WO2007011016A1 - Method for production of single-stranded gene tags each having transcription initiation site - Google Patents

Method for production of single-stranded gene tags each having transcription initiation site Download PDF

Info

Publication number
WO2007011016A1
WO2007011016A1 PCT/JP2006/314459 JP2006314459W WO2007011016A1 WO 2007011016 A1 WO2007011016 A1 WO 2007011016A1 JP 2006314459 W JP2006314459 W JP 2006314459W WO 2007011016 A1 WO2007011016 A1 WO 2007011016A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
rna
dna
stranded
primer
Prior art date
Application number
PCT/JP2006/314459
Other languages
French (fr)
Japanese (ja)
Inventor
Shin-Ichi Hashimoto
Kouji Matsushima
Akio Ametani
Yukie Sameshima
Kayo Shimizu
Original Assignee
Post Genome Institute Co., Ltd.
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Post Genome Institute Co., Ltd., The University Of Tokyo filed Critical Post Genome Institute Co., Ltd.
Publication of WO2007011016A1 publication Critical patent/WO2007011016A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection

Definitions

  • the present invention relates to a method for producing a single-stranded gene tag group including a transcription initiation site.
  • the present invention also relates to a method for measuring the expression level of a gene in a eukaryotic cell, comprising a step of hybridizing the single-stranded gene tag group to a solid phase on which DNA or RNA containing a transcription initiation site is immobilized.
  • the present invention relates to a method for creating gene expression profiles by integrating the obtained gene expression information.
  • Cells can be characterized by comparison of gene expression status of various cells.
  • a cell catalog that expresses the state of a cell by a gene expression pattern.
  • cells can be identified from the gene expression state.
  • genes characteristic of each cell For example, when the expression state of a gene is compared between a normal cell and a cell subjected to artificial treatment, a gene whose expression level has changed as a result of the artificial treatment is found. This gene is a gene whose expression level has changed as a result of artificial processing.
  • genes related to diseases can be found by comparing gene expression states between patient cells and healthy subject cells.
  • a method for expression analysis is the 5 'SAGE method (Non-patent Document 1, Patent Document 1).
  • the 5 ′ SAGE method is an effective method for comprehensive analysis of gene expression at the transcription start site as sequence information.
  • SAGE method Non-patent document 2
  • MPSS method Non-patent document 3
  • a second example of a method for expression analysis is a DNA array method.
  • the expression state of a gene is determined from the signal strength of the hybrid by hybridizing the mRNA extracted from a specific cell force to tens of thousands of gene probes arranged at high density on the substrate.
  • Non-patent Document 4 This is an exhaustive determination method (Non-patent Document 4).
  • probes constituting a DNA array are designed based on known base sequence information!
  • mRNA extracted from a relatively small amount of cells By hybridizing to a DNA array using mRNA extracted from a relatively small amount of cells, it is possible to easily analyze qualitatively or semi-quantitatively the difference in the expression state of genes among many cells. is there.
  • RT-PCR method (Non-patent Documents 5-7) can be mentioned.
  • the RT-PCR method is a method for detecting DNA obtained through reverse transcription and PCR from a relatively small amount of mRNA extracted from cells by electrophoresis or the like.
  • the RT-PCR method is widely used in the study of expression analysis, and has a difficulty as a method for simultaneously processing a large number of samples that are more quantitative than microarrays.
  • the DNA array method is most advantageous in terms of completeness.
  • the position of a gene probe used in a DNA array on a sequence and a genome sequence is specified. Therefore, it should be possible to comprehensively test which genes are expressed by appropriately setting the conditions for the hybridization between the mRNA extracted from the cell force and the gene probe.
  • Non-patent Documents 8-9 How to reduce this unpredictable signal DNA array It is essential for the effective use of the law.
  • Patent Literature l WO 2005/054465
  • Non-Patent Document 1 Hashimoto et al., Nature Biotechnol. 22, 1146-1149 (2004)
  • Non-Patent Document 2 Velculescu et al., Science, 270, 484-487 (1995)
  • Non-Patent Document 3 Brenner et al., Nature Biotechnol, 18, 630-634 (2000)
  • Non-patent literature 4 Gerhold et al., Nature Genetics, 32, supplement, 547-552 (2002)
  • Non-patent literature 5 Kawasaki, ES and Wang, AM PCR Technology (Erlich, HA ed), Stockton Press 89—97 ( 1989)
  • Non-Patent Document 6 Lynas et al., J Pathol. 157, 285-289 (1989). Erratum in: J Pathol. 159, 358 (1989).
  • Non-Patent Document 7 Frohman et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002 (1988)
  • Non-Patent Document 8 van Ruissen et al., BMC Genomics 6, 91 (2005)
  • Non-Patent Document 9 Pollock, Chem Phys Lipids 121, 241-256 (2002)
  • Non-Patent Document 10 Belosludtsev et al., Biotechnique 37, 654-658, 660 (2004) Disclosure of the Invention
  • the present inventors have a large number of regions unnecessary for obtaining information on mRNA and hybridization. Focusing on the fact that there are cases where this occurs, we have theoretically verified whether this is one of the causes of unpredictable signals.
  • Theoretical verification example Assume that gene A and gene B exist, and that transcription termination points A and B are at the same position.
  • the transcription start point is assumed to be A: 550 base upstream of the transcription termination point and B: 500 base upstream of the transcription termination point. That is, the A gene mRNA is 50 bases longer than the B gene mRNA.
  • the 5 'SAGE method reveals that the B gene is expressed specifically in cancer cells, and that the A gene is also expressed in normal cells / cancer cells.
  • the sample necessary for hybridization is required to be single-stranded like mRNA. Also, from a thermodynamic point of view, hybridization has a molecular weight of DNA. / J, it gets harder when it gets smaller.
  • the present invention has been made in view of such circumstances, and the production of single-stranded gene tag groups reflecting the type and quantitative ratio of the base sequence group of mRNA 5 'end extracted from eukaryotic cell force.
  • the issue is to provide a method.
  • Another object of the present invention is to provide a method for measuring the expression level of a gene in a eukaryotic cell, comprising a step of hybridizing the single-stranded gene tag group to a solid phase on which DNA or RNA containing a transcription initiation site is immobilized. To do.
  • a single-stranded gene tag group reflecting the type and quantity ratio of the base sequence group of the full-length mRNA 5 'end should be It is considered effective to use as a sample.
  • the present inventors have added a technique and an ionic modification method for converting a double-stranded DNA into a single strand in the method disclosed in the 5 'SAGE method.
  • a single-stranded gene tag group reflecting the type and quantity ratio of the 5 ′ end nucleotide sequence of mRNA was prepared.
  • the single-stranded gene tag group was found to be effective in confirming the expression of genes targeting the expression start site.
  • the present invention relates to the following method for producing a single-stranded gene tag group and uses of the tag group obtained by this method.
  • a method for producing a single-stranded gene tag group comprising the following steps.
  • RNA linker contains a recognition sequence for a type II restriction enzyme.
  • a reagent kit for producing a single-stranded gene tag group of eukaryotic cells comprising the following elements:
  • RNA linker comprising an oligonucleotide containing a recognition sequence for an IIS type restriction enzyme
  • a method for measuring the expression level of a gene in a eukaryotic cell comprising the following steps.
  • a gene expression profile comprising a step of obtaining gene expression profiles of different types of cells by the method according to [13], comparing gene expression profiles, and selecting gene tags having different expression frequencies between cells. Analysis method.
  • the CAP structure is a structure existing at the 5 'end of eukaryotic cells or viral mRNAs that infect eukaryotic cells. Specifically, 7-methylguanosine forms a CAP structure by binding to the 5'-terminal nucleotide of mRNA via a 5'-3 phosphate bridge! /.
  • the present invention provides a method for obtaining only the 5 'end region of mRNA so that the transcription start site can be analyzed by hybridization.
  • RNA with a cap structure in the cell.
  • the RNA having this cap structure includes mature mRNA, which is a cocoon that is translated into a protein.
  • Non-coding RNA (non-coding RNA) ) Is also included.
  • RNA when RNA is obtained from a cell, some RNA may be degraded.
  • cells do not have a trapezoidal shape that is translated into protein, have a cap structure, and contain RNA!
  • the oligo-cabbing method is effective in analyzing a mature mRNA that is a trapezoid that includes a transcription initiation site and is translated into a protein in a sample containing RNA that is not subject to such analysis. is there.
  • the oligo cabbing method is a known method (Maruyama and Sugano. 1994. Gene, 138: 171-4). This method is characterized in that after treatment with two enzymes, the RNA linker is linked only to mRNA having a cap structure. After binding the RNA linker, purify only the one that has this linker and remove other RNA components. In the present invention, only the mRNA having the cap structure is taken out and processed so as to be able to bind to the oligonucleic acid as a probe for analysis of the iridescence.
  • the sample to be analyzed by hybridization was the full-length gene in the mRNA fraction obtained from the cells.
  • probes prepared for hybridization are based on a database and have a length of several tens of bases (for example, 50 bases) designed so that different mRNAs do not bind to the same probe.
  • the single-stranded portion of the sample DNA has a length of about 20 bases and corresponds to the 5 ′ end containing the transcription start site of mRNA.
  • the present invention makes it possible to analyze the transcription start site by means of hybridization.
  • the probe in the compartment on the DNA array is DNA having a sequence complementary to the transcription initiation site.
  • its length is 20 bases.
  • This sequence is preferably obtained by the sequence information obtained by the method described in the “method for obtaining a gene tag” (WO 2005/054465), which is another invention of the inventors. This makes the analysis near the transcription start site more reliable.
  • nucleotide sequence data obtained by the “Genetic Tag Acquisition Method” cannot be applied to the genome sequence (for example, 25% of the nucleotide sequence data cannot be applied in the actual experimental example, but the same sequence tag) If it appears repeatedly, it is counted as one tag, and it is included if it is not possible to apply a sequence that differs from the genome sequence by 2 or more base sequences). However, the reason why a large number of base sequence data cannot be applied to the genome sequence is not necessarily clear.
  • the analysis according to the present invention and the “method for obtaining a gene tag” can be applied to a biological species whose genome sequence is not clear. It is not only eukaryotes but also viruses that have a cap structure in mRNA. Many genome sequences of viruses have been elucidated, and viruses can also apply the method of the present invention.
  • the present invention relates to a method for producing a single-stranded gene tag group comprising the following steps.
  • the cap structure refers to a structure in which 7-methylguanosylribonucleic acid is bound via a 5'-3 phosphate bridge at the 5 'end of mRNA.
  • the CAP structure protects mRNA from degradation by 5'-3 'ethanuclease activity.
  • the CAP structure of mRNA that has finished its role is removed by decapping enzyme.
  • mRNA that has lost its CAP structure is degraded by 5 '3' ethasonuclease (LaGradeur et al, EMBO J, 17: 1487-1496, 1998).
  • the CAP structure is thought to be added to the 5 'end of RNA at an early stage of the transcription reaction by RNA polymerase II.
  • RNA derived from a eukaryotic cell can be used as the RNA.
  • polyA (+) RNA or total RNA can be used.
  • animals Cells derived from any species having a CAP structure in mRNA, such as plants, yeast, or slime molds, can be used.
  • RNA produced by eukaryotes infected with intracellular parasites such as viruses, viroids, or mycoplasmas, and RNA transcribed from the introduced genetic information are also subject of the present invention.
  • a prokaryotic cell gene originally supposed to have no CAP structure can be given a CAP structure by introducing it into a eukaryotic cell in a transcribable form.
  • the RNA thus transcribed is also included in the RNA derived from a eukaryotic cell in the present invention.
  • RNA transcribed from genetic information artificially introduced into a eukaryotic cell as a vector also has a cap structure and can be analyzed for expression by the method of the present invention.
  • RNA is first extracted from a eukaryotic cell having these RNAs.
  • RNA extraction methods are known. For example, using a commercial kit such as RNeasy (Qiagen) based on the GPTC method, high-purity RNA can be easily obtained. In the case of RNA extraction, if it is necessary to disrupt cells, they can be disrupted by methods known to those skilled in the art.
  • the method of the present invention includes a step of linking an RNA linker to the CAP structure of the extracted RNA.
  • Any method can be used to bind oligo RNA or oligo DNA to the cap structure.
  • the above oligo cabbing method can be exemplified as a preferred method for binding an RNA linker.
  • the oligo-cabbing method was developed as a method capable of protecting the 5 ′ end of mRNA in order to clone the full length of a gene (Maruyama and Sugano. 1994. Gene, 13 8: 171-4)).
  • a primer consisting of a linker sequence bound to mRNA with a cap structure at the 5 'end and an oligo dT force binding to the poly A structure at the 3' end of the mature full-length mRNA are also provided.
  • a full-length gene can be cloned by PCR amplification using primers.
  • the RNA fraction is treated with bacterial alkaline phosphatase (BAP) to hydrolyze the phosphate group at the 5 'end of RNA without a cap structure to give a hydroxyl group. .
  • BAP bacterial alkaline phosphatase
  • the 5 'end of a newly produced RNA fragment that has been cleaved for some reason, or mitochondrial RNA can serve as the substrate for this enzyme.
  • TAP tobacco acid pyrophosphatase
  • RNA linker binds to RNA with a phosphate group.
  • Ligation with T4 RNA ligase requires a phosphate group at the 5 'end. However, it does not react with RNA having a hydroxyl group at the 5 'end. In this way, the linker binds only to RNA derived from mRNA that is mature and complete at the 5 ′ end (having a cap structure).
  • the RNA linker linked to the CAP structure also has an oligonucleotide ability including at least a recognition sequence for an IIS type restriction enzyme.
  • the oligonucleotide used as the RNA linker may be DNA or RNA.
  • a preferred RNA linker is RNA.
  • the base sequence constituting the RNA linker may be any base sequence including the recognition sequence of the IIS type restriction enzyme.
  • the IIS type restriction enzyme cuts an arbitrary sequence having a specific recognition site force separated by a certain length.
  • An object of the present invention is to obtain the 5 ′ end of mRNA as a tag. Therefore, in order to prepare DNA containing the transcription initiation site used in the present invention, it is desirable to place an IIS type enzyme recognition sequence close to the 5 ′ end of the mRNA, that is, at the 3 ′ end of the RNA linker.
  • the recognition sequence is positioned so that cleavage occurs at a site downstream of the transcription start site of mRNA.
  • Various types of IIS type restriction enzymes are known. The distance between the recognition sequence and the cleavage position is almost constant by the enzyme.
  • Bsm FI or Fokl cleaves DNA at positions 9 to 10 bases from the recognition sequence, leaving a sticky end.
  • the following enzymes are known as IIS-type restriction enzymes having the same action (Szybalski, Gene 40: 169, 1985).
  • an IIS type restriction enzyme called Mme I cleaves at a position 20 bases away from the recognition sequence (5'-TCCRAC-3 '(R is G or A)) (Tucholski et al, Gene Vol. 157, pp. 87-92, 19 95).
  • An expression analysis method capable of obtaining a 20-base long tag using Mmel as a tagging enzyme is also known (US Patent 6498013). SAGE using Mmel is also called long SAGE.
  • IIS restriction enzymes have different recognition sequences depending on the enzyme used. Depending on the element, it is desirable to place the restriction enzyme recognition sequence on the RNA linker.
  • the recognition sequence is 5'_TCCRAC-3 '(where R is G or A), so UCCRAC (R is G or A) is placed at the 3' end of the RNA linker. It is desirable to do.
  • the base sequence constituting the RNA linker can also be used as a region for the primer for tag amplification to call.
  • a region for annealing the primer a length of 10 bases or more, usually 10 to 40 bases, particularly 15 to 30 bases is preferable.
  • the base constituting the primer can be designed so that the melting temperature (Tm) of the primer is 60 to 80 ° C, especially 65 to 75 ° C. It is not desirable that the primers make a dimer, or that the primer binding portion has a higher order structure. In addition, those that do not contain much GC are preferable. If the above conditions are satisfied, the base sequence of the portion where the primer anneals may be arbitrary.
  • the region constituting the recognition sequences of various restriction enzymes and the region for annealing the primer can be overlapped in the RNA linker.
  • G may be placed at the 3 'end of the RNA linker.
  • RNA linker other than the oligo-cabbing method As a method for binding an RNA linker other than the oligo-cabbing method, a method of binding a force RNA linker by purification using a solid-phased cap-binding protein (Edery, L. et al , Mol. Cell Biol. 15: 3363-3371, 1995), a cap trapper method in which biotin is bound to a diol group of the cap structure to form cDNA and then oligo DNA (Carnici, P., Genomics 37: 327-336, 1996) and the like can be used arbitrarily.
  • RNA having a cap structure bound to a solid phase if a TAP treatment is applied to mRNA having a cap structure bound to a solid phase, mRNA having a phosphate group at the 5 'end is released. Bind the RNA linker. Furthermore, reverse transcription reaction is performed on this RNA.
  • piotin is bound to the cap structure, and mRNA having the piotin bound thereto is recovered by solid-phased avidin and subjected to a reverse transcription reaction.
  • the oligo DNA adapter linker is bound to this cDNA.
  • cDNA synthesis consists of two steps: first strand synthesis and second strand synthesis.
  • the synthesis of the first strand is a reverse transcription reaction using RNA as a template.
  • the second strand is the first strand synthesized earlier.
  • the first strand of cDNA can be synthesized with a primer that anneals to an arbitrary region of RNA.
  • a primer that anneals to an arbitrary region of RNA.
  • cDNA having a sequence complementary to RNA is synthesized by an extension reaction toward the 3 'end of the oligo DNA.
  • RT reverse transcriptase
  • RNA template As a mutant of reverse transcriptase, a mutant (Superscript I I, Invitrogen) in which the RNaseH activity of reverse transcriptase is lost is commercially available.
  • enzymes such as Tth DNA polymerase that catalyze complementary strand synthesis reactions that are RNA-like but are DNA synthesis enzymes are also known. If such an enzyme is used, the first strand (RNA template) and the second strand (DNA template) can be synthesized with a single enzyme.
  • oligo dT As the primer, so-called oligo dT can be used, and oligo dT is also commercially available (Invitrogen, etc.). Since oligo dT binds to the polyA moiety at the 3 'end of mRNA, reverse transcription reaction using this will give the full length cDNA. The resulting cDNA also contains a portion complementary to the RNA linker at the 3 'end.
  • an oligo DNA having a sequence complementary to a sequence specific to a certain region can also be used as a primer.
  • an extension reaction of a gene having a specific sequence proceeds by reverse transcription, and a cDNA including a transcription initiation site and an oligo RNA portion is synthesized. Therefore, only the transcription start site of a gene having a special sequence is analyzed. This can be applied to determine the transcription start site of a known gene.
  • the expression level of each transcript can also be compared.
  • the genes that give the multiple transcripts that encode the same amino acid sequence but differ in the transcription start site should be identified. Can do.
  • each can also be used as an adapter primer. That is, an arbitrary sequence capable of binding to the oligo DNA can be connected to the 5 ′ upstream portion of each primer with a sequence different from the sequence used for the adapter portion of the RNA linker.
  • the full length of RNA is not always necessary! /.
  • tags are obtained from a small region including the 5 ′ end of RNA. Therefore, if the region containing the 5 ′ end of RNA can be synthesized as cDNA, the cDNA necessary for the present invention can be obtained. Therefore, it is also possible to use a known random primer instead of oligo dT and an adapter connected to the 5 ′ end upstream of this random primer.
  • Adapter One random primer is a mixture of multiple sequences, so it binds to various parts of RNA and the extension reaction proceeds toward the 3 'side from where it was bound.
  • the complementary sequence at the 5 'end of RNA is always included at the 3' end. Whether or not it contains a complementary sequence at the 5 ′ end of RNA can be determined by whether or not it contains an RNA linker sequence.
  • the cDNA thus obtained can be used for the analysis of the transcription initiation site. By using random primers, there is an advantage that reverse transcription reaction can be performed even if the obtained RNA is a fragment that is incomplete at the 3 'end and does not contain a polyA region. There is also an advantage that non-coding RNA can be analyzed.
  • the RNA used as the reverse transcription reaction type may be subjected to alkaline decomposition.
  • the obtained cDNA has a portion complementary to the sequence of the RNA linker at the 3 'end in common.
  • RNA linker As a cage.
  • Methods for synthesizing double-stranded cDNA are well known.
  • the oligo DNA used here contains a recognition sequence for the IIS restriction enzyme! /. Except for the recognition sequence of IIS type enzyme, the sequence of the part should be sufficient It is usual to design an RNA linker sequence.
  • DNA polymerase is used as an enzyme in addition to oligo DNA as a primer.
  • An example of the DNA polymerase is T4 DNA polymerase.
  • the second strand may be synthesized using the modified single-stranded oligo DNA as a primer.
  • the double-stranded by single-stranded oligo DNA in DNA polymerases that have undergone modifications do not adequately be obtained, it is possible to use a primer duplexes with modifications.
  • the double-stranded primer is the annealed two of the modified oligo DNA and the unmodified oligo DNA.
  • the modified strand should be an oligo DNA that has two regions: the modified 5 'end and the 3' region that has the same sequence as the RNA linker.
  • the 5 ′ half of this modified oligo DNA is annealed with another oligo DNA having a sequence complementary to this portion, and the remaining 3 ′ half of the modified oligo DNA having a sequence in common with the RNA linker is Leave as single strand.
  • the unmodified oligo DNA has a complementary sequence in the 5 ′ half region of the modified oligo DNA.
  • the 5 'half and the 3' half do not necessarily have the same length.
  • the single-stranded portion of the double-stranded primer is annealed to the cDNA.
  • the second strand of the cDNA can be efficiently modified (Shiraki et al., 2003. Proc. Natl. Acad. Sci. USA. 100: 157 76-81) o
  • a known DNA ligase is used to connect the first strand of the cDNA with the primers used here.
  • known methods such as pyotinization and DIG binding can be used.
  • a known Taq polymerase can also be used to make the cDNA double-stranded.
  • two types of primers may be used.
  • the other oligo DNA differs depending on the primer used in the reverse transcription reaction.
  • an oligo DNA having an adapter is used in the reverse transcription reaction, an oligo DNA having a sequence complementary to a part of the adapter can be used.
  • oligo dT is used as a primer during reverse transcription
  • oligo dT is also used as a primer for double-stranded reaction.
  • a specific sequence is used as a primer during reverse transcription reaction
  • a primer having a specific sequence can also be used for the double-stranded reaction.
  • Double-stranded DNA can be obtained by reacting with Taq polymerase using the above two primers.
  • Taq polymerase performs a gene amplification reaction, but it does not need to be excessively amplified here.
  • the present invention includes a step of converting cDNA into a double-stranded gene tag group using an IIS type restriction enzyme.
  • the double-stranded cDNA synthesized by the above method is treated with an IIS-type restriction enzyme, and the restriction enzyme recognition site force is cleaved at an arbitrary length in the direction corresponding to the mRNA.
  • the length of the fragment generated by cleavage varies depending on the IIS type restriction enzyme used, but the restriction enzyme recognition site power is preferably 12 to 26 bases, more preferably 20 bases.
  • a fragment having a sequence of about 20 bases from the 5 ′ end of the gene (19 bases in the case of the RNA linker of SEQ ID NO: 2) can be mentioned. If this fragment has a modification capable of binding to the solid phase, the double-stranded gene tag can be purified by retaining this fragment on the solid phase and recovering it from the solid phase.
  • the recovered double-stranded DNA tag can be made into a single strand by denaturation. Denaturation can be carried out by a known method, for example, heating (95 ° C, 3 minutes) followed by rapid cooling (on ice). If there is a modification capable of binding to the solid phase, it can be immediately rebound to the solid phase and the strand corresponding to the complementary sequence of mRNA released by denaturation (first strand) can be removed. After this, an oligo DNA having a sequence complementary to the sequence of the RNA linker is excessively covered and hybridized to the portion corresponding to the RNA linker, so that only the portion corresponding to the 5 'end of the mRNA is 1 It can be left as it is. After washing the solid phase, recover the bound DNA from the solid phase. By the above method, the single-stranded gene tag group of the present invention can be obtained.
  • the modification portion used for binding of the DNA to the solid phase is chemically modified to produce It can be used for analysis.
  • the chemical modification include techniques known to those skilled in the art, such as radioisotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels, and enzyme labels.
  • Examples of the modifying substance used in the chemical modification of the present invention include the following.
  • Preferred labeling enzymes include, for example, peroxidase, alkaline phosphatase, ⁇ -D-galactosidase, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, ⁇ -glycerol phosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase Examples thereof include xidase, asparaginase, glucose oxidase, ribonuclease, urease, catalase, glucose monophosphate dehydrogenase, darcoamylase, and acetylcholinesterase.
  • Preferred fluorescent substances include, for example, fluorescein isothiocyanate, phycobiliprotein, rhodamine, phycoerythrin, phycocyanin, and aloficocyanine.
  • luminescent substances include isorminol, lucigenin, luminol, aromatic ataridum ester, imidazole, ataridium salt and its modified ester, luciferin, luciferase, and equorin.
  • Preferred radioactive materials include 125 I, I, 131 1, 14 C, 3 H, 32 P, or 35 S.
  • Suitable techniques for binding the modifying substance to the single-stranded gene tag of the present invention are known. Specifically, direct labeling and indirect labeling can be used.
  • a direct labeling method a method in which a single-stranded gene tag and a label are covalently covalently bound by a crosslinking agent is generally used.
  • Cross-linking agents include N, ⁇ '-orthophenol dimaleimide, 4- ( ⁇ -maleimidomethyl) cyclohexanoic acid ⁇ ⁇ -succinimide ester, 6-maleimidohexanoic acid ⁇ ⁇ -succinimide ester, 4,4 '-Dithiopyridine and other known crosslinking agents can be used.
  • the reaction between these cross-linking agents and single-stranded gene tags may be performed according to a known method depending on the properties of the respective cross-linking agents.
  • a low molecular hapten such as piotin, dinitrophenol, pyridoxal, or fluoresamine is bound to a single-stranded gene tag and indirectly labeled with a binding component that recognizes it.
  • piotin avidin and streptavidin are used as recognition ligands.
  • antibodies that recognize these haptens are labeled with dinitrophenyl, pyridoxal, or fluoresamine.
  • horseradish peroxidase can be used as a labeling enzyme.
  • This enzyme is advantageous because it can react with many substrates and can be easily bound to antibodies by the periodate method.
  • an antibody is used as an antibody, for example, Fab ′, Fab, F (ab ′).
  • Polyclonal antibodies and monoclonal antibodies are used as an antibody, for example, Fab ′, Fab, F (ab ′).
  • an enzyme label can be obtained by the same treatment. If the enzyme label obtained using the above-mentioned crosslinking agent is purified by a known method such as affinity chromatography, a more sensitive immunoassay system can be obtained.
  • the purified enzyme-labeled antibody is preserved by adding thimerosal or the like as a preservative and glycerin or the like as a stabilizer.
  • the labeled antibody can be stored for a longer period of time by lyophilization and storage in a cool and dark place.
  • examples of the modifying substance of the present invention include chemical modification using piotin, avidin beads, avidin Cy3 and the like.
  • the present invention relates to a method for measuring the expression level of a gene in a eukaryotic cell, comprising the following steps.
  • the single-stranded DNA tag group reflecting the type and quantity ratio of the 5 ′ end nucleotide sequence of the mRNA of the present invention can be used as a sample for the DNA array method.
  • sample DNA or RNA
  • RNA RNA
  • oligo DNA is bound to a small section on a chip such as a slide glass, and hybridization is performed with this oligo DNA to probe.
  • the power to detect DNA binding to ⁇ is well known.
  • the synthesized oligo DNA is fixed on a glass chip by various methods.
  • a non-porous tip such as a slide glass (Biostrand) or a porous membrane such as a trocellulose membrane is used. You can also
  • the probe for performing hybridization is not particularly limited as long as it has a complementary sequence of DNA expected to be contained in the sample.
  • the design of the probe used here is very important. It is a key to the National Center for Biotechnology Information (NCBI) such as ReSEQ and Unigene. It is a probe of the transcription start site by using databases such as European Bioinformatics Institute ⁇ Ens ble ble, GoldenPath, etc. It is possible to design the base sequence of DNA.
  • NCBI National Center for Biotechnology Information
  • a probe specific for analysis of the 5 'end of mRNA can also be prepared in advance.
  • the genetic data in the public database does not always contain the transcription start point.
  • the sequence of the start site could not be obtained.
  • WO 2005/054465 which the inventors previously applied for a patent, many transcription initiation sites that were not found in databases such as ReSEQ and Unigene were revealed. (Hashimoto et al., 2004. Nat. Biotechnol. 22: 1146-9).
  • a single-stranded gene tag group prepared by the above method is added to the above DNA array.
  • the hybridization conditions are, for example, “2 X SSC, 0.1% SDS, 50.C”, “2 X SSC, 0.1% SDS, 42.C”, “1 X SSC. , 0 • 1% SDS, 37 ° C, and more stringent conditions: 2 X SSC, 0.1% SDS, 65 ° C, 0.5 X SSC, 0.1% SDS, 42 ° C, and 0.2 X SSC , 0.1% SDS, 65 ° C. ”.
  • the probe is added for 1 hour or more. Hybridize at ° C, then wash 3 times for 20 minutes in 2 X SSC, 0.1% SDS at room temperature, followed by 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS It can be done 3 times, and finally it can be washed twice in 1 X SSC, 0.1% SDS at 50 ° C for 20 minutes.
  • Prehybridization Solution (CLONTECH)
  • prehybridization at 55 ° C for 30 minutes or more add the labeled probe and incubate at 37-55 ° C for 1 hour or more. It is possible to wash 3 times for 20 minutes at room temperature in 2 X SSC, 0.1% SDS, and once for 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS.
  • the temperature of the prehybridization and the hybridization can be set to 60 ° C
  • the stringent condition can be set to 68 ° C.
  • the conditions such as the salt concentration and temperature of the buffer in addition to the other conditions such as the probe concentration, the probe length, the probe base sequence composition, and the reaction time. Can be set.
  • a preferred example of a method for measuring the expression level is a method for quantifying a single-stranded gene tag that has been probed or hybridized by the DNA array method.
  • the single-stranded gene tag group used as a sample can be fluorescently modified by the above method.
  • the position of the probe on the chip fluoresces, and the position of the probe to which nothing is bound does not fluoresce .
  • the fluorescence intensity changes depending on the amount of DNA that hybridizes to a probe.
  • the single-stranded gene tag that hybridizes to a probe can be quantified, and the expression level of a gene having a sequence complementary to the probe can be clarified. Fluorescence modification should be performed prior to hybridization, and single-stranded gene It can be performed on all of the tag groups, or can be performed only on the single-stranded gene group that has been hybridized to the probe on the DNA chip after hybridization. Alternatively, hybridization can be detected without using fluorescence. In any case, since the complementary sequence portion of the sample DNA is derived from the 5 ′ end of the mRNA, the expression of a gene having a transcription initiation site complementary to the probe can be detected.
  • two types of samples can be compared using a known method.
  • fluorescence such as a DNA chip
  • it can be performed as follows.
  • different fluorescent materials are used for the two types of samples.
  • Cy3 can be used for one sample
  • Cy5 can be used for the other samples. If these two types of samples are premixed and then placed on the chip, and the fluorescence observation on the chip is examined to determine whether the fluorescence is derived from Cy3 or Cy5, either It turns out that it is DNA from the sample. This reveals which gene expression level was higher in which sample.
  • the advantage of this method is that, as already well known, two samples can be compared by analysis on one chip ⁇ ;
  • RNA linker (1 or 2) of the same sequence may be used. May be used.
  • Comparison of gene expression of two types of samples is useful in the following cases.
  • a certain cancer cell is prepared, one is cultured in a normal medium, and the other is cultured by adding an anticancer agent to this medium.
  • a gene that was expressed only in the case where an anticancer drug was added is considered to be induced directly or indirectly by the anticancer drug.
  • Genes that were found in those who did not have expression after adding an anticancer drug are considered to have been suppressed by the anticancer drug.
  • tissue-specific gene expression can be examined by comparing cells from different tissues, such as the liver and kidney. Even if the same tissue is compared with normal tissue and diseased tissue, disease-specific genes can be expressed, which is useful for disease diagnosis. Or, if you compare gene expression between Japanese cattle and F1 cattle made by crossing Japanese cattle and non-Japanese cattle, you will be able to distinguish Japanese cattle from other cattle if you find a characteristic gene for each. .
  • the single-stranded gene tag group of the present invention can be used as a sample for a DNA array method.
  • a single-stranded DNA tag group that reflects the type and quantity ratio of the 5′-end base sequence of the mRNA of the present invention as a sample for the DNA array method, the transcription start site and the gene targeting the transcription start site Can be easily and accurately examined.
  • the method of the present invention it is considered possible to eliminate the occurrence of an unpredictable signal that occurred when full-length mRNA was used for gene expression analysis.
  • the present invention relates to a reagent kit for producing a gene tag including the following elements.
  • kits examples include the following. Several types of kits can be created by combining the primers. In addition, the power to analyze one cell and the power to make two fluorescent substances can be selected depending on whether two types of cells are compared.
  • Elements for performing RNA ligation including an RNA linker having a recognition site for a type IIS restriction enzyme,
  • a cDNA second comprising an oligo DNA having a sequence complementary to a part of the RNA linker and having a label capable of binding to a solid phase and an oligo DNA having a sequence complementary to the oligo DNA of (2).
  • RNA ligation elements including an RNA linker with a recognition site for type IIS restriction enzyme Bacterial alkaline phosphatase
  • primers for cDNA first strand synthesis are examples.
  • Primer that has an adapter sequence and is complementary to a specific mRNA.
  • V A random primer that has an adapter sequence.
  • a cDNA second comprising an oligo DNA having a sequence complementary to a part of the RNA linker and having a label capable of binding to a solid phase and an oligo DNA having a sequence complementary to the oligo DNA of (2).
  • one primer for cDNA second strand synthesis is
  • RNA linker When analyzing the expression of fluorescently labeled avidin in one cell, only one kind of fluorescent substance such as Cy3 labeled avidin is used. When comparing expression in two cells, two types of fluorescent dyes such as Cy3-labeled avidin and Cy5-labeled avidin are used. Apply these two types of fluorescent labels to single-stranded gene tags from each cell! ⁇ Hybridize to the probe competitively on the DNA chip as described above.
  • the adapter part of the RNA linker can be arranged differently for each label to be bound, and the IIS type enzyme recognition site can be made the same sequence.
  • a specific example of a reagent kit for producing a single-stranded gene tag group includes a kit in which the following elements are combined.
  • RNA linker comprising an oligonucleotide containing a recognition sequence for an IIS type restriction enzyme
  • kits which is any primer for which a group force of 0-iiO force below the primer for cDNA first strand synthesis is selected.
  • gene expression information (expression level) at the 5 'end of mRNA, which is a transcription product can be obtained.
  • the expression information at the 5 'end is particularly important in gene analysis.
  • gene expression information at the 5 ′ end that can be obtained by the present invention can be used for the following uses.
  • the present invention can be used to obtain a gene expression profile. That is, the present invention relates to a method for obtaining a gene expression profile in a eukaryotic cell, comprising the following steps.
  • an expression profile refers to a list of gene information accompanied by expression information.
  • Expression information is a quantitative parameter that indicates the level of expression.
  • Gene information usually refers to information for specifying a gene. Specifically, gene base sequence, gene name, gene ID number, etc. constitute gene information. The number of genes that make up the list is arbitrary. Moreover, the object is not limited. Depending on the purpose of the analysis, information on necessary genes is accumulated to construct an expression profile.
  • gene expression information at the 5 'end can be obtained from RNA having a CAP structure.
  • the base sequence information and the appearance frequency are associated with each other.
  • an expression profile can be obtained.
  • RNAs are targeted as RNA
  • an expression profile for all genes can be obtained.
  • a gene tag can also be generated for a specific gene or a group of genes having structural commonality. In such a case An expression profile of a specific gene or group of genes is generated.
  • the expression profile obtainable by the present invention more accurately expresses the expression status of the gene in the cell. It can be said that it is reflected in.
  • the expression profile obtained by the present invention can be used as a database.
  • a database is a set of electronic data in which information constituting an expression profile is stored as machine-readable data.
  • the database of the present invention includes gene expression information at the 5 ′ end of mRNA. Furthermore, the database of the present invention can record the ID number of each base sequence information and the origin of the RNA from which the expression information was obtained. Furthermore, it is possible to add information such as the relationship with the expression information of known genes and the result of mapping onto the genome.
  • a comparison target of the expression level information of the tag information stored in a database accumulated in advance can be used.
  • gene tag information is accumulated in advance based on the method of the present invention. This information can be shared on a computer network. Alternatively, it can be distributed commercially by attaching to the reagent kit. It is also possible to compare the gene tag information obtained in this way with the gene tag information obtained through experiments.
  • a database indicating which gene transcription start site probe is present in each section of the chip is prepared. It is good to keep. There can be a chip for each eukaryote, including humans, which is not a single type of chip. In addition, one species of probe is not always on one chip. A single species may make a chip that covers a variety of genes, or it may specialize in a certain type of product. For example, it is possible to make a chip specially designed for site force-in, receptors, cancer suppressor genes, molecules with CD numbers (ie, CD antigens).
  • the result can be displayed by software that has the function of displaying which promoter worked and which response element or transcription factor was involved.
  • the software captures this table data file of the chip used when the fluorescence intensity is observed.
  • the software should have functions such as sorting and searching for each section data.
  • a display arranged in order of fluorescence intensity and a display arranged for each gene will be possible.
  • the fluorescence intensity of one transcript is set to 1, and the fluorescence intensity of other transcripts can be expressed as a ratio. Kutoyo ⁇ .
  • the gene is labeled with fluorescence of a different color for each cell.
  • fluorescence intensity When fluorescence intensity is observed, it is better to write two colors in the table: fluorescence color and intensity. If it is shown separately for each color when displaying, it shows which gene expression is most likely in which cell.
  • This software may be included in the kit as described above.
  • the expression profile database of the present invention can be stored in an electronic medium.
  • Examples of electronic media include various disk devices, tape media, and flash memory. These electronic media can be shared on a network.
  • the database of the present invention can be shared on the Internet.
  • a function for referring to the database information of the present invention can be added to the software for analyzing the expression level of the tag via the Internet.
  • new expression profile information generated based on the present invention can be added to the database via the Internet.
  • An expression profile analysis can be performed using the expression profile of the present invention. That is, the present invention comprises gene expression profiles comprising the steps of obtaining gene expression profiles of different types of cells based on the present invention, comparing gene expression profiles, and selecting gene tags having different expression frequencies between cells.
  • the present invention relates to a profile analysis method.
  • An analysis method for obtaining genes having different expression levels between different cells is called expression profile praying. By such analysis, for example, many genes related to diseases have been obtained.
  • the expression profile of the present invention can also be used for such expression profile praying.
  • different cells to be analyzed refer to all cells having different origins. Even cells derived from the same yarn and weave are cells that have different origins if there are some differences in conditions such as the presence or absence of disease, race, age, and sex. Depending on the purpose of the analysis, if the conditions to be considered are different, the cell has a different origin. On the other hand, if only negligible differences can be found for the purpose of the analysis, they are considered the same cell. For example, different organs, different tissues, or origins and cultures By comparing expression profiles between cells with different conditions and the like, genes with high (or low) expression levels can be selected between organs, tissues, or cells. Examples of combinations of analysis objects to which the present invention can be applied are shown below.
  • expression information of gene tags characteristic of cancer can be obtained by comparing expression profiles between cancer tissue and normal tissue.
  • genetic tags related to malignancy can be identified by comparing particularly high-grade cancer and low-grade cancer.
  • the above software is the first analysis performed on the data obtained by the chip, and the data has significance by performing this analysis.
  • the data obtained with this chip can be used for more meaningful analysis.
  • the expression of such genes is subject to transcriptional regulation in the promoter sequence upstream from the transcription start site on the genome.
  • the promoter sequences that have been clarified so far are not necessarily sufficient. For example, only a few hundred promoter sequences are shown in humans. However, if the gene whose transcription amount has been changed is able to show what kind of promoter it has undergone, it becomes important information.
  • the software first associates each probe sequence on the chip with a promoter sequence located upstream in the genome, and when the fluorescence is detected by hybridizing to the probe, that promoter sequence. It is possible to have a function of displaying as a product.
  • This promoter sequence information can be an extension of the data in the table file used in the above software! /.
  • the response element may be found at a position distant from the promoter sequence on the genome sequence.
  • force in this response element.
  • a transcription factor binds here, and when several factors bind to the transcription factor, it binds to the promoter sequence, and further, RNA polymerase binds to the complex and the promoter. The downstream force transfer of the array is started. Therefore, the response elements and transcription factors related to each probe are stored in the table file as extended data, and when the fluorescence is observed, it is possible to display which response element or transcription factor is activated. it can.
  • intracellular signal transduction pathways, receptors, ligands that bind to receptors, etc. can be stored in a table file as extended data for the probes on each chip. .
  • the corresponding promoter, response element, transcription factor, intracellular signal transduction pathway, receptor, and ligand can be displayed. Such a display is more effective when comparing two cells.
  • the set of genes to be transcribed is clear for activation of one receptor or intracellular signal transduction pathway, it can be included as extended data.
  • the gene set transcribed for a cell by the method according to the present invention is clarified, and this result is associated with the gene set in the extended data, so that what pathway is activated in the cell and under what circumstances. It can be estimated.
  • a single-stranded gene tag sample was prepared by the following method.
  • HT-29 Cultured cells HT-29 (Fogh, J., and G. Trempe, 1975, Human Tumor Cells in Vitro, J. Fogh, editor, Plenum Publishing Corp., New York, 115-141)
  • the culture was performed using McCoy's 5A medium containing infant serum (McCoy, TA, Maxwell, M. and Kruse, PF (1959) Proc. Soc. Exper. Biol. Med., 100: 115).
  • the oligo cap method was performed by modifying the method of Maruyama and Sugano (Gen e. 1994 138: 171-174.). 10 7 cells were solubilized using RNA-Bee (Tel Test, Friendswood, TX, USA), and total RNA was obtained according to the protocol.
  • RNAeasy kit Qiagen, Hilden, Germany. Next, it was treated with 5 U of bacterial alkaline phosphatase at 37 ° C. for 60 minutes in the presence of 200 U of RNase inhibitor. Components other than RNA were removed by phenol chloroform extraction and ethanol precipitation, followed by treatment with 20 U tobacco acid pyrophosphatase in the presence of RNase inhibitor at 37 ° C for 60 minutes. After extraction and precipitation again, an RNA linker having one of the following sequences was ligated at 250C for 3 hours using 250 U of T4 RNA ligase.
  • RNA with poly A was converted to mRNA Isolation Kit for Total RNA (Miltenyi Biotech, Bergisch
  • the resulting single-stranded cDNA was synthesized with 10 U Taq polymerase using a piotinylated linker primer and a 3 ′ primer.
  • the reaction was performed by repeating 13 steps 13 times: 94 ° C for 1 minute, 58 ° C for 1 minute, 72 ° C for 10 minutes.
  • Primer sequences are as follows.
  • DNA was collected by phenol Z chloroform extraction and ethanol precipitation, and subjected to electrophoresis using a 1% agarose gel to obtain a fraction having a length of 500 bp or more.
  • a QIAEX II Gel Extraction kit Qiagen
  • Double-stranded cDNA was cleaved using 8 U of Mmel (New England Biolabs, Beverly, MA, USA), which is an IIS type restriction enzyme. Heat at 96 ° C for 5 minutes and then cool on ice to bind the pyotinylated fragment containing the transcription start site to avidinized magnetic beads (Dynabeads M-280 strept avidin, Dynal, Oslo, Norway).
  • a DNA chip to be hybridized with the single-stranded gene tag sample was prepared by the following method. Based on the tag sequence information obtained from HT-29 cells according to the “method for obtaining gene tags” (WO 2005/054465) already filed by the inventors, the oligo DNA to be placed on the DNA chip Selected. The tag sequence was compared with the genome and EST database, and the gene whose transcription start position was identified at one location was selected as the oligo DNA to be placed on the chip. In addition, among the tags identified by the “Genetic Tag Acquisition Method”, the number of identified tags is large (the expression level is large, the one) and the small number (the expression level is small). Arbitrarily selected).
  • One base was added to the 3 'end of the selected tag sequence so as to be the same as the identified genomic sequence, resulting in 20 bases.
  • oligo DNA having a complementary sequence with the above 20-base tag sequence and an amino group introduced at the C-6 position at the 3 'end were synthesized, and each oligo DNA was placed in the chip compartment at a concentration of 50 ⁇ . Combined.
  • the sequences of oligo DNAs arranged on the chip are shown in Table 1 below.
  • SEQ ID NOs: 1, 2, 7-14, and 16 are obtained by adding 1 base to the 3 ′ end and adding 20 bases to the tag sequence obtained according to “Genetic tag acquisition method”. The added base was determined by identifying the gene as genomic data or EST data and comparing it with the data. Also, distribution Column numbers 3-6 and 15 are gene tags that appeared when HT-29 cells were cultured with 5-aza-2'-deoxycitidine.
  • the collected DNA was dried with Speed Vac for 20 minutes. Dissolved in 15 ⁇ l of 0.5% SDS, 5 X SSC solution. This solution was obtained by diluting 10% SDS and 20 ⁇ SSC with water. 20 X SSC is obtained by autoclaving 3 M NaCl, 0.3 M trisodium citrate dihydrate, pH 7.0. The DNA solution was heated at 99 ° C for 3 minutes, allowed to stand at room temperature for 15 minutes, and then incubated on the chip at 42 ° C for 16 hours.
  • LoTE is a mixture of 300 1 1 M Tris-HCl, pH 7.5 and 40 ⁇ 1 500 mM EDTA, pH 8.0, and made up to 100 ml with water. Next, ethanol precipitation was performed, and the precipitate was dried with Speed Vac. The precipitated DNA was dissolved in 15 ⁇ l of 0.5% SDS, 5 ⁇ SSC solution. The DNA solution was heated at 99 ° C for 3 minutes, allowed to stand at room temperature for 15 minutes, and then incubated on the chip at 42 ° C for 16 hours.
  • the recovered DNA was dried with Speed Vac for 5 minutes. In 15 ⁇ l of 0.5% SDS, 5 X SSC solution Dissolved. The DNA solution was heated at 99 ° C for 3 minutes and allowed to stand at room temperature for 15 minutes and then incubated on the chip at 42 ° C for 16 hours.
  • the cover glass was removed by immersing the chip in 2X SSC solution containing 0.2% SDS.
  • the chip was then left for 12 minutes in a 2X SSC solution containing 0.2% SDS. Furthermore, it was left in 2 X SSC for 12 minutes. Thereafter, the chip was taken out, and water droplets on the chip were removed by air spray.
  • PCR was performed twice to synthesize the double-stranded DNA in Example 1.
  • the solution once PCR was diluted 100 times with water, and the primer, enzyme, buffer, etc. were collected and the reaction was performed again.
  • the reaction was performed by repeating the steps described in Example 1 21 times. This sample was treated in the same manner as condition 3.
  • Fluorescence intensity is the value obtained by subtracting the fluorescence intensity where no oligo DNA is spotted from the fluorescence intensity of each SEQ ID NO.
  • condition 1 fluorescence staining was performed after hybridization with oligo DNA on the chip, while in condition 2, fluorescence staining was performed before hybridization. Comparing the two results, it was found that fluorescence staining was necessary after the hybridization because condition 2 did not show any fluorescence.
  • Condition 3 the number of washings after the hybridization was increased. Although there was no change in the intensity of the fluorescence intensity compared to condition 1, the fluorescence intensity (background) of the V and part of the oligo DNA spot could be kept low.
  • condition 4 the fluorescence was observed only in SEQ ID NO: 7 in condition 1 and condition 3, Due to the low fluorescence intensity, PCR was repeated twice to increase the number of cycles in order to increase the amount of DNA in the sample. In conditions 1 to 3, 1/5 of the total amount of the sample after PCR was used, while in condition 4, the second PCR was performed with 1/5 of the total amount after the first PCR and the second PCR. After that, the entire amount was used in the next step.
  • the experimental method is the same as Condition 3. As a result, fluorescence was observed in SEQ ID NOs: 2, 5, 7, 8, 10, and 13.
  • SEQ ID NO: 7 is a sequence starting from the transcription initiation point of a product having 534 tags and a particularly large transcription amount in HT-29 cells. Strong fluorescence was also observed under condition 3, and the large number of tags corresponded well with the fluorescence intensity.
  • SEQ ID NO: 13 is derived from the same gene as SEQ ID NO: 7, and SEQ ID NO: 13 is 5 bases downstream of SEQ ID NO: 7 and has an overlapping portion. There are not many transcripts starting from the 5 'end of SEQ ID NO: 13 with the number of tags starting from the 5' end of SEQ ID NO: 13, starting from the 5 'end of SEQ ID NO: 13. Strong fluorescence was observed against SEQ ID NO: 13. This is reasonable if it is assumed that the transcript starting with the 5 'end force of SEQ ID NO: 7 also binds to SEQ ID NO: 13 on the chip and that strong fluorescence was observed due to the large amount of this product.
  • the present invention provides a method for producing a single-stranded gene tag group reflecting the type and quantity ratio of the nucleotide sequence group at the 5 'end of mRNA extracted from eukaryotic cells. Sarakuko succeeded in confirming the expression of the desired gene by using the gene tag group as a sample of DNA and hybridization for the DNA chip.
  • the present invention has an advantage that the transcription start site and expression level of a gene expressed in a target cell can be examined simply, accurately and comprehensively, and can be used in various industrial fields. .
  • the transcription start site reflects the state of cells. It is possible to investigate the difference between the transcription start site of normal state and disease state in cells of the same tissue site, and to perform gene cloning based on the difference. Furthermore, genes that are specifically expressed in disease cells, or genes in the form of alternative splicing specific to diseases can be clarified. Therefore, it is possible to develop PCR primers and DNA probes for disease diagnosis.
  • Nucleic acid drugs are designed to specifically destroy the mRNA of a disease-inducing gene or to specifically inhibit transcription of such a gene.
  • the elucidation of the structure is important.
  • the overall pharmacological action can be clarified, and side effects and toxicity can be clarified at the same time. If the side effects and toxicity can be clarified in the laboratory, their usefulness is high. In other words, if testing with cultured cells is possible, animal experiments will be reduced, and if side effects and toxicity can be estimated before clinical trials, accidents in clinical trials will be prevented.
  • the method of the present invention is a technique for comprehensively clarifying the expression of a target gene targeting a transcription initiation site immediately before development of a diagnostic method, drug development, and clinical trial. It can be used as
  • the present invention provides a sample preparation method suitable for analysis of the transcription start site on a DNA chip, and at the same time a method for designing a probe for a DNA chip based on the data obtained in the “method for producing a gene tag”. provide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A group of single-stranded gene tags which can reflect the types and the ratio of the amounts of nucleotide sequences each located at the 5'-terminus of mRNA can be produced by employing a procedure for converting double-stranded DNA into single-stranded one in combination with the method disclosed in the 5'-SAGE. When the hybridization is performed on a DNA chip using the group of single-stranded gene tags as a sample, it is found that the group of single-stranded gene tags is useful for the confirmation of the expression of a gene in which the expression initiation site is employed as a target. By using the group of single-stranded gene tags, it becomes possible to achieve a comprehensive analysis of the expression of genes in which various transcription initiation sites are employed as targets.

Description

転写開始部位を含む 1本鎖遺伝子タグ群の製造方法  Method for producing single-stranded gene tag group including transcription initiation site
技術分野  Technical field
[0001] 本発明は、転写開始部位を含む 1本鎖遺伝子タグ群の製造方法に関する。また、 転写開始部位を含む DNAまたは RNAを固定ィ匕した固相に、該 1本鎖遺伝子タグ群を ハイブリダィズする工程を含む、真核細胞における遺伝子の発現量を測定する方法 に関する。さらに、得られた遺伝子発現情報を統合し、遺伝子発現プロファイルを作 製する方法に関する。  [0001] The present invention relates to a method for producing a single-stranded gene tag group including a transcription initiation site. The present invention also relates to a method for measuring the expression level of a gene in a eukaryotic cell, comprising a step of hybridizing the single-stranded gene tag group to a solid phase on which DNA or RNA containing a transcription initiation site is immobilized. Furthermore, the present invention relates to a method for creating gene expression profiles by integrating the obtained gene expression information.
背景技術  Background art
[0002] 様々な細胞の遺伝子発現状態の比較によって、細胞を特徴付けることができる。つ まり、細胞の状態を遺伝子の発現パターンで表現した細胞のカタログを得ることがで きる。このカタログを利用して、遺伝子の発現状態から細胞を特定することができる。 逆に、細胞間で遺伝子の発現パターンを比較すると、各細胞に特徴的な遺伝子を拾 い出すこともできる。たとえば、正常な細胞と、人為的な処理を加えた細胞の間で遺 伝子の発現状態を比較すると、人為的な処理の結果として発現レベルが変化した遺 伝子が見出される。この遺伝子は、人為的な処理の結果として発現レベルが変化し た遺伝子である。同様に患者の細胞と健常者の細胞の間で遺伝子の発現状態を比 較することによって、疾患に関連する遺伝子を見出すこともできる。  [0002] Cells can be characterized by comparison of gene expression status of various cells. In other words, it is possible to obtain a cell catalog that expresses the state of a cell by a gene expression pattern. Using this catalog, cells can be identified from the gene expression state. Conversely, by comparing gene expression patterns between cells, it is also possible to pick out genes characteristic of each cell. For example, when the expression state of a gene is compared between a normal cell and a cell subjected to artificial treatment, a gene whose expression level has changed as a result of the artificial treatment is found. This gene is a gene whose expression level has changed as a result of artificial processing. Similarly, genes related to diseases can be found by comparing gene expression states between patient cells and healthy subject cells.
[0003] このようにして、遺伝子の発現状態の比較によって、ある状態にある細胞で発現し ている遺伝子を網羅的に解析し、その種類や発現レベルを細胞間で比較することを 、遺伝子の発現解析 (expression analysis)と呼んでいる。遺伝子の発現解析のために は、さまざまな方法が用いられている。  [0003] In this way, by comparing gene expression states, comprehensive analysis of genes expressed in cells in a certain state, and comparing the types and expression levels between cells, This is called expression analysis. Various methods are used for gene expression analysis.
[0004] 発現解析のための方法の 1つの例として、 5' SAGE法 (非特許文献 1、特許文献 1) が挙げられる。 5' SAGE法は転写開始部位の遺伝子の発現状態をシーケンス情報と して網羅的に解析する技術として有効な方法である。シーケンス情報として網羅的に 解析する技術として、このほか SAGE法 (非特許文献 2)、 MPSS法 (非特許文献 3)など を f列示することができる。 [0005] 発現解析のための方法の 2つめの例として、 DNAアレイ法が挙げられる。 DNAァレ ィ法は基板上に高密度に配置された数万におよぶ遺伝子プローブに対してある特 定の細胞力 抽出した mRNAをハイブリダィズさせることにより、ハイブリダィズのシグ ナル強度から遺伝子の発現状態を網羅的に判定する方法である(非特許文献 4)。 一般に DNAアレイを構成するプローブは、既知の塩基配列情報に基づ!/、てデザイン されている。比較的少量の細胞から抽出された mRNAを用いて DNAアレイにハイブリ ダイズさせることにより、多数の細胞間における遺伝子の発現状態の差を定性的また は半定量的に簡便に解析することが可能である。 [0004] One example of a method for expression analysis is the 5 'SAGE method (Non-patent Document 1, Patent Document 1). The 5 ′ SAGE method is an effective method for comprehensive analysis of gene expression at the transcription start site as sequence information. In addition, SAGE method (Non-patent document 2), MPSS method (Non-patent document 3), etc. can be displayed as f columns as technologies for comprehensive analysis as sequence information. [0005] A second example of a method for expression analysis is a DNA array method. In the DNA array method, the expression state of a gene is determined from the signal strength of the hybrid by hybridizing the mRNA extracted from a specific cell force to tens of thousands of gene probes arranged at high density on the substrate. This is an exhaustive determination method (Non-patent Document 4). In general, probes constituting a DNA array are designed based on known base sequence information! By hybridizing to a DNA array using mRNA extracted from a relatively small amount of cells, it is possible to easily analyze qualitatively or semi-quantitatively the difference in the expression state of genes among many cells. is there.
[0006] 発現解析のための方法の 3つめの例として、 RT-PCR法 (非特許文献 5— 7)が挙げ られる。 RT-PCR法は、細胞から抽出した比較的少量の mRNAから、逆転写と PCRの 工程を経て得られる DNAを電気泳動法などにより検出する方法である。 RT-PCR法は 、発現解析の研究において汎用されており、マイクロアレイよりも定量性がある力 多 数の試料を同時に処理するための手法としては難点がある。  [0006] As a third example of the method for expression analysis, RT-PCR method (Non-patent Documents 5-7) can be mentioned. The RT-PCR method is a method for detecting DNA obtained through reverse transcription and PCR from a relatively small amount of mRNA extracted from cells by electrophoresis or the like. The RT-PCR method is widely used in the study of expression analysis, and has a difficulty as a method for simultaneously processing a large number of samples that are more quantitative than microarrays.
[0007] このように、発現解析に用いられる手法は、網羅性'定量性'シーケンス情報などを 勘案しながら、適宜選択されている。  [0007] As described above, the technique used for expression analysis is appropriately selected in consideration of comprehensiveness “quantitative” sequence information and the like.
[0008] このうち、網羅性においてもっとも優位に立つのが DNAアレイ法である。 DNAアレイ に用いられる遺伝子プローブは、一般的にシーケンスおよびゲノム配列上の位置が 特定されている。したがって、細胞力 抽出した mRNAと遺伝子プローブとのノ、イブリ ダイズの条件を適当に設定することにより、どの遺伝子が発現しているかを網羅的に 検定することができるはずである。しかしながら、 DNAアレイ法におけるシグナルには 予測できない結果が相当量出現することが報告されるようになっており(非特許文献 8— 9)、この予測できないシグナルをいかに少なくするかということ力 DNAアレイ法 を有効に活用するためには必須である。  [0008] Among these, the DNA array method is most advantageous in terms of completeness. In general, the position of a gene probe used in a DNA array on a sequence and a genome sequence is specified. Therefore, it should be possible to comprehensively test which genes are expressed by appropriately setting the conditions for the hybridization between the mRNA extracted from the cell force and the gene probe. However, it has been reported that a considerable amount of unpredictable results appear in the signals in the DNA array method (Non-patent Documents 8-9). How to reduce this unpredictable signal DNA array It is essential for the effective use of the law.
[0009] DNAアレイ法を構成する工程として、次の 4つが挙げられる。  [0009] The following four processes are included in the DNA array method.
1 DNAをスポットする装置を用いて行なう、 DNAアレイを作製する工程  1 DNA array production process using a DNA spotting device
2 細胞を処理して mRNAを抽出する工程  2 Extracting mRNA by treating cells
3 mRNAと DNAアレイをハイブリダィズする工程  3 Step of hybridizing mRNA and DNA array
4 ハイブリダィズしたかどうかを確認する工程 [0010] これらの工程に関しては、いずれも装置や試薬の改良により、定量性'精製度'安 定性'検出感度などが飛躍的に改良されてきている。したがって、予測できないシグ ナノレの原因となって ヽることは考えにく 、。 4 Checking whether or not hybridized [0010] With regard to these steps, the quantitativeness, “purification degree”, “stability”, detection sensitivity, etc. have been dramatically improved by improving the apparatus and reagents. Therefore, it is hard to imagine that it will cause unpredictable signs.
[0011] 一方、 DNAアレイ法を構成する化合物 ·情報として、次の 4つが挙げられる。  [0011] On the other hand, the following four items can be cited as information on compounds constituting the DNA array method.
1)アレイに搭載する DNAの配列情報 (通常 12塩基以上)(非特許文献 10)  1) Sequence information of DNA mounted on the array (usually 12 bases or more)
2)アレイに結合可能な DNA  2) DNA that can bind to the array
3)細胞から抽出した mRNA  3) mRNA extracted from cells
4)ハイブリダィズを実施する試薬および検出する試薬  4) Reagent for performing hybridization and reagent for detection
[0012] これらのうち 1)、 2)、 4)は、特定された化合物や情報である力 3)の mRNAは分子 種や分子サイズが不特定である。言い換えれば、ノ、イブリダィズの情報を得るために 不必要な領域が多数存在して 、ることになる。  Of these, 1), 2), and 4) are identified compounds and information of force 3) mRNA is unspecified in molecular species and molecular size. In other words, there are a lot of areas that are unnecessary to obtain information on the ivy and ibidiz.
[0013] なお、本出願の発明に関連する先行技術文献情報を以下に示す。  [0013] Information on prior art documents related to the invention of the present application is shown below.
特許文献 l :WO 2005/054465  Patent Literature l: WO 2005/054465
非特許文献 1 : Hashimoto et al., Nature Biotechnol. 22, 1146-1149 (2004) 非特許文献 2 :Velculescu et al., Science, 270, 484-487 (1995)  Non-Patent Document 1: Hashimoto et al., Nature Biotechnol. 22, 1146-1149 (2004) Non-Patent Document 2: Velculescu et al., Science, 270, 484-487 (1995)
非特許文献 3 : Brenner et al., Nature Biotechnol, 18, 630-634 (2000)  Non-Patent Document 3: Brenner et al., Nature Biotechnol, 18, 630-634 (2000)
非特許文献 4 : Gerhold et al., Nature Genetics, 32, supplement, 547-552 (2002) 非特許文献 5 : Kawasaki, E. S. and Wang, A. M. PCR Technology (Erlich, H. A. ed) , Stockton Press 89—97 (1989)  Non-patent literature 4: Gerhold et al., Nature Genetics, 32, supplement, 547-552 (2002) Non-patent literature 5: Kawasaki, ES and Wang, AM PCR Technology (Erlich, HA ed), Stockton Press 89—97 ( 1989)
非特許文献 6 : Lynas et al., J Pathol. 157, 285-289 (1989). Erratum in: J Pathol. 159 , 358 (1989).  Non-Patent Document 6: Lynas et al., J Pathol. 157, 285-289 (1989). Erratum in: J Pathol. 159, 358 (1989).
非特許文献 7 : Frohman et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002 (1988) 非特許文献 8 : van Ruissen et al., BMC Genomics 6, 91 (2005)  Non-Patent Document 7: Frohman et al., Proc. Natl. Acad. Sci. USA 85, 8998-9002 (1988) Non-Patent Document 8: van Ruissen et al., BMC Genomics 6, 91 (2005)
非特許文献 9 : Pollock, Chem Phys Lipids 121, 241-256 (2002)  Non-Patent Document 9: Pollock, Chem Phys Lipids 121, 241-256 (2002)
非特許文献 10 : Belosludtsev et al., Biotechnique 37, 654-658, 660 (2004) 発明の開示  Non-Patent Document 10: Belosludtsev et al., Biotechnique 37, 654-658, 660 (2004) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明者らは、 mRNAカ 、イブリダィズの情報を得るために不必要な領域を多数有 する場合がある点に着目し、この点が予測できないシグナルの原因の一つとなって V、るかどうかにっ 、て理論的な検証を行なった。 [0014] The present inventors have a large number of regions unnecessary for obtaining information on mRNA and hybridization. Focusing on the fact that there are cases where this occurs, we have theoretically verified whether this is one of the causes of unpredictable signals.
〔理論的検証例〕 いま仮に遺伝子 Aと遺伝子 Bが存在し、転写終結点は A、 Bともに 同一の位置であるものとする。転写開始点は、 A:転写終結点の 550 base上流、 B : 転写終結点の 500 base上流であるものとする。すなわち、 A遺伝子の mRNAのほうが B遺伝子の mRNAよりも 50 baseだけ長い。 B遺伝子は、癌細胞に特異的に発現し、 A 遺伝子は正常細胞 ·癌細胞の!/ヽずれにも発現することが 5 ' SAGE法により解明されて いると仮定する。  [Theoretical verification example] Assume that gene A and gene B exist, and that transcription termination points A and B are at the same position. The transcription start point is assumed to be A: 550 base upstream of the transcription termination point and B: 500 base upstream of the transcription termination point. That is, the A gene mRNA is 50 bases longer than the B gene mRNA. Assume that the 5 'SAGE method reveals that the B gene is expressed specifically in cancer cells, and that the A gene is also expressed in normal cells / cancer cells.
[0015] 以上の条件下で、 Aの転写開始領域 20 baseのタグと Bの転写開始領域 20 baseの タグを同一の DNAアレイに搭載してハイブリダィズさせれば、癌細胞由来の mRNA、 正常細胞由来の mRNAともに、 DNAアレイ上の A、 Bにシグナルが検出されるであろう 。つまり、 A遺伝子と B遺伝子の発現の違いを区別することができない。  [0015] Under the above conditions, if the A transcription start region 20 base tag and the B transcription start region 20 base tag are mounted on the same DNA array and hybridized, mRNA derived from cancer cells, normal cells Along with the derived mRNA, signals will be detected at A and B on the DNA array. In other words, the difference in the expression of the A gene and the B gene cannot be distinguished.
[0016] また、癌細胞由来の mRNA、正常細胞由来の mRNAのそれぞれに対して、上記 2つ のタグに対応するフォワードプライマーと、 oligo dTプライマーを用いて RT- PCRを実 施した場合にも、癌細胞および正常細胞の双方において 500 baseと 550 baseの 2種 の DNA産物が得られ、癌細胞と正常細胞における各遺伝子の発現の違いを区別す ることができない。  [0016] In addition, when RT-PCR is performed on mRNA derived from cancer cells and mRNA derived from normal cells using a forward primer corresponding to the above two tags and an oligo dT primer. Two types of DNA products, 500 base and 550 base, are obtained in both cancer cells and normal cells, and the difference in the expression of each gene in cancer cells and normal cells cannot be distinguished.
(理論的検証例おわり)  (End of theoretical verification example)
[0017] 以上の検証例から、細胞力 抽出される全長の mRNAを試料とすること力 DNAァ レイ法または RT-PCR法における予測できないシグナルの出現の原因の一つになつ ているものと考えられる。  [0017] From the above verification examples, it is considered that using the full-length mRNA extracted from the cell force as a sample is one of the causes of the appearance of unpredictable signals in the DNA array method or RT-PCR method. It is done.
[0018] 本発明者らは、鋭意検討の結果、細胞力 抽出される mRNA試料の必要最小限の 部分だけを切り出して抽出することにより、 DNAアレイ法における予測できないシグナ ルの出現を回避することが可能になるものと考えた。例えば、 5 ' SAGE法において開 示されている方法の一部を用いることにより、 mRNAの 5'末端の塩基配列の種類と量 比を反映する DNAタグを生成することができるものと考えた。  [0018] As a result of diligent studies, the present inventors cut out and extracted only the minimum necessary portion of the mRNA sample from which the cell force is extracted, thereby avoiding the appearance of unpredictable signals in the DNA array method. I thought it would be possible. For example, by using a part of the method disclosed in the 5 ′ SAGE method, it was considered that a DNA tag reflecting the type and quantitative ratio of the 5 ′ end nucleotide sequence of mRNA could be generated.
[0019] ここで、ハイブリダィズに必要なサンプルは、 mRNAと同様に 1本鎖であることが必要 である。また、熱力学的な観点からして、ハイブリダィゼーシヨンは、 DNAの分子量が /J、さくなることにより難しくなる。 [0019] Here, the sample necessary for hybridization is required to be single-stranded like mRNA. Also, from a thermodynamic point of view, hybridization has a molecular weight of DNA. / J, it gets harder when it gets smaller.
[0020] 5 ' SAGE法において開示されている方法を用いて、全て 20 baseの長さの 1本鎖タグ 群を製造し、同様に 20baseの長さの DNAを固定させた DNAアレイに添カ卩した場合、 相同性を有する相補的な DNA同士がハイブリダィズして、そのシグナルが検出できる ものと考えられる。本検出方法が十分に実用的なレベルで確立されれば、上記課題 を解決 (遺伝子の発現解析にぉ ヽて、予測できな 、シグナルの出現を除去)できる可 能性がある。 [0020] Using the method disclosed in the 5 'SAGE method, a single-stranded tag group having a length of 20 bases was produced, and similarly attached to a DNA array on which 20 bases of DNA were immobilized. In this case, it is considered that complementary DNAs having homology hybridize to each other and the signal can be detected. If this detection method is established at a sufficiently practical level, the above problems may be solved (the occurrence of signals that could not be predicted through gene expression analysis could be eliminated).
[0021] 本発明は、このような状況に鑑みてなされたものであり、真核細胞力 抽出した mRN A5'末端の塩基配列群の種類と量比を反映する 1本鎖遺伝子タグ群の製造方法の提 供を課題とする。また、転写開始部位を含む DNAまたは RNAを固定ィ匕した固相に、 該 1本鎖遺伝子タグ群をハイブリダィズする工程を含む、真核細胞における遺伝子の 発現量を測定する方法の提供を課題とする。さらに、得られた遺伝子発現情報を統 合し、遺伝子発現プロファイルを作製する方法の提供を課題とする。  [0021] The present invention has been made in view of such circumstances, and the production of single-stranded gene tag groups reflecting the type and quantitative ratio of the base sequence group of mRNA 5 'end extracted from eukaryotic cell force. The issue is to provide a method. Another object of the present invention is to provide a method for measuring the expression level of a gene in a eukaryotic cell, comprising a step of hybridizing the single-stranded gene tag group to a solid phase on which DNA or RNA containing a transcription initiation site is immobilized. To do. Furthermore, it is an object to provide a method for creating gene expression profiles by integrating the obtained gene expression information.
課題を解決するための手段  Means for solving the problem
[0022] 上述の DNAアレイ法を用いた場合の予測できな 、シグナルを回避するためには、 完全長 mRNA 5'末端の塩基配列群の種類と量比を反映する 1本鎖遺伝子タグ群を 試料として用いることが有効であるものと考えられる。  [0022] In order to avoid a signal that could not be predicted when using the DNA array method described above, a single-stranded gene tag group reflecting the type and quantity ratio of the base sequence group of the full-length mRNA 5 'end should be It is considered effective to use as a sample.
[0023] 本発明者らは、上記の課題を解決するために、 5 ' SAGE法において開示されている 方法に、 2本鎖 DNAを 1本鎖にするための手法およびィ匕学的修飾法を組み合わせる ことにより、 mRNAの 5'末端の塩基配列の種類と量比を反映する 1本鎖遺伝子タグ群 を作製した。そして、これを試料として DNAチップへのハイブリダィゼーシヨンを行つ たところ、 1本鎖遺伝子タグ群が、発現開始部位を標的とした遺伝子の発現確認に有 効であることを見出し、本発明を完成した。すなわち本発明は、以下の 1本鎖遺伝子 タグ群の製造方法、ならびにこの方法によって取得されたタグ群の用途に関する。  [0023] In order to solve the above-mentioned problems, the present inventors have added a technique and an ionic modification method for converting a double-stranded DNA into a single strand in the method disclosed in the 5 'SAGE method. In combination, a single-stranded gene tag group reflecting the type and quantity ratio of the 5 ′ end nucleotide sequence of mRNA was prepared. When this was used as a sample for hybridization to a DNA chip, the single-stranded gene tag group was found to be effective in confirming the expression of genes targeting the expression start site. Completed the invention. That is, the present invention relates to the following method for producing a single-stranded gene tag group and uses of the tag group obtained by this method.
[0024] 本発明は、より具体的には以下の〔1〕〜〔15〕を提供するものである。  [0024] More specifically, the present invention provides the following [1] to [15].
〔1〕 次の工程を含む、 1本鎖遺伝子タグ群の製造方法。  [1] A method for producing a single-stranded gene tag group, comprising the following steps.
(1)真核細胞力 抽出した RNAの CAP部位に IIS型制限酵素の認識配列を含む RNA リンカ一を連結する工程、 (2) (1)の RNAを铸型として cDNAを合成する工程、 (1) a step of linking an RNA linker containing a recognition sequence of an IIS type restriction enzyme to the CAP site of eukaryotic cell force, (2) A step of synthesizing cDNA using the RNA of (1) as a cage,
(3) (2)の cDNAに RNAリンカ一に含まれる認識配列を認識する IIS型制限酵素を作用 させ、 2本鎖遺伝子タグ群を生成する工程、  (3) A step of generating a double-stranded gene tag group by allowing an IIS type restriction enzyme that recognizes a recognition sequence contained in an RNA linker to act on the cDNA of (2),
(4) (3)の 2本鎖遺伝子タグ群力 所望のストランドの 1本鎖核酸力 なる遺伝子タグ群 を生成する工程  (4) Generating a group of double-stranded gene tags in (3) Gene tag group consisting of single-stranded nucleic acid force of desired strand
〔2〕 次の工程によって cDNAを合成する〔1〕に記載の方法。  [2] The method according to [1], wherein cDNA is synthesized by the following step.
0 RNAの任意の領域にァニールするプライマーによって cDNAの第 1鎖を合成するェ 程、および  The process of synthesizing the first strand of cDNA with primers that anneal to any region of the RNA, and
ii)第 1鎖の RNAリンカーを铸型として合成された領域にァニールするプライマーによ つて、 cDNAの第 2鎖を合成して 2本鎖 cDNAとする工程 ii) Step of synthesizing the second strand of cDNA into a double-stranded cDNA using a primer that anneals to the region synthesized using the first strand RNA linker as a cage.
〔3〕 第 1鎖の RNAリンカーを铸型として合成された領域にァニールするプライマーが [3] Primer that anneals to the region synthesized using the first strand RNA linker as a cage.
、固相に結合することができる標識を有する力、または固相に固定ィ匕されており、前 記固相の回収によって 1本鎖遺伝子を回収する工程を含む〔2〕に記載の方法。The method according to [2], which comprises a step of recovering a single-stranded gene by recovering the solid phase by using a force having a label capable of binding to the solid phase, or being immobilized on the solid phase.
〔4〕 IIS型制限酵素を作用させる前、または後に固相を回収する〔3〕に記載の方法。 [4] The method according to [3], wherein the solid phase is recovered before or after the IIS type restriction enzyme is allowed to act.
[5] 1本鎖遺伝子の回収に用いた標識、または固相に、化学的修飾をさらに行うェ 程を含む、〔3〕または〔4〕に記載の方法。  [5] The method according to [3] or [4], further comprising a step of further chemically modifying the label or solid phase used for recovering the single-stranded gene.
〔6〕 化学的修飾が、蛍光修飾である〔5〕に記載の方法。  [6] The method according to [5], wherein the chemical modification is fluorescent modification.
〔7〕 RNAリンカ一が II型制限酵素の認識配列を含む〔1〕〜〔6〕のいずれかに記載の 方法。  [7] The method according to any one of [1] to [6], wherein the RNA linker contains a recognition sequence for a type II restriction enzyme.
〔8〕 次の要素を含む、真核細胞の 1本鎖遺伝子タグ群の製造用試薬キット。  [8] A reagent kit for producing a single-stranded gene tag group of eukaryotic cells, comprising the following elements:
(a) IIS型制限酵素の認識配列を含むオリゴヌクレオチドからなる RNAリンカ一  (a) an RNA linker comprising an oligonucleotide containing a recognition sequence for an IIS type restriction enzyme
(b) RNAリンカ一を RNAの CAP部位に連結するための試薬  (b) Reagent for linking RNA linker to RNA CAP site
(c) RNAリンカーを铸型として合成された cDNAにァニールするオリゴヌクレオチドから なる cDNA第 2鎖合成用のプライマー  (c) Primer for cDNA second-strand synthesis consisting of an oligonucleotide that anneals to cDNA synthesized using an RNA linker as a cage.
(d) cDNA第 1鎖合成用プライマー  (d) Primer for cDNA first strand synthesis
〔9〕 cDNA第 1鎖合成用プライマーが、以下の 0-iiOからなる群力も選択されるいず れかのプライマーである〔8〕に記載のキット。  [9] The kit according to [8], wherein the primer for cDNA first strand synthesis is any primer selected from the group force consisting of the following 0-iiO.
0ランダムプライマー ii)オリゴ dTプライマー 0 random primer ii) Oligo dT primer
iii)特定の mRNAに相補的な塩基配列を含むプライマー  iii) Primer containing a base sequence complementary to a specific mRNA
〔10〕 次の工程を含む、真核細胞における遺伝子の発現量を測定する方法。  [10] A method for measuring the expression level of a gene in a eukaryotic cell, comprising the following steps.
(1)〔1〕〜〔7〕の ヽずれかに記載の方法によって 1本鎖遺伝子タグ群を製造する工程 (1) A step of producing a single-stranded gene tag group by the method according to any one of [1] to [7]
(2)転写開始部位を含む DNAまたは RNAを固相に固定ィ匕する工程 (2) A step of immobilizing DNA or RNA containing a transcription initiation site on a solid phase
(3)固相に固定ィ匕された DNAまたは RNAに、前記 1本鎖遺伝子タグ群をハイブリダィ ズさせる工程  (3) A step of hybridizing the single-stranded gene tag group to DNA or RNA immobilized on a solid phase
(4)固相に固定ィ匕された DNAまたは RNAにハイブリダィズした 1本鎖遺伝子タグを定 量する工程  (4) Quantification of single-stranded gene tag hybridized to DNA or RNA immobilized on a solid phase
〔11〕 転写開始部位を含む DNAまたは RNA力 ノ、イブリダィズさせる 1本鎖遺伝子タ グ群と同等の長さの塩基力 なるポリヌクレオチドである〔10〕に記載の方法。  [11] The method according to [10], which is a polynucleotide having a basic force having a length equivalent to that of a single-stranded gene tag group to be hybridized with DNA or RNA containing a transcription initiation site.
〔12〕 転写開始部位を含む DNAまたは RNA力 12〜26baseの塩基からなるポリヌク レオチドである〔10〕に記載の方法。  [12] The method according to [10], which is a polynucleotide comprising a DNA or RNA having a transcription initiation site and a base of 12 to 26 bases.
〔13〕 〔10〕〜〔12〕のいずれかに記載の方法により得られた複数の遺伝子発現情 報を統合し、遺伝子発現プロファイルを作製する方法。  [13] A method for preparing a gene expression profile by integrating a plurality of gene expression information obtained by the method according to any one of [10] to [12].
〔14〕 〔13〕に記載の方法によって作製された遺伝子発現プロファイル情報を蓄積し た、遺伝子発現プロファイルのデータベース。  [14] A gene expression profile database in which gene expression profile information prepared by the method according to [13] is accumulated.
〔15〕 〔13〕に記載の方法によって、異なる種類の細胞の遺伝子発現プロファイルを 取得し、遺伝子発現プロファイルを比較して細胞間で発現頻度の異なる遺伝子タグ を選択する工程を含む、遺伝子発現プロファイルの解析方法。  [15] A gene expression profile comprising a step of obtaining gene expression profiles of different types of cells by the method according to [13], comparing gene expression profiles, and selecting gene tags having different expression frequencies between cells. Analysis method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] CAP構造は、真核細胞あるいは真核細胞に感染するウィルスの mRNAの 5 '末端に 存在する構造である。具体的には、 7-メチルグアノシンが 5 ' -3リン酸架橋を介して mR NAの 5,末端のヌクレオチドに結合して CAP構造を構成して!/、る。  [0025] The CAP structure is a structure existing at the 5 'end of eukaryotic cells or viral mRNAs that infect eukaryotic cells. Specifically, 7-methylguanosine forms a CAP structure by binding to the 5'-terminal nucleotide of mRNA via a 5'-3 phosphate bridge! /.
[0026] 本発明は、ハイブリダィズによって転写開始部位を解析できるように、 mRNAの 5'末 端領域のみを取得する方法を提供する。細胞内にはキャップ構造を持つ RNAがある 。このキャップ構造を持つ RNAの中には、タンパク質に翻訳される铸型となる成熟型 mRNAが含まれる。またタンパク質をコードしない RNA (non-coding RNA、非翻訳 RNA )も含まれる。他方、細胞カゝら RNAを得る場合には、一部の RNAが分解されている可 能性がある。また、細胞内にはタンパク質に翻訳される铸型とはならず、キャップ構造 をもたな 、RNAも混在して!/、る。このような解析対象にならな 、RNAを含む試料にお いて、転写開始部位を含み、タンパク質に翻訳される铸型となる成熟型 mRNAを解析 するには、たとえばオリゴキヤッビング法が有効である。オリゴキヤッビング法は公知の 方法である(Maruyama and Sugano. 1994. Gene, 138: 171-4)。本方法では、 2つの 酵素を用いた処理の後に、キャップ構造を持っていた mRNAのみに RNAリンカ一を繋 げるのが特徴的である。 RNAリンカ一を結合させた後に、このリンカ一を持っているも のだけを精製し、他の RNA成分を除く。このキャップ構造を持つ mRNAのみを取り出し て処理し、ノ、イブリダィズ解析のためのプローブであるオリゴ核酸に結合できるように したのが本発明である。 [0026] The present invention provides a method for obtaining only the 5 'end region of mRNA so that the transcription start site can be analyzed by hybridization. There is RNA with a cap structure in the cell. The RNA having this cap structure includes mature mRNA, which is a cocoon that is translated into a protein. Non-coding RNA (non-coding RNA) ) Is also included. On the other hand, when RNA is obtained from a cell, some RNA may be degraded. In addition, cells do not have a trapezoidal shape that is translated into protein, have a cap structure, and contain RNA! For example, the oligo-cabbing method is effective in analyzing a mature mRNA that is a trapezoid that includes a transcription initiation site and is translated into a protein in a sample containing RNA that is not subject to such analysis. is there. The oligo cabbing method is a known method (Maruyama and Sugano. 1994. Gene, 138: 171-4). This method is characterized in that after treatment with two enzymes, the RNA linker is linked only to mRNA having a cap structure. After binding the RNA linker, purify only the one that has this linker and remove other RNA components. In the present invention, only the mRNA having the cap structure is taken out and processed so as to be able to bind to the oligonucleic acid as a probe for analysis of the iridescence.
[0027] これまでの DNAアレイ法の場合、ハイブリダィズにより解析される試料は、細胞から 得た mRNA画分にある全長遺伝子であった。またノ、イブリダィズのために用意されて いるプローブは、データベースに基づき、異なる mRNAが同じプローブに結合しない ようにデザインされた数十塩基 (たとえば 50塩基)の長さのものである。このような試料 とプローブを用いると、ある遺伝子の発現の有無、また発現量の大小を判定できる。 しかしこれらでは真の転写開始部位を有する mRNAの個々の発現量を正確に明らか にすることはできない。これに対し本発明では、試料 DNAの 1本鎖部分は 20塩基程度 の長さであり、 mRNAの転写開始部位を含む 5'末端に相当する。本発明によって初め てノ、イブリダィズにより転写開始部位の解析が可能になる。  [0027] In the case of the conventional DNA array method, the sample to be analyzed by hybridization was the full-length gene in the mRNA fraction obtained from the cells. In addition, probes prepared for hybridization are based on a database and have a length of several tens of bases (for example, 50 bases) designed so that different mRNAs do not bind to the same probe. By using such samples and probes, it is possible to determine the presence or absence of expression of a gene and the magnitude of the expression level. However, it is not possible to accurately clarify the individual expression level of mRNA having a true transcription start site. In contrast, in the present invention, the single-stranded portion of the sample DNA has a length of about 20 bases and corresponds to the 5 ′ end containing the transcription start site of mRNA. For the first time, the present invention makes it possible to analyze the transcription start site by means of hybridization.
[0028] 本発明において、 DNAアレイ上の区画などにあるプローブは、転写開始部位と相 補的な配列を持つ DNAとする。例えば、その長さは 20塩基である。この配列は、発明 者らの別の発明である「遺伝子タグの取得法」(WO 2005/054465)で示した方法によ つて得られた配列情報力 得るのが好まし 、。これによつて転写開始部位付近の解 析がより確実になる。  [0028] In the present invention, the probe in the compartment on the DNA array is DNA having a sequence complementary to the transcription initiation site. For example, its length is 20 bases. This sequence is preferably obtained by the sequence information obtained by the method described in the “method for obtaining a gene tag” (WO 2005/054465), which is another invention of the inventors. This makes the analysis near the transcription start site more reliable.
[0029] これまでに数多くの生物種のゲノムの塩基配列が明らかにされ、本発明の方法を適 用する真核生物のゲノム配列も多数明らかにされている。「遺伝子タグの取得方法」 によって得られた転写開始部位のデータを、ゲノム配列に当てはめると、遺伝子全体 の構造が明らかになる。したがって本発明は、ゲノム構造の明らかな生物種に対して の適用が最も有効である。「遺伝子タグの取得方法」によって得られた塩基配列デー タには、ゲノム配列に当てはめられないものが数多く(たとえば実際の実験例では 25% の塩基配列データが当てはめられない、ただし同じ配列のタグが繰り返し出現した場 合も 1つのタグと数え、 2塩基以上配列がゲノム配列と異なるものを当てはめられない としたとき)含まれるのが現状である。ただし多数の塩基配列データが、ゲノム配列に 当てはめられない理由は、必ずしも明確ではない。原理上、本発明ならびに「遺伝子 タグの取得方法」による解析は、ゲノム配列が明らかではない生物種への適用も可能 である。 mRNAにキャップ構造を持つのは真核生物だけではなくウィルスも含まれ、ゥ ィルスのゲノム配列も多数明らかにされており、ウィルスも本発明の方法を適用するこ とが出来る。 [0029] So far, the base sequences of genomes of many biological species have been elucidated, and many eukaryotic genome sequences to which the method of the present invention is applied have been elucidated. When the transcription start site data obtained by the “Genetic Tag Acquisition Method” is applied to the genome sequence, the entire gene The structure of becomes clear. Therefore, the present invention is most effective when applied to a biological species with a clear genomic structure. Many of the nucleotide sequence data obtained by the “Genetic Tag Acquisition Method” cannot be applied to the genome sequence (for example, 25% of the nucleotide sequence data cannot be applied in the actual experimental example, but the same sequence tag) If it appears repeatedly, it is counted as one tag, and it is included if it is not possible to apply a sequence that differs from the genome sequence by 2 or more base sequences). However, the reason why a large number of base sequence data cannot be applied to the genome sequence is not necessarily clear. In principle, the analysis according to the present invention and the “method for obtaining a gene tag” can be applied to a biological species whose genome sequence is not clear. It is not only eukaryotes but also viruses that have a cap structure in mRNA. Many genome sequences of viruses have been elucidated, and viruses can also apply the method of the present invention.
[0030] 本発明は、次の工程を含む、 1本鎖遺伝子タグ群の製造方法に関する。  [0030] The present invention relates to a method for producing a single-stranded gene tag group comprising the following steps.
(1)真核細胞力 抽出した RNAの CAP部位に IIS型制限酵素の認識配列を含む RNA リンカ一を連結する工程、  (1) a step of linking an RNA linker containing a recognition sequence of an IIS type restriction enzyme to the CAP site of eukaryotic cell force,
(2) (1)の RNAを铸型として cDNAを合成する工程、  (2) A step of synthesizing cDNA using the RNA of (1) as a cage,
(3) (2)の cDNAに RNAリンカ一に含まれる認識配列を認識する IIS型制限酵素を作用 させ、 2本鎖遺伝子タグ群を生成する工程、  (3) A step of generating a double-stranded gene tag group by allowing an IIS type restriction enzyme that recognizes a recognition sequence contained in an RNA linker to act on the cDNA of (2),
(4) (3)の 2本鎖遺伝子タグ群力 所望のストランドの 1本鎖核酸力 なる遺伝子タグ群 を生成する工程  (4) Generating a group of double-stranded gene tags in (3) Gene tag group consisting of single-stranded nucleic acid force of desired strand
本発明において、キャップ構造とは、 mRNAの 5'末端において 7-メチルグアノシルリ ボ核酸が、 5'-3リン酸架橋を介して結合したものをいう。 mRNAは CAP構造によって 5' -3 'エタソヌクレアーゼ活性による分解力も保護されている。細胞内では、役割を終え た mRNAの CAP構造は、デキヤッビング酵素 (decapping enzyme)によって除去される。 その結果、 CAP構造を失った mRNAは、 5し3 'エタソヌクレアーゼによって分解される( LaGradeur et al, EMBO J, 17:1487-1496, 1998)。 CAP構造は、 RNAポリメラーゼ IIに よる転写反応の初期の段階で RNAの 5'末端に付加されて 、ると考えられて 、る。  In the present invention, the cap structure refers to a structure in which 7-methylguanosylribonucleic acid is bound via a 5'-3 phosphate bridge at the 5 'end of mRNA. The CAP structure protects mRNA from degradation by 5'-3 'ethanuclease activity. In the cell, the CAP structure of mRNA that has finished its role is removed by decapping enzyme. As a result, mRNA that has lost its CAP structure is degraded by 5 '3' ethasonuclease (LaGradeur et al, EMBO J, 17: 1487-1496, 1998). The CAP structure is thought to be added to the 5 'end of RNA at an early stage of the transcription reaction by RNA polymerase II.
[0031] 本発明において、 RNAは、真核細胞に由来するあらゆる RNAを用いることができる。 [0031] In the present invention, any RNA derived from a eukaryotic cell can be used as the RNA.
より具体的には、 polyA (+) RNAや total RNAを用いることができる。具体的には、動物 、植物、酵母、あるいは粘菌などの、 mRNAに CAP構造を有するあらゆる生物種に由 来する細胞を利用することができる。 More specifically, polyA (+) RNA or total RNA can be used. Specifically, animals Cells derived from any species having a CAP structure in mRNA, such as plants, yeast, or slime molds, can be used.
[0032] 更に、ウィルスやウイロイドあるいはマイコプラズマのような細胞内寄生体が感染した 真核生物が作る RNA、導入された遺伝情報から転写された RNAも本発明の対象にな る。たとえば、本来 CAP構造を持たないとされている原核細胞の遺伝子であっても、 転写可能な形で真核細胞に導入することによって、 CAP構造を与えることができる。 こうして転写された RNAも、本発明における真核細胞に由来する RNAに含まれる。ま た、ベクターとして人為的に真核細胞に導入された遺伝情報カゝら転写される RNAもキ ヤップ構造を持ち、本発明の方法により発現解析が可能である。  [0032] Furthermore, RNA produced by eukaryotes infected with intracellular parasites such as viruses, viroids, or mycoplasmas, and RNA transcribed from the introduced genetic information are also subject of the present invention. For example, even a prokaryotic cell gene originally supposed to have no CAP structure can be given a CAP structure by introducing it into a eukaryotic cell in a transcribable form. The RNA thus transcribed is also included in the RNA derived from a eukaryotic cell in the present invention. Moreover, RNA transcribed from genetic information artificially introduced into a eukaryotic cell as a vector also has a cap structure and can be analyzed for expression by the method of the present invention.
[0033] 本発明にお 、て、まず、これらの RNAを有する真核細胞から RNAを抽出する。 RNA の抽出方法は公知であり、たとえば GPTC法に基づいた RNeasy(Qiagen)などの巿販 キットを用いると簡便に高純度の RNAが得られる。 RNAの抽出にあたり、細胞の破壊 が必要な場合には、当業者に公知の方法によって破壊することができる。  [0033] In the present invention, RNA is first extracted from a eukaryotic cell having these RNAs. RNA extraction methods are known. For example, using a commercial kit such as RNeasy (Qiagen) based on the GPTC method, high-purity RNA can be easily obtained. In the case of RNA extraction, if it is necessary to disrupt cells, they can be disrupted by methods known to those skilled in the art.
[0034] 本発明の方法は、抽出された RNAの CAP構造に RNAリンカ一を連結する工程を含 む。キャップ構造にオリゴ RNAやオリゴ DNAを結合する方法は任意である。上述のォ リゴキヤッビング法は、 RNAリンカ一を結合するための好ま 、方法として例示するこ とができる。オリゴキヤッビング法は、遺伝子の全長をクローユングするために mRNA の 5'末端を保護できる方法として開発された(Maruyama and Sugano. 1994. Gene, 13 8: 171-4) )。オリゴキヤッビング法においては、 5'末端にキャップ構造を持つ mRNAへ 結合させたリンカ一の配列からなるプライマーと、成熟型全長 mRNAの 3'末端にある ポリ A構造に結合するオリゴ dT力もなるプライマーとを用いて PCR増幅することにより、 全長遺伝子がクローニングできる。  [0034] The method of the present invention includes a step of linking an RNA linker to the CAP structure of the extracted RNA. Any method can be used to bind oligo RNA or oligo DNA to the cap structure. The above oligo cabbing method can be exemplified as a preferred method for binding an RNA linker. The oligo-cabbing method was developed as a method capable of protecting the 5 ′ end of mRNA in order to clone the full length of a gene (Maruyama and Sugano. 1994. Gene, 13 8: 171-4)). In the oligo cabling method, a primer consisting of a linker sequence bound to mRNA with a cap structure at the 5 'end and an oligo dT force binding to the poly A structure at the 3' end of the mature full-length mRNA are also provided. A full-length gene can be cloned by PCR amplification using primers.
[0035] オリゴキヤッビング法では、まず RNA画分をバクテリアアルカリ性フォスファターゼ(B AP)で処理し、キャップ構造を持たな 、RNAの 5'末端にあるリン酸基を加水分解し、 水酸基にする。なんらかの理由で切断され、新たにできた RNA断片の 5'末端、あるい はミトコンドリア由来の RNAなどがこの酵素の基質になりうる。次にタバコ酸ピロホスフ ァターゼ (TAP)処理すると、キャップ構造中のトリリン酸結合が加水分解して、メチル 化グアノシルリボ核酸が遊離し、 5'末端はリン酸基になる。すなわちこの 2つの酵素処 理によって、不完全な (キャップ構造を持たない) RNAは 5'末端が水酸基になり、キヤ ップ構造を持っていた RNAだけが 5'末端はリン酸基になる。この状態の RNAに、たと えば T4 RNAリガーゼを用いると、 RNAリンカ一がリン酸基のある RNAに結合する。 T4 RNAリガーゼによるライゲーシヨンは 5'末端のリン酸基を要求する。し力し 5'末端が水 酸基の RNAには反応しない。こうして成熟型で 5'末端が完全な(キャップ構造を持つ) mRNA由来の RNAのみに、リンカ一が結合する。 [0035] In the oligo-cabbing method, first, the RNA fraction is treated with bacterial alkaline phosphatase (BAP) to hydrolyze the phosphate group at the 5 'end of RNA without a cap structure to give a hydroxyl group. . The 5 'end of a newly produced RNA fragment that has been cleaved for some reason, or mitochondrial RNA can serve as the substrate for this enzyme. Subsequent treatment with tobacco acid pyrophosphatase (TAP) hydrolyzes the triphosphate bond in the cap structure, releasing methylated guanosylribonucleic acid and converting the 5 'end to a phosphate group. In other words, these two enzyme treatments By reason, incomplete RNA (without a cap structure) has a hydroxyl group at the 5 'end, and only RNA with a cap structure has a phosphate group at the 5' end. For example, when T4 RNA ligase is used for RNA in this state, the RNA linker binds to RNA with a phosphate group. Ligation with T4 RNA ligase requires a phosphate group at the 5 'end. However, it does not react with RNA having a hydroxyl group at the 5 'end. In this way, the linker binds only to RNA derived from mRNA that is mature and complete at the 5 ′ end (having a cap structure).
[0036] 本発明において、 CAP構造に連結する RNAリンカ一は、少なくとも IIS型制限酵素の 認識配列を含むオリゴヌクレオチド力もなる。 RNAリンカ一として用いるオリゴヌクレオ チドは、 DNAであっても RNAであっても良い。好ましい RNAリンカ一は RNAである。 RN Aリンカ一を構成する塩基配列は、 IIS型制限酵素の認識配列を含む任意の塩基配 列であってよい。 [0036] In the present invention, the RNA linker linked to the CAP structure also has an oligonucleotide ability including at least a recognition sequence for an IIS type restriction enzyme. The oligonucleotide used as the RNA linker may be DNA or RNA. A preferred RNA linker is RNA. The base sequence constituting the RNA linker may be any base sequence including the recognition sequence of the IIS type restriction enzyme.
[0037] IIS型制限酵素は、特異的な認識部位力も一定の長さだけ離れた任意の配列を切 断する。本発明は、 mRNAの 5'末端をタグとして取得することを目的としている。したが つて本発明で用いる転写開始部位を含む DNAを作製するためには、 mRNAの 5'末端 の近ぐつまり RNAリンカ一の 3'末端に IIS型酵素の認識配列を配置するのが望ましい 。 mRNAの転写開始部位の下流の部位において切断が起こるように、認識配列を配 置する。 IIS型制限酵素は様々な種類が知られている。認識配列と切断位置の間の 距離は、酵素によってほぼ一定である。たとえば、 Bsm FIあるいは Foklは認識配列か ら 9〜10塩基の位置で DNAを切断し、粘着末端 (sticky end)を残す。その他にも同様 の作用を有する IIS型の制限酵素として、次のような酵素が知られている (Szybalski, G ene 40:169, 1985)。  [0037] The IIS type restriction enzyme cuts an arbitrary sequence having a specific recognition site force separated by a certain length. An object of the present invention is to obtain the 5 ′ end of mRNA as a tag. Therefore, in order to prepare DNA containing the transcription initiation site used in the present invention, it is desirable to place an IIS type enzyme recognition sequence close to the 5 ′ end of the mRNA, that is, at the 3 ′ end of the RNA linker. The recognition sequence is positioned so that cleavage occurs at a site downstream of the transcription start site of mRNA. Various types of IIS type restriction enzymes are known. The distance between the recognition sequence and the cleavage position is almost constant by the enzyme. For example, Bsm FI or Fokl cleaves DNA at positions 9 to 10 bases from the recognition sequence, leaving a sticky end. In addition, the following enzymes are known as IIS-type restriction enzymes having the same action (Szybalski, Gene 40: 169, 1985).
Bbvl, BbvII, Binl, Fokl, Hgal, Hphl  Bbvl, BbvII, Binl, Fokl, Hgal, Hphl
MboII, Mnll, SfaNI, Taqll, Tthlllll  MboII, Mnll, SfaNI, Taqll, Tthlllll
[0038] 更に、 Mme Iと呼ばれる IIS型制限酵素は、認識配列 (5'-TCCRAC- 3' (Rは Gまたは A))から 20塩基離れた位置を切断する (Tucholski et al, Gene Vol.157, pp.87- 92, 19 95)。 Mmelをタギング酵素として利用し、 20塩基長のタグを得ることができる発現解析 方法も公知である (US Patent 6498013)。 Mmelを利用する SAGEは、特に long SAGEと も呼ばれる。 IIS型制限酵素は、用いる酵素によって認識配列が異なるので、その酵 素に応じて RNAリンカーにその制限酵素の認識配列を配置することが望ま 、。たと えば IIS型酵素として Mmelを用いる場合、認識配列は 5'_TCCRAC- 3' (ただし Rは Gま たは A)なので、 RNAリンカ一の 3'末端に UCCRAC (Rは Gまたは A)を配置するのが望 ましい。 [0038] Furthermore, an IIS type restriction enzyme called Mme I cleaves at a position 20 bases away from the recognition sequence (5'-TCCRAC-3 '(R is G or A)) (Tucholski et al, Gene Vol. 157, pp. 87-92, 19 95). An expression analysis method capable of obtaining a 20-base long tag using Mmel as a tagging enzyme is also known (US Patent 6498013). SAGE using Mmel is also called long SAGE. IIS restriction enzymes have different recognition sequences depending on the enzyme used. Depending on the element, it is desirable to place the restriction enzyme recognition sequence on the RNA linker. For example, when Mmel is used as an IIS enzyme, the recognition sequence is 5'_TCCRAC-3 '(where R is G or A), so UCCRAC (R is G or A) is placed at the 3' end of the RNA linker. It is desirable to do.
[0039] 更に、 RNAリンカ一を構成する塩基配列は、タグの増幅のためのプライマーがァ- ールするための領域として利用することもできる。プライマーがァニールするための領 域としては、 10塩基以上の長さ、通常 10力 40塩基程度、特に 15力 30塩基の長さ が好ましい。プライマーが構成する塩基は、プライマーの融解温度 (Tm)が 60から 80 °C、特に 65から 75°Cになるようにデザインすることができる。プライマーどうしがダイマ 一を作るもの、プライマーが結合する部分が高次構造を持つものは望ましくない。ま た GCがあまり多く含まれないものが好ましい。以上の条件を満たせば、プライマーが ァニールする部分の塩基配列は任意であってもよい。更に、各種の制限酵素の認識 配列を構成する領域と、プライマーをァニールさせるための領域は、 RNAリンカ一の 中で重複させることもできる。また RNAリンカ一の 3'末端に Gを置く場合がある。  [0039] Furthermore, the base sequence constituting the RNA linker can also be used as a region for the primer for tag amplification to call. As a region for annealing the primer, a length of 10 bases or more, usually 10 to 40 bases, particularly 15 to 30 bases is preferable. The base constituting the primer can be designed so that the melting temperature (Tm) of the primer is 60 to 80 ° C, especially 65 to 75 ° C. It is not desirable that the primers make a dimer, or that the primer binding portion has a higher order structure. In addition, those that do not contain much GC are preferable. If the above conditions are satisfied, the base sequence of the portion where the primer anneals may be arbitrary. Furthermore, the region constituting the recognition sequences of various restriction enzymes and the region for annealing the primer can be overlapped in the RNA linker. In addition, G may be placed at the 3 'end of the RNA linker.
[0040] オリゴキヤッビング法以外の RNAリンカ一を結合するための方法としては、固相化キ ヤップ結合タンパク質を用いて精製して力 RNAリンカ一を結合する方法 (Edery, L. et al., Mol. Cell Biol. 15: 3363-3371, 1995)、キャップ構造のジオール基にビォチン を結合させ、 cDNAにしてからオリゴ DNAを結合させるキャップトラッパ一法(Carnici, P., Genomics 37: 327-336, 1996)などがあり、任意に用いることができる。  [0040] As a method for binding an RNA linker other than the oligo-cabbing method, a method of binding a force RNA linker by purification using a solid-phased cap-binding protein (Edery, L. et al , Mol. Cell Biol. 15: 3363-3371, 1995), a cap trapper method in which biotin is bound to a diol group of the cap structure to form cDNA and then oligo DNA (Carnici, P., Genomics 37: 327-336, 1996) and the like can be used arbitrarily.
[0041] 固相化キャップ結合タンパク質を用いる場合は、固相に結合したキャップ構造を持 つ mRNAに対し TAP処理すると、 5'末端にリン酸基を持つ mRNAが遊離するので、こ の mRNAに RNAリンカ一を結合させる。さらに、この RNAに逆転写反応を行なう。  [0041] When using a solid-phased cap-binding protein, if a TAP treatment is applied to mRNA having a cap structure bound to a solid phase, mRNA having a phosphate group at the 5 'end is released. Bind the RNA linker. Furthermore, reverse transcription reaction is performed on this RNA.
[0042] キャップトラッパ一法の場合は、キャップ構造にピオチンを結合させておき、固相化 アビジンでピオチンの結合した mRNAを回収し、逆転写反応を行なう。この cDNAにォ リゴ DNAのアダプターリンカ一を結合させる。  [0042] In the case of the cap trapper method, piotin is bound to the cap structure, and mRNA having the piotin bound thereto is recovered by solid-phased avidin and subjected to a reverse transcription reaction. The oligo DNA adapter linker is bound to this cDNA.
なお RNAを取り扱う反応にぉ ヽては全ての工程を、 RNaseを排除した環境で行うこと が望ましい。  It should be noted that it is desirable to perform all steps in an environment that excludes RNase, in reactions that handle RNA.
[0043] オリゴキヤッビング法により RNAリンカ一を連結する場合は、この次に逆転写反応に よって cDNAを合成する。 [0043] When linking RNA linkers by the oligo-cabbing method, this is followed by a reverse transcription reaction. Therefore, cDNA is synthesized.
逆転写反応は、公知の方法を用いることができる。一般に cDNAの合成は、第 1鎖 の合成と、第 2鎖の合成の二つのステップで構成される。第 1鎖の合成は、 RNAを铸 型として利用する逆転写反応である。これに対して第 2鎖は、先に合成された第 1鎖 A known method can be used for the reverse transcription reaction. In general, cDNA synthesis consists of two steps: first strand synthesis and second strand synthesis. The synthesis of the first strand is a reverse transcription reaction using RNA as a template. In contrast, the second strand is the first strand synthesized earlier.
DNAを铸型とする相補鎖合成反応によって合成される。それぞれ、反応を開始する プライマーによって特徴付けられるいくつかの反応が知られている。 It is synthesized by a complementary strand synthesis reaction that uses DNA as a cage. Several reactions are known, each characterized by a primer that initiates the reaction.
[0044] 本発明において、 cDNAの第 1鎖は、 RNAの任意の領域にァニールするプライマー によって合成することができる。 RNAを铸型として、オリゴ DNAのプライマーをカ卩えて 逆転写酵素を作用させると、オリゴ DNAの 3'末端方向への伸張反応によって RNAと 相補的な配列を持つ cDNAが合成される。具体的には MMLV(Molony mouse leukem ia virus)由来の逆転写酵素 (reverse transcriptase; RT)やその変異体などを利用し、 プライマーの伸長反応によって第 1鎖を合成する方法が公知である。逆転写酵素の 変異体としては、逆転写酵素が有する RNaseH活性を失わせた変異体(Superscript I I, Invitrogen)などが市販されている。また Tth DNAポリメラーゼのように、 DNA合成酵 素でありながら、 RNAを铸型とする相補鎖合成反応を触媒する酵素も知られて ヽる。 このような酵素を利用すれば、第 1鎖 (RNA template)と第 2鎖 (DNA template)を単一 の酵素で合成することもできる。 In the present invention, the first strand of cDNA can be synthesized with a primer that anneals to an arbitrary region of RNA. When RNA is used as a base and an oligo DNA primer is inserted and a reverse transcriptase is allowed to act, cDNA having a sequence complementary to RNA is synthesized by an extension reaction toward the 3 'end of the oligo DNA. Specifically, a method of synthesizing the first strand by a primer extension reaction using reverse transcriptase (RT) derived from MMLV (Molony mouse leukemia virus) or a mutant thereof is known. As a mutant of reverse transcriptase, a mutant (Superscript I I, Invitrogen) in which the RNaseH activity of reverse transcriptase is lost is commercially available. In addition, enzymes such as Tth DNA polymerase that catalyze complementary strand synthesis reactions that are RNA-like but are DNA synthesis enzymes are also known. If such an enzyme is used, the first strand (RNA template) and the second strand (DNA template) can be synthesized with a single enzyme.
[0045] プライマーとしては、いわゆるオリゴ dTを用いることができ、オリゴ dTも巿販されてい る(Invitrogenなど)。オリゴ dTは、 mRNAの 3'末端にあるポリ A部分に結合するので、こ れを用いて逆転写反応を行なえば、遺伝子全長の cDNAが得られる。得られた cDNA は RNAリンカ一に相補的な部分も 3'末端に含む。  [0045] As the primer, so-called oligo dT can be used, and oligo dT is also commercially available (Invitrogen, etc.). Since oligo dT binds to the polyA moiety at the 3 'end of mRNA, reverse transcription reaction using this will give the full length cDNA. The resulting cDNA also contains a portion complementary to the RNA linker at the 3 'end.
[0046] また、ある領域に特異的な配列に相補的な配列を持つオリゴ DNAを、プライマーと して用いることもできる。この場合、逆転写反応によってある特別の配列を持つ遺伝 子の伸張反応が進み、転写開始部位、オリゴ RNA部分を含む cDNAが合成される。し たがって特別な配列を持つ遺伝子の転写開始部位のみを解析することになる。これ は、既知遺伝子の転写開始部位の決定に応用できる。更に、本発明に基づいて、各 転写産物の発現レベルを比較することもできる。また、同一のアミノ酸配列をコードし ながら、転写開始部位の異なる複数の転写産物を与える遺伝子を明らかにすること ができる。ある遺伝子を対象に、さまざまな mRNAソースについて、本発明の遺伝子タ グを取得すれば、当該遺伝子のあらゆる転写産物の転写開始部位の情報を容易に 集めることができる。もしも複数種類の遺伝子タグが得られれば、当該遺伝子には、 転写開始部位の異なる複数の転写産物が存在している可能性がある。 [0046] Furthermore, an oligo DNA having a sequence complementary to a sequence specific to a certain region can also be used as a primer. In this case, an extension reaction of a gene having a specific sequence proceeds by reverse transcription, and a cDNA including a transcription initiation site and an oligo RNA portion is synthesized. Therefore, only the transcription start site of a gene having a special sequence is analyzed. This can be applied to determine the transcription start site of a known gene. Furthermore, based on the present invention, the expression level of each transcript can also be compared. In addition, the genes that give the multiple transcripts that encode the same amino acid sequence but differ in the transcription start site should be identified. Can do. By obtaining the gene tag of the present invention for various mRNA sources for a gene, information on the transcription start site of any transcript of the gene can be easily collected. If multiple types of gene tags are obtained, there may be multiple transcripts with different transcription start sites in the gene.
[0047] 以上の 2種類のプライマー、つまりオリゴ dT、特異的プライマーを逆転写反応に用 いる場合、それぞれはアダプタープライマーにすることもできる。すなわち、それぞれ のプライマーの 5'側上流部分に、 RNAリンカ一のアダプタ一部分に用いた配列とは 別の配列で、オリゴ DNAと結合可能な任意の配列をつなげることができる。  [0047] When the above two types of primers, namely oligo dT and specific primer, are used for the reverse transcription reaction, each can also be used as an adapter primer. That is, an arbitrary sequence capable of binding to the oligo DNA can be connected to the 5 ′ upstream portion of each primer with a sequence different from the sequence used for the adapter portion of the RNA linker.
[0048] また、本発明にお!/、ては、 RNAの全長は必ずしも必要ではな!/、。本発明にお!/、て は、タグは RNAの 5'末端を含むわずかの領域から取得される。したがって RNAの 5'末 端を含む領域が cDNAとして合成できれば、本発明に必要な cDNAを得ることができ る。したがって、オリゴ dTの代わりに、公知のランダムプライマーとし、このランダムプラ イマ一の 5'末端上流にアダプターをつなげたものを用いることも可能である。アダプタ 一ランダムプライマーは、多数の配列の混合品なので、 RNAのいろいろな部分に結 合し、結合したところから 3'側に向力つて伸張反応が進む。すなわちこの向きに反応 が進むと、必ず RNAの 5'末端の相補配列を 3'末端に含むことになる。 RNAの 5'末端の 相補配列を含むカゝ否かは、 RNAリンカ一配列を含むカゝ否かによって判断することが できる。本発明ではこのようにして得られた cDNAでも転写開始部位の解析に用いる ことができる。ランダムプライマーを用いることで、得られた RNAの中に 3'末端が不完 全でポリ A領域を含まない断片であっても、逆転写反応を行なえる利点がある。また 非コード RNA (non-coding RNA)も解析対象になる利点もある。  [0048] Also, in the present invention, the full length of RNA is not always necessary! /. In the present invention, tags are obtained from a small region including the 5 ′ end of RNA. Therefore, if the region containing the 5 ′ end of RNA can be synthesized as cDNA, the cDNA necessary for the present invention can be obtained. Therefore, it is also possible to use a known random primer instead of oligo dT and an adapter connected to the 5 ′ end upstream of this random primer. Adapter One random primer is a mixture of multiple sequences, so it binds to various parts of RNA and the extension reaction proceeds toward the 3 'side from where it was bound. In other words, whenever the reaction proceeds in this direction, the complementary sequence at the 5 'end of RNA is always included at the 3' end. Whether or not it contains a complementary sequence at the 5 ′ end of RNA can be determined by whether or not it contains an RNA linker sequence. In the present invention, the cDNA thus obtained can be used for the analysis of the transcription initiation site. By using random primers, there is an advantage that reverse transcription reaction can be performed even if the obtained RNA is a fragment that is incomplete at the 3 'end and does not contain a polyA region. There is also an advantage that non-coding RNA can be analyzed.
以上のように逆転写反応を行なってから、逆転写反応の铸型として使った RNAをァ ルカリ分解してもよい。  After performing the reverse transcription reaction as described above, the RNA used as the reverse transcription reaction type may be subjected to alkaline decomposition.
[0049] 得られた cDNAは、共通して 3'末端に RNAリンカ一の配列に相補的な部分を含む。  [0049] The obtained cDNA has a portion complementary to the sequence of the RNA linker at the 3 'end in common.
したがって、 RNAリンカーを铸型として合成された領域にァニールするプライマーによ つて cDNAの相補鎖(第 2鎖)を合成し、 2本鎖 cDNAを合成することができる。 2本鎖 cD NAの合成方法は公知である。ここで用いるオリゴ DNAには、 IIS型制限酵素の認識配 列が含まれて!/、てもよ 、。 IIS型酵素の認識配列を除 、た部分の配列で十分なように 、 RNAリンカ一の配列を設計するのが通常である。相補鎖、つまり第 2鎖の合成には、 プライマーであるオリゴ DNAの他に、 DNAポリメラーゼを酵素として用いる。 DNAポリメ ラーゼには、たとえば T4 DNAポリメラーゼが挙げられる。 Therefore, it is possible to synthesize a double-stranded cDNA by synthesizing a complementary strand (second strand) of a cDNA with a primer that anneals to a region synthesized using an RNA linker as a cage. Methods for synthesizing double-stranded cDNA are well known. The oligo DNA used here contains a recognition sequence for the IIS restriction enzyme! /. Except for the recognition sequence of IIS type enzyme, the sequence of the part should be sufficient It is usual to design an RNA linker sequence. In order to synthesize the complementary strand, that is, the second strand, DNA polymerase is used as an enzyme in addition to oligo DNA as a primer. An example of the DNA polymerase is T4 DNA polymerase.
[0050] また本発明の 1本鎖遺伝子タグには、固相化や蛍光色素の結合が可能な修飾を導 入しておく方が望ましい。つまり、修飾を受けた 1本鎖オリゴ DNAをプライマーとして用 いて、第 2鎖の合成を行えばよい。あるいは、修飾を受けた 1本鎖オリゴ DNAでは DNA ポリメラーゼによって 2本鎖が適切に得られない場合、修飾を持つ 2本鎖のプライマー を用いることができる。 2本鎖のプライマーは、修飾をしたオリゴ DNAと修飾をしていな いオリゴ DNAの 2つがァニールしたものである。ただし修飾を受けた側の鎖は、修飾 を受けた 5'末端と、 RNAリンカ一と共通の配列を持つ 3'側の領域の 2つの領域を持つ オリゴ DNAとする。この修飾オリゴ DNAの 5'側半分は、この部分と相補的な配列を持 つもう一つのオリゴ DNAとァニールさせ、 RNAリンカ一と共通の配列を持つ修飾オリゴ DNAの残りの 3'側半分は 1本鎖のままにしておく。つまり修飾していないオリゴ DNAは 、修飾したオリゴ DNAの 5'側半分の領域の相補配列を持つ。ここで 5'側半分と 3'側半 分は必ずしも同じ長さにする必要はない。 2本鎖プライマーの 1本鎖部分は cDNAにァ ニールする。このような 2本鎖プライマーを用いることによって、 cDNAの第 2鎖を効率 よく修飾することができる(Shiraki et al., 2003. Proc. Natl. Acad. Sci. USA. 100: 157 76-81) o第 2鎖を合成してから、 cDNAの第 1鎖と、ここで用いたプライマーの間をつな げるために、公知の DNAリガーゼを用いる。本発明の 1本鎖遺伝子タグを固相に結合 させるための修飾には、ピオチン化、 DIG結合など公知の方法を用いることができる。 [0050] Further, it is desirable to introduce a modification capable of immobilization or binding of a fluorescent dye into the single-stranded gene tag of the present invention. In other words, the second strand may be synthesized using the modified single-stranded oligo DNA as a primer. Alternatively, if the double-stranded by single-stranded oligo DNA in DNA polymerases that have undergone modifications do not adequately be obtained, it is possible to use a primer duplexes with modifications. The double-stranded primer is the annealed two of the modified oligo DNA and the unmodified oligo DNA. However, the modified strand should be an oligo DNA that has two regions: the modified 5 'end and the 3' region that has the same sequence as the RNA linker. The 5 ′ half of this modified oligo DNA is annealed with another oligo DNA having a sequence complementary to this portion, and the remaining 3 ′ half of the modified oligo DNA having a sequence in common with the RNA linker is Leave as single strand. In other words, the unmodified oligo DNA has a complementary sequence in the 5 ′ half region of the modified oligo DNA. Here, the 5 'half and the 3' half do not necessarily have the same length. The single-stranded portion of the double-stranded primer is annealed to the cDNA. By using such a double-stranded primer, the second strand of the cDNA can be efficiently modified (Shiraki et al., 2003. Proc. Natl. Acad. Sci. USA. 100: 157 76-81) o After the second strand is synthesized, a known DNA ligase is used to connect the first strand of the cDNA with the primers used here. For the modification for binding the single-stranded gene tag of the present invention to the solid phase, known methods such as pyotinization and DIG binding can be used.
[0051] あるいは cDNAを 2本鎖にするために、公知の Taqポリメラーゼも利用可能である。こ の場合、 2種類のプライマーを用いればよい。 1つは、 RNAリンカ一の配列(または RN Aリンカ一のうち制限酵素認識部位を除 、た配列)を持つオリゴ DNAを用いる。固相 への結合と蛍光色素の結合が可能な DNAを得るためにはこのオリゴ DNAの 5'末端を 修飾しておく。もう 1つのオリゴ DNAは、逆転写反応のときに用いたプライマーによつ て異なる。逆転写反応の際にアダプターを持つオリゴ DNAを用いた場合は、アダプタ 一部分に相補的な配列を持つオリゴ DNAを用いることができる。逆転写反応の際に オリゴ dTをプライマーとして用いた場合は、二本鎖化反応にもオリゴ dTをプライマーと して用いることができ、逆転写反応の際に特異配列をプライマーとして用いた場合は[0051] Alternatively, a known Taq polymerase can also be used to make the cDNA double-stranded. In this case, two types of primers may be used. One uses an oligo DNA having the sequence of the RNA linker (or the sequence of the RNA linker excluding the restriction enzyme recognition site). In order to obtain DNA that can bind to the solid phase and fluorescent dye, the 5 'end of this oligo DNA is modified. The other oligo DNA differs depending on the primer used in the reverse transcription reaction. When an oligo DNA having an adapter is used in the reverse transcription reaction, an oligo DNA having a sequence complementary to a part of the adapter can be used. When oligo dT is used as a primer during reverse transcription, oligo dT is also used as a primer for double-stranded reaction. When a specific sequence is used as a primer during reverse transcription reaction
、二本鎖化反応にも特異配列を持つプライマーを用いることができる。上記の 2つの プライマーを用いて Taqポリメラーゼにより反応を行なえば、 2本鎖 DNAが得られる。 T aqポリメラーゼは、遺伝子の増幅反応を行なうが、ここでは特に過度に増幅する必要 は無い。 A primer having a specific sequence can also be used for the double-stranded reaction. Double-stranded DNA can be obtained by reacting with Taq polymerase using the above two primers. Taq polymerase performs a gene amplification reaction, but it does not need to be excessively amplified here.
[0052] 本発明は、 cDNAを IIS型制限酵素により 2本鎖遺伝子タグ群にする工程を含む。上 記の方法により合成された 2本鎖 cDNAを IIS型制限酵素で処理し、制限酵素認識部 位力も mRNAに相当する部分の向きに一定の長さだけ離れた任意の配列を切断する 。切断により生成される断片の長さは、用いる IIS型制限酵素により異なるが、制限酵 素認識部位力 好ましくは 12〜26塩基、より好ましくは 20塩基である。これによつて R NAリンカ一に相当する共通の配列と各遺伝子の 5'末端力 一定の長さの配列が繋 力 た断片 (2本鎖遺伝子タグ)が得られる。例えば、本発明の実施例における、遺伝 子の 5'末端から 20塩基程度の配列(配列番号 2の RNAリンカ一の場合は 19塩基)を 持つ断片を挙げることができる。またこの断片が固相に結合可能な修飾を持っている 場合は、この断片を固相に保持させて、固相から回収することによって 2本鎖遺伝子 タグが精製可能である。  [0052] The present invention includes a step of converting cDNA into a double-stranded gene tag group using an IIS type restriction enzyme. The double-stranded cDNA synthesized by the above method is treated with an IIS-type restriction enzyme, and the restriction enzyme recognition site force is cleaved at an arbitrary length in the direction corresponding to the mRNA. The length of the fragment generated by cleavage varies depending on the IIS type restriction enzyme used, but the restriction enzyme recognition site power is preferably 12 to 26 bases, more preferably 20 bases. As a result, a fragment (double-stranded gene tag) in which a common sequence corresponding to the RNA linker and a sequence having a certain length at the 5 ′ end force of each gene are linked is obtained. For example, in the example of the present invention, a fragment having a sequence of about 20 bases from the 5 ′ end of the gene (19 bases in the case of the RNA linker of SEQ ID NO: 2) can be mentioned. If this fragment has a modification capable of binding to the solid phase, the double-stranded gene tag can be purified by retaining this fragment on the solid phase and recovering it from the solid phase.
[0053] 回収した 2本鎖 DNAタグは、変性により 1本鎖にすることができる。変性は公知の方 法により行うことができる力 例えば、加熱 (95°C、 3分)後、急冷 (氷上)を行なうことに より変性させることが出来る。固相に結合可能な修飾を持っている場合には、これを ただちに再び固相に結合させ、変性で遊離した mRNAの相補配列に相当する鎖 (第 1鎖)は除去することができる。この後に、 RNAリンカ一の配列に相補的な配列を持つ オリゴ DNAを過剰にカ卩え、 RNAリンカ一に相当する部分にハイブリダィズさせることに より、 mRNAの 5'末端に相当する部分だけを 1本鎖のまま残すこともできる。固相を洗 浄後、固相から結合していた DNAを回収する。以上の方法により、本発明の 1本鎖遺 伝子タグ群を得ることができる。  [0053] The recovered double-stranded DNA tag can be made into a single strand by denaturation. Denaturation can be carried out by a known method, for example, heating (95 ° C, 3 minutes) followed by rapid cooling (on ice). If there is a modification capable of binding to the solid phase, it can be immediately rebound to the solid phase and the strand corresponding to the complementary sequence of mRNA released by denaturation (first strand) can be removed. After this, an oligo DNA having a sequence complementary to the sequence of the RNA linker is excessively covered and hybridized to the portion corresponding to the RNA linker, so that only the portion corresponding to the 5 'end of the mRNA is 1 It can be left as it is. After washing the solid phase, recover the bound DNA from the solid phase. By the above method, the single-stranded gene tag group of the present invention can be obtained.
[0054] 1本鎖遺伝子タグが固相に結合可能な修飾を持つ場合には、この DNAの固相への 結合に用いていた修飾部分に対し、化学的修飾を行い、 DNAアレイ上での解析に用 いることがでさる。 上記の化学的修飾としては、放射性同位体、蛍光標識、化学発光標識、生物発光 標識および酵素標識等の当業者に公知の手法を挙げることができる。 [0054] When the single-stranded gene tag has a modification capable of binding to the solid phase, the modification portion used for binding of the DNA to the solid phase is chemically modified to produce It can be used for analysis. Examples of the chemical modification include techniques known to those skilled in the art, such as radioisotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels, and enzyme labels.
[0055] 本発明の化学的修飾の際に用いられる修飾物質としては、以下のものを挙げること が出来る。好ましい標識酵素としては、例えばペルォキシダーゼ、アルカリフォスファ ターゼ、 β -D-ガラクトシダーゼ、リンゴ酸デヒドロゲナーゼ、ブドウ球菌ヌクレアーゼ、 デルタ- 5-ステロイドイソメラーゼ、 α -グリセロールホスフェートデヒドロゲナーゼ、トリ オースホスフェートイソメラーゼ、西洋わさびパーォキシダーゼ、ァスパラギナーゼ、 グルコースォキシダーゼ、リボヌクレアーゼ、ゥレアーゼ、カタラーゼ、グルコース一 6 ホスフェートデヒドロゲナーゼ、ダルコアミラーゼ、およびアセチルコリンエステラー ゼ等が挙げられる。好ましい蛍光物質としては、例えばフルォレセインイソチアネート 、フィコビリプロテイン、ローダミン、フィコエリトリン、フィコシァニン、ァロフィコシァニン[0055] Examples of the modifying substance used in the chemical modification of the present invention include the following. Preferred labeling enzymes include, for example, peroxidase, alkaline phosphatase, β-D-galactosidase, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, α-glycerol phosphate dehydrogenase, triose phosphate isomerase, horseradish peroxidase Examples thereof include xidase, asparaginase, glucose oxidase, ribonuclease, urease, catalase, glucose monophosphate dehydrogenase, darcoamylase, and acetylcholinesterase. Preferred fluorescent substances include, for example, fluorescein isothiocyanate, phycobiliprotein, rhodamine, phycoerythrin, phycocyanin, and aloficocyanine.
、およびオルトフタルアルデヒド等が挙げられる。好ましい発光物質としてはィソルミノ ール、ルシゲニン、ルミノール、芳香族アタリジ-ゥムエステル、イミダゾール、アタリジ 二ゥム塩及びその修飾エステル、ルシフェリン、ルシフェラーゼ、およびェクオリン等 が挙げられる。そして好ましい放射性物質としては、 125I、 I、 1311、 14 C、 3H、 32P、ある いは35 S等が挙げられる。 And orthophthalaldehyde. Preferable luminescent substances include isorminol, lucigenin, luminol, aromatic ataridum ester, imidazole, ataridium salt and its modified ester, luciferin, luciferase, and equorin. Preferred radioactive materials include 125 I, I, 131 1, 14 C, 3 H, 32 P, or 35 S.
[0056] 前記修飾物質を本発明の 1本鎖遺伝子タグに結合する手法は公知である。具体的 には、直接標識と間接標識が利用できる。直接標識としては、架橋剤によって 1本鎖 遺伝子タグと標識とをィ匕学的に共有結合する方法が一般的である。架橋剤としては、 N, Ν'-オルトフエ-レンジマレイミド、 4- (Ν-マレイミドメチル)シクロへキサン酸 ·Ν-スク シンイミドエステル、 6-マレイミドへキサン酸 ·Ν-スクシンイミドエステル、 4,4'-ジチオビ リジン、その他公知の架橋剤を利用することができる。これらの架橋剤と 1本鎖遺伝子 タグとの反応は、それぞれの架橋剤の性質に応じて既知の方法に従って行えばよい 。この他、 1本鎖遺伝子タグにピオチン、ジニトロフエ-ル、ピリドキサール又はフルォ レサミンのような低分子ハプテンを結合させておき、これを認識する結合成分によつ て間接的に標識する方法を採用することもできる。ピオチンに対してはアビジンやスト レプトアビジンが認識リガンドとして利用される。一方、ジニトロフエニル、ピリドキサ一 ル又はフルォレサミンにっ 、ては、これらのハプテンを認識する抗体が標識される。 抗体を標識する場合、西洋わさびペルォキシダーゼを標識ィ匕酵素として用いること ができる。本酵素は多くの基質と反応することができ、過ヨウ素酸法によって容易に抗 体に結合させることができるので有利である。また、抗体としては場合によっては、そ のフラグメント、例えば Fab'、 Fab、 F (ab')を用いる。また、ポリクローナル抗体、モノク [0056] Techniques for binding the modifying substance to the single-stranded gene tag of the present invention are known. Specifically, direct labeling and indirect labeling can be used. As a direct labeling method, a method in which a single-stranded gene tag and a label are covalently covalently bound by a crosslinking agent is generally used. Cross-linking agents include N, Ν'-orthophenol dimaleimide, 4- (Ν-maleimidomethyl) cyclohexanoic acid · Ν-succinimide ester, 6-maleimidohexanoic acid · Ν-succinimide ester, 4,4 '-Dithiopyridine and other known crosslinking agents can be used. The reaction between these cross-linking agents and single-stranded gene tags may be performed according to a known method depending on the properties of the respective cross-linking agents. In addition, a low molecular hapten such as piotin, dinitrophenol, pyridoxal, or fluoresamine is bound to a single-stranded gene tag and indirectly labeled with a binding component that recognizes it. You can also For piotin, avidin and streptavidin are used as recognition ligands. On the other hand, antibodies that recognize these haptens are labeled with dinitrophenyl, pyridoxal, or fluoresamine. When labeling an antibody, horseradish peroxidase can be used as a labeling enzyme. This enzyme is advantageous because it can react with many substrates and can be easily bound to antibodies by the periodate method. In some cases, such an antibody is used as an antibody, for example, Fab ′, Fab, F (ab ′). Polyclonal antibodies and monoclonal antibodies
2  2
ローナル抗体にかかわらず同様の処理により酵素標識体を得ることができる。上記架 橋剤を用いて得られる酵素標識体はァフィユティークロマトグラフィー等の公知の方 法にて精製すれば更に感度の高い免疫測定系が可能となる。精製した酵素標識ィ匕 抗体は、防腐剤としてチメロサール (Thimerosal)等を、そして安定剤としてグリセリン等 を加えて保存する。標識抗体は、凍結乾燥して冷暗所に保存することにより、より長 期にわたつて保存することができる。  Regardless of the local antibody, an enzyme label can be obtained by the same treatment. If the enzyme label obtained using the above-mentioned crosslinking agent is purified by a known method such as affinity chromatography, a more sensitive immunoassay system can be obtained. The purified enzyme-labeled antibody is preserved by adding thimerosal or the like as a preservative and glycerin or the like as a stabilizer. The labeled antibody can be stored for a longer period of time by lyophilization and storage in a cool and dark place.
[0057] 本発明のより好まし 、修飾物質としては、ピオチン、アビジンビーズ、アビジン Cy3 等を用いたィ匕学的修飾を挙げることが出来る。 [0057] More preferably, examples of the modifying substance of the present invention include chemical modification using piotin, avidin beads, avidin Cy3 and the like.
[0058] 本発明は、次の工程を含む、真核細胞における遺伝子の発現量を測定する方法 に関する。 [0058] The present invention relates to a method for measuring the expression level of a gene in a eukaryotic cell, comprising the following steps.
(1)上記に記載の方法によって 1本鎖遺伝子タグ群を製造する工程  (1) A step of producing a single-stranded gene tag group by the method described above
(2)転写開始部位を含む DNAまたは RNAを固相に固定ィ匕する工程  (2) A step of immobilizing DNA or RNA containing a transcription initiation site on a solid phase
(3)固相に固定ィ匕された DNAまたは RNAに、前記 1本鎖遺伝子タグ群をハイブリダィ ズさせる工程  (3) A step of hybridizing the single-stranded gene tag group to DNA or RNA immobilized on a solid phase
(4)固相に固定ィ匕された DNAまたは RNAにハイブリダィズした 1本鎖遺伝子タグを定 量する工程  (4) Quantification of single-stranded gene tag hybridized to DNA or RNA immobilized on a solid phase
本発明の mRNAの 5'末端の塩基配列の種類と量比を反映する 1本鎖 DNAタグ群は 、 DNAアレイ法の試料として用いることができる。  The single-stranded DNA tag group reflecting the type and quantity ratio of the 5 ′ end nucleotide sequence of the mRNA of the present invention can be used as a sample for the DNA array method.
DNAアレイ法においては、同一平面上に配置した多数のプローブに対してサンプ ル DNA (あるいは RNA)をハイブリダィズさせ、当該平面をスキャンすることによって、 各プローブに対するハイブリダィズが検出される。 DNAアレイによって、多くのプロ一 ブに対する反応を同時に観察することが可能である。  In the DNA array method, sample DNA (or RNA) is hybridized to a large number of probes arranged on the same plane, and the corresponding hybrid is detected by scanning the plane. With DNA arrays, it is possible to observe responses to many probes simultaneously.
[0059] DNAアレイの作製方法としては、スライドグラスのようなチップの上の小区画にオリゴ DNAを結合させておき、このオリゴ DNAとのハイブリダィゼーシヨンによって、プローブ に結合する DNAを検出する方法力 ^、くつか知られている。たとえば Stanford法と呼ば れる方法では、合成したオリゴ DNAを 、ろ 、ろな方法でガラスチップ上に固定する。 あるいは、 Affimetrix法と呼ばれるチップ上でオリゴ DNAを合成してプローブとする方 法でも有効である。またチップとしては、スライドグラスのような非透過性 (non- porous) のチップだけではなぐ糸上のもの(Biostrand)や、透過性 (porous)の膜、例えば-ト ロセルロースメンブレムを使用することもできる。 [0059] As a method of producing a DNA array, oligo DNA is bound to a small section on a chip such as a slide glass, and hybridization is performed with this oligo DNA to probe. The power to detect DNA binding to ^^, is well known. For example, in a method called the Stanford method, the synthesized oligo DNA is fixed on a glass chip by various methods. Alternatively, it is also effective to synthesize oligo DNA on a chip called Affimetrix method and use it as a probe. In addition, as the tip, a non-porous tip such as a slide glass (Biostrand) or a porous membrane such as a trocellulose membrane is used. You can also
[0060] ハイブリダィゼーシヨンを行なうためのプローブは試料に含まれると予想される DNA の相補的配列を持つものであれば特に限定されない。  [0060] The probe for performing hybridization is not particularly limited as long as it has a complementary sequence of DNA expected to be contained in the sample.
プローブによって検出できる遺伝子が決まるため、ここで用いるプローブの設計はと ても重要である。 ReSEQや Unigeneなどの National Center for Biotechnology Informa tion (NCBI)にめるァ ~~タベ. ~~ス、ある ヽは European Bioinformatics Institute ^ Ens em ble、 GoldenPathなどのデータベースを用いれば、転写開始部位のプローブ DNAの 塩基配列を設計することが可能である。  Since the gene that can be detected is determined by the probe, the design of the probe used here is very important. It is a key to the National Center for Biotechnology Information (NCBI) such as ReSEQ and Unigene. It is a probe of the transcription start site by using databases such as European Bioinformatics Institute ^ Ens ble ble, GoldenPath, etc. It is possible to design the base sequence of DNA.
[0061] 本発明の方法においては、 mRNAの 5 '末端の解析に特異的なプローブをあらかじ め作製することもできる。これまで、技術的な問題力 転写開始部位の決定はそれほ ど容易ではな力つたため、公知のデータベースにある遺伝子データが転写開始点を 含むとは限らず、データベースの参照だけでは十分な転写開始部位の配列が得ら れない可能性があった。実際に、本発明者らが先に特許申請を行なった「遺伝子タ グの取得方法」(WO 2005/054465)によると、 ReSEQや Unigeneなどのデータベース には無い転写開始部位が数多く明らかになった(Hashimoto et al., 2004. Nat. Biote chnol. 22: 1146-9)。また mRNA保護法であるオリゴキャップ法を用いて遺伝子の全 長クロー-ングを行なった場合も、数多くの転写開始部位が明らかになつている(Dat abase of Human Transcriptional Start Sites; DBTSSノ。てこで、本発明の 施 [列で【ま 、「遺伝子タグの取得方法」によって得られた転写開始部位のデータを利用した。こ のァ ~~タは、 5 SAGE: 5 end Serial Analysis of uene Expression Database (http:// 5sage.gi.k.u- tokyo.ac.jp/)に収録されているもの、および発明者が独自に得たもの に基づく。このデータを利用することによって合理的なプローブ設計が可能になる。  [0061] In the method of the present invention, a probe specific for analysis of the 5 'end of mRNA can also be prepared in advance. Until now, it has been difficult to determine the transcription start site, so the genetic data in the public database does not always contain the transcription start point. There was a possibility that the sequence of the start site could not be obtained. In fact, according to the “Genetic Tag Acquisition Method” (WO 2005/054465), which the inventors previously applied for a patent, many transcription initiation sites that were not found in databases such as ReSEQ and Unigene were revealed. (Hashimoto et al., 2004. Nat. Biotechnol. 22: 1146-9). In addition, when transcription of the entire length of a gene is performed using the oligo-cap method, which is an mRNA protection method, many transcription start sites have been revealed (Datbase of Human Transcriptional Start Sites; DBTSS). In the column of the present invention, the data of the transcription start site obtained by the “method for obtaining a gene tag” was used. This data is a 5 SAGE: 5 end Serial Analysis of uene Expression Database. (http://5sage.gi.ku-tokyo.ac.jp/) and those obtained independently by the inventor. It becomes possible.
[0062] 本発明の方法は上記の DNAアレイに、上記方法により調製 1本鎖遺伝子タグ群を ハイブリダィズさせる工程を含む。本発明にお 、てハイブリダィゼーシヨンの条件とし ては、例えば「2 X SSC、 0.1%SDS、 50。C」、「2 X SSC、 0.1%SDS、 42。C」、「1 X SSC、 0 • 1%SDS、 37°C」、よりストリンジェントな条件として「2 X SSC、 0.1%SDS、 65°C」、「0.5 X SSC、 0.1%SDS、 42°C」及び「0.2 X SSC、 0.1%SDS、 65°C」等の条件を挙げることが できる。より詳細には、 Rapid-hyb buffer (Amersham Life Science)を用いた方法として 、 68°Cで 30分間以上プレハイブリダィゼーシヨンを行った後、プローブを添カ卩して 1時 間以上 68°Cに保ってハイブリッド形成させ、その後 2 X SSC、 0.1%SDS中、室温で 20 分間の洗浄を 3回行い、続いて 1 X SSC、 0.1%SDS中、 37°Cで 20分間の洗浄を 3回行 い、最後に 1 X SSC、 0.1%SDS中、 50°Cで 20分間の洗浄を 2回行うことができる。その 他、例えば Expresshyb Hybridization Solution (CLONTECH)中、 55°Cで 30分間以上 プレハイブリダィゼーシヨンを行った後、標識プローブを添カ卩して 37〜55°Cで 1時間 以上インキュベートし、 2 X SSC、 0.1%SDS中、室温で 20分間の洗浄を 3回、 1 X SSC、 0.1%SDS中、 37°Cで 20分間の洗浄を 1回行うこともできる。ここで、例えば、プレハイ ブリダィゼーシヨン、ハイブリダィゼーシヨンや 2度目の洗浄の際の温度をより高く設定 することにより、よりストリンジェントな条件とすることができる。例えば、プレハイブリダ ィゼーシヨン及びハイブリダィゼーシヨンの温度を 60°C、さらにストリンジェントな条件 としては 68°Cとすることができる。当業者であれば、このようなバッファーの塩濃度、温 度等の条件に加えて、プローブ濃度、プローブの長さ、プローブの塩基配列構成、 反応時間等のその他の条件を加味し、条件を設定することができる。 [0062] In the method of the present invention, a single-stranded gene tag group prepared by the above method is added to the above DNA array. A step of hybridizing. In the present invention, the hybridization conditions are, for example, “2 X SSC, 0.1% SDS, 50.C”, “2 X SSC, 0.1% SDS, 42.C”, “1 X SSC. , 0 • 1% SDS, 37 ° C, and more stringent conditions: 2 X SSC, 0.1% SDS, 65 ° C, 0.5 X SSC, 0.1% SDS, 42 ° C, and 0.2 X SSC , 0.1% SDS, 65 ° C. ”. More specifically, as a method using Rapid-hyb buffer (Amersham Life Science), after prehybridization for 30 minutes or more at 68 ° C, the probe is added for 1 hour or more. Hybridize at ° C, then wash 3 times for 20 minutes in 2 X SSC, 0.1% SDS at room temperature, followed by 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS It can be done 3 times, and finally it can be washed twice in 1 X SSC, 0.1% SDS at 50 ° C for 20 minutes. In addition, for example, in Prehybridization Solution (CLONTECH), after prehybridization at 55 ° C for 30 minutes or more, add the labeled probe and incubate at 37-55 ° C for 1 hour or more. It is possible to wash 3 times for 20 minutes at room temperature in 2 X SSC, 0.1% SDS, and once for 20 minutes at 37 ° C in 1 X SSC, 0.1% SDS. Here, for example, by setting the temperature at the time of pre-hybridization, hybridization, and the second washing higher, it is possible to achieve more stringent conditions. For example, the temperature of the prehybridization and the hybridization can be set to 60 ° C, and the stringent condition can be set to 68 ° C. Those skilled in the art will consider the conditions such as the salt concentration and temperature of the buffer in addition to the other conditions such as the probe concentration, the probe length, the probe base sequence composition, and the reaction time. Can be set.
本発明において、発現量を測定する方法の好ましい例としては、 DNAアレイ法にお Vヽて、プローブにノ、イブリダィズした 1本鎖遺伝子タグを定量する方法が挙げられる。 試料として用いる 1本鎖遺伝子タグ群は上記の方法により蛍光修飾することができる 。蛍光修飾により、 1本鎖遺伝子タグ群がプローブとハイブリダィゼーシヨンすると、チ ップ上のそのプローブのある位置が蛍光を発し、何も結合しなかったプローブのある 位置は蛍光を発しない。また、あるプローブにハイブリダィゼーシヨンする DNAの量に 応じて蛍光強度が変化する。この蛍光を検出することによって、あるプローブにハイ ブリダィズする 1本鎖遺伝子タグを定量し、プローブと相補配列を持つ遺伝子の発現 量を明らかにすることができる。蛍光修飾は、ハイブリダィズ前に行って 1本鎖遺伝子 タグ群のすべてに行うこともできるし、ハイブリダィズ後に行って DNAチップ上のプロ ーブにハイブリダィズした 1本鎖遺伝子群のみに行うこともできる。あるいはハイブリダ ィゼーシヨンの検出を蛍光によらずに行うこともできる。いずれにしても試料 DNAの相 補配列部分は mRNAの 5'末端由来なので、プローブと相補的な配列の転写開始部 位を持つ遺伝子の発現を検出できる。 In the present invention, a preferred example of a method for measuring the expression level is a method for quantifying a single-stranded gene tag that has been probed or hybridized by the DNA array method. The single-stranded gene tag group used as a sample can be fluorescently modified by the above method. When a single-stranded gene tag group is hybridized with a probe by fluorescent modification, the position of the probe on the chip fluoresces, and the position of the probe to which nothing is bound does not fluoresce . In addition, the fluorescence intensity changes depending on the amount of DNA that hybridizes to a probe. By detecting this fluorescence, the single-stranded gene tag that hybridizes to a probe can be quantified, and the expression level of a gene having a sequence complementary to the probe can be clarified. Fluorescence modification should be performed prior to hybridization, and single-stranded gene It can be performed on all of the tag groups, or can be performed only on the single-stranded gene group that has been hybridized to the probe on the DNA chip after hybridization. Alternatively, hybridization can be detected without using fluorescence. In any case, since the complementary sequence portion of the sample DNA is derived from the 5 ′ end of the mRNA, the expression of a gene having a transcription initiation site complementary to the probe can be detected.
[0064] 本発明においては、公知の方法を用いて、 2種類の試料を比較することができる。 D NAチップのような蛍光によりハイブリダィゼーシヨンを検出する場合は以下のようにで きる。上述のように蛍光物質を修飾させるときに、 2種類の試料で異なる蛍光物質を 用いておく。たとえば、上記のように Cy3を 1つの試料に、他の試料には Cy5を用いる ことができる。この 2種類の試料をあら力じめ混合してから、チップ上に乗せ、チップ 上での蛍光観察において、 Cy3由来の蛍光であるか、 Cy5由来の蛍光であるかを調 ベれば、どちらの試料由来の DNAであるのかが判明する。これによつてどちらの試料 において、どの遺伝子の発現量が多かったのかが明らかになる。この方法の利点は 、すでによく知られているように、 2つの試料の比較を 1つのチップ上の解析で行なえ る^;である。 [0064] In the present invention, two types of samples can be compared using a known method. When hybridization is detected by fluorescence such as a DNA chip, it can be performed as follows. When modifying the fluorescent material as described above, different fluorescent materials are used for the two types of samples. For example, as described above, Cy3 can be used for one sample, and Cy5 can be used for the other samples. If these two types of samples are premixed and then placed on the chip, and the fluorescence observation on the chip is examined to determine whether the fluorescence is derived from Cy3 or Cy5, either It turns out that it is DNA from the sample. This reveals which gene expression level was higher in which sample. The advantage of this method is that, as already well known, two samples can be compared by analysis on one chip ^;
[0065] 2種類の細胞由来の mRNAに対して、両方とも同じ配列の RNAリンカ一(1または 2) を用いてもょ 、し、ある 、は 2種類の細胞でアダプタ一部分は異なる RNAリンカ一を 用いてもよい。  [0065] For mRNA derived from two types of cells, the RNA linker (1 or 2) of the same sequence may be used. May be used.
[0066] 2種類の試料の遺伝子発現を比較することは、以下のような場合に有用である。出 発材料である細胞が 2種類あり、その 2つの遺伝子発現を比較したい場合がある。た とえば、ある癌細胞を用意し、片方は通常の培地で培養し、残りの片方はこの培地に 抗癌剤を加えて培養する。こうして 2種類の培養における遺伝子発現を比較すれば、 抗癌剤が遺伝子発現に与える影響を明らかにすることができる。抗癌剤を加えた方 にのみ発現があった遺伝子は、直接または間接的に抗癌剤が発現を誘導したと考え られる。抗癌剤を加えた方に発現がなぐカロえない方にはあった遺伝子は、抗癌剤が 発現を抑えたとみなされる。あるいは、両方に発現がある力 抗癌剤をカ卩えた方に多 い、あるいは少ない場合もあり、これらも抗癌剤が遺伝子発現をアップレギュレート、 またはダウンレギュレートとしたといえる。このような比較は抗癌剤の影響を見るのに 有用である。あるいは肝臓と腎臓のように異なる組織由来の細胞を比較すれば、組 織特異的な遺伝子発現を調べられる。同じ組織でも、正常組織と疾患組織を比較す れば、疾患特異的遺伝子を発現でき、疾患の診断に役立つ。または、和牛と、和牛と 外来牛をかけ合わせてできた F1の牛とで遺伝子発現を比較し、それぞれに特徴的な 遺伝子を見つければ、和牛を他の牛から区別することができるようになる。 [0066] Comparison of gene expression of two types of samples is useful in the following cases. There are two types of cells that are starting materials, and you may want to compare the expression of the two genes. For example, a certain cancer cell is prepared, one is cultured in a normal medium, and the other is cultured by adding an anticancer agent to this medium. Thus, by comparing gene expression in the two cultures, it is possible to clarify the effect of anticancer drugs on gene expression. A gene that was expressed only in the case where an anticancer drug was added is considered to be induced directly or indirectly by the anticancer drug. Genes that were found in those who did not have expression after adding an anticancer drug are considered to have been suppressed by the anticancer drug. There are also cases where there are many or few people who have anti-cancer drugs that have expression in both, and it can be said that these anti-cancer drugs up-regulated or down-regulated gene expression. Such a comparison can be used to see the effects of anticancer drugs. Useful. Alternatively, tissue-specific gene expression can be examined by comparing cells from different tissues, such as the liver and kidney. Even if the same tissue is compared with normal tissue and diseased tissue, disease-specific genes can be expressed, which is useful for disease diagnosis. Or, if you compare gene expression between Japanese cattle and F1 cattle made by crossing Japanese cattle and non-Japanese cattle, you will be able to distinguish Japanese cattle from other cattle if you find a characteristic gene for each. .
[0067] 上記のように本発明の 1本鎖遺伝子タグ群は、 DNAアレイ法の試料として用いること ができる。本発明の mRNAの 5'末端の塩基配列の種類と量比を反映する 1本鎖 DNA タグ群を、 DNAアレイ法の試料として用いることで、転写開始部位および、転写開始 部位を標的とした遺伝子の発現量を簡易にかつ正確に調べることが可能になる。本 発明の方法により全長 mRNAを遺伝子発現解析に使用していた際に生じていた予測 できないシグナルの発生を、解消することが可能となるものと考えられる。  [0067] As described above, the single-stranded gene tag group of the present invention can be used as a sample for a DNA array method. By using a single-stranded DNA tag group that reflects the type and quantity ratio of the 5′-end base sequence of the mRNA of the present invention as a sample for the DNA array method, the transcription start site and the gene targeting the transcription start site Can be easily and accurately examined. By the method of the present invention, it is considered possible to eliminate the occurrence of an unpredictable signal that occurred when full-length mRNA was used for gene expression analysis.
[0068] 本発明の 1本鎖 DNAタグ群、更に 1本鎖 DNAタグ群の作製に必要な各種の試薬類 は、予め組み合わせてキットとして供給することができる。すなわち本発明は、以下の 要素を含む、遺伝子タグの製造用試薬キットに関する。  [0068] Various reagents necessary for the production of the single-stranded DNA tag group of the present invention and the single-stranded DNA tag group can be combined in advance and supplied as a kit. That is, the present invention relates to a reagent kit for producing a gene tag including the following elements.
[0069] キットに含まれる要素としては次のものを挙げることができる。プライマーの組み合 わせによりいくつかの種類のキットを作成することができる。また、 1つの細胞を解析 するの力、 2種類の細胞を比較するのかにより蛍光物質を 1つにする力 2つにする の力選択することができる。  [0069] Examples of the elements included in the kit include the following. Several types of kits can be created by combining the primers. In addition, the power to analyze one cell and the power to make two fluorescent substances can be selected depending on whether two types of cells are compared.
(1) IIS型制限酵素の認識部位を持つ RNAリンカ一を含む、 RNAライゲーシヨンを行う ための要素、  (1) Elements for performing RNA ligation, including an RNA linker having a recognition site for a type IIS restriction enzyme,
(2)プライマーを含む、 cDNA第 1鎖合成を行うための要素、  (2) Elements for synthesizing cDNA first strand, including primers,
(3) RNAリンカ一の一部に相補的な配列をもち、固相に結合可能な標識を持つオリゴ DNAと (2)のオリゴ DNAに相補的な配列を持つオリゴ DNAを含む、 cDNA第 2鎖合成を 行うための要素、  (3) A cDNA second comprising an oligo DNA having a sequence complementary to a part of the RNA linker and having a label capable of binding to a solid phase and an oligo DNA having a sequence complementary to the oligo DNA of (2). Elements for chain synthesis,
(4) mRNAの 5'末端領域断片を得るための要素、  (4) an element for obtaining a 5 'end region fragment of mRNA,
(5)転写開始部位を DNAまたは RNAプローブにしたチップ上で、蛍光観察するための 要素  (5) Elements for fluorescence observation on a chip whose transcription start site is a DNA or RNA probe
[0070] またこれらの要素には、反応に必要な溶液類を追加することもできる。たとえばそれ ぞれの要素は、次に例示するもの等力 構成することができる。 [0070] Further, solutions necessary for the reaction can be added to these elements. For example it Each element can be made up of the isotropic forces illustrated below.
(1) IIS型制限酵素の認識部位を持つ RNAリンカ一を含む、 RNAライゲーシヨンの要素 バクテリアアルカリ性フォスファターゼ  (1) RNA ligation elements, including an RNA linker with a recognition site for type IIS restriction enzyme Bacterial alkaline phosphatase
タバコ酸性ピロフォスファターゼ  Tobacco acid pyrophosphatase
T4 RNAリガーゼ  T4 RNA ligase
RNAリンカ一  RNA linker
(2)プライマーを含む、 cDNA第 1鎖合成を行うための要素、  (2) Elements for synthesizing cDNA first strand, including primers,
cDNA第 1鎖合成用プライマー  Primer for cDNA first strand synthesis
逆転写酵素  Reverse transcriptase
なお cDNA第 1鎖合成用プライマーには次のようなものが挙げられる。  The following are examples of primers for cDNA first strand synthesis.
0オリゴ dTプライマー  0 oligo dT primer
ii)特定の mRNAに相補的な塩基配列を含むプライマー  ii) Primer containing a base sequence complementary to a specific mRNA
iii)アダプター配列を持つオリゴ dTプライマー  iii) Oligo dT primer with adapter sequence
iv)アダプター配列を持ち、特定の mRNAに相補的は配列を含むプライマー V)アダプター配列を持つランダムプライマー  iv) Primer that has an adapter sequence and is complementary to a specific mRNA. V) A random primer that has an adapter sequence.
(3) RNAリンカ一の一部に相補的な配列をもち、固相に結合可能な標識を持つオリゴ DNAと (2)のオリゴ DNAに相補的な配列を持つオリゴ DNAを含む、 cDNA第 2鎖合成を 行うための要素、  (3) A cDNA second comprising an oligo DNA having a sequence complementary to a part of the RNA linker and having a label capable of binding to a solid phase and an oligo DNA having a sequence complementary to the oligo DNA of (2). Elements for chain synthesis,
cDNA第 2鎖合成用プライマー  Primer for cDNA second strand synthesis
DNAポリメラーゼ  DNA polymerase
なお cDNA第 2鎖合成用プライマーは、たとえば 1つは、  For example, one primer for cDNA second strand synthesis is
a) RNAリンカ一のアダプタ一部分の配列をもち、 5'末端をピオチンィ匕したオリ ゴ DNA  a) Oligo DNA with a sequence of the adapter part of the RNA linker and a 5 'end
とし、これに次の 3つのうちの!/、ずれか 1つを組み合わせるとよ!/、。  Combine this with one of the following three! /, Or one!
b)オリゴ dTプライマー  b) Oligo dT primer
c)特定の mRNAに相補的な塩基配列を含むプライマー  c) Primer containing a base sequence complementary to a specific mRNA
d)アダプター配列 ただしこの!/、ずれかの選択は上記 (2)の cDNA第 1鎖合成に用いたプライマー により決定される。 0の場合は b)、 ii)の場合は c)、 iii)、 iv)、 v)の場合は d)である。 d) Adapter sequence However, this selection of! / Is determined by the primer used for the first strand cDNA synthesis in (2) above. B) for 0, c) for ii), d) for iii), iv), and v).
(4) mRNAの 5'末端領域断片を得るための要素、  (4) an element for obtaining a 5 'end region fragment of mRNA,
IIS型制限酵素  IIS type restriction enzyme
アビジン化磁気ビーズ  Avidinized magnetic beads
RNAリンカ一のアダプタ一部分に相補的な配列を持つオリゴ DNA  Oligo DNA with a sequence complementary to the adapter part of the RNA linker
(5)転写開始部位を DNAまたは RNAプローブにしたチップ上で、蛍光観察するための 要素  (5) Elements for fluorescence observation on a chip whose transcription start site is a DNA or RNA probe
蛍光標識アビジン  Fluorescently labeled avidin
プローブを配置させたチップ  Tip with probe
なお、蛍光標識アビジンは、 1つの細胞において発現を解析する際には、たとえば Cy3標識アビジンなどの一種類の蛍光物質のみを利用する。また、 2つの細胞におい て発現を比較する際にはたとえば Cy3標識アビジンおよび Cy5標識アビジンなど二種 類の蛍光色素を利用する。これら二種類の蛍光標識をそれぞれの細胞由来の 1本鎖 遺伝子タグ群に行!ヽ、前述のように競合的に DNAチップ上でプローブにハイブリダィ ズさせる。あるいは、結合させる標識ごとに RNAリンカ一のアダプタ一部分を異なる配 列をにし、 IIS型酵素認識部位は同じ配列としておくことができる。つまり、 (3) (a)の cD NA第 2鎖合成を行うためのオリゴ DNAおよび(4)の RNAリンカ一のアダプタ一部分に 相補的な配列も標識ごとにそれぞれ異なったアダプター配列とする。こうしておくと、 二種類の細胞由来の 1本鎖遺伝子タグ群のアダプター配列が異なるので、この配列 に相補的な標識オリゴ DNAを利用してハイブリダィズ後に蛍光発色させることもできる  When analyzing the expression of fluorescently labeled avidin in one cell, only one kind of fluorescent substance such as Cy3 labeled avidin is used. When comparing expression in two cells, two types of fluorescent dyes such as Cy3-labeled avidin and Cy5-labeled avidin are used. Apply these two types of fluorescent labels to single-stranded gene tags from each cell!競合 Hybridize to the probe competitively on the DNA chip as described above. Alternatively, the adapter part of the RNA linker can be arranged differently for each label to be bound, and the IIS type enzyme recognition site can be made the same sequence. In other words, (3) (a) the oligo DNA for the second strand cDNA synthesis and (4) the RNA linker-complementary complementary sequence also have different adapter sequences for each label. In this way, since the adapter sequences of the single-stranded gene tag groups derived from two types of cells are different, fluorescence can be developed after hybridization using a labeled oligo DNA complementary to this sequence.
本発明において、具体的な 1本鎖遺伝子タグ群の製造用試薬キットの例としては、 以下の要素を組み合わせたキットが挙げられる。 In the present invention, a specific example of a reagent kit for producing a single-stranded gene tag group includes a kit in which the following elements are combined.
(a) IIS型制限酵素の認識配列を含むオリゴヌクレオチドからなる RNAリンカ一  (a) an RNA linker comprising an oligonucleotide containing a recognition sequence for an IIS type restriction enzyme
(b) RNAリンカ一を RNAの CAP部位に連結するための試薬  (b) Reagent for linking RNA linker to RNA CAP site
(c) RNAリンカーを铸型として合成された cDNAにァニールするオリゴヌクレオチドから なる cDNA第 2鎖合成用のプライマー (d) cDNA第 1鎖合成用プライマー (c) Primer for cDNA second-strand synthesis consisting of an oligonucleotide that anneals to cDNA synthesized using an RNA linker as a cage. (d) Primer for cDNA first strand synthesis
また、さらに好ましいキットとの例としては、 cDNA第 1鎖合成用プライマーカ 以下 の 0-iiO力もなる群力も選択されるいずれかのプライマーであるキットが挙げられる。  Further, as an example of a more preferable kit, there is a kit which is any primer for which a group force of 0-iiO force below the primer for cDNA first strand synthesis is selected.
0ランダムプライマー  0 random primer
ii)オリゴ dTプライマー  ii) Oligo dT primer
iii)特定の mRNAに相補的な塩基配列を含むプライマー  iii) Primer containing a base sequence complementary to a specific mRNA
[0072] 本発明によって、転写産物である mRNAの 5'末端の遺伝子発現情報 (発現量)を得 ることができる。 5'末端の発現情報は、遺伝子解析において、特に重要な意味を有す る。たとえば、本発明によって得ることができる 5'末端の遺伝子発現情報を、以下のよ うな用途に利用することができる。  [0072] According to the present invention, gene expression information (expression level) at the 5 'end of mRNA, which is a transcription product, can be obtained. The expression information at the 5 'end is particularly important in gene analysis. For example, gene expression information at the 5 ′ end that can be obtained by the present invention can be used for the following uses.
[0073] 本発明は、遺伝子の発現プロファイルの取得に利用することができる。すなわち本 発明は、次の工程を含む、真核細胞における遺伝子の発現プロファイルの取得方法 に関する。  [0073] The present invention can be used to obtain a gene expression profile. That is, the present invention relates to a method for obtaining a gene expression profile in a eukaryotic cell, comprising the following steps.
(1)本発明に基づ!/ヽて 1本鎖遺伝子タグ群を製造する工程  (1) Based on the present invention!
(2) (1)の 1本鎖遺伝子タグ群の発現量を測定する工程  (2) Measuring the expression level of the single-stranded gene tag group in (1)
(3)測定された遺伝子発現情報を統合して遺伝子発現プロファイルを作成する工程  (3) The process of creating a gene expression profile by integrating the measured gene expression information
[0074] 本発明にお 、て発現プロファイルとは、発現情報を伴った遺伝子情報のリストを指 す。発現情報とは、発現のレベルを示す量的なパラメーターである。遺伝子情報とは 、通常、遺伝子を特定するための情報を言う。具体的には、遺伝子の塩基配列、遺 伝子の名称、遺伝子の ID番号などが遺伝子情報を構成する。リストを構成する遺伝 子の数は、任意である。またその対象も限定されない。解析の目的に応じて、必要な 遺伝子の情報を集積して発現プロファイルが構成される。 [0074] In the present invention, an expression profile refers to a list of gene information accompanied by expression information. Expression information is a quantitative parameter that indicates the level of expression. Gene information usually refers to information for specifying a gene. Specifically, gene base sequence, gene name, gene ID number, etc. constitute gene information. The number of genes that make up the list is arbitrary. Moreover, the object is not limited. Depending on the purpose of the analysis, information on necessary genes is accumulated to construct an expression profile.
[0075] 本発明によれば、 CAP構造を有する RNAから、その 5'末端の遺伝子発現情報を取 得することができる。またその遺伝子発現情報を照合することによって、塩基配列情 報とその出現頻度とが対応付けられる。こうして発現プロファイルを得ることができる。  [0075] According to the present invention, gene expression information at the 5 'end can be obtained from RNA having a CAP structure. In addition, by collating the gene expression information, the base sequence information and the appearance frequency are associated with each other. Thus, an expression profile can be obtained.
[0076] RNAとして全ての RNAを対象とすれば、全遺伝子を対象とする発現プロファイルを 得ることができる。本発明においては、特定の遺伝子、あるいは構造的な共通性を有 する一群の遺伝子を対象に、遺伝子タグを生成することもできる。このようなケースで は、特定の遺伝子、あるいは一群の遺伝子の発現プロファイルが生成される。 [0076] If all RNAs are targeted as RNA, an expression profile for all genes can be obtained. In the present invention, a gene tag can also be generated for a specific gene or a group of genes having structural commonality. In such a case An expression profile of a specific gene or group of genes is generated.
[0077] CAP構造を有する mRNAとは、細胞中で発現している mRNAの全てであると仮定す ると、本発明によって得ることができる発現プロファイルは、細胞内の遺伝子の発現 状況をより正確に反映しているということができる。本発明において、 mRNAの 5'末端 の遺伝子発現情報を測定するとき、解析対象となる遺伝子発現情報と対照となる遺 伝子の発現情報の相対的な発現量を蓄積するのが好ましい。対照となる遺伝子に対 する比として比較すれば、より客観的な評価を期待できる。  [0077] Assuming that the mRNA having a CAP structure is all mRNA expressed in a cell, the expression profile obtainable by the present invention more accurately expresses the expression status of the gene in the cell. It can be said that it is reflected in. In the present invention, when measuring the gene expression information at the 5 ′ end of mRNA, it is preferable to accumulate the relative expression level of the gene expression information to be analyzed and the expression information of the control gene. A more objective evaluation can be expected when compared as a ratio to the control gene.
[0078] 本発明によって得られた発現プロファイルは、データベースとすることができる。デ ータベースとは、発現プロファイルを構成する情報を機械可読式のデータとして蓄積 した電子データの集合をいう。本発明のデータベースは、 mRNAの 5'末端の遺伝子 発現情報を含む。更に本発明のデータベースは、各塩基配列情報の ID番号、発現 情報が得られた RNAの由来を合わせて記録することができる。更に、既知の遺伝子 の発現情報との関係、ゲノム上へのマッピングの結果などの情報を付加することもで きる。  [0078] The expression profile obtained by the present invention can be used as a database. A database is a set of electronic data in which information constituting an expression profile is stored as machine-readable data. The database of the present invention includes gene expression information at the 5 ′ end of mRNA. Furthermore, the database of the present invention can record the ID number of each base sequence information and the origin of the RNA from which the expression information was obtained. Furthermore, it is possible to add information such as the relationship with the expression information of known genes and the result of mapping onto the genome.
[0079] タグの発現量情報の比較対象としては、予め集積されたデータベースの情報を利 用することもできる。たとえば、標準的な組織や細胞株について、予め本発明の方法 に基づいて遺伝子タグの情報を集積しておく。この情報を、コンピューターネットヮー ク上で共有することができる。あるいは、前記試薬キットに添付して商業的に流通させ ることもできる。こうして入手された遺伝子タグ情報と、自身が実験して取得した遺伝 子タグ情報を比較することもできる。  [0079] As a comparison target of the expression level information of the tag, information stored in a database accumulated in advance can be used. For example, for standard tissues and cell lines, gene tag information is accumulated in advance based on the method of the present invention. This information can be shared on a computer network. Alternatively, it can be distributed commercially by attaching to the reagent kit. It is also possible to compare the gene tag information obtained in this way with the gene tag information obtained through experiments.
[0080] 本発明の 1本鎖遺伝子タグ群を試料として用いた DNAアレイの使用においては、チ ップの各区画にどの遺伝子の転写開始部位のプローブがあるのかを示すデータべ ースを作っておくとよい。チップは 1種類ではなぐヒトを始めとする真核生物ごとのチ ップがありうる。また、 1つの生物種のプローブが 1個のチップ上に乗るとは限らない。 1つの生物種についても、多様な遺伝子を網羅したチップを作る場合もあれば、ある タイプの産物に特ィ匕する場合もある。たとえば、サイト力イン、レセプター、癌抑制遺 伝子、 CD番号のある分子(つまり CD抗原)などに特ィ匕したチップも作ることができる。 次にそれぞれの区画について、チップを区別する名称、チップ上での区画位置、区 画にあるプローブの遺伝子名、遺伝子データバンク内での名称、そのプローブ配列 が遺伝子上あるいはゲノム上のどの位置にあるのかを示す位置情報、プローブの塩 基配列などを、 1つのデータとして作ることができる。このデータをすベての区画につ V、て作り、 1つの表に 、れたファイルをチップごとに作っておけばよ!、。 [0080] In the use of a DNA array using the single-stranded gene tag group of the present invention as a sample, a database indicating which gene transcription start site probe is present in each section of the chip is prepared. It is good to keep. There can be a chip for each eukaryote, including humans, which is not a single type of chip. In addition, one species of probe is not always on one chip. A single species may make a chip that covers a variety of genes, or it may specialize in a certain type of product. For example, it is possible to make a chip specially designed for site force-in, receptors, cancer suppressor genes, molecules with CD numbers (ie, CD antigens). Next, for each section, the name that distinguishes the chip, the position of the section on the chip, Generating the gene name of the probe in the drawing, the name in the gene data bank, position information indicating where the probe sequence is located on the gene or genome, the base sequence of the probe, etc. as one piece of data Can do. Create this data for all sections, V, and create a single file for each chip in one table!
[0081] 本発明のデータベースには、結果を表示する際に、本発明の 1本鎖遺伝子タグ群 を試料として用いた DNAアレイにおける蛍光検出の結果から、どの遺伝子が転写開 始されたのかを表示する機能、および 2つの細胞の遺伝子発現プロファイルを比較 する機能を持つソフトウェアを用いてもょ 、。 [0081] In the database of the present invention, when displaying the results, it is shown which gene has been transcriptionally started from the result of fluorescence detection in the DNA array using the single-stranded gene tag group of the present invention as a sample. Use software that has the ability to display and compare gene expression profiles of two cells.
また、どの遺伝子が転写開始されたのかに基づき、どのプロモーターが働き、どの 応答エレメントや転写因子が関わったのかを表示する機能を持つソフトウェアにより 結果の表示を行ってもょ 、。  In addition, based on which gene has started transcription, the result can be displayed by software that has the function of displaying which promoter worked and which response element or transcription factor was involved.
[0082] まずソフトウェアは、蛍光強度の観察が行なわれたときに、用いたチップのこの表デ ータファイルを取り込む。 First, the software captures this table data file of the chip used when the fluorescence intensity is observed.
次に、検出された蛍光強度とその区画位置の情報を入力し、取り込んである表デー タにおける同じ区画位置に対して、蛍光強度を表中に書き込めばよい。ソフトウェア には、各区画データに対する並び替え、検索などの機能を持たせておくとよい。蛍光 強度順に並べ替えた表示、遺伝子ごとに並べた表示が可能になるであろう。ある転 写産物の発現量を基準として、他の転写産物の発現量を表示できるように、ある転写 産物の蛍光強度を 1として、他の転写産物の蛍光強度をその比で表せるようにしてお くとよ ヽ。  Next, information on the detected fluorescence intensity and its partition position is input, and the fluorescence intensity may be written in the table for the same partition position in the table data that has been imported. The software should have functions such as sorting and searching for each section data. A display arranged in order of fluorescence intensity and a display arranged for each gene will be possible. In order to display the expression level of other transcripts based on the expression level of one transcript, the fluorescence intensity of one transcript is set to 1, and the fluorescence intensity of other transcripts can be expressed as a ratio. Kutoyo ヽ.
[0083] 具体的な例としては、チップで得られた蛍光強度の結果を、どの転写産物が細胞 内にあつたのかに解釈し直してわ力りやすく表示するコンピュータソフトウェアを挙げ ることができる。通常 1つのチップ上には数万箇所の区画を作って、それぞれに別の プローブを配置させることができる。蛍光が観察されたかどうか、蛍光強度が強かった 力どうかの結果から、それぞれどの転写開始部位力も始まる産物ができて 、たのか、 どの転写産物が多力つたのかの結果に解釈しなおすことが最初に必要である。蛍光 強度を観察した場所が数万箇所あるので、これを行なうためのコンピュータソフトゥェ ァを作るのが適切である。 [0084] 2つの細胞における遺伝子発現を比較する目的の場合、それぞれの細胞ごとに異 なる色の蛍光で遺伝子が標識される。蛍光強度が観察されたときに、表中に書き込 まれるのは、蛍光の色とその強さの 2つにするとよい。表示するときに色ごとに分けて 示せば、どちらの細胞において、どの遺伝子の発現が多力つたのかが表される。 以上が基本的な機能であり、他の機能を足すこともできる。このソフトウェアは上記 のようにキットに含まれるものであってもよ 、。 [0083] As a specific example, there can be mentioned computer software that interprets the result of fluorescence intensity obtained by the chip and interprets which transcript is in the cell and displays it easily. . Normally, tens of thousands of sections can be created on a single chip, and different probes can be placed on each section. From the results of whether fluorescence was observed and whether the intensity of the fluorescence was strong, it was first necessary to reinterpret the result as to which product of which transcription initiation site force started, and which transcript was multi-functional. Is necessary. Since there are tens of thousands of places where the fluorescence intensity was observed, it is appropriate to make computer software to do this. [0084] For the purpose of comparing gene expression in two cells, the gene is labeled with fluorescence of a different color for each cell. When fluorescence intensity is observed, it is better to write two colors in the table: fluorescence color and intensity. If it is shown separately for each color when displaying, it shows which gene expression is most likely in which cell. The above is the basic function, and other functions can be added. This software may be included in the kit as described above.
[0085] 本発明の発現プロファイルのデータベースは、電子媒体に保存することができる。  [0085] The expression profile database of the present invention can be stored in an electronic medium.
電子媒体としては、各種のディスク装置、テープ媒体、あるいはフラッシュメモリーな どを示すことができる。これらの電子媒体は、ネットワーク上で共有することができる。 たとえば、インターネット上で本発明のデータベースを共有することができる。更に、 前記タグの発現量解析のためのソフトウェアに、インターネットを介して、本発明のデ ータベースの情報を参照するための機能を追加することもできる。あるいは逆に、本 発明に基づ 、て生成された新たな発現プロファイル情報を、インターネットを介して、 データベースに追加することもできる。  Examples of electronic media include various disk devices, tape media, and flash memory. These electronic media can be shared on a network. For example, the database of the present invention can be shared on the Internet. Furthermore, a function for referring to the database information of the present invention can be added to the software for analyzing the expression level of the tag via the Internet. Or, conversely, new expression profile information generated based on the present invention can be added to the database via the Internet.
[0086] 本発明の発現プロファイルを利用して、発現プロファイル解析を実施することができ る。すなわち本発明は、本発明に基づいて異なる種類の細胞の遺伝子発現プロファ ィルを取得し、遺伝子発現プロファイルを比較して細胞間で発現頻度の異なる遺伝 子タグを選択する工程を含む、遺伝子発現プロファイルの解析方法に関する。異な る細胞間で発現レベルの異なる遺伝子を取得する解析方法は、発現プロファイル解 祈と呼ばれている。このような解析によって、たとえば、疾患などに関連する遺伝子が 数多く取得されてきた。本発明の発現プロファイルも、このような発現プロファイル解 祈に利用することができる。 [0086] An expression profile analysis can be performed using the expression profile of the present invention. That is, the present invention comprises gene expression profiles comprising the steps of obtaining gene expression profiles of different types of cells based on the present invention, comparing gene expression profiles, and selecting gene tags having different expression frequencies between cells. The present invention relates to a profile analysis method. An analysis method for obtaining genes having different expression levels between different cells is called expression profile praying. By such analysis, for example, many genes related to diseases have been obtained. The expression profile of the present invention can also be used for such expression profile praying.
[0087] 本発明の発現プロファイル解析において、解析の対象とする異なる細胞とは、その 由来が異なるあらゆる細胞を言う。同じ糸且織に由来する細胞であっても、疾患の有無 、人種、年齢、性別などのなんらかの条件の相違がある場合には、由来が異なる細 胞である。解析の目的に応じて、考慮すべき条件が相違すれば、由来が異なる細胞 である。一方、解析の目的に対して無視しうる条件の相違しか見出せない場合には、 同一の細胞と見なされる。たとえば、異なる臓器、異なる組織、あるいは由来や培養 条件などが異なる細胞の間で発現プロファイルを比較することによって、臓器、組織、 あるいは細胞間にお 、て、発現レベルの高 、(または低 、)遺伝子を選択することが できる。本発明を応用することができる、解析対象の組み合わせを以下に例示する。 [0087] In the expression profile analysis of the present invention, different cells to be analyzed refer to all cells having different origins. Even cells derived from the same yarn and weave are cells that have different origins if there are some differences in conditions such as the presence or absence of disease, race, age, and sex. Depending on the purpose of the analysis, if the conditions to be considered are different, the cell has a different origin. On the other hand, if only negligible differences can be found for the purpose of the analysis, they are considered the same cell. For example, different organs, different tissues, or origins and cultures By comparing expression profiles between cells with different conditions and the like, genes with high (or low) expression levels can be selected between organs, tissues, or cells. Examples of combinations of analysis objects to which the present invention can be applied are shown below.
[0088] 異なる組織  [0088] Different organizations
成人の組織と胎児の組織  Adult tissue and fetal tissue
患者の組織と健常者の組織  Patient tissue and healthy tissue
男性の組織と女性の組織  Male organization and female organization
人種の異なるヒトの組織  Human tissues of different races
生育環境の異なる同じ生物種の組織  Tissues of the same species with different growth environments
[0089] 異なる細胞 [0089] Different cells
同じ細胞で培養条件の異なる細胞  Cells with the same cells but different culture conditions
同じ培養条件で培養時間の異なる細胞  Cells with different culture times under the same culture conditions
特定の処理を与えた細胞と与えな!/、細胞  Don't give a cell with a specific treatment! /, Cell
[0090] より具体的には、癌組織と、正常な組織の間で発現プロファイルを比較することによ つて、癌に特徴的な遺伝子タグの発現情報を取得することができる。あるいは、特に 悪性度の高い癌と、低い癌との比較によって、悪性度に関連する遺伝子タグを特定 することができる。 [0090] More specifically, expression information of gene tags characteristic of cancer can be obtained by comparing expression profiles between cancer tissue and normal tissue. Alternatively, genetic tags related to malignancy can be identified by comparing particularly high-grade cancer and low-grade cancer.
[0091] 以上のソフトウェアでは、チップで得られたデータに対して最初に行なう解析であり 、この解析を行なうことにより、データが有意性を持つ。またこのチップで得られたデ ータを用いると、さらに意義深い解析が行なえる。背景技術の項において、発現量が 細胞のおかれた状況によって変化する遺伝子をみつけることの重要性を述べた。そ のような遺伝子の発現は、ゲノム上で転写開始部位から上流にあるプロモーター配 列において転写調節を受けている。これまでに明らかになったプロモーター配列は 必ずしも十分とは 、えな 、。たとえばヒトでは数百のプロモーター配列が示されて ヽ るに過ぎない。し力し転写量の変化した遺伝子はどのようなプロモーターの調節を受 けて 、たのかを示すことができれば重要な情報になる。そこでまずソフトウェアでは、 チップ上のそれぞれのプローブ配列に対しゲノム上で上流にあるプロモーター配列 を対応させ、プローブにハイブリダィズして蛍光が検出された場合そのプロモーター が働 、たものとして表示させる機能を持たせることができる。このプロモーター配列の 情報は、上述のソフトウェアで用いた表ファイルの中のデータの拡張としてもよ!/、。 The above software is the first analysis performed on the data obtained by the chip, and the data has significance by performing this analysis. In addition, the data obtained with this chip can be used for more meaningful analysis. In the background section, the importance of finding genes whose expression level varies depending on the situation of the cells. The expression of such genes is subject to transcriptional regulation in the promoter sequence upstream from the transcription start site on the genome. The promoter sequences that have been clarified so far are not necessarily sufficient. For example, only a few hundred promoter sequences are shown in humans. However, if the gene whose transcription amount has been changed is able to show what kind of promoter it has undergone, it becomes important information. Therefore, the software first associates each probe sequence on the chip with a promoter sequence located upstream in the genome, and when the fluorescence is detected by hybridizing to the probe, that promoter sequence. It is possible to have a function of displaying as a product. This promoter sequence information can be an extension of the data in the table file used in the above software! /.
[0092] また、ゲノム配列上プロモーター配列とは離れた位置に応答エレメントが見つ力るこ とがある。この応答エレメントにはいろいろな種類がある力 たとえばここに転写因子 が結合し、転写因子にさらにいくつかの因子が結合するとプロモーター配列に結合し て、さらにその複合体に RNAポリメラーゼが結合してプロモーター配列の下流力 転 写が開始される。したがってそれぞれのプローブに対して関連する応答エレメントや 転写因子を拡張データとして表ファイルに 、れておき、蛍光が観察された場合どの 応答エレメントや転写因子が活性化されたの力を表示することができる。また、それぞ れの転写因子について、細胞内情報伝達経路や、レセプター、レセプターに結合す るリガンドなども、それぞれのチップ上のプローブに対して拡張データとして表フアイ ルに入れておくことができる。  [0092] In addition, the response element may be found at a position distant from the promoter sequence on the genome sequence. There are various types of force in this response element. For example, a transcription factor binds here, and when several factors bind to the transcription factor, it binds to the promoter sequence, and further, RNA polymerase binds to the complex and the promoter. The downstream force transfer of the array is started. Therefore, the response elements and transcription factors related to each probe are stored in the table file as extended data, and when the fluorescence is observed, it is possible to display which response element or transcription factor is activated. it can. In addition, for each transcription factor, intracellular signal transduction pathways, receptors, ligands that bind to receptors, etc. can be stored in a table file as extended data for the probes on each chip. .
[0093] 以上のように、ある転写産物が検出されたら、それに対応するプロモーター、応答 配列、転写因子、細胞内情報伝達経路、受容体、リガンドを表示させることができる。 このような表示は、 2つの細胞を比較したときにより有効である。あるいは、 1つの受容 体や細胞内情報伝達経路の活性化に対し、転写される遺伝子のセットが明らかであ れば、それを拡張データとして含ませることができる。この場合、本発明による方法に よりある細胞について転写された遺伝子セットを明らかにし、この結果と拡張データに ある遺伝子セットと対応させて、細胞内でどんな経路が活性ィ匕されどんな状況におか れて 、るの力推定することができる。  [0093] As described above, when a certain transcription product is detected, the corresponding promoter, response element, transcription factor, intracellular signal transduction pathway, receptor, and ligand can be displayed. Such a display is more effective when comparing two cells. Alternatively, if the set of genes to be transcribed is clear for activation of one receptor or intracellular signal transduction pathway, it can be included as extended data. In this case, the gene set transcribed for a cell by the method according to the present invention is clarified, and this result is associated with the gene set in the extended data, so that what pathway is activated in the cell and under what circumstances. It can be estimated.
[0094] 現状では、このような関連データは必ずしも十分には得られて!/、な!/、。多種の細胞 試料を本発明の方法によって解析し、それぞれの細胞試料のチップデータを検証し て総合することによって、このような関連データを充実させて 、くことができる。  [0094] At present, such related data is not always obtained enough! By analyzing various cell samples by the method of the present invention, and verifying and synthesizing the chip data of each cell sample, it is possible to enrich such related data.
なお、本明細書において引用されたすベての先行技術文献は、参照として本明細 書に組み入れられる。  All prior art documents cited in the present specification are incorporated herein by reference.
実施例  Example
[0095] 以下に実施例に基づいて、本発明をさらに具体的に説明するが、本発明はこれら 実施例に制限されるものではな 、。 本実施例では、発明者らの別の発明である「遺伝子タグの取得方法」(WO 2005/0 54465)に基づいて行なった解析結果から、「遺伝子タグの取得方法」と本発明の方 法とが合理的に比較できるような転写開始部位配列を選び、その配列を持つプロ一 ブを合成し、チップ上に配置させた。本発明で示した方法にしたがって細胞力も試料 を調製し、チップ上で反応を行ない、蛍光検出を行なった。その蛍光の結果から、本 発明の方法と「遺伝子タグの取得方法」の比較を行なった。 [0095] Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In this example, based on the analysis results performed based on “Genetic tag acquisition method” (WO 2005/0 54465), which is another invention of the inventors, “Genetic tag acquisition method” and the method of the present invention are used. We selected a transcription start site sequence that can be compared reasonably with the target, synthesized a probe with that sequence, and placed it on the chip. In accordance with the method shown in the present invention, a sample was also prepared for cell force, and the reaction was performed on the chip to detect fluorescence. Based on the fluorescence results, the method of the present invention was compared with the “method for obtaining a gene tag”.
[0096] 〔実施例 1〕1本鎖遺伝子タグ試料の作製 [Example 1] Preparation of single-stranded gene tag sample
以下の方法により、 1本鎖遺伝子タグ試料を作製した。  A single-stranded gene tag sample was prepared by the following method.
培養細胞 HT— 29 (Fogh, J., and G. Trempe, 1975, Human Tumor Cells in Vitro, J. Fogh, editor, Plenum Publishing Corp., New York, 115— 141)を、 10%ゥシ月台児血清を 含む McCoy' s 5A培地(McCoy, T.A., Maxwell, M. and Kruse, P.F. (1959) Proc. Soc . Exper. Biol. Med., 100:115)を用いて培養した。 Maruyama and Suganoの方法(Gen e. 1994 138:171-174.)を改変してオリゴキャップ法を行なった。 RNA-Bee (Tel Test, Friendswood, TX, USA)を用いて 107個の細胞を可溶化し、手順書にしたがって全 RN Aを得た。これを RNAeasyキット(Qiagen、 Hilden、 Germany)でさらに精製した。次に 20 0 Uの RNase阻害剤存在下で、 5 Uのバクテリアアルカリ性フォスファターゼで 37°C、 6 0分間処理した。フエノールクロロフオルム抽出、エタノール沈澱によって RNA以外の 成分を除いてから、続いて RNase阻害剤存在下で 20 Uのタバコ酸性ピロフォスファタ ーゼで 37°C、 60分間処理した。再び抽出、沈澱処理後、次のいずれかの配列の RNA リンカ一を、 250 Uの T4 RNAリガーゼを用いて 20°C、 3時間ライゲーシヨンした。 Cultured cells HT-29 (Fogh, J., and G. Trempe, 1975, Human Tumor Cells in Vitro, J. Fogh, editor, Plenum Publishing Corp., New York, 115-141) The culture was performed using McCoy's 5A medium containing infant serum (McCoy, TA, Maxwell, M. and Kruse, PF (1959) Proc. Soc. Exper. Biol. Med., 100: 115). The oligo cap method was performed by modifying the method of Maruyama and Sugano (Gen e. 1994 138: 171-174.). 10 7 cells were solubilized using RNA-Bee (Tel Test, Friendswood, TX, USA), and total RNA was obtained according to the protocol. This was further purified with RNAeasy kit (Qiagen, Hilden, Germany). Next, it was treated with 5 U of bacterial alkaline phosphatase at 37 ° C. for 60 minutes in the presence of 200 U of RNase inhibitor. Components other than RNA were removed by phenol chloroform extraction and ethanol precipitation, followed by treatment with 20 U tobacco acid pyrophosphatase in the presence of RNase inhibitor at 37 ° C for 60 minutes. After extraction and precipitation again, an RNA linker having one of the following sequences was ligated at 250C for 3 hours using 250 U of T4 RNA ligase.
5 -GGA UUU GCU GGU GCA GUA CAA CGA AUU CCG AC- 3' (配列番号: 17) 5 -CUG CUC GAA UGC AAG CUU UCU GAA UUC CGA C- 3' (配列番号: 18) その後で 10 Uの DNAase Iで 37°C、 10分間処理した。  5 -GGA UUU GCU GGU GCA GUA CAA CGA AUU CCG AC-3 '(SEQ ID NO: 17) 5 -CUG CUC GAA UGC AAG CUU UCU GAA UUC CGA C-3' (SEQ ID NO: 18) Then 10 U DNAase I was treated at 37 ° C for 10 minutes.
[0097] ポリ Aを持つ RNAを、 mRNA Isolation Kit for Total RNA(Miltenyi Biotech, Bergisch [0097] RNA with poly A was converted to mRNA Isolation Kit for Total RNA (Miltenyi Biotech, Bergisch
Gladbach、 Germany)を用いて精製した。  Purified using Gladbach, Germany).
オリゴ dTアダプタープライマーと Superscript IIを用いて逆転写反応を行なった。 400 Uの酵素で、 42°C、ー晚インキュベートした。オリゴ dTアダプタープライマーの配列は 次の通りである。 5し GCG GCT GAA GAC GGC CTA TGT GGC CTT TTT TTT TTT TTT TTT- 3' ( 配列番号: 19) Reverse transcription reaction was performed using oligo dT adapter primer and Superscript II. Incubate with 400 U enzyme at 42 ° C. The sequence of the oligo dT adapter primer is as follows. 5 GCG GCT GAA GAC GGC CTA TGT GGC CTT TTT TTT TTT TTT TTT-3 '(SEQ ID NO: 19)
[0098] 次にアルカリ処理で残存する mRNAを分解した。 Next, the remaining mRNA was decomposed by alkali treatment.
得られた 1本鎖 cDNAに対し、ピオチン化リンカープライマーと、 3'プライマーを用い 、 10 Uの Taqポリメラーゼで合成反応を行なった。反応は、 94°Cで 1分間、 58°Cで 1分 間、 72°Cで 10分間の 3つのステップを 13回繰り返すことによって行なった。プライマー の配列は以下の通りである。  The resulting single-stranded cDNA was synthesized with 10 U Taq polymerase using a piotinylated linker primer and a 3 ′ primer. The reaction was performed by repeating 13 steps 13 times: 94 ° C for 1 minute, 58 ° C for 1 minute, 72 ° C for 10 minutes. Primer sequences are as follows.
ピオチン化リンカープライマー  Piotinylated linker primer
ピオチン- 5'- GGA TTT GCT GGT GCA GTA CAA- 3' (配列番号: 20)  Piotin-5'- GGA TTT GCT GGT GCA GTA CAA-3 '(SEQ ID NO: 20)
3'プライマー  3 'primer
5 -GCG GCT GAA GAC GGC CTA TGT- 3' (配列番号: 21)  5 -GCG GCT GAA GAC GGC CTA TGT-3 '(SEQ ID NO: 21)
[0099] 反応後の溶液から、フエノール Zクロロフォルム抽出と、エタノール沈澱により DNA を回収し、 1%ァガロースゲルを用いた電気泳動を行ない、 500 bp以上の長さの画分 を得た。ゲルからの回収は、 QIAEX II Gel Extractionキット(Qiagen)を用いた。 [0099] From the solution after the reaction, DNA was collected by phenol Z chloroform extraction and ethanol precipitation, and subjected to electrophoresis using a 1% agarose gel to obtain a fraction having a length of 500 bp or more. For recovery from the gel, a QIAEX II Gel Extraction kit (Qiagen) was used.
[0100] IIS型制限酵素である Mmel (New England Biolabs、 Beverly, MA、 USA)を 8 U用いて 、 2本鎖の cDNAを切断した。 96°Cにおいて 5分間加熱後氷上で急冷し、転写開始部 位を含むピオチン化された断片を、アビジン化磁気ビーズ(Dynabeads M-280 strept avidin、 Dynal、 Oslo、 Norway)に結合させ 7こ。 [0100] Double-stranded cDNA was cleaved using 8 U of Mmel (New England Biolabs, Beverly, MA, USA), which is an IIS type restriction enzyme. Heat at 96 ° C for 5 minutes and then cool on ice to bind the pyotinylated fragment containing the transcription start site to avidinized magnetic beads (Dynabeads M-280 strept avidin, Dynal, Oslo, Norway).
アビジン化磁気ビーズに結合した DNAを、過剰のピオチンを加えてビーズから遊離 させた。フエノール Zクロロフォルム抽出、エタノール沈殿によって DNAを回収した。  DNA bound to avidinized magnetic beads was released from the beads by adding excess piotin. DNA was recovered by phenol Z chloroform extraction and ethanol precipitation.
[0101] 〔実施例 2〕 DNAチップの作製 [0101] [Example 2] Preparation of DNA chip
1本鎖遺伝子タグ試料とハイブリダィズさせる DNAチップを、以下の方法により作製 した。発明者らがすでに申請してある「遺伝子タグの取得方法」(WO 2005/054465) にしたがって HT-29細胞より得たタグ配列情報に基づ 、て、 DNAチップ上に配置さ せるオリゴ DNAの選定を行った。このタグ配列をゲノムや ESTのデータベースと照らし 合わせ、転写開始位置が 1箇所に同定できた遺伝子を、チップ上に配置させるオリゴ DNAとして選択した。また、「遺伝子タグの取得方法」によって同定されたタグの中か ら、同定されたタグの数が多 、もの (発現量が多 、もの)と少な 、もの (発現量が少な いもの)を任意に選択した。 A DNA chip to be hybridized with the single-stranded gene tag sample was prepared by the following method. Based on the tag sequence information obtained from HT-29 cells according to the “method for obtaining gene tags” (WO 2005/054465) already filed by the inventors, the oligo DNA to be placed on the DNA chip Selected. The tag sequence was compared with the genome and EST database, and the gene whose transcription start position was identified at one location was selected as the oligo DNA to be placed on the chip. In addition, among the tags identified by the “Genetic Tag Acquisition Method”, the number of identified tags is large (the expression level is large, the one) and the small number (the expression level is small). Arbitrarily selected).
[0102] 選択されたタグ配列の 3 '末端に、同定されたゲノム配列と同じになるように 1塩基加 え、 20塩基とした。以上の 20塩基のタグ配列と相補配列を持ち、さらに 3 '末端の C-6 位にアミノ基を導入したオリゴ DNAを数種類合成し、それぞれのオリゴ DNAを 50 μ Μ の濃度でチップの区画に結合させた。チップ上に配置させたオリゴ DNAの配列は、 以下の表 1に示した。  [0102] One base was added to the 3 'end of the selected tag sequence so as to be the same as the identified genomic sequence, resulting in 20 bases. Several types of oligo DNA having a complementary sequence with the above 20-base tag sequence and an amino group introduced at the C-6 position at the 3 'end were synthesized, and each oligo DNA was placed in the chip compartment at a concentration of 50 μΜ. Combined. The sequences of oligo DNAs arranged on the chip are shown in Table 1 below.
[0103] [表 1]  [0103] [Table 1]
Figure imgf000034_0001
Figure imgf000034_0001
表 1 用いたチップ上のオリゴ DNAの塩基配列  Table 1 Base sequence of oligo DNA on the chip used
*配列番号 1、 2、 7〜14、 16は、「遺伝子タグの取得方法」にしたがって得られたタ グ配列に 1塩基を 3'末端に加え、 20塩基にしたものである。加えた塩基は、遺伝子を ゲノムデータや ESTデータに同定後、そのデータと照らし合わせて決定した。また、配 列番号 3〜6、 15は、 HT- 29細胞を、 5- aza- 2' - deoxycitidineと共に培養したときに出 現した遺伝子タグである。 * SEQ ID NOs: 1, 2, 7-14, and 16 are obtained by adding 1 base to the 3 ′ end and adding 20 bases to the tag sequence obtained according to “Genetic tag acquisition method”. The added base was determined by identifying the gene as genomic data or EST data and comparing it with the data. Also, distribution Column numbers 3-6 and 15 are gene tags that appeared when HT-29 cells were cultured with 5-aza-2'-deoxycitidine.
[0104] 〔実施例 3〕 1本鎖遺伝子タグ試料を用いた mRNAの 5'末端領域の発現解析 [Example 3] Expression analysis of mRNA 5 'end region using single-stranded gene tag sample
実施例 1および 2で作製した 1本鎖遺伝子タグ試料および DNAチップにより、 mRNA の 5'末端領域を標的とした発現解析を行った。以下に 4つのハイブリダィズ条件を記 載する。条件 1から 4においては、配列番号の 1から 16 (表 1)に記載のオリゴ DNAを配 置させた DNAチップを使用した。  Using the single-stranded gene tag sample prepared in Examples 1 and 2 and a DNA chip, expression analysis was performed targeting the 5 ′ end region of mRNA. Four hybridizing conditions are described below. In conditions 1 to 4, a DNA chip on which oligo DNAs described in SEQ ID NOs: 1 to 16 (Table 1) were arranged was used.
[0105] 〈条件 1〉 [Condition 1]
回収した DNAを Speed Vacで 20分間乾燥した。 15 μ 1の 0.5% SDS、 5 X SSC溶液中 に溶解した。この溶液は、 10% SDSと 20 X SSCを水で希釈して得た。 20 X SSCは、 3 M NaCl、 0.3 Mクェン酸三ナトリウム 2水和物、 pH 7.0をオートクレーブ滅菌したもので ある。 DNA溶液を 99°Cで 3分間加熱してから室温で 15分間放置後、 42°Cで 16時間チ ップの上でインキュベートした。  The collected DNA was dried with Speed Vac for 20 minutes. Dissolved in 15 μl of 0.5% SDS, 5 X SSC solution. This solution was obtained by diluting 10% SDS and 20 × SSC with water. 20 X SSC is obtained by autoclaving 3 M NaCl, 0.3 M trisodium citrate dihydrate, pH 7.0. The DNA solution was heated at 99 ° C for 3 minutes, allowed to stand at room temperature for 15 minutes, and then incubated on the chip at 42 ° C for 16 hours.
2 X SSCでチップを 1回洗浄後、空気のスプレーでチップ上の水滴を除去した。 チップ上に Cy5標識ストレプトアビジン(Amersham Biosciences, Uppsala, Sweden) を 2 X SSCで 1000倍希釈したものをのせ、室温で 20分間インキュベートした。  After the chip was washed once with 2 X SSC, water droplets on the chip were removed by air spray. Cy5-labeled streptavidin (Amersham Biosciences, Uppsala, Sweden) diluted 1000-fold with 2 X SSC was placed on the chip and incubated at room temperature for 20 minutes.
2 X SSCで 1回洗浄後、空気のスプレーで水滴を除去した。  After washing once with 2 X SSC, water droplets were removed by air spray.
[0106] 〈条件 2〉 <Condition 2>
沈殿した DNAに、 Cy5標識ストレプトアビジン(Amersham Biosciences)を LoTEで 100 0倍希釈したものを 200 μ 1カ卩えて溶解した。室温で 20分間インキュベートした。 LoTE は、 300 1の 1 M Tris-HCl, pH 7.5と 40 μ 1の 500 mM EDTA, pH 8.0を混合し水で 1 00 mlにしたものである。次にエタノール沈殿を行い、沈殿を Speed Vacで乾燥した。 沈殿した DNAを 15 μ 1の 0.5% SDS、 5 X SSC溶液中に溶解した。 DNA溶液を 99°Cで 3分間加熱してから室温で 15分間放置後、 42°Cで 16時間チップの上でインキュベート した。  200 μl of Cy5-labeled streptavidin (Amersham Biosciences) diluted 1000-fold with LoTE was dissolved in the precipitated DNA. Incubated for 20 minutes at room temperature. LoTE is a mixture of 300 1 1 M Tris-HCl, pH 7.5 and 40 μ 1 500 mM EDTA, pH 8.0, and made up to 100 ml with water. Next, ethanol precipitation was performed, and the precipitate was dried with Speed Vac. The precipitated DNA was dissolved in 15 μl of 0.5% SDS, 5 × SSC solution. The DNA solution was heated at 99 ° C for 3 minutes, allowed to stand at room temperature for 15 minutes, and then incubated on the chip at 42 ° C for 16 hours.
2 X SSCでチップを 1回洗浄後、空気のスプレーでチップ上の水滴を除去した。  After the chip was washed once with 2 X SSC, water droplets on the chip were removed by air spray.
[0107] 〈条件 3〉 <Condition 3>
回収した DNAを Speed Vacで 5分間乾燥した。 15 μ 1の 0.5% SDS、 5 X SSC溶液中に 溶解した。 DNA溶液を 99°Cで 3分間加熱して力 室温で 15分間放置後、 42°Cで 16時 間チップの上でインキュベートした。 The recovered DNA was dried with Speed Vac for 5 minutes. In 15 μl of 0.5% SDS, 5 X SSC solution Dissolved. The DNA solution was heated at 99 ° C for 3 minutes and allowed to stand at room temperature for 15 minutes and then incubated on the chip at 42 ° C for 16 hours.
0.2% SDSを含む 2 X SSC溶液の中にチップを浸してカバーグラスをはずした。次に 0 .2 %SDSを含む 2 X SSC溶液の中にチップを 12分間放置した。さらに 2 X SSCの中に 1 2分間放置した。その後チップを取り出し、空気のスプレーでチップ上の水滴を除去 した。  The cover glass was removed by immersing the chip in 2X SSC solution containing 0.2% SDS. The chip was then left for 12 minutes in a 2X SSC solution containing 0.2% SDS. Furthermore, it was left in 2 X SSC for 12 minutes. Thereafter, the chip was taken out, and water droplets on the chip were removed by air spray.
チップ上に Cy5標識ストレプトアビジン(Amersham Biosciences)を 2 X SSCで 1000倍 希釈したもの 25 μ 1を加え、カバーグラスをのせて室温で 30分間インキュベートした。  On a chip, 25 μl of Cy5-labeled streptavidin (Amersham Biosciences) diluted 1000-fold with 2 × SSC was added, and a cover glass was placed and incubated at room temperature for 30 minutes.
2 X SSCで 1回洗浄後、空気のスプレーで水滴を除去した。  After washing once with 2 X SSC, water droplets were removed by air spray.
[0108] 〈条件 4〉 <Condition 4>
この条件にぉ 、てのみ、実施例 1における 2本鎖 DNAの合成にお!、て PCRを 2回行 つた。 PCRを一度行った液を水で 100倍希釈し、プライマー、酵素、緩衝液などをカロえ て、再び反応を行った。反応は実施例 1に記載のステップを 21回繰り返して行った。 この試料について条件 3と同様に処理した。  Under these conditions, PCR was performed twice to synthesize the double-stranded DNA in Example 1. The solution once PCR was diluted 100 times with water, and the primer, enzyme, buffer, etc. were collected and the reaction was performed again. The reaction was performed by repeating the steps described in Example 1 21 times. This sample was treated in the same manner as condition 3.
[0109] 以上 4つの条件で、 1本鎖遺伝子タグ試料および DNAチップのハイブリダィズを行 つた。 Scan Array 4000を用いて蛍光測定を行い、 DNAチップ上にハイブリダィズした 1本鎖遺伝子タグ試料の量を定量した。 [0109] Under the above four conditions, the single-stranded gene tag sample and the DNA chip were hybridized. Fluorescence measurement was performed using Scan Array 4000, and the amount of single-stranded gene tag sample hybridized on the DNA chip was quantified.
以下に蛍光測定の結果を示す。  The results of fluorescence measurement are shown below.
条件 1では配列番号 7に対してのみ蛍光が観察された。  Under condition 1, fluorescence was observed only for SEQ ID NO: 7.
条件 2ではいずれのオリゴ DNAに対しても蛍光が観察されな力つた。  In condition 2, no fluorescence was observed for any oligo DNA.
条件 3では配列番号 7に対してのみ蛍光が観察された。  Under condition 3, fluorescence was observed only for SEQ ID NO: 7.
条件 4における結果を表 2に示す。表 2に記載の遺伝子の内、特定のものに蛍光が 観察された。蛍光の強さを三段階に分けると、強い蛍光の観察されたもの:配列番号 7、中程度の蛍光が観察されたもの:配列番号 13、弱い蛍光の観察されたもの:配列 番号 2、 5、 8、 10、と分類することが出来る。  The results under condition 4 are shown in Table 2. Fluorescence was observed in specific genes listed in Table 2. When the intensity of fluorescence is divided into three levels, strong fluorescence is observed: SEQ ID NO: 7, medium fluorescence is observed: SEQ ID NO: 13, weak fluorescence is observed: SEQ ID NO: 2, 5 , 8, 10 can be classified.
[0110] [表 2] 配列番号 蛍光強度 * HT29のコントロールタグ数 * *[0110] [Table 2] SEQ ID NO: Fluorescence intensity * Number of HT29 control tags * *
1 1 ,136.50 2 1 1, 136.50 2
2 2,326.90 7  2 2,326.90 7
3 1,094.59 0  3 1,094.59 0
4 1 ,246.27 0  4 1, 246.27 0
5 2,350.59 0  5 2,350.59 0
6 1,446.00 0  6 1,446.00 0
7 19,479.19 534  7 19,479.19 534
8 3,689.88 3  8 3,689.88 3
9 455.26 2  9 455.26 2
10 2,011.04 1  10 2,011.04 1
11 272.88 5  11 272.88 5
12 1,155.74 13  12 1,155.74 13
13 8,420.41 7  13 8,420.41 7
14 777.27 3  14 777.27 3
15 536.30 0  15 536.30 0
16 544.04 3 表 2 条件 4の結果  16 544.04 3 Table 2 Result of Condition 4
* 蛍光強度は、それぞれの配列番号の蛍光強度から、オリゴ DNAをスポットしてい ないところの蛍光強度を差し引いた値である。  * Fluorescence intensity is the value obtained by subtracting the fluorescence intensity where no oligo DNA is spotted from the fluorescence intensity of each SEQ ID NO.
* * この列に示したものは、「遺伝子タグの取得方法」にしたがって得られたタグ配 列の数である。タグ配列の数は、転写産物の量に対応していると考えられる。ここで 解析したタグの総数は 35,922である。それぞれの数は、プローブ配列として示された 塩基配列の相補配列から 3'末端 1塩基を除 、た配列、すなわち同定されたタグ配列 の数である。  * * Shown in this column is the number of tag sequences obtained according to the “Genetic Tag Acquisition Method”. The number of tag sequences is thought to correspond to the amount of transcript. The total number of tags analyzed here is 35,922. Each number is the number of sequences obtained by removing one base at the 3 ′ end from the complementary sequence of the base sequence shown as the probe sequence, that is, the number of identified tag sequences.
[0111] 条件 1は、蛍光染色をチップ上のオリゴ DNAとのハイブリダィゼーシヨンの後に行つ た一方、条件 2では蛍光染色はハイブリダィゼーシヨンの前に行った。この 2つの結果 を比較すると、条件 2では蛍光がまったく観察されな力つたことから、蛍光染色はハイ ブリダィゼーシヨンの後に行う必要があることが判明した。  [0111] In condition 1, fluorescence staining was performed after hybridization with oligo DNA on the chip, while in condition 2, fluorescence staining was performed before hybridization. Comparing the two results, it was found that fluorescence staining was necessary after the hybridization because condition 2 did not show any fluorescence.
[0112] 条件 3では、ハイブリダィゼーシヨンの後の洗浄回数を増やした。条件 1に比べて蛍 光強度の大きさに変化は見られな力つたにもかかわらず、オリゴ DNAのスポットのな V、部分の蛍光強度 (バックグラウンド)を低く抑えることができた。  [0112] In Condition 3, the number of washings after the hybridization was increased. Although there was no change in the intensity of the fluorescence intensity compared to condition 1, the fluorescence intensity (background) of the V and part of the oligo DNA spot could be kept low.
[0113] 条件 4では、条件 1と条件 3において蛍光が観察されたのが配列番号 7だけであり、 蛍光強度が低力つたことから、試料中の DNA量を増やす目的で、 PCRを 2回続けて行 つてサイクルの回数を増やした。条件 1から 3では PCR後の試料の全量の 1/5を使用し た一方、この条件 4では 1回目の PCRの後に全量の 1/5をとつて 2回目の PCRを行い、 2 回目の PCRの後は全量を次のステップに用いた。実験方法は条件 3と同様である。そ の結果、配列番号 2、 5、 7、 8、 10、 13に蛍光が観察された。 [0113] In condition 4, the fluorescence was observed only in SEQ ID NO: 7 in condition 1 and condition 3, Due to the low fluorescence intensity, PCR was repeated twice to increase the number of cycles in order to increase the amount of DNA in the sample. In conditions 1 to 3, 1/5 of the total amount of the sample after PCR was used, while in condition 4, the second PCR was performed with 1/5 of the total amount after the first PCR and the second PCR. After that, the entire amount was used in the next step. The experimental method is the same as Condition 3. As a result, fluorescence was observed in SEQ ID NOs: 2, 5, 7, 8, 10, and 13.
[0114] 配列番号 7は、 HT-29細胞においてタグの数が 534であり、転写量が特に多かった 産物の転写開始点力 始まる配列である。条件 3においても強い蛍光が観察され、タ グの数の多さと蛍光の強さがよく対応した。配列番号 13は、配列番号 7と同じ遺伝子 由来であり、配列番号 13は配列番号 7の 5塩基下流にあり、重複部分を持つ。転写開 始点が配列番号 13の 5 '末端力 始まるものはタグ数が 7しかなぐ配列番号 13の 5 '末 端を転写開始点とする転写産物は多くはない。し力 配列番号 13に対して強い蛍光 が観察された。これは、配列番号 7の 5'末端力 始まる転写産物が配列番号 13にも チップ上で結合し、この産物の量が多いため強い蛍光が観察されたと考えれば合理 的である。 [0114] SEQ ID NO: 7 is a sequence starting from the transcription initiation point of a product having 534 tags and a particularly large transcription amount in HT-29 cells. Strong fluorescence was also observed under condition 3, and the large number of tags corresponded well with the fluorescence intensity. SEQ ID NO: 13 is derived from the same gene as SEQ ID NO: 7, and SEQ ID NO: 13 is 5 bases downstream of SEQ ID NO: 7 and has an overlapping portion. There are not many transcripts starting from the 5 'end of SEQ ID NO: 13 with the number of tags starting from the 5' end of SEQ ID NO: 13, starting from the 5 'end of SEQ ID NO: 13. Strong fluorescence was observed against SEQ ID NO: 13. This is reasonable if it is assumed that the transcript starting with the 5 'end force of SEQ ID NO: 7 also binds to SEQ ID NO: 13 on the chip and that strong fluorescence was observed due to the large amount of this product.
[0115] 以上の結果により、本発明の方法により試料およびオリゴ DNAの調製を行い、ハイ ブリダィズさせることにより、遺伝子の発現を合理的に解析できることが判明した。試 料およびオリゴ DNAは供に転写開始部位に由来するものであることから、本発明の 方法によって転写開始部位を標的とした、遺伝子の発現解析が可能となることが明ら カゝとなった。  [0115] From the above results, it was found that gene expression can be rationally analyzed by preparing and hybridizing samples and oligo DNAs by the method of the present invention. Since the sample and oligo DNA were both derived from the transcription start site, it became clear that the method of the present invention enables gene expression analysis targeting the transcription start site. .
産業上の利用可能性  Industrial applicability
[0116] 本発明は、真核細胞カゝら抽出した mRNA5'末端の塩基配列群の種類と量比を反映 する 1本鎖遺伝子タグ群の製造方法を提供した。さら〖こ、この遺伝子タグ群を DNAチ ップに対するノ、イブリダィゼーシヨンの試料として用いることにより、所望の遺伝子の 発現を確認することに成功した。 [0116] The present invention provides a method for producing a single-stranded gene tag group reflecting the type and quantity ratio of the nucleotide sequence group at the 5 'end of mRNA extracted from eukaryotic cells. Sarakuko succeeded in confirming the expression of the desired gene by using the gene tag group as a sample of DNA and hybridization for the DNA chip.
[0117] 本発明は、標的細胞において発現する遺伝子の転写開始部位および発現量を、 簡易、正確、かつ網羅的に調べられるという利点があり、産業上様々な分野で使用 することが可能である。 [0117] The present invention has an advantage that the transcription start site and expression level of a gene expressed in a target cell can be examined simply, accurately and comprehensively, and can be used in various industrial fields. .
[0118] 例えば医療分野においては、転写開始部位が細胞の状態を反映していることから 、同じ組織部位の細胞における、正常状態と疾患状態の転写開始部位の違いを調 ベ、それに基づいて遺伝子クローニングを行なうことが可能である。さらには、疾患細 胞特異的に発現する遺伝子、あるいは疾患特異的な選択的スプライシングのフォー ムの遺伝子を明らかにすることもできる。したがって、疾患診断用の PCRプライマーや DNAプローブの開発も可能である。 [0118] For example, in the medical field, the transcription start site reflects the state of cells. It is possible to investigate the difference between the transcription start site of normal state and disease state in cells of the same tissue site, and to perform gene cloning based on the difference. Furthermore, genes that are specifically expressed in disease cells, or genes in the form of alternative splicing specific to diseases can be clarified. Therefore, it is possible to develop PCR primers and DNA probes for disease diagnosis.
[0119] また、同様な比較力 疾患特異的な転写開始部位に注目し、発現が確認された遺 伝子がコードするタンパク質の機能を明らかにすれば、疾患のメカニズムを明らかす ることができる。疾患を引き起こす遺伝子の発現、またはタンパク質の活性を抑えるこ とができれば、疾患の症状緩和、緩解、治癒を引き起こすことが可能となる。すなわち 、このような遺伝子の転写調節、転写に関わる細胞内情報伝達、情報伝達を引き起 こす因子の機能阻害などを誘導できる物質、または該遺伝子がコードするタンパク質 の活性を阻害する物質は、薬剤候補物質となる。 [0119] In addition, focusing on similar comparative disease-specific transcription initiation sites and clarifying the function of the protein encoded by the gene whose expression has been confirmed, the mechanism of the disease can be clarified. . If the expression of genes that cause disease or the activity of proteins can be suppressed, it will be possible to alleviate, ameliorate, and cure disease symptoms. That is, a substance that can induce the transcriptional regulation of the gene, intracellular information transmission related to transcription, function inhibition of the factor causing the information transmission, or the substance that inhibits the activity of the protein encoded by the gene is a drug. Candidate substance.
[0120] 核酸医薬は、疾患誘発遺伝子の mRNAを特異的に破壊する、あるいはそのような遺 伝子の転写を特異的に阻害できるように作られ、転写開始部位の情報、ならびに遺 伝子全長の構造解明が重要である。また薬剤がある細胞に引き起こす遺伝子転写 の変化を調べると、薬理作用の全般が明らかにでき、また副作用、毒性なども同時に 解明できる。実験室において副作用や毒性を明らかにできればその有用性は高い。 つまり、培養細胞での検定が可能になれば動物実験の軽減になり、また臨床試験の 前に副作用や毒性が推定できれば、臨床試験における事故の防止になる。以上のこ とより、本発明の方法は、診断法の開発、薬剤開発の出発点、臨床試験の直前にお いて、転写開始部位を標的にして目的遺伝子の発現を網羅的に明らかにする技術と して利用可能である。 [0120] Nucleic acid drugs are designed to specifically destroy the mRNA of a disease-inducing gene or to specifically inhibit transcription of such a gene. The elucidation of the structure is important. In addition, by examining the changes in gene transcription caused by drugs in cells, the overall pharmacological action can be clarified, and side effects and toxicity can be clarified at the same time. If the side effects and toxicity can be clarified in the laboratory, their usefulness is high. In other words, if testing with cultured cells is possible, animal experiments will be reduced, and if side effects and toxicity can be estimated before clinical trials, accidents in clinical trials will be prevented. Based on the above, the method of the present invention is a technique for comprehensively clarifying the expression of a target gene targeting a transcription initiation site immediately before development of a diagnostic method, drug development, and clinical trial. It can be used as
[0121] また農業'食糧分野への応用も見逃せない。家畜、水産物、作物などの疾患の診 断、治療薬開発については上記に述べた医療分野への応用と同様である。畜産分 野では、品種、産地の特定が大きな課題になっている。品種、産地などがたとえば家 畜動物の毛の色に現れている場合、毛の色に関与する遺伝子の発現を調べればよ い。し力しこのような遺伝子セットをすベて明らかにすることは簡単ではない。そこで 網羅的に遺伝子の転写開始部位、および転写開始部位を標的した遺伝子の発現量 を明らかにする技術があれば、毛の色を特定する遺伝子セット、つまり品種や産地を 特定する遺伝子セットを特定できる。現在のところ、遺伝子発現の解析に DNAチップ を使うことが多いにもかかわらず、家畜、水産動物、作物などの生物種の解析のため の DNAチップは作られておらず、当業者がそれぞれチップ上のプローブを自らデザ インする必要がある。本発明では、 DNAチップでの転写開始部位の解析にふさわし V、試料調製法を提供し、同時に「遺伝子タグの製造方法」で得られたデータに基づ いて DNAチップのプローブをデザインする方法も提供する。 [0121] In addition, the application to agriculture 'food field cannot be overlooked. Diagnosis of diseases such as livestock, fishery products and crops, and development of therapeutic drugs are the same as those described above for the medical field. In the livestock field, identification of breeds and production areas has become a major issue. For example, if the breed, production area, etc. appear in the hair color of domestic animals, the expression of genes involved in hair color may be examined. However, it is not easy to clarify all such gene sets. Therefore, the transcription start site of the gene and the expression level of the gene targeting the transcription start site If there is a technique to clarify the color, it is possible to identify a gene set that identifies hair color, that is, a gene set that identifies varieties and production areas. At present, DNA chips are often used for gene expression analysis, but DNA chips for analysis of species such as livestock, aquatic animals, and crops have not been created. You need to design the above probe yourself. The present invention provides a sample preparation method suitable for analysis of the transcription start site on a DNA chip, and at the same time a method for designing a probe for a DNA chip based on the data obtained in the “method for producing a gene tag”. provide.
また食糧分野では、近年、特定の保健作用を持つ食品の開発が盛んである。食品 成分の生理作用の解明に、作用対象細胞における転写開始部位の変化の誘導を調 ベることは重要である。  In the food field, foods having specific health effects have been actively developed in recent years. In order to elucidate the physiological effects of food components, it is important to investigate the induction of changes in the transcription start site in the target cells.

Claims

請求の範囲 [1] 次の工程を含む、 1本鎖遺伝子タグ群の製造方法。 Claims [1] A method for producing a single-stranded gene tag group, comprising the following steps.
(1)真核細胞力 抽出した RNAの CAP部位に IIS型制限酵素の認識配列を含む RNA リンカ一を連結する工程、  (1) a step of linking an RNA linker containing a recognition sequence of an IIS type restriction enzyme to the CAP site of eukaryotic cell force,
(2) (1)の RNAを铸型として cDNAを合成する工程、  (2) A step of synthesizing cDNA using the RNA of (1) as a cage,
(3) (2)の cDNAに RNAリンカ一に含まれる認識配列を認識する IIS型制限酵素を作用 させ、 2本鎖遺伝子タグ群を生成する工程、  (3) A step of generating a double-stranded gene tag group by allowing an IIS type restriction enzyme that recognizes a recognition sequence contained in an RNA linker to act on the cDNA of (2),
(4) (3)の 2本鎖遺伝子タグ群力 所望のストランドの 1本鎖核酸力 なる遺伝子タグ群 を生成する工程  (4) Generating a group of double-stranded gene tags in (3) Gene tag group consisting of single-stranded nucleic acid force of desired strand
[2] 次の工程によって cDNAを合成する請求項 1に記載の方法。  [2] The method according to claim 1, wherein cDNA is synthesized by the following step.
0 RNAの任意の領域にァニールするプライマーによって cDNAの第 1鎖を合成するェ 程、および  The process of synthesizing the first strand of cDNA with primers that anneal to any region of the RNA, and
ii)第 1鎖の RNAリンカーを铸型として合成された領域にァニールするプライマーによ つて、 cDNAの第 2鎖を合成して 2本鎖 cDNAとする工程  ii) Step of synthesizing the second strand of cDNA into a double-stranded cDNA using a primer that anneals to the region synthesized using the first strand RNA linker as a cage.
[3] 第 1鎖の RNAリンカーを铸型として合成された領域にァニールするプライマーカ 固 相に結合することができる標識を有する力、または固相に固定ィ匕されており、前記固 相の回収によって 1本鎖遺伝子を回収する工程を含む請求項 2に記載の方法。 [3] A primer having a label capable of binding to a solid phase that anneals to a region synthesized using a first-strand RNA linker as a cage, or immobilized on a solid phase. The method according to claim 2, comprising a step of recovering the single-stranded gene by recovery.
[4] IIS型制限酵素を作用させる前、または後に固相を回収する請求項 3に記載の方法。 [4] The method according to claim 3, wherein the solid phase is recovered before or after the IIS type restriction enzyme is allowed to act.
[5] 1本鎖遺伝子の回収に用いた標識、または固相に、化学的修飾をさらに行う工程を 含む、請求項 3または 4に記載の方法。 [5] The method according to claim 3 or 4, further comprising a step of further chemically modifying the label or solid phase used for recovering the single-stranded gene.
[6] 化学的修飾力 蛍光修飾である請求項 5に記載の方法。 [6] Chemical modification power The method according to claim 5, which is fluorescent modification.
[7] RNAリンカ一が II型制限酵素の認識配列を含む請求項 1に記載の方法。 7. The method according to claim 1, wherein the RNA linker contains a recognition sequence for a type II restriction enzyme.
[8] 次の要素を含む、真核細胞の 1本鎖遺伝子タグ群の製造用試薬キット。 [8] A reagent kit for producing a single-stranded gene tag group of eukaryotic cells, comprising the following elements:
(a) IIS型制限酵素の認識配列を含むオリゴヌクレオチドからなる RNAリンカ一 (a) an RNA linker comprising an oligonucleotide containing a recognition sequence for an IIS type restriction enzyme
(b) RNAリンカ一を RNAの CAP部位に連結するための試薬 (b) Reagent for linking RNA linker to RNA CAP site
(c) RNAリンカーを铸型として合成された cDNAにァニールするオリゴヌクレオチドから なる cDNA第 2鎖合成用のプライマー  (c) Primer for cDNA second-strand synthesis consisting of an oligonucleotide that anneals to cDNA synthesized using an RNA linker as a cage.
(d) cDNA第 1鎖合成用プライマー (d) Primer for cDNA first strand synthesis
[9] cDNA第 1鎖合成用プライマーが、以下の i)-m)力もなる群力も選択されるいずれかの プライマーである請求項 8に記載のキット。 [9] The kit according to claim 8, wherein the primer for cDNA first-strand synthesis is any of the following primers for which a group force that includes i) -m) force is also selected.
0ランダムプライマー  0 random primer
ii)オリゴ dTプライマー  ii) Oligo dT primer
iii)特定の mRNAに相補的な塩基配列を含むプライマー  iii) Primer containing a base sequence complementary to a specific mRNA
[10] 次の工程を含む、真核細胞における遺伝子の発現量を測定する方法。  [10] A method for measuring the expression level of a gene in a eukaryotic cell, comprising the following steps.
(1)請求項 1に記載の方法によって 1本鎖遺伝子タグ群を製造する工程  (1) A step of producing a single-stranded gene tag group by the method according to claim 1
(2)転写開始部位を含む DNAまたは RNAを固相に固定ィ匕する工程  (2) A step of immobilizing DNA or RNA containing a transcription initiation site on a solid phase
(3)固相に固定ィ匕された DNAまたは RNAに、前記 1本鎖遺伝子タグ群をハイブリダィ ズさせる工程  (3) A step of hybridizing the single-stranded gene tag group to DNA or RNA immobilized on a solid phase
(4)固相に固定ィ匕された DNAまたは RNAにハイブリダィズした 1本鎖遺伝子タグを定 量する工程  (4) Quantification of single-stranded gene tag hybridized to DNA or RNA immobilized on a solid phase
[11] 転写開始部位を含む DNAまたは RNA力 ハイブリダィズさせる 1本鎖遺伝子タグ群と 同等の長さの塩基力もなるポリヌクレオチドである請求項 10に記載の方法。  [11] The method according to claim 10, which is a polynucleotide having a base strength equivalent to the length of a single-stranded gene tag group to be hybridized with DNA or RNA force containing a transcription initiation site.
[12] 転写開始部位を含む DNAまたは RNA力 12〜26baseの塩基からなるポリヌクレオチ ドである請求項 10に記載の方法。 [12] The method according to claim 10, which is a polynucleotide comprising a base having a DNA or RNA strength of 12 to 26 bases containing a transcription initiation site.
[13] 請求項 10〜 12のいずれかに記載の方法により得られた複数の遺伝子発現情報を 統合し、遺伝子発現プロファイルを作製する方法。 [13] A method for producing a gene expression profile by integrating a plurality of gene expression information obtained by the method according to any one of claims 10 to 12.
[14] 請求項 13に記載の方法によって作製された遺伝子発現プロファイル情報を蓄積した[14] Accumulated gene expression profile information produced by the method of claim 13
、遺伝子発現プロファイルのデータベース。 , A database of gene expression profiles.
[15] 請求項 13に記載の方法によって、異なる種類の細胞の遺伝子発現プロファイルを取 得し、遺伝子発現プロファイルを比較して細胞間で発現頻度の異なる遺伝子タグを 選択する工程を含む、遺伝子発現プロファイルの解析方法。 [15] Gene expression comprising the steps of obtaining gene expression profiles of different types of cells by the method according to claim 13 and comparing gene expression profiles to select gene tags having different expression frequencies between cells. Profile analysis method.
PCT/JP2006/314459 2005-07-22 2006-07-21 Method for production of single-stranded gene tags each having transcription initiation site WO2007011016A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005212960A JP2007028923A (en) 2005-07-22 2005-07-22 Method for producing single strand gene tag group containing transcription starting site
JP2005-212960 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007011016A1 true WO2007011016A1 (en) 2007-01-25

Family

ID=37668887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314459 WO2007011016A1 (en) 2005-07-22 2006-07-21 Method for production of single-stranded gene tags each having transcription initiation site

Country Status (2)

Country Link
JP (1) JP2007028923A (en)
WO (1) WO2007011016A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054465A1 (en) * 2003-12-01 2005-06-16 Post Genome Institute Co., Ltd. Method of obtaining gene tag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054465A1 (en) * 2003-12-01 2005-06-16 Post Genome Institute Co., Ltd. Method of obtaining gene tag

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARBERS M. ET AL.: "Tag-based approaches for transcriptome research and genome annotation", NAT METHODS, vol. 2, no. 7, July 2005 (2005-07-01), pages 495 - 502, XP009058036 *
HASHIMOTO S.: "5' SAGE-ho (5' End Idenshi Hatsugen Kaiseki). (SAGE for 5'-ends transciptome)", EXPERIMENTAL MEDICINE, vol. 23, no. 10, 1 June 2005 (2005-06-01), pages 1569 - 1575, XP003006075 *
SUZUKI Y. ET AL.: "mRNA Tensha Kaishiten no Dotei to Idenshi Hatsugen no Kaiseki", PROTEIN, NUCLEIC ACID AND ENZYME, vol. 42, no. 17, 25 December 1997 (1997-12-25), pages 2836 - 2843, XP003006076 *

Also Published As

Publication number Publication date
JP2007028923A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5916166B2 (en) Methods and products for localized or spatial detection of nucleic acids in tissue samples
AU2016268089B2 (en) Methods for next generation genome walking and related compositions and kits
JP6557151B2 (en) Method for sequencing nucleic acids in a mixture and compositions related thereto
JP4527280B2 (en) Differential screening
JP3150061B2 (en) Gene expression analysis method
US8003375B2 (en) Qualitative differential screening
JP2022017329A (en) Solid-phase nucleic acid target capture and replication using strand displacing polymerases
CA2205017A1 (en) Method for the detection of ras oncogenes, in particular the k-ras oncogene
AU2005210362A1 (en) Method of detecting nucleic acid and utilization thereof
EP1041160A1 (en) Methods for detecting mutation in base sequence
WO2005079357A2 (en) Nucleic acid representations utilizing type iib restriction endonuclease cleavage products
JP3853161B2 (en) Method for amplifying trace amounts of mRNA and cDNA
JPH10510981A (en) Methods, devices and compositions for characterizing nucleotide sequences
AU2003276609B2 (en) Qualitative differential screening for the detection of RNA splice sites
WO2007011016A1 (en) Method for production of single-stranded gene tags each having transcription initiation site
JPWO2002074951A1 (en) Method for creating cDNA tag for identification of expressed gene and method for gene expression analysis
JP2004187606A (en) Method for identifying, analyzing and/or cloning nucleic acid isoform
JP2002532070A (en) Arrays and methods for analyzing nucleic acid sequences
Sharma et al. Use of serial analysis of gene expression (sage) for transcript profiling in plants
US20080268437A1 (en) Method of Targeted and Comprehensive Sequencing Using High-Density Oligonucleotide Array
JP2022552155A (en) New method
JP2005117943A (en) Method for analyzing gene expression
WO2004007768A1 (en) Method to analyze polymeric nucleic acid sequence variations
WO2002004627A1 (en) Highly efficient method of constructing rna probes
TW200413536A (en) High-throughput method for meat identification based on nucleotide differentiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768337

Country of ref document: EP

Kind code of ref document: A1