WO2007011085A1 - Appareil et procede destines a coder et decoder un signal audio - Google Patents

Appareil et procede destines a coder et decoder un signal audio Download PDF

Info

Publication number
WO2007011085A1
WO2007011085A1 PCT/KR2005/002308 KR2005002308W WO2007011085A1 WO 2007011085 A1 WO2007011085 A1 WO 2007011085A1 KR 2005002308 W KR2005002308 W KR 2005002308W WO 2007011085 A1 WO2007011085 A1 WO 2007011085A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
block switching
audio file
blocks
channel
Prior art date
Application number
PCT/KR2005/002308
Other languages
English (en)
Inventor
Tilman Liebchen
Original Assignee
Lg Electronics Inc.
Noll, Peter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc., Noll, Peter filed Critical Lg Electronics Inc.
Priority to PCT/KR2005/002308 priority Critical patent/WO2007011085A1/fr
Priority to US11/481,940 priority patent/US8180631B2/en
Priority to US11/481,916 priority patent/US8108219B2/en
Priority to US11/481,931 priority patent/US7411528B2/en
Priority to US11/481,915 priority patent/US7996216B2/en
Priority to US11/481,941 priority patent/US8050915B2/en
Priority to US11/481,917 priority patent/US7991272B2/en
Priority to US11/481,927 priority patent/US7835917B2/en
Priority to US11/481,932 priority patent/US8032240B2/en
Priority to US11/481,933 priority patent/US7966190B2/en
Priority to US11/481,926 priority patent/US7949014B2/en
Priority to US11/481,929 priority patent/US7991012B2/en
Priority to US11/481,942 priority patent/US7830921B2/en
Priority to US11/481,930 priority patent/US8032368B2/en
Priority to US11/481,939 priority patent/US8121836B2/en
Priority to PCT/KR2006/002686 priority patent/WO2007008008A2/fr
Priority to JP2008521317A priority patent/JP2009500691A/ja
Priority to JP2008521310A priority patent/JP2009500686A/ja
Priority to CNA2006800251395A priority patent/CN101218629A/zh
Priority to JP2008521319A priority patent/JP2009500693A/ja
Priority to EP06769222A priority patent/EP1908058A4/fr
Priority to EP06757768A priority patent/EP1913583A4/fr
Priority to CN2006800252699A priority patent/CN101218630B/zh
Priority to JP2008521309A priority patent/JP2009500685A/ja
Priority to CNA2006800294174A priority patent/CN101243489A/zh
Priority to JP2008521308A priority patent/JP2009500684A/ja
Priority to JP2008521307A priority patent/JP2009500683A/ja
Priority to PCT/KR2006/002687 priority patent/WO2007008009A1/fr
Priority to PCT/KR2006/002685 priority patent/WO2007008007A1/fr
Priority to PCT/KR2006/002677 priority patent/WO2007007999A2/fr
Priority to PCT/KR2006/002680 priority patent/WO2007008002A2/fr
Priority to PCT/KR2006/002678 priority patent/WO2007008000A2/fr
Priority to PCT/KR2006/002690 priority patent/WO2007008012A2/fr
Priority to CNA200680028892XA priority patent/CN101238509A/zh
Priority to CNA2006800305412A priority patent/CN101243497A/zh
Priority to CN2006800251380A priority patent/CN101218628B/zh
Priority to PCT/KR2006/002683 priority patent/WO2007008005A1/fr
Priority to PCT/KR2006/002681 priority patent/WO2007008003A2/fr
Priority to EP06757766A priority patent/EP1913581A4/fr
Priority to CNA2006800305111A priority patent/CN101243494A/zh
Priority to EP06769226A priority patent/EP1913588A4/fr
Priority to JP2008521311A priority patent/JP2009500687A/ja
Priority to JP2008521316A priority patent/JP2009510810A/ja
Priority to CNA200680024866XA priority patent/CN101218852A/zh
Priority to CNA2006800304693A priority patent/CN101243492A/zh
Priority to PCT/KR2006/002691 priority patent/WO2007008013A2/fr
Priority to PCT/KR2006/002689 priority patent/WO2007008011A2/fr
Priority to JP2008521318A priority patent/JP2009500692A/ja
Priority to JP2008521314A priority patent/JP2009500689A/ja
Priority to EP06757765A priority patent/EP1913580A4/fr
Priority to EP06757767A priority patent/EP1913582A4/fr
Priority to JP2008521306A priority patent/JP2009500682A/ja
Priority to EP06769223A priority patent/EP1913587A4/fr
Priority to PCT/KR2006/002679 priority patent/WO2007008001A2/fr
Priority to CNA2006800251376A priority patent/CN101218631A/zh
Priority to JP2008521313A priority patent/JP2009500688A/ja
Priority to CN2006800294070A priority patent/CN101243496B/zh
Priority to CNA2006800305499A priority patent/CN101243495A/zh
Priority to JP2008521315A priority patent/JP2009500690A/ja
Priority to EP06769218A priority patent/EP1913589A4/fr
Priority to EP06769225A priority patent/EP1911021A4/fr
Priority to EP06757764A priority patent/EP1913579A4/fr
Priority to EP06769227A priority patent/EP1911020A4/fr
Priority to PCT/KR2006/002682 priority patent/WO2007008004A2/fr
Priority to EP06769219A priority patent/EP1913584A4/fr
Priority to EP06769224A priority patent/EP1913794A4/fr
Priority to CNA2006800304797A priority patent/CN101243493A/zh
Priority to PCT/KR2006/002688 priority patent/WO2007008010A1/fr
Priority to CNA2006800289829A priority patent/CN101238510A/zh
Priority to JP2008521305A priority patent/JP2009500681A/ja
Priority to EP06769220A priority patent/EP1913585A4/fr
Publication of WO2007011085A1 publication Critical patent/WO2007011085A1/fr
Priority to US12/232,527 priority patent/US7962332B2/en
Priority to US12/232,526 priority patent/US8010372B2/en
Priority to US12/232,593 priority patent/US8326132B2/en
Priority to US12/232,591 priority patent/US8255227B2/en
Priority to US12/232,590 priority patent/US8055507B2/en
Priority to US12/232,595 priority patent/US8417100B2/en
Priority to US12/232,658 priority patent/US8510119B2/en
Priority to US12/232,659 priority patent/US8554568B2/en
Priority to US12/232,662 priority patent/US8510120B2/en
Priority to US12/232,739 priority patent/US8155152B2/en
Priority to US12/232,748 priority patent/US8155153B2/en
Priority to US12/232,740 priority patent/US8149876B2/en
Priority to US12/232,747 priority patent/US8149878B2/en
Priority to US12/232,734 priority patent/US8155144B2/en
Priority to US12/232,741 priority patent/US8149877B2/en
Priority to US12/232,744 priority patent/US8032386B2/en
Priority to US12/232,743 priority patent/US7987008B2/en
Priority to US12/232,783 priority patent/US8275476B2/en
Priority to US12/232,781 priority patent/US7930177B2/en
Priority to US12/232,784 priority patent/US7987009B2/en
Priority to US12/232,782 priority patent/US8046092B2/en
Priority to US12/314,891 priority patent/US8065158B2/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring

Definitions

  • the present invention relates to a method for processing audio signal
  • phonographic technology e.g. record players
  • magnetic technology e.g. cassettes
  • Audio standard Lossless audio coding permits the compression of digital audio data
  • the present invention relates to a method for processing forward-adaptive
  • Another object of the invention is to provide a lossless coding techniques for
  • Audio Lossless Coding will define methods for
  • the lossless codec uses forward-adaptive Linear
  • the present invention relate to an encoder and/or decoder (including methods
  • Data may be encoded or decoded in a lossless
  • Embodiments relate to a flexible, hierarchical block switch scheme
  • Embodiments relate to
  • Embodiments relate to a maximum
  • processing an audio file includes subdividing a channel of an audio data frame
  • blocks are subdivided from the channel at the block switching levels.
  • the audio data frame is included in the audio file, each block resulting from a
  • each block results from a subdivision of a
  • the first block switching information indicating
  • audio file includes an encoder configured to subdivide a channel of audio data frame
  • each block results from a subdivision of a superordinate block of double
  • audio file includes a decoder configured to receive an audio file having an audio data
  • each channel being subdivided into a plurality
  • Figure 1 is an example illustration of an audio signal encoder.
  • Figure 2 is an example illustration of an audio signal decoder.
  • Figure 3 is an measured distributions of parcor coefficients for 48KHz, 16-bit
  • Figure 4 is an compander functions C(r) and -C(-r).
  • Figure 5 is an example of a block switching hierarchy structure.
  • Figure 6 is an example of a block switching examples and corresponding
  • Figure 7 is an example of a bit stream of old block switching scheme.
  • Figure 8 is an example of a bit stream of new block switching (BS) scheme:
  • Figure 9 is a switched difference coding scheme.
  • Figure 10 is a partition of the residual distribution.
  • decoder have to be implemented in a deterministic way.
  • Figure 1 shows the typical processing for one input channel of audio data.
  • the quantized parcor values are entropy coded for
  • the residual is entropy coded using different
  • a multiplexing unit combines coded residual, code indices, predictor
  • encoder also provides a CRC checksum, which is supplied mainly for the decoder to
  • the CRC can be used to ensure that
  • the compressed data is losslessly decodable.
  • Additional encoder options comprise block length switching, random access
  • the encoder may use these options to offer several
  • the encoder can switch between different block
  • the codec allows random access in defined intervals down to some
  • the entropy coding part of the prediction residual provides two alternative
  • the encoder will also offer efficient compression of floating-point
  • This codec extension employs an algorithm that
  • the integer signal is
  • the Figure 2 shows the lossless audio signal decoder which is significantly
  • decoder merely decodes the entropy coded residual and the parcor values, converts
  • the computational effort of the decoder mainly depends on the predictor
  • Linear prediction is used in many applications for speech and audio signal
  • the current sample of a time-discrete signal x(n) can be approximately
  • K is the order of the predictor. If the predicted samples are close to the
  • coefficients are commonly used in many areas, e.g. channel equalization and echo
  • the algorithm inherently calculates the corresponding parcor coefficients as well.
  • Another crucial point in forward-adaptive prediction is to determine a suitable
  • bit rate R e the bit rate
  • R c for the predictor coefficients will rise with the number of coefficients to be
  • the task is to find the optimum order which minimizes the total bit
  • the total bit rate can be determined in each iteration, i.e. for each
  • the first two parcor coefficients r ⁇ and r 2 are typically
  • -C(-r 2 ) can be used to provide a finer resolution at r 2 — » +1 (see Figure 4).
  • the two companded coefficients are then quantized using a simple 7-bit
  • the direct form predictor filter uses predictor coefficients h k
  • a lossless coding method specifies an integer-arithmetic
  • Embodiments relate to encoders, decoders, methods of encoding, and
  • an encoder is at least one of an audio
  • encoding is implemented in at least one of an audio encoder, and an Audio Lossless
  • a decoder is at least one of an audio decoder
  • a method of decoding is
  • 1 :4 switching may be more efficient in some cases, in accordance with embodiments. For example, if only 1 :4 switching is possible, 1 :2 or 1 :8 switching (and combinations thereof) may be more efficient in some cases, in accordance with embodiments. For example, if only 1 :4 switching is possible, 1 :2 or 1 :8 switching (and combinations thereof) may be more efficient in some cases, in accordance with embodiments. For example, if only 1 :4 switching is possible, 1 :2 or 1 :8 switching (and combinations thereof) may be more efficient in some cases, in accordance with embodiments. For example, if
  • channels require different switching, in accordance with embodiments. For example,
  • a more flexible, hierarchical block switching scheme allows
  • independent block switching for each channel may be implemented
  • each channel pair may be switched independently in the case of joint channel
  • a maximum predictor order of 1023 may be implemented.
  • the same compression can be achieved with relatively low
  • decoder complexity which also allows higher compression at the same complexity.
  • Audio Lossless Coding includes a relatively simple block switching
  • Each frame of N samples is either encoded using one full length block
  • this scheme may have some limitations.
  • switching is done identically for all channels, although different channels may require different switching (which is especially true if the channels are not
  • a relatively flexible block switching scheme may be
  • each frame can be hierarchically subdivided into many blocks.
  • Figure 5 illustrates a frame which can be hierarchically subdivided up to
  • N/32 may be possible within a frame, as long as each block results from a
  • N/4 + N/2 may be possible, while a partition into N/4 + N/2 + N/4 may not be possible.
  • the actual partition may be signaled in an additional field
  • N B the number of bytes used for bs_info.
  • Table 1 Block switching levels.
  • the bsjnfo field may include up to 4 bytes, in accordance with embodiments.
  • mapping of bits with respect to the levels 1 to 5 may be [(0)1223333 44444444
  • the first bit may be reserved for indicating independent block
  • N B N/8, and bsjnfo consists of one byte.
  • N B N
  • the bits of bsjnfo are set if a block is further subdivided.
  • N/2 is further split ((0)1017) into two blocks of length N/4. If an N/4 block is split as in
  • bsjnfo fields may be transmitted for all channel pairs (CPEs)
  • switching the channels independently may not be
  • bs_info field for each CPE and SCE in a frame (e.g. the two
  • channels of a CPE are switched synchronously), in accordance with embodiments.
  • the first bit of bs_info may be set to 1 , and the
  • blocks in the bit stream can be dynamically arranged. As illustrated in example
  • synchronized block switching (e.g. the middle row of Figure 8). This interleaving may be beneficial, since in a channel pair a block of one channel (e.g. block 1.2) may
  • channel data can be arranged separately
  • Embodiments relate to higher predictor orders. Absent hierarchical block
  • this factor can be increased
  • K n ⁇ x may be bound by the block length N B , where K x ⁇
  • the max_order field in the file header is 10 bits. In embodiments, the opt_order field of the block data is 10 bits. The actual number of
  • bits in a particular block may depend on the maximum order allowed for a block. If
  • this local maximum order may be smaller than the global maximum
  • the opt_order field is 8 bits (instead of 10) due to a maximum local order of 255.
  • a first sample of a current block is predicted using the last K
  • the K value is determined from the opt_order which is
  • Random access stands for fast access to any part of the encoded audio signal
  • the encoder has to insert frames that can be decoded without
  • previous frames may be used for prediction.
  • the distance between random access frames can be chosen from 255 to one
  • the codec uses progressive prediction, which
  • Joint channel coding can be used to exploit dependencies between the two
  • channels of a stereo signal or between any two channels of a multi-channel signal.
  • switched difference coding is beneficial in cases where two channels are very similar.
  • the channels can be rearranged by the encoder
  • Lossless audio codec also supports a more
  • the block can be further divided into four parts, each encoded with a different Rice
  • the encoder can use a more complex and efficient coding
  • BGMC Block Gilbert-Moore Codes
  • Residuals that belong to a central region of the distribution e(n) ⁇ ⁇ e ma ⁇ , and ones
  • the BGMC encoder splits them into
  • the lossless audio codec is compared with two of the most
  • the compression ratio is defined as
  • Monkey's Audio for all formats, but particularly for high-definition material (i.e. 96 kHz
  • signal encoder of the present invention is just a snapshot of an ongoing development.
  • the CPU load of the decoder is only around 20-25%, which in
  • file based decoding is at least 4-5 times faster than real-time.
  • Table 3 Average CPU load (percentage on a 1.7 GHz Pentium-M), depending on audio format (kHz/bits) and ALS encoder complexity.
  • the codec is designed to offer a large range of complexity levels. While the
  • the decoder may be affected by a higher average predictor order.
  • the present invention is related the syntax which is comprised in encoded bit
  • the block_switching field is extended from 1 to 2 bits, the
  • max_order field is extended from 8 to 10 bits.
  • Frame Data If block switching is used, the bsjnfo field is added. Depending on the bit stream, the bsjnfo field is added. Depending on the bit stream, the bsjnfo field is added. Depending on the bit stream, the bsjnfo field is added. Depending on the bit stream, the bsjnfo field is added. Depending on the bit stream, the bsjnfo field is added.
  • Block Header The short_blocks field is removed, since block switching
  • the opt_order field is extended to a maximum of 10 bits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

L'invention concerne un procédé et un appareil destinés à coder et décoder un fichier audio. Une voie d'une trame de données audio comprise dans un fichier audio est subdivisée en une pluralité de blocs hiérarchiquement à un ou plusieurs niveaux de commutation par blocs, la trame de données audio étant comprise dans le fichier audio. Chaque bloc résulte d'une subdivision d'un bloc surordonné de longueur double. Ensuite, des premières informations de commutation par blocs indiquant que le fichier audio est soumis à une commutation par blocs sont générées. Après cela, des secondes informations de commutation par blocs indiquant la manière dont les blocs sont subdivisés à partir de la voie auxdits niveaux de commutation par blocs sont générées.
PCT/KR2005/002308 2005-07-11 2005-07-18 Appareil et procede destines a coder et decoder un signal audio WO2007011085A1 (fr)

Priority Applications (93)

Application Number Priority Date Filing Date Title
PCT/KR2005/002308 WO2007011085A1 (fr) 2005-07-18 2005-07-18 Appareil et procede destines a coder et decoder un signal audio
US11/481,940 US8180631B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal, utilizing a unique offset associated with each coded-coefficient
US11/481,916 US8108219B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signal
US11/481,931 US7411528B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal
US11/481,915 US7996216B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signal
US11/481,941 US8050915B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signals using hierarchical block switching and linear prediction coding
US11/481,917 US7991272B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal
US11/481,927 US7835917B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal
US11/481,932 US8032240B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal
US11/481,933 US7966190B2 (en) 2005-07-11 2006-07-07 Apparatus and method for processing an audio signal using linear prediction
US11/481,926 US7949014B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signal
US11/481,929 US7991012B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signal
US11/481,942 US7830921B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signal
US11/481,930 US8032368B2 (en) 2005-07-11 2006-07-07 Apparatus and method of encoding and decoding audio signals using hierarchical block swithcing and linear prediction coding
US11/481,939 US8121836B2 (en) 2005-07-11 2006-07-07 Apparatus and method of processing an audio signal
PCT/KR2006/002686 WO2007008008A2 (fr) 2005-07-11 2006-07-10 Appareil et procede de traitement d'un signal audio
JP2008521317A JP2009500691A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
JP2008521310A JP2009500686A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
CNA2006800251395A CN101218629A (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
JP2008521319A JP2009500693A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
EP06769222A EP1908058A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de traitement d'un signal audio
EP06757768A EP1913583A4 (fr) 2005-07-11 2006-07-10 Appareil et procede pour traitement du signal audio
CN2006800252699A CN101218630B (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
JP2008521309A JP2009500685A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
CNA2006800294174A CN101243489A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
JP2008521308A JP2009500684A (ja) 2005-07-11 2006-07-10 オーディオ信号を処理する方法、オーディオ信号のエンコーディング及びデコーディング装置及び方法
JP2008521307A JP2009500683A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
PCT/KR2006/002687 WO2007008009A1 (fr) 2005-07-11 2006-07-10 Dispositif et procede de traitement d'un signal audio
PCT/KR2006/002685 WO2007008007A1 (fr) 2005-07-11 2006-07-10 Appareil et procede pour traitement du signal audio
PCT/KR2006/002677 WO2007007999A2 (fr) 2005-07-11 2006-07-10 Appareil et procede d'encodage et de decodage de signal audio
PCT/KR2006/002680 WO2007008002A2 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
PCT/KR2006/002678 WO2007008000A2 (fr) 2005-07-11 2006-07-10 Appareil et procede d'encodage et de decodage de signal audio
PCT/KR2006/002690 WO2007008012A2 (fr) 2005-07-11 2006-07-10 Dispositif et procédé de traitement d'un signal audio
CNA200680028892XA CN101238509A (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
CNA2006800305412A CN101243497A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
CN2006800251380A CN101218628B (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
PCT/KR2006/002683 WO2007008005A1 (fr) 2005-07-11 2006-07-10 Appareil et procede pour traitement du signal audio
PCT/KR2006/002681 WO2007008003A2 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
EP06757766A EP1913581A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
CNA2006800305111A CN101243494A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
EP06769226A EP1913588A4 (fr) 2005-07-11 2006-07-10 Dispositif et procédé de traitement d'un signal audio
JP2008521311A JP2009500687A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
JP2008521316A JP2009510810A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
CNA200680024866XA CN101218852A (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
CNA2006800304693A CN101243492A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
PCT/KR2006/002691 WO2007008013A2 (fr) 2005-07-11 2006-07-10 Dispositif et procede destines au codage et au decodage d'un signal audio
PCT/KR2006/002689 WO2007008011A2 (fr) 2005-07-11 2006-07-10 Dispositif et procede de traitement d'un signal audio
JP2008521318A JP2009500692A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
JP2008521314A JP2009500689A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
EP06757765A EP1913580A4 (fr) 2005-07-11 2006-07-10 Appareil et procede d'encodage et de decodage de signal audio
EP06757767A EP1913582A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et decodage de signal audio
JP2008521306A JP2009500682A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
EP06769223A EP1913587A4 (fr) 2005-07-11 2006-07-10 Dispositif et procede de traitement d'un signal audio
PCT/KR2006/002679 WO2007008001A2 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
CNA2006800251376A CN101218631A (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
JP2008521313A JP2009500688A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
CN2006800294070A CN101243496B (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
CNA2006800305499A CN101243495A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
JP2008521315A JP2009500690A (ja) 2005-07-11 2006-07-10 オーディオ信号の処理装置及び方法
EP06769218A EP1913589A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
EP06769225A EP1911021A4 (fr) 2005-07-11 2006-07-10 Dispositif et procede de traitement d'un signal audio
EP06757764A EP1913579A4 (fr) 2005-07-11 2006-07-10 Appareil et procede d'encodage et de decodage de signal audio
EP06769227A EP1911020A4 (fr) 2005-07-11 2006-07-10 Dispositif et procede destines au codage et au decodage d'un signal audio
PCT/KR2006/002682 WO2007008004A2 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et decodage de signal audio
EP06769219A EP1913584A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de codage et de decodage de signal audio
EP06769224A EP1913794A4 (fr) 2005-07-11 2006-07-10 Appareil et procede de traitement d'un signal audio
CNA2006800304797A CN101243493A (zh) 2005-07-11 2006-07-10 编码和解码音频信号的装置和方法
PCT/KR2006/002688 WO2007008010A1 (fr) 2005-07-11 2006-07-10 Appareil et procede de traitement d'un signal audio
CNA2006800289829A CN101238510A (zh) 2005-07-11 2006-07-10 处理音频信号的装置和方法
JP2008521305A JP2009500681A (ja) 2005-07-11 2006-07-10 オーディオ信号のエンコーディング及びデコーディング装置及び方法
EP06769220A EP1913585A4 (fr) 2005-07-11 2006-07-10 Appareil et procede pour traitement du signal audio
US12/232,527 US7962332B2 (en) 2005-07-11 2008-09-18 Apparatus and method of encoding and decoding audio signal
US12/232,526 US8010372B2 (en) 2005-07-11 2008-09-18 Apparatus and method of encoding and decoding audio signal
US12/232,593 US8326132B2 (en) 2005-07-11 2008-09-19 Apparatus and method of encoding and decoding audio signal
US12/232,591 US8255227B2 (en) 2005-07-11 2008-09-19 Scalable encoding and decoding of multichannel audio with up to five levels in subdivision hierarchy
US12/232,590 US8055507B2 (en) 2005-07-11 2008-09-19 Apparatus and method for processing an audio signal using linear prediction
US12/232,595 US8417100B2 (en) 2005-07-11 2008-09-19 Apparatus and method of encoding and decoding audio signal
US12/232,658 US8510119B2 (en) 2005-07-11 2008-09-22 Apparatus and method of processing an audio signal, utilizing unique offsets associated with coded-coefficients
US12/232,659 US8554568B2 (en) 2005-07-11 2008-09-22 Apparatus and method of processing an audio signal, utilizing unique offsets associated with each coded-coefficients
US12/232,662 US8510120B2 (en) 2005-07-11 2008-09-22 Apparatus and method of processing an audio signal, utilizing unique offsets associated with coded-coefficients
US12/232,739 US8155152B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,748 US8155153B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,740 US8149876B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,747 US8149878B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,734 US8155144B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,741 US8149877B2 (en) 2005-07-11 2008-09-23 Apparatus and method of encoding and decoding audio signal
US12/232,744 US8032386B2 (en) 2005-07-11 2008-09-23 Apparatus and method of processing an audio signal
US12/232,743 US7987008B2 (en) 2005-07-11 2008-09-23 Apparatus and method of processing an audio signal
US12/232,783 US8275476B2 (en) 2005-07-11 2008-09-24 Apparatus and method of encoding and decoding audio signals
US12/232,781 US7930177B2 (en) 2005-07-11 2008-09-24 Apparatus and method of encoding and decoding audio signals using hierarchical block switching and linear prediction coding
US12/232,784 US7987009B2 (en) 2005-07-11 2008-09-24 Apparatus and method of encoding and decoding audio signals
US12/232,782 US8046092B2 (en) 2005-07-11 2008-09-24 Apparatus and method of encoding and decoding audio signal
US12/314,891 US8065158B2 (en) 2005-07-11 2008-12-18 Apparatus and method of processing an audio signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2005/002308 WO2007011085A1 (fr) 2005-07-18 2005-07-18 Appareil et procede destines a coder et decoder un signal audio

Publications (1)

Publication Number Publication Date
WO2007011085A1 true WO2007011085A1 (fr) 2007-01-25

Family

ID=37668951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2005/002308 WO2007011085A1 (fr) 2005-07-11 2005-07-18 Appareil et procede destines a coder et decoder un signal audio

Country Status (1)

Country Link
WO (1) WO2007011085A1 (fr)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIEBCHEN T. ET AL.: "MPEG-4 ALS: an emerging standard for lossless audo coding", DATA COMPRESSION CONFERENCE, 2004. PROCEEDINGS: (DCC 2004), pages 439 - 448, XP010692571 *
LIEBCHEN T.: "An introduction to MPEG-4 audio lossless coding", 2004 INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP '04), vol. 3, 17 May 2004 (2004-05-17) - 21 May 2004 (2004-05-21), pages 1012 - 1015, XP010718364 *
MORIYA T. ET AL.: "Extended linear prediction tools for lossless audio coding", ICASSP 2004, vol. 3, 17 May 2004 (2004-05-17) - 21 May 2004 (2004-05-21), pages 1008 - 1011, XP010718363 *

Similar Documents

Publication Publication Date Title
US7991272B2 (en) Apparatus and method of processing an audio signal
WO2007011080A1 (fr) Appareil et procede de codage et decodage d'un signal audio
WO2007011083A1 (fr) Appareil et procede de codage et de decodage d'un signal audio
WO2007011085A1 (fr) Appareil et procede destines a coder et decoder un signal audio
WO2007011084A1 (fr) Appareil et procede de codage et de decodage de signal audio
WO2007011078A1 (fr) Appareil et procede de codage et de decodage d'un signal audio
WO2007011079A1 (fr) Appareil et procede de codage et de decodage de signal audio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05761451

Country of ref document: EP

Kind code of ref document: A1