WO2007009889A1 - Improved materials for insulators in organic field effect transistors - Google Patents

Improved materials for insulators in organic field effect transistors Download PDF

Info

Publication number
WO2007009889A1
WO2007009889A1 PCT/EP2006/063966 EP2006063966W WO2007009889A1 WO 2007009889 A1 WO2007009889 A1 WO 2007009889A1 EP 2006063966 W EP2006063966 W EP 2006063966W WO 2007009889 A1 WO2007009889 A1 WO 2007009889A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate insulator
insulator material
field effect
organic field
gate
Prior art date
Application number
PCT/EP2006/063966
Other languages
German (de)
French (fr)
Inventor
Christoph Brabec
Christoph Waldauf
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2007009889A1 publication Critical patent/WO2007009889A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the application relates to the field of organic field effect transistors.
  • the demands on the gate insulator material for bottom-gate field-effect transistors are particularly high. These are commonly used in contacting base metals, but are usually so sensitive to oxidation and also unstable on contact with air and / or water, so that the usual gate insulator materials can not be used to a bottom gate field effect transistor of an acceptable quality to reach.
  • a gate insulator material is provided by a material according to claim 1 of the present invention. Accordingly, a gate insulator material according to the invention is for an organic field effect transistor, characterized in that the gate insulator material is photochemically curable and / or structurable.
  • An advantage of the present invention is that the gate insulator layer can be easily obtained by applying the gate insulator material, e.g. by printing, spinning, spraying or processes for the application of liquid materials and subsequent curing by means of a photoreaction thereof.
  • the gate insulator material contains the following components:
  • a photoinitiator preferably in the form of a triarylsulfonium salt
  • Such a mixture has proven to be a particularly advantageous gate insulator material.
  • Suitable photoinitiators are in principle all materials used in the prior art. Triarylsulfonium salts, however, have proven to be particularly suitable. Both unsubstituted and substituted, preferably halogen- or alkyl-substituted, trialkylsulfon may be used here. niumsalze be used. A preferred counterion is hexafluoroantimonate.
  • the solubility of the gate insulator material in wt .-% in water is> 20 to ⁇ 65%. Such high solubility is preferred to achieve better processability.
  • the solubility of the gate insulator material in wt .-% in water > 25 to ⁇ 60%, more preferably> 30 to ⁇ 50%.
  • the specific density of the gate insulator material is - before processing - in g / ml ⁇ l .1 to ⁇ l .3.
  • a specific gravity has been found to be particularly suitable for producing gate insulator layers having the desired properties.
  • the volatiles of the gate insulator material - before processing - in wt .-% > 20 to ⁇ 65%.
  • the volatiles of the gate insulator material - before processing - in wt .-% > 25 to ⁇ 40%, more preferably> 30 to ⁇ 35%.
  • the volatile organic constituents of the gate insulator material before processing in g / L are> 300 to ⁇ 700. It has been found to be beneficial to keep the volatile organic compounds within these limits to achieve a gate insulator layer with good film-forming properties.
  • the volatile organic constituents of the gate insulator material preferably amount to> 350 to ⁇ 500 before processing in g / L.
  • the invention further relates to an organic field-effect transistor, comprising a gate insulator layer, which contains, as an essential component, a gate insulator material as already described or constructed from this.
  • essential component is meant that the gate insulator layer is> 90%, preferably> 95%, and most preferably> 98% to ⁇ 100% of the gate insulator material or made thereof.
  • the dielectric constant of the gate insulator layer is> 2 to ⁇ IO.
  • Such a dielectric constant has the advantage that an effective control of the field-effect transistor is possible even with a small field.
  • the thickness of the gate insulator layer is between> 0.2 and ⁇ 10 ⁇ m.
  • Such thin layers have the advantage that much more compact and smaller transistors can be built.
  • the thickness of the gate insulator layer is preferably between> 0.3 and ⁇ 5 ⁇ m, more preferably> 0.4 and ⁇ 2 ⁇ m.
  • the organic field effect transistor is a bottom gate organic field effect transistor. It has been found that the gate insulator material according to the invention is particularly advantageous in bottom-gate organic field-effect transistors.
  • the invention also relates to a method for constructing an organic field-effect transistor as described above, comprising the steps: applying a gate electrode to a substrate
  • a gate insulator layer can be constructed in a simple manner by applying the gate insulator material and then curing it by means of a photoreaction. Subsequently, access to the gate electrode can take place by means of photostructuring of the gate electrode.
  • Fig.l is a perspective - very schematic - representation of an organic field effect transistor in a bottom-gate structure according to an embodiment of the present invention
  • Fig.2 a - very schematic - fragmentary
  • FIG. 1 shows an organic field-effect transistor 1 in a binary-gate structure according to an embodiment of the present invention.
  • FIG. 2 shows the same transistor in a sectional view. It should be noted that most structures of the transistor are prior art in themselves; however, all structures and materials known in the art of organic field effect transistors can be used in the present invention.
  • the transistor 1 consists of a substrate 50 on which the further structures are applied.
  • the substrate 50 is made of glass or a suitable film, such as PET.
  • the transistor has a gate electrode 40, which may consist of gold or a suitable oxide such as ITO (indium-tin mixed oxide).
  • the gate electrode 40 is surrounded by the gate insulator layer 30 according to the invention, which is constructed as described above. In the gate insulator layer 30, an access 70 to the gate electrode 40 is provided, which was preferably created by etching the insulator material.
  • Fig. 1 the gate electrode 40 is drawn for a better understanding of the transistor, although it is in fact below the insulator material 30. The exact conditions are better seen in Fig. 2. However, the two figures are purely schematic and the proportions between the individual structures are in truth depending on
  • a semiconductor layer 10 On the gate insulator layer 30 is a semiconductor layer 10. This is preferably made of an organic material which has been applied by spin coating. This semiconductor layer 10 is contacted by two electrodes, the drain electrode 20 and the source electrode 60.
  • the gate electrode 40 acts as the base of the transistor 1.
  • the semiconductor layer 10, the gate insulator layer 30, and the gate electrode 40 act as a type of capacitor that conducts current Drain 20 and source 60 causes, whereby the transistor 1 can be controlled.
  • the gate insulator layer is as thin as possible on the one hand and on the other hand has a particularly high dielectric constant. It has been found that a thickness of> 0.2 and ⁇ 10 ⁇ m and a dielectric constant of> 2 to ⁇ IO are particularly advantageous.

Landscapes

  • Thin Film Transistor (AREA)

Abstract

The invention relates to the realm of organic field effect transistors, more particularly an organic field effect transistor. A material that can be photochemically cured and/or structured is selected as a gate insulator material for the gate insulator layer. This makes it possible to obtain a gate insulator layer having an improved quality as well as create a simpler method for producing the transistor.

Description

Beschreibungdescription
Verbesserte Materialien für Isolatoren in organischen FeldeffekttransistorenImproved materials for insulators in organic field effect transistors
Die Anmeldung betrifft das Gebiet von organischen Feldeffekttransistoren.The application relates to the field of organic field effect transistors.
Bei diesen organischen Feldeffekt- Transistoren liegt ein we- sentliches Kriterium in der Auswahl des Gate-Isolators. An diese Gate-Isolatoren werden u.a. die folgenden Anforderungen gestellt :In these organic field-effect transistors, a key criterion is the selection of the gate insulator. To these gate insulators i.a. set the following requirements:
hohe Schichtqualität - Einsatz bei Schichten geringer Dickehigh layer quality - use with layers of small thickness
Schichtaufbau von Schichten hoher Dielektrizitätskonstante Beständigkeit gegen LösemittelLayer structure of layers of high dielectric constant Resistance to solvents
Besonders hoch sind die Anforderungen an das Gate-Isolator- material bei Bottom Gate Feldeffekttransistoren. Bei diesen werden üblicherweise bei der Kontaktierung unedle Metalle verwendet, die jedoch meist so oxidationsempfindlich und auch instabil bei Kontakt mit Luft und/oder Wasser sind, so dass die üblichen Gate-Isolatormaterialien nicht verwendet werden können, um einen Bottom Gate Feldeffekt Transistor einer akzeptablen Qualität zu erreichen.The demands on the gate insulator material for bottom-gate field-effect transistors are particularly high. These are commonly used in contacting base metals, but are usually so sensitive to oxidation and also unstable on contact with air and / or water, so that the usual gate insulator materials can not be used to a bottom gate field effect transistor of an acceptable quality to reach.
Es stellt sich somit die Aufgabe ein Gate-Isolatormaterial bereitzustellen, welches die obigen Anforderungen besser erfüllt als bekannte Materialien und insbesondere eine einfachere Herstellung von organischen Feldeffekt Transistore, insbesondere von Bottom Gate Feldeffekttransistoren ermöglicht.It is therefore the object to provide a gate insulator material which satisfies the above requirements better than known materials and in particular enables easier production of organic field effect transistors, in particular of bottom gate field effect transistors.
Ein solches Gate-Isolatormaterial wird durch ein Material gemäß Anspruch 1 der vorliegenden Erfindung bereitgestellt. Demgemäß ist ein erfindungsgemäßes Gate-Isolatormaterial für einen organischen Feldeffekt-Transistor dadurch gekennzeichnet, dass das Gate-Isolatormaterial photochemisch aushärtbar und/oder strukturierbar ist.Such a gate insulator material is provided by a material according to claim 1 of the present invention. Accordingly, a gate insulator material according to the invention is for an organic field effect transistor, characterized in that the gate insulator material is photochemically curable and / or structurable.
Es hat sich überraschend herausgestellt, dass solches Gate- Isolatormaterial in organischen Feldeffekttransistoren die oben genannten Anforderungen in hervorragender Weise erfüllt. Durch eine Verwendung eines solchen Gate-Isolatormaterials lassen sich Gate-Isolatorschichten aufbauen, die insbesondereIt has surprisingly been found that such gate insulator material in organic field effect transistors satisfies the above requirements in an outstanding manner. By using such a gate insulator material can be built gate insulator layers, in particular
eine hohe Dielektrizitätskonstante und/oder eine geringe Dicke und/oder eine gute Verarbeitbarkeita high dielectric constant and / or a small thickness and / or a good processability
aufweisen. Ein Vorteil der vorliegenden Erfindung ist, dass die Gate-Isolatorschicht einfach durch Aufbringen des Gate- Isolatormatierials, z.B. durch Drucken, Drehschleudern, Sprayen oder Prozesse für die Aufbringung flüssiger Materialien und nachfolgendes Aushärten mittels einer Photoreaktion desselben herstellen kann.exhibit. An advantage of the present invention is that the gate insulator layer can be easily obtained by applying the gate insulator material, e.g. by printing, spinning, spraying or processes for the application of liquid materials and subsequent curing by means of a photoreaction thereof.
Gemäß einer bevorzugten Ausführungsform der Erfindung enthält das Gate-Isolatormaterial folgende Komponenten:According to a preferred embodiment of the invention, the gate insulator material contains the following components:
- >20 bis <60 Gew.-% γ-Butyrolacton-> 20 to <60 wt .-% γ-butyrolactone
>1 bis <5 Gew.-% Propylencarbonat >35 bis <75 Gew.-% Epoxydharz> 1 to <5% by weight of propylene carbonate> 35 to <75% by weight of epoxy resin
>1 bis <5 Gew.-% eines Photoinitiators, bevorzugt in Form eines Triarylsulfoniumsalzes> 1 to <5% by weight of a photoinitiator, preferably in the form of a triarylsulfonium salt
Eine solche Mischung hat sich als besonders vorteilhaftes Gate-Isolatormaterial herausgestellt .Such a mixture has proven to be a particularly advantageous gate insulator material.
Als Photoinitiatoren kommen alle aus dem Stand der Technik verwendeten Materialien prinzipiell in Frage. Als besonders geeignet haben sich jedoch Triarylsulfoniumsalze herausgestellt. Dabei können sowohl unsubstituierte wie substituierte, bevorzugt halogen- oder alkylsubstituierte Trialkylsulfo- niumsalze verwendet werden. Ein bevorzugtes Gegenion ist dabei Hexafluoroantimonat .Suitable photoinitiators are in principle all materials used in the prior art. Triarylsulfonium salts, however, have proven to be particularly suitable. Both unsubstituted and substituted, preferably halogen- or alkyl-substituted, trialkylsulfon may be used here. niumsalze be used. A preferred counterion is hexafluoroantimonate.
Nach einer bevorzugten Ausführungsform beträgt die Löslich- keit des Gate-Isolatormaterials in Gew.-% in Wasser >20 bis <65 %. Eine solche hohe Löslichkeit ist bevorzugt, um eine bessere Prozessierbarkeit zu erreichen. Bevorzugt ist die Löslichkeit des Gate-Isolatormaterials in Gew.-% in Wasser >25 bis <60%, noch bevorzugt >30 bis <50%.According to a preferred embodiment, the solubility of the gate insulator material in wt .-% in water is> 20 to <65%. Such high solubility is preferred to achieve better processability. Preferably, the solubility of the gate insulator material in wt .-% in water> 25 to <60%, more preferably> 30 to <50%.
Nach einer bevorzugten Ausführungsform beträgt die spezifische Dichte des Gate-Isolatormaterials - vor Verarbeitung - in g/ml ≥l .1 bis ≤l .3. Eine solche spezifische Dichte hat sich als besonders geeignet herausgestellt, Gate- Isolatorschichten mit den gewünschten Eigenschaften herzustellen. Bevorzugt ist die spezifische Dichte des Gate- Isolatormaterials - vor Verarbeitung - in g/ml >1.15 bis <1.25, noch bevorzugt >1.20 bis <1.23.According to a preferred embodiment, the specific density of the gate insulator material is - before processing - in g / ml ≥l .1 to ≤l .3. Such a specific gravity has been found to be particularly suitable for producing gate insulator layers having the desired properties. Preferably, the specific density of the gate insulator material - before processing - in g / ml> 1.15 to <1.25, more preferably> 1.20 to <1.23.
Nach einer bevorzugten Ausführungsform betragen die flüchtigen Bestandteile des Gate-Isolatormaterials - vor Verarbeitung - in Gew.-% >20 bis <65 %. Um eine Gate-Isolatorschicht mit der gewünschten Dicke und/oder Dielektrizitätskonstante zu erhalten, hat es sich als bevorzugt herausgestellt, die flüchtigen Bestandteile innerhalb dieser Grenzen zu halten. Bevorzugt betragen die flüchtigen Bestandteile des Gate- Isolatormaterials - vor Verarbeitung - in Gew.-% >25 bis ≤40 %, noch bevorzugt >30 bis <35 %.According to a preferred embodiment, the volatiles of the gate insulator material - before processing - in wt .-%> 20 to <65%. In order to obtain a gate insulator layer of the desired thickness and / or dielectric constant, it has been found preferable to maintain the volatiles within these limits. Preferably, the volatiles of the gate insulator material - before processing - in wt .-%> 25 to ≤40%, more preferably> 30 to <35%.
Nach einer bevorzugten Ausführungsform betragen die flüchtigen organischen Bestandteile des Gate-Isolatormaterials - vor Verarbeitung in g/L >300 bis <700. Es hat sich als positiv herausgestellt, die flüchtigen organischen Bestandteile innerhalb dieser Grenzen zu halten, um eine Gate-Isolator- schicht mit guten Schichtbildungseigenschaften zu erreichen. Bevorzugt betragen die flüchtigen organischen Bestandteile des Gate-Isolatormaterials - vor Verarbeitung in g/L >350 bis <500. Die Erfindung bezieht sich weiterhin auf einen organischer Feldeffekttransistor, enthaltend eine Gate-Isolatorschicht, welche als wesentliche Komponente ein wie bereits beschriebe- nes Gate-Isolatormaterial enthält oder aus diesem aufgebaut ist. Mit dem Term „wesentliche Komponente" ist gemeint, dass die Gate-Isolatorschicht zu >90 %, bevorzugt zu >95 %, sowie am meisten bevorzugt zu >98 % bis <100% aus dem Gate- Isolatormaterial besteht oder aus diesem hergestellt wurde.According to a preferred embodiment, the volatile organic constituents of the gate insulator material before processing in g / L are> 300 to <700. It has been found to be beneficial to keep the volatile organic compounds within these limits to achieve a gate insulator layer with good film-forming properties. The volatile organic constituents of the gate insulator material preferably amount to> 350 to <500 before processing in g / L. The invention further relates to an organic field-effect transistor, comprising a gate insulator layer, which contains, as an essential component, a gate insulator material as already described or constructed from this. By the term "essential component" is meant that the gate insulator layer is> 90%, preferably> 95%, and most preferably> 98% to <100% of the gate insulator material or made thereof.
Nach einer bevorzugten Ausführungsform der Erfindung beträgt die Dielektrizitätskonstante der Gate-Isolatorschicht >2 bis ≤IO. Eine solche Dielektrizitätskonstante hat den Vorteil, dass eine effektive Steuerung des Feldeffekt-Transistors auch bei kleinem Feld möglich ist.According to a preferred embodiment of the invention, the dielectric constant of the gate insulator layer is> 2 to ≦ IO. Such a dielectric constant has the advantage that an effective control of the field-effect transistor is possible even with a small field.
Nach einer bevorzugten Ausführungsform der Erfindung beträgt die Dicke der Gate-Isolatorschicht zwischen >0,2 und <10 μm. Solche dünnen Schichten haben den Vorteil, dass sich viel kompaktere und kleinere Transistoren aufbauen lassen. Bevorzugt die Dicke der Gate-Isolatorschicht zwischen >0,3 und ≤ 5 μm, noch bevorzugt >0,4 und < 2μm.According to a preferred embodiment of the invention, the thickness of the gate insulator layer is between> 0.2 and <10 μm. Such thin layers have the advantage that much more compact and smaller transistors can be built. The thickness of the gate insulator layer is preferably between> 0.3 and ≦ 5 μm, more preferably> 0.4 and <2 μm.
Nach einer bevorzugten Ausführungsform der Erfindung ist der organischer Feldeffekttransistor ein Bottom Gate organischer Feldeffekttransistor. Es hat sich herausgestellt, dass das erfindungsgemäße Gate-Isolatormaterial besonders vorteilhaft bei Bottom Gate organischen Feldeffekttransistoren ist.According to a preferred embodiment of the invention, the organic field effect transistor is a bottom gate organic field effect transistor. It has been found that the gate insulator material according to the invention is particularly advantageous in bottom-gate organic field-effect transistors.
Die Prozessierung aus der Lösung mit anschließendem Vernetzen und der damit verbundenen Unlöslichkeit und hohen thermischen Resistenz ermöglicht die Prozessierung eines weiten Spektrums von löslichen und unlöslichen, organischen und anorganischen Halbleitern auf dieser Schicht, was die Verwendung gleichen Grundaufbaus auch bei einer Änderung des aktiven Materials ermöglicht. Auch in der weiteren elektrischen Ausarbeitungsform ergibt die hohe Resistenz des Gate-Isolators größtmögliche Freiheit. Die Erfindung betrifft außerdem ein Verfahren zum Aufbau eines wie oben beschriebenen organischen Feldeffekttransistors enthaltend die Schritte: - Aufbringen einer Gate-Elektrode auf ein SubstratProcessing from the solution followed by crosslinking and the associated insolubility and high thermal resistance allows the processing of a wide range of soluble and insoluble organic and inorganic semiconductors on this layer, allowing the same basic design to be used even with a change in the active material. Also in the further electrical embodiment, the high resistance of the gate insulator gives maximum freedom. The invention also relates to a method for constructing an organic field-effect transistor as described above, comprising the steps: applying a gate electrode to a substrate
Aufbringen eines Gate-Isolatormaterials nach einem der Ansprüche 1 bis 6 auf das Substrat und/oder die Gate- ElektrodeApplication of a gate insulator material according to one of Claims 1 to 6 to the substrate and / or the gate electrode
Aushärten des Gate-Isolatormaterials durch eine Photore- aktionCuring the gate insulator material by a photo action
Ausätzen eines Teils des Gate-Isolatormaterials durch eine Photoreaktion, um einen Zugang zur Gate-Elektrode zu schaffenEtching a portion of the gate insulator material through a photoreaction to provide access to the gate electrode
Dieses Verfahren ermöglicht einen einfacheren und genaueren Aufbau von Feldeffekttransistoren als bei Methoden nach dem Stand der Technik. Dadurch, dass das Gate-Isolatormaterial photochemisch aushärtbar und/oder strukturierbar ist, kann eine Gate-Isolatorschicht auf einfache Weise aufgebaut wer- den, indem das Gate-Isolatormaterial aufgebracht und dann mittels einer Photoreaktion ausgehärtet wird. Anschließend kann ein Zugang zur Gate-Elektrode mittels einer Photostruk- turierung der Gate-Elektrode erfolgen.This method allows a simpler and more accurate construction of field effect transistors than in prior art methods. Because the gate insulator material is photochemically curable and / or structurable, a gate insulator layer can be constructed in a simple manner by applying the gate insulator material and then curing it by means of a photoreaction. Subsequently, access to the gate electrode can take place by means of photostructuring of the gate electrode.
Die vorgenannten sowie die beanspruchten und in den Ausführungsbeispielen beschriebenen erfindungsgemäß zu verwendenden Bauteile unterliegen in ihrer Größe, Formgestaltung, Materialauswahl und technischen Konzeption keinen besonderen Ausnahmebedingungen, so dass die in dem Anwendungsgebiet bekann- ten Auswahlkriterien uneingeschränkt Anwendung finden können.The above-mentioned as well as the claimed components to be used according to the invention described in the exemplary embodiments are not subject to special exceptions in terms of their size, shape, material selection and technical design, so that the selection criteria known in the field of application can be used without restriction.
Weitere Einzelheiten, Merkmale und Vorteile des Gegenstandes der Erfindung ergeben sich aus den Unteransprüchen sowie aus der nachfolgenden Beschreibung der zugehörigen Zeichnungen, in denen - beispielhaft - ein Ausführungsbeispiel eines erfindungsgemäßen Feldeffekttransistors dargestellt sind. In den Zeichnungen zeigt: Fig.l eine perspektivische - sehr schematische - Darstellung eines organischen Feldeffekt-Transistor in Bottom-Gate Struktur gemäß einer Ausführungsform der vorliegenden Erfindung; sowie Fig.2 eine - sehr schematische - ausschnittsweiseFurther details, features and advantages of the subject matter of the invention will become apparent from the subclaims and from the following description of the accompanying drawings, in which - by way of example - an embodiment of a field effect transistor according to the invention are shown. In the drawings shows: Fig.l is a perspective - very schematic - representation of an organic field effect transistor in a bottom-gate structure according to an embodiment of the present invention; and Fig.2 a - very schematic - fragmentary
Schnittdarstellung des Transistors aus Fig. 1 etwa entlang der Linie I-I aus Fig. 1.Sectional view of the transistor of FIG. 1 approximately along the line I-I of Fig. 1.
Fig. 1 zeigt einen organischen Feldeffekttransistor 1 in Bot- tom-Gate Struktur gemäß einer Ausführungsform der vorliegenden Erfindung, Fig. 2 zeigt denselben Transistor in einer Schnittansicht. Es sei angemerkt, dass die meisten Strukturen des Transistors an sich Stand der Technik sind; jedoch können alle auf dem Gebiet der organischen Feldeffekttransistoren bekannten Strukturen und Materialien für die vorliegende Erfindung benutzt werden.FIG. 1 shows an organic field-effect transistor 1 in a binary-gate structure according to an embodiment of the present invention. FIG. 2 shows the same transistor in a sectional view. It should be noted that most structures of the transistor are prior art in themselves; however, all structures and materials known in the art of organic field effect transistors can be used in the present invention.
Der Transistor 1 besteht aus einem Substrat 50, auf welchem die weiteren Strukturen aufgebracht sind. Das Substrat 50 be- steht aus Glas oder einer geeigneten Folie, wie PET. Weiterhin verfügt der Transistor über eine Gate-Elektrode 40, welche aus Gold oder einem geeigneten Oxid wie ITO (Indium-Zinn- Mischoxid) bestehen kann. Die Gate-Elektrode 40 ist von der erfindungsgemäßen Gate-Isolatorschicht 30 umgeben, die wie oben beschrieben aufgebaut ist. In der Gate-Isolatorschicht 30 ist ein Zugang 70 zur Gate-Elektrode 40 vorgesehen, der bevorzugt durch Ausätzen des Isolatormaterials geschaffen wurde .The transistor 1 consists of a substrate 50 on which the further structures are applied. The substrate 50 is made of glass or a suitable film, such as PET. Furthermore, the transistor has a gate electrode 40, which may consist of gold or a suitable oxide such as ITO (indium-tin mixed oxide). The gate electrode 40 is surrounded by the gate insulator layer 30 according to the invention, which is constructed as described above. In the gate insulator layer 30, an access 70 to the gate electrode 40 is provided, which was preferably created by etching the insulator material.
In Fig. 1 ist die Gate-Elektrode 40 zum besseren Verständnis des Transistors eingezeichnet, obwohl sie sich in Wahrheit unterhalb des Isolatormaterials 30 befindet. Die genauen Verhältnisse sind besser aus Fig. 2 ersichtlich. Die beiden Figuren sind jedoch rein schematisch und die Größenverhältnisse zwischen den einzelnen Strukturen sind in Wahrheit je nachIn Fig. 1, the gate electrode 40 is drawn for a better understanding of the transistor, although it is in fact below the insulator material 30. The exact conditions are better seen in Fig. 2. However, the two figures are purely schematic and the proportions between the individual structures are in truth depending on
Anwendung zum Teil drastisch von den Darstellungen in den Figuren verschieden. Auf der Gate-Isolatorschicht 30 befindet sich eine Halbleiterschicht 10. Diese ist vorzugsweise aus einem organischen Material, welches durch Spincoating aufgebracht wurde, gefertigt. Diese Halbleiterschicht 10 wird von zwei Elektroden kontaktiert, der Drain-Elektrode 20 und der Source-Elektrode 60.Application in part drastically different from the representations in the figures. On the gate insulator layer 30 is a semiconductor layer 10. This is preferably made of an organic material which has been applied by spin coating. This semiconductor layer 10 is contacted by two electrodes, the drain electrode 20 and the source electrode 60.
Die Gate-Elektrode 40 wirkt als Basis des Transistors 1. Wird an die Gate-Elektrode ein Feld angelegt, so wirken die HaIb- leiterschicht 10, die Gate-Isolatorschicht 30 und die Gate- Elektrode 40 als eine Art Kondensator, der einen Stromfluss zwischen Drain 20 und Source 60 bewirkt, wodurch der Transistor 1 gesteuert werden kann.The gate electrode 40 acts as the base of the transistor 1. When a field is applied to the gate electrode, the semiconductor layer 10, the gate insulator layer 30, and the gate electrode 40 act as a type of capacitor that conducts current Drain 20 and source 60 causes, whereby the transistor 1 can be controlled.
Aufgrund dieser Steuerung ist es vorteilhaft, wenn die Gate- Isolatorschicht zum einen möglichst dünn ist und zum anderen eine besonders hohe Dielektrizitätskonstante aufweist. Es hat sich herausgestellt, dass eine Dicke von >0,2 und <10 μm und eine Dielektrizitätskonstante von >2 bis ≤IO besonders vor- teilhaft sind. Because of this control, it is advantageous if the gate insulator layer is as thin as possible on the one hand and on the other hand has a particularly high dielectric constant. It has been found that a thickness of> 0.2 and <10 μm and a dielectric constant of> 2 to ≦ IO are particularly advantageous.

Claims

Patentansprüche claims
1. Gate-Isolatormaterial für einen organischen Feldeffekttransistor, dadurch gekennzeichnet, dass das Gate- Isolatormaterial photochemisch aushärtbar und/oder strukturierbar ist.1. gate insulator material for an organic field effect transistor, characterized in that the gate insulator material is photochemically curable and / or structurable.
2. Gate-Isolatormaterial nach Anspruch 1, enthaltend: a) >20 bis <60 Gew.-% γ-Butyrolacton b) >1 bis <5 Gew.-% Propylencarbonat c) >35 bis <75 Gew.-% Epoxydharz d) >1 bis <5 Gew.-% eines Photoinitiators, bevorzugt in Form eines Triarylsulfoniumsalzes .2. Gate insulator material according to claim 1, comprising: a)> 20 to <60 wt .-% γ-butyrolactone b)> 1 to <5 wt .-% propylene carbonate c)> 35 to <75 wt .-% epoxy resin d )> 1 to <5% by weight of a photoinitiator, preferably in the form of a triarylsulfonium salt.
3. Gate-Isolatormaterial nach Anspruch 1 oder 2, wobei die Löslichkeit in Gew.-% in Wasser >20 bis <65 % beträgt3. gate insulator material according to claim 1 or 2, wherein the solubility in wt .-% in water> 20 to <65%
4. Gate-Isolatormaterial nach einem der Ansprüche 1 bis 3, wobei die spezifische Dichte in g/ml ≥l .1 bis ≤l .3 beträgt4. Gate insulator material according to one of claims 1 to 3, wherein the specific gravity in g / ml ≥l .1 to ≤l .3
5. Gate-Isolatormaterial nach einem der Ansprüche 1 bis 4, wobei die flüchtigen Bestandteile des Gate-Isolatormaterials - vor Verarbeitung - in Gew.-% >20 bis <65 % betragen5. Gate insulator material according to one of claims 1 to 4, wherein the volatile constituents of the gate insulator material - before processing - in wt .-%> 20 to <65%
6. Gate-Isolatormaterial nach einem der Ansprüche 1 bis 5, wobei die flüchtigen organischen Bestandteile des Gate- Isolatormaterials - vor Verarbeitung in g/L >300 bis ≤700 betragen.6. Gate insulator material according to one of claims 1 to 5, wherein the volatile organic components of the gate insulator material - before processing in g / L> 300 to ≤700 amount.
7. Organischer Feldeffekttransistor, enthaltend eine Gate- Isolatorschicht (30) , welche als wesentliche Komponente ein Gate-Isolatormaterial nach einem oder mehreren der Ansprüche 1 bis 6 enthält oder aus diesem aufgebaut ist.7. An organic field-effect transistor comprising a gate insulator layer (30) which contains as essential component a gate insulator material according to one or more of claims 1 to 6 or constructed therefrom.
8. Organischer Feldeffekttransistor, nach Anspruch 7, wobei die Gate-Isolatorschicht (30) eine Dielektrizitätskonstante von >2 bis <10 aufweist. 8. An organic field effect transistor according to claim 7, wherein the gate insulator layer (30) has a dielectric constant of> 2 to <10.
9. Organischer Feldeffekttransistor nach Anspruch 7 oder 8, wobei die Dicke der Gate-Isolatorschicht (30) zwischen >0,2 und <10 μm beträgt.9. Organic field effect transistor according to claim 7 or 8, wherein the thickness of the gate insulator layer (30) is between> 0.2 and <10 microns.
10. Organischer Feldeffekttransistor nach einem der Ansprüche 7 bis 9, wobei der organischer Feldeffekttransistor ein Bottom Gate organischer Feldeffekttransistor ist.10. Organic field effect transistor according to one of claims 7 to 9, wherein the organic field effect transistor is a bottom gate organic field effect transistor.
11. Verfahren zum Aufbau eines organischen Feldeffekttransis- tors nach einem der Ansprüche 7 bis 10, enthaltend die Schritte :11. A method for constructing an organic field effect transistor according to one of claims 7 to 10, comprising the steps:
- Aufbringen einer Gate-Elektrode (40) auf ein Substrat- Applying a gate electrode (40) on a substrate
(50)(50)
- Aufbringen eines Gate-Isolatormaterials nach einem der Ansprüche 1 bis 6 auf das Substrat (50) und/oder die Gate-Elektrode (40)Applying a gate insulator material according to one of claims 1 to 6 to the substrate (50) and / or the gate electrode (40).
- Aushärten des Gate-Isolatormaterials durch eine Photoreaktion, um eine Gate-Isolatorschicht (30) zu bilden- curing the gate insulator material by a photoreaction to form a gate insulator layer (30)
- Ausätzen eines Teils des Gate-Isolatorschicht (30) durch eine Photoreaktion, um einen Zugang (70) zur Gate- Elektrode (40) zu schaffen. Etching out a portion of the gate insulator layer (30) by a photo-reaction to provide access (70) to the gate electrode (40).
PCT/EP2006/063966 2005-07-22 2006-07-06 Improved materials for insulators in organic field effect transistors WO2007009889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005034415.1 2005-07-22
DE102005034415 2005-07-22

Publications (1)

Publication Number Publication Date
WO2007009889A1 true WO2007009889A1 (en) 2007-01-25

Family

ID=36763244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063966 WO2007009889A1 (en) 2005-07-22 2006-07-06 Improved materials for insulators in organic field effect transistors

Country Status (1)

Country Link
WO (1) WO2007009889A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761817B2 (en) 2015-03-13 2017-09-12 Corning Incorporated Photo-patternable gate dielectrics for OFET

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889361A1 (en) * 1997-06-30 1999-01-07 Siemens Aktiengesellschaft Initiators for cationic polymerization
WO2001033649A1 (en) * 1999-11-02 2001-05-10 Koninklijke Philips Electronics N.V. Method of producing vertical interconnects between thin film microelectronic devices and products comprising such vertical interconnects
DE10340608A1 (en) * 2003-08-29 2005-03-24 Infineon Technologies Ag Polymer formulation and method of making a dielectric layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889361A1 (en) * 1997-06-30 1999-01-07 Siemens Aktiengesellschaft Initiators for cationic polymerization
WO2001033649A1 (en) * 1999-11-02 2001-05-10 Koninklijke Philips Electronics N.V. Method of producing vertical interconnects between thin film microelectronic devices and products comprising such vertical interconnects
DE10340608A1 (en) * 2003-08-29 2005-03-24 Infineon Technologies Ag Polymer formulation and method of making a dielectric layer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FIX W ET AL: "Fast polymer integrated circuits", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 81, no. 9, 26 August 2002 (2002-08-26), pages 1735 - 1737, XP012033403, ISSN: 0003-6951 *
GONG GU ET AL: "An organic thin-film transistor with photolithographically patterned top contacts and active layer", DEVICE RESEARCH CONFERENCE, 2004. 62ND DRC. CONFERENCE DIGEST [LATE NEWS PAPERS VOLUME INCLUDED] NOTRE DAME, IN, USA JUNE 21-23, 2004, PISCATAWAY, NJ, USA,IEEE, 21 June 2004 (2004-06-21), pages 83 - 84, XP010748144, ISBN: 0-7803-8284-6 *
KLAUK H ET AL: "Flexible organic complementary circuits", IEEE TRANSACTIONS ON ELECTRON DEVICES IEEE USA, vol. 52, no. 4, April 2005 (2005-04-01), pages 618 - 622, XP008067678, ISSN: 0018-9383 *
LIANG YAN ET AL: "Fabrication of pentacene thin-film transistors with patterned polyimide photoresist as gate dielectrics and research of their degradation", CHINESE PHYSICS LETTERS CHINESE PHYS. SOC CHINA, vol. 21, no. 11, November 2004 (2004-11-01), pages 2278 - 2280, XP002394573, ISSN: 0256-307X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761817B2 (en) 2015-03-13 2017-09-12 Corning Incorporated Photo-patternable gate dielectrics for OFET
US10186673B2 (en) 2015-03-13 2019-01-22 Corning Incorporated Photo-patternable gate dielectrics for OFET
US10680192B2 (en) 2015-03-13 2020-06-09 Corning Incorporated Photo-patternable gate dielectrics for OFET

Similar Documents

Publication Publication Date Title
DE2655455C2 (en) Method for producing a mask and lacquer structure for use in the method
DE2457465C2 (en) Liquid crystal display device
CH644955A5 (en) LIQUID CRYSTAL DISPLAY ELEMENT AND METHOD FOR THE PRODUCTION THEREOF.
EP1289031A2 (en) Method of manufactoring a structured conducting polymer layer
DE102016112586B4 (en) Display device, manufacturing process and display device
DD202365A5 (en) ELECTROLUMINESCENT ARRANGEMENT
WO2002099907A1 (en) Organic field effect transistor, method for production and use thereof in the assembly of integrated circuits
DE102014008239A1 (en) TFT ARRAY SUBSTRATE, METHOD FOR THE PRODUCTION THEREOF AND DISPLAY DEVICE
DE102020132743A1 (en) ELECTRIC
DE60103048T2 (en) METHOD FOR PRODUCING ULTRA-THIN POLYMER FOILS
DE102014104647A1 (en) Liquid crystal display, array substrate in an in-plane switching mode, and manufacturing method therefor
EP1658647B1 (en) Integrated circuit comprising an organic semiconductor, and method for the production of an integrated circuit
DE10153562A1 (en) Process for reducing the electrical contact resistance in organic field-effect transistors by embedding nanoparticles to produce field peaks at the interface between the contact material and the organic semiconductor material
DE1910736B2 (en) METHOD FOR PRODUCING EACH OTHER ELECTRICALLY INSULATED CONDUCTOR TRACKS MADE OF ALUMINUM AND APPLICATION OF THE METHOD
DE102006055919A1 (en) Electrical insulating material based on cured epoxide resin contains nanofiller of organically-treated foliated clay with secondary, tertiary or quaternary ammonium ions having organic modifier groups
WO2007009889A1 (en) Improved materials for insulators in organic field effect transistors
DE1614233B2 (en) Method for manufacturing a semiconductor component
WO2005001923A2 (en) Solution and method for the treatment of a substrate, and semiconductor component
DE2902303A1 (en) THIN FILM TRANSISTOR AND METHOD OF ITS MANUFACTURING
EP1704606B1 (en) Method for the production of an organic transistor comprising a self-adjusting gate electrode
DE2137968A1 (en) Method of manufacturing an electro-optical switch
DE102010031979A1 (en) Semiconductor device
DE102006027884B4 (en) Organic thin film transistor with a homogeneous crystalline organic semiconductor layer
EP1658641B1 (en) Method for producing vertical nanotransistors
WO2005022647A1 (en) Vertical nanotransistor, method for producing the same and memory assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06764101

Country of ref document: EP

Kind code of ref document: A1