面のうち前記第 1と第 2の抵抗体が設けられた何れか一方の面に、少なくと も前記操作側面が押圧操作された状態において、前記導電体と導通する出力用導 電パターンが設けられて 、ることを特徴とする。  Further, according to the present invention, in the variable resistor, any one surface of the other surface of the first substrate or one surface of the second substrate on which the first and second resistors are provided. Preferably, an output conductive pattern electrically connected to the conductor is provided in a state where at least the operation side surface is pressed.
[0014] この構成により、第 1と第 2の抵抗体が形成された第 1又は第 2の基板と同一の基板 力も出力用導電パターンを介して出力電圧を取り出すことができ、引き出し線や引き 出し用パターンの処理が容易になる。 With this configuration, the same substrate power as the first or second substrate on which the first and second resistors are formed can also take out the output voltage through the output conductive pattern, and a lead wire or a lead wire can be obtained. Processing of the delivery pattern is facilitated.
[0015] また本発明は、上記可変抵抗器において、前記第 1と第 2の抵抗体は、同一の印 刷工程で形成されたことを特徴とする。 The present invention is characterized in that, in the variable resistor, the first and second resistors are formed in the same printing step.
[0016] この構成により、第 1と第 2の抵抗体の抵抗率を揃えることができ、出力電圧のバラ ツキを抑えることができる。 According to this configuration, the resistivities of the first and second resistors can be equalized, and the variation in output voltage can be suppressed.
発明の効果  Effect of the invention
[0017] 本発明によれば、待機状態での消費電力の無駄を無くすことができ、携帯機器端 末等に用いることによりその使用可能時間を延ばすことができる。  According to the present invention, waste of power consumption in the standby state can be eliminated, and the usable time can be extended by using it for a portable device terminal or the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の一実施の形態について添付図面を参照して詳細に説明する。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the attached drawings.
図 1は、本実施の形態に力かる可変抵抗器に対して電子制御部を接続した状態を 示す構成説明図である。なお、この図 1では第 1及び第 2の基板を省略している。 FIG. 1 shows a state in which the electronic control unit is connected to the variable resistor that is applied to the present embodiment. It is structure explanatory drawing shown. The first and second substrates are omitted in FIG.
[0019] 可変抵抗器 1は、抵抗素子が第 1抵抗体 11と第 2抵抗体 12とに分割されていて、こ れら第 1抵抗体 11、第 2抵抗体 12に対して導電体 13が対向配置された構成となつ ている。第 1抵抗体 11及び第 2抵抗体 12は共に一方向に直線的に伸びる帯状をな しており、絶縁した状態で互いに所定幅を隔てて配置されている。第 1抵抗体 11の 一端に電極部となる第 1の電圧印加部 14が導通接続され、第 2抵抗体 12の一端で あって上記第 1の電圧印加部 14を設けた端部とは反対側に電極部となる第 2の電圧 印加部 15が導通接続されている。本例では、第 1、第 2の電圧印加部 14、 15を抵抗 体 11, 12の一部に直接設けている力 第 1、第 2の電圧印加部 14、 15を抵抗体 11 , 12から離れた位置に設け、良導電性の導電パターンや導線を介して接続するよう に構成することも出来る。図 1に示す例では、第 1抵抗体 11の第 1の電圧印加部 14 は第 1の電位となる所定電位 (Vin)が印加され、第 2抵抗体 12の第 2の電圧印加部 1 5に第 1の電位とは異なる第 2の電位である接地電位 (GROUND)が印加される。なお 、図中の P1は押圧位置での押圧範囲を示している。押圧範囲 P1は第 1、第 2抵抗体 11、 12に対して導電体 13が同時に接触する面積となっている。  In the variable resistor 1, the resistance element is divided into a first resistor 11 and a second resistor 12, and a conductor 13 for the first resistor 11 and the second resistor 12 is provided. Are arranged opposite to each other. The first resistor 11 and the second resistor 12 both have a strip shape linearly extending in one direction, and they are arranged in a state of being insulated and separated from each other by a predetermined width. A first voltage application unit 14 serving as an electrode unit is conductively connected to one end of the first resistor 11, and is an end of the second resistor 12 opposite to an end where the first voltage application unit 14 is provided. A second voltage application unit 15 serving as an electrode unit is electrically connected to the side. In this example, the first and second voltage application units 14 and 15 are provided directly to a part of the resistors 11 and 12, respectively. The first and second voltage application units 14 and 15 are connected to the resistors 11 and 12, respectively. It can be provided at a distant position, and can be configured to be connected via a conductive pattern or conductor with good conductivity. In the example shown in FIG. 1, the first voltage application unit 14 of the first resistor 11 is applied with a predetermined potential (Vin) that is the first potential, and the second voltage application unit 15 of the second resistor 12 is A ground potential (GROUND) is applied which is a second potential different from the first potential. Note that P1 in the figure indicates the pressing range at the pressing position. The pressing range P1 is an area where the conductor 13 contacts the first and second resistors 11 and 12 simultaneously.
[0020] 図 2 (a) (b)及び図 3を参照して、可変抵抗器 1の構成をさらに詳しく説明する。図 2  The configuration of the variable resistor 1 will be described in more detail with reference to FIGS. 2 (a) and 2 (b) and FIG. Figure 2
(a)は基板上に形成された第 1抵抗体 11及び第 2抵抗体 12の平面図であり、図 2 (b )は基板上に形成された導電体 13の平面図である。  (a) is a plan view of the first resistor 11 and the second resistor 12 formed on the substrate, and FIG. 2 (b) is a plan view of the conductor 13 formed on the substrate.
[0021] 図 2 (a)に示すように、第 2の基板としての第 2絶縁性基板 17の基板面上に第 1抵 抗体 11及び第 2抵抗体 12が形成されている。第 1抵抗体 11及び第 2抵抗体 12は図 中左右方向に伸びた長方形状をなし、互いに所定幅だけ離間して絶縁されて 、る。 本実施の形態では、第 1抵抗体 11と第 2抵抗体 12との離間幅は押圧操作時以外に は短絡しな ヽ程度まで近接させることとする。後述する押圧領域の一端に対応した第 1抵抗体 11の右端部に所定電位 Vinが印加される第 1の電圧印加部 14が形成され、 押圧領域の他端に対応した第 2抵抗体 12の左端部に接地電位が印加される第 2の 電圧印加部 15が形成されて!、る。  As shown in FIG. 2 (a), a first resistive antibody 11 and a second resistor 12 are formed on the substrate surface of a second insulating substrate 17 as a second substrate. The first resistor 11 and the second resistor 12 have a rectangular shape extending in the left-right direction in the figure, and are separated from each other by a predetermined width and insulated. In the present embodiment, the separation width between the first resistor 11 and the second resistor 12 is made to be close to the extent that short circuiting does not occur except during pressing operation. A first voltage application unit 14 to which a predetermined potential Vin is applied is formed at the right end of the first resistor 11 corresponding to one end of the pressing region described later, and a second resistor 12 of the second resistor 12 corresponding to the other end of the pressing region. A second voltage application unit 15 to which the ground potential is applied is formed at the left end portion.
[0022] 図 2 (b)に示すように、第 1の基板としての第 1絶縁性基板 18の基板面上に良導電 性材料 (例えば、銀パターン)からなる長方形状の導電体 13が形成されている。第 1 絶縁性基板 18の一方の面であって導電体 13が形成された面とは反対側の面が操 作側面となる。第 1絶縁性基板 18は、可撓性を有している。第 1絶縁性基板 18の操 作側面に押圧力を加えた押圧状態では、導電体 13が第 1、第 2抵抗体 11, 12に十 分に接する程度まで変形する。また、第 1絶縁性基板 18の操作側面に対する押圧力 を解除した非押圧状態では、導電体 13を第 1、第 2抵抗体 11, 12から離間させて元 の状態に復帰する。第 1絶縁性基板 18としてフレキシブル基板を用いることができる 。導電体 13の端部には出力電圧 Voutを外部へ取り出すための導電性パターンの電 圧取出し部 16が導通接続されている。 As shown in FIG. 2 (b), a rectangular conductor 13 made of a highly conductive material (for example, a silver pattern) is formed on the substrate surface of a first insulating substrate 18 as a first substrate. It is done. First The side opposite to the side on which the conductor 13 is formed, which is one side of the insulating substrate 18, is the operation side. The first insulating substrate 18 is flexible. In a pressed state where a pressing force is applied to the operation side surface of the first insulating substrate 18, the conductor 13 deforms to such an extent that it contacts the first and second resistors 11 and 12 sufficiently. In addition, in the non-pressed state where the pressing force on the operation side surface of the first insulating substrate 18 is released, the conductor 13 is separated from the first and second resistors 11 and 12 to return to the original state. A flexible substrate can be used as the first insulating substrate 18. At the end of the conductor 13, a voltage extracting portion 16 of a conductive pattern for extracting the output voltage Vout to the outside is connected conductively.
[0023] 図 2 (a) (b)に示すように、長方形状の導電体 13と第 1、第 2抵抗体 11, 12の形成 領域とは略同一形状をなして 、る。操作側面側から導電体 13の形成領域の 、ずれ の場所を押圧しても、押圧位置に応じた第 1、第 2抵抗体 11, 12の対応位置に導電 体 13がほぼ同時に接して導通し得るように導電体 13の幅や第 1、第 2抵抗体 11, 12 の離間幅を設定する。本実施の形態では、第 1、第 2抵抗体 11, 12の幅よりも導電 体 13を幅広にすることにより、押圧状態では幅広の導電体 13を第 1、第 2抵抗体 11 , 12に対して確実に接触させ、第 1、第 2抵抗体 11, 12を確実に導通させることがで きるようにしている。 As shown in FIGS. 2 (a) and 2 (b), the rectangular conductor 13 and the formation region of the first and second resistors 11 and 12 have substantially the same shape. Even if the position of the displacement of the formation region of the conductor 13 is pressed from the operation side, the conductor 13 is brought into contact with the corresponding positions of the first and second resistors 11 and 12 at the same time according to the pressed position. The width of the conductor 13 and the separation width of the first and second resistors 11 and 12 are set so as to obtain. In the present embodiment, by making the conductive body 13 wider than the widths of the first and second resistors 11 and 12, the conductor 13 which is wider in the pressed state is used as the first and second resistors 11 and 12. In addition, the first and second resistors 11 and 12 can be reliably brought into contact with each other.
[0024] 図 3は可変抵抗器 1の側断面構造を模式的に示す図である。第 2絶縁性基板 17の 第 1、第 2抵抗体 11, 12形成面と第 1絶縁性基板 18の導電体 13形成面とが向き合う ように、第 2絶縁性基板 17に対して第 1絶縁性基板 18が離間して対向配置されてい る。第 2絶縁性基板 17と第 1絶縁性基板 18との間に介在させたスぺーサ 19が、第 1 絶縁性基板 18の押圧変形により導電体 13が第 1、第 2抵抗体 11, 12に接離するの に好適なスペース (離間幅)を形成している。第 2絶縁性基板 17及び第 1絶縁性基板 18の外周部は保持部材 20にて保持されている。ここで、第 1及び第 2抵抗体 11, 12 と導電体 13とが接離可能に対向配置されている領域が押圧領域であり、本実施の形 態においては導電体 13と略同一形状をした長方形状をしている。そして、この押圧 領域は、第 1、第 2抵抗体 11 , 12の長手方向に一端と他端を有するものとなっている  FIG. 3 is a view schematically showing a side cross sectional structure of the variable resistor 1. The first insulating substrate 17 with respect to the second insulating substrate 17 such that the first and second resistors 11 and 12 of the second insulating substrate 17 face the conductor 13 of the first insulating substrate 18. And the opposing substrates 18 are spaced apart from each other. In the spacer 19 interposed between the second insulating substrate 17 and the first insulating substrate 18, the conductor 13 is made of the first and second resistors 11 and 12 due to the pressing deformation of the first insulating substrate 18. Form a suitable space (distance) for contacting and separating. The outer peripheral portions of the second insulating substrate 17 and the first insulating substrate 18 are held by a holding member 20. Here, a region where the first and second resistors 11 and 12 and the conductor 13 are disposed so as to be opposite to each other so as to be contactable and releasable is a pressing region, and in the present embodiment, substantially the same shape as the conductor It has a rectangular shape. And this pressing area has one end and the other end in the longitudinal direction of the first and second resistors 11 and 12
[0025] なお、図 3には示されていないが、操作領域 (押圧領域)を初めとした各種表示を印 刷した可撓性を有する印刷シートを、第 1絶縁性基板 18の操作側面上に載置又は 貼着することとする。 Although not shown in FIG. 3, various displays including the operation area (press area) are marked. The printed flexible printing sheet is placed or adhered on the operation side of the first insulating substrate 18.
[0026] ここで、第 1、第 2抵抗体 11, 12の製造工程について説明する。第 2絶縁性基板 17 の抵抗体形成面に対して第 1、第 2抵抗体 11, 12の形状及び離間幅に対応したパ ターンが形成されたスクリーン(印刷マスク)を配置し、該スクリーンの上から抵抗体材 料 (例えば、カーボンインク)をスクリーン印刷して、抵抗体材料を加熱する。これによ り、第 1抵抗体 11と第 2抵抗体 12とは同一成分の抵抗体材料によって形成されること になるので、第 1抵抗体 11と第 2抵抗体 12の抵抗率等の電気的特性を揃えることが でき、出力電圧 Voutのバラツキを抑えることができる。  Here, the manufacturing process of the first and second resistors 11 and 12 will be described. A screen (printing mask) on which patterns corresponding to the shapes and the separation widths of the first and second resistors 11 and 12 are formed is disposed on the resistor forming surface of the second insulating substrate 17. A resistor material (for example, carbon ink) is screen printed from above to heat the resistor material. As a result, since the first resistor 11 and the second resistor 12 are formed of the same component of the resistor material, the electric resistance of the first resistor 11 and the second resistor 12 can be reduced. Characteristics can be made uniform, and variations in the output voltage Vout can be suppressed.
[0027] 以上のように構成された可変抵抗器 1は、第 1、第 2抵抗体 11、 12から構成される 抵抗素子に対して、第 1、第 2の第 1の電圧印加部 14、 15を介して所定電圧 (Vin— GROUND)が印加されることになるが、分割されて離間した第 1、第 2抵抗体 11、 12 から導電体 13が離間した状態 (非押圧状態)では、第 1抵抗体 11と第 2抵抗体 12と が非導通状態のままであるので、抵抗素子 (第 1抵抗体 11及び第 2抵抗体 12)にお ける電力消費は発生しない。  The variable resistor 1 configured as described above includes a first and a second first voltage application unit 14 with respect to a resistance element formed of the first and second resistors 11 and 12. Although a predetermined voltage (Vin-GROUND) is applied via the 15, when the conductor 13 is separated from the divided first and second resistors 11 and 12 (non-pressed state), Since the first resistor 11 and the second resistor 12 remain nonconductive, no power consumption occurs in the resistor elements (the first resistor 11 and the second resistor 12).
[0028] 次に、上記可変抵抗器 1に対して接続される情報入力装置側の電子制御部 2につ いて説明する。電子制御部 2は、可変抵抗器 1の第 1抵抗体 11に接続した第 1の電 圧印加部 14と第 2抵抗体 12に接続した第 2の電圧印加部 15との間に所定電圧を印 加する電圧出力部 21を備える。本実施の形態では、第 1抵抗体 11に接続した第 1の 電圧印加部 14に対する印加電位を Vinとし、第 2抵抗体 12に接続した第 2の電圧印 加部 15に対する印加電位を接地電位 (GROUND)としている。導電体 13に接続した 電圧取出し部 16に現れる出力電圧 (Vout)は AZD変換部 22のアナログ入力端子 に入力されて 、る。 AZD変換部 22は出力電圧 (Vout)をデジタル値に変換して CP U部 23に入力する。 CPU部 23は出力電圧 (Vout)の値力 第 1絶縁性基板 18の操 作側面上でのタツチ位置を算出する演算機能を備える。  Next, the electronic control unit 2 on the information input device side connected to the variable resistor 1 will be described. The electronic control unit 2 sets a predetermined voltage between the first voltage application unit 14 connected to the first resistor 11 of the variable resistor 1 and the second voltage application unit 15 connected to the second resistor 12. A voltage output unit 21 to be applied is provided. In this embodiment, the applied potential to the first voltage application unit 14 connected to the first resistor 11 is Vin, and the applied potential to the second voltage application unit 15 connected to the second resistor 12 is the ground potential. (GROUND). The output voltage (Vout) appearing in the voltage extraction unit 16 connected to the conductor 13 is input to the analog input terminal of the AZD conversion unit 22. The AZD conversion unit 22 converts the output voltage (Vout) into a digital value and inputs the digital value to the CPU unit 23. The CPU unit 23 has an arithmetic function for calculating the touch position on the operation side of the first insulating substrate 18 of the value of the output voltage (Vout).
[0029] 次に、図 4 (a)〜(c)及び図 5 (a) (b)を参照して可変抵抗器 1を操作した場合の動 作例を説明する。  Next, an operation example when the variable resistor 1 is operated will be described with reference to FIGS. 4 (a) to 4 (c) and FIGS. 5 (a) and 5 (b).
[0030] 図 4 (a)は、不使用状態 (待機状態)を示しており、第 1絶縁性基板 18の操作側面を 押圧する前の状態を示している。第 1絶縁性基板 18の操作側面が押圧されていない ために、導電体 13が第 1、第 2抵抗体 11, 12から離間した状態が保たれている。図 5 (a)は可変抵抗器 1の待機状態における回路模式図である。待機状態では、導電体 13が第 1抵抗体 11と第 2抵抗体 12の双方に接触しない状態となっている。第 1抵抗 体 11と第 2抵抗体 12とは離間して絶縁されているので、非導通状態となっている。し たがって、電圧出力部 21から第 1抵抗体 11と第 2抵抗体 12との間に電圧が印加され ているが、第 1抵抗体 11及び第 2抵抗体 12の双方には電流が流れないので第 1抵 抗体 11及び第 2抵抗体 12における電力消費は生じて 、な 、。 FIG. 4 (a) shows the non-use state (standby state), and the operation side of the first insulating substrate 18 is The state before pressing is shown. Since the operation side of the first insulating substrate 18 is not pressed, the conductor 13 is kept apart from the first and second resistors 11 and 12. FIG. 5 (a) is a schematic circuit diagram of the variable resistor 1 in the standby state. In the standby state, the conductor 13 is not in contact with both the first resistor 11 and the second resistor 12. Since the first resistor 11 and the second resistor 12 are separated and insulated, they are in a non-conductive state. Therefore, although a voltage is applied from the voltage output unit 21 between the first resistor 11 and the second resistor 12, current flows in both the first resistor 11 and the second resistor 12. Because there is no power consumption in the first resistor 11 and the second resistor 12 occurs.
[0031] 図 4 (b)は、使用状態を示しており、第 1絶縁性基板 18の操作側面が押圧されてい る状態を示している。第 1絶縁性基板 18が操作側面の押圧位置において第 2絶縁性 基板 17側に変形し、該第 1絶縁性基板 18に形成された導電体 13が押圧位置にて 第 1、第 2抵抗体 11, 12に接触する。  FIG. 4 (b) shows a state of use, in which the operation side of the first insulating substrate 18 is pressed. The first insulating substrate 18 is deformed toward the second insulating substrate 17 at the pressing position of the operation side, and the conductor 13 formed on the first insulating substrate 18 is at the pressing position. The first and second resistors Contact 11, 12
[0032] 図 5 (b)は、可変抵抗器 1が使用状態となっている押圧時の回路模式図である。第 1抵抗体 11と第 2抵抗体 12とは押圧位置に応じた位置で導電体 13を介して導通し ている。第 1抵抗体 11の電圧印加端部(第 1の電圧印加部 14)から押圧位置までの 距離及び第 2抵抗体 12の電圧印加端部 (第 2の電圧印加部 15)から押圧位置まで の距離に応じた出力電圧 Vout力 導電体 13に接続された電圧取り出し部 16に現れ る。  FIG. 5 (b) is a schematic circuit diagram at the time of pressing in which the variable resistor 1 is in use. The first resistor 11 and the second resistor 12 are electrically connected via the conductor 13 at a position corresponding to the pressing position. The distance from the voltage application end (first voltage application unit 14) of the first resistor 11 to the pressing position and the distance from the voltage application end (second voltage application unit 15) of the second resistor 12 to the pressing position The output voltage Vout corresponding to the distance appears in the voltage output portion 16 connected to the conductor 13.
[0033] ここで、説明を簡略化するために、第 1抵抗体 11と第 2抵抗体 12は同一サイズであ り、全抵抗値をそれぞれ同じ値の Rとし、第 1抵抗体 11の第 1の電圧印加部 14から押 圧位置までの抵抗値を R1、第 2抵抗体 12の第 2の電圧印加部 15から押圧位置まで の抵抗値を R2とし、双方の抵抗率が同じであるとする。この場合、 R=R1 +R2となり 、 Vout= (Vin/R) XR2となる。すなわち、第 1抵抗体 11の電圧印加端部及び第 2 抵抗体 12の電圧印加端部から押圧位置までのそれぞれの距離を抵抗値として扱う ことができ、出力電圧 Vout力ゝら押圧位置を検出できることになる。出力電圧 Voutを A ZD変換部 22でデジタル信号に変換して CPU23に取り込み、押圧位置を計算する  Here, in order to simplify the description, the first resistor 11 and the second resistor 12 have the same size, and all resistance values are made to be the same value R, respectively. Assuming that the resistance value from the voltage application unit 14 to the pressing position of 1 is R1, and the resistance value from the second voltage application unit 15 of the second resistor 12 to the pressing position is R2, and both resistivities are the same. Do. In this case, R = R1 + R2 and Vout = (Vin / R) × R2. That is, the respective distances from the voltage application end of the first resistor 11 and the voltage application end of the second resistor 12 to the pressing position can be treated as resistance values, and the pressing position is detected from the output voltage Vout. It will be possible. The output voltage Vout is converted to a digital signal by the AZD converter 22 and taken into the CPU 23 to calculate the pressed position.
[0034] 図 4 (c)に示すように、そのまま指をスライドさせることにより、押圧位置が変化するの に伴い第 1抵抗体 11と第 2抵抗体 12の導電体 13との接触位置 (導通位置)が変化 する。すなわち、指のスライドに応じて Rl、 R2の値が変化し、出力電圧 Voutが変化 する。ここで、図 2に示すように、第 1抵抗体 11の電圧印加端 (第 1の電圧印加部 14) と第 2抵抗体 12の電圧印加端 (第 2の電圧印加部 15)とを抵抗体 (押圧領域)長手方 向であって押圧領域の一端側と他端側とに位置する各対向端に設けることにより、出 力電圧が変化するスライド範囲を最も長くすることができる。スライド範囲を長くして出 力電圧の変化量が大きいほど正確な情報入力が可能になる。 As shown in FIG. 4 (c), the pressing position is changed by sliding the finger as it is. At the same time, the contact position (conductive position) between the first resistor 11 and the conductor 13 of the second resistor 12 changes. That is, the values of Rl and R2 change according to the slide of the finger, and the output voltage Vout changes. Here, as shown in FIG. 2, the voltage application end (first voltage application unit 14) of the first resistor 11 and the voltage application end (second voltage application unit 15) of the second resistor 12 are resistances. The slide range in which the output voltage changes can be made the longest by providing the opposing ends located in the longitudinal direction of the body (pressing area) and located on one end side and the other end side of the pressing area. The longer the sliding range and the larger the amount of change in output voltage, the more accurate information input becomes possible.
[0035] このように、本実施の形態によれば、可変抵抗器 1においてタツチ位置を出力電圧 Voutに変換する抵抗素子を、複数の抵抗体に分割して所定幅を隔てて併設し、該 分割された抵抗体を操作時にだけ導通させて出力電圧 Voutを検出できるように構成 したので、待機状態における抵抗素子での消費電力を無くすことができる。したがつ て、このような可変抵抗器 1を用いた情報入力装置を携帯機器端末に用いれば、携 帯機器端末の使用時間を延ばすことができる。  As described above, according to the present embodiment, the resistive element for converting the touch position into the output voltage Vout in the variable resistor 1 is divided into a plurality of resistive elements, and separated by a predetermined width. Since the divided resistors are made conductive only at the time of operation to be able to detect the output voltage Vout, it is possible to eliminate the power consumption of the resistors in the standby state. Therefore, if the information input device using such a variable resistor 1 is used for a portable device terminal, the use time of the portable device terminal can be extended.
[0036] また、本実施の形態によれば、第 1、第 2抵抗体 11, 12の離間幅を短絡しない程度 まで近接させると共に第 1、第 2抵抗体 11, 12に対して直接対面するように導電体 1 3を対向配置したので、第 1、第 2抵抗体 11, 12と導電体 13とを水平方向にずらした 配置に比べて、可変抵抗器 1の面積を小さくでき小型化を図ることができる。  Further, according to the present embodiment, the distance between the first and second resistors 11 and 12 is made close to the extent not to cause a short circuit, and the first and second resistors 11 and 12 directly face each other. As described above, since the conductor 13 is disposed opposite to each other, the area of the variable resistor 1 can be made smaller compared to the arrangement in which the first and second resistors 11 and 12 and the conductor 13 are shifted in the horizontal direction. Can be
[0037] 本発明は、上記一実施の形態に限定されるものではなぐ本発明の要旨を逸脱し な!ヽ範囲で種々変形実施可能である。  The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention without departing from the scope of the present invention.
[0038] 例えば、上記実施の形態では、可撓性を有する第 1絶縁性基板 18に導電体 13を 形成しているが、第 1絶縁性基板 18に第 1、第 2抵抗体 11, 12を形成し、第 2絶縁性 基板 17に導電体 13を形成する構成としてもよい。このような構成を採用した場合、押 圧状態では第 1、第 2抵抗体 11, 12が導電体 13側へ変位して導電体 13に対して接 触することとなるが、それ以外の作用効果は上記実施の形態と同様である。  For example, in the above embodiment, the conductor 13 is formed on the first insulating substrate 18 having flexibility, but the first insulating substrate 18 is formed with the first and second resistors 11 and 12. And the conductor 13 may be formed on the second insulating substrate 17. When such a configuration is employed, the first and second resistors 11 and 12 are displaced toward the conductor 13 and contact the conductor 13 in the pressure state, but other functions The effects are the same as in the above embodiment.
[0039] また、上記実施の形態では、可変抵抗器 1への電圧印加は第 2絶縁性基板 17に形 成された第 1、第 2の電圧印加部 14, 15に対して行い、可変抵抗器 1の出力電圧 Vo utは第 1絶縁性基板 18に形成された電圧取出し部 16から取り出していた。すなわち 、第 2絶縁性基板 17の第 1、第 2の電圧印加部 14, 15から導線あるいは導電パター ン(図示せず)が引き出され、第 1絶縁性基板 18の電圧取出し部 16から導線あるい は導電パターン(図示せず)が引き出されていた。これを第 1、第 2抵抗体 11、 12が 形成された絶縁性基板側だけから導線ある 、は導電パターン(図示せず)が引き出さ れるように構成することも可能である。 In the above embodiment, voltage application to the variable resistor 1 is performed to the first and second voltage application units 14 and 15 formed on the second insulating substrate 17, and The output voltage Vo ut of the vessel 1 was taken out from the voltage take-out portion 16 formed on the first insulating substrate 18. That is, from the first and second voltage application units 14 and 15 of the second insulating substrate 17, a conducting wire or a conductive pattern The lead (not shown) was pulled out, and the lead wire or the conductive pattern (not shown) was pulled out from the voltage lead-out portion 16 of the first insulating substrate 18. It is also possible to construct such that a conductive pattern (not shown) can be drawn out only from the side of the insulating substrate on which the first and second resistors 11 and 12 are formed.
[0040] 図 6 (a) (b)は、可変抵抗器の抵抗素子に対する電圧印加用の電圧印加部と出力 電圧 Voutを取り出す電圧取出し部とを同一基板に設けた構成を示す図である。図 6 (a)に示すように、第 1、第 2抵抗体 11, 12が形成された基板面に第 1、第 2抵抗体 1 1, 12の形成方向に沿って出力用導電部 31を形成し、出力用導電部 31の一端部に 電圧取出し部 32を設けている。出力用導電部 31は第 1、第 2抵抗体 11, 12と略同じ 高さとなるように設定する。また、図 6 (b)に示すように、導電体 33から電圧取出し部 は削除している。例えば、導電体 33の形成された第 1絶縁性基板 18の操作側面を 押圧した場合、押圧位置において第 1、第 2抵抗体 11, 12及び出力用導電部 31が 導電体 33に接する。これにより、第 1、第 2抵抗体 11, 12が導電体 33との接触点で 導通すると共に当該接触点に応じた出力電圧が出力用導電部 31の電圧取出し部 3 2に現れる。 FIGS. 6 (a) and 6 (b) are diagrams showing a configuration in which a voltage application unit for applying a voltage to the resistive element of the variable resistor and a voltage extraction unit for extracting the output voltage Vout are provided on the same substrate. As shown in FIG. 6A, on the substrate surface on which the first and second resistors 11 and 12 are formed, the output conductive portion 31 is formed along the direction in which the first and second resistors 11 and 12 are formed. A voltage takeout portion 32 is provided at one end of the output conductive portion 31. The output conductive portion 31 is set to have substantially the same height as the first and second resistors 11 and 12. Further, as shown in FIG. 6 (b), the voltage extracting portion is eliminated from the conductor 33. For example, when the operation side of the first insulating substrate 18 on which the conductor 33 is formed is pressed, the first and second resistors 11 and 12 and the output conductive portion 31 contact the conductor 33 at the pressed position. As a result, the first and second resistors 11 and 12 conduct at the contact point with the conductor 33, and an output voltage corresponding to the contact point appears at the voltage output portion 32 of the output conductive portion 31.
[0041] このように、可変抵抗器 1の抵抗素子(11, 12)に対する電圧印加用の電圧印加部  Thus, the voltage application unit for voltage application to the resistance elements (11, 12) of the variable resistor 1
(14, 15)と出力電圧 Voutを取り出す電圧取出し部(32)とを同一基板に設けたこと により、可変抵抗器 1に対する引き出し線あるいは引き出し用パターンを同一基板に まとめる事ができ引き出し線や引き出し用パターンの処理が容易になり、作業効率を 改善することもできる。なお、引き出し用パターンを設ける場合には、電圧取出し部 3 2につながる導電パターンを、第 1、第 2抵抗体 11, 12の形成された例えば、第 2絶 縁性基板 17に印刷により形成する。この場合、第 1、第 2の電圧印加部 14, 15に接 続される導電パターンを同様に印刷形成するのが好ましい。  By providing (14, 15) and the voltage extracting portion (32) for extracting the output voltage Vout on the same substrate, the lead wire or pattern for the variable resistor 1 can be combined on the same substrate, and thus the lead wire or the lead wire can be obtained. Pattern processing can be facilitated and work efficiency can be improved. When the lead-out pattern is provided, the conductive pattern connected to the voltage lead-out portion 32 is formed by printing, for example, on the second insulating substrate 17 on which the first and second resistors 11 and 12 are formed. . In this case, it is preferable that the conductive patterns connected to the first and second voltage application units 14 and 15 be similarly printed.
[0042] また、上記実施の形態では、第 1、第 2抵抗体 11, 12と導電体 13とを直接対面させ ていたが、必ずしも双方を対面させなくても第 1、第 2抵抗体 11, 12とを押圧位置で 導通させることができる。  In the above embodiment, the first and second resistors 11 and 12 and the conductor 13 are directly opposed to each other. However, the first and second resistors 11 and 12 may not necessarily be opposed to each other. , 12 can be conducted at the pressing position.
[0043] 図 7は、第 1、第 2抵抗体と導電体とを対面させない配置例を示す図である。例えば 、第 2絶縁性基板 17の基板面上に導電性の櫛歯 43を有する第 1抵抗体 41と導電性 の櫛歯 44を有する第 2抵抗体 42とを、互いの櫛歯 43、 44を接触させないようにかみ 合わせた配置とする。導電体 45は、互いにかみ合わされた櫛歯 43, 44と対面するよ うに対向配置する。導電体 45は、図示されていない第 1絶縁性基板 18の基板面に 形成されている。これにより、押圧位置にある第 2絶縁性基板 17の櫛歯 43と第 2抵抗 体 42の櫛歯 44とが押圧により変位した導電体 45に接して導通する。第 1抵抗体 41 と第 2抵抗体 42とは導通している櫛歯 43, 44位置が短絡点となる。短絡点に応じた 出力電圧 Voutは導電体 45の電圧取出し部 16から取り出される。この場合には、互 いにかみ合わされた櫛歯 43, 44と接離可能に対向配置された導電体 45の形成領 域が押圧領域となる。 FIG. 7 is a view showing an arrangement example in which the first and second resistors and the conductor do not face each other. For example, the first resistor 41 having the conductive comb 43 on the substrate surface of the second insulating substrate 17 and the conductivity The second resistor 42 having the comb teeth 44 of the second embodiment is disposed in such a manner that the second teeth 43 and 44 of the other do not contact each other. The conductor 45 is disposed to face each other so as to face the comb teeth 43 and 44 engaged with each other. The conductor 45 is formed on the substrate surface of the first insulating substrate 18 (not shown). As a result, the comb teeth 43 of the second insulating substrate 17 and the comb teeth 44 of the second resistor 42 in the pressed position are brought into contact with the conductor 45 displaced by the press and are conducted. The positions of the comb teeth 43 and 44 in which the first resistor 41 and the second resistor 42 are in conduction are the short circuit points. The output voltage Vout corresponding to the short circuit point is taken out from the voltage extraction portion 16 of the conductor 45. In this case, the formation region of the conductor 45 disposed so as to be in contact with and separated from the comb teeth 43 and 44 engaged with each other is the pressing region.
[0044] このように、第 1、第 2抵抗体と導電体とが対面しないように配置した場合であっても 、押圧位置に応じた出力電圧 Voutを得ることができ、双方を対向配置できない又は 対向配置しな 、ほうが好ま 、と 、つた制約が在る場合であっても対応することが可 能である。  As described above, even when the first and second resistors and the conductor are arranged not to face each other, the output voltage Vout can be obtained in accordance with the pressed position, and both can not be arranged opposite to each other. Or, it is possible to cope with the case where there is no restriction, as opposed to facing each other, which is preferable.
[0045] また、以上の説明では、第 1、第 2抵抗体 11, 12等は長尺な長方形状をしているが 本発明はそのような直線状の形状に限定されるものではない。例えば、第 1、第 2抵 抗体 11, 12が蛇行する形状、円弧状に曲がった形状、 U字状に曲がった形状等か らなる非直線的に伸びる帯状であってもよい。また、帯状をなさない例えば半円形状 の第 1、第 2抵抗体 11, 12が互いの直線部を近接して離間配置されるようにしても良 い。  Further, in the above description, the first and second resistors 11 and 12 and the like have a long rectangular shape, but the present invention is not limited to such a linear shape. For example, the first and second antibodies 11 and 12 may be in the form of a meandering shape, a shape curved in an arc shape, or a non-linearly extending strip shape including a shape bent in a U-shape. In addition, the first and second resistors 11 and 12 which are not band-shaped, for example, semi-circular may be arranged to be close to each other with their straight portions close to each other.
[0046] 図 8 (a) (b)は第 1抵抗体の形状を概略 U字形状に変形した変形例を示す図である 。第 1抵抗体 51が略 U字形状に二股に分かれていて、該第 1抵抗体 51の間に収まる ように長尺な長方形状の第 2抵抗体 52が配置されている。第 1絶縁性基板 18に形成 された導電体 13は、第 1抵抗体 51と第 2抵抗体 52との離間領域 (略 U字形状)を力 バーするサイズに設定している。この場合においても、第 1抵抗体 51及び第 2抵抗体 52と接離可能に対向配置された部分における導電体 13の領域が押圧領域となり、 本実施の形態にぉ ヽても、押圧領域は図 8の左右方向に長 ヽ略長方形状をして!/ヽる  FIGS. 8 (a) and 8 (b) are diagrams showing a modified example in which the shape of the first resistor is roughly deformed into a U shape. The first resistor 51 is bifurcated into a substantially U-shape, and a long rectangular second resistor 52 is disposed so as to fit between the first resistors 51. The conductor 13 formed on the first insulating substrate 18 is set to have a size such that the separation region (substantially U-shaped) between the first resistor 51 and the second resistor 52 is a force bar. Also in this case, the area of the conductor 13 in the portion disposed opposite to the first resistor 51 and the second resistor 52 in a contactable / removable manner is the pressing area, and the pressing area is the same as in the present embodiment. Make a long and roughly rectangular shape in the left and right direction in Figure 8!
[0047] このように第 1抵抗体 51の略 U字形状に二股に分かれた間に第 2抵抗体 52を配置 することにより、導通可能領域を操作面の全域に幅広に分布させることが可能になる 。したがって、例えば、図 8 (a)に示されるように、操作側面の端部寄りの位置 P1又は P2を押圧した場合であっても、第 1抵抗体 51と第 2抵抗体 52とを確実に導通させる ことができ、安定したアナログ入力が可能となる。 As described above, the second resistor 52 is disposed between the two branches of the first resistor 51 in a substantially U shape. By doing this, it is possible to widely distribute the conductive area over the entire operation surface. Therefore, for example, as shown in FIG. 8A, even when the position P1 or P2 near the end of the operation side is pressed, the first resistor 51 and the second resistor 52 can be reliably made. It can be made conductive and stable analog input is possible.
[0048] また、第 2絶縁性基板 17と第 1絶縁性基板 18とは必ずしも分離された別々の基板 である必要はなぐ例えば 1枚のポリエステルフィルム等力もなる可撓性基板を二つ 折りにしたものでも良い。この場合、押圧される側の基板に対向配置される下側の基 板を鋼板等の硬 、支持板で支持する構成とすることが望まし 、。 In addition, the second insulating substrate 17 and the first insulating substrate 18 need not necessarily be separate separate substrates. For example, a flexible substrate having a force of one polyester film may be folded in half. It is good. In this case, it is desirable that the lower substrate placed opposite to the pressed substrate be supported by a hard plate such as a steel plate by a support plate.
産業上の利用可能性  Industrial applicability
[0049] 本発明は、アナログ情報をタツチ式で入力可能な情報入力装置に適用可能である 図面の簡単な説明 The present invention is applicable to an information input apparatus capable of inputting analog information in a touch-type manner. BRIEF DESCRIPTION OF THE DRAWINGS
[0050] [図 1]一実施の形態に力かる情報入力装置の構成図 FIG. 1 is a block diagram of an information input device according to an embodiment.
[図 2] (a)図 1に示す可変抵抗器の抵抗素子形成側の絶縁性基板の平面図、 (b)図 1に示す可変抵抗器の導電体形成側の絶縁性基板の平面図  [FIG. 2] (a) A plan view of the insulating substrate on the resistance element forming side of the variable resistor shown in FIG. 1, (b) A plan view of the insulating substrate on the conductor forming side of the variable resistor shown in FIG.
[図 3]図 1に示す可変抵抗器の断面構造を示す図  [FIG. 3] A diagram showing the cross-sectional structure of the variable resistor shown in FIG.
[図 4] (a)上記実施の形態において可変抵抗器の操作面にタツチ前の不使用状態を 示す図、(b)上記実施の形態において可変抵抗器の操作面にタツチした使用状態を 示す図、 (c)上記実施の形態にお!、て可変抵抗器の操作面のタツチ位置をスライド した使用状態を示す図  [FIG. 4] (a) A diagram showing a non-use state before touching on the operating surface of the variable resistor in the above embodiment, (b) showing a using state in which the operating surface of the variable resistor is touching in the above embodiment (C) In the above embodiment, a sliding view of the touch position of the operation surface of the variable resistor.
[図 5] (a)図 4 (a)に対応した不使用状態における可変抵抗器の等価回路図、 (b)図 4 (b)に対応した使用状態における可変抵抗器の等価回路図  [FIG. 5] (a) Equivalent circuit diagram of variable resistor in non-use state corresponding to FIG. 4 (a), (b) Equivalent circuit diagram of variable resistor in use state corresponding to FIG. 4 (b)
[図 6] (a)出力電圧の取り出し口を変更した変形例における抵抗素子形成側の絶縁 性基板の平面図、(b)同変形例における導電体形成側の絶縁性基板の平面図  [FIG. 6] (a) A plan view of the insulating substrate on the resistance element forming side in a modification in which the output voltage outlet is changed, a plan view of the insulating substrate on the conductor formation side in the same modification
[図 7]抵抗体と導電体との配置関係を変更した変形例における抵抗素子形成側の絶 縁性基板の平面図  [Fig. 7] A plan view of the insulating substrate on the resistance element forming side in a modification in which the arrangement relationship between the resistor and the conductor is changed
[図 8] (a)第 1抵抗体を U字形状に変更した変形例における抵抗素子形成側の絶縁 性基板の平面図、(b)同変形例における導電体形成側の絶縁性基板の平面図 [図 9]従来の押圧接触型の可変抵抗器の構成図 符号の説明 [FIG. 8] (a) A plan view of the insulating substrate on the resistance element forming side in a modification in which the first resistor is changed to a U shape, (b) a plane of the insulating substrate on the conductor forming side in the same modification Figure [Fig. 9] Configuration diagram of a conventional pressing contact type variable resistor
1 可変抵抗器  1 Variable resistor
2 電子制御部  2 Electronic control unit
11、 41、 51 第 1抵抗体  11, 41, 51 first resistor
12、 42、 52 第 2抵抗体  12, 42, 52 Second resistor
13、 33、 45 導電体  13, 33, 45 Conductors
14、 15 電圧印加部  14, 15 Voltage application part
16、 32 電圧取出し部  16, 32 voltage outlet
17 第 2絶縁性基板 (第 2の基板)  17 Second insulating substrate (second substrate)
18 第 1絶縁性基板 (第 1の基板)  18 First insulating substrate (first substrate)
19 スぺーサ  19 Spacer
21 電圧出力部  21 Voltage output unit
22 AZD変換部  22 AZD Converter
23 CPU部  23 CPU
31 出力用導電部  31 Conductive part for output

Claims

請求の範囲 The scope of the claims
[1] 一面が押圧操作される側の操作側面とされた可撓性を有する第 1の基板と、この第 1の基板の他面に対して一面が離間して対向配置された第 2の基板と、前記第 1の基 板の他面と前記第 2の基板の一面とのうち何れか一方に設けられ互いに絶縁された 第 1と第 2の抵抗体と、前記第 1の基板の他面と前記第 2の基板の一面とのうち何れ か他方に設けられ、前記第 1の基板の操作側面への押圧操作に伴って、押圧位置 に応じた前記第 1の抵抗体と前記第 2の抵抗体の対応位置を導通させる導電体とを 備え、前記第 1の抵抗体の一部は第 1の電圧印加部に、前記第 2の抵抗体の一部は 第 2の電圧印加部にそれぞれ導通接続されており、前記第 1の電圧印加部と前記第 2の電圧印加部との間に電圧を印加可能に構成したことを特徴とする可変抵抗器。  [1] A flexible first substrate, which is an operation side on the side where one surface is pressed and operated, and a second substrate disposed so as to face the other surface of the first substrate at a distance. A substrate, first and second resistors provided on any one of the other surface of the first substrate and one surface of the second substrate and mutually insulated, and the other of the first substrate And the second resistor is provided on the other of the second substrate, and the first resistor and the second according to the pressing position in accordance with the pressing operation on the operation side surface of the first substrate. A conductor for conducting the corresponding position of the resistor, and a portion of the first resistor is a first voltage application unit, and a portion of the second resistor is a second voltage application unit. A variable resistor, which is conductively connected and configured to be capable of applying a voltage between the first voltage application unit and the second voltage application unit.
[2] 前記第 1の基板の操作側面の押圧領域が一端と他端とを有して延在されており、 前記第 1の電圧印加部は、前記押圧領域の一端側に対応した位置で前記第 1の抵 抗体と導通接続され、前記第 2の電圧印加部は、前記押圧領域の他端側に対応した 位置で前記第 2の抵抗体と導通接続されていることを特徴とする請求項 1記載の可 変抵抗器。  [2] The pressing area of the operation side surface of the first substrate is extended with one end and the other end, and the first voltage application unit is located at a position corresponding to one end side of the pressing area The first resistor is conductively connected, and the second voltage application unit is conductively connected to the second resistor at a position corresponding to the other end of the pressing region. The variable resistor according to item 1.
[3] 前記第 1と第 2の抵抗体と、前記導電体とが接離可能に対向配置されたことを特徴 とする請求項 1又は請求項 2記載の可変抵抗器。  [3] The variable resistor according to claim 1 or 2, wherein the first and second resistors and the conductor are disposed opposite to each other so as to be able to be attached and separated.
[4] 前記第 1と第 2の抵抗体は、それぞれ帯状に形成され、前記導電体は、前記第 1と 第 2の抵抗体のいずれの幅よりも幅広に設けられたことを特徴とする請求項 3記載の 可変抵抗器。 [4] The first and second resistors are each formed in a band shape, and the conductor is provided wider than any width of the first and second resistors. The variable resistor according to claim 3.
[5] 前記第 1の基板の他面又は前記第 2の基板の一面のうち前記第 1と第 2の抵抗体 が設けられた何れか一方の面に、少なくとも前記操作側面が押圧操作された状態に おいて、前記導電体と導通する出力用導電パターンが設けられていることを特徴とす る請求項 1から請求項 4の何れかに記載の可変抵抗器。  [5] At least the operation side is pressed to the other surface of the first substrate or any one surface of the second substrate on which the first and second resistors are provided. The variable resistor according to any one of claims 1 to 4, wherein in the state, an output conductive pattern electrically connected to the conductor is provided.
[6] 前記第 1と第 2の抵抗体は、同一の印刷工程で形成されたことを特徴とする請求項 1力 請求項 5の何れかに記載の可変抵抗器。  [6] The variable resistor according to any one of claims 1 to 5, wherein the first and second resistors are formed in the same printing process.
PCT/JP2006/314543 2005-07-27 2006-07-24 Variable resistor WO2007013384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005217132A JP2007035930A (en) 2005-07-27 2005-07-27 Variable resistor
JP2005-217132 2005-07-27

Publications (1)

Publication Number Publication Date
WO2007013384A1 true WO2007013384A1 (en) 2007-02-01

Family

ID=37683281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314543 WO2007013384A1 (en) 2005-07-27 2006-07-24 Variable resistor

Country Status (5)

Country Link
JP (1) JP2007035930A (en)
KR (1) KR20080021815A (en)
CN (1) CN101228596A (en)
TW (1) TW200712999A (en)
WO (1) WO2007013384A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470783B2 (en) 2020-04-10 2024-04-18 株式会社フジクラ Variable resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699803U (en) * 1979-12-26 1981-08-06
JPS6312804U (en) * 1986-06-19 1988-01-27
JPH0653015A (en) * 1992-07-28 1994-02-25 Toto Ltd One-touch type analog information input equipment and variable resistor used in the equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699803U (en) * 1979-12-26 1981-08-06
JPS6312804U (en) * 1986-06-19 1988-01-27
JPH0653015A (en) * 1992-07-28 1994-02-25 Toto Ltd One-touch type analog information input equipment and variable resistor used in the equipment

Also Published As

Publication number Publication date
KR20080021815A (en) 2008-03-07
JP2007035930A (en) 2007-02-08
TW200712999A (en) 2007-04-01
CN101228596A (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US20140015633A1 (en) Pressure-sensitive switch
US8368505B2 (en) Switch using variable resistance layer to control state
US4319078A (en) Apparatus for detecting X and Y coordinates of input points
US8184106B2 (en) Position detection device
KR102297892B1 (en) Touch panel and method for detecting pressed position on touch panel
JP2006507613A (en) Data input device
WO2007013384A1 (en) Variable resistor
JP2004139144A (en) Touch panel
JP2015232490A (en) Pressure sensitive sensor and input device using the same
CN108595062A (en) Touch-control sensing module
CN104934174A (en) Touch type variable-resistance structure
JP2007067006A (en) Variable resistor
JP2007048865A (en) Variable resistor
KR100798670B1 (en) A variable resistor
JP2007059469A (en) Variable resistor
JP3316071B2 (en) converter
JP7470783B2 (en) Variable resistor
CN115053303B (en) Variable resistor
JP7395114B2 (en) Membrane switch that can detect pressure and its manufacturing method
CN110928440B (en) Touch panel
JPH10149737A (en) Membrane switch
TWI453637B (en) Key structure
JP2003216337A (en) Touch panel
TW201133322A (en) Flexible slide-touch controlling device and related contact location determination method thereof
CN100367427C (en) Data input device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026884.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087002045

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781465

Country of ref document: EP

Kind code of ref document: A1