WO2007010999A1 - Animal in which lipid metabolism and sugar metabolism are modified by krap gene mutation, modification method and modifying agent - Google Patents

Animal in which lipid metabolism and sugar metabolism are modified by krap gene mutation, modification method and modifying agent Download PDF

Info

Publication number
WO2007010999A1
WO2007010999A1 PCT/JP2006/314423 JP2006314423W WO2007010999A1 WO 2007010999 A1 WO2007010999 A1 WO 2007010999A1 JP 2006314423 W JP2006314423 W JP 2006314423W WO 2007010999 A1 WO2007010999 A1 WO 2007010999A1
Authority
WO
WIPO (PCT)
Prior art keywords
krap
gene
protein
mice
nucleic acid
Prior art date
Application number
PCT/JP2006/314423
Other languages
French (fr)
Japanese (ja)
Inventor
Senji Shirasawa
Takahiro Fujimoto
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2007526056A priority Critical patent/JPWO2007010999A1/en
Publication of WO2007010999A1 publication Critical patent/WO2007010999A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to a nucleic acid molecule capable of inducing an increase in energy consumption, an increase in insulin sensitivity, prevention or elimination of fattening, and an abnormality in Z or blood hormone concentration in an animal, and a drug containing the same
  • the invention relates to a transgene animal containing such a nucleic acid molecule, increased energy consumption, increased insulin sensitivity, prevention or elimination of obesity, and a method for inducing abnormalities in Z or blood hormone levels.
  • leptin can function systemically as endocrine signaling factor (Leptin), FGF19, neuropeptide, Y (neu ropeptide Y), Anne 3 r Ohoeten communicating growth factor (Angiopoietin- related growth factor) and transcription factors PGC1 ⁇ ( ⁇ R gamma coactivator 1 ⁇ ), CBP (CREB binding protein) ⁇ SRC—1, TIF2, RXR (retinoid X receptor) a), intracellular lipid metabolism-related enzymes ACC2 (acetyl CoA carboxylase2), SCDKstealoyl CoA desaturasel), intracellular signal regulators SHIP2, PTP1B, S6 kinase, SOCS-6, mitochondrial function protein UCP (uncoupling protein)
  • PGC1 ⁇ ⁇ R gamma coactivator 1 ⁇
  • CBP CREB binding protein
  • SRC—1, TIF2, RXR retinoid X receptor
  • KRAP Ki-ras-induced actin- interacting protein
  • Non-Patent Document 1 Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO,
  • Non-Patent Document 2 Oh W, Abu-Elheiga L, Kordari P, Gu Z, Shaikenov T, Chirala SS, Wa kil SJ. Glucose and fat metabolism in adipose tissue of acetyl— CoA carboxylase 2 kn ockout mice. Proc Natl Acad Sci US A. 2005 Feb 1; 102 (5): 1384— 9.
  • Non-Patent Document 3 Abu- Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase
  • Non-Patent Document 4 Jiang G, Li Z , Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Es au C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB.
  • Non-Patent Document 5 Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation.Trends Cardiovasc Med. 2004 Feb 4 (2): 77- 81. Review.
  • Non-Patent Document 6 Abu- Elheiga L, Matzuk MM, Abo- Hashema KA, Wakil SJ. Continuo us fatty acid oxidation and reduced fat storage in mice lac ing acetyl— CoA carboxyla se 2. Science. 2001 Mar 30; 291 (5513 ): 2613— 6.
  • Non-Patent Document 7 Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T, Yamamura K, Kadowa i T. Increased insulin sensitivity despite lipodystrophy in C rebbp heterozygous mice. Nat Genet. 2002 Feb; 30 (2): 221— 6
  • Non-Patent Document 8 Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fu magalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. Absence of S6K1 protects against age— and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004 Sep 9; 431 (7005): 200-5. Epub 2004 Aug 11. Erratum in: Nature. 2004 Sep 23; 4 31 (7007): 485.
  • Non-Patent Document 9 Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Ts ai SP , Stewart TA. Fibroblast growth factor 19 increases metabolic rate and reverse s dietary and leptin- deficient diabetes. Endocrinology. 2004 Jun; 145 (6): 2594-603.
  • Non-patent literature 10 Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA.Transgenic mice expressing human fibroolast growth factor— 19 display increased metabolic rate and decreased a diposity. Endocrinology. 2002 May; 143 ( 5): 1741-7.
  • Non-Patent Document 11 Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CB, Langdon WY, Walder K, Murphy MA, Bowtell DD, James DE, Cooney GJ.c- Cb 1— deficient mice have reduced adiposity, higher energy expenditure, and improved p eripheral insulin action.J Clin Invest. 2004 Nov; l 14 (9): 1326-33.
  • Non-Patent Document 12 Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Moo tha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krain c D, Spiegelman BM. Defects in adaptive energy metabolism with CNS— linked hyper activity in PGC— lalpha null mice. Cell. 2004 Oct 1; 119 (1): 121— 35.
  • Non-Patent Document 13 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajim a Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stre ss in obesity and its impact on metabolic syndrome. Clin Invest. 2004 Dec; 114 (12): 1752-61.
  • Non-Patent Document 14 Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Sou za DP, Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE, Baca M, Hilton DJ, Alexander WS.SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol. 2 002 Jul; 22 (13): 4567-78.
  • Non-Patent Document 15 Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP.PG C-1 alpha denciency causes multi-system energy metabolic derangements: muscle dy sfunction, abnormal weight control and hepatic steatosis.PLoS Biol. 2005 Apr; 3 (4): elOl.
  • Non-Patent Document 16 Tsukiyama- Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras A, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremolay ML, Sonenberg N. Adipose tissue reduction in mice lacking the translational inhibit or 4E-BP1. Nat Med. 2001 Oct; 7 (10): 1128-32.
  • Non-Patent Document 17 Cohen P, Miyazaki M, Socci ND, Hagge— Greenberg A, Liedtke W, Soukas AA, bharma R, Hudgins LC, Ntambi JM, Friedman JM. Role for stearoyl-Co A desaturase- ⁇ m leptin- mediated weight loss. Science. 2002 Jul 12; 297 (5579): 240 -3.
  • Non-Patent Document 18 Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD. Loss of stearoyl-CoA desaturase— 1 lunction protects mice against adiposity. Proc Natl Acad Sci US A. 2002 Aug 20; 9
  • Non-Patent Document 19 Cline GW, Vidal-Puig AJ, Dufour S, Cadman KS, Lowell BB, Shulma n GI.In vivo effects of uncoupling protein— 3 gene disruption on mitochondrial energ y metabolism. J Biol Chem. 2001 Jun 8; 276 (23): 20240-4.
  • Non-Patent Document 20 Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley BW, Chambon P, Auwerx J. SRC— 1 and TIF2 control energy balance between white a nd brown adipose tissues. Cell. 2002 Dec 27; 111 (7): 931— 41.
  • Non-Patent Document 21 Ohki- Hamazaki H, Watase K, Yamamoto K, Ogura H, Yamano M, Y amada K, Maeno H, Imaki J, Kikuyama S, Wada E, Wada K. Mice lacking bombesin receptor subtype— 3 develop metabolic defects and obesity. Nature. 1997 Nov 13; 39 0 (6656): 165-9.
  • Non-Patent Document 22 Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Yl receptor-deficient mice.Proc Natl Acad Sci US A. 1998 Dec 22; 95 (26): 15659-64.
  • Non-Patent Document 23 Imai T, Jiang M, Shi hambon P, Metzger D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha media ted by a tamoxifen-inducible chimeric Cre recombinase (Cre- ERT2) in adipocytes.
  • Cre- ERT2 tamoxifen-inducible chimeric Cre recombinase
  • Non-Patent Document 24 Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP. Cent ral leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, an d hyperinsulinemia: increase in serum ghrelin levels. Diabetes. 2002 Jun; 51 (6): 1729 -36.
  • Non-Patent Document 25 Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P. Cidea— deficient mice have lean phenotype and are resistant to obesity. Nat Genet. 2003 Sep; 35 (l): 49-56.
  • Non-Patent Document 26 Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Uran o T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N , Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T. Angiopoietin— related growth factor antagonizes obesity and insulin resistance. Nat Med. 2005 Ap r; ll (4): 400-8.
  • Non-Patent Document 27 Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin— 5 water channels. J Biol Chem. 1999 Jul 16; 274 (29) : 20071-4
  • Non-Patent Document 28 Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold—sensitivity ve but not obese.Nature. 1997 May l; 387 (6628): 90-4.
  • Non-Patent Document 29 Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA.
  • Non-Patent Document 30 Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, T sai SP , Stewart TA. Fibroblast growth factor 19 increases metabolic rate and revers es dietary and leptin-deficient diabetes. Endocrinology. 2004 Jun; 145 (6): 2594-603.
  • Non-patent literature 31 Klaman LD, Boss ⁇ , Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Strieker- Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure, decreased adiposity, and tissue— sped fic insulin sensitivity in protein — Tyrosine phosphatase IB-deficient mice. Mol Cell B iol. 2000 Aug; 20 (15): 5479-89.
  • the present invention relates to a novel drug that can contribute to the prevention and Z or treatment of obesity and Z or diabetes, a transgenic animal that can be used for the purpose of elucidating the pathology of obesity and Z or diabetes, and the production thereof.
  • the object is to provide nucleic acid molecules that can be used.
  • KRAP is distributed in large amounts in the liver and spleen due to physiological expression, and is also present in ubiquitous in many organs except for the heart and skeletal muscle. Furthermore, the present inventors have found that an animal in which the KRAP gene has been disrupted exhibits changes in lipid metabolism and sugar metabolism, resulting in an animal with a small amount of fat, thereby completing the present invention.
  • the present invention
  • nucleic acid molecule according to the above [5], wherein the mutation is a deletion of at least one etason; [7] the mutation is a deletion of a region containing at least one of the exons 11 to 16 [6] The described nucleic acid molecule;
  • a vector comprising the nucleic acid molecule according to any one of [5] to [7] above; [9] an expression vector for producing a transgenic animal or for gene therapy,
  • An isolated interfering nucleic acid having a sequence that is substantially identical or substantially complementary to at least a part of the KRAP gene or mRNA and that can inhibit the expression of the KRAP gene in a cell, tissue, or individual Molecule;
  • a lipid metabolism and Z or sugar metabolism modifier comprising the interfering nucleic acid molecule or the binding protein according to any one of [11] to [13] above;
  • lipid metabolism and Z or sugar metabolism-modifying agent according to [14] above, which is an energy consumption enhancer, an obesity prevention or elimination agent, or an insulin sensitivity enhancer; [16] A method of inducing alteration of lipid metabolism and Z or sugar metabolism in mammalian cells, tissues or non-human animals by inhibiting the expression or function of KRAP gene or protein;
  • An interfering nucleic acid molecule having a sequence that is substantially the same or substantially complementary to at least a part of the KRAP gene or mRNA, and that can inhibit the expression of the KRAP gene in a cell, tissue, or individual, and Z or Including the step of inhibiting the expression of the KRAP gene using a binding protein that specifically binds to the KRAP protein or a part thereof and can inhibit the function of the KRAP protein in a cell, tissue, or individual. 16) or the method according to [17],
  • the lipid metabolism and sugar metabolism are artificially altered or energy consumption is artificially inhibited in animals by inhibiting the expression or function of the KRAP gene or protein.
  • obesity caused by a meal such as ingestion of a high fat diet can be suppressed.
  • no adverse effects have been found due to inhibition of KRAP gene or protein expression or function.
  • the transgenic animal of the present invention is characterized in that lipid metabolism and sugar metabolism are modified, and in particular, as a result of increased energy consumption, the physical strength is small and the amount of fat is small compared to the wild type.
  • lipid metabolism and sugar metabolism are modified, and in particular, as a result of increased energy consumption, the physical strength is small and the amount of fat is small compared to the wild type.
  • it is useful as a model animal in studies on body weight control and obesity mechanisms, glucose metabolism, etc., for example, studies for elucidation of pathological conditions such as obesity and diabetes.
  • Figure 1 shows a comparison of the amino acid sequences of the KRAP gene products of human (upper) and mouse (lower).
  • FIG. Thick, underlined partial force S coiled-coil motif.
  • FIG. 2 is a diagram showing targeted disruption of the mouse KRAP gene.
  • Panel (A) A region of the mouse KRAP gene (Wild-type locus) including exons 8 to 17 is schematically shown along with related restriction enzyme sites.
  • Panel) Targeting vector containing a neomycin (neo) cassette. The corresponding positional relationship with the genomic gene (A) intended for homologous recombination is indicated by a dotted line.
  • Middle Northern 'plot photo showing specific deletion of KRAP mRNA in mutant (one Z-) liver compared to wild-type (+ Z +). Below is the -actin.
  • Right Western blot photo showing specific deletion of KRAP protein in mutant (one ⁇ —) liver compared to wild-type (+ ⁇ +).
  • j8-tubulin Western blot photo showing specific deletion of KRAP protein in mutant (one ⁇ —) liver compared to wild-type (+ ⁇ +).
  • FIG. 4 shows a comparison of organ weights for wild type (Wt) and KRAP knockout mice (Ko).
  • the average for the 20-week-old male (n 9), the vertical axis is the percentage of the tissue weight Z body weight.
  • WAT white adipose tissue
  • liver liver
  • BAT brown adipose tissue
  • kidney kidney
  • heart heart.
  • FIG. 5 shows a wild-type (Wt) and KRAP knockout mouse (Ko) prepared after fasting a 22-week-old male fed a normal diet for 16 hours. It is a photograph showing an HE stained image.
  • WAT white adipose tissue
  • BAT brown adipose tissue
  • Liver liver. Ske Noreno is 50 ⁇ .
  • FIG. 6 shows the relative amounts of liver triglycerides and glycogen in wild-type (Wt) and KRAP knockout mice (Ko) in the fed state. Left: Tridari cerido, right: Glycogen.
  • FIG. 8 shows the daily energy consumption profile (panel (A)) and respiratory quotient (RQ) (panel (B)) for a 22-week-old male mouse under normal diet. .
  • the asterisk indicates a significant difference of P ⁇ 0.05.
  • FIG. 9 is a diagram showing the results of a glucose tolerance test.
  • Vertical axis blood glucose concentration
  • FIG. 10 shows the results of an insulin sensitivity test. Left: blood glucose concentration, right: blood glucose concentration expressed as a percentage with the injection rate as 100%. An asterisk indicates a significant difference (*: P ⁇ 0.05; **: P ⁇ 0.01).
  • FIG. 11 shows blood glucose levels of KRAP + / + (black column), KRAP — / — (white column), and KR AP + Z— (hatched column) mice under feeding.
  • FIG. 12 shows blood ketone body levels of KRAP + Z + (black column) and KRAP-/-(white column) mice under fed (fed) and fasted for 15 hours (15h fast). is there.
  • the vertical axis shows the blood ketone body concentration.
  • FIG. 13 is a diagram showing weight adjustment when a high fat diet is given.
  • An asterisk indicates a significant difference (*: P ⁇ 0.001; **: P ⁇ 0.01).
  • FIG. 14 is a diagram showing the amount of intake during a period when a high fat diet was given. Left: food intake per day (g), right: weight divided by weight. An asterisk indicates a significant difference (*: P ⁇ 0.05; **: P ⁇ 0.001).
  • FIG. 15 is a diagram showing energy consumption when a high fat diet is given. An asterisk indicates a significant difference (*: P ⁇ 0.05).
  • FIG. 16 is a diagram showing the results of Northern blotting regarding the expression of several genes in silk and weave.
  • FIG. 17 is a diagram showing the measurement results of spontaneous momentum.
  • WT wild type
  • KO KRAP knockout mouse.
  • FIG. 18 is a diagram showing the influence on the liver when a high fat diet is given.
  • WT wild type
  • KO KRAP knockout mouse.
  • the "KRAP gene” includes all homologs and alleles that encode KRAP that can be expressed as a polypeptide.
  • Such genes are known at least for mice and humans (eg, Figure 1), and the desired cDNA library can be obtained under stringent conditions using probes designed based on such known sequences. It can be identified by screening.
  • Stringent conditions means, for example, 50% formamide, 120 mM Na HPO, 7% SDS, ImM EDTA, 250 mM N
  • the coding region of the mouse genomic gene (SEQ ID NO: 1 in the sequence listing) registered as Genbank accession number NC-000068 or the full length of the mouse cDNA (mRNA) registered as accession number AB120565 (SEQ ID NO: 2 and 3) or Genb 60% or more in homology search using NCBI (National Center for Biotechnology Information) B LAST search against the full length of human cDNA (mRNA) registered as ank registration number AB116937 (SEQ ID NOs: 4 and 5) Nucleotide identity or 50% or more amino acid identity, preferably 80% or more nucleotide identity or 70% or more amino acid identity, more preferably 90% or more nucleotide identity. Those having 80% or more amino acid identity are included in the gene encoding the “KRAP” protein in the context of the present invention.
  • Wild-type KRAP gene refers to the above-mentioned mouse or human KRAP gene registered in Genbank among these KRAP genes, or a natural type having expression / function substantially equivalent to them. K The KRAP gene.
  • a "mutant" KRAP gene is quantitatively characterized by a partial modification of the nucleotide sequence compared to the KRAP gene (particularly a natural or wild-type gene) obtained as described above. Or any KRAP gene that results in qualitatively different KRAP gene expression.
  • homologous recombination or identity that allows homologous recombination with the KRAP gene in the genome is achieved, and the expression of the KRAP gene is reduced or reduced in non-human animal cells.
  • a mutant KRAP gene that can be deleted is used.
  • Such mutant KRAP genes include, but are not limited to, for example, those having at least one etason deficiency and those having a mutation causing a frame shift.
  • Examples of the deletion include those in which the mutation is present in the half region on the C-terminal side of the KRAP gene, and more specifically, a deletion in a region containing at least one of exons 11-16. A region containing all of ⁇ 16 can be missing.
  • the deletion can be, for example, about 5 to 95%, 20 to 80%, or 35 to 70% of the coding region.
  • the loss of the coding region can be widespread as long as the coding region and the Z or non-coding region to the extent that homologous recombination is sufficient as long as it causes destruction of the KRAP function remain.
  • a vector for gene transfer such as a vector for homologous recombination
  • the nucleic acid molecule is DNA and the vector comprises a mutant KRAP gene nucleic acid molecule and a selectable marker gene (eg, a neo gene conferring G418 resistance).
  • transgenic animal of the present invention such a vector is introduced into a host cell (for example, mouse blastocyst) by a general method.
  • a host cell for example, mouse blastocyst
  • Methods for producing a transgenic animal are well known to those skilled in the art, and those skilled in the art can arbitrarily select a known method and appropriately employ it for producing the transgenic animal of the present invention.
  • the transgenic animal of the present invention it is determined that the expression of the KRAP gene or protein is significantly reduced or absent compared to that in the host animal (having the wild type KRAP gene) used for the production. It can be specified by confirming. In addition, lipid metabolism (especially increased energy consumption), glucose metabolism (especially increased insulin sensitivity), and fluctuations in various blood hormone levels related to these are confirmed using, for example, the assembly method described later in the Examples. By doing so, the transgenic animal of the present invention can be identified.
  • the transgenic animal of the present invention can be used as a model animal in various experiments for the purpose of elucidating the pathogenesis of diseases and metabolic syndrome including obesity, diabetes and the like and further treating it. it can. It can also be used to elucidate the function of the KRAP gene itself.
  • a vector containing a mutant KRAP gene as described above, ethas vivo gene therapy is also possible. That is, in general gene therapy, a functional gene is introduced in vitro to cells derived from a treatment target containing a defective gene, and the genetically manipulated cells are returned to the treatment target. However, in the present invention, the step of introducing the mutant KRAP gene as described above in vitro into a cell derived from a treatment target containing a functional KRAP gene, and returning the genetically engineered cell to the treatment target. Process. Gene therapy vectors used in such methods are also within the scope of the present invention.
  • vectors such as adenoviruses, retroviruses and herpes viruses are used, and their production methods are well known to those skilled in the art.
  • the present invention involves inhibiting the expression or function of the KRAP gene or protein.
  • a method of inducing alterations in lipid metabolism and Z or sugar metabolism in mammalian cells, tissues or non-human animals is provided.
  • an interfering nucleic acid molecule designed based on the nucleotide sequence of the KRAP gene e.g., antisense RNA; a short-chain containing a double-stranded portion that can cause RNA interference
  • RNA double-stranded nucleic acid containing DNA and RNA, siRNA, miRNA, etc.
  • binding protein molecules that specifically bind to KRAP protein (where "protein” It is used as a term that also includes peptides; for example, polyclonal or monoclonal antibodies, various fragments of antibodies, humanized antibodies, etc.) can be used.
  • Methods for designing and producing these various interfering nucleic acid molecules and methods for preparing binding protein molecules such as antibodies or antibody fragments are well known to those skilled in the art.
  • interfering nucleic acid molecules and Z or binding protein molecules can be used alone as lipid metabolism and Z or sugar metabolism modifiers, for example, energy consumption enhancers, obesity prevention or elimination agents, or insulin sensitivity enhancers.
  • an appropriate carrier that is physiologically acceptable, and administered to animals.
  • effects such as increased energy consumption, prevention or elimination of obesity, or increased insulin sensitivity can be obtained.
  • Physiologically acceptable carriers and formulation methods that can be used for such purposes are well known to those skilled in the pharmaceutical arts.
  • the appropriate dosage may vary within a wide range depending on the animal species, the individual's body weight, age, sex, general health condition, etc., but a person skilled in the art can appropriately determine the appropriate animal by selecting and experimenting with an appropriate animal. Can be determined.
  • the genomic DNA of the KRAP gene was isolated using a mouse KRAP cDNA probe (base numbers 2962 to 3759 in SEQ ID NO: 1 in the sequence listing).
  • a mouse KRAP cDNA probe base numbers 2962 to 3759 in SEQ ID NO: 1 in the sequence listing.
  • an Xhol-Sail fragment was prepared from the isolated genomic DNA and inserted into the Sail site of pBluescript SK as a 3'arm.
  • an Xbal EcoRI fragment was prepared from the isolated genomic DNA and placed as an arm into the Xbal EcoRI site.
  • the pGKneo cassette was inserted into the EcoRI site.
  • the diphtheria toxin A fragment cassette was inserted into the Sail site with Xhol—Sal I.
  • a targeting vector was constructed by replacing the base numbers 20 598 to 28867 in SEQ ID NO: 1 with a pGKneo cassette having the opposite transcription direction, and the targeting constructs 5 and 3, and arms were 2.3 kb (each) It consisted of genomic DNA of base numbers 18288 to 20597 in SEQ ID NO: 1 in the sequence table and 6.4 kb (base numbers 27876 to 34348 in SEQ ID NO: 1 in the sequence list), 3 diphtheria toxin A fragment cassette (DTA-A) 'Adjacent to the genomic arm, this target vector was linearized with Sail.
  • DTA-A diphtheria toxin A fragment cassette
  • the above-described linear targeting vector was introduced into embryonic stem (ES) cells by electroporation, and the recombinant was selected with G418 on feeder cells (embryonic fibroblasts).
  • This mutant embryonic stem cell was microinjected into a blastocyst (blastocyst) of a C57BLZ6 mouse, and the resulting male chimera was crossed with a C57BLZ6 mouse.
  • Heterozygous (KRAP + Z ⁇ ; sometimes abbreviated as “Ht”) mice were mated to obtain KRAP knockout (KRAP—Z—; abbreviated as “Ko”) mice.
  • Genomic DNA extracted from the tail of the animal was digested with EcoRV, and an external probe (350 bp Xbal fragment, base numbers 15786 to 16140 in SEQ ID NO: 1 in the sequence listing; Fig. 2, Panel (C) rprobe A) Hybridized). Wild type (KRAP + Z +; may be abbreviated as “Wt”) 21. Okb restriction fragment, mutant (—Z—) 8. Okb fragment, heterozygous (one Z +) both Fragments were detected ( Figure 2, left panel of panel (D)).
  • the anti-KRAP antibody used for detection was prepared as follows. Recombinant human KRAP (amino acids 1039 to 1246 in SEQ ID NO: 4 in the sequence listing) was expressed as a bacterial fusion protein using pGEX6P-1 vector 1 (Pharmacia) according to the instructions. This fusion protein was soluble in non-denaturing buffer and purified using dartathione-sepharose 4B (Amersham). This recombinant KRAP protein was injected into a rabbit and booster immunized to obtain antiserum. The antiserum was purified using a affinity column prepared by crosslinking the recombinant protein to CNBr activated Sepharose 4B (Amersham).
  • mice were maintained in a temperature controlled facility (23 ° C) with a 12 hour light / dark cycle.
  • the mouse is a standard rodent feed (CE-2 (Japan Claire); And voluntary access to water.
  • KRAP + obtained by mating heterozygous mice
  • mice were euthanized and the wet weight of epididymal white adipose tissue (WAT), liver, scapular brown adipose tissue (BAT), kidney and heart were measured.
  • WAT epididymal white adipose tissue
  • BAT scapular brown adipose tissue
  • KRAP Z adipocytes (shown white) in HE-stained WAT and BAT were clearly reduced in size compared to KRAP + Z + adipocytes.
  • mice 22 week old male mice were individually placed in a metabolic cage. Mice were provided with a normal diet that weighed in advance for 24 hours. Body weight was measured before the start of the test. At the end of the 24-hour period, the remaining food including food waste was weighed and the amount of food consumed per day (g / day / kg-body w eight) was calculated.
  • This Ichikawa M, Fujita Y, tiifects of nitrogen and energy metabolism on body weight ⁇ n later life of male Wistar rats consuming a constant amount of food, J Nutr. 1987 0 ct; l 17 (10): 1751-8; Ichikawa M, Kanai S, Ichimaru Y, Funakoshi A, Miyasaka K.,
  • the diurnal rhythm of energy expenditure differs between obese and glucose-intolerant rats and streptozotocin- induced diabetic rats, J Nutr. 2000 Oct; 130 (10): 2562- 7).
  • O-CO analyzer NEC Medical System, model IH26, Tokyo, Japan
  • Oxygen consumption and carbon dioxide production during expiration were measured continuously. The energy consumption per hour and per day was calculated.
  • mice that fasted overnight were subjected to an intraperitoneal dalcose tolerance test using glucose at a dose of 2 g / kg body weight.
  • the insulin sensitivity test was performed by injecting insulin at a dose of 0.75 U / kg body weight in animals fasted for 3 hours.
  • FIGS. 9 and 10 The results are shown in FIGS. 9 and 10. At 60, 90 and 120 minutes after glucose administration, glucose levels in KRAP ⁇ / one mice were significantly lower compared to KRAP + / + mice (FIG. 9). In the insulin sensitivity test, insulin injection resulted in a significantly lower level of dalcose in KRAP- / mice compared to KRAP + / + mice (Fig. 10).
  • Blood was collected from the retroorbital sinus vein in the normal fed state. The blood was kept on ice until subjected to centrifuge separation (3,000 g, 15 minutes, 4 ° C), serum was collected and stored at -70 ° C until used for prayer. Serum insulin, lebutin, adiponectin and thyroxine (T4) concentrations were obtained using ELISA kits (SWbayagi Co., R & D systems, Otsuka pharmaceutical Co., Endocnnetech. Co., respectively). Triglycerides, total cholesterol and non-esterified free fatty acids (NEFA) were measured by enzymatic assay (Wako Pure Chemical Industries). Glucose and ketone bodies were quantified using Medisense Xtra using tail vein blood.
  • Serum cholesterol in KRAP + / + and KRAP- Z mice fed a normal diet Terol and free fatty acid levels were not significantly different. Serum triglyceride levels tended to be lower in KRAP Z mice, although there was no statistically significant difference. KRAP Z—Mice showed mild hypoglycemia and reduced circulating insulin levels.
  • a ketone body is produced by decomposing fat as an energy source in a starved state.
  • KRA P Z mice
  • a low value that is similar to the wild type under non-fasting indicates that there is no ketoacidosis (no abnormalities like starvation).
  • the ketone body concentration increased under fasting, it was suggested that lipolysis and conversion to NEFA strong ketone bodies were abnormal even in KRAP-/-mice.
  • lebutin is a circulating hormone that increases fat loss independent of reduced food intake, serum levels of this hormone were measured. Leptin was actually reduced in KRAP Z—mice.
  • Adiponectin is a fat-derived hormone and is thought to have a role in insulin tolerance and diabetes associated with obesity. Adiponectin was increased in KRAP + / + mice. KRAP mice showed increased energy consumption. Their serum thyroxine (T4) levels were lower than KRAP + Z + mice. Moreover, the fact that ketone body formation in the fed state was comparable to the wild type supported K RAP Z—mice that there were no abnormalities, such as starvation, when KRAP was normalized to body weight. -/-Consistent with mice eating more than KRAP + / +.
  • Panel (A) is the mouse weight curve
  • Panel is the weight gain at 4 weeks
  • Panel (C) is a graph and panel with the weight gain at the start of 4 weeks divided by the weight at the start
  • Panel ( D) is the weight percent of the epididymal white adipose tissue (WAT) weight.
  • FIG. 14 shows the amount of food intake during the period when the high fat diet was given. On the left is the amount of food consumed per day (g), and on the right is the weight divided by weight. It can be seen that the mouse of the present invention has a higher food intake compared to the wild type, but has less weight gain.
  • FIG. 15 represents the results for energy consumption. As in the case of the normal diet, energy consumption was increased in the mouse of the present invention.
  • T3 triodothyronine
  • GH growth hormone
  • glucagon glucagon
  • KRAP + Z + and KRAP- Z— mice fed a normal diet There were no significant differences in blood GH, glucagon, and albumin concentrations in KRAP + Z + and KRAP- Z— mice fed a normal diet. From this, KR The growth delay seen in AP-Z-mice may not be due to abnormal GH secretion. KRAP-Z-mice also showed mildly reduced T3 concentrations. This suggests that the increased energy metabolism rate observed in KRAP-Z-mice is not due to hyperthyroidism.
  • RNA was extracted from KRAP + Z + and KRAP- Z—mouse liver, skeletal muscle, epididymal white fat and interscapular brown adipose tissue according to a conventional method, and subjected to Northern 'plot.
  • mouse liver total RNA or mouse epididymal white fat total RNA was used as a cage, and a cDNA fragment obtained by RT-PCR using the following primers was used.
  • Lipid metabolism-related genes energy metabolism-related genes (lipoprotein lipase (LPL); hormone sensitive lipase (HSL); peroxisome proliferator-activated receptor ⁇ (PPAR) in skeletal muscle, epididymal white fat and interscapular brown adipose tissue ⁇ ); PPAR ⁇ coactivator 1 a (PGC1)) showed no noticeable abnormality as far as it was examined.
  • LPL lipoprotein lipase
  • HSL hormone sensitive lipase
  • PPAR peroxisome proliferator-activated receptor ⁇
  • PLC1 peroxisome proliferator-activated receptor ⁇
  • Spontaneous momentum is measured individually after 24 hours in the digital acquisition system (trade name; Bioresearch Center Co., Ltd., model number: NS-DAS-8-A) and experimental animal spontaneous motion sensor (brand name: neuroscience) The measurement was performed using a device model number: NS-AS0 1). During the test, the mice were allowed to freely feed (ordinary food) and water. The sensor counts 1 (moving action) when there is a movement change of 0.5 seconds or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Emergency Medicine (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Animal Husbandry (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

It is intended to provide a novel agent which can contribute to prevention and/or treatment of obesity and/or diabetes, a transgenic animal which can be used for the purpose of elucidating pathologic conditions of such as obesity and/or diabetes or the like, a nucleic acid molecule which can be used for the production thereof and the like. One aspect of the invention is a transgenic nonhuman animal in which the expression of KRAP gene is reduced or lost.

Description

明 細 書  Specification
KRAP遺伝子変異による脂質代謝および糖代謝改変動物、改変方法お よび改変剤  Lipid and sugar metabolism-modified animals by KRAP gene mutation, modification methods and modification agents
技術分野  Technical field
[0001] 本発明は、動物において、エネルギー消費の亢進、インシュリン感受性の亢進、肥 満の予防または解消、および Zまたは血中ホルモン濃度の異常を誘起することがで きる核酸分子およびそれを含む薬剤、そのような核酸分子を含むトランスジエニック動 物、エネルギー消費の亢進、インシュリン感受性の亢進、肥満の予防または解消、お よび Zまたは血中ホルモン濃度の異常を誘起する方法などに関する。  [0001] The present invention relates to a nucleic acid molecule capable of inducing an increase in energy consumption, an increase in insulin sensitivity, prevention or elimination of fattening, and an abnormality in Z or blood hormone concentration in an animal, and a drug containing the same The invention relates to a transgene animal containing such a nucleic acid molecule, increased energy consumption, increased insulin sensitivity, prevention or elimination of obesity, and a method for inducing abnormalities in Z or blood hormone levels.
背景技術  Background art
[0002] 現在までに、哺乳動物の肥満に関与する!、くつかの遺伝子が知られて!/、る。これら の遺伝子を正または負に改変することにより、抗肥満または肥満を呈する動物が作 製されている。そのような改変の標的遺伝子としては、たとえば、内分泌性シグナル 因子として全身性に機能し得るレプチン(Leptin)、 FGF19、ニューロペプチド、Y (neu ropeptide Y)、アン3 rォホェテン 連成長因子 (angiopoietin— related growth factor) や、遺伝子発現を広範囲に変動させて機能を発揮する転写制御因子 PGC1 α (ΡΡΑ R gamma coactivator 1 α)、 CBP(CREB binding protein)ゝ SRC— 1、 TIF2, RXR ( retinoid X receptor a)、細胞内脂質代謝関連酵素 ACC2(acetyl CoA carboxylase2 ), SCDKstealoyl CoA desaturasel)、細胞内シグナル制御因子 SHIP2、 PTP1B、 S6キナーゼ、 SOCS— 6、ミトコンドリア機能タンパク UCP(uncoupling protein)などの 種々のタンパク種をコードするものが挙げられる。これらのタンパクには、機能がよく 分力 ないものや多機能性のもの (発現する細胞によって異なったり、相互作用する タンパクによって異なる作用を示したりするもの)も多く存在する。特に c— Cblは、元 々、癌関連遺伝子として研究されてきたが、発現細胞'状況によって細胞内でさまざ まなシグナルを制御するものであり、この欠損マウスがエネルギー消費亢進 ·抗肥満 · 糖代謝変化を示すことが知られている。また、 FGF19の発現を増強させたトランスジ エニックマウスや FGF19投与マウス(FGFは血中を回って遠隔に作用する液性因子 である)でも、 FGP19による抗肥満効果が示され、肥満 ·糖尿病治療の観点から注目 されて ヽる(非特許文献 1〜31)。 [0002] To date, several genes are known to be involved in obesity in mammals! By altering these genes positively or negatively, animals exhibiting anti-obesity or obesity have been produced. The target gene such modifications, for example, leptin can function systemically as endocrine signaling factor (Leptin), FGF19, neuropeptide, Y (neu ropeptide Y), Anne 3 r Ohoeten communicating growth factor (Angiopoietin- related growth factor) and transcription factors PGC1 α (ΡΡΑ R gamma coactivator 1 α), CBP (CREB binding protein) ゝ SRC—1, TIF2, RXR (retinoid X receptor) a), intracellular lipid metabolism-related enzymes ACC2 (acetyl CoA carboxylase2), SCDKstealoyl CoA desaturasel), intracellular signal regulators SHIP2, PTP1B, S6 kinase, SOCS-6, mitochondrial function protein UCP (uncoupling protein) One that codes for the species. Many of these proteins do not function well or are multifunctional (those that differ depending on the cell in which they are expressed, or that act differently depending on the interacting protein). In particular, c-Cbl was originally studied as a cancer-related gene, but it controls various signals in the cell depending on the expression cell's situation. It is known to show metabolic changes. In addition, transgenic mice with enhanced expression of FGF19 and FGF19-administered mice (FGF is a humoral factor that acts remotely in blood. However, the anti-obesity effect by FGP19 is shown, and it is attracting attention from the viewpoint of obesity / diabetes treatment (Non-Patent Documents 1 to 31).
[0003] KRAP (Ki—ras— induced actin— interacting protein)遺伝子は、活'性ィ匕された Ki— ra sによってアップレギュレートされる癌関連遺伝子の一つとして近年同定された (非特 許文献 32)。この遺伝子によってコードされるタンパクは、コイルド 'コイル領域を有し ていることがわ力 ていたが、その生理的な発現部位および機能は不明であった。  [0003] The KRAP (Ki-ras-induced actin- interacting protein) gene has recently been identified as one of the cancer-related genes up-regulated by Ki-ras that has been activated (non-patent literature) 32). The protein encoded by this gene had a coiled coil region, but its physiological expression site and function were unknown.
[0004] 非特許文献 1 : Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO,  [0004] Non-Patent Document 1: Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO,
Garcia K, Stitt TN, Yancopoulos GD, Wiegand SJ, Glass DJ. Absence of the lipid p hosphatase SHIP2 confers resistance to dietary obesity. Nat Med. 2005 Feb; 11(2): 1 99-205.  Garcia K, Stitt TN, Yancopoulos GD, Wiegand SJ, Glass DJ. Absence of the lipid p hosphatase SHIP2 confers resistance to dietary obesity. Nat Med. 2005 Feb; 11 (2): 1 99-205.
非特許文献 2: Oh W, Abu-Elheiga L, Kordari P, Gu Z, Shaikenov T, Chirala SS, Wa kil SJ. Glucose and fat metabolism in adipose tissue of acetyl— CoA carboxylase 2 kn ockout mice. Proc Natl Acad Sci U S A. 2005 Feb 1; 102(5): 1384— 9.  Non-Patent Document 2: Oh W, Abu-Elheiga L, Kordari P, Gu Z, Shaikenov T, Chirala SS, Wa kil SJ. Glucose and fat metabolism in adipose tissue of acetyl— CoA carboxylase 2 kn ockout mice. Proc Natl Acad Sci US A. 2005 Feb 1; 102 (5): 1384— 9.
非特許文献 3 : Abu- Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase Non-Patent Document 3: Abu- Elheiga L, Oh W, Kordari P, Wakil SJ. Acetyl-CoA carboxylase
2 mutant mice are protected against obesity and diabetes induced by high-fat/high -carbohydrate diets. Proc Natl Acad Sci U S A. 2003 Sep 2; 100(18): 10207— 12. 非特許文献 4 : Jiang G, Li Z, Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Es au C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB. Prevention of o besity in mice by antisense oligonucleotide inhibitors of stearoyl— CoA desaturase— 1.2 mutant mice are protected against obesity and diabetes induced by high-fat / high -carbohydrate diets.Proc Natl Acad Sci US A. 2003 Sep 2; 100 (18): 10207— 12. Non-Patent Document 4: Jiang G, Li Z , Liu F, Ellsworth K, Dallas-Yang Q, Wu M, Ronan J, Es au C, Murphy C, Szalkowski D, Bergeron R, Doebber T, Zhang BB. Prevention of o besity in mice by antisense oligonucleotide inhibitors of stearoyl— CoA desaturase— 1.
J Clin Invest. 2005 Apr;115(4):1030— 8. J Clin Invest. 2005 Apr; 115 (4): 1030— 8.
非特許文献 5 : Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation. Trends Cardiovasc Med. 2004 Feb 4(2):77- 81. Review.  Non-Patent Document 5: Dobrzyn A, Ntambi JM. The role of stearoyl-CoA desaturase in body weight regulation.Trends Cardiovasc Med. 2004 Feb 4 (2): 77- 81. Review.
非特許文献 6 : Abu- Elheiga L, Matzuk MM, Abo- Hashema KA, Wakil SJ. Continuo us fatty acid oxidation and reduced fat storage in mice lac ing acetyl— CoA carboxyla se 2. Science. 2001 Mar 30;291(5513):2613— 6.  Non-Patent Document 6: Abu- Elheiga L, Matzuk MM, Abo- Hashema KA, Wakil SJ. Continuo us fatty acid oxidation and reduced fat storage in mice lac ing acetyl— CoA carboxyla se 2. Science. 2001 Mar 30; 291 (5513 ): 2613— 6.
非特許文献 7 :Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T , Yamamura K, Kadowa i T. Increased insulin sensitivity despite lipodystrophy in C rebbp heterozygous mice. Nat Genet. 2002 Feb;30(2):221— 6 Non-Patent Document 7: Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T, Yamamura K, Kadowa i T. Increased insulin sensitivity despite lipodystrophy in C rebbp heterozygous mice. Nat Genet. 2002 Feb; 30 (2): 221— 6
非特許文献 8 : Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fu magalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. Absence of S6K1 protects against age— and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004 Sep 9;431(7005):200-5. Epub 2004 Aug 11. Erratum in: Nature. 2004 Sep 23;4 31(7007):485. Non-Patent Document 8: Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fu magalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. Absence of S6K1 protects against age— and diet-induced obesity while enhancing insulin sensitivity. Nature. 2004 Sep 9; 431 (7005): 200-5. Epub 2004 Aug 11. Erratum in: Nature. 2004 Sep 23; 4 31 (7007): 485.
非特許文献 9 : Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams P M, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Ts ai SP, Stewart TA. Fibroblast growth factor 19 increases metabolic rate and reverse s dietary and leptin- deficient diabetes. Endocrinology. 2004 Jun;145(6):2594-603. 非特許文献 10 : Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroolast growth factor— 19 display increased metabolic rate and decreased a diposity. Endocrinology. 2002 May;143(5): 1741-7. Non-Patent Document 9: Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Ts ai SP , Stewart TA. Fibroblast growth factor 19 increases metabolic rate and reverse s dietary and leptin- deficient diabetes. Endocrinology. 2004 Jun; 145 (6): 2594-603. Non-patent literature 10: Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA.Transgenic mice expressing human fibroolast growth factor— 19 display increased metabolic rate and decreased a diposity. Endocrinology. 2002 May; 143 ( 5): 1741-7.
非特許文献 11 : Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien C B, Langdon WY, Walder K, Murphy MA, Bowtell DD, James DE, Cooney GJ. c- Cb 1— deficient mice have reduced adiposity, higher energy expenditure, and improved p eripheral insulin action. J Clin Invest. 2004 Nov;l 14(9): 1326-33. Non-Patent Document 11: Molero JC, Jensen TE, Withers PC, Couzens M, Herzog H, Thien CB, Langdon WY, Walder K, Murphy MA, Bowtell DD, James DE, Cooney GJ.c- Cb 1— deficient mice have reduced adiposity, higher energy expenditure, and improved p eripheral insulin action.J Clin Invest. 2004 Nov; l 14 (9): 1326-33.
非特許文献 12 : Lin J, Wu PH, Tarr PT, Lindenberg KS, St- Pierre J, Zhang CY, Moo tha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, C ooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krain c D, Spiegelman BM. Defects in adaptive energy metabolism with CNS— linked hyper activity in PGC— lalpha null mice. Cell. 2004 Oct 1;119(1):121— 35. Non-Patent Document 12: Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Moo tha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krain c D, Spiegelman BM. Defects in adaptive energy metabolism with CNS— linked hyper activity in PGC— lalpha null mice. Cell. 2004 Oct 1; 119 (1): 121— 35.
非特許文献 13 : Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajim a Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stre ss in obesity and its impact on metabolic syndrome. J Clin Invest. 2004 Dec;114(12 ):1752-61. Non-Patent Document 13: Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajim a Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stre ss in obesity and its impact on metabolic syndrome. Clin Invest. 2004 Dec; 114 (12): 1752-61.
非特許文献 14 : Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Sou za DP, Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE , Baca M, Hilton DJ, Alexander WS. SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol. 2 002 Jul;22(13):4567-78. Non-Patent Document 14: Krebs DL, Uren RT, Metcalf D, Rakar S, Zhang JG, Starr R, De Sou za DP, Hanzinikolas K, Eyles J, Connolly LM, Simpson RJ, Nicola NA, Nicholson SE, Baca M, Hilton DJ, Alexander WS.SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol. 2 002 Jul; 22 (13): 4567-78.
非特許文献 15 : Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy J O, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PG C-1 alpha denciency causes multi-system energy metabolic derangements: muscle dy sfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005 Apr;3(4): elOl. Non-Patent Document 15: Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP.PG C-1 alpha denciency causes multi-system energy metabolic derangements: muscle dy sfunction, abnormal weight control and hepatic steatosis.PLoS Biol. 2005 Apr; 3 (4): elOl.
非特許文献 16 : Tsukiyama- Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras Aし, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremolay ML, Sonenberg N. Adipose tissue reduction in mice lacking the translational inhibit or 4E-BP1. Nat Med. 2001 Oct;7(10): 1128-32. Non-Patent Document 16: Tsukiyama- Kohara K, Poulin F, Kohara M, DeMaria CT, Cheng A, Wu Z, Gingras A, Katsume A, Elchebly M, Spiegelman BM, Harper ME, Tremolay ML, Sonenberg N. Adipose tissue reduction in mice lacking the translational inhibit or 4E-BP1. Nat Med. 2001 Oct; 7 (10): 1128-32.
非特許文献 17 : Cohen P, Miyazaki M, Socci ND, Hagge— Greenberg A, Liedtke W, S oukas AA, bharma R, Hudgins LC, Ntambi JM, Friedman JM. Role for stearoyl-Co A desaturase-丄 m leptin- mediated weight loss. Science. 2002 Jul 12;297(5579):240 -3. Non-Patent Document 17: Cohen P, Miyazaki M, Socci ND, Hagge— Greenberg A, Liedtke W, Soukas AA, bharma R, Hudgins LC, Ntambi JM, Friedman JM. Role for stearoyl-Co A desaturase- 丄 m leptin- mediated weight loss. Science. 2002 Jul 12; 297 (5579): 240 -3.
非特許文献 18 : Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD. Loss of stearoyl-CoA desaturase— 1 lunction protects mice against adiposity. Proc Natl Acad Sci U S A. 2002 Aug 20;9Non-Patent Document 18: Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD. Loss of stearoyl-CoA desaturase— 1 lunction protects mice against adiposity. Proc Natl Acad Sci US A. 2002 Aug 20; 9
9(17):11482-6. 9 (17): 11482-6.
非特許文献 19 : Cline GW, Vidal-Puig AJ, Dufour S, Cadman KS, Lowell BB, Shulma n GI. In vivo effects of uncoupling protein— 3 gene disruption on mitochondrial energ y metabolism. J Biol Chem. 2001 Jun 8;276(23):20240-4. Non-Patent Document 19: Cline GW, Vidal-Puig AJ, Dufour S, Cadman KS, Lowell BB, Shulma n GI.In vivo effects of uncoupling protein— 3 gene disruption on mitochondrial energ y metabolism. J Biol Chem. 2001 Jun 8; 276 (23): 20240-4.
非特許文献 20 : Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley B W, Chambon P, Auwerx J. SRC— 1 and TIF2 control energy balance between white a nd brown adipose tissues. Cell. 2002 Dec 27;111(7):931— 41. 非特許文献 21 : Ohki- Hamazaki H, Watase K, Yamamoto K, Ogura H, Yamano M, Y amada K, Maeno H, Imaki J, Kikuyama S, Wada E, Wada K. Mice lacking bombesin receptor subtype— 3 develop metabolic defects and obesity. Nature. 1997 Nov 13;39 0(6656): 165-9. Non-Patent Document 20: Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley BW, Chambon P, Auwerx J. SRC— 1 and TIF2 control energy balance between white a nd brown adipose tissues. Cell. 2002 Dec 27; 111 (7): 931— 41. Non-Patent Document 21: Ohki- Hamazaki H, Watase K, Yamamoto K, Ogura H, Yamano M, Y amada K, Maeno H, Imaki J, Kikuyama S, Wada E, Wada K. Mice lacking bombesin receptor subtype— 3 develop metabolic defects and obesity. Nature. 1997 Nov 13; 39 0 (6656): 165-9.
非特許文献 22 : Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M . Obesity and mild hyperinsulinemia found in neuropeptide Y-Yl receptor-deficient mice. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26): 15659-64. Non-Patent Document 22: Kushi A, Sasai H, Koizumi H, Takeda N, Yokoyama M, Nakamura M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Yl receptor-deficient mice.Proc Natl Acad Sci US A. 1998 Dec 22; 95 (26): 15659-64.
非特許文献 23 : Imai T, Jiang M, し hambon P, Metzger D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha media ted by a tamoxifen-inducible chimeric Cre recombinase (Cre- ERT2) in adipocytes. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):224— 8. Non-Patent Document 23: Imai T, Jiang M, Shi hambon P, Metzger D. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha media ted by a tamoxifen-inducible chimeric Cre recombinase (Cre- ERT2) in adipocytes. Proc Natl Acad Sci US A. 2001 Jan 2; 98 (1): 224— 8.
非特許文献 24 : Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP. Cent ral leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, an d hyperinsulinemia: increase in serum ghrelin levels. Diabetes. 2002 Jun;51(6) :1729 -36. Non-Patent Document 24: Dube MG, Beretta E, Dhillon H, Ueno N, Kalra PS, Kalra SP. Cent ral leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, an d hyperinsulinemia: increase in serum ghrelin levels. Diabetes. 2002 Jun; 51 (6): 1729 -36.
非特許文献 25 : Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Ho ng W, Li P. Cidea— deficient mice have lean phenotype and are resistant to obesity. Nat Genet. 2003 Sep;35(l):49- 56. Non-Patent Document 25: Zhou Z, Yon Toh S, Chen Z, Guo K, Ng CP, Ponniah S, Lin SC, Hong W, Li P. Cidea— deficient mice have lean phenotype and are resistant to obesity. Nat Genet. 2003 Sep; 35 (l): 49-56.
非特許文献 26 : Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Uran o T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N, Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T. Angiopoietin— related growth factor antagonizes obesity and insulin resistance. Nat Med. 2005 Ap r;l l(4):400-8. Non-Patent Document 26: Oike Y, Akao M, Yasunaga K, Yamauchi T, Morisada T, Ito Y, Uran o T, Kimura Y, Kubota Y, Maekawa H, Miyamoto T, Miyata K, Matsumoto S, Sakai J, Nakagata N , Takeya M, Koseki H, Ogawa Y, Kadowaki T, Suda T. Angiopoietin— related growth factor antagonizes obesity and insulin resistance. Nat Med. 2005 Ap r; ll (4): 400-8.
非特許文献 27 : Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. D efective secretion of saliva in transgenic mice lacking aquaporin— 5 water channels. J Biol Chem. 1999 Jul 16;274(29):20071-4 Non-Patent Document 27: Ma T, Song Y, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Defective secretion of saliva in transgenic mice lacking aquaporin— 5 water channels. J Biol Chem. 1999 Jul 16; 274 (29) : 20071-4
非特許文献 28 : Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Ha rper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold— sensiti ve but not obese. Nature. 1997 May l;387(6628):90-4. Non-Patent Document 28: Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP. Mice lacking mitochondrial uncoupling protein are cold—sensitivity ve but not obese.Nature. 1997 May l; 387 (6628): 90-4.
非特許文献 29 : Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroblast growth factor— 19 display increased metabolic rate and decreased a diposity. Endocrinology. 2002 May;143(5): 1741-7.  Non-Patent Document 29: Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroblast growth factor— 19 display increased metabolic rate and decreased a diposity. Endocrinology. 2002 May; 143 (5): 1741-7.
非特許文献 30 : Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, T sai SP, Stewart TA. Fibroblast growth factor 19 increases metabolic rate and revers es dietary and leptin- deficient diabetes. Endocrinology. 2004 Jun;145(6):2594-603. 非特許文献 31 : Klaman LD, Boss〇, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Strieker- Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure, decreased adiposity, and tissue— sped fic insulin sensitivity in protein— tyrosine phosphatase IB-deficient mice. Mol Cell B iol. 2000 Aug;20(15):5479-89.  Non-Patent Document 30: Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, T sai SP , Stewart TA. Fibroblast growth factor 19 increases metabolic rate and revers es dietary and leptin-deficient diabetes. Endocrinology. 2004 Jun; 145 (6): 2594-603. Non-patent literature 31: Klaman LD, Boss〇, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Strieker- Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure, decreased adiposity, and tissue— sped fic insulin sensitivity in protein — Tyrosine phosphatase IB-deficient mice. Mol Cell B iol. 2000 Aug; 20 (15): 5479-89.
特言午文献 32 : Inokucni J, Komiya M, Baba I, Naito N, Sasazuki T, Shirasawa S. D eregulated expression of KRAP, a novel gene encoding actin— interacting protein, in human colon cancer cells. J Hum Genet (2004) 49:46-52.  Special Article 32: Inokucni J, Komiya M, Baba I, Naito N, Sasazuki T, Shirasawa S. Deregulated expression of KRAP, a novel gene encoding actin— interacting protein, in human colon cancer cells. J Hum Genet (2004 49: 46-52.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明は、肥満および Zまたは糖尿病の予防および Zまたは治療に寄与しうる、 新規な薬剤、肥満および Zまたは糖尿病などの病態解明などの目的に使用しうるトラ ンスジエニック動物およびその作製に使用しうる核酸分子などを提供することを目的 とする。  [0005] The present invention relates to a novel drug that can contribute to the prevention and Z or treatment of obesity and Z or diabetes, a transgenic animal that can be used for the purpose of elucidating the pathology of obesity and Z or diabetes, and the production thereof. The object is to provide nucleic acid molecules that can be used.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、 KRAPが生理的発現によって肝臓、脾臓に多く分布し、心臓、骨格 筋を除く多くの器官 '組織にもュビキタスに存在することを見出した。さらに、本発明 者らは、 KRAP遺伝子を破壊された動物が、脂質代謝および糖代謝の変化を示し、 脂肪量の少ない動物となることを見出し、本発明を完成した。 本発明は、 [0006] The present inventors have found that KRAP is distributed in large amounts in the liver and spleen due to physiological expression, and is also present in ubiquitous in many organs except for the heart and skeletal muscle. Furthermore, the present inventors have found that an animal in which the KRAP gene has been disrupted exhibits changes in lipid metabolism and sugar metabolism, resulting in an animal with a small amount of fat, thereby completing the present invention. The present invention
〔1〕KRAP遺伝子の発現を低減または欠如させたトランスジエニック非ヒト動物; 〔2〕相同組換えにより破壊された KRAP遺伝子を含む、前記〔1〕記載のトランスジ エニック非ヒト動物;  [1] Transgenic non-human animal in which expression of KRAP gene is reduced or absent; [2] Transgenic non-human animal according to [1] above, which comprises KRAP gene disrupted by homologous recombination;
〔3〕改変された脂質代謝および Zまたは糖代謝を有する、前記〔1〕記載のトランス ジエニック非ヒト動物;  [3] The transgenic non-human animal according to [1], which has a modified lipid metabolism and Z or sugar metabolism;
〔4〕エネルギー消費の亢進、インシュリン感受性の亢進および Zまたは血中ホルモ ン濃度の異常を示す、前記〔1〕記載のトランスジエニック非ヒト動物;  [4] Transgenic non-human animal according to [1], which exhibits increased energy consumption, increased insulin sensitivity, and abnormal Z or blood hormone levels;
[5]ゲノム内の KRAP遺伝子と相同組換え可能であって、非ヒト動物細胞内で KR AP遺伝子の発現を低減または欠如させうる、単離された変異型 KRAP遺伝子核酸 分子;  [5] An isolated mutant KRAP gene nucleic acid molecule capable of homologous recombination with a KRAP gene in the genome and capable of reducing or eliminating the expression of the KR AP gene in non-human animal cells;
〔6〕変異が、少なくとも 1つのエタソンの欠損である、前記〔5〕記載の核酸分子; 〔7〕変異が、ェクソン 11〜16の少なくとも 1つを含む領域の欠損である、前記〔6〕 記載の核酸分子;  [6] The nucleic acid molecule according to the above [5], wherein the mutation is a deletion of at least one etason; [7] the mutation is a deletion of a region containing at least one of the exons 11 to 16 [6] The described nucleic acid molecule;
〔8〕前記〔5〕〜〔7〕の 、ずれか 1項記載の核酸分子を含む、ベクター; 〔9〕トランスジエニック動物作製用または遺伝子治療用の発現ベクターである、前記 [8] A vector comprising the nucleic acid molecule according to any one of [5] to [7] above; [9] an expression vector for producing a transgenic animal or for gene therapy,
〔8〕記載のベクター; [8] The vector according to
〔10〕前記〔8〕または〔9〕記載のベクターを導入された宿主細胞;  [10] A host cell into which the vector of [8] or [9] has been introduced;
〔11〕KRAP遺伝子または mRNAの少なくとも一部と実質的に同一または実質的 に相補的な配列を有し、細胞、組織または個体において KRAP遺伝子の発現を阻 害しうる、単離された干渉性核酸分子;  [11] An isolated interfering nucleic acid having a sequence that is substantially identical or substantially complementary to at least a part of the KRAP gene or mRNA and that can inhibit the expression of the KRAP gene in a cell, tissue, or individual Molecule;
〔12〕少なくとも一部が二本鎖である、前記〔11〕記載の干渉性核酸分子; 〔13〕 KRAPタンパクまたはその一部に対して特異的に結合し、細胞、組織または 個体にお 、て KRAPタンパクの機能を阻害しうる、結合性タンパク;  [12] The interfering nucleic acid molecule according to the above [11], wherein at least a part is double-stranded; [13] specifically binding to the KRAP protein or a part thereof; A binding protein that can inhibit the function of the KRAP protein;
〔14〕前記〔11〕〜〔13〕のいずれか 1項記載の干渉性核酸分子または結合性タン パクを含む、脂質代謝および Zまたは糖代謝改変剤;  [14] A lipid metabolism and Z or sugar metabolism modifier comprising the interfering nucleic acid molecule or the binding protein according to any one of [11] to [13] above;
〔15〕エネルギー消費亢進剤、肥満の予防または解消剤、またはインシュリン感受 性亢進剤である、前記〔14〕記載の脂質代謝および Zまたは糖代謝改変剤; 〔16〕KRAP遺伝子またはタンパク質の発現または機能を阻害することにより、哺乳 類細胞、組織または非ヒト動物において脂質代謝および Zまたは糖代謝の改変を誘 起する方法; [15] The lipid metabolism and Z or sugar metabolism-modifying agent according to [14] above, which is an energy consumption enhancer, an obesity prevention or elimination agent, or an insulin sensitivity enhancer; [16] A method of inducing alteration of lipid metabolism and Z or sugar metabolism in mammalian cells, tissues or non-human animals by inhibiting the expression or function of KRAP gene or protein;
〔17〕脂質代謝および Zまたは糖代謝の改変が、エネルギー消費の亢進、肥満の 予防または解消、インシュリン感受性の亢進、および Zまたは血中ホルモン濃度の異 常である、前記〔16〕記載の方法;  [17] The method according to [16] above, wherein the alteration of lipid metabolism and Z or sugar metabolism is an increase in energy consumption, prevention or elimination of obesity, an increase in insulin sensitivity, and an abnormality in Z or blood hormone concentration ;
〔18〕KRAP遺伝子または mRNAの少なくとも一部と実質的に同一または実質的 に相補的な配列を有し、細胞、組織または個体において KRAP遺伝子の発現を阻 害しうる干渉性核酸分子、および Zまたは KRAPタンパクまたはその一部に対して特 異的に結合し、細胞、組織または個体において KRAPタンパクの機能を阻害しうる結 合性タンパクを用いて KRAP遺伝子の発現を阻害する工程を含む、前記〔16〕また は〔17〕記載の方法、  (18) An interfering nucleic acid molecule having a sequence that is substantially the same or substantially complementary to at least a part of the KRAP gene or mRNA, and that can inhibit the expression of the KRAP gene in a cell, tissue, or individual, and Z or Including the step of inhibiting the expression of the KRAP gene using a binding protein that specifically binds to the KRAP protein or a part thereof and can inhibit the function of the KRAP protein in a cell, tissue, or individual. 16) or the method according to [17],
を提供する。  I will provide a.
発明の効果  The invention's effect
[0008] 本発明の核酸分子等の投与または本発明の方法によれば、 KRAP遺伝子または タンパクの発現または機能を阻害することにより、動物において人為的に脂質代謝お よび糖代謝の改変やエネルギー消費の亢進をもたらすことができ、さらには肥満の予 防または解消、および Zまたは糖尿病の予防または治療をもたらすことができる。特 に、本発明によれば、高脂肪食の摂取のような食事に起因する肥満を抑制すること ができる。一方、 KRAP遺伝子またはタンパクの発現または機能の阻害による不利な 影響は見出されていない。  [0008] According to the administration of the nucleic acid molecule or the like of the present invention or the method of the present invention, the lipid metabolism and sugar metabolism are artificially altered or energy consumption is artificially inhibited in animals by inhibiting the expression or function of the KRAP gene or protein. Can also lead to prevention or elimination of obesity and prevention or treatment of Z or diabetes. In particular, according to the present invention, obesity caused by a meal such as ingestion of a high fat diet can be suppressed. On the other hand, no adverse effects have been found due to inhibition of KRAP gene or protein expression or function.
[0009] 本発明のトランスジエニック動物は、脂質代謝および糖代謝が改変されており、特 にエネルギー消費の亢進が起こる結果、野生型と比較して体力 S小さぐ脂肪量が少 ないという特徴を有する。したがって、体重制御および肥満のメカニズム、糖代謝など の研究、たとえば肥満、糖尿病などの病態解明のための研究においてモデル動物と して有用である。 [0009] The transgenic animal of the present invention is characterized in that lipid metabolism and sugar metabolism are modified, and in particular, as a result of increased energy consumption, the physical strength is small and the amount of fat is small compared to the wild type. Have Therefore, it is useful as a model animal in studies on body weight control and obesity mechanisms, glucose metabolism, etc., for example, studies for elucidation of pathological conditions such as obesity and diabetes.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]は、ヒト(上段)およびマウス(下段)の KRAP遺伝子産物のアミノ酸配列の比較 を示す図である。太 、下線を付した部分力 Sコイルド ·コイル ·モチーフである。 [0010] [Figure 1] shows a comparison of the amino acid sequences of the KRAP gene products of human (upper) and mouse (lower). FIG. Thick, underlined partial force S coiled-coil motif.
[図 2]は、マウス KRAP遺伝子のターゲテイングされた破壊を示す図である。パネル( A):ェクソン 8〜 17を含むマウス KRAP遺伝子の一領域(Wild- type locus)を、関連 する制限酵素部位とともに模式的に示す。パネル ):ネオマイシン (neo)カセットを 含むターゲテイング構築物(Targeting vector)を示す。相同組換えを意図したゲノム 遺伝子 (A)との対応位置関係を点線で示す。パネル (C):相同組換えによって生成 すると予測される変異対立遺伝子(Targeted locus)を示す。パネル(D)左: EcoRV で消化した尾 DNAを用 、たサザン ·プロットの写真である。中央:野生型( + Z + )と 比較した、変異体(一 Z—)肝臓における KRAP mRNAの特異的欠失を示すノー ザン 'プロットの写真である。下は —ァクチンである。右:野生型( + Ζ + )と比較し た、変異体(一 Ζ—)肝臓における KRAPタンパクの特異的欠失を示すウェスタン ·ブ ロットの写真である。下は j8—チューブリンである。  [Fig. 2] is a diagram showing targeted disruption of the mouse KRAP gene. Panel (A): A region of the mouse KRAP gene (Wild-type locus) including exons 8 to 17 is schematically shown along with related restriction enzyme sites. Panel): Targeting vector containing a neomycin (neo) cassette. The corresponding positional relationship with the genomic gene (A) intended for homologous recombination is indicated by a dotted line. Panel (C): Shows the mutant allele predicted to be generated by homologous recombination (Targeted locus). Panel (D) left: A photo of a Southern plot using tail DNA digested with EcoRV. Middle: Northern 'plot photo showing specific deletion of KRAP mRNA in mutant (one Z-) liver compared to wild-type (+ Z +). Below is the -actin. Right: Western blot photo showing specific deletion of KRAP protein in mutant (one Ζ—) liver compared to wild-type (+ Ζ +). Below is j8-tubulin.
[図 3]は、野生型 (Wt)、ヘテロ接合体 (Ht)および KRAPノックアウトマウス (Ko)につ V、ての生育曲線 (縦軸:体重、横軸:週齢)を示すグラフ(それぞれ平均士 se; η= 5〜 14Z群)である。左:雄、右:雌。  [Fig. 3] is a graph showing growth curves (vertical axis: body weight, horizontal axis: age) for wild type (Wt), heterozygote (Ht), and KRAP knockout mice (Ko) (vertical axis: body weight, horizontal axis: age). Average person se; η = 5-14Z group). Left: male, right: female.
[図 4]は、野生型(Wt)および KRAPノックアウトマウス(Ko)についての器官重量の 比較を示す図である。 20週齢の雄 (n= 9)についての平均士 se、縦軸は組織重量 Z 体重の百分率である。 WAT=白色脂肪組織、 liver=肝臓、 BAT=褐色脂肪組織 、 kidney =腎臓、 heart=心臓。  FIG. 4 shows a comparison of organ weights for wild type (Wt) and KRAP knockout mice (Ko). The average for the 20-week-old male (n = 9), the vertical axis is the percentage of the tissue weight Z body weight. WAT = white adipose tissue, liver = liver, BAT = brown adipose tissue, kidney = kidney, heart = heart.
[図 5]は、普通食を与えた 22週齢の雄を 16時間絶食させた後に作製した、野生型( Wt)および KRAPノックアウトマウス(Ko)につ!/ヽての糸且織切片の HE染色像を示す 写真である。 WAT=白色脂肪組織、 BAT=褐色脂肪組織、 Liver=肝臓。スケー ノレノ一は 50 πι。  [Fig. 5] shows a wild-type (Wt) and KRAP knockout mouse (Ko) prepared after fasting a 22-week-old male fed a normal diet for 16 hours. It is a photograph showing an HE stained image. WAT = white adipose tissue, BAT = brown adipose tissue, Liver = liver. Ske Noreno is 50 πι.
[図 6]は、食餌を与えた状態での野生型 (Wt)および KRAPノックアウトマウス (Ko)に ついての肝臓のトリグリセリドおよびグリコーゲンの相対量を示す図である。左:トリダリ セリド、右:グリコーゲン。  FIG. 6 shows the relative amounts of liver triglycerides and glycogen in wild-type (Wt) and KRAP knockout mice (Ko) in the fed state. Left: Tridari cerido, right: Glycogen.
[図 7]は、マウス個体当り (左)または体重で標準化した (右)摂食量の比較を示す図 である(KRAP + Z+ (n= 7)、 KRAP— Z— (n= 9))。値は平均士 seである。星印 は P<0.05の有意差、「N. S.」は野生型マウスと比較して有意差なし、をそれぞれ 示す。 [Figure 7] shows a comparison of food intake per mouse (left) or normalized by body weight (right) (KRAP + Z + (n = 7), KRAP-Z— (n = 9)). The value is the average person se. Asterisk Indicates a significant difference of P <0.05, and “NS” indicates no significant difference compared to wild-type mice.
[図 8]は、普通食下での 22週齢の雄のマウスについての 1日のエネルギー消費プロ フィール (パネル (A))および呼吸商 (RQ) (パネル (B))を示す図である。値は平均 士 seである(KRAP + Z+(n=7)、KRAP— Z—(n=9))。星印は P<0.05の有 意差を示す。パネル (C):体重当りの総エネルギー消費の測定値である。  [FIG. 8] shows the daily energy consumption profile (panel (A)) and respiratory quotient (RQ) (panel (B)) for a 22-week-old male mouse under normal diet. . The value is the average person se (KRAP + Z + (n = 7), KRAP− Z− (n = 9)). The asterisk indicates a significant difference of P <0.05. Panel (C): A measure of total energy consumption per body weight.
[図 9]は、グルコース寛容試験の結果を示す図である。縦軸:血中グルコース濃度、 横軸:注射後の時間。普通食で維持した 16週齢の雄マウスを用いた。 KRAP + / + (n= 10) , KRAP-/- (n= 10) (平均士 se)。星印は P<0.01の有意差を示す。 FIG. 9 is a diagram showing the results of a glucose tolerance test. Vertical axis: blood glucose concentration, horizontal axis: time after injection. 16-week-old male mice maintained on a normal diet were used. KRAP + / + (n = 10), KRAP-/-(n = 10) (average person se). The asterisk indicates a significant difference of P <0.01.
[図 10]は、インシュリン感受性試験の結果を示す図である。左:血中グルコース濃度、 右:注射時を 100%とした百分率で示した血中グルコース濃度。星印は有意差を示 す(* :P<0.05; * * :P<0.01)。 FIG. 10 shows the results of an insulin sensitivity test. Left: blood glucose concentration, right: blood glucose concentration expressed as a percentage with the injection rate as 100%. An asterisk indicates a significant difference (*: P <0.05; **: P <0.01).
[図 11]は、給餌下での KRAP + / + (黒カラム)、 KRAP— /— (白カラム)および KR AP + Z— (斜線カラム)マウスの血中グルコースレベルを示す図である。  FIG. 11 shows blood glucose levels of KRAP + / + (black column), KRAP — / — (white column), and KR AP + Z— (hatched column) mice under feeding.
[図 12]は、給餌下 (fed)および 15時間絶食下(15h fast)での KRAP + Z + (黒カラム )および KRAP -/-(白カラム)マウスの血中ケトン体レベルを示す図である。縦軸 は血中ケトン体濃度を示す。 [Fig. 12] shows blood ketone body levels of KRAP + Z + (black column) and KRAP-/-(white column) mice under fed (fed) and fasted for 15 hours (15h fast). is there. The vertical axis shows the blood ketone body concentration.
[図 13]は、高脂肪食を与えた場合の体重調節を表す図である。パネル (A):マウスの 体重曲線、パネル ):4週間での体重増加量、パネル (C) :4週間での体重増加量 を開始時の体重割りで表示したグラフ、パネル (D): WAT重量の体重割り表示。星 印は有意差を示す(* :P<0.001;**:P<0.01)。  FIG. 13 is a diagram showing weight adjustment when a high fat diet is given. Panel (A): Weight curve of mouse, Panel): Weight gain in 4 weeks, Panel (C): Graph showing weight gain in 4 weeks divided by weight at start, Panel (D): WAT Weight division display of weight. An asterisk indicates a significant difference (*: P <0.001; **: P <0.01).
[図 14]は、高脂肪食を与えた期間の摂食量を表す図である。左: 1日当りの摂食量 (g )、右:それを体重割で表示したもの。星印は有意差を示す(* :P<0.05; * * :P <0.001)。  [FIG. 14] is a diagram showing the amount of intake during a period when a high fat diet was given. Left: food intake per day (g), right: weight divided by weight. An asterisk indicates a significant difference (*: P <0.05; **: P <0.001).
[図 15]は、高脂肪食を与えた場合のエネルギー消費を示す図である。星印は有意差 を示す(* :P<0.05)。  [FIG. 15] is a diagram showing energy consumption when a high fat diet is given. An asterisk indicates a significant difference (*: P <0.05).
[図 16]は、糸且織におけるいくつかの遺伝子の発現についてのノーザン 'ブロットの結 果を示す図である。組織: Liver =肝臓、 Skeletal muscle =骨格筋、 WAT=白色 脂肪組織、 BAT=褐色脂肪組織;動物: W=野生型( + Z + )、 K=KRAPノックァ ゥトマウス( Z );遺伝子: ACC1 =ァセチルー Co Aカルボキシラーゼ 1、 ACC2 =ァセチノレー CoAカノレボキシラーゼ 2、 ACO =ァシルー Co Aォキシダーゼ、 UCP2 =アンカップリングプロテイン 2、 β—Actin= j8ァクチン、 LPL =リポプロテインリパ ーゼ、 HSL =ホルモン感受性リパーゼ、 PPAR y =ペルォキシソーム増殖因子活性 化受容体 γ、 Leptin=レプチン、 aP2=脂肪細胞脂肪酸結合蛋白質、 36B4 =酸 性リボソームリン酸化蛋白質 P0、 UCP1 =アンカップリングプロテイン 1、 PGC1 a = PPAR y コアクチベータ一 1ひ。 なお、肝臓および骨格筋については、各 2匹の 野生型および KRAPノックアウトマウスについてのデータを示す。 FIG. 16 is a diagram showing the results of Northern blotting regarding the expression of several genes in silk and weave. Tissue: Liver = liver, Skeletal muscle = skeletal muscle, WAT = white Adipose tissue, BAT = brown adipose tissue; animal: W = wild type (+ Z +), K = KRAP knockout mouse (Z); gene: ACC1 = acetylene Co A carboxylase 1, ACC2 = acetylenore CoA canoleboxylase 2, ACO = Basil-Co A oxidase, UCP2 = uncoupled protein 2, β-Actin = j8 actin, LPL = lipoprotein lipase, HSL = hormone-sensitive lipase, PPAR y = peroxisome proliferator activated receptor γ, Leptin = Leptin, aP2 = Adipocyte fatty acid binding protein, 36B4 = acid ribosome phosphorylated protein P0, UCP1 = uncoupled protein 1, PGC1 a = PPAR y coactivator. For liver and skeletal muscle, data for two wild-type and KRAP knockout mice are shown.
[図 17]は、自発運動量の測定結果を示す図である。 WT=野生型、 KO=KRAPノッ クアウトマウス。パネル (A):縦軸はカウントされた移動行動の回数、横軸は時刻およ び明暗条件を表す。パネル ): rdarkj (暗)および「light」(明)各条件下における 総カウント数を示す。  FIG. 17 is a diagram showing the measurement results of spontaneous momentum. WT = wild type, KO = KRAP knockout mouse. Panel (A): The vertical axis represents the number of movements counted, and the horizontal axis represents time and light / dark conditions. Panel): Shows the total number of counts under rdarkj and “light” conditions.
[図 18]は、高脂肪食を与えた場合の肝臓への影響を示す図である。 WT=野生型、 KO=KRAPノックアウトマウス。パネル (A):肝臓の外観を示す写真である。パネル (B):組織トリグリセリド含量を示す図である。  FIG. 18 is a diagram showing the influence on the liver when a high fat diet is given. WT = wild type, KO = KRAP knockout mouse. Panel (A): A photograph showing the appearance of the liver. Panel (B): A graph showing tissue triglyceride content.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明において、「KRAP遺伝子」は、ポリペプチドとして発現可能な KRAPをコー ドするホモログおよび対立遺伝子をすベて含む。このような遺伝子は、少なくともマウ スおよびヒトについて公知であり(たとえば図 1)、そのような公知の配列に基づいて設 計されたプローブを用いてストリンジェントな条件下で所望の cDNAライブラリーをス クリーニングすることにより同定することができる。「ストリンジヱントな条件」とは、たとえ ば 50%ホルムアミド、 120mM Na HPO、 7%SDS、 ImM EDTA、 250mM N [0011] In the present invention, the "KRAP gene" includes all homologs and alleles that encode KRAP that can be expressed as a polypeptide. Such genes are known at least for mice and humans (eg, Figure 1), and the desired cDNA library can be obtained under stringent conditions using probes designed based on such known sequences. It can be identified by screening. “Stringent conditions” means, for example, 50% formamide, 120 mM Na HPO, 7% SDS, ImM EDTA, 250 mM N
2 4  twenty four
aClの溶液中で 42°Cでのハイブリダィゼーシヨン条件およびこれと同等のストリンジェ ンシ一の条件をいう。  Hybridization conditions at 42 ° C in aCl solution and equivalent stringency conditions.
[0012] たとえば、 Genbank登録番号 NC— 000068として登録されているマウスのゲノミツ ク遺伝子 (配列表の配列番号 1)のコード領域または登録番号 AB120565として登 録されているマウスの cDNA (mRNA)の全長(配列番号 2および 3)、あるいは Genb ank登録番号 AB116937として登録されているヒトの cDNA(mRNA)の全長(配列 番号 4および 5)に対して、 NCBI(National Center for Biotechnology Information)の B LASTサーチを使用したホモロジ一検索において 60%以上のヌクレオチド同一性ま たは 50%以上のアミノ酸同一性を有するもの、好ましくは 80%以上のヌクレオチド同 一性または 70%以上のアミノ酸同一性を有するもの、さらに好ましくは 90%以上のヌ クレオチド同一性または 80%以上のアミノ酸同一性を有するものは、本発明に関して 「KRAP」タンパクをコードする遺伝子に含まれる。 [0012] For example, the coding region of the mouse genomic gene (SEQ ID NO: 1 in the sequence listing) registered as Genbank accession number NC-000068 or the full length of the mouse cDNA (mRNA) registered as accession number AB120565 (SEQ ID NO: 2 and 3) or Genb 60% or more in homology search using NCBI (National Center for Biotechnology Information) B LAST search against the full length of human cDNA (mRNA) registered as ank registration number AB116937 (SEQ ID NOs: 4 and 5) Nucleotide identity or 50% or more amino acid identity, preferably 80% or more nucleotide identity or 70% or more amino acid identity, more preferably 90% or more nucleotide identity. Those having 80% or more amino acid identity are included in the gene encoding the “KRAP” protein in the context of the present invention.
[0013] 「野生型」 KRAP遺伝子とは、このような KRAP遺伝子のうち、 Genbankに登録さ れている上記のマウスまたはヒト KRAP遺伝子、またはそれらと実質的に同等の発現 •機能を有する天然型の KRAP遺伝子を ヽぅ。  [0013] "Wild-type" KRAP gene refers to the above-mentioned mouse or human KRAP gene registered in Genbank among these KRAP genes, or a natural type having expression / function substantially equivalent to them. K The KRAP gene.
[0014] 「変異型」 KRAP遺伝子とは、上記のようにして得られる KRAP遺伝子 (特に天然 型または野生型の遺伝子)と比較して、ヌクレオチド配列の一部が改変されていること によって量的または質的に異なる KRAP遺伝子発現をもたらす任意の KRAP遺伝 子をいう。  [0014] A "mutant" KRAP gene is quantitatively characterized by a partial modification of the nucleotide sequence compared to the KRAP gene (particularly a natural or wild-type gene) obtained as described above. Or any KRAP gene that results in qualitatively different KRAP gene expression.
[0015] 本発明においては、ゲノム内の KRAP遺伝子と相同組換え可能な程度の相同性ま たは同一性を保持するものであって、非ヒト動物細胞内で KRAP遺伝子の発現を低 減または欠如させうる変異型 KRAP遺伝子が用いられる。このような変異型 KRAP 遺伝子としては、たとえば、少なくとも 1つのエタソンの欠損を有するもの、フレームシ フトを生じる変異を有するものなどが挙げられる力 これらに限られない。欠損の例と しては、変異が KRAP遺伝子の C末端側の半分の領域に存在するもの、さらに具体 的には、ェクソン 11〜16の少なくとも 1つを含む領域の欠損が挙げられ、ェクソン 11 〜16のすベてを含む領域を欠損していることができる。あるいは、欠損は、たとえば コード領域の 5〜95%、 20〜80%、または 35〜70%程度であることができる。コー ド領域の欠損は、 KRAP機能の破壊をもたらす限りにおいて少なくても良ぐ相同組 換え可能な程度のコード領域および Zまたは非コード領域が残存する限りにおいて 広範であることができる。  [0015] In the present invention, homologous recombination or identity that allows homologous recombination with the KRAP gene in the genome is achieved, and the expression of the KRAP gene is reduced or reduced in non-human animal cells. A mutant KRAP gene that can be deleted is used. Such mutant KRAP genes include, but are not limited to, for example, those having at least one etason deficiency and those having a mutation causing a frame shift. Examples of the deletion include those in which the mutation is present in the half region on the C-terminal side of the KRAP gene, and more specifically, a deletion in a region containing at least one of exons 11-16. A region containing all of ˜16 can be missing. Alternatively, the deletion can be, for example, about 5 to 95%, 20 to 80%, or 35 to 70% of the coding region. The loss of the coding region can be widespread as long as the coding region and the Z or non-coding region to the extent that homologous recombination is sufficient as long as it causes destruction of the KRAP function remain.
[0016] このような変異型 KRAP遺伝子核酸分子を適当なベクターに挿入することにより、 遺伝子導入用のベクター、たとえば相同組換え用のベクターを作製することができる 。好ましくは、核酸分子は DNAであり、ベクターは、変異型 KRAP遺伝子核酸分子 と選択可能なマーカー遺伝子 (たとえば G418耐性を付与する neo遺伝子)とを含む [0016] By inserting such a mutant KRAP gene nucleic acid molecule into an appropriate vector, a vector for gene transfer, such as a vector for homologous recombination, can be prepared. . Preferably, the nucleic acid molecule is DNA and the vector comprises a mutant KRAP gene nucleic acid molecule and a selectable marker gene (eg, a neo gene conferring G418 resistance).
[0017] 本発明のトランスジエニック動物の作製においては、このようなベクターを一般的な 方法で宿主細胞 (たとえばマウス胚盤胞)に導入する。トランスジエニック動物の作製 方法は、当業者には充分公知であり、当業者は公知の方法を任意に選択して本発 明のトランスジエニック動物の作製のために適宜採用することができる。 [0017] In producing the transgenic animal of the present invention, such a vector is introduced into a host cell (for example, mouse blastocyst) by a general method. Methods for producing a transgenic animal are well known to those skilled in the art, and those skilled in the art can arbitrarily select a known method and appropriately employ it for producing the transgenic animal of the present invention.
[0018] 本発明のトランスジエニック動物は、 KRAP遺伝子またはタンパクの発現が作製に 使用した宿主 (野生型 KRAP遺伝子を有する)動物におけるものと比較して有意に 低減または欠如していることを定法により確認することによって特定することができる。 さらに、たとえば実施例において後述するアツセィ方法などを用いて、脂質代謝 (特 にエネルギー消費の亢進)、糖代謝 (特にインシュリン感受性の亢進)、これらに関連 する各種血中ホルモン濃度の変動などを確認することによつても、本発明のトランス ジェニック動物を特定することができる。  [0018] In the transgenic animal of the present invention, it is determined that the expression of the KRAP gene or protein is significantly reduced or absent compared to that in the host animal (having the wild type KRAP gene) used for the production. It can be specified by confirming. In addition, lipid metabolism (especially increased energy consumption), glucose metabolism (especially increased insulin sensitivity), and fluctuations in various blood hormone levels related to these are confirmed using, for example, the assembly method described later in the Examples. By doing so, the transgenic animal of the present invention can be identified.
[0019] 本発明のトランスジエニック動物は、肥満、糖尿病などを含む疾患およびメタボリック シンドロームの発症機序の解明、さらにはその治療などの目的のために各種の実験 においてモデル動物として使用することができる。さらには、 KRAP遺伝子の機能自 体の解明のためにも使用することができる。  [0019] The transgenic animal of the present invention can be used as a model animal in various experiments for the purpose of elucidating the pathogenesis of diseases and metabolic syndrome including obesity, diabetes and the like and further treating it. it can. It can also be used to elucidate the function of the KRAP gene itself.
[0020] 本発明にしたがって、上記のような変異型 KRAP遺伝子を含むベクターを用いるこ とにより、エタスビボ遺伝子治療も可能となる。すなわち、一般的な遺伝子治療にお いては、欠陥遺伝子を含む治療対象由来の細胞に対し、機能的な遺伝子をインビト 口で導入し、この遺伝子操作された細胞を治療対象に戻すことが行われるが、本発 明においては、機能的な KRAP遺伝子を含む治療対象由来の細胞に対し、上記の ような変異型 KRAP遺伝子をインビトロで導入する工程、およびこの遺伝子操作され た細胞を治療対象に戻す工程を含む。このような方法に使用される遺伝子治療用べ クタ一もまた本発明の範囲内である。このような遺伝子治療用ベクターには、たとえば アデノウイルス、レトロウイルス、ヘルぺスウィルスのようなベクターが使用され、その 作製方法も当業者に充分公知である。 [0021] 本発明は、 KRAP遺伝子またはタンパク質の発現または機能を阻害することにより[0020] According to the present invention, by using a vector containing a mutant KRAP gene as described above, ethas vivo gene therapy is also possible. That is, in general gene therapy, a functional gene is introduced in vitro to cells derived from a treatment target containing a defective gene, and the genetically manipulated cells are returned to the treatment target. However, in the present invention, the step of introducing the mutant KRAP gene as described above in vitro into a cell derived from a treatment target containing a functional KRAP gene, and returning the genetically engineered cell to the treatment target. Process. Gene therapy vectors used in such methods are also within the scope of the present invention. For such gene therapy vectors, vectors such as adenoviruses, retroviruses and herpes viruses are used, and their production methods are well known to those skilled in the art. [0021] The present invention involves inhibiting the expression or function of the KRAP gene or protein.
、哺乳類細胞、組織または非ヒト動物において脂質代謝および Zまたは糖代謝の改 変を誘起する方法を提供する。 KRAP遺伝子またはタンパク質の発現または機能を 阻害するために、たとえば、 KRAP遺伝子の塩基配列に基づいて設計された干渉性 核酸分子 (たとえばアンチセンス RNA;RNA干渉を起こしうる、二本鎖部分を含む短 い(たとえば 18〜200塩基) RNA、 DNAと RNAとを含む二本鎖核酸、 siRNA、 mi RNAなど)、 KRAPタンパクに特異的に結合する結合性タンパク分子 (ここで、 「タン パク」はポリペプチドをも含む用語として使用される;たとえばポリクローナルまたはモ ノクローナル抗体、抗体の各種フラグメント、ヒト化抗体など)を使用することができる。 これらの各種の干渉性核酸分子の設計および製造方法、抗体または抗体フラグメン トなどの結合性タンパク分子の調製方法は、当業者には充分公知である。 A method of inducing alterations in lipid metabolism and Z or sugar metabolism in mammalian cells, tissues or non-human animals is provided. In order to inhibit the expression or function of the KRAP gene or protein, for example, an interfering nucleic acid molecule designed based on the nucleotide sequence of the KRAP gene (e.g., antisense RNA; a short-chain containing a double-stranded portion that can cause RNA interference) (For example, 18-200 bases) RNA, double-stranded nucleic acid containing DNA and RNA, siRNA, miRNA, etc., binding protein molecules that specifically bind to KRAP protein (where "protein" It is used as a term that also includes peptides; for example, polyclonal or monoclonal antibodies, various fragments of antibodies, humanized antibodies, etc.) can be used. Methods for designing and producing these various interfering nucleic acid molecules and methods for preparing binding protein molecules such as antibodies or antibody fragments are well known to those skilled in the art.
[0022] これらの干渉性核酸分子および Zまたは結合性タンパク分子を、脂質代謝および Zまたは糖代謝改変剤、たとえばエネルギー消費亢進剤、肥満の予防または解消剤 、またはインシュリン感受性亢進剤として、単独で、組み合わせて、または生理的に 許容されうる適切な担体と配合して、動物に投与することにより、エネルギー消費亢 進、肥満の予防または解消、またはインシュリン感受性亢進などの効果を得ることが できる。このような目的のために使用可能な生理的に許容されうる担体および製剤方 法は、製薬技術の当業者には充分公知である。適切な投与量は、動物種、個体の体 重'年齢 '性別'一般的な健康状態などによって広い範囲で変動しうるが、当業者は 、適切な動物を選択して実験することにより、適宜決定することができる。 [0022] These interfering nucleic acid molecules and Z or binding protein molecules can be used alone as lipid metabolism and Z or sugar metabolism modifiers, for example, energy consumption enhancers, obesity prevention or elimination agents, or insulin sensitivity enhancers. In combination, or in combination with an appropriate carrier that is physiologically acceptable, and administered to animals, effects such as increased energy consumption, prevention or elimination of obesity, or increased insulin sensitivity can be obtained. Physiologically acceptable carriers and formulation methods that can be used for such purposes are well known to those skilled in the pharmaceutical arts. The appropriate dosage may vary within a wide range depending on the animal species, the individual's body weight, age, sex, general health condition, etc., but a person skilled in the art can appropriately determine the appropriate animal by selecting and experimenting with an appropriate animal. Can be determined.
実施例  Example
[0023] 1. KRAPターゲティングベクターの構築  [0023] 1. Construction of KRAP targeting vector
ターゲテイングベクターの構築を、図 2を参照して説明する。 129ZSVマウスゲノミ ックライブラリー (Stratagene)から、マウス KRAP cDNAプローブ(配列表の配列番 号 1における塩基番号 2962〜3759)を用いて KRAP遺伝子のゲノミック DNAを単 離した。第一に、単離したゲノミック DNAから Xhol— Sailフラグメントを調製し、 3'ァ ームとして pBluescript SKの Sail部位に入れた。第二に、単離したゲノミック DNA から Xbal— EcoRIフラグメントを調製し、 5,アームとして Xbal— EcoRI部位に入れた 。第三に、 EcoRI部位に pGKneoカセットを入れた。最後に、 Sail部位に Xhol— Sal Iでジフテリアトキシン Aフラグメントカセットを入れた。このようにして、図 2のパネル (A )および(B)〖こ示すように、 KRAP遺伝子のェクソン 11〜16 (コード領域の 55%)を 含む 7. 2kbの EcoRI— Xholフラグメント(配列表の配列番号 1における塩基番号 20 598〜28867を、反対の転写方向を有する pGKneoカセットで置き換え、ターゲティ ングベクターを構築した。このターゲティング構築物の 5,および 3,アームは、それぞ れ 2. 3kb (配列表の配列番号 1における塩基番号 18288〜20597)および 6. 4kb ( 配列表の配列番号 1における塩基番号 27876〜34348)のゲノミック DNAからなつ ていた。ジフテリアトキシン Aフラグメントカセット(DTA—A)が 3'ゲノミックアームに 隣接して 、た。このターゲテイングベクターを Sailで線状ィ匕した。 The construction of the targeting vector is described with reference to FIG. From the 129ZSV mouse genomic library (Stratagene), the genomic DNA of the KRAP gene was isolated using a mouse KRAP cDNA probe (base numbers 2962 to 3759 in SEQ ID NO: 1 in the sequence listing). First, an Xhol-Sail fragment was prepared from the isolated genomic DNA and inserted into the Sail site of pBluescript SK as a 3'arm. Second, an Xbal EcoRI fragment was prepared from the isolated genomic DNA and placed as an arm into the Xbal EcoRI site. . Third, the pGKneo cassette was inserted into the EcoRI site. Finally, the diphtheria toxin A fragment cassette was inserted into the Sail site with Xhol—Sal I. In this way, as shown in the panels (A) and (B) of FIG. 2, a 7.2 kb EcoRI-Xhol fragment containing the KRAP gene exons 11-16 (55% of the coding region) (in the sequence listing). A targeting vector was constructed by replacing the base numbers 20 598 to 28867 in SEQ ID NO: 1 with a pGKneo cassette having the opposite transcription direction, and the targeting constructs 5 and 3, and arms were 2.3 kb (each) It consisted of genomic DNA of base numbers 18288 to 20597 in SEQ ID NO: 1 in the sequence table and 6.4 kb (base numbers 27876 to 34348 in SEQ ID NO: 1 in the sequence list), 3 diphtheria toxin A fragment cassette (DTA-A) 'Adjacent to the genomic arm, this target vector was linearized with Sail.
[0024] 2. KRAPノックアウトマウスの作製  [0024] 2. Production of KRAP knockout mice
胚性幹 (ES)細胞に、前記の線状ィ匕したターゲティングベクターを電気穿孔法によ り導入し、組換え体をフィーダ一細胞 (胚性線維芽細胞)上で G418で選択した。この 変異体胚性幹細胞を、 C57BLZ6マウスの胚盤胞(胞胚)にマイクロインジェクション し、得られた雄性キメラを C57BLZ6マウスと交配した。ヘテロ接合性 (KRAP + Z -;「Ht」と略称することがある)のマウスを交配して KRAPノックアウト (KRAP— Z— ;「Ko」と略称することがある)マウスを得た。  The above-described linear targeting vector was introduced into embryonic stem (ES) cells by electroporation, and the recombinant was selected with G418 on feeder cells (embryonic fibroblasts). This mutant embryonic stem cell was microinjected into a blastocyst (blastocyst) of a C57BLZ6 mouse, and the resulting male chimera was crossed with a C57BLZ6 mouse. Heterozygous (KRAP + Z −; sometimes abbreviated as “Ht”) mice were mated to obtain KRAP knockout (KRAP—Z—; abbreviated as “Ko”) mice.
[0025] 観察された子孫のゲノタイプ比は予想されたメンデル比と一致した。したがって、 Κ RAP遺伝子の破壊によって胚発生が影響を受けなカゝつたことが示された。また、 KR AP (— Z—)マウスは稔'性であった。  [0025] The observed genotype ratio of the offspring was consistent with the expected Mendelian ratio. Therefore, it was shown that embryogenesis was unaffected by the disruption of RAP gene. KR AP (—Z—) mice were addictive.
[0026] 動物の尾から抽出したゲノミック DNAを EcoRVで消化し、外部プローブ(350bpの Xbalフラグメント、配列表の配列番号 1における塩基番号 15786〜16140;図 2、パ ネル(C) rprobe A」で示す)とハイブリダィズさせた。野生型(KRAP + Z+;「Wt」と 略称することがある)では 21. Okbの制限フラグメント、変異型(— Z— )では 8. Okb のフラグメント、ヘテロ接合体(一 Z + )では両方のフラグメントが検出された(図 2、パ ネル(D)の左の写真)。  [0026] Genomic DNA extracted from the tail of the animal was digested with EcoRV, and an external probe (350 bp Xbal fragment, base numbers 15786 to 16140 in SEQ ID NO: 1 in the sequence listing; Fig. 2, Panel (C) rprobe A) Hybridized). Wild type (KRAP + Z +; may be abbreviated as “Wt”) 21. Okb restriction fragment, mutant (—Z—) 8. Okb fragment, heterozygous (one Z +) both Fragments were detected (Figure 2, left panel of panel (D)).
[0027] さらに、 neoプローブを用いて相同組換え体を確認し、組込み部位が 1箇所である ことを確認した。 [0028] 野生型( + Z + )および変異体(一 Z )肝臓から常法にしたがって総 RNAを抽出 し、配列表の配列番号 1における塩基番号 2962〜3759をプローブとして用いてノ 一ザン.ブロットを行った(図 2 (D)中央)。 KRAP ( Z—)においては、 KRAP mR NAが特異的に欠失して 、た(内部対照として用いた j8—ァクチンは同等の発現を 示した)。 [0027] Furthermore, homologous recombinants were confirmed using the neo probe, and it was confirmed that there was only one integration site. [0028] Total RNA was extracted from wild-type (+ Z +) and mutant (one Z) livers in accordance with a conventional method, and the base numbers 2962 to 3759 in SEQ ID NO: 1 in the sequence listing were used as probes. Blotting was performed (Fig. 2 (D) center). In KRAP (Z—), KRAP mRNA was specifically deleted (j8-actin used as an internal control showed equivalent expression).
[0029] 野生型( + Z + )および変異体(-Z-)肝臓ライセートを調製し、ウェスタン'ブロッ トを行った。マウス組織を、 RIPA緩衝液〔20mM Tris— HC1、 pH7. 5、 150mM NaCl、 1% NP— 40、0. 1% SDS、プロテアーゼ 'インヒビタ一'カクテル (Roche)〕 中で超音波で破砕した。この液を、 15, OOOrpmで 30分間遠心して抽出液を得、プ 口ティン 'アツセィ試薬 (Bio-Rad)を用いてタンパク量を測定した。これらの試料を SDS — PAGEに供して展開し、ニトロセルロース膜にトランスファーした。このプロットを、 ブロッキング緩衝液(0. 1% Tween 20、 5%ノンフアット'スキムミルク、 50mM T ris— HC1、 150mM NaCl、 0. 1% NaN、 pH7. 5)中でブロッキングし、ァフィ- [0029] Wild type (+ Z +) and mutant (-Z-) liver lysates were prepared and Western 'blotted. Mouse tissues were sonicated in RIPA buffer [20 mM Tris—HC1, pH 7.5, 150 mM NaCl, 1% NP-40, 0.1% SDS, protease “inhibitor 1 cocktail” (Roche)]. This solution was centrifuged at 15, OOOrpm for 30 minutes to obtain an extract, and the amount of protein was measured using a protein assay reagent (Bio-Rad). These samples were developed by SDS-PAGE and transferred to a nitrocellulose membrane. This plot was blocked in blocking buffer (0.1% Tween 20, 5% non-fat 'skim milk, 50 mM Tris—HC1, 150 mM NaCl, 0.1% NaN, pH 7.5)
3 Three
ティ精製した抗 KRAP抗体とともに 4°Cで一晩インキュベートした (希釈倍率 1 : 2, 00 0)。これを、 HRP コンジユゲート化抗ゥサギ IgGャギ二次抗体および ECL (Amersh am Pharmacia)を用いて発色させた。  This was incubated overnight at 4 ° C with a purified anti-KRAP antibody (dilution ratio 1: 200,000). This was developed with HRP conjugated anti-rabbit IgG goat secondary antibody and ECL (Amersh am Pharmacia).
[0030] 検出に使用した抗 KRAP抗体は、以下のようにして調製した。 pGEX6P— 1ベクタ 一 (Pharmacia)を指示書にしたがって用いて、組換えヒト KRAP (配列表の配列番号 4 におけるアミノ酸 1039〜 1246)を細菌融合タンパクとして発現させた。この融合タン パクは、非変性性緩衝液中で可溶性であり、ダルタチオンーセファロース 4B(Amersh am)を用いて精製された。この組換え KRAPタンパクをゥサギに注射し、追加免疫を 行った後、抗血清を得た。抗血清を、 CNBr 活性化セファロース 4B(Amersham)に 組換えタンパクを架橋して調製したァフィ-ティカラムを用いて精製した。  [0030] The anti-KRAP antibody used for detection was prepared as follows. Recombinant human KRAP (amino acids 1039 to 1246 in SEQ ID NO: 4 in the sequence listing) was expressed as a bacterial fusion protein using pGEX6P-1 vector 1 (Pharmacia) according to the instructions. This fusion protein was soluble in non-denaturing buffer and purified using dartathione-sepharose 4B (Amersham). This recombinant KRAP protein was injected into a rabbit and booster immunized to obtain antiserum. The antiserum was purified using a affinity column prepared by crosslinking the recombinant protein to CNBr activated Sepharose 4B (Amersham).
結果を図 2 (D)右)に示す。 KRAP ( Z—)においては、 KRAPタンパクが特異的 に欠失して 、た(内部対照として用いた β チューブリンは同等の発現を示した)。  The results are shown in Fig. 2 (D) right). In KRAP (Z—), the KRAP protein was specifically deleted (β-tubulin used as an internal control showed equivalent expression).
[0031] 3.体重変化の測定  [0031] 3. Measurement of body weight change
温度調節された施設内(23°C)で、 12時間の明暗サイクルで動物を維持した。マウ スは、標準的げつ歯類飼料 (CE— 2 (日本クレア);以下「普通食」 、うことがある)お よび水に随意にアクセス可能とした。ヘテロ接合性のマウスを交配して得た KRAP +Animals were maintained in a temperature controlled facility (23 ° C) with a 12 hour light / dark cycle. The mouse is a standard rodent feed (CE-2 (Japan Claire); And voluntary access to water. KRAP + obtained by mating heterozygous mice
Z+、 +Z—、および Z—の動物について体重を毎週記録した。 Body weights were recorded weekly for Z +, + Z—, and Z— animals.
[0032] 結果を図 3に示す。 KRAP Z 仔の体重は、出生時力 少なくとも出生後 5日間 以内は同腹子 KRAP + Z +および +Z マウスと有意に異ならな力つた。普通食を 与えた場合、 KRAP Z—マウスは、 +Z +および +Z—マウスの両方よりも体重 が少な力つた。この差は、雄(図 3、左)雌(図 3、右)両方について 3週齢で生じてい た。  [0032] The results are shown in FIG. The body weight of KRAP Z pups was significantly different from litter KRAP + Z + and + Z mice at least 5 days after birth. When fed with a normal diet, KRAP Z—mice gained less weight than both + Z + and + Z—mice. This difference occurred at 3 weeks of age for both males (Figure 3, left) and females (Figure 3, right).
[0033] 4.器官 ¾量の沏 I定  [0033] 4. Organ ¾ quantity 沏 constant
週齢を一致させた(20週齢)雄性 KRAP + Z+ (n= 9)および KRAP Z— (n= Male KRAP + Z + (n = 9) and KRAP Z— (n =
9)マウスを安楽死させ、精巣上体の白色脂肪組織 (WAT)、肝臓、肩甲骨間の褐色 脂肪組織 (BAT)、腎臓および心臓の湿潤重量を測定した。 9) The mice were euthanized and the wet weight of epididymal white adipose tissue (WAT), liver, scapular brown adipose tissue (BAT), kidney and heart were measured.
[0034] 結果を図 4に示す。 WATおよび肝臓の相対重量 (g/g body)は、 KRAP + Z +マウ スよりも KRAP Z—マウスにおいて少なかった。一方、 BAT、腎臓および心臓につ いては有意差は認められな力つた。 [0034] The results are shown in FIG. The relative weight of WAT and liver (g / g body) was lower in KRAP Z— mice than in KRAP + Z + mice. On the other hand, no significant differences were observed in BAT, kidney and heart.
[0035] 5. mm rn  [0035] 5. mm rn
22週齢の雄性マウスの WAT、 BATおよび肝臓を、絶食 16時間後に得た。これら の組織の断片を PBS中 3. 7%ホルムアルデヒド中で固定し、エタノール中で脱水し、 ノ ラフィンに包埋した。切片を脱パラフィンし、再水和し、へマトキシリン 'ェォシン (H E)で染色し、光学顕微鏡で観察した。  WAT, BAT and liver of 22 week old male mice were obtained 16 hours after fasting. These tissue fragments were fixed in 3.7% formaldehyde in PBS, dehydrated in ethanol and embedded in norafine. Sections were deparaffinized, rehydrated, stained with hematoxylin 'eosin (H E) and observed with a light microscope.
[0036] 結果を図 5に示す。 HE染色した WATおよび BAT中の KRAP Z の脂肪細胞( 白く見えているもの)は、 KRAP + Z +の脂肪細胞と比較して、明らかに大きさが低 減していた。 KRAP Z—マウスの肝臓の染色では、脂質液胞 (lipid vacuoles)がほ とんど観察されなかった。  The results are shown in FIG. KRAP Z adipocytes (shown white) in HE-stained WAT and BAT were clearly reduced in size compared to KRAP + Z + adipocytes. KRAP Z—Lipid vacuoles were hardly observed in the liver staining of mice.
[0037] 6.組織トリグリセリドおよびグリコーゲン含量の測定  [0037] 6. Measurement of tissue triglyceride and glycogen content
普通食の標準的な給餌条件下の 20週齢の雄性マウスの肝臓のトリグリセリド含量を 、 Folchら (Folch J, Lees M, Sloane Stanley GH" A simple method for the isolation an d purification of total lipides from animal tissues, J Biol Chem. 1957 May;226(l):497 -509)の抽出プロトコールおよび酵素的トリグリセリド Έテスト(和光純薬工業)を用いて アツセィした。 干臓グリコーゲンの測定については、同じマウス由来の干臓を 3% (w/ w)過塩素酸中でホモジナイズし、ホモジネートをアミログルコシダーゼとともに 40°Cで 2時間インキュベートしてグリコーゲンを加水分解した。次に、生じられたグルコース 残基を、酵素的グルコース CIIテスト (和光純薬工業)を用いて測定した。 Folch et al. (Folch J, Lees M, Sloane Stanley GH "A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem. 1957 May; 226 (l): 497 -509) using the extraction protocol and enzymatic triglyceride test (Wako Pure Chemical Industries) It ’s hot. For measurement of spleen glycogen, spleen from the same mouse was homogenized in 3% (w / w) perchloric acid, and the homogenate was incubated with amyloglucosidase at 40 ° C for 2 hours to hydrolyze glycogen. The resulting glucose residues were then measured using an enzymatic glucose CII test (Wako Pure Chemical Industries).
[0038] 結果を図 6に示す。形態学的観察から、 KRAP— Z—の肝臓においてはトリグリセ リド含量が低いことが示唆されたが、実際、肝組織トリグリセリドの抽出および測定によ れば、 KRAP— /—の肝臓は KRAP + / +の肝臓と比較して 40%少な!/、トリグリセ リドを含有していた。一方、肝臓のグリコーゲン含量については、両ゲノタイプ間に有 意差は見られなかった。  [0038] The results are shown in FIG. Morphological observations suggested that the triglyceride content was low in the liver of KRAP—Z—, but in fact, according to the extraction and measurement of liver tissue triglycerides, the liver of KRAP — / — It contained 40% less! / And triglyceride than the + liver. On the other hand, there was no significant difference between the two genotypes in liver glycogen content.
[0039] 7. の沏 I定  [0039] 7. 沏 I constant
22週齢の雄性マウスを、個別にメタボリックケージに入れた。予め重量を測定した 普通食をマウスに 24時間提供した。試験開始前に体重を測定した。 24時間の期間 の終了後、餌くずを含む残りの餌を重量測定し、 1日当りの摂食量 (g/day/kg-body w eight)を算出した。  22 week old male mice were individually placed in a metabolic cage. Mice were provided with a normal diet that weighed in advance for 24 hours. Body weight was measured before the start of the test. At the end of the 24-hour period, the remaining food including food waste was weighed and the amount of food consumed per day (g / day / kg-body w eight) was calculated.
結果を表 1および図 7に示す。  The results are shown in Table 1 and Fig. 7.
[0040] [表 1] [0040] [Table 1]
Size
Q. CO  Q. CO
o  o
0001 < 096.. 2 5902 50174土土.... 0001 <096 .. 2 5902 50174 Soil ....
(d/k/ bt)aggyw.  (d / k / bt) aggyw.
19 0 24410930175422525土土.....  19 0 24410930175422525 Soil .....
1 110150081土土....  1 110150081 Soil ...
摂糞便量食量 02 02002003土土....  Fecal consumption food amount 02 02002003 Soil ...
掣W Sせ _≥3Ik Ή
Figure imgf000020_0001
ιΙπιΙ
掣 WS set _≥3Ik Ή
Figure imgf000020_0001
ιΙπιΙ
Ipni 瞷 瞓  Ipni 瞷 瞓
+マウスの体重は、 KRAP— Z—マウスよりも有意に重かった(P< 0. 001)。摂食量は、餌の消費を体重について調整した場合、 KRAP— Z—マウスの 方が KRAP + Z +マウスよりも有意に多かった。これらの結果は、 KRAP— Z—マウ スにおける体重増加の遅延が摂食量によるものではないことを示す。 + Mouse body weight was significantly heavier than KRAP—Z—mouse (P <0. 001). Food intake was significantly higher in KRAP- Z- mice than in KRAP + Z + mice when food consumption was adjusted for body weight. These results indicate that the delay in weight gain in KRAP-Z-mouses is not due to food intake.
[0042] 8.エネノレギ一代譲の研究 [0042] 8. Study of the first generation of Ene Noregi
エネルギー代謝の同時測定のため、週齢を一致させた(22週齢)雄性野生型マウ ス(n= 7)および KRAP— Z— (n= 9)マウスを 1日個別にメタボリックケージに入れ 7こ (Ichikawa M, Fujita Y, tiifects of nitrogen and energy metabolism on body weight ι n later life of male Wistar rats consuming a constant amount of food, J Nutr. 1987 0 ct;l 17(10): 1751-8 ; Ichikawa M, Kanai S, Ichimaru Y, Funakoshi A, Miyasaka K., Th e diurnal rhythm of energy expenditure differs between obese and glucose-intolerant rats and streptozotocin- induced diabetic rats, J Nutr. 2000 Oct;130(10):2562- 7)。 自動 O —CO分析機 (NEC Medical System, model IH26, Tokyo, Japan)を用いて、 For simultaneous measurement of energy metabolism, male wild-type mice (n = 7) and KRAP—Z— (n = 9) mice matched in age (22 weeks of age) are individually placed in a metabolic cage for 7 days. This (Ichikawa M, Fujita Y, tiifects of nitrogen and energy metabolism on body weight ι n later life of male Wistar rats consuming a constant amount of food, J Nutr. 1987 0 ct; l 17 (10): 1751-8; Ichikawa M, Kanai S, Ichimaru Y, Funakoshi A, Miyasaka K., The diurnal rhythm of energy expenditure differs between obese and glucose-intolerant rats and streptozotocin- induced diabetic rats, J Nutr. 2000 Oct; 130 (10): 2562- 7). Using an automatic O-CO analyzer (NEC Medical System, model IH26, Tokyo, Japan)
2 2 twenty two
呼気中の酸素消費量および二酸化炭素生成量を連続的に測定した。 1時間当りおよ び 1日当りのエネルギー消費を算出した。  Oxygen consumption and carbon dioxide production during expiration were measured continuously. The energy consumption per hour and per day was calculated.
[0043] 結果を図 8に示す。 1日当りのエネルギー消費は、 KRAP— Z—マウスにおいて K RAP + Z +マウスよりも大きく(Pく 0. 01)、 KRAP— Z—マウスでは 2929. 3 ± 16 3. 1 kj/kg body weight, KRAP + Z +マウスでは 2257. 2± 152. 2 kj/kg body w eightであった。代謝測定中の呼吸商 (RQ)については、両ゲノタイプ間で有意差は なく(P = 0. 37)、KRAP + Z +マウスでは 0. 90 ±0. 03、 KRAP— Z—マウスで は 0. 88 ±0. 02であった。これらの結果は、 KRAPの欠損がエネルギー消費の亢進 をもたらしたことを示す。 KRAP— Z—マウスにお 、て燃焼に使用されたエネルギー の供給源は、少なくとも普通食では正常であった。摂食量およびエネルギー消費に ついての測定から、マウスにおける KRAPの欠損によって代謝ターンオーバーが明 白に増強されたことを示した。  The results are shown in FIG. The daily energy consumption is higher in KRAP- Z—mice than in K RAP + Z + mice (P 0.01), and in KRAP—Z—mice 2929. 3 ± 16 3.1 kj / kg body weight, In KRAP + Z + mice, it was 225.7.2 ± 152.2 kj / kg body w eight. The respiratory quotient (RQ) during metabolic measurements was not significantly different between the two genotypes (P = 0.37), 0. 90 ± 0.03 for KRAP + Z + mice, 0 for KRAP-Z- mice. 88 ± 0. 02. These results indicate that KRAP deficiency resulted in increased energy consumption. In KRAP-Z- mice, the source of energy used for combustion was normal, at least on the normal diet. Measurements of food intake and energy expenditure showed that metabolic turnover was clearly enhanced by KRAP deficiency in mice.
[0044] 9.腹腔内グルコース寛容試験およびインシュリン感受性試験  [0044] 9. Intraperitoneal glucose tolerance test and insulin sensitivity test
一晩絶食した動物に対し、 2g/kg体重の用量のグルコースを用いて、腹腔内ダル コース寛容試験を行った。インシュリン感受性試験は、 3時間絶食させた動物に 0. 7 5 U/kg body weightの用量でインシュリンを注射して行った。尾静脈血を、注射後 15 、 30、 60、 90および 120分の時点に採取し、 Medisense Xtra (アボット 'ジャパン (株) )を用いるグルコース定量に使用した。 Animals that fasted overnight were subjected to an intraperitoneal dalcose tolerance test using glucose at a dose of 2 g / kg body weight. The insulin sensitivity test was performed by injecting insulin at a dose of 0.75 U / kg body weight in animals fasted for 3 hours. Tail vein blood, 15 after injection , 30, 60, 90 and 120 minutes, and used for glucose quantification using Medisense Xtra (Abbott Japan).
[0045] 結果を図 9および 10に示す。グルコース投与の 60、 90および 120分後、 KRAP- /一マウスのグルコースレベルは、 KRAP + / +マウスと比較して有意に低かった( 図 9)。また、インシュリン感受性試験においては、インシュリン注射により、 KRAP- /一マウスでは KRAP + / +マウスと比較して有意に低 、ダルコースレベルがもた らされた(図 10)。 [0045] The results are shown in FIGS. 9 and 10. At 60, 90 and 120 minutes after glucose administration, glucose levels in KRAP− / one mice were significantly lower compared to KRAP + / + mice (FIG. 9). In the insulin sensitivity test, insulin injection resulted in a significantly lower level of dalcose in KRAP- / mice compared to KRAP + / + mice (Fig. 10).
[0046] これらの結果は、普通食で維持した KRAP + Z +マウスと比較して、 KRAP— Z  [0046] These results show that KRAP- Z compared to KRAP + Z + mice maintained on a normal diet
—マウスは、よりグルコース寛容かつインシュリン感受性が強いことを示す。  -Mice show more glucose tolerance and insulin sensitivity.
[0047] to. ^ ^  [0047] to. ^ ^
普通に給餌された状態で動物の眼窩後の洞静脈から血液を採取した。血液は、遠 心分離(3, 000g、 15分、 4°C)にかけるまで氷上に保ち、血清を採取して、これを分 祈に使用する時まで— 70°Cで保存した。血清中のインシュリン、レブチン、アディポ ネクチンおよびサイロキシン (T4)濃度を、 ELISAキット (それぞれ SWbayagi Co., R& D systems, Otsuka pharmaceutical Co., Endocnnetech. Co.)を用 ヽて U疋'した。トリ グリセリド、総コレステロールおよび非エステルイ匕遊離脂肪酸 (NEFA)は、酵素的ァ ッセィによって測定した (和光純薬工業)。尾静脈血を用いて Medisense Xtraを使つ てグルコースおよびケトン体の定量を行った。  Blood was collected from the retroorbital sinus vein in the normal fed state. The blood was kept on ice until subjected to centrifuge separation (3,000 g, 15 minutes, 4 ° C), serum was collected and stored at -70 ° C until used for prayer. Serum insulin, lebutin, adiponectin and thyroxine (T4) concentrations were obtained using ELISA kits (SWbayagi Co., R & D systems, Otsuka pharmaceutical Co., Endocnnetech. Co., respectively). Triglycerides, total cholesterol and non-esterified free fatty acids (NEFA) were measured by enzymatic assay (Wako Pure Chemical Industries). Glucose and ketone bodies were quantified using Medisense Xtra using tail vein blood.
結果を表 2、 3および図 11および 12に示す。  The results are shown in Tables 2 and 3 and FIGS.
[0048] [表 2] [0048] [Table 2]
f fNFA)ldidid (Ehli Slfidtttt lil tnassosero a noneserey acrere cemee ogycrvseu, f fNFA) ldidid (Ehli Slfidtttt lil tnassosero a noneserey acrere cemee ogycrvseu,
fdhene w o 卜  fdhene w o 卜
o 寸 卜  o Dimensions 卜
CM CN  CM CN
o τ- ο  o τ- ο
CL o Ο  CL o Ο
グ 06325158ド0 10 1440138卜セ土リリ±リ.,..· 06 325 158 0 0 1 1440 138
o O 56969 7554 7 (/dl)±±テルレスロコmgー.·.. 0 σ  o O 56969 7554 7 (/ dl) ±± Tellures loco mg ... 0 σ
04700860 0405E) (/lFA±± NEmq....  04700860 0405E) (/ lFA ±± NEmq ....
値均は士平 se  Value average is Shihei se
15齡普食雄通週、、  15th week
o 00 グ8ド 0054 794254 925 (/dl)リリセリ±±卜gm.....o 00 8 0054 794 254 925 (/ dl) Risely ±±± gm .....
2 6721 67834/dl)± (±レテスルロコmgー·...  2 6721 67834 / dl) ± (± Letesuloko mg ...
(|/ョ) ibu (| / Yo) ibu
9 040032003 04FA±± NE....  9 040032003 04FA ±± NE ....
値均土は平e s  Value level is flat es
3雌普食4齢通週、、
Figure imgf000023_0001
3 female regular meals 4 weeks old,
Figure imgf000023_0001
c c c c
普通食を与えた、示したゲノタイプの 15週齢の雄マウス(n= 10)および 34週齢の 雌マウス(n=8〜9)についての平均士 seで表す, 15 weeks old male mice (n = 10) of the indicated genotype and 34 weeks old The average person se for female mice (n = 8-9),
[表 3]  [Table 3]
(1£でで ρ!1)l!l-_s}7e uodu uatMUIXOJ> uodl eudビst w00a!一o> EJ3nn -  (1 £ for ρ! 1) l! l-_s} 7e uodu uatMUIXOJ> uodl eud bi st w00a! o> EJ3nn-
990ε (i 9寸)ρou=·· 990ε (i 9 inch) ρou =
ozz ζ寸卜寸·  ozz
Figure imgf000024_0001
Figure imgf000024_0001
[0051] 普通食を与えた、示したゲノタイプの 15週齢の雄マウス(n= 10)および 34週齢の 雌マウス(n= 11)につ V、ての平均士 seで表す。 [0051] V is the average of the average genotype of a 15-week-old male mouse (n = 10) and 34-week-old female mouse (n = 11) of the indicated genotype that were fed a normal diet.
[0052] 普通食を与えられた KRAP + / +および KRAP— Z—マウスにおける血清コレス テロールおよび遊離脂肪酸レベルは、有意差がな力つた。血清トリグリセリドレベルは 、統計学的有意差は認められなかったものの、 KRAP Z マウスの方が低い傾向 が見られた。 KRAP Z—マウスは、軽度の低血糖症および低減された循環インシ ュリン濃度を示した。 [0052] Serum cholesterol in KRAP + / + and KRAP- Z— mice fed a normal diet Terol and free fatty acid levels were not significantly different. Serum triglyceride levels tended to be lower in KRAP Z mice, although there was no statistically significant difference. KRAP Z—Mice showed mild hypoglycemia and reduced circulating insulin levels.
[0053] ケトン体は飢餓状態におけるエネルギー源として脂肪を分解して産生される。 KRA P Z—マウスにおいて、非絶食下で野生型と変わらず低値であることは、ケトァシド 一シスでない (飢餓状態のような異常はない)ことを示す。また、絶食下においてケトン 体濃度が上昇して 、るので、 KRAP— /—マウスにお 、ても脂肪分解および NEFA 力 ケトン体への変換は異常な 、ことが示唆された。  [0053] A ketone body is produced by decomposing fat as an energy source in a starved state. In KRA P Z—mice, a low value that is similar to the wild type under non-fasting indicates that there is no ketoacidosis (no abnormalities like starvation). In addition, since the ketone body concentration increased under fasting, it was suggested that lipolysis and conversion to NEFA strong ketone bodies were abnormal even in KRAP-/-mice.
[0054] レブチンは、摂食量の低減と無関係に脂肪減少を増大する循環性ホルモンである ため、このホルモンの血清中レベルを測定した。レプチンは、 KRAP Z—マウスに ぉ 、て実際は低減して 、た。  [0054] Since lebutin is a circulating hormone that increases fat loss independent of reduced food intake, serum levels of this hormone were measured. Leptin was actually reduced in KRAP Z—mice.
[0055] アディポネクチンは、脂肪由来ホルモンであり、肥満に付随するインシュリン寛容お よび糖尿病において役割を有すると考えられている。アディポネクチンは、 KRAP + / +マウスにおいて増大していた。 KRAP マウスは、増大されたエネルギー 消費を示した力 その血清サイロキシン (T4)レベルは KRAP + Z +マウスよりも低 かった。そのうえ、給餌された状態でケトン体形成が野生型と同等であったことは、 K RAP Z—マウスに飢餓状態のような異常がないことを支持し、それは、体重につい て標準化した場合に KRAP -/-マウスが KRAP + / +よりも多量に摂食すること と一致している。  [0055] Adiponectin is a fat-derived hormone and is thought to have a role in insulin tolerance and diabetes associated with obesity. Adiponectin was increased in KRAP + / + mice. KRAP mice showed increased energy consumption. Their serum thyroxine (T4) levels were lower than KRAP + Z + mice. Moreover, the fact that ketone body formation in the fed state was comparable to the wild type supported K RAP Z—mice that there were no abnormalities, such as starvation, when KRAP was normalized to body weight. -/-Consistent with mice eating more than KRAP + / +.
[0056] 11.高脂肪食を与えた場合の体重の調節  [0056] 11. Adjustment of body weight when fed a high fat diet
週齢を一致させた(23週齢)雄性 KRAP + Z+ (n= 7)および KRAP Z— (n= 6)マウスに予め重量を測定した高脂肪食飼料(「High Fat Diet 32」、粗脂肪含量が 約 32%、総カロリーに占める脂肪由来カロリーの比率が約 60% ;日本クレア)を 4週 間与えた。これらのマウスは、 23週齢まで普通食で育てた。 2日毎に体重を測定し、 2日毎に餌くずを含む残りの餌の重さを測定し、 1日当りの摂食量 (g/day/kg-body we ight)を概算した。高脂肪食を与えた 4週間の期間終了後、これらのマウスについて前 記と同様のエネルギー代謝測定を行った。 [0057] 結果を図 13〜 15に示す。図 13、パネル (A)は、マウスの体重曲線、パネル )は 4週間での体重増加量、パネル (C)は 4週間での体重増加量を開始時の体重割りで 表示したグラフ、パネル (D)は精巣上体白色脂肪組織 (WAT)重量の体重割である 。この結果から、本発明のマウスは、高脂肪食を与えた場合も、体重当りの体重増加 量が野生型と比較して有意に少ないこと、したがって、 KRAP遺伝子の変異は食餌 に起因する肥満を防ぐ効果を有することが明らかである。 Male fat KRAP + Z + (n = 7) and KRAP Z— (n = 6) mice matched in age (23 weeks old) high-fat diet (“High Fat Diet 32”, crude fat) The content was about 32%, and the ratio of fat-derived calories to total calories was about 60%; These mice were raised on a normal diet until age 23 weeks. Body weight was measured every two days, and the weight of the remaining food including food waste was measured every two days, and the amount of food consumed per day (g / day / kg-body weight) was estimated. After the 4-week period on the high fat diet, these mice were subjected to the same energy metabolism measurements as described above. [0057] The results are shown in FIGS. Figure 13, Panel (A) is the mouse weight curve, Panel is the weight gain at 4 weeks, Panel (C) is a graph and panel with the weight gain at the start of 4 weeks divided by the weight at the start (Panel ( D) is the weight percent of the epididymal white adipose tissue (WAT) weight. From this result, even when a high-fat diet was given to the mice of the present invention, the amount of weight gain per body weight was significantly less than that of the wild type, and thus the mutation in the KRAP gene caused obesity due to diet. It is clear that it has a preventive effect.
[0058] 図 14は、高脂肪食を与えた期間の摂食量を示す。左が 1日当りの摂食量 (g)、右 がそれを体重割で表示したものである。本発明のマウスは、野生型と比較して摂食量 は多いが、体重増加は少ないことがわかる。  [0058] FIG. 14 shows the amount of food intake during the period when the high fat diet was given. On the left is the amount of food consumed per day (g), and on the right is the weight divided by weight. It can be seen that the mouse of the present invention has a higher food intake compared to the wild type, but has less weight gain.
[0059] 図 15は、エネルギー消費量についての結果を表す。通常食の場合と同様に、本発 明のマウスにおいては、エネルギー消費が亢進していた。  [0059] FIG. 15 represents the results for energy consumption. As in the case of the normal diet, energy consumption was increased in the mouse of the present invention.
[0060] 12. ^ ^ (2)  [0060] 12. ^ ^ (2)
前記「10.臨床生化学的測定」において使用したものと同じ血清試料について、血 清中のトリョードチロニン (T3)、成長ホルモン (GH)およびグルカゴン濃度を、 RIAキ ット (それそれ Endocrinetech. し o., Amersham Biosciences, anaihara researcnし o.ノ を用いて測定した。アルブミン濃度は、酵素的アツセィによって測定した (和光純薬 工業)。  For the same serum sample used in “10. Clinical Biochemical Measurements” above, the serum levels of triodothyronine (T3), growth hormone (GH), and glucagon were determined using the RIA kit (Endocrinetech). O., Amersham Biosciences, anaihara researcn o .. Albumin concentration was measured by enzymatic assay (Wako Pure Chemical Industries).
結果を表 4に示す。  The results are shown in Table 4.
[0061] [表 4] [0061] [Table 4]
Figure imgf000027_0001
表 4中の各測定値は、普通食を与えた 15週齢の雄マウス (n = 8〜10)についての 平均士 seで表す。
Figure imgf000027_0001
Each measured value in Table 4 is expressed as mean average se for 15-week-old male mice (n = 8-10) fed a normal diet.
普通食を与えられた KRAP + Z +および KRAP— Z—マウスにおける血中 GH、 グルカゴンおよびアルブミン濃度には、有意差は認められなかった。このことより、 KR AP— Z—マウスで見られる成長遅延は、 GH分泌異常が原因ではないと考えられる 。また、 KRAP— Z—マウスは、軽度の低減された T3濃度を示した。このことより、 K RAP— Z—マウスで見られるエネルギー代謝率亢進は、甲状腺機能亢進が原因で はないと考えられる。 There were no significant differences in blood GH, glucagon, and albumin concentrations in KRAP + Z + and KRAP- Z— mice fed a normal diet. From this, KR The growth delay seen in AP-Z-mice may not be due to abnormal GH secretion. KRAP-Z-mice also showed mildly reduced T3 concentrations. This suggests that the increased energy metabolism rate observed in KRAP-Z-mice is not due to hyperthyroidism.
[0063] 13.組織遣伝子発現の比較  [0063] 13. Comparison of tissue gene expression
KRAP + Z +および KRAP— Z—マウスの肝臓、骨格筋、精巣上体白色脂肪お よび肩甲骨間褐色脂肪組織から、常法にしたがって総 RNAを抽出し、ノーザン'プロ ットに供した。プローブとして、マウス肝臓総 RNAまたはマウス精巣上体白色脂肪総 RNAを铸型として、以下のプライマーを用いて RT—PCRを行なって得られた cDN A断片を用いた。  Total RNA was extracted from KRAP + Z + and KRAP- Z—mouse liver, skeletal muscle, epididymal white fat and interscapular brown adipose tissue according to a conventional method, and subjected to Northern 'plot. As a probe, mouse liver total RNA or mouse epididymal white fat total RNA was used as a cage, and a cDNA fragment obtained by RT-PCR using the following primers was used.
[0064] [表 5] [0064] [Table 5]
Figure imgf000029_0001
表中、 ACC 1 =ァセチル - CoAカルポキシラーゼ 1; ACC2 =ァセチル - CoA力 ルボキシラーゼ 2); ACO =ァシル - Co Aォキシダーゼ; UCP2 =アンカツプリングプ 口ティン 2 ; β—Actin= j8ァクチン; LPL =リポプロテインリパーゼ; HSL =ホルモン 感受性リパーゼ; PPAR y =ペルォキシソーム増殖因子活性化受容体 γ; Leptin= レブチン; aP2 =脂肪細胞脂肪酸結合蛋白質; 36B4 =酸性リボソームリン酸ィ匕蛋白 質 PO ;UCPl =アンカップリングプロテイン 1 ; PGC1 a =PPAR y—コアクチベータ 一 1 αを表す。
Figure imgf000029_0001
In the table, ACC 1 = acetyl-CoA carboxylase 1; ACC2 = acetyl-CoA ruboxylase 2); ACO = facyl-Co A oxidase; UCP2 = anchoring protein 2; β-Actin = j8 actin; LPL = lipoprotein Lipase; HSL = Hormone Sensitive lipase; PPAR y = peroxisome proliferator-activated receptor γ; Leptin = lebutin; aP2 = adipocyte fatty acid binding protein; 36B4 = acidic ribosomal phosphate protein PO; UCPl = uncoupling protein 1; PGC1 a = PPAR y—coactivator represents 1 α.
[0066] 結果を図 16に示す。普通食を与えられた KRAP Z マウスの肝臓におけるァセ チル— CoAカルボキシラーゼ (ACC) 1および ACC2の発現量は、 KRAP + / +の それと比べて低力つた。肝臓におけるァシル CoAォキシダーゼ (ACO)、アンカツ プリングプロテイン (UCP) 2および内部標準の |8—ァクチンは差がな力つた。骨格筋 、精巣上体白色脂肪および肩甲骨間褐色脂肪組織における脂質代謝関連遺伝子, エネルギー代謝関連遺伝子(リポプロテインリパーゼ (LPL);ホルモン感受性リパー ゼ(HSL);ペルォキシソーム増殖因子活性化レセプター γ (PPAR γ ); PPAR γ コアクチベータ一 1 a (PGC1ひ))は、調べた限りでは目立った異常は認められなか つた o  [0066] The results are shown in FIG. The expression levels of acetyl-CoA carboxylase (ACC) 1 and ACC2 in the liver of KRAP Z mice fed a normal diet were lower than those of KRAP + / +. In liver, acyl-CoA oxidase (ACO), anchoring protein (UCP) 2 and the internal standard | 8-actin did not differ significantly. Lipid metabolism-related genes, energy metabolism-related genes (lipoprotein lipase (LPL); hormone sensitive lipase (HSL); peroxisome proliferator-activated receptor γ (PPAR) in skeletal muscle, epididymal white fat and interscapular brown adipose tissue γ); PPAR γ coactivator 1 a (PGC1)) showed no noticeable abnormality as far as it was examined.
[0067] 14. 職 定  [0067] 14. Job title
自発運動量は、 24時間個別に飼育された状態で Digital Acquisition System (商品 名;バイオリサーチセンター株式会社、装置型番: NS— DAS— 8— A)および実験 動物用自発運動量センサー(商品名;ニューロサイエンス社、装置型番: NS—AS0 1)を用いて測定した。試験中はマウスが自由に餌 (普通食)と水を摂取できる状態と した。センサーは 0. 5秒以上の移動変化があった場合に 1カウント (移動行動)刻む。  Spontaneous momentum is measured individually after 24 hours in the digital acquisition system (trade name; Bioresearch Center Co., Ltd., model number: NS-DAS-8-A) and experimental animal spontaneous motion sensor (brand name: neuroscience) The measurement was performed using a device model number: NS-AS0 1). During the test, the mice were allowed to freely feed (ordinary food) and water. The sensor counts 1 (moving action) when there is a movement change of 0.5 seconds or more.
[0068] 結果を図 17に示す。 KRAP + Z +マウスと比較して、 KRAP Z—マウスは夜間  [0068] The results are shown in FIG. Compared with KRAP + Z + mice, KRAP Z—mice are at night
(暗期)に有意な運動量の亢進が認められた。昼間(明期)も、有意差は認められなか つたが、同様の傾向が見られた。得られたエネルギー代謝の結果は、 KRAP-/- マウスでは昼夜を問わずエネルギー代謝率が同等に亢進していることを示し、これは 運動量曲線とは完全に一致しない。したがって、運動異常によってエネルギー消費 亢進して!/、るのではな!/、こと、得られた運動量増加傾向は単に KRAP Z マウス が低体重であるがために KRAP + / +マウスより機敏に運動して 、ること、が示唆さ れる。また、顕著な神経性行動異常を示唆するような行動は観察されなかった。  Significant increase in momentum was observed during the dark period. During the daytime (light period), no significant difference was observed, but the same trend was observed. The results of energy metabolism obtained show that KRAP-/-mice have an equally enhanced energy metabolism rate both day and night, which is not completely consistent with the momentum curve. Therefore, because of abnormal movements, energy consumption is increased! /, It should not be! /, And the resulting increase in the amount of exercise is simply more agile than KRAP + / + mice because KRAP Z mice are underweight. It is suggested that. In addition, no behavior suggestive of marked neurobehavioral abnormalities was observed.
[0069] 15. 旨肪食を与えた場合の肝隱且織トリグリセリド含量 週齢を一致させた(19週齢)雄性 KRAP + Z+ (n= 7)および KRAP— Z— (n= 6)マウスに高脂肪食試料(「High Fat Diet 32」(前述);日本クレア)を 8週間与えた後 、肝臓を摘出して組織トリグリセリド含量を、前記「6.組織トリグリセリドおよびグリコー ゲン含量の測定」におけるのと同様にして測定した。 [0069] 15. Liver and weave triglyceride content when fed a succulent diet Male fat KRAP + Z + (n = 7) and KRAP—Z— (n = 6) mice matched to age (19 weeks old) high fat diet sample (“High Fat Diet 32” (mentioned above); Claire Japan) After 8 weeks, the liver was removed and the tissue triglyceride content was measured in the same manner as in “6. Measurement of tissue triglyceride and glycogen content”.
[0070] 結果を図 18に示す。肝臓の概観の写真が示すように KRAP + Z +マウスでは脂 肪肝の像を呈したが、 KRAP— Z—マウスでは健康的な状態を保持していた。肝臓 トリグリセリド含有量の測定結果からも、 KRAP— Z—マウスの肝臓ではトリグリセリド 蓄積が見られな力つた。この結果は、 KRAP— /—マウスがエネルギー代謝率亢進 を示し、精巣上体白色脂肪組織重量が少ないこと、並びに肝臓において脂肪合成 関連遺伝子である ACC1や ACC2の発現量が低いことと一致する。この結果から、 K RAP遺伝子の変異は、食事に起因する肥満を防ぐ効果をもたらすことが明らかであ る。 [0070] The results are shown in FIG. As shown in the photograph of the liver overview, KRAP + Z + mice showed fat liver images, but KRAP- Z- mice maintained a healthy state. Liver Triglyceride content was also measured, and KRAP-Z-mouse liver showed no triglyceride accumulation. This result is consistent with the fact that KRAP-/-mice show an increased energy metabolism rate, the weight of epididymal white adipose tissue is small, and the expression level of ACC1 and ACC2 which are genes related to fat synthesis in the liver is low. From this result, it is clear that mutations in the K RAP gene have the effect of preventing obesity caused by diet.
[0071] この出願は、平成 17年 7月 21日出願の日本特許出願、特願 2005— 210744に基 づくものであり、特願 2005— 210744の明細書および特許請求の範囲に記載され た内容は、すべてこの出願明細書に包含される。  [0071] This application is based on Japanese Patent Application No. 2005-210744 filed on July 21, 2005, and the contents described in the specification and claims of Japanese Patent Application No. 2005-210744. Are all encompassed in this application.

Claims

請求の範囲 The scope of the claims
[I] KRAP遺伝子の発現を低減または欠如させたトランスジエニック非ヒト動物。  [I] Transgenic non-human animals with reduced or absent KRAP gene expression.
[2] 相同組換えにより破壊された KRAP遺伝子を含む、請求の範囲 1記載のトランスジ エニック非ヒト動物。  [2] The transgenic non-human animal according to claim 1, comprising a KRAP gene disrupted by homologous recombination.
[3] 改変された脂質代謝および Zまたは糖代謝を有する、請求の範囲 1記載のトランス ジエニック非ヒト動物。  [3] The transgenic non-human animal according to claim 1, which has a modified lipid metabolism and Z or sugar metabolism.
[4] エネルギー消費の亢進、インシュリン感受性の亢進および Zまたは血中ホルモン濃 度の異常を示す、請求の範囲 1記載のトランスジエニック非ヒト動物。  [4] The transgenic non-human animal according to claim 1, which exhibits increased energy consumption, increased insulin sensitivity, and abnormal Z or blood hormone levels.
[5] ゲノム内の KRAP遺伝子と相同組換え可能であって、非ヒト動物細胞内で KRAP 遺伝子の発現を低減または欠如させうる、単離された変異型 KRAP遺伝子核酸分 子。  [5] An isolated mutant KRAP gene nucleic acid molecule that is capable of homologous recombination with the KRAP gene in the genome and that can reduce or eliminate expression of the KRAP gene in non-human animal cells.
[6] 変異が、少なくとも 1つのエタソンの欠損である、請求の範囲 5記載の核酸分子。  [6] The nucleic acid molecule according to claim 5, wherein the mutation is deficiency of at least one etason.
[7] 変異が、ェクソン 11〜16の少なくとも 1つを含む領域の欠損である、請求の範囲 6 記載の核酸分子。 [7] The nucleic acid molecule according to claim 6, wherein the mutation is a deletion of a region containing at least one of exons 11 to 16.
[8] 請求の範囲 5〜7のいずれか 1項記載の核酸分子を含む、ベクター。  [8] A vector comprising the nucleic acid molecule according to any one of claims 5 to 7.
[9] トランスジエニック動物作製用または遺伝子治療用の発現ベクターである、請求の 範囲 8記載のベクター。  [9] The vector according to claim 8, which is an expression vector for producing a transgenic animal or for gene therapy.
[10] 請求の範囲 8または 9記載のベクターを導入された宿主細胞。 [10] A host cell into which the vector according to claim 8 or 9 has been introduced.
[I I] KRAP遺伝子または mRNAの少なくとも一部と実質的に同一または実質的に相補 的な配列を有し、細胞、組織または個体において KRAP遺伝子の発現を阻害しうる [I I] It has a sequence that is substantially identical or substantially complementary to at least part of the KRAP gene or mRNA, and can inhibit the expression of the KRAP gene in cells, tissues, or individuals
、単離された干渉性核酸分子。 An isolated interfering nucleic acid molecule.
[12] 少なくとも一部が二本鎖である、請求の範囲 11記載の干渉性核酸分子。 [12] The interfering nucleic acid molecule according to claim 11, which is at least partially double-stranded.
[13] KRAPタンパクまたはその一部に対して特異的に結合し、細胞、組織または個体に ぉ 、て KRAPタンパクの機能を阻害しうる、結合性タンパク。 [13] A binding protein that specifically binds to KRAP protein or a part thereof and can inhibit the function of KRAP protein in cells, tissues, or individuals.
[14] 請求の範囲 11〜 13の ヽずれか 1項記載の干渉性核酸分子または結合性タンパク を含む、脂質代謝および Zまたは糖代謝改変剤。 [14] A lipid metabolism and Z or sugar metabolism-modifying agent comprising the interfering nucleic acid molecule or binding protein according to any one of claims 11 to 13.
[15] エネルギー消費亢進剤、肥満の予防または解消剤、またはインシュリン感受性亢進 剤である、請求の範囲 14記載の脂質代謝および Zまたは糖代謝改変剤。 [15] The lipid metabolism and Z or sugar metabolism-modifying agent according to claim 14, which is an energy consumption enhancer, an obesity prevention or elimination agent, or an insulin sensitivity enhancer.
[16] KRAP遺伝子またはタンパク質の発現または機能を阻害することにより、哺乳類細 胞、組織または非ヒト動物において脂質代謝および Zまたは糖代謝の改変を誘起す る方法。 [16] A method of inducing alterations in lipid metabolism and Z or sugar metabolism in mammalian cells, tissues or non-human animals by inhibiting the expression or function of the KRAP gene or protein.
[17] 脂質代謝および Zまたは糖代謝の改変が、エネルギー消費の亢進、肥満の予防ま たは解消、インシュリン感受性の亢進、および Zまたは血中ホルモン濃度の異常であ る、請求の範囲 16記載の方法。  [17] The claim 16, wherein the alteration of lipid metabolism and Z or sugar metabolism is increased energy consumption, prevention or elimination of obesity, increased insulin sensitivity, and abnormal Z or blood hormone levels the method of.
[18] KRAP遺伝子または mRNAの少なくとも一部と実質的に同一または実質的に相補 的な配列を有し、細胞、組織または個体において KRAP遺伝子の発現を阻害しうる 干渉性核酸分子、および Zまたは KRAPタンパクまたはその一部に対して特異的に 結合し、細胞、組織または個体において KRAPタンパクの機能を阻害しうる結合性タ ンパクを用いて KRAP遺伝子の発現または KRAPタンパクの機能を阻害する工程を 含む、請求の範囲 16または 17記載の方法。  [18] an interfering nucleic acid molecule having a sequence that is substantially identical or substantially complementary to at least a portion of a KRAP gene or mRNA, and capable of inhibiting expression of the KRAP gene in a cell, tissue or individual, and Z or A process of inhibiting the expression of the KRAP gene or the function of the KRAP protein using a binding protein that specifically binds to the KRAP protein or a part thereof and can inhibit the function of the KRAP protein in cells, tissues or individuals. 18. A method according to claim 16 or 17, comprising.
PCT/JP2006/314423 2005-07-21 2006-07-20 Animal in which lipid metabolism and sugar metabolism are modified by krap gene mutation, modification method and modifying agent WO2007010999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526056A JPWO2007010999A1 (en) 2005-07-21 2006-07-20 Lipid metabolism and sugar metabolism modified animal by KRAP gene mutation, modification method and modification agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210744 2005-07-21
JP2005-210744 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007010999A1 true WO2007010999A1 (en) 2007-01-25

Family

ID=37668871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314423 WO2007010999A1 (en) 2005-07-21 2006-07-20 Animal in which lipid metabolism and sugar metabolism are modified by krap gene mutation, modification method and modifying agent

Country Status (2)

Country Link
JP (1) JPWO2007010999A1 (en)
WO (1) WO2007010999A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040417A1 (en) * 2009-09-29 2011-04-07 学校法人福岡大学 Inositol-1,4,5-trisphosphate receptor binding protein, and transgenic non-human mammal containing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] STRAUSBERG R.L. ET AL.: "Homo sapiens sperm specific antigen 2, mRNA(cDNA clone MGC:71359 IMAGE:6251533)", XP003002989, accession no. NCBI Database accession no. (BC064499) *
INOKUCHI J. ET AL.: "Deregulates expression of KRAP, a novel gene encoding actin-interacting protein, in human colon cancer cells", J. HUM. GENE, vol. 49, no. 1, 2004, pages 46 - 52, XP003002988 *
NAGASE T. ET AL.: "Prediction of the coding sequences of unidentified human genes, XXI. The complete sequences of 60 new cDNA clones from brain which code for large proteins", DNA RES., vol. 8, no. 4, 31 August 2001 (2001-08-31), pages 179 - 187, XP001055485 *
PROC. NATL. ACAD. SCI. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040417A1 (en) * 2009-09-29 2011-04-07 学校法人福岡大学 Inositol-1,4,5-trisphosphate receptor binding protein, and transgenic non-human mammal containing same

Also Published As

Publication number Publication date
JPWO2007010999A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Boutant et al. Mfn2 is critical for brown adipose tissue thermogenic function
Rodriguez et al. Loss of CTRP1 disrupts glucose and lipid homeostasis
Wei et al. Targeted deletion of C1q/TNF-related protein 9 increases food intake, decreases insulin sensitivity, and promotes hepatic steatosis in mice
Joo et al. Inhibition of gastric inhibitory polypeptide receptor signaling in adipose tissue reduces insulin resistance and hepatic steatosis in high-fat diet–fed mice
Shi et al. Hepatocyte-specific deletion of Janus kinase 2 (JAK2) protects against diet-induced steatohepatitis and glucose intolerance
Wu et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway
Xu et al. Preemptive A ctivation of the I ntegrated S tress R esponse P rotects M ice F rom D iet‐I nduced O besity and I nsulin R esistance by F ibroblast G rowth F actor 21 I nduction
Enguix et al. Mice lacking PGC-1β in adipose tissues reveal a dissociation between mitochondrial dysfunction and insulin resistance
Lei et al. Loss of CTRP5 improves insulin action and hepatic steatosis
Zhao et al. Overcoming insulin insufficiency by forced follistatin expression in β-cells of db/db mice
US9623080B2 (en) Methods for treating or preventing fatty liver disease using CTRP3
US11439635B2 (en) B cell lymphoma 6 protein (BCL6) as a target for treating diabetes mellitus and non-alcoholic fatty liver disease
Lu et al. QKI regulates adipose tissue metabolism by acting as a brake on thermogenesis and promoting obesity
Zhu et al. Betatrophin provides a new insight into diabetes treatment and lipid metabolism
EP2727465A1 (en) Animal model for type 2 diabetes and obesity
Mukai et al. Adipocyte-specific GPRC6A ablation promotes diet-induced obesity by inhibiting lipolysis
Aaldijk et al. Biological and pharmacological functions of the FGF19-and FGF21-coreceptor beta klotho
Ariyama et al. Chop‐deficient mice showed increased adiposity but no glucose intolerance
JP2003515532A (en) Inhibitor of inositol polyphosphate 5-phosphatase SHIP2 molecule
WO2007010999A1 (en) Animal in which lipid metabolism and sugar metabolism are modified by krap gene mutation, modification method and modifying agent
KR101894670B1 (en) Method of screening agents for treating disorder related to dysregulation of hepatic lipid metabolism through inhibition of PPARγ-mediated transcription
US20230069835A1 (en) Animal models of lipid metabolism and methods of treating hyperlipidemia or hyperlipidemia-related diseases
Singh et al. Lack of Wdr13 gene in mice leads to enhanced pancreatic beta cell proliferation, hyperinsulinemia and mild obesity
EP1255774B1 (en) Methods for identifying compounds useful for the treatment of obesity involving foxc2
Gao et al. Advances in anti-metabolic disease treatments targeting CD47

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526056

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781378

Country of ref document: EP

Kind code of ref document: A1