WO2007007877A1 - Process for producing porous structure and porous structure obtained by the process - Google Patents

Process for producing porous structure and porous structure obtained by the process Download PDF

Info

Publication number
WO2007007877A1
WO2007007877A1 PCT/JP2006/314067 JP2006314067W WO2007007877A1 WO 2007007877 A1 WO2007007877 A1 WO 2007007877A1 JP 2006314067 W JP2006314067 W JP 2006314067W WO 2007007877 A1 WO2007007877 A1 WO 2007007877A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous structure
organic solvent
hydrophobic organic
organic polymer
amphiphile
Prior art date
Application number
PCT/JP2006/314067
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Yamada
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Publication of WO2007007877A1 publication Critical patent/WO2007007877A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum

Definitions

  • the present invention relates to a method for producing a porous structure using a cage shape of a reverse micelle formed in a hydrophobic organic solvent solution using an amphiphilic substance for the formation of pores, and the production method. And a porous structure.
  • a method for forming a polymer porous membrane having fine pores having a diameter of 1 to 100 ⁇ m using self-organization is a method using condensation of water droplets, a method using micelle formation, or a block.
  • a method using a copolymer is known.
  • a hydrophobic organic solvent solution of a polymer is cast on a substrate in a high-humidity atmosphere, and the organic solvent is gradually evaporated and simultaneously condensed on the cast liquid surface.
  • Patent Document 1 or Patent Document 2 There is known a method for producing a film having a Hercam structure by evaporating fine water droplets generated by condensation.
  • the method using the formation of micelles is a method in which a reverse micelle solution containing a hydrophobic substance composed of an olefin monomer or the like, a hydrophilic liquid such as water, and a surfactant containing a polymerizable group is permeated onto the carrier. Thereafter, the liquid is polymerized to form a porous material coating on the support (see Patent Document 3).
  • a block copolymer examples include an example using a block copolymer block polystyrene having a hydrophilic block and a hydrophobic block force (see Non-Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-157574
  • Patent Document 2 JP 2002-335949 A
  • Patent Document 3 Patent No. 3277233
  • Non-Patent Document 1 Science, 1999, No. 283, p. 372
  • the formed film has self-supporting properties.
  • minute water is formed by the formation of dew condensation under relatively high humidity conditions. It is difficult to control the density of the hole diameter of the droplet, and when the hole density increases, a phenomenon of communication between adjacent holes inevitably occurs, which may cause inconvenience depending on the purpose of use.
  • these methods are used to introduce the functional material into the pores of the membrane that has been prepared in separate steps. And the process becomes more complex.
  • the hole diameter is small, it becomes difficult to selectively introduce the functional material into the hole.
  • the film to be formed has no self-supporting property and must be used integrally with the substrate. Therefore, the properties of the entire film depend on the properties of the substrate and are used. Applications were limited to filtration membranes and biosensors. In addition, when the block copolymer is used, there are many drawbacks such as inferior self-supporting property of the hard cam structure and the honeycomb structure with time.
  • the present invention has been made in view of the above problems, and reverse micelles are formed in a solution comprising at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent. Is formed on the substrate, and a hydrophobic organic solvent and a hydrophilic liquid are vaporized from the substrate.
  • the present invention relates to the production of a porous body that is partitioned by a wall and communicates in a direction parallel to the surface of the structure.
  • the present invention relates to (1) a porous structure using reverse micelle cages formed in a hydrophobic organic solvent solution for forming pores, comprising the steps described in the following (i) to (m): (Hereinafter sometimes referred to as “Embodiment 1”).
  • Step 1 A hydrophobic organic solvent in which reverse micelles are formed by stirring at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent that dissolves the organic polymer. Step of obtaining a solution (Step 1)
  • step 3 A step of evaporating the hydrophobic organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate to form a porous structure (step 3)
  • Weight mixing ratio Rw (hydrophilic liquid Z both amphiphile) of hydrophilic liquid and amphiphile in step 1 is 0.1 to 15.
  • the hydrophobic organic solvent is a normal pentane, normal hexane, cyclohexane, isooctane, normal heptane, normal decane, benzene, toluene, ethylbenzene, orthoxylene, meta-ethylene having a dielectric constant of 5 or less at 20 ° C.
  • Power must be at least one selected
  • the amphiphile is bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, sodium dicyclohexylsulfosuccinate, sodium dihexylsulfosuccinate, dihexyl
  • the polyion complex of xadecyldimethylammonium and polystyrene sulfonic acid, a block copolymer obtained from ethylene glycol and propylene glycol, and a block copolymer force capable of obtaining ethylene oxide and propylene oxide power are also at least one selected.
  • the organic polymer is polyethylene, polypropylene, poly-4-methylpentene 1, cyclopolyolefin, polychlorinated butyl, polyvinylidene chloride, polystyrene, tali-tril-styrene resin (AS resin), acrylonitrile-butadiene-styrene Resin (ABS resin), Methacrylate ester resin, Acrylate ester resin, Ethylene butyl alcohol copolymer resin, Polyalkylene oxide, Polyamide, Polyacetal, Polycarbonate, Modified polyphenylene ether, Thermoplastic polyester At least one selected from the group consisting of polysulfone sulfide, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide, (7) the substrate is made of glass, metal Ceramic, polypropylene, polyethylene, polyethylene terephthalate, polyether ketone, polyvinylidene
  • step 2 After forming a hydrophobic organic solvent solution containing reverse micelles in step 1, casting to a thickness of 0.01 to 5 mm on the substrate in step 2;
  • the negative force of the reverse micelle is a structure in which the holes formed are distributed almost uniformly in the structure, and the holes of the structure (excluding the openings and the through holes) An average value of the diameter of 0.1 to: forming a structure having L0 m,
  • the Rw (hydrophilic liquid Z amphiphile) in step 1 is set to 3 to 15, and in step 2, the thickness of the multilayer structure after evaporation of the hydrophobic organic solvent in step 3 is set to ⁇ 50 m.
  • the hydrophobic organic solvent solution is cast on a substrate, and the hole penetrating through the entire area of the hole in the cross section perpendicular to the structure surface due to evaporation of the hydrophobic organic solvent in step 3 (through hole)
  • the surface area ratio is 60% or more or the surface opening ratio based on through holes is 7% or more, and the average hole diameter in the direction parallel to the structure surface of the through holes is 1 to 50 / zm, or the through holes Forming a structure with an average opening diameter of 1 to 50 m;
  • the porous structure obtained by removing the substrate from the porous structure on the substrate formed in the step 3 has a self-supporting property
  • the hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a metal, alloy, or dispersion dispersed in the hydrophilic liquid phase. Is a metal compound fine particle force, and the metal, alloy or metal compound fine particles are contained in the pores of the porous structure obtained in step 3.
  • the hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a functional material dispersed or dissolved in the hydrophilic liquid phase.
  • the functional material is contained in the pores of the porous structure obtained in step 3, and the functional material is Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr And at least one metal of Ti, semiconductor material, oxide, ceramic material, metal complex, ferroelectric material, ferromagnetic material, resistance change material, phase change material, optical functional material, and fluorescent functional material
  • the present invention also relates to (16) a porous structure composed of an organic polymer having hydrophobicity, and an amphiphilic substance having an anionic group in a hydrophilic group having a molecular weight of 10,000 or less.
  • the active substance constitutes the edge of the hole, and each hole is partitioned by a cutting wall made of the organic polymer, and communicates in a direction parallel to the surface of the structure.
  • This is an invention relating to a porous structure (hereinafter referred to as “embodiment 2” t).
  • the following aspects (17) to (28) can be further adopted.
  • the amphiphile is composed of bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, sodium dicyclohexylsulfosuccinate, and sodium dihexylsulfosuccinate. Be at least one selected,
  • the organic polymer is polyethylene, polypropylene, poly-4-methylpentene 1, cyclopolyolefin, polychlorinated buyl, poly (vinylidene chloride), polystyrene, tali-tril-styrene resin (AS resin), acrylonitrile-butadiene-styrene Resin (ABS resin), Methacrylate ester resin, Acrylate ester resin, Ethylene butyl alcohol copolymer resin, Polyalkylene oxide, Polyamide, Polyacetal, Polycarbonate, Modified polyphenylene ether, Thermoplastic polyester At least one selected from the group consisting of polysulfone sulfide, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide,
  • the area ratio of holes (open holes) opened on the surface is 60% or more, or the surface opening ratio is 5% or more.
  • the average aperture diameter of the apertures is 0.1-100 ⁇ m
  • the area ratio of the through holes (through holes) is 60% or more, or the surface opening ratio based on the through holes is 7% or more.
  • the average hole diameter in the direction parallel to the surface of the structure of the through hole is 1 to 50 m, or the average opening diameter of the through hole is 1 to 50 ⁇ m,
  • the porous structure is a film and has a thickness of 0.001 to lmm.
  • At least one metal selected from Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr and Ti, a semiconductor material, an oxide, a ceramic material,
  • one functional material selected from metal complexes, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials;
  • the porous structure is formed on a substrate
  • the substrate has one of any force selected from glass, metal, ceramic substrate, polypropylene, polyethylene, polyethylene terephthalate, polyetherketone, and polyfluorinated styrene, which is a combination of at least one of these Being a substrate,
  • an organic polymer and an amphiphilic substance are formed by utilizing a reverse micelle cage formed in a hydrophobic organic solvent solution by a relatively easy operation for pore formation.
  • a porous structure can be obtained.
  • the form of pores in the porous structure (the structure The pores are distributed almost uniformly, the pores are present on the surface of the structure, or the pores are present in the structure as through-holes), the size of the pores, the density of the pores, etc. It is possible to control.
  • a feature of the present invention is that most of the pores in the porous structure obtained by the present invention are partitioned by a partition wall that also has organic polymer power, and the pores communicate with each other.
  • FIG. 1 shows a time-dependent change in pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 1.
  • FIG. 2 shows the change over time of the pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 2.
  • FIG. 3 shows the change over time of the pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 3.
  • FIG. 4 shows a cross-sectional view of the porous structure produced in Examples 4 and 5 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
  • FIG. 5 shows a cross-sectional view of the porous structure produced in Examples 6 and 7 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
  • FIG. 6 shows a cross-sectional view of the porous structure produced in Examples 8 and 9 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
  • FIG. 7 shows an optical microscopic observation view of a porous film having an aperture hole produced in Example 13.
  • FIG. 8 is a perspective image of the porous film produced in Example 14 and observed with an optical microscope in which an oblique upward force of 45 degrees is also seen.
  • FIG. 9 shows the relationship between Rw and average opening diameter in the porous membranes obtained in Examples 13 and 23 to 25.
  • Embodiments 1 and 2 of the present invention will be described.
  • the observation, shape measurement, etc. of the hydrophobic organic solvent solution and the porous structure in the present invention are based on the following method.
  • the ratio of the pore area to the entire cross-sectional area is calculated and taken as the cross-sectional porosity.
  • Randomly extract 10 non-through holes on the surface of the porous structure measure the opening diameter, and use the average value as the average opening diameter.
  • the area ratio of through-holes is determined from the total area of holes in an arbitrary cross section of the porous structure.
  • the ratio of the opening area of the through holes on the surface of the porous structure to the entire surface area is calculated to obtain the surface opening ratio.
  • the average value is the average pore diameter.
  • the “method for producing a porous structure” according to Embodiment 1 includes:
  • a reverse micelle cage formed in a hydrophobic organic solvent solution including the steps described in the following (i) to (iii) is used for the formation of pores.
  • step 3 A step of evaporating the hydrophobic organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate to form a porous structure (step 3)
  • a reverse micelle is a molecular assembly that has a structure opposite to that of a normal micelle in a hydrophobic organic solvent, and has a structure in which the hydrophobic portion protrudes into the solvent.
  • Step 1 a solution comprising at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid and a hydrophobic organic solvent is stirred to obtain a hydrophobic organic solvent.
  • a relatively stable reverse micelle is formed therein.
  • the reverse micelle distribution state (reverse micelles are uniformly distributed in the solution, relatively upwardly distributed or relatively downwardly distributed), reverse micelle diameter, density, etc.
  • Organic solvents dielectric constant, specific gravity, vapor pressure during evaporation, solubility of organic polymer, properties such as hydrophobicity), amphiphiles, hydrophilic liquids, organic polymers (physical properties such as specific gravity, hydrophobicity), etc. It can be controlled by the type of ingredients, the blending ratio, etc.
  • the porous structure can be made into a thin film by using a hydrophobic organic solvent with a specific gravity larger than that of the hydrophilic liquid, a condition in which the reverse micelle diameter is relatively large, and a relatively small proportion of the organic polymer used.
  • a hydrophobic organic solvent with a specific gravity larger than that of the hydrophilic liquid, a condition in which the reverse micelle diameter is relatively large, and a relatively small proportion of the organic polymer used.
  • step 2 the hydrophobic organic solvent solution is cast on the substrate, but after forming reverse micelles in the hydrophobic organic solvent solution, casting onto the substrate and further starting evaporation of the organic solvent. It is possible to control the thickness and the shape of the pores in the porous structure after evaporation of the hydrophobic organic solvent by selecting the time and the coating thickness of the hydrophobic organic solvent solution on the substrate.
  • the hydrophobic organic solvent solution on the substrate may be treated with a hydrophobic organic solvent (hereinafter referred to as “organic solvent” hereinafter), with conservative removal of the hydrophilic liquid (for example, water). ) Is removed by evaporation.
  • organic solvent hydrophobic organic solvent
  • the holes formed by the organic solvent evaporation are partitioned by the partition wall made of the organic polymer cover. As a result, many unique holes are formed through communication.
  • the evaporation time of the organic solvent is about several minutes, but the pores formed in the structure can be made more three-dimensionally uniform by selecting the temperature and pressure conditions at which the organic solvent evaporates in a relatively short time. It becomes possible to distribute.
  • the hydrophilic liquid can be easily removed by evaporation. After evaporation of the organic solvent, an amphiphile is present at the edge of the pores formed in the porous structure.
  • Steps 1 to 3 will be described in detail below.
  • Step 1 reverse micelles are formed in a hydrophobic organic solvent solution.
  • step 1 at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a component comprising the organic polymer are used.
  • these components that can be used in Step 1 are exemplified below, but those that can be used in the present invention are not limited to these.
  • the organic polymer that can be used in the present invention is hydrophobic and has an appropriate solubility in an organic solvent, and can maintain a cage structure based on reverse micelles that are self-assembled after the organic solvent is removed by evaporation in Step 3.
  • the porous film formed on the substrate has rigidity enough to have self-supporting properties.
  • organic polymer examples include olefin-based polymers such as polyethylene, polypropylene, poly-4-methylpentene-1, cyclopolyolefin, etc .; polychlorinated butyl, polysalt-bi-lidene chlorine-based polymer; polyalkylene oxide; Alcohol-based resins such as butyl alcohol and ethylene-bulb alcohol copolymerized resins; polystyrene, Atari mouth-tolyl-styrene resin (AS resin), styrenes such as acrylonitrile-butadiene-styrene resin (ABS resin) Acrylic resin such as methacrylic ester resin and acrylic ester resin; polyamide resin (polyamide 6, polyamide 46, polyamide 66, etc.), polyacetal, polycarbonate, modified polyphenylene ether, thermoplastic Polyester resin (polyethylene terephthalate, Do the phase separation occurs after re ethylene naphthalate, etc.), etc. one engineering selected from plastic
  • thermoplastic resins such as polyvinylidene fluoride, polytetrafluoroethylene, polyacetate butyl, cellulosic plastic, and thermoplastic elastomer may be used as the organic polymer.
  • Polyphenylene sulfide, polysulfone, amorphous polyarylate, polyether imide, polyether sulfone, polyether ketone, polyethylene ether ketone, liquid crystal polyester, polyamide imide, polyimide and the like can also be used.
  • polystyrene and acrylic resin are preferable in terms of cost
  • polycarbonate, cyclopolyolefin, fluorine resin are also preferable in terms of transparency
  • polyamide and polyimide are preferable from the viewpoint of heat resistance.
  • Polystyrene, polycarbonate, and cyclopolyolefin are particularly preferred because they are soluble in organic solvents such as black mouth form and can easily obtain a membrane-like porous structure.
  • amphiphile used in Embodiment 1 is not particularly limited as long as it has a hydrophobic group and a hydrophilic group, and may be a polymer amphiphile or an amphiphile other than a polymer.
  • anions constituting hydrophilic groups in ionic amphiphiles include —Coo_, —so—, etc., and cations such as dimethylammonium ion, trimethyl.
  • the hydrophilic group in the nonionic amphiphile includes a hydroxyl group and an ether bond.
  • amphiphiles include bis (2-ethylhexylsulfosuccinate) (shown by the following chemical formula 1), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinosuccinate, dicyclohexyl.
  • Block copolymer from which sodium sulfosuccinate, dihexyl sodium sulfosuccinate, dihexadecyldimethylammonium and polystyrenesulfonic acid polyion complex shown by the following chemical formula 2), ethylene glycol and propylene glycol can be obtained, ethylene oxide And propylene oxide strength At least one selected block copolymer strength can be mentioned.
  • the organic solvent used in Embodiment 1 has a property of dissolving hydrophobic organic polymer to some extent, making reverse micelles small and stable to some extent with a micelle diameter, and step 3
  • the type is not particularly limited as long as it has the property of being relatively easy to evaporate.
  • the desired reverse micelle form uniform dispersion in the solution, micelle diameter, etc.
  • stability stability, evaporability in step 3, etc.
  • the hydrophobicity of the organic solvent It is desirable to consider dielectric constant, solubility of organic polymer, vapor pressure, specific gravity and the like.
  • Step 1 of the present invention reverse micelles are formed in the hydrophobic organic solvent solution, so the organic solvent to be used needs to be hydrophobic, and the water is a hydrophilic liquid.
  • Hydrophilic organic solvents such as methyl acetate and tetrahydrofuran, which have a high solubility in, are suitable because they do not form good reverse micelles.
  • reverse micelles in the hydrophobic organic solvent solution described in the above step 1 are cast until the casting of step 2 and the organic solvent of step 3 evaporate to form the basic skeleton of the porous structure. It is desirable that it is relatively stable. In general, reverse micelles are relatively stable in nonpolar organic solvents having a low dielectric constant.
  • Table 1 shows examples of relatively non-polar organic solvents having a dielectric constant ( ⁇ ) of 5 or less at 20 ° C
  • Table 2 shows relatively polar organic solvents having a dielectric constant of more than 5 at 20 ° C. It is.
  • toluene which has a low dielectric constant at 20 ° C
  • reverse micelles tend to exist relatively stably with small micelle diameters.
  • black mouth form if the change in the micelle diameter over time can be grasped, it can be used to control the pore diameter of the porous structure.
  • the desired porous structure can be designed from the selection of the hydrophobic organic solvent by grasping the micelle diameter and distribution of reverse micelles in each hydrophobic organic solvent, and the change in the micelle diameter over time. Is possible.
  • the hydrophobic organic solvent is preferably a solvent in which an organic polymer is appropriately dissolved and the amphiphilic substance is excellent in uniform dispersibility.
  • the hydrophobic organic solvent appropriately dissolves the used hydrophobic organic polymer and amphiphile.
  • the solubility of the organic polymer and the amphiphile in the hydrophobic organic solvent is too high, the organic polymer and the amphiphile in the organic solvent become porous at the stage where the organic polymer and the amphiphile in the organic solvent reach a high concentration in the evaporation step of Step 3.
  • the organic polymer and the amphiphilic substance in the hydrophobic organic solvent be in a concentration range of about 0.01 to LgZml, particularly 0.05 to 0.5 gZml, together with the hydrophobic organic solvent solution.
  • step 3 when a porous structure is formed by evaporating the organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution, a large amount of the organic solvent is first evaporated, and then the hydrophilic liquid is evaporated.
  • the porous structure can be surely formed by making it.
  • the vapor pressure of the hydrophobic organic solvent at the evaporation temperature of the hydrophobic organic solvent and the hydrophilic liquid is preferably higher than the vapor pressure of the hydrophilic liquid.
  • the vapor pressure of the organic solvent is determined at the evaporation temperature of the hydrophobic organic solvent in Step 3.
  • the vapor pressure of the hydrophobic organic solvent at the evaporation temperature in step 3 is preferably at least 0.3 times, more preferably at least 0.7 times, particularly preferably at least 1.0 times the vapor pressure of the hydrophilic liquid. In such a case, it is possible to use an organic solvent such as toluene or xylene having a boiling point higher than that of the hydrophilic liquid.
  • the specific gravity of the organic solvent can be used to control the vertical formation positions of the pores in the formed porous structure.
  • a nonpolar solvent when it is desired to uniformly distribute the pores in the porous structure.
  • water used as the hydrophilic liquid
  • a specific gravity such as chloroform is larger than that of water
  • reverse micelles can be distributed more upward, while aliphatic carbonization is performed.
  • a specific gravity such as hydrogen or an aromatic hydrocarbon
  • a large number of reverse micelles can be distributed downward.
  • the specific gravity of the organic polymer is larger than the specific gravity of water except for some polyolefins such as polyethylene and polypropylene. It is also possible to use an organic solvent smaller than the specific gravity of water using the specific gravity of Is possible.
  • hydrophobic organic solvents with specific gravity greater than water include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1,2 dichloro.
  • chlorinated solvents such as ethylene and trichloroethylene; disulfur carbon and the specific gravity of hydrophobic organic solvents that are lighter than water include normal pentane, normal hexane, cyclohexane, and benzene. , Toluene, xylene and the like. These organic solvents can be used alone, or a mixed solvent can be used when these solvents are combined to form a uniform solution.
  • hydrophobic organic solvent that can be used in the present invention, as shown in Table 1, normal pentane, normal hexane, cyclohexane, isooctane, normal heptane, normal decane, which are not more than the dielectric constant force at 20 ° C, Benzene, toluene, ethylbenzene, orthoxylene, metaxylene, paraxylene, mixed xylene, carbon tetrachloride, black form, and trans 1,2, -dichloroethylene,
  • the hydrophobic organic solvent has a high solubility of the organic polymer, a low solubility of water and a high vapor pressure. Further, it is preferable from the viewpoint of practicality. It is preferably chemically stable and low in toxicity. From these viewpoints, preferred examples of the solvent include toluene and black mouth form.
  • Water is most preferably used as the hydrophilic liquid for forming reverse micelles.
  • a hydrophobic organic solvent comprising an amphiphile, an organic polymer, a hydrophobic organic solvent, and a hydrophilic liquid. If a reverse micelle is formed in a hydrophobic organic solvent solution, a hydrophilic liquid other than water or a hydrophilic liquid other than water is added to water. Thus, the specific gravity, vapor pressure, solubility, etc. of the hydrophilic liquid can be adjusted.
  • hydrophilic liquids other than water include ethylene glycol, propylene glycol, formic acid and the like.
  • the weight ratio Rw (hydrophilic liquid, amphiphile) between the hydrophilic liquid and the amphiphile in Step 1 is preferably 0.1 to 15 depending on the micelle diameter design of the reverse micelle. 2 to 15 is more preferred 0.5 to 10 is particularly preferred.
  • the size of the reverse micelle formed in the hydrophobic organic solvent solution can be controlled within the above range. That is, when Rw is increased, the diameter of the reverse micelle is increased. On the other hand, by decreasing Rw, the diameter of the reverse micelle can be decreased.
  • concentration of the organic polymer dissolved in the hydrophobic organic solvent solution is expressed as the concentration of the organic polymer in the organic solvent and the organic polymer, 0.01 to: LO mass% is more preferable. 0.05 to 5% by mass. In this concentration range, the pore diameter becomes uniform, and the pores tend to be more easily ordered.
  • the weight blending ratio of organic polymer and amphiphile in step 1 (ratio of organic polymer to the sum of organic polymer and amphiphile: organic polymer Z [organic polymer + amphiphile]) (hereinafter referred to as Rp) 0.1 to 0.9 is preferred 0.1 or 0.6 is more preferred.
  • the density of the pores in the porous membrane can be controlled by the relative concentrations of the hydrophilic liquid, the organic polymer, and the amphiphile. That is, the weight ratio of the hydrophilic liquid to the entire solute (hydrophilic liquid + organic polymer + amphiphile) (hydrophilic liquid Z [hydrophilic liquid + organic polymer + amphiphile]) (hereinafter referred to as Rs).
  • Rs the weight ratio of the hydrophilic liquid to the entire solute (hydrophilic liquid + organic polymer + amphiphile) (hydrophilic liquid Z [hydrophilic liquid + organic polymer + amphiphile]) (hereinafter referred to as Rs
  • the density of the holes increases relatively. At this time, if the concentration of the organic polymer and the amphiphile is constant, the pore size does not increase, and the density of the pores increases with the concentration of water S. On the other hand, the concentration of the amphiphile increases with the water concentration. If Rw is constant, the hole density is increased while the hole diameter remains constant
  • the pore size can be controlled by Rw
  • the film thickness can be controlled by the concentration of the organic polymer in the hydrophobic organic solvent solution and the thickness condition of the solution cast on the substrate. Can be controlled. That is, a through-hole can be formed by setting the film thickness to be equal to or smaller than the hole diameter, and a non-through hole can be formed by setting the film thickness to be equal to or larger than the hole diameter.
  • step 1 the blending order of the amphiphile, organic polymer, hydrophilic liquid and organic solvent is not particularly limited. Agitating these components in a container to form reverse micelles. Magnetic stirring, which is widely used in experiments, is possible if sufficient agitation is possible without the need for special operations in the stirring method. ⁇ Examples include stirrers, rotating blades, and stirring using ultrasonic waves. Of these, a stirring method using ultrasonic waves is preferable from the viewpoint of finer and uniform pore diameter.
  • Step 2 is a step of casting the hydrophobic organic solvent solution formed in Step 1 onto a substrate.
  • a substrate on which such a hydrophobic organic solvent solution is cast is required to have durability such as solvent resistance to the organic solvent to be used, but is not particularly limited as long as this is satisfied.
  • the substrate is an inorganic substrate such as glass, a ceramic substrate such as a metal or silicon oxide, an organic substrate excellent in resistance to organic solvents such as polypropylene, polyethylene, polyethylene terephthalate, polyetherenoketone, or polyphenylene ethylene.
  • One type of cocoon selected from can be a substrate that is a combination of one or more of these types.
  • the hydrophobic organic solvent solution can be applied on the substrate to a predetermined thickness using a blade coater or the like.
  • the thickness of the solution is preferably about 0.01 to 5 mm, and more preferably 0.05 to lmm. In this thickness range, the organic solvent evaporates in a short time, and sufficient mechanical strength can be imparted to the obtained film-like multilayer structure.
  • the thickness of the coating is important in controlling the density of pores formed in the porous structure and the arrangement of the pores together with the concentration of the organic polymer in the hydrophobic organic solvent solution.
  • Step 3 is a step of obtaining a porous film having reverse micelles in a bowl shape by evaporating the organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate. Water is particularly preferable as the hydrophilic liquid.
  • the reverse micelles are regularly arranged in a self-organized manner due to van der Waals force and electrostatic force acting between the reverse micelles, friction force between the reverse micelles and the substrate, capillary force, and the like. For this reason, the pores of the porous structure having the reverse micelles in a bowl shape are relatively regularly arranged.
  • the arrangement regularity of the holes can be controlled by changing the ambient temperature, pressure, and the like. Lowering the temperature decreases the solvent evaporation rate and increases the time spent in the self-assembled arrangement of reverse micelles. Therefore, the arrangement regularity is improved. Increasing the pressure suppresses the evaporation of the solvent and also reduces the evaporation rate of the solvent, thus increasing the ordering regularity. Further, the arrangement regularity can also be improved by irradiating ultrasonic waves.
  • the method for evaporating the hydrophobic organic solvent solution and the hydrophilic liquid is not particularly limited. It is desirable that V ⁇ be carried out under a dry inert gas flow while the hydrophobic organic solvent solution is allowed to stand.
  • the dry inert gas include dry air and dry inert gas.
  • the dry inert gas in this case is preferably air or an inert gas having a relative humidity of 70% or less, more preferably a relative humidity of 50% or less, and particularly preferably a relative humidity of 30% or less.
  • This evaporation operation can be performed under reduced pressure, normal pressure, or increased pressure. It is desirable to increase the pressure under reduced pressure.
  • the porous structure formed on the substrate after evaporating and removing the hydrophobic organic solvent and the hydrophilic liquid is usually a film.
  • the thickness of the film is preferably in the range of 0.001 to lmm, more preferably 0.005-0.1mm. In this thickness range, the porous structure has a sufficient mechanical strength, and it is relatively easy to control the penetration or non-penetration of the formed holes.
  • the thickness of such a porous structure can be controlled by the concentration of the organic polymer in the hydrophobic organic solvent solution in Step 1 and the thickness of the hydrophobic organic solvent solution on the substrate in Step 2.
  • step 1 a hydrophobic organic solvent having a dielectric constant of 5 or less is used, and in step 3, evaporation of about 90% by mass of the hydrophobic organic solvent is preferably within 3 minutes, more preferably within 2 minutes. It is possible to form a structure in which the holes formed by the saddle force of the reverse micelles are distributed almost uniformly in the structure, particularly preferably by performing the temperature and pressure conditions that are completed within 1 minute. Become.
  • the evaporation rate of the hydrophobic organic solvent can be controlled by the temperature and pressure conditions in the system, but it is desirable to control the degree of vacuum or partial pressure in the system. In this case, using a hydrophobic organic solvent having a specific gravity of 0.665-0.90 at 20 ° C improves the uniform distribution.
  • the average hole diameter of the holes can be set to 0.1 to L0 m.
  • step 1 the specific gravity is greater than the specific gravity of the hydrophilic liquid, the organic polymer and the hydrophobic organic solvent are used, and in step 3, about 90% by mass of the hydrophobic organic solvent is evaporated. Is preferably performed for 1 minute or more, more preferably 3 minutes or more, and particularly preferably 5 minutes or more under the temperature and pressure conditions. A structure having a ratio of 60% or more or a surface opening ratio of 5% or more can be formed. The evaporation rate of the hydrophobic organic solvent can be controlled by the temperature and pressure conditions in the system, but it is desirable to control the degree of vacuum or partial pressure in the system.
  • the weight ratio of the hydrophilic liquid to the entire solute (hydrophilic liquid + organic polymer + amphiphile) (hydrophilic liquid Z [hydrophilic liquid + organic polymer] + Amphiphile]) (hereinafter sometimes referred to as Rs)
  • Rs the weight ratio of the hydrophilic liquid to the entire solute
  • hydrophilic liquid Z [hydrophilic liquid + organic polymer] + Amphiphile] (hereinafter sometimes referred to as Rs)
  • the hydrophilic liquid When water is used as the hydrophilic liquid, in this case, when the hydrophobic organic solvent having a specific gravity at 20 ° C of about 1.0 to 1.6 is used, the ratio of the open holes is improved. Can be raised.
  • the average opening diameter of the opening holes may be 0.1 to: LOO / zm.
  • the Rw (hydrophilic liquid water Z amphiphile) in step 1 is 3 to 15, and the thickness of the multilayer structure after evaporation of the hydrophobic organic solvent in step 3 is 1 to 50; ⁇ ⁇
  • the area ratio of the through holes is 60% or more of the total area of the holes in the cross section perpendicular to the structure surface, or the surface opening ratio based on the through holes It is possible to form a structure with a 7% or more.
  • the surface opening ratio based on the through holes is the same as described for the surface opening ratio in the above-mentioned “formation of porous structure having openings”.
  • the average hole diameter in the direction parallel to the surface of the structure of the through hole can be set to 1 to 50 m, or the average opening diameter of the opening hole can be set to 1 to 50 m.
  • the porous structure obtained by removing the substrate from the porous structure on the substrate formed in step 3 has self-supporting properties from the viewpoint of workability.
  • Self-supporting means that the structure itself is self-supporting, and it is possible to provide self-supporting by selecting an organic polymer and designing the thickness of the porous structure.
  • the hydrophobic organic solvent solution in Step 1 contains an amphiphilic substance and an organic polymer.
  • the metal, alloy or metal compound fine particles can be contained in the pores of the structure.
  • the functional material is contained in the pores of the porous structure obtained through the subsequent steps 2 and 3. It becomes possible. That is, the hydrophobic organic solvent solution used in Step 1 is composed of an amphiphile, a hydrophobic organic polymer, a hydrophobic organic solvent, water, and a functional material dispersed or dissolved in the aqueous phase.
  • the functional material is contained in the pores of the porous structure obtained in step 3.
  • the functional material includes at least one metal selected from Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr and Ti, a semiconductor material, an oxide, a ceramic material, and a metal.
  • Examples include at least one selected from complexes, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials, but other functional materials are also available. It is possible to use.
  • the oxides are not limited to metal oxides, and can include non-metal oxides such as silicon oxides as necessary.
  • porous structure A includes an organic polymer having hydrophobicity and an amphiphile having an anionic group in a hydrophilic group having a molecular weight of 10,000 or less.
  • Such a porous structure A can be obtained by using an amphiphilic substance having an anionic group as a hydrophilic group in Step 1 of Embodiment 1 by using an electrostatic repulsive force between hydrophilic groups.
  • the distance becomes larger.
  • a low molecular weight amphiphile having a molecular weight of 10,000 or less micelles are more easily dispersed by electrostatic repulsion than those having a high molecular weight.
  • the structure is such that each hole is partitioned by a partition wall that also has the organic polymer force.
  • the method for producing porous structure A is basically the same as the method described in Steps 1 to 3 of Embodiment 1, and the organic polymer used is the same as that described in Step 1 of Embodiment 1. Can be illustrated.
  • amphiphilic substance having an ionic group in a hydrophilic group having a molecular weight of 10,000 or less examples of the anion constituting the hydrophilic group include -coo_, -so- and the like.
  • amphiphiles containing anions in hydrophilic groups are generally more stable in micelle dispersion than amphipathic lipids containing cations such as dimethylammonium, trimethylammonium and pyridinium ions in hydrophilic groups. It is more preferable for industrial applications because of its high heat resistance and high heat resistance.
  • Amphiphilic substances having an anionic group in the hydrophilic group with a molecular weight of 10,000 or less include bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, dicyclohexane.
  • Examples of the porous structure obtained in Embodiment 4 include the following (i) to (iii). The formation of these is as described in the first embodiment.
  • the area ratio of the surface opening holes is 60% or more or the surface opening ratio is 5% or more, and the average opening of the opening holes is Porous structure having a diameter of 0.1-: LOO / zm
  • the area ratio of the through holes is 60% or more, or the surface opening ratio based on the through holes is 7% or more, and the through holes A porous structure having an average pore diameter of 1 to 50 m in a direction parallel to the surface of the structure, or an average opening diameter of the through holes of 1 to 50 m
  • the porous structure is a self-supporting porous film, and the average opening diameter of the pores of the porous structure is 0.1-1 It is desirable that the thickness is 00 ⁇ m, and the porous structure is a film and has a thickness of 0.001-1 mm.
  • the porous structure A by using the filling method described in the second embodiment, it is possible to make metal, alloy, or metal compound fine particles exist in the pores of the porous structure.
  • metals such as Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr, and Ti, semiconductor materials, oxides, ceramics, metals in the pores of the porous structure Complex materials, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials may exist in the form of fine particles or aqueous solutions.
  • functional materials other than these can also be used.
  • the oxide is not limited to a metal oxide, but can include a non-metal oxide such as silicon oxide as necessary.
  • the porous structure B may be formed on the substrate.
  • the substrate may be an inorganic substrate such as glass, metal, silicon oxide. Ceramic substrates such as polypropylene, polyethylene, polyethylene terephthalate, polyetherketone, polyfluorinated styrene, etc., any one selected from these substrates, or a substrate that combines at least one of these may be used. it can.
  • the multilayer structure or porous structure A manufactured according to Embodiment 1 can be widely used in the fields of semiconductors, capacitors, magnetic memories, memories, DVDs, light-emitting devices, biochips, and the like. .
  • Measurement was performed using a laser diffractometer (laser diffraction Z scattering type particle size distribution analyzer, model: LA-920, manufactured by Horiba, Ltd.).
  • SEM scanning electron microscope
  • the area ratio of the non-through hole was calculated out of the total area of the holes in an arbitrary cross section of the porous structure by a scanning electron microscope. From the film surface observation results, 10 non-through-holes were randomly extracted to measure the hole diameter, and the average value was taken as the average opening diameter. Similarly, the ratio of the area of the non-through holes to the entire surface area of the membrane was calculated from the results of observation of the membrane surface and used as the surface opening rate.
  • the area ratio of the through holes to the total area of the holes in the cross section is the area ratio of the through holes in the total area of the holes in any cross section of the porous structure.
  • the surface opening ratio is obtained by calculating the ratio of the opening area of the through holes on the surface of the porous structure to the entire surface area. For the average opening diameter, 10 through-holes on the surface of the porous structure are randomly extracted and the opening diameter is measured, and the average value is taken as the average opening diameter.
  • PIC Dihexadecyl dimethyl ammonium polystyrene complex
  • Tokyo Kasei 1.0 g of 2% ultrasonic dispersion and polystyrene sulfonic acid Sodium (manufactured by Aldrich) 0.24 g of 0.5% aqueous solution was stirred at 60 ° C., and the resulting white precipitate was collected by suction filtration and dissolved in chloroform. Anhydrous sodium sulfate was dried in the black mouth form solution, and the anhydrous sodium sulfate was removed by natural filtration, followed by reprecipitation by mixing with an excess amount of ethanol. By decantation, a colorless and transparent purified product of PIC (molecular weight: 10,000 or more) was obtained.
  • Example 1 polystyrene 1.OOg as an organic polymer and amphiphile AOT 1.OOg were mixed, this mixture was dissolved in 20.00 ml of ⁇ Noren, and 0.50 ml of water was further added. Hydrophobic organic solvent in which reverse micelles were formed after ultrasonic dispersion for 1 minute (ultrasonic disperser used: Sharp Corporation, model: UT-204, the same ultrasonic disperser was used in the following examples) A solution was prepared. Weight ratio of organic polymer to amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.50, weight blend of water and amphiphile.
  • the ratio Rw water Z amphiphile
  • Rw water Z amphiphile
  • Example 1 except that mixed xylene was used in Example 2 and black mouth form was used in Example 3 instead of toluene in Example 1 as the hydrophobic organic solvent.
  • a hydrophobic organic solvent solution was prepared in the same manner as described. The change over time of the average pore size of the reverse micelle was measured in the same manner as in Example 1 for the resulting solution. Figures 2 and 3 show the measurement results of the changes over time.
  • the average micelle diameter in FIG. 2 was 14.69 / ⁇ ⁇ after 0 minutes, 8.38 / ⁇ ⁇ after 5 minutes, and 3.19 / z m after 10 minutes.
  • the average micelle diameter in FIG. 3 was 159.10 m after 0 minutes, 174.49 ⁇ m after 5 minutes, and 151.86 / z m after 10 minutes and 129.46 after 15 minutes.
  • the hydrophobic organic solvent had a lower dielectric constant, that is, the nonpolar solvent had a smaller average micelle diameter and a tendency to change with time with a smaller reverse micelle.
  • Example 4 the hydrophobic organic solvent solution formed with reverse micelles obtained in Example 1 was applied onto a polyethylene terephthalate (PET) substrate (10 cm ⁇ 10 cm) at a thickness of 300 / z m using a blade coater. After forming a hydrophobic organic solvent solution containing reverse micelles by stirring, a PET substrate coated with this solution after about 30 seconds passed was blown in dry air at a position 3 cm above the substrate in the evaporation container.
  • PET polyethylene terephthalate
  • the substrate is directed diagonally upward from one end of the substrate to a temperature of 26 °
  • the solvent is allowed to spontaneously evaporate in about 3 minutes while flowing dry air (relative humidity 17%) at C at a flow rate of KL / min (in the following example!
  • the same evaporation method was adopted except changing the time.)
  • a thin film with a thickness of 3.12 m was obtained on the PET substrate.
  • Example 5 a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 4 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film having a thickness of 1.41 ⁇ m on the glass substrate. From observation with an optical microscope, the micropore distribution in the obtained thin film was almost the same as in Example 4, the average pore diameter was 1.15 m, and the cross-sectional porosity was 24.3%.
  • Example 6 the hydrophobic organic solvent solution in which the reverse micelles obtained in Example 2 were formed was made into a polyethylene terephthalate (PET) substrate (10 cm ⁇ 10 cm) to a thickness of 300 m using a blade coater. ). After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of L / min at a temperature of 26 ° C (dry air vs. humidity 17%) was applied to the PET substrate on which this solution was applied approximately 30 seconds later. ) was allowed to evaporate naturally in about 7 minutes, and a thin film with a thickness of 2.90 m was obtained on the PET substrate.
  • PET polyethylene terephthalate
  • Example 7 a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 6 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film having a thickness of 1.10 m on the glass substrate. From observation with an optical microscope, the micropore distribution of the obtained thin film was almost the same as in Example 6, the average pore diameter was 1.07 m, and the cross-sectional porosity was 24.2%.
  • Example 8 the hydrophobic organic solvent solution in which the reverse micelles obtained in Example 3 were formed was made into a polyethylene terephthalate (PET) substrate (10 cm X) using a blade coater to a thickness of 300 ⁇ m. 10 cm). After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of l (L) was applied to a PET substrate coated with this solution after 30 seconds at a temperature of 26 ° C and a humidity of 17%. / min), the solvent was naturally evaporated in about 1 minute, and a thin film with a thickness of 3.41 ⁇ m was obtained on the PET substrate.
  • PET polyethylene terephthalate
  • Example 9 a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 8 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film with a thickness of 4.88 m on the PET substrate. From observation with an optical microscope, the micropore distribution of the obtained thin film was almost the same as in Example 6, the average pore diameter was 1.00 m, and the cross-sectional porosity was 22.4%.
  • Example 10 0.54 g of polystyrene as an organic polymer and 0.06 g of the amphiphilic substance ATO are dissolved in 6.00 ml of toluene, and 0.03 ml of water is further added and ultrasonically dispersed for 3 minutes to form reverse micelles. A hydrophobic organic solvent solution was prepared. Weight ratio of organic polymer and amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.90, and weight ratio of water and amphiphile Rw (Water Z amphiphile) is 0.50.
  • the hydrophobic organic solvent solution containing reverse micelles obtained above was applied onto a polyethylene terephthalate (PET) substrate (10 cm ⁇ 10 cm) with a thickness of 300 ⁇ m using a blade coater. After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of 1 (L / L) was applied to a PET substrate coated with this solution after 30 seconds at a temperature of 26 ° C and a humidity of 17%. The solvent was allowed to evaporate naturally in about 3 minutes, and a thin film with a thickness of 7.80 ⁇ m was obtained on the PET substrate. From observation with an optical microscope, micropores were almost uniformly distributed in the obtained thin film, the average pore diameter was 1.22 m, and the porosity was 4.32%.
  • PET polyethylene terephthalate
  • Example 11 a thin film on the PET substrate was obtained in the same manner as described in Example 10 except that organic polymer, amphiphile AOT, toluene, and water were used in the amounts shown in Table 4. .
  • Table 4 summarizes the experimental conditions and results. From these experiments, it was confirmed that the cross-sectional porosity of the porous structure can be controlled by setting conditions.
  • Example 12 Organic polymer (g) 1.00 1.00 0.54 0.42 0.30 Actual amphiphile ⁇ A0T A0T A0T ⁇ 0 ⁇ A0T
  • Polystyrene (Idemitsu Petrochemical Co., Ltd., trade name: HH30) O.03g, dihexadecyldimethylammonium and 0.23g of polyion complex of polystyrene sulfonate (pic) were mixed, and this mixture was dissolved in 3ml of Kuroguchi Form. Then, 0.1 g of plain water was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. The weight ratio (Rw) of water and amphiphile was 0.43, and the weight ratio (Rp) of organic polymer and amphiphile was 0.1.
  • This solution was applied onto a glass substrate to a thickness of 100 m using a blade coater. Approximately 30 seconds after the preparation of the hydrophobic organic solvent solution, dry air (17% relative humidity) is allowed to flow at a flow rate of 3 (L / min) at a temperature of 26 ° C on the glass substrate coated with this solution. The solvent and water were naturally evaporated in about 1 minute, and a thin film with a thickness of 4 // m having an opening on the glass substrate was obtained.
  • the area ratio of the surface open holes in the cross section perpendicular to the structure surface was 60% or more.
  • the average opening diameter of the obtained film was 0.75 ⁇ m, and the surface opening ratio obtained using optical microscope observation was 6.7%.
  • Figure 7 shows the microscopic view of the resulting porous membrane (the hole is black). Show).
  • the analysis using an energy dispersive X-ray fluorescence analyzer confirmed that the concentration distribution of the s component derived from the polyion complex of dihexadecyldimethylammonium and polystyrenesulfonic acid was particularly high at the pore edge.
  • Polystyrene (made by Idemitsu Petrochemical Co., Ltd., trade name: HH30) O. 67g and bis (sodium 2-ethylhexylsulfosuccinate) 5. OOg are mixed, and this mixture is dissolved in 20 ml of black mouth form. Water 5. Og was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. Weight ratio of organic polymer and amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.12. Rw ([water Z amphiphile]) is 1.0.
  • This solution was applied onto a glass substrate with a thickness of 100 m using a blade coater. After preparing a hydrophobic organic solvent solution and applying a force of about 30 seconds, the solvent was flowed on a glass substrate coated with this solution at a temperature of 26 ° C (dry air vs. humidity 17%) at a flow rate of 3 (L / min). Was spontaneously evaporated in about 1 minute to obtain a thin film having a thickness of 1. having a through-hole on the glass substrate. From the observation with an optical microscope, the area ratio of the through-holes is 60% or more of the total area of the holes in the cross section perpendicular to the structure surface, and the obtained thin film has micropores with an average opening diameter of 10.89 m. The surface opening ratio was confirmed to be 36.6%. Table 5 summarizes the experimental conditions and results.
  • Figure 8 shows a perspective image of the obtained porous film observed with an optical microscope viewed at an oblique upward force of 45 degrees.
  • a thin film having many through-holes was formed by using black mouth form as an organic solvent and selecting conditions such that the mixing ratio Rw of water and amphiphile was 0.50, 1.0, 3.0, 5.0.
  • Example 15 polystyrene (produced by Idemitsu Petrochemical Co., Ltd., trade name: HH30) O. 67 g and bis (2-ethylhexylsulfosuccinate sodium) lg were mixed, and this mixture was dissolved in 20 ml of chloroform. Further, 0.5 g of water was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed.
  • Organic polymer and amphiphile in this solution Weight ratio Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.4, Mixing ratio of water and amphiphile Rw ([Water Z amphiphile ] Is 0.5).
  • This solution was applied onto a glass substrate with a thickness of 100 m using a blade coater. After preparing a hydrophobic organic solvent solution for about 30 seconds, dry air at a temperature of 26 ° C and a humidity of 17% at a flow rate of 3 (L / min) on a glass substrate coated with this solution. While the solvent was naturally evaporated for about 1 minute, a thin film with a film thickness of 9.1 ⁇ m was obtained on the glass substrate.
  • the area ratio of the through-holes in the cross-section perpendicular to the surface of the structure is 60% or more. It was confirmed that it had micropores with a pore size of 10.9 m and an average aperture size of 8.2 m, and a surface aperture ratio of 8.9%.
  • analysis with an energy dispersive X-ray fluorescence spectrometer confirmed that the concentration distribution of S component derived from bis (2-ethylhexylsulfosulphate sodium) was particularly high at the edge of the hole.
  • Example 16 the amount of water added to the amphiphile is constant, and the amount of water added is l.OOg (Example 16), 3.00 g (Example 17), 5.00 g (Example) 18).
  • the other conditions were the same as in Example 15 to produce a film. From the cross-sectional observation with the optical microscope, the area ratio of the through-holes is 60% or more of the total area of the holes in the cross-section perpendicular to the surface of the obtained structure. Asked.
  • Table 5 summarizes the reverse micelle solution preparation conditions (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness measurement results.
  • Example 18 Comparative Example No. Example 13 Example 14 Example 15 Example 16 Example 17 Example 18
  • Comparative Example 1 using the same components as used in Example 15, the mixing ratio of amphiphile 1.0 g, organic polymer 0.67 g, water 0.25 g, black mouth form 20 ml, magnetic 'stirrer was used. A membrane was prepared in the same manner as in Example 15 except that stirring was performed for about 30 seconds.
  • Rwi was 0.25 and Rpi was 0.4.
  • the blending ratio Rp ((organic polymer) / ((organic polymer) + [amphiphile])) of the organic polymer and the amphiphilic substance is constant with the blending amount other than the organic polymer being constant.
  • a porous structure was produced under the condition of 0.1 to 0.6.
  • Example 19 the amount of water and amphiphile added is constant (Rw: 0.5), and the organic polymer has Rp of 0.1 (Example 19), 0.2 (Example 20), and 0.6 (Example 21). ) was added. Other conditions were the same as in Example 15 to produce a porous membrane.
  • Example 19 the average pore diameter in the direction parallel to the membrane surface of the through-hole was 13.6 m.
  • Table 6 summarizes the conditions for preparing the reverse micelle solution (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness measurement results.
  • Comparative Example 2 the same components as those used in Example 19 were used, and the mixing ratio was 1.0 g of amphiphile, 9.0 g of organic polymer, 0.5 g of water, and 20 ml of black mouth form.
  • a membrane was prepared in the same manner as in Example 19 except that stirring was performed for about 30 seconds.
  • Rw was 0.50 and Rp was 0.90.
  • Example 15 An experiment was conducted in which copper fine particles were introduced into the porous structure as a functional material in the porous membrane.
  • 0.5 mg of copper fine particles (average particle size 50 nm) was added to 0.5 g of water to be added.
  • the resultant mixture was stirred and dispersed with a stirrer for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed.
  • the organic solvent and water were naturally evaporated in the same manner as in Example 15 to form a 6 ⁇ m-thick thin film with many through holes. Obtained. From observation with an optical microscope, it was confirmed that fine pores having an average opening diameter of 5 ⁇ m were present, and copper fine particles were selectively present in the pores.
  • the area ratio of the through-holes is 60% or more of the total area of the holes in the cross section perpendicular to the surface of the obtained structure, and the optical microscope observation power average aperture diameter and surface aperture ratio are Asked.
  • Table 7 shows the conditions for preparing the reverse micelle solution (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness.
  • Example 15 a film was formed in exactly the same manner as Example 15 except that only water was not added to the hydrophobic organic solvent solution. Observation with an optical microscope revealed that the film surface was smooth and no pores were observed.
  • the multilayer structure obtained by the method of the present invention can be used as an optical filter, a diffractive element, or the like, and also includes a semiconductor, a capacitor, a magnetic memory, a memory, a DVD, a light emitting device, or a biochip. Can be widely used in the field of application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

A reversed-micelle template is used to form a porous structure comprising an organic polymer and an amphipathic substance. When the porous structure is produced, the state of pores evenly distributed in the structure, the state of open pores or through-pores, pore diameter (opening diameter), pore density, etc. can be regulated by controlling conditions including the proportion of water to the amphipathic substance and the proportion of the organic polymer to the amphipathic substance. Thus, a highly functional porous structure can be formed. The process for producing a porous structure in which a reversed-micelle template formed in a hydrophobic-organic-solvent solution is used for pore formation comprises: (i) a step in which a solution comprising an amphipathic substance, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent which dissolves the organic polymer is mixed with stirring to obtain a hydrophobic-organic-solvent solution having reversed micelles formed therein (step (1)); (ii) a step in which the hydrophobic-organic-solvent solution is cast on a substrate (step (2)); and (iii) a step in which the hydrophobic organic solvent and the hydrophilic liquid are evaporated and removed from the hydrophobic-organic-solvent solution on the substrate to form a porous structure (step (3)).

Description

多孔質構造体の製造方法、及び該製造方法から得られる多孔質構造体 技術分野  Technical field of manufacturing porous structure and porous structure obtained from the manufacturing method
[0001] 本発明は、両親媒性物質を用いて疎水性有機溶剤溶液中に形成される逆ミセルの 铸型を孔の形成に利用する多孔質構造体の製造方法、及び該製造方法により得ら れる多孔質構造体に関する。  [0001] The present invention relates to a method for producing a porous structure using a cage shape of a reverse micelle formed in a hydrophobic organic solvent solution using an amphiphilic substance for the formation of pores, and the production method. And a porous structure.
背景技術  Background art
[0002] 自己組織ィ匕を利用した直径 1應〜 100 μ mの微細な孔を有する高分子多孔質膜の 形成方法は、水滴の結露を利用する方法、ミセルの形成を利用する方法、ブロック共 重合体を利用する方法などが知られている。水滴の結露を利用する方法としては、ポ リマーの疎水性有機溶剤溶液を高湿度の大気下で基板上にキャストし、該有機溶媒 を徐々に蒸散させると同時に該キャスト液面で結露させ、該結露により生じた微小水 滴を蒸発させることによりハ-カム構造を有するフィルムを作製する方法が知られて いる (特許文献 1または特許文献 2参照)。ミセルの形成を利用する方法は、ォレフィン 系単量体等からなる疎水性物質、水等の親水性液体体、及び重合性基を含む界面 活性剤を含有する逆ミセル溶液を担体上に浸透させた後、該液体を重合して、支持 体上に多孔性材料の被覆物を形成する方法である (特許文献 3参照)。ブロック共重 合体を用いる方法としては、例えば親水性ブロックと疎水性ブロック力 なるブロック 共重合体 ブロック ポリスチレンを使う例が挙げられる(非特許文献 1参照)。  [0002] A method for forming a polymer porous membrane having fine pores having a diameter of 1 to 100 μm using self-organization is a method using condensation of water droplets, a method using micelle formation, or a block. A method using a copolymer is known. As a method of utilizing condensation of water droplets, a hydrophobic organic solvent solution of a polymer is cast on a substrate in a high-humidity atmosphere, and the organic solvent is gradually evaporated and simultaneously condensed on the cast liquid surface. There is known a method for producing a film having a Hercam structure by evaporating fine water droplets generated by condensation (see Patent Document 1 or Patent Document 2). The method using the formation of micelles is a method in which a reverse micelle solution containing a hydrophobic substance composed of an olefin monomer or the like, a hydrophilic liquid such as water, and a surfactant containing a polymerizable group is permeated onto the carrier. Thereafter, the liquid is polymerized to form a porous material coating on the support (see Patent Document 3). Examples of the method using a block copolymer include an example using a block copolymer block polystyrene having a hydrophilic block and a hydrophobic block force (see Non-Patent Document 1).
[0003] 特許文献 1 :特開 2001— 157574号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-157574
特許文献 2:特開 2002— 335949号公報  Patent Document 2: JP 2002-335949 A
特許文献 3:特許第 3277233号明細書  Patent Document 3: Patent No. 3277233
非特許文献 1 :サイエンス、 1999年,第 283卷, p. 372  Non-Patent Document 1: Science, 1999, No. 283, p. 372
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記結露を利用する方法では、形成される膜が自己支持性を有する。しかしながら 、結露を利用する方法では、相対的に高湿度の条件下で結露の形成による微小水 滴の孔径ゃ穴の密度制御が困難であり、また、孔の密度が増加すると隣接する孔間 で連通する現象が必然的に生じ、使用目的によっては不都合を生ずる場合がある。 更に、膜の高機能化のために膜の孔部へ機能性材料を導入する場合、これらの方 法では膜作製とできた膜の孔部への機能性材料導入を別々の工程にて行わなけれ ばならず、工程がより複雑になる。さらに、孔径が小さいと孔部への機能性材料の選 択的導入自体が困難になる。 [0004] In the above-described method using condensation, the formed film has self-supporting properties. However, in the method using dew condensation, minute water is formed by the formation of dew condensation under relatively high humidity conditions. It is difficult to control the density of the hole diameter of the droplet, and when the hole density increases, a phenomenon of communication between adjacent holes inevitably occurs, which may cause inconvenience depending on the purpose of use. In addition, when functional materials are introduced into the pores of the membrane in order to enhance the functionality of the membrane, these methods are used to introduce the functional material into the pores of the membrane that has been prepared in separate steps. And the process becomes more complex. Furthermore, if the hole diameter is small, it becomes difficult to selectively introduce the functional material into the hole.
一方、前記ミセルの形成を利用する方法においては、形成される膜に自己支持性 がないため基板と一体で使用しなければならず、そのため、膜全体の性質が基板の 性質に左右され、使用用途が濾過膜やバイオセンサーなどに限定されていた。 また、ブロック共重合体を用いた場合では、ハ-カム構造体の自己支持性に劣った り、経時的にハニカム構造が崩壊するなどの欠点を有する場合が多い。  On the other hand, in the method utilizing the formation of the micelles, the film to be formed has no self-supporting property and must be used integrally with the substrate. Therefore, the properties of the entire film depend on the properties of the substrate and are used. Applications were limited to filtration membranes and biosensors. In addition, when the block copolymer is used, there are many drawbacks such as inferior self-supporting property of the hard cam structure and the honeycomb structure with time.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は上記課題に鑑みてなされたものであり、少なくとも両親媒性物質、疎水性 を有する有機ポリマー、親水性液体及び疎水性有機溶媒からなる溶液中に逆ミセル を形成させたものを基板上にキャストし、基板から疎水性有機溶媒と親水性液体を蒸 発させることにより、逆ミセルの铸型を利用して形成される、微細孔でかつ孔の殆どは 有機ポリマーからなる仕切壁により仕切られていて該構造体の表面と平行方向に連 通して 、な 、多孔質体の製造に関するものである。  [0005] The present invention has been made in view of the above problems, and reverse micelles are formed in a solution comprising at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent. Is formed on the substrate, and a hydrophobic organic solvent and a hydrophilic liquid are vaporized from the substrate. The present invention relates to the production of a porous body that is partitioned by a wall and communicates in a direction parallel to the surface of the structure.
すなわち本発明は、(1)下記 (i)ないし (m)に記載する工程を含む、疎水性有機溶 媒溶液中に形成された逆ミセルの铸型を孔の形成に利用する多孔質構造体の製造 方法に関する発明である(以下、「実施形態 1」ということがある)。  That is, the present invention relates to (1) a porous structure using reverse micelle cages formed in a hydrophobic organic solvent solution for forming pores, comprising the steps described in the following (i) to (m): (Hereinafter sometimes referred to as “Embodiment 1”).
(i)少なくとも両親媒性物質、疎水性を有する有機ポリマー、親水性液体及び該有機 ポリマーを溶解する疎水性有機溶媒カゝらなる溶液を撹拌して、逆ミセルが形成された 疎水性有機溶媒溶液を得る工程 (工程 1)  (i) A hydrophobic organic solvent in which reverse micelles are formed by stirring at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent that dissolves the organic polymer. Step of obtaining a solution (Step 1)
(ii)前記疎水性有機溶媒溶液を基板上にキャストする工程 (工程 2)  (ii) A step of casting the hydrophobic organic solvent solution onto a substrate (Step 2)
(iii)前記基板上の疎水性有機溶媒溶液から、疎水性有機溶媒と親水性液体を蒸発 させて多孔質の構造体を形成する工程 (工程 3)  (iii) A step of evaporating the hydrophobic organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate to form a porous structure (step 3)
[0006] 実施形態 1においては更に下記(2)〜(15)の態様とすることができる。 (2)工程 1における親水性液体と両親媒性物質の重量配合比 Rw (親水性液体 Z両 親媒性物質)が 0. 1ないし 15であること、 [0006] In the first embodiment, the following aspects (2) to (15) may be further provided. (2) Weight mixing ratio Rw (hydrophilic liquid Z both amphiphile) of hydrophilic liquid and amphiphile in step 1 is 0.1 to 15.
(3)工程 1における有機ポリマーと両親媒性物質の重量配合割合 Rp (有機ポリマー Z〔有機ポリマー +両親媒性物質〕)が 0. 1ないし 0. 9であること、  (3) Weight ratio Rp (organic polymer Z [organic polymer + amphiphile]) of organic polymer and amphiphile in step 1 is 0.1 to 0.9,
(4)前記疎水性有機溶媒が、 20°Cにおける誘電率が 5以下であるノルマルペンタン 、ノルマルへキサン、シクロへキサン、イソオクタン、ノルマルヘプタン、ノルマルデカ ン、ベンゼン、トルエン、ェチルベンゼン、オルソキシレン、メタキシレン、パラキシレン 、混合キシレン、四塩化炭素、クロ口ホルム、及びトランス 1,2,-ジクロロエチレン、 並びに 20°Cにおける誘電率が 5を越える、酢酸ブチル、ジクロロメタン、 1,1,2,2—テト ラクロロルェタン、シス 1,2—ジクロロェタン、及びイソブチルメチルケトン  (4) The hydrophobic organic solvent is a normal pentane, normal hexane, cyclohexane, isooctane, normal heptane, normal decane, benzene, toluene, ethylbenzene, orthoxylene, meta-ethylene having a dielectric constant of 5 or less at 20 ° C. Xylene, para-xylene, mixed xylene, carbon tetrachloride, chloroform, and trans 1,2, -dichloroethylene, and butyl acetate, dichloromethane, 1,1,2,2- Tetrachloroluethane, cis 1,2-dichloroethane, and isobutyl methyl ketone
力 選ばれた少なくとも 1種であること、 Power must be at least one selected,
(5)前記両親媒性物質がビス(2 ェチルへキシルスルホコハク酸ナトリウム)、ジォク チルスルホコハク酸ナトリウム、ジイソプチルスルホコハク酸ナトリウム、ジシクロへキシ ルスルホコハク酸ナトリウム、ジへキシルスルホコハク酸ナトリウム、ジへキサデシルジ メチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコンプレックス、エチレングリ コールとプロピレングリコールから得られるブロックコポリマー、エチレンオキサイドとプ ロピレンオキサイド力も得られるブロックコポリマー力も選ばれた少なくとも 1種であるこ と、  (5) The amphiphile is bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, sodium dicyclohexylsulfosuccinate, sodium dihexylsulfosuccinate, dihexyl The polyion complex of xadecyldimethylammonium and polystyrene sulfonic acid, a block copolymer obtained from ethylene glycol and propylene glycol, and a block copolymer force capable of obtaining ethylene oxide and propylene oxide power are also at least one selected.
(6)前記有機ポリマーがポリエチレン、ポリプロピレン、ポリー4ーメチルペンテン 1 、シクロポリオレフイン、ポリ塩化ビュル、ポリ塩化ビ-リデン、ポリスチレン、アタリ口- トリル—スチレン榭脂 (AS榭脂)、アクリロニトリル—ブタジエン—スチレン榭脂 (ABS 榭脂)、メタクリル酸エステル榭脂、アクリル酸エステル榭脂、エチレンビュルアルコー ル共重合榭脂、ポリアルキレンオキサイド、ポリアミド、ポリアセタール、ポリカーボネ ート、変性ポリフエ-レンエーテル、熱可塑性ポリエステル、ポリフエ-レンスルフイド、 ポリスルフォン、ポリエーテルイミド、ポリエーテルスルフォン、ポリエーテルケトン、ポリ エーテルエーテルケトン、及びポリアミドイミドから選ばれた少なくとも 1種であること、 (7)前記基板がガラス、金属、セラミックス、ポリプロピレン、ポリエチレン、ポリエチレ ンテレフタレート、ポリエーテルケトン、ポリフッ化工チレン力 選ばれたいずれか 1種 あるいはこれらの 、ずれか 1種以上を複合した基板であること、 (6) The organic polymer is polyethylene, polypropylene, poly-4-methylpentene 1, cyclopolyolefin, polychlorinated butyl, polyvinylidene chloride, polystyrene, tali-tril-styrene resin (AS resin), acrylonitrile-butadiene-styrene Resin (ABS resin), Methacrylate ester resin, Acrylate ester resin, Ethylene butyl alcohol copolymer resin, Polyalkylene oxide, Polyamide, Polyacetal, Polycarbonate, Modified polyphenylene ether, Thermoplastic polyester At least one selected from the group consisting of polysulfone sulfide, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide, (7) the substrate is made of glass, metal Ceramic, polypropylene, polyethylene, polyethylene terephthalate, polyether ketone, polyvinylidene modified styrene force chosen any one Or a substrate that is a combination of one or more of these,
(8)工程 1で逆ミセルを含む疎水性有機溶媒溶液を形成した後、工程 2で基板上に 前記疎水性有機溶媒溶液の厚みが 0. 01〜5mmになるようにキャストすること、 (8) After forming a hydrophobic organic solvent solution containing reverse micelles in step 1, casting to a thickness of 0.01 to 5 mm on the substrate in step 2;
(9)工程 3における疎水性有機溶媒と親水性液体の蒸発を乾燥ガス流通下で行うこ と、 (9) Evaporating the hydrophobic organic solvent and hydrophilic liquid in step 3 under a dry gas flow,
(10)工程 1における 20°Cでの誘電率が 5以下で同温度での比重が 0. 65-0. 90 である前記疎水性有機溶媒を使用し、かつ工程 3における前記疎水性有機溶媒の 蒸発を行うことにより、逆ミセルの铸型力 形成される孔が構造体内にほぼ均一に分 布している構造体で、かつ前記構造体の孔(開口及び貫通している孔を除く)の径の 平均値が 0. 1〜: L0 mである構造体を形成すること、  (10) Use the hydrophobic organic solvent having a dielectric constant of 5 or less at 20 ° C in step 1 and a specific gravity of 0.65-0.90 at the same temperature, and the hydrophobic organic solvent in step 3 By evaporating, the negative force of the reverse micelle is a structure in which the holes formed are distributed almost uniformly in the structure, and the holes of the structure (excluding the openings and the through holes) An average value of the diameter of 0.1 to: forming a structure having L0 m,
(11)工程 1における比重が親水性液体の比重よりも大きい前記有機ポリマー及び Z 又は前記疎水性有機溶媒を使用し、かつ工程 3における前記疎水性有機溶媒の蒸 発により、構造体表面に垂直な断面における孔の全面積のうち表面で開口(貫通を 除く)している孔(開口孔)の面積割合が 60%以上又は表面開口率が 5%以上である 構造体で、かつ前記開口孔の平均開口径が 0. 1〜: L00 μ mである構造体を形成す ること、 (11) Using the organic polymer and Z or the hydrophobic organic solvent having a specific gravity greater than the specific gravity of the hydrophilic liquid in Step 1, and by the evaporation of the hydrophobic organic solvent in Step 3, perpendicular to the structure surface A structure in which the area ratio of holes (open holes) that are open (excluding through-holes) on the surface is 60% or more or the surface opening ratio is 5% or more in the total area of the holes in a simple cross section, Forming a structure having an average opening diameter of 0.1 to L00 μm,
(12)工程 1における前記 Rw (親水性液体 Z両親媒性物質)を 3ないし 15とし、工程 2において工程 3における疎水性有機溶媒蒸発後の多層構造体の厚み力^〜 50 mとなるように前記疎水性有機溶媒溶液を基板上にキャストし、かつ工程 3における 前記疎水性有機溶媒の蒸発により、構造体表面に垂直な断面における孔の全面積 のうち貫通している孔(貫通孔)の面積割合が 60%以上又は貫通孔に基づく表面開 口率が 7%以上である構造体で、かつ前記貫通孔の構造体表面と平行方向の平均 孔径が l〜50/z m、又は前記貫通孔の平均開口径が 1〜50 mである構造体を形 成すること、  (12) The Rw (hydrophilic liquid Z amphiphile) in step 1 is set to 3 to 15, and in step 2, the thickness of the multilayer structure after evaporation of the hydrophobic organic solvent in step 3 is set to ~ 50 m. The hydrophobic organic solvent solution is cast on a substrate, and the hole penetrating through the entire area of the hole in the cross section perpendicular to the structure surface due to evaporation of the hydrophobic organic solvent in step 3 (through hole) In which the surface area ratio is 60% or more or the surface opening ratio based on through holes is 7% or more, and the average hole diameter in the direction parallel to the structure surface of the through holes is 1 to 50 / zm, or the through holes Forming a structure with an average opening diameter of 1 to 50 m;
(13)前記工程 3で形成された基板上の多孔質構造体カゝら基板を除去して得られる 多孔質構造体が自己支持性を有すること、  (13) The porous structure obtained by removing the substrate from the porous structure on the substrate formed in the step 3 has a self-supporting property,
(14)工程 1の疎水性有機溶媒溶液が両親媒性物質、疎水性を有する有機ポリマー 、疎水性有機溶媒、親水性液体、及び該親水性液体相中に分散した金属、合金又 は金属化合物微粒子力 なり、かつ工程 3で得られた多孔質構造体の孔中に前記金 属、合金又は金属化合物微粒子が含まれていること、 (14) The hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a metal, alloy, or dispersion dispersed in the hydrophilic liquid phase. Is a metal compound fine particle force, and the metal, alloy or metal compound fine particles are contained in the pores of the porous structure obtained in step 3.
(15)工程 1の疎水性有機溶媒溶液が両親媒性物質、疎水性を有する有機ポリマー 、疎水性有機溶媒、親水性液体、及び該親水性液体相中に分散又は溶解した機能 性材料カゝらなり、かつ工程 3で得られた多孔質構造体の孔中に該機能性材料が含ま れており、該機能性材料が Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr及び Tiの内の 少なくとも 1種の金属、半導体材料、酸化物、セラミックス材料、金属錯体、強誘電体 材料、強磁性体材料、抵抗変化材料、相変化材料、光機能材料、並びに蛍光機能 材料から選択される 1種の機能性材料であること、  (15) The hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a functional material dispersed or dissolved in the hydrophilic liquid phase. And the functional material is contained in the pores of the porous structure obtained in step 3, and the functional material is Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr And at least one metal of Ti, semiconductor material, oxide, ceramic material, metal complex, ferroelectric material, ferromagnetic material, resistance change material, phase change material, optical functional material, and fluorescent functional material One functional material selected,
また、本発明は、(16)疎水性を有する有機ポリマー、及び分子量が 10000以下の 親水基に陰イオン性基を有する両親媒性物質から構成される多孔質構造体であつ て、該両親媒性物質が孔の辺縁部を構成し、かつ各孔が該有機ポリマーからなる仕 切壁により仕切られて 、て該構造体の表面と平行方向に連通して 、な 、ことを特徴 とする多孔質構造体に関する発明である (以下、「実施形態 2」 t 、うことがある)。 実施形態 2においては更に下記(17)〜(28)の態様とすることができる。  The present invention also relates to (16) a porous structure composed of an organic polymer having hydrophobicity, and an amphiphilic substance having an anionic group in a hydrophilic group having a molecular weight of 10,000 or less. The active substance constitutes the edge of the hole, and each hole is partitioned by a cutting wall made of the organic polymer, and communicates in a direction parallel to the surface of the structure. This is an invention relating to a porous structure (hereinafter referred to as “embodiment 2” t). In the second embodiment, the following aspects (17) to (28) can be further adopted.
(17)前記両親媒性物質がビス(2 ェチルへキシルスルホコハク酸ナトリウム)、ジォ クチルスルホコハク酸ナトリウム、ジイソプチルスルホコハク酸ナトリウム、ジシクロへキ シルスルホコハク酸ナトリウム、及びジへキシルスルホコハク酸ナトリウムから選ばれた 1種以上であること、  (17) The amphiphile is composed of bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, sodium dicyclohexylsulfosuccinate, and sodium dihexylsulfosuccinate. Be at least one selected,
(18)前記有機ポリマーがポリエチレン、ポリプロピレン、ポリー4ーメチルペンテン 1 、シクロポリオレフイン、ポリ塩化ビュル、ポリ塩化ビ-リデン、ポリスチレン、アタリ口- トリル—スチレン榭脂 (AS榭脂)、アクリロニトリル—ブタジエン—スチレン榭脂 (ABS 榭脂)、メタクリル酸エステル榭脂、アクリル酸エステル榭脂、エチレンビュルアルコー ル共重合榭脂、ポリアルキレンオキサイド、ポリアミド、ポリアセタール、ポリカーボネ ート、変性ポリフエ-レンエーテル、熱可塑性ポリエステル、ポリフエ-レンスルフイド、 ポリスルフォン、ポリエーテルイミド、ポリエーテルスルフォン、ポリエーテルケトン、ポリ エーテルエーテルケトン、及びポリアミドイミドから選ばれた少なくとも 1種であること、 (18) The organic polymer is polyethylene, polypropylene, poly-4-methylpentene 1, cyclopolyolefin, polychlorinated buyl, poly (vinylidene chloride), polystyrene, tali-tril-styrene resin (AS resin), acrylonitrile-butadiene-styrene Resin (ABS resin), Methacrylate ester resin, Acrylate ester resin, Ethylene butyl alcohol copolymer resin, Polyalkylene oxide, Polyamide, Polyacetal, Polycarbonate, Modified polyphenylene ether, Thermoplastic polyester At least one selected from the group consisting of polysulfone sulfide, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide,
(19)前記多孔質構造体中の有機ポリマーと両親媒性物質の重量配合割合 (有機ポ リマー Z〔有機ポリマー +両親媒性物質〕)が 0. 1ないし 0. 9であること、 (20)前記多孔質構造体が自己支持性を有する多孔質膜であること、 (19) Weight mixing ratio of organic polymer and amphiphile in the porous structure (organic Limer Z (organic polymer + amphiphile)) is 0.1 to 0.9, (20) the porous structure is a porous film having self-supporting property,
[0010] (21)前記構造体の孔が構造体内にほぼ均一に分布しており、その平均孔径(開口 及び貫通している孔を除く)が 0. 1〜: LO /z mであること、 [0010] (21) The pores of the structure are almost uniformly distributed in the structure, and the average pore diameter (excluding openings and through-holes) is 0.1 to LO / zm,
(22)前記構造体の構造体表面に垂直な断面における孔の全面積のうち表面で開 口している孔(開口孔)の面積割合が 60%以上又は表面開口率が 5%以上であり、 かつ該開口孔の平均開口径が 0. 1-100 μ mであること、  (22) Of the total area of the holes in the cross section perpendicular to the structure surface of the structure, the area ratio of holes (open holes) opened on the surface is 60% or more, or the surface opening ratio is 5% or more. And the average aperture diameter of the apertures is 0.1-100 μm,
(23)前記構造体の構造体表面に垂直な断面における孔の全面積のうち貫通してい る孔 (貫通孔)の面積割合が 60%以上又は貫通孔に基づく表面開口率が 7%以上 であり、かつ該貫通孔の構造体表面と平行方向の平均孔径が 1〜50 m、又は該 貫通孔の平均開口径が 1〜50 μ mであること、  (23) Of the total area of the holes in the cross section perpendicular to the structure surface of the structure, the area ratio of the through holes (through holes) is 60% or more, or the surface opening ratio based on the through holes is 7% or more. And the average hole diameter in the direction parallel to the surface of the structure of the through hole is 1 to 50 m, or the average opening diameter of the through hole is 1 to 50 μm,
(24)前記多孔質構造体が膜状であり、かつその厚みが 0. 001〜lmmであること、 (24) The porous structure is a film and has a thickness of 0.001 to lmm.
(25)前記多孔質構造体の孔内に金属、合金又は金属化合物微粒子が存在するこ と、 (25) The presence of metal, alloy or metal compound fine particles in the pores of the porous structure,
(26)前記多孔質構造体の孔内に、 Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr及び Ti の内の少なくとも 1種の金属、半導体材料、酸化物、セラミックス材料、金属錯体、強 誘電体材料、強磁性体材料、抵抗変化材料、相変化材料、光機能材料、並びに蛍 光機能材料カゝら選択される 1種の機能性材料が存在すること、  (26) In the pores of the porous structure, at least one metal selected from Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr and Ti, a semiconductor material, an oxide, a ceramic material, The presence of one functional material selected from metal complexes, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials;
(27)前記多孔質構造体が基板上に形成されていること、  (27) the porous structure is formed on a substrate;
(28)前記基板がガラス、金属、セラミックス基板、ポリプロピレン、ポリエチレン、ポリ エチレンテレフタレート、ポリエーテルケトン、ポリフッ化工チレンから選ばれたいずれ 力 1種ある 、はこれらの 、ずれか 1種以上を複合した基板であること、  (28) The substrate has one of any force selected from glass, metal, ceramic substrate, polypropylene, polyethylene, polyethylene terephthalate, polyetherketone, and polyfluorinated styrene, which is a combination of at least one of these Being a substrate,
発明の効果  The invention's effect
[0011] 本発明によれば、比較的容易な操作で疎水性有機溶媒溶液中で生成した逆ミセ ルの铸型を孔の形成に利用して、有機ポリマーと両親媒性物質カゝらなる多孔質構造 体を得ることができる。  [0011] According to the present invention, an organic polymer and an amphiphilic substance are formed by utilizing a reverse micelle cage formed in a hydrophobic organic solvent solution by a relatively easy operation for pore formation. A porous structure can be obtained.
この際、疎水性有機溶媒、両親媒性物質、親水性液体、有機ポリマー等の成分の 種類、及び配合割合を選択することにより、多孔質構造体中の孔の形態 (該構造体 中に孔がほぼ均一に分布する、該構造体表面で孔が開口状態で存在する、又は該 構造体に孔が貫通孔として存在する等)、孔の大きさ径、及び孔の密度等を制御す ることが可能である。 At this time, by selecting the types of components such as hydrophobic organic solvent, amphiphile, hydrophilic liquid, organic polymer, and the blending ratio, the form of pores in the porous structure (the structure The pores are distributed almost uniformly, the pores are present on the surface of the structure, or the pores are present in the structure as through-holes), the size of the pores, the density of the pores, etc. It is possible to control.
本発明において得られる多孔質構造体中の孔の殆どは有機ポリマー力もなる仕切 壁により仕切られて 、て、該孔が連通して ヽな 、のが特徴である。  A feature of the present invention is that most of the pores in the porous structure obtained by the present invention are partitioned by a partition wall that also has organic polymer power, and the pores communicate with each other.
また、多孔質構造体の形成と該構造体の孔部への機能性材料の埋め込みを同時 に行うことができるため、低コストにて高機能を有する多孔質構造体の形成が可能と なる。  In addition, since the formation of the porous structure and the embedding of the functional material in the pores of the structure can be performed at the same time, it is possible to form a porous structure having a high function at a low cost.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]実施例 1における疎水性有機溶媒溶液中の逆ミセルの孔径分布の経時変化を 示す。  FIG. 1 shows a time-dependent change in pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 1.
[図 2]実施例 2における疎水性有機溶媒溶液中の逆ミセルの孔径分布の経時変化を 示す。  FIG. 2 shows the change over time of the pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 2.
[図 3]実施例 3における疎水性有機溶媒溶液中の逆ミセルの孔径分布の経時変化を 示す。  FIG. 3 shows the change over time of the pore size distribution of reverse micelles in a hydrophobic organic solvent solution in Example 3.
[図 4]実施例 4、 5で作製した、 Rw力 25 (図 (A) )及び Rw力 .50 (図(B) )であるとき の多孔質構造体の断面図を示す。  FIG. 4 shows a cross-sectional view of the porous structure produced in Examples 4 and 5 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
[図 5]実施例 6、 7で作製した、 Rw力 25 (図 (A) )及び Rw力 .50 (図(B) )であるとき の多孔質構造体の断面図を示す。  FIG. 5 shows a cross-sectional view of the porous structure produced in Examples 6 and 7 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
[図 6]実施例 8、 9で作製した、 Rw力 25 (図 (A) )及び Rw力 .50 (図(B) )であるとき の多孔質構造体の断面図を示す。  FIG. 6 shows a cross-sectional view of the porous structure produced in Examples 8 and 9 when the Rw force is 25 (FIG. (A)) and the Rw force is .50 (FIG. (B)).
[図 7]実施例 13で作製した、開口孔を有する多孔質膜の光学顕微鏡観察図を示す。  FIG. 7 shows an optical microscopic observation view of a porous film having an aperture hole produced in Example 13.
[図 8]実施例 14で作製した、貫通孔を有する多孔質膜の斜め 45度上方力も見た光 学顕微鏡観察による斜視像である。  FIG. 8 is a perspective image of the porous film produced in Example 14 and observed with an optical microscope in which an oblique upward force of 45 degrees is also seen.
[図 9]実施例 13、 23〜25で得られた多孔性膜における Rwと平均開口径の関係を示 す。  FIG. 9 shows the relationship between Rw and average opening diameter in the porous membranes obtained in Examples 13 and 23 to 25.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明の実施形態 1及び 2について説明する。 尚、本発明における疎水性有機溶媒溶液、多孔質構造体についての観察、形状 測定等は、下記方法に基づく。 Hereinafter, Embodiments 1 and 2 of the present invention will be described. In addition, the observation, shape measurement, etc. of the hydrophobic organic solvent solution and the porous structure in the present invention are based on the following method.
(1)疎水性有機溶媒溶液中の逆ミセルのミセル径測定  (1) Measurement of micelle diameter of reverse micelle in hydrophobic organic solvent solution
レーザー回折装置を使用した測定による。  By measurement using a laser diffractometer.
(2)多孔質構造体の表面及び断面観察  (2) Observation of surface and cross section of porous structure
走査型電子顕微鏡を使用した観察による。表面観察はそのまま、断面観察は表面 に垂直に切削し断面出しした後、観察を行う。  By observation using a scanning electron microscope. The surface observation is performed as it is, and the cross-sectional observation is performed after cutting the surface perpendicularly to the surface to obtain a cross-section.
(3)ジへキサデシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコンプ レックス由来の S (ィォゥ)成分濃度分布の分析  (3) Analysis of the concentration distribution of S (Io) component derived from polyion complex of dihexadecyldimethylammonium and polystyrenesulfonic acid
エネルギー分散型蛍光 X線分析装置をした観察による。  By observation using an energy dispersive X-ray fluorescence spectrometer.
(4)下記非開口孔、非貫通開口孔、貫通孔等の各種形態の孔を特徴付けるパラメ一 タの測定  (4) Measurement of parameters characterizing various forms of holes such as the following non-open holes, non-through holes, and through holes
走査型電子顕微鏡を使用して、以下に記載する方法により行う。  Using a scanning electron microscope, the method described below is used.
(i)非開口孔 (構造体内で孔がほぼ均一に分布して開口して 、な ヽ孔)  (i) Non-opening holes (holes that are almost uniformly distributed in the structure and open)
非開口孔の平均孔径及び断面空孔率の測定  Measurement of average hole diameter and cross-sectional porosity of non-open holes
(i 1)平均孔径の測定  (i 1) Measurement of average pore size
多孔質構造体の断面において、切断位置によるばらつきを考慮して孔部の略中心 断面に相当する、孔部の孔径の大きなものを 5個抽出し、それぞれの孔部の構造体 表面と平行方向の孔径 (平行方向の孔の最大長さ)を測定し、その平均値を平均孔 径とする。  In the cross section of the porous structure, in consideration of the variation depending on the cutting position, five samples with large hole diameters corresponding to the approximate center cross section of the hole are extracted, and parallel to the surface of the structure of each hole. Measure the hole diameter (maximum length of holes in the parallel direction) and use the average value as the average hole diameter.
(i 2)断面空孔率の測定  (i 2) Measurement of cross section porosity
多孔質構造体の断面において、孔部面積の断面積全体に占める割合を算出し、 断面空孔率とする。  In the cross section of the porous structure, the ratio of the pore area to the entire cross-sectional area is calculated and taken as the cross-sectional porosity.
(ii)非貫通開口孔 (非貫通でかつ開口して 、る孔)  (ii) Non-through hole (hole that is non-through and open)
断面における孔の全面積に対する非貫通開口孔の面積割合、表面開口率、及び 平均開口径の測定  Measurement of the area ratio of the non-through hole, the surface opening ratio, and the average opening diameter to the total area of the hole in the cross section
(ii- 1)断面における孔の全面積に対する非貫通開口孔の面積割合  (ii-1) Area ratio of non-through holes to the total area of holes in the cross section
多孔質構造体の任意の断面における孔の全面積のうち非貫通開口孔の面積割合 を求める。 Area ratio of non-through-opening holes out of the total area of holes in any cross section of the porous structure Ask for.
(ii 2)表面開口率  (ii 2) Surface aperture ratio
多孔質構造体の表面の非貫通開口孔の面積が表面積全体に占める割合を算出し て表面開口率を求める。  Calculate the ratio of the area of non-through holes on the surface of the porous structure to the total surface area to obtain the surface area ratio.
(ii 3)平均開口径 (ii 3) Average opening diameter
多孔質構造体の表面の非貫通開口孔 10点を無作為に抽出して開口径を測定し、 その平均値を平均開口径とする。  Randomly extract 10 non-through holes on the surface of the porous structure, measure the opening diameter, and use the average value as the average opening diameter.
(iii)負通孔 (iii) Negative hole
断面における孔の全面積のうち貫通孔の面積割合、表面開口率、平均開口径、及 び構造体表面と平行方向の平均孔径  Out of the total area of holes in the cross section, the area ratio of through holes, surface opening ratio, average opening diameter, and average hole diameter in the direction parallel to the structure surface
(iii- 1)断面における孔の全面積に対する貫通孔の面積割合  (iii-1) Area ratio of through-hole to total area of hole in cross section
多孔質構造体の任意の断面における孔の全面積のうち貫通孔の面積割合を求め る。  The area ratio of through-holes is determined from the total area of holes in an arbitrary cross section of the porous structure.
(iii 2)表面開口率  (iii 2) Surface aperture ratio
多孔質構造体の表面の貫通孔の開口面積が表面積全体に占める割合を算出して 表面開口率を求める。  The ratio of the opening area of the through holes on the surface of the porous structure to the entire surface area is calculated to obtain the surface opening ratio.
(iii 3)平均開口径 (iii 3) Average opening diameter
多孔質構造体の表面の貫通孔 10点を無作為に抽出して開口径を測定し、その平 均値を平均開口径とする。  Randomly extract 10 through-holes on the surface of the porous structure, measure the opening diameter, and use the average value as the average opening diameter.
(iii一 4)貫通孔の構造体表面と平行方向の平均孔径  (iii-1) Average hole diameter in the direction parallel to the surface of the through hole structure
孔部の略中心断面に相当する孔部の寸法の大きなものを 5個抽出し、それぞれの 孔部の構造体表面と平行方向の孔径 (平行方向の孔の最大長さ)を測定し、その平 均値を平均孔径とする。  Five holes with large hole dimensions corresponding to the approximate center cross section of the hole are extracted, and the hole diameter in the direction parallel to the surface of the structure of each hole (the maximum length of the holes in the parallel direction) is measured. The average value is the average pore diameter.
[1]実施形態 1 [1] Embodiment 1
実施形態 1に係る「多孔質構造体の製造方法」は、  The “method for producing a porous structure” according to Embodiment 1 includes:
下記 (i)ないし (iii)に記載する工程を含む、疎水性有機溶媒溶液中に形成された逆 ミセルの铸型を孔の形成に利用することを特徴とする。 A reverse micelle cage formed in a hydrophobic organic solvent solution including the steps described in the following (i) to (iii) is used for the formation of pores.
(i)少なくとも両親媒性物質、疎水性を有する有機ポリマー、親水性液体及び該有機 ポリマーを溶解する疎水性有機溶媒カゝらなる溶液を混合撹拌して、逆ミセルが形成さ れた疎水性有機溶媒溶液を得る工程 (工程 1) (i) at least amphiphile, hydrophobic organic polymer, hydrophilic liquid and the organic Step of obtaining a hydrophobic organic solvent solution in which reverse micelles are formed by mixing and stirring a solution consisting of a hydrophobic organic solvent that dissolves the polymer (Step 1)
(ii)前記疎水性有機溶媒溶液を基板上にキャストする工程 (工程 2)  (ii) A step of casting the hydrophobic organic solvent solution onto a substrate (Step 2)
(iii)前記基板上の疎水性有機溶媒溶液から、疎水性有機溶媒と親水性液体を蒸発 させて多孔質の構造体を形成する工程 (工程 3)  (iii) A step of evaporating the hydrophobic organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate to form a porous structure (step 3)
ここで、正ミセルが例えば、親水性である水溶液中で両親媒性物質の疎水部は、水 とは混ざらないためなるベく水力も遠ざ力つて疎水的な性質のものと相互作用しょうと して球状の集合体を作るのに対し、逆ミセルとは、例えば疎水性の有機溶媒中で正ミ セルとは逆の構造になり、疎水部が溶媒に突き出した構造になる分子集合体である  Here, for example, in an aqueous solution in which the positive micelle is hydrophilic, the hydrophobic part of the amphiphile does not mix with water, so that the hydropower should be kept away and interact with the hydrophobic part. In contrast, a reverse micelle is a molecular assembly that has a structure opposite to that of a normal micelle in a hydrophobic organic solvent, and has a structure in which the hydrophobic portion protrudes into the solvent. is there
[0015] 本発明においては、先ず工程 1において、少なくとも両親媒性物質、疎水性を有す る有機ポリマー、親水性液体及び疎水性有機溶媒カゝらなる溶液を攪拌して、疎水性 有機溶媒中に比較的安定な逆ミセルを形成させる。この逆ミセルの分布状態 (逆ミセ ルが溶液中に均一分布、相対的に上方に多く分布、もしくは相対的に下方に多く分 布する等)、逆ミセル径、その密度等は、使用する疎水性有機溶媒 (誘電率、比重、 蒸発時の蒸気圧、有機ポリマーの溶解性、疎水性等の物性)、両親媒性物質、親水 性液体、有機ポリマー (比重、疎水性等の物性)等の成分の種類、配合割合等によつ て制御することが可能である。 In the present invention, first, in Step 1, a solution comprising at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid and a hydrophobic organic solvent is stirred to obtain a hydrophobic organic solvent. A relatively stable reverse micelle is formed therein. The reverse micelle distribution state (reverse micelles are uniformly distributed in the solution, relatively upwardly distributed or relatively downwardly distributed), reverse micelle diameter, density, etc. Organic solvents (dielectric constant, specific gravity, vapor pressure during evaporation, solubility of organic polymer, properties such as hydrophobicity), amphiphiles, hydrophilic liquids, organic polymers (physical properties such as specific gravity, hydrophobicity), etc. It can be controlled by the type of ingredients, the blending ratio, etc.
また、上記条件から、比重が親水性液体より大きい疎水性有機溶媒の使用、逆ミセ ル径が比較的大きくなる条件と、有機ポリマーの使用割合を相対的に少なくして多孔 質構造体を薄膜形状にすることにより、工程 3で疎水性有機溶媒を蒸発後に、それ ぞれ構造体表面で孔が開口している構造体、貫通孔が多く存在する構造体を形成 することも可會である。  In addition, from the above conditions, the porous structure can be made into a thin film by using a hydrophobic organic solvent with a specific gravity larger than that of the hydrophilic liquid, a condition in which the reverse micelle diameter is relatively large, and a relatively small proportion of the organic polymer used. By evaporating the hydrophobic organic solvent in step 3, it is possible to form a structure with many holes on the surface of the structure and a structure with many through-holes. .
[0016] 工程 2において、疎水性有機溶媒溶液を基板上にキャストするが、疎水性有機溶 媒溶液中に逆ミセルを形成してから、基板上へのキャスト、更に有機溶媒の蒸発開 始までの時間と、基板上への疎水性有機溶媒溶液の塗布厚み等の選択により、疎 水性有機溶媒蒸発後の多孔質構造体におけるその厚みと孔の形態を制御すること が可能になる。 次に工程 3の前半で該基板の疎水性有機溶媒溶液カゝら先ず親水性液体 (例えば 水)の蒸発除去を控えめにして疎水性有機溶媒 (以下、「有機溶媒」 ヽぅことがある 。)を蒸発除去する。この場合、有機溶媒の蒸発に伴い、疎水性有機溶媒溶液中の 逆ミセルの密度は増カロしてくるが、本発明において有機溶媒蒸発により形成される孔 が有機ポリマーカゝらなる仕切壁により仕切られて ヽて、連通して ヽな ヽ孔が多く形成 されるのが特徴である。 [0016] In step 2, the hydrophobic organic solvent solution is cast on the substrate, but after forming reverse micelles in the hydrophobic organic solvent solution, casting onto the substrate and further starting evaporation of the organic solvent. It is possible to control the thickness and the shape of the pores in the porous structure after evaporation of the hydrophobic organic solvent by selecting the time and the coating thickness of the hydrophobic organic solvent solution on the substrate. Next, in the first half of the step 3, the hydrophobic organic solvent solution on the substrate may be treated with a hydrophobic organic solvent (hereinafter referred to as “organic solvent” hereinafter), with conservative removal of the hydrophilic liquid (for example, water). ) Is removed by evaporation. In this case, as the organic solvent evaporates, the density of the reverse micelles in the hydrophobic organic solvent solution increases, but in the present invention, the holes formed by the organic solvent evaporation are partitioned by the partition wall made of the organic polymer cover. As a result, many unique holes are formed through communication.
有機溶媒の蒸発時間は、数分間程度であるが、有機溶媒の蒸発が比較的短時間 となる温度と圧力条件を選択することにより、構造体中に形成される孔をより立体的に 均一に分布させることが可能になる。  The evaporation time of the organic solvent is about several minutes, but the pores formed in the structure can be made more three-dimensionally uniform by selecting the temperature and pressure conditions at which the organic solvent evaporates in a relatively short time. It becomes possible to distribute.
多孔質構造体中に逆ミセルが均等に存在する場合に、親水性液体は逆ミセル中に 閉じ込められていて有機溶媒にシールされた状態で存在するので、有機溶剤を蒸発 する際に、該有機溶剤の蒸気圧が親水性液体より低くても該有機溶剤が選択的に蒸 発する。しかし、逆ミセル中に存在する親水性液体の量が極めて少ないことと、親水 性液体は有機溶剤と有機ポリマーへの微量の溶解を通して、結果的に蒸発するもの と思われる。  When reverse micelles are present uniformly in the porous structure, the hydrophilic liquid is confined in the reverse micelles and sealed in an organic solvent. Even if the vapor pressure of the solvent is lower than that of the hydrophilic liquid, the organic solvent evaporates selectively. However, it appears that the amount of hydrophilic liquid present in reverse micelles is extremely small and that the hydrophilic liquid will eventually evaporate through small amounts of dissolution in organic solvents and organic polymers.
有機溶剤の蒸発の際に形成される多孔質構造体中の孔が、結果的に開口又は貫 通孔として形成される場合には親水性液体の蒸発除去は容易である。有機溶剤の 蒸発後には、多孔質構造体中に形成された孔の辺縁部に両親媒性物質が存在して いる。  When the pores in the porous structure formed during the evaporation of the organic solvent are formed as openings or through holes as a result, the hydrophilic liquid can be easily removed by evaporation. After evaporation of the organic solvent, an amphiphile is present at the edge of the pores formed in the porous structure.
以下に工程 1〜3について詳述する。  Steps 1 to 3 will be described in detail below.
(A)疎水性有機溶媒溶液を得る工程 (工程 1) (A) Step of obtaining a hydrophobic organic solvent solution (Step 1)
実施形態 1にお!ヽては先ず工程 1で、疎水性有機溶媒溶液中に逆ミセルを形成す る。  In Embodiment 1, first, in Step 1, reverse micelles are formed in a hydrophobic organic solvent solution.
(A-1)疎水性有機溶媒溶液の成分  (A-1) Hydrophobic organic solvent solution components
工程 1において、少なくとも両親媒性物質、疎水性を有する有機ポリマー、親水性 液体及び該有機ポリマーからなる成分を使用する。工程 1にお ヽて使用可能なこれ らの成分を以下に例示するが、本発明にぉ 、て使用可能なものはこれらに限定され るものではない。 (a)有機ポリマー In step 1, at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a component comprising the organic polymer are used. These components that can be used in Step 1 are exemplified below, but those that can be used in the present invention are not limited to these. (a) Organic polymer
本発明において使用可能な有機ポリマーは、疎水性でかつ有機溶媒に適度な溶 解性を有していて、工程 3において有機溶媒を蒸発除去後に自己集合した逆ミセル に基づく铸型構造が維持できるものであればよぐ使用目的によっては特に基板上 に形成された多孔質膜が自己支持性を有する程度の剛性を有するものが好ましい。 有機ポリマーの具体例としては、ポリエチレン、ポリプロピレン、ポリー4ーメチルぺ ンテン一 1、シクロポリオレフイン等のォレフィン系ポリマー;ポリ塩化ビュル、ポリ塩ィ匕 ビ-リデン塩素榭脂系ポリマー;ポリアルキレンオキサイド;ポリビュルアルコール、ェ チレンビュルアルコール共重合榭脂等のアルコール系榭脂;ポリスチレン、アタリ口- トリル—スチレン榭脂 (AS榭脂)、アクリロニトリル—ブタジエン—スチレン榭脂 (ABS 榭脂)等のスチレン系榭脂;メタクリル酸エステル榭脂、アクリル酸エステル榭脂等の アクリル系榭脂;ポリアミド榭脂(ポリアミド 6、ポリアミド 46、ポリアミド 66等)、ポリアセタ ール、ポリカーボネート、変性ポリフエ-レンエーテル、熱可塑性ポリエステル榭脂( ポリエチレンテレフタレート、ポリエチレンナフタレート等)等のエンジニアリングプラス チックから選ばれた 1種、または相溶性を有する (疎水性有機溶媒蒸発後に相分離 を生じな!/、) 2種以上の有機ポリマーである。  The organic polymer that can be used in the present invention is hydrophobic and has an appropriate solubility in an organic solvent, and can maintain a cage structure based on reverse micelles that are self-assembled after the organic solvent is removed by evaporation in Step 3. Depending on the purpose of use, it is preferable that the porous film formed on the substrate has rigidity enough to have self-supporting properties. Specific examples of the organic polymer include olefin-based polymers such as polyethylene, polypropylene, poly-4-methylpentene-1, cyclopolyolefin, etc .; polychlorinated butyl, polysalt-bi-lidene chlorine-based polymer; polyalkylene oxide; Alcohol-based resins such as butyl alcohol and ethylene-bulb alcohol copolymerized resins; polystyrene, Atari mouth-tolyl-styrene resin (AS resin), styrenes such as acrylonitrile-butadiene-styrene resin (ABS resin) Acrylic resin such as methacrylic ester resin and acrylic ester resin; polyamide resin (polyamide 6, polyamide 46, polyamide 66, etc.), polyacetal, polycarbonate, modified polyphenylene ether, thermoplastic Polyester resin (polyethylene terephthalate, Do the phase separation occurs after re ethylene naphthalate, etc.), etc. one engineering selected from plastic, or having compatibility (hydrophobic organic solvent evaporated! /,) 2 or more organic polymers.
[0018] その他、有機溶媒の選択、又は使用目的により、有機ポリマーとしてポリフッ化ビ- リデン、ポリテトラフルォロエチレン、ポリ酢酸ビュル、セルロース系プラスチック、熱可 塑性エラストマ一などの熱可塑性榭脂、ポリフエ-レンスルフイド、ポリスルフォン、非 晶ポリアリレート、ポリエーテルイミド、ポリエーテルスルフォン、ポリエーテルケトン、ポ リエ一テルエーテルケトン、液晶ポリエステル、ポリアミドイミド、ポリイミド等も使用可 能である。 [0018] In addition, depending on the selection or use purpose of the organic solvent, thermoplastic resins such as polyvinylidene fluoride, polytetrafluoroethylene, polyacetate butyl, cellulosic plastic, and thermoplastic elastomer may be used as the organic polymer. Polyphenylene sulfide, polysulfone, amorphous polyarylate, polyether imide, polyether sulfone, polyether ketone, polyethylene ether ketone, liquid crystal polyester, polyamide imide, polyimide and the like can also be used.
中でもコスト面力もポリスチレン、アクリル系榭脂、透明性の観点力もポリカーボネー ト、シクロポリオレフイン、フッ素榭脂、また、耐熱性の観点から、ポリアミド、ポリイミドが 好ましい。ポリスチレン、ポリカーボネート、シクロポリオレフインはクロ口ホルムなどの 有機溶媒に溶けやすぐ膜状の多孔質構造体を容易に得ることができるため特に好 ましい。  Of these, polystyrene and acrylic resin are preferable in terms of cost, and polycarbonate, cyclopolyolefin, fluorine resin are also preferable in terms of transparency, and polyamide and polyimide are preferable from the viewpoint of heat resistance. Polystyrene, polycarbonate, and cyclopolyolefin are particularly preferred because they are soluble in organic solvents such as black mouth form and can easily obtain a membrane-like porous structure.
[0019] (b)両親媒性物質 実施形態 1で使用する両親媒性物質は、疎水性基と親水性基を有するものであれ ば特に種類は限定されず、高分子両親媒性物質及び高分子以外の両親媒性物質 でもよい。イオン性両親媒性物質において親水性基を構成する陰イオンとしては—C oo_、 -so—等があり、また陽イオンとしてはジメチルアンモ -ゥムイオン、トリメチ [0019] (b) Amphiphile The amphiphile used in Embodiment 1 is not particularly limited as long as it has a hydrophobic group and a hydrophilic group, and may be a polymer amphiphile or an amphiphile other than a polymer. Examples of anions constituting hydrophilic groups in ionic amphiphiles include —Coo_, —so—, etc., and cations such as dimethylammonium ion, trimethyl.
4  Four
ルアンモ -ゥムイオン、ピリジ-ゥムイオンなどがある。また、非イオン性両親媒性物 質における親水基としては水酸基、エーテル結合などがある。  Ruammo-mu ion, pyridi-mu ion, etc. In addition, the hydrophilic group in the nonionic amphiphile includes a hydroxyl group and an ether bond.
両親媒性物質の具体例としては、ビス(2—ェチルへキシルスルホコハク酸ナトリウ ム)(下記化学式 1で示す)、ジォクチルスルホコハク酸ナトリウム、ジイソプチルスルホ コノヽク酸ナトリウム、ジシクロへキシルスルホコハク酸ナトリウム、ジへキシルスルホコハ ク酸ナトリウム、ジへキサデシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリ イオンコンプレックス(下記化学式 2で示す)、エチレングリコールとプロピレングリコー ルカも得られるブロックコポリマー、エチレンオキサイドとプロピレンオキサイド力 得ら れるブロックコポリマー力も選ばれた少なくとも 1種が挙げられる。  Specific examples of amphiphiles include bis (2-ethylhexylsulfosuccinate) (shown by the following chemical formula 1), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinosuccinate, dicyclohexyl. Block copolymer from which sodium sulfosuccinate, dihexyl sodium sulfosuccinate, dihexadecyldimethylammonium and polystyrenesulfonic acid polyion complex (shown by the following chemical formula 2), ethylene glycol and propylene glycol can be obtained, ethylene oxide And propylene oxide strength At least one selected block copolymer strength can be mentioned.
[0020] [化 1]  [0020] [Chemical 1]
Figure imgf000014_0001
化学式 1 化学式 2
Figure imgf000014_0001
Chemical formula 1 Chemical formula 2
[0021] (c)疎水性有機溶媒 [0021] (c) Hydrophobic organic solvent
本実施形態 1で使用する有機溶媒は、疎水性を有し、疎水性の有機ポリマーをある 程度溶解し、逆ミセルを小さ 、ミセル径である程度安定的に存在させる性質を有し、 かつ工程 3における蒸発が比較的容易である性質を有していればその種類は特に 限定されるものではない。 本発明の疎水性有機溶媒の選択に当たっては、所望の逆ミセルの形態 (溶液中で の均一分散性、ミセル径等)、安定性、工程 3での蒸発性等から、有機溶媒の疎水性 、誘電率、有機ポリマーの溶解性、蒸気圧、比重等を考慮することが望ましい。 The organic solvent used in Embodiment 1 has a property of dissolving hydrophobic organic polymer to some extent, making reverse micelles small and stable to some extent with a micelle diameter, and step 3 The type is not particularly limited as long as it has the property of being relatively easy to evaporate. In selecting the hydrophobic organic solvent of the present invention, the desired reverse micelle form (uniform dispersion in the solution, micelle diameter, etc.), stability, evaporability in step 3, etc., the hydrophobicity of the organic solvent, It is desirable to consider dielectric constant, solubility of organic polymer, vapor pressure, specific gravity and the like.
[0022] 本発明の工程 1にお ヽて、疎水性有機溶媒溶液中に逆ミセルを形成するので、使 用する有機溶媒は疎水性であることが必要であり、親水性液体である水への溶解度 が高い、酢酸メチル、テトラヒドロフランのような親水性有機溶媒は、良好な逆ミセルを 形成しな ヽため適当でな ヽ。  [0022] In Step 1 of the present invention, reverse micelles are formed in the hydrophobic organic solvent solution, so the organic solvent to be used needs to be hydrophobic, and the water is a hydrophilic liquid. Hydrophilic organic solvents such as methyl acetate and tetrahydrofuran, which have a high solubility in, are suitable because they do not form good reverse micelles.
[0023] 上記工程 1で掲載された疎水性有機溶媒溶液中の逆ミセルは、工程 2のキャスティ ング、及び工程 3の該有機溶媒が蒸発して多孔質構造体の基本骨格が形成されるま で、比較的安定していることが望ましい。一般に、逆ミセルは誘電率の低い無極性有 機溶媒中の方が比較的安定である。  [0023] The reverse micelles in the hydrophobic organic solvent solution described in the above step 1 are cast until the casting of step 2 and the organic solvent of step 3 evaporate to form the basic skeleton of the porous structure. It is desirable that it is relatively stable. In general, reverse micelles are relatively stable in nonpolar organic solvents having a low dielectric constant.
表 1に 20°Cにおける誘電率( ε )が 5以下の相対的に無極性である有機溶媒、表 2 に 20°Cにおける誘電率が 5を越える相対的に極性である有機溶媒を例示してある。  Table 1 shows examples of relatively non-polar organic solvents having a dielectric constant (ε) of 5 or less at 20 ° C, and Table 2 shows relatively polar organic solvents having a dielectric constant of more than 5 at 20 ° C. It is.
20°Cにおける誘電率の低いトルエン( ε : 2.38)では逆ミセルが小さいミセル径で比 較的安定に存在する傾向があり、混合キシレン (例えば、表 1に示す組成において、 ε : 2.40)とクロ口ホルム( ε : 4.81)では、ミセル径が多少変化する傾向がある力 ミセ ル径の経時的変化が把握できれば、それを多孔質構造体の孔径の制御に利用する ことが可能である。  In toluene (ε: 2.38), which has a low dielectric constant at 20 ° C, reverse micelles tend to exist relatively stably with small micelle diameters. For example, in the composition shown in Table 1, ε: 2.40 With the black mouth form (ε: 4.81), if the change in the micelle diameter over time can be grasped, it can be used to control the pore diameter of the porous structure.
このように、各疎水性有機溶媒中における逆ミセルのミセル径とその分布、経時的 なミセル径の変化を把握することにより、疎水性有機溶媒の選択から所望の多孔質 構造体を設計することが可能になる。  In this way, the desired porous structure can be designed from the selection of the hydrophobic organic solvent by grasping the micelle diameter and distribution of reverse micelles in each hydrophobic organic solvent, and the change in the micelle diameter over time. Is possible.
[0024] 疎水性有機溶媒は、有機ポリマーを適度に溶解して両親媒性物質の均一分散性 に優れるものが望ましい。特に、疎水性有機溶媒として、使用する疎水性の有機ポリ マー及び両親媒性物質を適度に溶解するものが望まし ヽ。この場合に疎水性有機 溶媒の該有機ポリマー及び両親媒性物質の溶解度が高過ぎると工程 3の蒸発工程 において、有機溶媒中の有機ポリマー及び両親媒性物質が高濃度に達した段階で 多孔質構造体の基本構造が形成されると孔を均質に形成するのに不都合を生ずる 場合がある、一方、疎水性有機溶媒の該有機ポリマー及び両親媒性物質の溶解度 が低いと、比較的多量の有機溶媒の使用が必要となり、好ましくない場合がある。 疎水性有機溶媒の有機ポリマー及び両親媒性物質は、疎水性有機溶媒溶液で併 せて 0. 01〜: LgZml、特に 0. 05〜0. 5gZml程度の濃度範囲にあることが望まし い。 [0024] The hydrophobic organic solvent is preferably a solvent in which an organic polymer is appropriately dissolved and the amphiphilic substance is excellent in uniform dispersibility. In particular, it is desirable that the hydrophobic organic solvent appropriately dissolves the used hydrophobic organic polymer and amphiphile. In this case, if the solubility of the organic polymer and the amphiphile in the hydrophobic organic solvent is too high, the organic polymer and the amphiphile in the organic solvent become porous at the stage where the organic polymer and the amphiphile in the organic solvent reach a high concentration in the evaporation step of Step 3. When the basic structure of the structure is formed, it may cause inconvenience to form pores uniformly, while the solubility of the organic polymer and amphiphile in hydrophobic organic solvent If it is low, it is necessary to use a relatively large amount of an organic solvent, which may not be preferable. It is desirable that the organic polymer and the amphiphilic substance in the hydrophobic organic solvent be in a concentration range of about 0.01 to LgZml, particularly 0.05 to 0.5 gZml, together with the hydrophobic organic solvent solution.
[0025] また、工程 3において、疎水性有機溶媒溶液から有機溶媒と親水性液体を蒸発さ せて多孔質構造体を形成する際に、先ず有機溶媒を多く蒸発させ、次いで親水性 液体を蒸発させる方が多孔質構造体を確実に形成することができる。そのためには 記疎水性有機溶媒と親水性液体の蒸発温度における疎水性有機溶媒の蒸気圧が 親水性液体の蒸気圧よりも高 、方が望ま 、。  [0025] In step 3, when a porous structure is formed by evaporating the organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution, a large amount of the organic solvent is first evaporated, and then the hydrophilic liquid is evaporated. The porous structure can be surely formed by making it. For this purpose, the vapor pressure of the hydrophobic organic solvent at the evaporation temperature of the hydrophobic organic solvent and the hydrophilic liquid is preferably higher than the vapor pressure of the hydrophilic liquid.
前述したように、親水性液体は両親媒性物質により疎水性有機溶媒溶液中にシー ルされた状態で存在するので、工程 3の疎水性有機溶媒の蒸発温度で、該有機溶 媒の蒸気圧が親水性液体より低い場合でも、結果的にみて相対的に多量に存在す る有機溶媒がある程度蒸発した時点で逆ミセル形状 (又はその铸型構造)が維持で きる程度に溶液の粘度が上がっていれば、多孔質構造体の形成が可能となる。工程 3の蒸発温度における疎水性有機溶媒の蒸気圧は親水性液体の蒸気圧の好ましく は 0. 3倍以上、より好ましくは 0. 7倍以上、特に好ましくは 1. 0倍以上である、従って 、このような場合には親水性液体より沸点の高いトルエン、キシレン類等の有機溶媒 を使用することが可能である。  As described above, since the hydrophilic liquid exists in a state of being sealed in the hydrophobic organic solvent solution by the amphiphilic substance, the vapor pressure of the organic solvent is determined at the evaporation temperature of the hydrophobic organic solvent in Step 3. As a result, when the organic solvent present in a relatively large amount evaporates to some extent, the viscosity of the solution increases to such an extent that the reverse micelle shape (or its bowl-shaped structure) can be maintained. If so, it is possible to form a porous structure. The vapor pressure of the hydrophobic organic solvent at the evaporation temperature in step 3 is preferably at least 0.3 times, more preferably at least 0.7 times, particularly preferably at least 1.0 times the vapor pressure of the hydrophilic liquid. In such a case, it is possible to use an organic solvent such as toluene or xylene having a boiling point higher than that of the hydrophilic liquid.
[0026] 有機溶媒の比重は、形成される多孔質構造体中の孔の垂直方向の形成位置を制 御するのに利用することが可能である。 [0026] The specific gravity of the organic solvent can be used to control the vertical formation positions of the pores in the formed porous structure.
一般に多孔質構造体中で孔を均一に分布させたい場合には、非極性溶媒を使用 することが望ましい。一方、親水性液体として例えば水を使用する場合には、クロロホ ルムのような比重が水よりも大きいものを選択すると、逆ミセルを上方に多く分布させ ることが可能となり、他方、脂肪族炭化水素又は芳香族炭化水素のような比重が水よ りも小さいものを使用すると、逆ミセルを下方に多く分布させることが可能になる。 逆ミセルを上方に多く分布させる場合には、有機ポリマーの比重はポリエチレンとポ リプロピレン等の一部のポリオレフインを除 、て殆どのものが水の比重よりも大き!/、こと から、有機ポリマーの比重を利用して水の比重より小さい有機溶媒を使用することも 可能である。 In general, it is desirable to use a nonpolar solvent when it is desired to uniformly distribute the pores in the porous structure. On the other hand, when water is used as the hydrophilic liquid, for example, if a specific gravity such as chloroform is larger than that of water, reverse micelles can be distributed more upward, while aliphatic carbonization is performed. If a specific gravity such as hydrogen or an aromatic hydrocarbon is smaller than that of water, a large number of reverse micelles can be distributed downward. When many reverse micelles are distributed upward, the specific gravity of the organic polymer is larger than the specific gravity of water except for some polyolefins such as polyethylene and polypropylene. It is also possible to use an organic solvent smaller than the specific gravity of water using the specific gravity of Is possible.
疎水性有機溶媒の比重が水よりも大きいものの具体例としては、ジクロルメタン、ク ロロホルム、四塩化炭素、 1, 2—ジクロルェタン、 1, 1, 2, 2—テトラクロルェタン、 1 , 2ジクロルエチレン、トリクロルエチレン等の塩素系溶媒;二硫ィ匕炭素が挙げられ、ま た、疎水性有機溶媒の比重が水よりも軽いものの具体例としては、ノルマルペンタン ノルマルへキサン、シクロへキサン、ベンゼン、トルエン、キシレン等が挙げられる。 これらの有機溶媒は単独で用いても、またはこれらの溶媒を組み合わせて均一の 溶液を形成する場合等は混合溶媒を使用することが可能である。  Specific examples of hydrophobic organic solvents with specific gravity greater than water include dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1,2 dichloro. Examples of chlorinated solvents such as ethylene and trichloroethylene; disulfur carbon and the specific gravity of hydrophobic organic solvents that are lighter than water include normal pentane, normal hexane, cyclohexane, and benzene. , Toluene, xylene and the like. These organic solvents can be used alone, or a mixed solvent can be used when these solvents are combined to form a uniform solution.
[0027] 本発明で使用可能な疎水性有機溶媒としては、表 1に示す、 20°Cにおける誘電率 力 以下であるノルマルペンタン、ノルマルへキサン、シクロへキサン、イソオクタン、ノ ルマルヘプタン、ノルマルデカン、ベンゼン、トルエン、ェチルベンゼン、オルソキシ レン、メタキシレン、パラキシレン、混合キシレン、四塩化炭素、クロ口ホルム、及びトラ ンス 1,2,-ジクロロエチレン、 [0027] As the hydrophobic organic solvent that can be used in the present invention, as shown in Table 1, normal pentane, normal hexane, cyclohexane, isooctane, normal heptane, normal decane, which are not more than the dielectric constant force at 20 ° C, Benzene, toluene, ethylbenzene, orthoxylene, metaxylene, paraxylene, mixed xylene, carbon tetrachloride, black form, and trans 1,2, -dichloroethylene,
並びに表 2に示す、 20°Cにおける誘電率が 5を越える、酢酸ブチル、ジクロロメタン、 1,1,2,2—テトラクロロルェタン、シス 1,2—ジクロロェタン、及びイソブチルメチルケトン またはこれらの混合物が例示できるが、本発明で使用可能な疎水性有機溶媒はこれ らに限定されるものではない。  And butyl acetate, dichloromethane, 1,1,2,2-tetrachloroethane, cis 1,2-dichloroethane, and isobutyl methyl ketone or mixtures thereof as shown in Table 2 and having a dielectric constant of greater than 5 at 20 ° C. However, the hydrophobic organic solvent that can be used in the present invention is not limited thereto.
疎水性有機溶媒は、有機ポリマーの溶解能が高ぐ水の溶解度が低ぐ蒸気圧が 高いことが好ましぐさらに実用性の観点力 化学的に安定であり、毒性が低いことが 好ましい。これらの観点から、好ましい溶媒として、トルエン、クロ口ホルムが例示でき る。  It is preferable that the hydrophobic organic solvent has a high solubility of the organic polymer, a low solubility of water and a high vapor pressure. Further, it is preferable from the viewpoint of practicality. It is preferably chemically stable and low in toxicity. From these viewpoints, preferred examples of the solvent include toluene and black mouth form.
[0028] [表 1] 非極性溶媒 [0028] [Table 1] Nonpolar solvent
Figure imgf000018_0001
Figure imgf000018_0001
*混合キシレンの組成 (質量%)  * Composition of mixed xylene (mass%)
ェチルへ'ンセ'ン:オルソキシレン:メタキシレン:バ'ラキシレン = 15 : 22 : 44 : 19  To ethyl: ortho-xylene: meta-xylene: ba-xylene = 15: 22: 44: 19
[0029] [表 2] [0029] [Table 2]
極性溶媒  Polar solvent
Figure imgf000018_0002
Figure imgf000018_0002
[0030] (d)親水性液体  [0030] (d) Hydrophilic liquid
また逆ミセルを形成する際に使用する親水性液体として、水の使用がもっとも好まし いが、本発明において両親媒性物質、有機ポリマー、疎水性有機溶媒及び親水性 液体からなる疎水性有機溶媒を撹拌して、疎水性有機溶媒溶液中で逆ミセルを形成 するものであれば、水以外の親水性液体、又は水に水以外の親水性液体を配合し て、親水性液体の比重、蒸気圧、溶解性等を調整することが可能である。水以外の 親水性液体として、エチレングリコール、プロピレングリコール、ギ酸等が例示できる。 Water is most preferably used as the hydrophilic liquid for forming reverse micelles. In the present invention, a hydrophobic organic solvent comprising an amphiphile, an organic polymer, a hydrophobic organic solvent, and a hydrophilic liquid. If a reverse micelle is formed in a hydrophobic organic solvent solution, a hydrophilic liquid other than water or a hydrophilic liquid other than water is added to water. Thus, the specific gravity, vapor pressure, solubility, etc. of the hydrophilic liquid can be adjusted. Examples of hydrophilic liquids other than water include ethylene glycol, propylene glycol, formic acid and the like.
[0031] (A-2)疎水性有機溶媒溶液成分の配合割合  [0031] (A-2) Mixing ratio of hydrophobic organic solvent solution component
工程 1における親水性液体と両親媒性物質の重量配合比 Rw (親水性液体,両親 媒性物質)は、逆ミセルのミセル径の設計にもよる力 0. 1ないし 15が好ましぐ 0. 2 5ないし 15がより好ましぐ 0. 5ないし 10が特に好ましい。 Rwを前記 0. 1以上とする ことにより逆ミセルの形成を容易にし、前記 15以下とすることにより逆ミセルが不可逆 的に凝集するのを効果的に防止することができる。  The weight ratio Rw (hydrophilic liquid, amphiphile) between the hydrophilic liquid and the amphiphile in Step 1 is preferably 0.1 to 15 depending on the micelle diameter design of the reverse micelle. 2 to 15 is more preferred 0.5 to 10 is particularly preferred. By setting Rw to 0.1 or more, reverse micelles can be easily formed, and by setting the Rw to 15 or less, it is possible to effectively prevent reverse micelles from irreversibly aggregating.
更に前記割合の範囲内で疎水性有機溶媒溶液中に形成される逆ミセルの大きさを 制御することができる。すなわち、 Rwを大きくすると逆ミセルの径は大きくなり、一方、 Rwを小さくすることにより逆ミセルの径を小さくすることができる。  Further, the size of the reverse micelle formed in the hydrophobic organic solvent solution can be controlled within the above range. That is, when Rw is increased, the diameter of the reverse micelle is increased. On the other hand, by decreasing Rw, the diameter of the reverse micelle can be decreased.
[0032] 疎水性有機溶媒溶液中に溶解した有機ポリマーの濃度は、該有機溶媒と有機ポリ マー中の有機ポリマーの濃度で表示すると 0. 01〜: LO質量%が好ましぐさらに好ま しくは 0. 05〜5質量%である。この濃度範囲では孔径が均一になりやすぐ更に孔 が規則配列しやすい傾向がある。 [0032] When the concentration of the organic polymer dissolved in the hydrophobic organic solvent solution is expressed as the concentration of the organic polymer in the organic solvent and the organic polymer, 0.01 to: LO mass% is more preferable. 0.05 to 5% by mass. In this concentration range, the pore diameter becomes uniform, and the pores tend to be more easily ordered.
また、工程 1における有機ポリマーと両親媒性物質の重量配合割合 (有機ポリマー の有機ポリマーと両親媒性物質の合計に対する割合:有機ポリマー Z〔有機ポリマー +両親媒性物質〕)(以下、 Rpということがある)が 0. 1ないし 0. 9が好ましぐ 0. 1な いし 0. 6がより好ましい。  Also, the weight blending ratio of organic polymer and amphiphile in step 1 (ratio of organic polymer to the sum of organic polymer and amphiphile: organic polymer Z [organic polymer + amphiphile]) (hereinafter referred to as Rp) 0.1 to 0.9 is preferred 0.1 or 0.6 is more preferred.
Rpを上記配合割合とすることにより、逆ミセルの形成をより確実なものとすることが できる。  By setting Rp to the above blending ratio, the formation of reverse micelles can be ensured.
[0033] 多孔質膜における孔の密度、すなわち単位体積当たりに孔が占める割合は、親水 性液体、有機ポリマーおよび両親媒性物質の相対的濃度により制御することが可能 である。すなわち、溶質全体 (親水性液体 +有機ポリマー +両親媒性物質)に対する 親水性液体の重量配合割合 (親水性液体 Z [親水性液体 +有機ポリマー +両親媒 性物質]) (以下、 Rsということがある)が大きくなると孔の密度は相対的に大きくなる。 この際、有機ポリマーおよび両親媒性物質の濃度を一定とすると孔径が大きくなりな 力 Sら孔の密度が大きくなり、一方、水の濃度とともに両親媒性物質の濃度も大きくし、 Rwを一定とすると、孔径は一定のまま孔の密度が大きくなる。 [0033] The density of the pores in the porous membrane, that is, the ratio of the pores per unit volume, can be controlled by the relative concentrations of the hydrophilic liquid, the organic polymer, and the amphiphile. That is, the weight ratio of the hydrophilic liquid to the entire solute (hydrophilic liquid + organic polymer + amphiphile) (hydrophilic liquid Z [hydrophilic liquid + organic polymer + amphiphile]) (hereinafter referred to as Rs The density of the holes increases relatively. At this time, if the concentration of the organic polymer and the amphiphile is constant, the pore size does not increase, and the density of the pores increases with the concentration of water S. On the other hand, the concentration of the amphiphile increases with the water concentration. If Rw is constant, the hole density is increased while the hole diameter remains constant.
また、 Rwによる孔径制御、および疎水性有機溶媒溶液中の有機ポリマーの濃度と 基板上にキャストする溶液の厚み条件による膜厚制御が可能であることから、多孔質 膜を貫通孔もしくは非貫通孔とすることの制御が可能である。すなわち、膜厚を孔径 以下とすることで貫通孔となり、膜厚を孔径以上とすることで非貫通孔とすることがで きる。  In addition, the pore size can be controlled by Rw, and the film thickness can be controlled by the concentration of the organic polymer in the hydrophobic organic solvent solution and the thickness condition of the solution cast on the substrate. Can be controlled. That is, a through-hole can be formed by setting the film thickness to be equal to or smaller than the hole diameter, and a non-through hole can be formed by setting the film thickness to be equal to or larger than the hole diameter.
[0034] 工程 1にお 、て、両親媒性物質、有機ポリマー、親水性液体及び有機溶媒の配合 順序はとくに制限はない。これらの成分を容器等の中で撹拌して逆ミセルを形成する 力 撹拌法に特別な操作は必要でなぐある程度の十分な撹拌が可能であれば、実 験等に広く用いられているマグネチック ·スターラー、回転翼、超音波を利用した撹拌 等が例示できる。中でも孔径の微細化 ·均一化の観点から、超音波を利用した攪拌 法が好ましい。  [0034] In step 1, the blending order of the amphiphile, organic polymer, hydrophilic liquid and organic solvent is not particularly limited. Agitating these components in a container to form reverse micelles. Magnetic stirring, which is widely used in experiments, is possible if sufficient agitation is possible without the need for special operations in the stirring method. · Examples include stirrers, rotating blades, and stirring using ultrasonic waves. Of these, a stirring method using ultrasonic waves is preferable from the viewpoint of finer and uniform pore diameter.
[0035] (B)キャスト工程(工程 2)  [0035] (B) Casting process (Process 2)
工程 2は、工程 1で形成された疎水性有機溶媒溶液を基板上にキャストする工程で ある。  Step 2 is a step of casting the hydrophobic organic solvent solution formed in Step 1 onto a substrate.
このような疎水性有機溶媒溶液をキャストする基板は、使用する有機溶媒に対する 耐溶剤性等の耐久性が要求されるが、これを満足する限り、特に限定されない。一例 として、基板がガラス等の無機基板、金属、シリコン酸ィ匕物等のセラミックス基板、ポリ プロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリエーテノレケトン、ポリフツイ匕 エチレン等の耐有機溶剤性に優れた有機物基板から選ばれた ヽずれか 1種ある ヽ はこれらのいずれか 1種以上を複合した基板を挙げることができる。  A substrate on which such a hydrophobic organic solvent solution is cast is required to have durability such as solvent resistance to the organic solvent to be used, but is not particularly limited as long as this is satisfied. For example, the substrate is an inorganic substrate such as glass, a ceramic substrate such as a metal or silicon oxide, an organic substrate excellent in resistance to organic solvents such as polypropylene, polyethylene, polyethylene terephthalate, polyetherenoketone, or polyphenylene ethylene. One type of cocoon selected from can be a substrate that is a combination of one or more of these types.
疎水性有機溶媒溶液を基板上にブレードコーター等を用い、所定の厚みに塗布す ることができる。この場合の溶液の厚みは、例えば 0. 01〜5mm程度が好ましぐさら に好ましくは 0. 05〜lmmである。この厚み範囲では有機溶媒は短時間で蒸発し、 得られる膜状の多層構造体に十分な力学的強度を付与することが可能となる。また、 この塗布の厚みは、疎水性有機溶媒溶液中の有機ポリマー濃度と共に多孔質構造 体に形成される孔の密度と孔の配列を制御するうえで重要である。  The hydrophobic organic solvent solution can be applied on the substrate to a predetermined thickness using a blade coater or the like. In this case, the thickness of the solution is preferably about 0.01 to 5 mm, and more preferably 0.05 to lmm. In this thickness range, the organic solvent evaporates in a short time, and sufficient mechanical strength can be imparted to the obtained film-like multilayer structure. The thickness of the coating is important in controlling the density of pores formed in the porous structure and the arrangement of the pores together with the concentration of the organic polymer in the hydrophobic organic solvent solution.
[0036] (C)蒸発工程(工程 3) 工程 3は、前記基板上の疎水性有機溶媒溶液から、有機溶媒と親水性液体を蒸発 させて、逆ミセルを铸型とした多孔質膜を得る工程である。親水性液体としては、水 が特に好ましい。 [0036] (C) Evaporation process (process 3) Step 3 is a step of obtaining a porous film having reverse micelles in a bowl shape by evaporating the organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate. Water is particularly preferable as the hydrophilic liquid.
(C-1)有機溶媒の蒸発操作 (C-1) Evaporation operation of organic solvent
有機溶媒と親水性液体が蒸発する温度にぉ ヽて、親水性液体の蒸気圧より高 ヽ蒸 気圧の有機溶剤を用いることで、有機溶媒が相対的に多く蒸発し、その後逆ミセル 内の親水性液体が蒸発することにより、逆ミセルの铸型を利用した多孔質膜が形成さ れる。しかしながら上記したように、疎水性有機溶媒溶液から有機溶媒と親水性液体 が蒸発する際に、有機溶媒の蒸気圧が親水性液体の蒸気圧より低い場合でも、親水 性液体は有機溶媒と両親媒性物質によりシールされた状態にあるので、疎水性有機 溶媒がある程度蒸発した時点で逆ミセル又はその铸型構造が維持できる程度に溶 液の粘度が上昇すれば、多孔質構造体の形成が可能となる。  By using an organic solvent at a fumigation pressure higher than the vapor pressure of the hydrophilic liquid at a temperature at which the organic solvent and the hydrophilic liquid evaporate, a relatively large amount of the organic solvent evaporates, and then the hydrophilic solvent in the reverse micelle As a result of the evaporation of the conductive liquid, a porous film utilizing a reverse micelle cage is formed. However, as described above, when the organic solvent and the hydrophilic liquid are evaporated from the hydrophobic organic solvent solution, even if the vapor pressure of the organic solvent is lower than the vapor pressure of the hydrophilic liquid, the hydrophilic liquid is not mixed with the organic solvent and the amphiphile. When the hydrophobic organic solvent evaporates to some extent, if the viscosity of the solution increases to such an extent that the reverse micelle or its vertical structure can be maintained, a porous structure can be formed. It becomes.
この溶媒蒸発過程において、逆ミセル同士に働くファンデルワールス力や静電気 力、逆ミセルと基板との摩擦力、毛細管力などにより、逆ミセルは自己組織的に規則 配列する。そのため、逆ミセルを铸型とする多孔質構造体の孔は比較的規則配列し たものとなる。  In this solvent evaporation process, the reverse micelles are regularly arranged in a self-organized manner due to van der Waals force and electrostatic force acting between the reverse micelles, friction force between the reverse micelles and the substrate, capillary force, and the like. For this reason, the pores of the porous structure having the reverse micelles in a bowl shape are relatively regularly arranged.
この工程 3において、周囲の温度、圧力などを変化させることにより、孔の配列規則 性は制御可能である。温度を低くすると溶媒の蒸発速度が下がり、逆ミセルの自己組 織的な配列に費やされる時間が長くなる。そのため、配列規則性は上がる。圧力を上 げると、溶媒の蒸発が抑制され、やはり溶媒の蒸発速度が下がるため、配列規則性 は上がる。また、超音波を照射することによつても、配列規則性を上げることが可能で ある。  In step 3, the arrangement regularity of the holes can be controlled by changing the ambient temperature, pressure, and the like. Lowering the temperature decreases the solvent evaporation rate and increases the time spent in the self-assembled arrangement of reverse micelles. Therefore, the arrangement regularity is improved. Increasing the pressure suppresses the evaporation of the solvent and also reduces the evaporation rate of the solvent, thus increasing the ordering regularity. Further, the arrangement regularity can also be improved by irradiating ultrasonic waves.
前記疎水性有機溶媒溶液と親水性液体の蒸発方法は特に制限されるものではな Vヽが、疎水性有機溶媒溶液が静置された状態で乾燥不活性ガス流通下に行うことが 望ましい。乾燥不活性ガスとしては、乾燥空気又は乾燥不活性ガスが例示できる。こ の場合の乾燥不活性ガスは、好ましくは相対湿度 70%以下、より好ましくは相対湿 度 50%以下、特に好ましくは相対湿度 30%以下の空気又は不活性ガスである。この 蒸発操作は減圧下、常圧下及び加圧下のいずれでも行うことができるが、蒸発速度 を上げる場合には減圧下で行うことが望ま ヽ。 The method for evaporating the hydrophobic organic solvent solution and the hydrophilic liquid is not particularly limited. It is desirable that V ヽ be carried out under a dry inert gas flow while the hydrophobic organic solvent solution is allowed to stand. Examples of the dry inert gas include dry air and dry inert gas. The dry inert gas in this case is preferably air or an inert gas having a relative humidity of 70% or less, more preferably a relative humidity of 50% or less, and particularly preferably a relative humidity of 30% or less. This evaporation operation can be performed under reduced pressure, normal pressure, or increased pressure. It is desirable to increase the pressure under reduced pressure.
(C-2)多孔質構造体の形成  (C-2) Formation of porous structure
疎水性有機溶媒と親水性液体の蒸発除去後に基板上に形成された多孔質構造体 は、通常膜状である。この場合の膜の厚みは 0. 001〜lmmの範囲が好ましぐ 0. 0 05-0. 1mmがより好ましい。この厚み範囲では多孔質構造体は十分な力学的強度 を有し、形成される孔の貫通もしくは非貫通とすることの制御が比較的容易となる。こ のような多孔質構造体の厚みは、工程 1における疎水性有機溶媒溶液中の有機ポリ マー濃度、及び工程 2における基板上の疎水性有機溶媒溶液の厚みにより制御する ことが可能である。  The porous structure formed on the substrate after evaporating and removing the hydrophobic organic solvent and the hydrophilic liquid is usually a film. In this case, the thickness of the film is preferably in the range of 0.001 to lmm, more preferably 0.005-0.1mm. In this thickness range, the porous structure has a sufficient mechanical strength, and it is relatively easy to control the penetration or non-penetration of the formed holes. The thickness of such a porous structure can be controlled by the concentration of the organic polymer in the hydrophobic organic solvent solution in Step 1 and the thickness of the hydrophobic organic solvent solution on the substrate in Step 2.
[0038] (i)微細孔が均一に分布した多孔質構造体の形成 [0038] (i) Formation of a porous structure in which fine pores are uniformly distributed
工程 1において誘電率が 5以下である疎水性有機溶媒を使用し、かつ工程 3にお いて前記疎水性有機溶媒の約 90質量%の蒸発を好ましくは 3分以内、より好ましく は 2分以内、特に好ましくは 1分以内に終了する温度と圧力条件下で行うことにより、 逆ミセルの铸型力 形成される孔が構造体内にほぼ均一に分布している構造体を形 成することが可能となる。疎水性有機溶媒の蒸発速度は、系内における温度と圧力 条件により制御することが可能であるが、系内の減圧度又は分圧を制御して行うのが 望ましい。この場合に疎水性有機溶媒として 20°Cにおける比重が 0. 65-0. 90で あるのものを使用すると均一分布性は向上する。  In step 1, a hydrophobic organic solvent having a dielectric constant of 5 or less is used, and in step 3, evaporation of about 90% by mass of the hydrophobic organic solvent is preferably within 3 minutes, more preferably within 2 minutes. It is possible to form a structure in which the holes formed by the saddle force of the reverse micelles are distributed almost uniformly in the structure, particularly preferably by performing the temperature and pressure conditions that are completed within 1 minute. Become. The evaporation rate of the hydrophobic organic solvent can be controlled by the temperature and pressure conditions in the system, but it is desirable to control the degree of vacuum or partial pressure in the system. In this case, using a hydrophobic organic solvent having a specific gravity of 0.665-0.90 at 20 ° C improves the uniform distribution.
上記操作により、前記孔の平均孔径を 0. 1〜: L0 mとすることが可能である。  By the above operation, the average hole diameter of the holes can be set to 0.1 to L0 m.
[0039] (ii)開口を有する多孔質構造体の形成 [0039] (ii) Formation of porous structure having openings
工程 1にお 、て比重カ^、ずれも親水性液体の比重よりも大き 、前記有機ポリマー 及び前記疎水性有機溶媒を使用し、かつ工程 3において前記疎水性有機溶媒の約 90質量%の蒸発を好ましくは 1分以上、より好ましくは 3分以上、特に好ましくは 5分 以上要する温度と圧力条件下で行うことにより、構造体表面に垂直な断面における 孔の全面積のうち表面開口孔の面積割合が 60%以上、又は表面開口率が 5%以上 である構造体を形成することが可能になる。疎水性有機溶媒の蒸発速度は、系内に おける温度と圧力条件により制御することが可能であるが、系内の減圧度又は分圧 を制御して行うのが望ましい。 尚、上記表面開口率に関しては、前述したように、溶質全体 (親水性液体 +有機ポ リマー +両親媒性物質)に対する親水性液体の重量配合割合 (親水性液体 Z [親水 性液体 +有機ポリマー +両親媒性物質]) (以下、 Rsということがある)が大きくなると 孔の密度を相対的に大きくすることが可能であり、この際、有機ポリマーおよび両親 媒性物質の濃度を一定とすると孔径が大きくしながら孔の密度を大きくすることができ 、一方、水の濃度とともに両親媒性物質の濃度も大きくしながら Rwを一定とすると、 孔径は一定のまま孔の密度を大きくすることができる。 In step 1, the specific gravity is greater than the specific gravity of the hydrophilic liquid, the organic polymer and the hydrophobic organic solvent are used, and in step 3, about 90% by mass of the hydrophobic organic solvent is evaporated. Is preferably performed for 1 minute or more, more preferably 3 minutes or more, and particularly preferably 5 minutes or more under the temperature and pressure conditions. A structure having a ratio of 60% or more or a surface opening ratio of 5% or more can be formed. The evaporation rate of the hydrophobic organic solvent can be controlled by the temperature and pressure conditions in the system, but it is desirable to control the degree of vacuum or partial pressure in the system. Regarding the surface opening ratio, as described above, the weight ratio of the hydrophilic liquid to the entire solute (hydrophilic liquid + organic polymer + amphiphile) (hydrophilic liquid Z [hydrophilic liquid + organic polymer] + Amphiphile]) (hereinafter sometimes referred to as Rs), it is possible to relatively increase the density of the pores, with constant concentrations of organic polymer and amphiphile. While increasing the pore size, the density of the pores can be increased. On the other hand, if the Rw is constant while increasing the concentration of the amphiphile as well as the concentration of water, the density of the pores can be increased while keeping the pore size constant. it can.
親水性液体として水を用いる場合、この場合に疎水性有機溶媒として 20°Cにおけ る比重が 1. 0〜1. 6程度のものを使用すると形成される孔のうち開口孔の割合を向 上させることができる。  When water is used as the hydrophilic liquid, in this case, when the hydrophobic organic solvent having a specific gravity at 20 ° C of about 1.0 to 1.6 is used, the ratio of the open holes is improved. Can be raised.
この場合、前記開口孔の平均開口径を 0. 1〜: LOO /z mとすることが可能である。  In this case, the average opening diameter of the opening holes may be 0.1 to: LOO / zm.
[0040] (iii)貫通孔を有する多孔質構造体の形成 [0040] (iii) Formation of porous structure having through-holes
工程 1における前記 Rw (親水性液体水 Z両親媒性物質)を 3ないし 15とし、かつェ 程 3における疎水性有機溶媒蒸発後の多層構造体の厚みが 1〜50 ;ζ ΐηとなるように 工程 2において前記疎水性有機溶媒溶液を基板上にキャストすることにより、構造体 表面に垂直な断面における孔の全面積のうち貫通孔の面積割合が 60%以上、又は 貫通孔に基づく表面開口率が 7%以上である構造体を形成することが可能となる。 尚、貫通孔に基づく表面開口率については、上記「開口を有する多孔質構造体の 形成」の表面開口率に関して記載したと同様である。  The Rw (hydrophilic liquid water Z amphiphile) in step 1 is 3 to 15, and the thickness of the multilayer structure after evaporation of the hydrophobic organic solvent in step 3 is 1 to 50; ζ ΐη By casting the hydrophobic organic solvent solution on the substrate in step 2, the area ratio of the through holes is 60% or more of the total area of the holes in the cross section perpendicular to the structure surface, or the surface opening ratio based on the through holes It is possible to form a structure with a 7% or more. The surface opening ratio based on the through holes is the same as described for the surface opening ratio in the above-mentioned “formation of porous structure having openings”.
この場合、前記貫通孔の構造体表面と平行方向の平均孔径を 1〜50 m、又は前 記開口孔の平均開口径を 1〜50 mとすることが可能である。  In this case, the average hole diameter in the direction parallel to the surface of the structure of the through hole can be set to 1 to 50 m, or the average opening diameter of the opening hole can be set to 1 to 50 m.
(iv)自己支持性を有する多孔質構造体の形成  (iv) Formation of a porous structure having self-supporting properties
また、工程 3で形成された基板上の多孔質構造体から基板を除去して得られる多 孔質構造体は、作業性等から自己支持性を有することが望ましい。自己支持性とは、 構造体自体が自立性を有することを 、 、、有機ポリマーの選択及び多孔質構造体の 厚みの設計により自己支持性を付与することは可能である。  In addition, it is desirable that the porous structure obtained by removing the substrate from the porous structure on the substrate formed in step 3 has self-supporting properties from the viewpoint of workability. Self-supporting means that the structure itself is self-supporting, and it is possible to provide self-supporting by selecting an organic polymer and designing the thickness of the porous structure.
[0041] (D)その他 [0041] (D) Other
本発明において、工程 1の疎水性有機溶媒溶液中に両親媒性物質、有機ポリマー 、有機溶媒、疎水性有機溶媒、水、及び該水相中に分散した金属、合金又は金属化 合物粒子を含有させておくと、その後の上記工程 2及び工程 3を経て得られた多孔 質構造体の孔中に前記金属、合金又は金属化合物微粒子を含ませることが可能と なる。 In the present invention, the hydrophobic organic solvent solution in Step 1 contains an amphiphilic substance and an organic polymer. , An organic solvent, a hydrophobic organic solvent, water, and a porous material obtained through the subsequent step 2 and step 3 when the metal, alloy or metal compound particles dispersed in the aqueous phase are contained. The metal, alloy or metal compound fine particles can be contained in the pores of the structure.
同様に工程 1の疎水性有機溶媒溶液中に機能性材料を含有させておくと、その後 の上記工程 2及び工程 3を経て得られた多孔質構造体の孔中に該機能性材料を含 ませることが可能となる。すなわち、工程 1で使用する疎水性有機溶媒溶液を両親媒 性物質、疎水性を有する有機ポリマー、疎水性有機溶媒、水、及び該水相中に分散 又は溶解した機能性材料からなる組成とすると、工程 3で得られた多孔質構造体の 孔中に該機能性材料が含まれてくる。この場合、該機能性材料としては、 Au、 Ag、 C u、 Pt、 Fe、 Ni、 Co、 Mn、 Cr及び Ti等の内の少なくとも 1種の金属、半導体材料、酸 化物、セラミックス材料、金属錯体、強誘電体材料、強磁性体材料、抵抗変化材料、 相変化材料、光機能材料、並びに蛍光機能材料カゝら選択される少なくとも 1種が例 示できるが、これら以外の機能性材料も使用することが可能である。尚、前記酸化物 には、金属酸化物に限らず、必要に応じて、シリコン酸ィ匕物等の非金属の酸ィ匕物も 含めることができる。  Similarly, if a functional material is contained in the hydrophobic organic solvent solution in step 1, the functional material is contained in the pores of the porous structure obtained through the subsequent steps 2 and 3. It becomes possible. That is, the hydrophobic organic solvent solution used in Step 1 is composed of an amphiphile, a hydrophobic organic polymer, a hydrophobic organic solvent, water, and a functional material dispersed or dissolved in the aqueous phase. The functional material is contained in the pores of the porous structure obtained in step 3. In this case, the functional material includes at least one metal selected from Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr and Ti, a semiconductor material, an oxide, a ceramic material, and a metal. Examples include at least one selected from complexes, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials, but other functional materials are also available. It is possible to use. The oxides are not limited to metal oxides, and can include non-metal oxides such as silicon oxides as necessary.
[2] 実施形態 2  [2] Embodiment 2
実施形態 2に係る多孔質構造体 (以下「多孔質構造体 A」 t ゝぅ)は、疎水性を有す る有機ポリマー、及び分子量が 10000以下の親水基に陰イオン性基を有する両親 媒性物質カゝら構成される多孔質構造体であって、該両親媒性物質が孔の辺縁部を 構成し、かつ各孔が該有機ポリマーからなる仕切壁により仕切られていて該構造体 の表面と平行方向に連通して 、な 、ことを特徴とする。  The porous structure according to Embodiment 2 (hereinafter “porous structure A” t ゝ ぅ) includes an organic polymer having hydrophobicity and an amphiphile having an anionic group in a hydrophilic group having a molecular weight of 10,000 or less. A porous structure composed of an organic substance, wherein the amphiphile constitutes the edge of the hole and each hole is partitioned by a partition wall made of the organic polymer. It is characterized in that it communicates in a direction parallel to the surface.
このような多孔質構造体 Aは、実施態様 1の工程 1において特に親水基に陰イオン 性基を有する両親媒性物質を使用することにより、親水基同士の静電反発力により、 逆ミセル同士の距離が大きくなる。更に、分子量が 10000以下の低分子量の両親媒 性物質を用いることで、高分子量のものと比較してミセル同士が静電反発力でより分 散し易くなる。その結果、形成された空孔同士の距離が最も小さい部分においてもあ る程度の厚みを有することから、該構造体の表面と平行方向に空孔同士で連通せず 、各孔が該有機ポリマー力もなる仕切壁により仕切られている構造体となる。 Such a porous structure A can be obtained by using an amphiphilic substance having an anionic group as a hydrophilic group in Step 1 of Embodiment 1 by using an electrostatic repulsive force between hydrophilic groups. The distance becomes larger. Furthermore, by using a low molecular weight amphiphile having a molecular weight of 10,000 or less, micelles are more easily dispersed by electrostatic repulsion than those having a high molecular weight. As a result, even in the portion where the distance between the formed holes is the smallest, it has a certain thickness, so that the holes do not communicate with each other in the direction parallel to the surface of the structure. The structure is such that each hole is partitioned by a partition wall that also has the organic polymer force.
[0043] 多孔質構造体 Aの製造方法は、実施形態 1の工程 1ないし 3に記載した方法と基本 的に同様であり、使用する有機ポリマーは実施形態 1の工程 1に記載したものと同様 のものを例示できる。  [0043] The method for producing porous structure A is basically the same as the method described in Steps 1 to 3 of Embodiment 1, and the organic polymer used is the same as that described in Step 1 of Embodiment 1. Can be illustrated.
分子量が 10000以下の親水基にイオン性基を有する両親媒性物質において、親 水性基を構成する陰イオンとしては— coo_、 -so—等がある。尚、両親媒性物質  In an amphiphilic substance having an ionic group in a hydrophilic group having a molecular weight of 10,000 or less, examples of the anion constituting the hydrophilic group include -coo_, -so- and the like. Amphiphiles
4  Four
として親水基に陰イオンを含む両親媒性物質は、親水基にジメチルアンモ-ゥムィォ ン、トリメチルアンモ -ゥムイオン、ピリジ-ゥムイオンなどの陽イオンを含む両親媒性 脂質類等よりも一般にミセルの分散安定ィ匕作用が高ぐ耐熱性に優れるために工業 的用途としてより好ましい。  As a general rule, amphiphiles containing anions in hydrophilic groups are generally more stable in micelle dispersion than amphipathic lipids containing cations such as dimethylammonium, trimethylammonium and pyridinium ions in hydrophilic groups. It is more preferable for industrial applications because of its high heat resistance and high heat resistance.
分子量が 10000以下の親水基に陰イオン性基を有する両親媒性物質としては、ビ ス(2—ェチルへキシルスルホコハク酸ナトリウム)、ジォクチルスルホコハク酸ナトリウ ム、ジイソプチルスルホコハク酸ナトリウム、ジシクロへキシルスルホコハク酸ナトリウム Amphiphilic substances having an anionic group in the hydrophilic group with a molecular weight of 10,000 or less include bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, dicyclohexane. Sodium hexylsulfosuccinate
、及びジへキシルスルホコハク酸ナトリウム力 選ばれた 1種以上が例示できるがこれ らに限定されるものではない。 , And dihexylsulfosuccinate sodium power One or more selected can be exemplified, but the present invention is not limited thereto.
実施形態 4で得られる多孔質構造体として、下記 (i)〜(iii)が例示できる。これらの 形成につ ヽては実施形態 1に記載した通りである。  Examples of the porous structure obtained in Embodiment 4 include the following (i) to (iii). The formation of these is as described in the first embodiment.
(i)前記構造体中の孔が構造体内にほぼ均一に分布しており、その平均孔径が 0. 1 〜: L0 mである多孔質構造体  (i) Porous structure in which the pores in the structure are almost uniformly distributed in the structure, and the average pore diameter is 0.1 to L0 m
(ii)前記構造体の構造体表面に垂直な断面における孔の全面積のうち表面の開口 孔の面積割合が 60%以上又は表面開口率が 5%以上であり、かつ該開口孔の平均 開口径が 0. 1〜: LOO /z mである多孔質構造体  (ii) Of the total area of the holes in the cross section perpendicular to the structure surface of the structure, the area ratio of the surface opening holes is 60% or more or the surface opening ratio is 5% or more, and the average opening of the opening holes is Porous structure having a diameter of 0.1-: LOO / zm
(iii)前記構造体の構造体表面に垂直な断面における孔の全面積のうち貫通孔の面 積割合が 60%以上又は貫通孔に基づく表面開口率が 7%以上であり、かつ該貫通 孔の構造体表面と平行方向の平均孔径が 1〜50 m、又は前記貫通孔の平均開口 径が 1〜50 mである多孔質構造体  (iii) Of the total area of the holes in the cross section perpendicular to the structure surface of the structure, the area ratio of the through holes is 60% or more, or the surface opening ratio based on the through holes is 7% or more, and the through holes A porous structure having an average pore diameter of 1 to 50 m in a direction parallel to the surface of the structure, or an average opening diameter of the through holes of 1 to 50 m
[0044] 多孔質構造体 Aにおいては、実施形態 1に記載したと同様に、多孔質構造体が自 己支持性を有する多孔質膜であること、多孔質構造体の孔の平均開口径が 0. 1〜1 00 μ mであること、及び、多孔質構造体が膜状であり、かつその厚みが 0. 001-1 mmであることが望ましい。 In the porous structure A, as described in Embodiment 1, the porous structure is a self-supporting porous film, and the average opening diameter of the pores of the porous structure is 0.1-1 It is desirable that the thickness is 00 μm, and the porous structure is a film and has a thickness of 0.001-1 mm.
[0045] 多孔質構造体 Aにおいては、実施形態 2に記載した充填法を採用することにより、 多孔質構造体の孔内に金属、合金又は金属化合物微粒子を存在させることが可能 である。また、同様に多孔質構造体の孔内に Au、 Ag、 Cu、 Pt、 Fe、 Ni、 Co、 Mn、 Cr及び Ti等の内の少なくとも 1種の金属、半導体材料、酸化物、セラミックス、金属錯 体、強誘電体材料、強磁性体材料、抵抗変化材料、相変化材料、光機能材料、並 びに蛍光機能材料の 1種カゝらなる材料を微粒子又は水溶液等の形で存在させること が可能であるがこれら以外の機能性材料も使用することが可能である。尚、前記酸化 物には、金属酸化物に限らず、必要に応じて、シリコン酸化物等の非金属の酸化物 ち含めることがでさる。  [0045] In the porous structure A, by using the filling method described in the second embodiment, it is possible to make metal, alloy, or metal compound fine particles exist in the pores of the porous structure. Similarly, at least one of metals such as Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr, and Ti, semiconductor materials, oxides, ceramics, metals in the pores of the porous structure Complex materials, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials may exist in the form of fine particles or aqueous solutions. Although it is possible, functional materials other than these can also be used. The oxide is not limited to a metal oxide, but can include a non-metal oxide such as silicon oxide as necessary.
また、多孔質構造体 Bにおいては、実施形態 1に記載したと同様に、多孔質構造体 Bが基板上に形成されていてもよぐ該基板がガラス等の無機基板、金属、シリコン酸 化物等のセラミックス基板、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート 、ポリエーテルケトン、ポリフッ化工チレン等の有機物基板カゝら選ばれたいずれか 1種 あるいはこれらの 、ずれか 1種以上を複合した基板を用いることができる。  Further, in the porous structure B, as described in the first embodiment, the porous structure B may be formed on the substrate. The substrate may be an inorganic substrate such as glass, metal, silicon oxide. Ceramic substrates such as polypropylene, polyethylene, polyethylene terephthalate, polyetherketone, polyfluorinated styrene, etc., any one selected from these substrates, or a substrate that combines at least one of these may be used. it can.
[0046] 実施形態 1により製造される多層構造体、又は多孔質構造体 Aは、半導体、キャパ シタ、磁気メモリ、メモリ、 DVD、発光デバイス、又はバイオチップ等の分野で広く使用 することができる。  [0046] The multilayer structure or porous structure A manufactured according to Embodiment 1 can be widely used in the fields of semiconductors, capacitors, magnetic memories, memories, DVDs, light-emitting devices, biochips, and the like. .
実施例  Example
[0047] 以下に本発明を実施例によって説明する力 本発明は以下の実施例に限定される ものではない。  [0047] The power of the present invention to be described below with reference to examples. The present invention is not limited to the following examples.
(1)本実施例、比較例にお!、て以下の評価方法を採用した。  (1) The following evaluation methods were employed in the present examples and comparative examples.
(i)疎水性有機溶媒溶液中の逆ミセルのミセル径測定  (i) Measurement of micelle size of reverse micelle in hydrophobic organic solvent solution
レーザー回折装置 (レーザー回折 Z散乱式粒度分布測定装置、型式: LA-920、 ( 株)堀場製作所製)を使用して測定を行った。  Measurement was performed using a laser diffractometer (laser diffraction Z scattering type particle size distribution analyzer, model: LA-920, manufactured by Horiba, Ltd.).
(ii)多孔質構造体の断面観察  (ii) Cross-sectional observation of porous structure
走査型電子顕微鏡 (SEM) (型式: JSM— 6330F、日本電子 (株)製)を使用して、 表面に垂直に切削し断面出しした構造体の観察を行った。 Using a scanning electron microscope (SEM) (model: JSM-6330F, manufactured by JEOL Ltd.) The structure cut out perpendicularly to the surface and cut out was observed.
(iii)ジへキサデシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコン プレックス由来の S (ィォゥ)成分濃度分布の分析  (iii) Analysis of the concentration distribution of the S (io) component derived from the polyion complex of dihexadecyldimethylammonium and polystyrenesulfonic acid
エネルギー分散型蛍光 X線分析装置を用いて、 S成分濃度分布の分析を行った。 (iv)孔がほぼ均質に分布して!/、る多孔質構造体の孔の平均孔径及び断面空孔率の 測定法  S component concentration distribution was analyzed using an energy dispersive X-ray fluorescence spectrometer. (iv) Method for measuring the average pore size and cross-sectional porosity of pores in porous structures with pores distributed almost uniformly!
走査型電子顕微鏡による膜断面観察結果から、孔部のほぼ中心断面に近いものを 任意に 5個抽出し、それぞれの孔部の構造体表面と平行方向の孔径を測定し、その 平均値を平均孔径とした。同様に、膜断面観察結果から、孔部面積の膜断面積全体 に占める割合を算出し、断面空孔率とした。  From the observation results of the cross-section of the membrane using a scanning electron microscope, arbitrarily extract five samples that are close to the central cross section of the hole, measure the hole diameter in the direction parallel to the surface of the structure of each hole, and average the average value. The pore size was used. Similarly, the ratio of the pore area to the entire membrane cross-sectional area was calculated from the results of membrane cross-sectional observation, and used as the cross-sectional porosity.
(V)孔のうち開口孔が 60%以上である構造体の、断面における孔の全面積に対する 非貫通開口孔の面積割合、平均開口径、及び表面開口率の測定法  (V) Measuring method of area ratio of non-through-opening hole, average opening diameter, and surface opening ratio of cross-sectional area of structure whose opening is 60% or more among holes
走査型電子顕微鏡による多孔質構造体の任意の断面における孔の全面積のうち 非貫通開口孔の面積割合を求めた。膜表面観察結果から、非貫通開口孔 10点を無 作為に抽出して孔径を測定し、その平均値を平均開口径とした。同様に、膜表面観 察結果から、非貫通開口孔の面積が膜表面積全体に占める割合を算出し、表面開 口率とした。  The area ratio of the non-through hole was calculated out of the total area of the holes in an arbitrary cross section of the porous structure by a scanning electron microscope. From the film surface observation results, 10 non-through-holes were randomly extracted to measure the hole diameter, and the average value was taken as the average opening diameter. Similarly, the ratio of the area of the non-through holes to the entire surface area of the membrane was calculated from the results of observation of the membrane surface and used as the surface opening rate.
(vi)孔のうち貫通孔が 60%以上である構造体の、断面における孔の全面積に対する 貫通孔の面積割合、表面開口率、平均開口径、構造体表面と平行方向の平均孔径 の測定法  (vi) Measurement of the area ratio, surface opening ratio, average opening diameter, and average hole diameter in the direction parallel to the surface of the structure with respect to the total area of the holes in the cross section of the structure with 60% or more of the through holes Law
断面における孔の全面積に対する貫通孔の面積割合は、多孔質構造体の任意の 断面における孔の全面積のうち貫通孔の面積割合を求める。表面開口率は、多孔質 構造体の表面の貫通孔の開口面積が表面積全体に占める割合を算出して表面開 口率を求める。平均開口径は、多孔質構造体の表面の貫通孔 10点を無作為に抽出 して開口径を測定し、その平均値を平均開口径とする。貫通孔の構造体表面と平行 方向の平均孔径は、孔部の略中心断面に相当する孔部の寸法の大きなものを 5個 抽出し、それぞれの孔部の構造体表面と平行方向の孔径 (平行方向の孔の最大長 さ)を測定し、その平均値を平均孔径とする。 [0049] (2)本実施例、比較例にお!、て使用した試料、及びその略号を以下に示す。 The area ratio of the through holes to the total area of the holes in the cross section is the area ratio of the through holes in the total area of the holes in any cross section of the porous structure. The surface opening ratio is obtained by calculating the ratio of the opening area of the through holes on the surface of the porous structure to the entire surface area. For the average opening diameter, 10 through-holes on the surface of the porous structure are randomly extracted and the opening diameter is measured, and the average value is taken as the average opening diameter. For the average hole diameter in the direction parallel to the structure surface of the through-hole, five holes with large hole sizes corresponding to the approximate center cross section of the hole are extracted, and the hole diameter in the direction parallel to the structure surface of each hole ( The maximum length of the holes in the parallel direction) is measured, and the average value is taken as the average hole diameter. [0049] (2) Samples used in Examples and Comparative Examples and their abbreviations are shown below.
(i)ポリスチレン:出光石油化学 (株)製 (商品名: HH30)のものを使用した。  (i) Polystyrene: Idemitsu Petrochemical Co., Ltd. (trade name: HH30) was used.
(ii)ビス(2—ェチルへキシルスルホコハク酸ナトリウム)(AOT):アルドリッチ社製を 使用した (分子量: 444)。  (ii) Bis (sodium 2-ethylhexylsulfosuccinate) (AOT): Aldrich (molecular weight: 444) was used.
(iii)ジへキサデシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコン プレックス(PIC):ジへキサデシルジメチルアンモ-ゥムブロミド (東京化成製) 1.0 gの 2%超音波分散液とポリスチレンスルホン酸ナトリウム (アルドリッチ社製) 0.24 gの 0.5% 水溶液を 60°Cにおいて攪拌し、生じた白色沈殿を吸引ろ過により回収し、クロ口ホル ムに溶解させた。このクロ口ホルム溶液に無水硫酸ナトリウムをカ卩ぇ乾燥させ、自然ろ 過により無水硫酸ナトリウムを除いた後、過剰量のエタノールと混合して再沈殿させ た。デカンテーシヨンにより無色透明な PIC (分子量: 10000以上)の精製物を得た。  (iii) Dihexadecyl dimethyl ammonium polystyrene complex (PIC): Dihexadecyl dimethyl ammonium bromide (Tokyo Kasei) 1.0 g of 2% ultrasonic dispersion and polystyrene sulfonic acid Sodium (manufactured by Aldrich) 0.24 g of 0.5% aqueous solution was stirred at 60 ° C., and the resulting white precipitate was collected by suction filtration and dissolved in chloroform. Anhydrous sodium sulfate was dried in the black mouth form solution, and the anhydrous sodium sulfate was removed by natural filtration, followed by reprecipitation by mixing with an excess amount of ethanol. By decantation, a colorless and transparent purified product of PIC (molecular weight: 10,000 or more) was obtained.
(iv)混合キシレン:ェチルベンゼン(15wt%)、オルソキシレン(22wt%)、メタキシレ ン (44wt%)、及びパラキシレン(19wt%)力もなる混合溶液を使用した。  (iv) Mixed xylene: A mixed solution having ethylbenzene (15 wt%), orthoxylene (22 wt%), metaxylene (44 wt%), and paraxylene (19 wt%) was used.
[0050] [実施例 1〜3]  [0050] [Examples 1 to 3]
実施例 1〜3において、疎水性有機溶媒として、トルエン (誘電率: 2. 38)、混合キ シレン (誘電率: 2. 40)、及びクロ口ホルム (誘電率: 4. 81)をそれぞれ使用して以下 に示す疎水性有機溶媒溶液を調製し、該溶液中に存在する逆ミセルの平均孔径の 経時変化を測定した。  In Examples 1 to 3, toluene (dielectric constant: 2.38), mixed xylene (dielectric constant: 2.40), and black mouth form (dielectric constant: 4.81) were used as hydrophobic organic solvents, respectively. Then, the following hydrophobic organic solvent solution was prepared, and the change with time of the average pore size of the reverse micelles present in the solution was measured.
実施例 1において、有機ポリマーとしてポリスチレン 1. OOgと、両親媒性物質 AOT 1. OOgとを混合し、この混合物を卜ノレェン 20. 00mlに溶解し、さらに水 0. 50mlを添 カロして 5分間超音波分散し (使用した超音波分散器:シャープ (株)製、型式: UT-204 、以下の実施例において同じ超音波分散器を使用した)、逆ミセルが形成された疎 水性有機溶媒溶液を調製した。この溶液中の有機ポリマーと両親媒性物質の重量 配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒性物質〕 ) )は 0. 50、水 と両親媒性物質の重量配合比 Rw (水 Z両親媒性物質)は 0. 50である。得られた溶 液を攪拌子により攪拌しながら 5分ごとにミセル径分布をレーザー回折装置により測 定した。その経時変化の測定を図 1に示す。図 1における平均ミセル径は、 0分後に 1. 51 μ m、 5分後に 1.50 μ m、 10分後に 1.48 μ m、 15分後に 1.42 μ mであり、安定して いた。 In Example 1, polystyrene 1.OOg as an organic polymer and amphiphile AOT 1.OOg were mixed, this mixture was dissolved in 20.00 ml of 卜 Noren, and 0.50 ml of water was further added. Hydrophobic organic solvent in which reverse micelles were formed after ultrasonic dispersion for 1 minute (ultrasonic disperser used: Sharp Corporation, model: UT-204, the same ultrasonic disperser was used in the following examples) A solution was prepared. Weight ratio of organic polymer to amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.50, weight blend of water and amphiphile. The ratio Rw (water Z amphiphile) is 0.50. While stirring the resulting solution with a stir bar, the micelle size distribution was measured with a laser diffractometer every 5 minutes. Figure 1 shows the changes over time. The average micelle diameter in Figure 1 is 1.51 μm after 0 minutes, 1.50 μm after 5 minutes, 1.48 μm after 10 minutes, and 1.42 μm after 15 minutes. It was.
[0051] 同様に実施例 2、 3において、疎水性有機溶媒として実施例 1におけるトルエンの 代わりに、実施例 2では混合キシレン、実施例 3ではクロ口ホルムを用いた以外は実 施例 1に記載したと同様の方法で疎水性有機溶媒溶液を調製した。得られた溶液を 実施例 1で行ったと同様の方法で逆ミセルの平均孔径の経時変化を測定した。その 経時変化の測定結果をそれぞれ図 2, 3に示す。  [0051] Similarly, in Examples 2 and 3, Example 1 except that mixed xylene was used in Example 2 and black mouth form was used in Example 3 instead of toluene in Example 1 as the hydrophobic organic solvent. A hydrophobic organic solvent solution was prepared in the same manner as described. The change over time of the average pore size of the reverse micelle was measured in the same manner as in Example 1 for the resulting solution. Figures 2 and 3 show the measurement results of the changes over time.
図 2における平均ミセル径は、 0分後に 14.69 /ζ πι、 5分後に 8.38 /ζ πι、 10分後に 3.19 /z mであった。また、図 3における平均ミセル径は、 0分後に 159.10 m、 5分後に 174 .49 μ m, 10分後に 151.86 /z m 15分後に 129.46であった。  The average micelle diameter in FIG. 2 was 14.69 / ζ πι after 0 minutes, 8.38 / ζ πι after 5 minutes, and 3.19 / z m after 10 minutes. The average micelle diameter in FIG. 3 was 159.10 m after 0 minutes, 174.49 μm after 5 minutes, and 151.86 / z m after 10 minutes and 129.46 after 15 minutes.
測定結果から疎水性有機溶媒の誘電率が低!、方が、すなわち非極性溶媒の方が 逆ミセルの平均孔径は小さくなり、またその経時変化が少な 、傾向になることが確認 された。  From the measurement results, it was confirmed that the hydrophobic organic solvent had a lower dielectric constant, that is, the nonpolar solvent had a smaller average micelle diameter and a tendency to change with time with a smaller reverse micelle.
これらの平均孔径の経時変化を測定から、逆ミセルを含む疎水性有機溶媒溶液を 形成後に、疎水性有機溶媒と親水性液体を蒸発させる工程の操作時間の目安を得 ることがでさる。  By measuring the change in the average pore diameter over time, it is possible to obtain a guide for the operation time of the process of evaporating the hydrophobic organic solvent and the hydrophilic liquid after forming the hydrophobic organic solvent solution containing reverse micelles.
[0052] [実施例 4、 5] [0052] [Examples 4 and 5]
実施例 4において、実施例 1で得た逆ミセルが形成された疎水性有機溶媒溶液を ブレードコーターを用い厚さ 300 /z mでポリエチレンテレフタレート(PET)基板(10cm X 10cm)上に塗布した。撹拌により逆ミセルを含む疎水性有機溶媒溶液を形成して から、ほぼ 30秒経過後にこの溶液を塗布した PET基板を蒸発用容器内で基板カゝら 3c m高い位置に設けられた乾燥空気吹込用パイプ(lmm φの孔が 3cmの等間隔に斜 め下方向に 4個設けられたもの)を利用して該基板の一方の端の斜め上方向から基 板に向力つて、温度 26°Cで乾燥空気 (相対湿度 17%)を流速 KL/min)で流しながら溶 媒を約 3分間で自然蒸発させ (以下の実施例にお!、て、工程 3における乾燥用空気 の流量と蒸発時間を変える以外は同様の蒸発方法を採用した。)、 PET基板上に膜 厚 3.12 mの薄膜を得た。  In Example 4, the hydrophobic organic solvent solution formed with reverse micelles obtained in Example 1 was applied onto a polyethylene terephthalate (PET) substrate (10 cm × 10 cm) at a thickness of 300 / z m using a blade coater. After forming a hydrophobic organic solvent solution containing reverse micelles by stirring, a PET substrate coated with this solution after about 30 seconds passed was blown in dry air at a position 3 cm above the substrate in the evaporation container. Using a pipe (with four lmm φ holes inclined at an equal interval of 3cm and provided in the downward direction), the substrate is directed diagonally upward from one end of the substrate to a temperature of 26 ° The solvent is allowed to spontaneously evaporate in about 3 minutes while flowing dry air (relative humidity 17%) at C at a flow rate of KL / min (in the following example! The same evaporation method was adopted except changing the time.) A thin film with a thickness of 3.12 m was obtained on the PET substrate.
光学顕微鏡による観察から、得られた薄膜中にはほぼ均一に微細孔が分布してお り、その平均孔径は 1.66 mで、断面空孔率は 22.2%であった。 実施例 5において、水の使用量を 0.25mlとして Rwを 0.25、 Rsを 0.11とした以外は上 記実施例 4と同様にして逆ミセルを含む疎水性有機溶媒溶液を形成し、ガラス基板 上にキャスト後、溶媒を自然蒸発させ、ガラス基板上に膜厚 1.41 μ mの薄膜を得た。 光学顕微鏡による観察から、得られた薄膜中の微細孔分布は実施例 4とほぼ同様で 、その平均孔径が 1.15 mで、断面空孔率が 24.3%であった。これらの実験条件と結 果をまとめて、表 3に示す。 From observation with an optical microscope, micropores were distributed almost uniformly in the obtained thin film, the average pore diameter was 1.66 m, and the cross-sectional porosity was 22.2%. In Example 5, a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 4 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film having a thickness of 1.41 μm on the glass substrate. From observation with an optical microscope, the micropore distribution in the obtained thin film was almost the same as in Example 4, the average pore diameter was 1.15 m, and the cross-sectional porosity was 24.3%. These experimental conditions and results are summarized in Table 3.
また、実施例 4、 5で作製した、 1^^0.25、 Rwが 0.50であるときの多孔質構造体の 断面図をそれぞれ図 4 (A)、図 4 (B)に示す。  In addition, cross-sectional views of the porous structures produced in Examples 4 and 5 when 1 ^ 0.25 and Rw are 0.50 are shown in FIGS. 4 (A) and 4 (B), respectively.
[0053] [実施例 6、 7] [0053] [Examples 6 and 7]
実施例 6にお 、て、実施例 2で得た逆ミセルが形成された疎水性有機溶媒溶液を ブレードコーターを用いて厚さが 300 mとなるようにポリエチレンテレフタレート(PET )基板(10cm X 10cm)上に塗布した。撹拌により逆ミセルを含む疎水性有機溶媒溶 液を形成してから、ほぼ 30秒経過後にこの溶液を塗布した PET基板上に温度 26°Cで 乾燥空気湘対湿度 17%)を流速 L/min)で流しながら溶媒を約 7分間で自然蒸発さ せ、 PET基板上に膜厚 2.90 mの薄膜を得た。  In Example 6, the hydrophobic organic solvent solution in which the reverse micelles obtained in Example 2 were formed was made into a polyethylene terephthalate (PET) substrate (10 cm × 10 cm) to a thickness of 300 m using a blade coater. ). After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of L / min at a temperature of 26 ° C (dry air vs. humidity 17%) was applied to the PET substrate on which this solution was applied approximately 30 seconds later. ) Was allowed to evaporate naturally in about 7 minutes, and a thin film with a thickness of 2.90 m was obtained on the PET substrate.
光学顕微鏡による観察から、得られた薄膜中にはほぼ均一に微細孔が分布してお り、その平均孔径は 1.63 mで、断面空孔率は 27.3%であった。  From observation with an optical microscope, micropores were almost uniformly distributed in the obtained thin film, the average pore diameter was 1.63 m, and the cross-sectional porosity was 27.3%.
実施例 7において、水の使用量を 0.25mlとして Rwを 0.25、 Rsを 0.11とした以外は上 記実施例 6と同様にして逆ミセルを含む疎水性有機溶媒溶液を形成し、 PET基板上 にキャスト後、溶媒を自然蒸発させ、ガラス基板上に膜厚 1.10 mの薄膜を得た。光 学顕微鏡による観察から、得られた薄膜の微細孔分布は実施例 6とほぼ同様で、そ の平均孔径は 1.07 mで、断面空孔率は 24.2%であった。これらの実験条件と結果 をまとめて、表 3に示す。  In Example 7, a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 6 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film having a thickness of 1.10 m on the glass substrate. From observation with an optical microscope, the micropore distribution of the obtained thin film was almost the same as in Example 6, the average pore diameter was 1.07 m, and the cross-sectional porosity was 24.2%. These experimental conditions and results are summarized in Table 3.
また、実施例 6、 7で作製した、 1^^0.25、 Rwが 0.50であるときの多孔質構造体の 断面図をそれぞれ図 5 (A)、図 5 (B)に示す。  In addition, cross-sectional views of the porous structures produced in Examples 6 and 7 when 1 ^ 0.25 and Rw are 0.50 are shown in FIGS. 5 (A) and 5 (B), respectively.
[0054] [表 3] 実施例番号 実施例 4 実施例 5 実施例 6 実施例 7 [0054] [Table 3] Example No. Example 4 Example 5 Example 6 Example 7
有機ポリマー (g) 1.00 1.00 1.00 1.00  Organic polymer (g) 1.00 1.00 1.00 1.00
実 両親媒性物質 ― A0T A0T A0T Α0Τ  Real Amphiphile ― A0T A0T A0T Α0Τ
(g) 1.00 1.00 1.00 1.00  (g) 1.00 1.00 1.00 1.00
験 疎水性有機溶媒 一 トノレェン トノレェン キシレン キシレン  Experimental Hydrophobic Organic Solvents 1 Tonorene Tonoylene Xylene Xylene
(ml) 20.00 20.00 20.00 20.00  (ml) 20.00 20.00 20.00 20.00
条 水 (ml) 0.50 0.25 0.50 0.25  Article Water (ml) 0.50 0.25 0.50 0.25
Rw ― 0.50 0.25 0.50 0.25  Rw ― 0.50 0.25 0.50 0.25
件 Rp 一 0.50 0.50 0.50 0.50  Rp 1 0.50 0.50 0.50 0.50
R s ― 0.20 0.11 0.20 0.11  R s ― 0.20 0.11 0.20 0.11
孔の分布 ― 均一分布 均一分布 均一分布 均一分布  Hole distribution-Uniform distribution Uniform distribution Uniform distribution Uniform distribution
平均孔径 1.66 1.15 1.63 1.07  Average pore size 1.66 1.15 1.63 1.07
果 断面空孔率 (%) 22.2 24.3 27.3 24.2  Fruit cross section porosity (%) 22.2 24.3 27.3 24.2
膜厚 (μηι) 3.12 1.41 2.90 1.10  Film thickness (μηι) 3.12 1.41 2.90 1.10
Rw: [水]/ [両親媒性物質] (重量比)  Rw: [Water] / [Amphiphile] (weight ratio)
R p : [有機ホ'リマ-]/ ([有機ホ'リマ-] + [両親媒性物質]) (重量比)  R p: [Organic polymer] / ([Organic polymer] + [Amphiphile]) (weight ratio)
R s : [水]/ ([有機ホ'リマ-] + [両親媒性物質] + [水]) (重量比) [実施例 8、 9]  R s: [Water] / ([Organic polymer] + [Amphiphile] + [Water]) (weight ratio) [Examples 8 and 9]
実施例 8にお ヽて、実施例 3で得た逆ミセルが形成された疎水性有機溶媒溶液を ブレードコーターを用いて厚さが 300 μ mになるようにポリエチレンテレフタレート(PET )基板(10cm X 10cm)上に塗布した。撹拌により逆ミセルを含む疎水性有機溶媒溶 液を形成してから、ほぼ 30秒経過後にこの溶液を塗布した PET基板上に温度 26°Cで 乾燥空気湘対湿度 17%)を流速 l(L/min)で流しながら溶媒を約 1分間で自然蒸発さ せ、 PET基板上に膜厚 3.41 μ mの薄膜を得た。  In Example 8, the hydrophobic organic solvent solution in which the reverse micelles obtained in Example 3 were formed was made into a polyethylene terephthalate (PET) substrate (10 cm X) using a blade coater to a thickness of 300 μm. 10 cm). After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of l (L) was applied to a PET substrate coated with this solution after 30 seconds at a temperature of 26 ° C and a humidity of 17%. / min), the solvent was naturally evaporated in about 1 minute, and a thin film with a thickness of 3.41 μm was obtained on the PET substrate.
光学顕微鏡による観察から、得られた薄膜中にはほぼ均一に微細孔が分布してお り、その平均孔径は 1.41 / mで、断面空孔率は 19.6%であった。  From observation with an optical microscope, micropores were almost uniformly distributed in the obtained thin film, the average pore diameter was 1.41 / m, and the cross-sectional porosity was 19.6%.
実施例 9において、水の使用量を 0.25mlとして Rwを 0.25、 Rsを 0.11とした以外は上 記実施例 8と同様にして逆ミセルを含む疎水性有機溶媒溶液を形成し、 PET基板上 にキャスト後、溶媒を自然蒸発させ、 PET基板上に膜厚 4.88 mの薄膜を得た。光学 顕微鏡による観察から、得られた薄膜の微細孔分布は実施例 6とほぼ同様で、その 平均孔径は 1.00 mで、断面空孔率は 22.4%であった。これらの実験条件と結果をま とめて、表 4に示す。  In Example 9, a hydrophobic organic solvent solution containing reverse micelles was formed in the same manner as in Example 8 except that the amount of water used was 0.25 ml, Rw was 0.25, and Rs was 0.11. After casting, the solvent was naturally evaporated to obtain a thin film with a thickness of 4.88 m on the PET substrate. From observation with an optical microscope, the micropore distribution of the obtained thin film was almost the same as in Example 6, the average pore diameter was 1.00 m, and the cross-sectional porosity was 22.4%. These experimental conditions and results are summarized in Table 4.
また、実施例 8、 9で作製した、 Rwが 0.25、 Rwが 0.50であるときの多孔質構造体の 断面図をそれぞれ図 6 (A)、図 6 (B)に示す。 Further, the porous structures produced in Examples 8 and 9 when Rw is 0.25 and Rw is 0.50 Sectional views are shown in Fig. 6 (A) and Fig. 6 (B), respectively.
[0056] [実施例 10、 11、 12] [Examples 10, 11, 12]
疎水性有機溶媒として、トルエンを使用して疎水性有機溶媒溶液カゝら得られる多孔 質構造体の断面空孔率の制御が可能であることの確認実験を行った。  An experiment was conducted to confirm that the cross-sectional porosity of the porous structure obtained from the hydrophobic organic solvent solution using toluene as the hydrophobic organic solvent can be controlled.
実施例 10において、有機ポリマーとしてポリスチレン 0.54gと、両親媒性物質 AOT0 .06gとをトルエン 6.00mlに溶解し、さらに水 0.03mlを添カ卩して 3分間超音波分散し、 逆ミセルが形成された疎水性有機溶媒溶液を調製した。この溶液中の有機ポリマー と両親媒性物質の重量配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒 性物質〕))は 0.90、水と両親媒性物質の重量配合比 Rw (水 Z両親媒性物質)は 0.50 である。  In Example 10, 0.54 g of polystyrene as an organic polymer and 0.06 g of the amphiphilic substance ATO are dissolved in 6.00 ml of toluene, and 0.03 ml of water is further added and ultrasonically dispersed for 3 minutes to form reverse micelles. A hydrophobic organic solvent solution was prepared. Weight ratio of organic polymer and amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.90, and weight ratio of water and amphiphile Rw (Water Z amphiphile) is 0.50.
上記で得られた逆ミセルを含有する疎水性有機溶媒溶液をブレードコーターを用 V、厚さ 300 μ mでポリエチレンテレフタレート(PET)基板(10cm X 10cm)上に塗布し た。撹拌により逆ミセルを含む疎水性有機溶媒溶液を形成してから、ほぼ 30秒経過 後にこの溶液を塗布した PET基板上に温度 26°Cで乾燥空気湘対湿度 17%)を流速 1 (L/min)で流しながら溶媒を約 3分間で自然蒸発させ、 PET基板上に膜厚 7.80 μ mの 薄膜を得た。光学顕微鏡による観察から、得られた薄膜中にはほぼ均一に微細孔が 分布しており、平均孔径は 1.22 mで、空孔率は 4.32%であった。  The hydrophobic organic solvent solution containing reverse micelles obtained above was applied onto a polyethylene terephthalate (PET) substrate (10 cm × 10 cm) with a thickness of 300 μm using a blade coater. After forming a hydrophobic organic solvent solution containing reverse micelles by agitation, a flow rate of 1 (L / L) was applied to a PET substrate coated with this solution after 30 seconds at a temperature of 26 ° C and a humidity of 17%. The solvent was allowed to evaporate naturally in about 3 minutes, and a thin film with a thickness of 7.80 μm was obtained on the PET substrate. From observation with an optical microscope, micropores were almost uniformly distributed in the obtained thin film, the average pore diameter was 1.22 m, and the porosity was 4.32%.
実施例 11、 12において、有機ポリマー、両親媒性物質 AOT、トルエン、及び水を 表 4に示す量使用した以外は、実施例 10に記載したと同様の方法で PET基板上薄 膜を得た。  In Examples 11 and 12, a thin film on the PET substrate was obtained in the same manner as described in Example 10 except that organic polymer, amphiphile AOT, toluene, and water were used in the amounts shown in Table 4. .
有機溶媒の比重にかかわらず、蒸発時間が比較的短い場合には、溶液全体に均 一にミセルが存在した状態のまま溶媒が蒸発するため、孔が膜全体に均一に分布し 、膜上下の開口率が小さく膜内部に多数の空孔を有する多孔膜を得られたものと推 定される。  Regardless of the specific gravity of the organic solvent, when the evaporation time is relatively short, the solvent evaporates while the micelles are uniformly present in the entire solution. It is estimated that a porous film having a small aperture ratio and a large number of pores inside the film was obtained.
これらの実験条件と結果をまとめて表 4に示す。これらの実験から条件設定により、 多孔質構造体の断面空孔率の制御が可能であることが確認された。  Table 4 summarizes the experimental conditions and results. From these experiments, it was confirmed that the cross-sectional porosity of the porous structure can be controlled by setting conditions.
[0057] [表 4] 実施例番号 実施例 8 実施例 9 実施例 10 実施例 11 実施例 12 有機ポリマー (g) 1.00 1.00 0.54 0.42 0.30 実 両親媒性物質 ― A0T A0T A0T Α0Τ A0T [0057] [Table 4] Example No. Example 8 Example 9 Example 10 Example 11 Example 12 Organic polymer (g) 1.00 1.00 0.54 0.42 0.30 Actual amphiphile ― A0T A0T A0T Α0Τ A0T
(g) 1.00 1.00 0.06 0.18 0.30 験 疎水性有機溶媒 ― クロ口ホルム クロロホ'レム ト ェン ン ト ェン  (g) 1.00 1.00 0.06 0.18 0.30 Test Hydrophobic Organic Solvent-Chlomouth Form Chlorophore Tem Ton Teng
(ml) 20.00 20.00 6.00 6.00 6.00 条 水 (ml) 0.50 0.25 0.03 0.09 0.15  (ml) 20.00 20.00 6.00 6.00 6.00 Article Water (ml) 0.50 0.25 0.03 0.09 0.15
Rw 一 0.50 0.25 0.50 0.50 0.50 件 Rp ― 0.50 0.50 0.90 0.70 0.50  Rw 1 0.50 0.25 0.50 0.50 0.50 Case Rp ― 0.50 0.50 0.90 0.70 0.50
R s 一 0.20 0.11 0.05 0.13 0.20 孔の分布 ― 均一分布 均一分布 均一分布 均一分布 均一分布 結 平均孔径 (μπι) 1.41 1.00 1.22 2.44 1.32  R s 1 0.20 0.11 0.05 0.13 0.20 Hole distribution-Uniform distribution Uniform distribution Uniform distribution Uniform distribution Uniform distribution Concentration average pore diameter (μπι) 1.41 1.00 1.22 2.44 1.32
果 断面空孔率 (%) 19.6 22.4 4.3 20.2 27.8  Fruit cross section porosity (%) 19.6 22.4 4.3 20.2 27.8
膜厚 3.41 4.88 7.80 5.85 1.58  Film thickness 3.41 4.88 7.80 5.85 1.58
Rw: [水 ] [両親媒性物質] (重量比)  Rw: [Water] [Amphiphile] (weight ratio)
Rp : [有機ホ'! /マ-]/ ([有機ホ''マ-] + [両親媒性物質]) (重量比)  Rp: [Organic Hom! / Mer] / ([Organic Homomer] + [Amphiphile]) (weight ratio)
R s : [水]/ ([有機ホ Ί"Η + [両親媒性物質] + [水]) (重量比) [実施例 13]  R s: [Water] / ([Organic organic solvent Η + [Amphiphile] + [Water]) (Weight ratio) [Example 13]
ポリスチレン(出光石油化学 (株)製、商品名: HH30)O.03gと、ジへキサデシルジメ チルアンモニゥムとポリスチレンスルホン酸のポリイオンコンプレックス (pic) 0.23g を混合し、この混合物をクロ口ホルム 3mlに溶解し、さら〖こ水 0. lgを添カ卩して約 5分 間超音波分散し、逆ミセルが形成された疎水性有機溶媒溶液を調製した。水と両親 媒性物質の重量配合比 (Rw)は 0.43、有機ポリマーと両親媒性物質の重量配合割 合 (Rp)は 0. 1であった。  Polystyrene (Idemitsu Petrochemical Co., Ltd., trade name: HH30) O.03g, dihexadecyldimethylammonium and 0.23g of polyion complex of polystyrene sulfonate (pic) were mixed, and this mixture was dissolved in 3ml of Kuroguchi Form. Then, 0.1 g of plain water was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. The weight ratio (Rw) of water and amphiphile was 0.43, and the weight ratio (Rp) of organic polymer and amphiphile was 0.1.
この溶液をブレードコーターを用いて厚さ 100 mとなるようにガラス基板上に塗布し た。疎水性有機溶媒溶液を調製してから約 30秒経過後に、この溶液を塗布したガラ ス基板上に温度 26°Cで乾燥空気 (相対湿度 17%)を流速 3(L/min)で流しながら溶媒 と水を約 1分間で自然蒸発させ、ガラス基板上に開口を有する膜厚 4// mの薄膜を得 た。  This solution was applied onto a glass substrate to a thickness of 100 m using a blade coater. Approximately 30 seconds after the preparation of the hydrophobic organic solvent solution, dry air (17% relative humidity) is allowed to flow at a flow rate of 3 (L / min) at a temperature of 26 ° C on the glass substrate coated with this solution. The solvent and water were naturally evaporated in about 1 minute, and a thin film with a thickness of 4 // m having an opening on the glass substrate was obtained.
走査型電子顕微鏡による膜断面観察結果から、構造体表面に垂直な断面におけ る孔の全面積のうち表面の開口孔の面積割合が 60%以上であった。  From the results of film cross-sectional observation using a scanning electron microscope, the area ratio of the surface open holes in the cross section perpendicular to the structure surface was 60% or more.
得られた膜の平均開口径は 0.75μ m、光学顕微鏡観察を用いて求めた表面開口 率は、 6.7%であった。得られた多孔質膜の光学顕微鏡観察図を図 7 (孔部は黒色で 示す)に示す。また、エネルギー分散型蛍光 X線分析装置による分析から、ジへキサ デシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコンプレックス由来 の s成分の濃度分布が孔辺縁部において特に高いことを確認した。これらの実験条 件と結果をまとめて、表 5に示す。 The average opening diameter of the obtained film was 0.75 μm, and the surface opening ratio obtained using optical microscope observation was 6.7%. Figure 7 shows the microscopic view of the resulting porous membrane (the hole is black). Show). In addition, the analysis using an energy dispersive X-ray fluorescence analyzer confirmed that the concentration distribution of the s component derived from the polyion complex of dihexadecyldimethylammonium and polystyrenesulfonic acid was particularly high at the pore edge. These experimental conditions and results are summarized in Table 5.
[0059] [実施例 14] [0059] [Example 14]
ポリスチレン(出光石油化学 (株)製、商品名: HH30) O. 67gと、ビス(2—ェチルへ キシルスルホコハク酸ナトリウム) 5. OOgを混合し、この混合物をクロ口ホルム 20mlに 溶解し、さらに水 5. Ogを添加して約 5分間超音波分散し、逆ミセルが形成された疎 水性有機溶媒溶液を調製した。この溶液中の有機ポリマーと両親媒性物質の重量 配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒性物質〕 ) )は 0. 12水と 両親媒性物質の重量配合比 Rw (〔水 Z両親媒性物質〕)は 1. 0である。  Polystyrene (made by Idemitsu Petrochemical Co., Ltd., trade name: HH30) O. 67g and bis (sodium 2-ethylhexylsulfosuccinate) 5. OOg are mixed, and this mixture is dissolved in 20 ml of black mouth form. Water 5. Og was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. Weight ratio of organic polymer and amphiphile in this solution Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.12. Rw ([water Z amphiphile]) is 1.0.
この溶液をブレードコーターを用いて厚さ 100 mでガラス基板上に塗布した。疎水 性有機溶媒溶液を調製して力 約 30秒経過後に、この溶液を塗布したガラス基板上 に温度 26°Cで乾燥空気湘対湿度 17%)を流速 3(L/min)で流しながら溶媒を約 1分間 で自然蒸発させ、ガラス基板上に、貫通孔を有する膜厚 1. の薄膜を得た。 光学顕微鏡による観察から、構造体表面に垂直な断面における孔の全面積のうち 貫通孔の面積割合が 60%以上であり、得られた薄膜は平均開口径が 10.89 mの微 細孔を有し、表面開口率は 36.6%であることを確認した。これらの実験条件と結果を まとめて、表 5に示す。  This solution was applied onto a glass substrate with a thickness of 100 m using a blade coater. After preparing a hydrophobic organic solvent solution and applying a force of about 30 seconds, the solvent was flowed on a glass substrate coated with this solution at a temperature of 26 ° C (dry air vs. humidity 17%) at a flow rate of 3 (L / min). Was spontaneously evaporated in about 1 minute to obtain a thin film having a thickness of 1. having a through-hole on the glass substrate. From the observation with an optical microscope, the area ratio of the through-holes is 60% or more of the total area of the holes in the cross section perpendicular to the structure surface, and the obtained thin film has micropores with an average opening diameter of 10.89 m. The surface opening ratio was confirmed to be 36.6%. Table 5 summarizes the experimental conditions and results.
得られた多孔質膜の斜め 45度上方力 見た光学顕微鏡で観察した斜視像を図 8 に示す。  Figure 8 shows a perspective image of the obtained porous film observed with an optical microscope viewed at an oblique upward force of 45 degrees.
[0060] [実施例 15〜18] [0060] [Examples 15 to 18]
クロ口ホルムを有機溶媒に用いて、水と両親媒性物質の配合比 Rwを 0.50、 1.0、 3.0 、 5.0となる条件を選んで、貫通孔を多く有する薄膜を形成した。  A thin film having many through-holes was formed by using black mouth form as an organic solvent and selecting conditions such that the mixing ratio Rw of water and amphiphile was 0.50, 1.0, 3.0, 5.0.
実施例 15において、ポリスチレン(出光石油化学 (株)製、商品名: HH30) O. 67gと 、ビス(2—ェチルへキシルスルホコハク酸ナトリウム) lgを混合し、この混合物をクロ 口ホルム 20mlに溶解し、さらに水 0. 5gを添カ卩して約 5分間超音波分散し、逆ミセル が形成された疎水性有機溶媒溶液を調製した。この溶液中の有機ポリマーと両親媒 性物質の重量配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒性物質〕 ) )は 0. 4、水と両親媒性物質の配合比 Rw (〔水 Z両親媒性物質〕の重量比)は 0. 5 である。 In Example 15, polystyrene (produced by Idemitsu Petrochemical Co., Ltd., trade name: HH30) O. 67 g and bis (2-ethylhexylsulfosuccinate sodium) lg were mixed, and this mixture was dissolved in 20 ml of chloroform. Further, 0.5 g of water was added and ultrasonically dispersed for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. Organic polymer and amphiphile in this solution Weight ratio Rp ([Organic polymer] / ([Organic polymer] + [Amphiphile])) is 0.4, Mixing ratio of water and amphiphile Rw ([Water Z amphiphile ] Is 0.5).
この溶液をブレードコーターを用い厚さ 100 mでガラス基板上に塗布した。疎水性 有機溶媒溶液を調製して力ゝら約 30秒経過後に、この溶液を塗布したガラス基板上に 温度 26°Cで乾燥空気湘対湿度 17%)を流速 3(L/min)で流しながら溶媒を約 1分間 自然蒸発させ、ガラス基板上に膜厚 9. 1 μ mの薄膜を得た。  This solution was applied onto a glass substrate with a thickness of 100 m using a blade coater. After preparing a hydrophobic organic solvent solution for about 30 seconds, dry air at a temperature of 26 ° C and a humidity of 17% at a flow rate of 3 (L / min) on a glass substrate coated with this solution. While the solvent was naturally evaporated for about 1 minute, a thin film with a film thickness of 9.1 μm was obtained on the glass substrate.
光学顕微鏡による断面観察から、構造体表面に垂直な断面における孔の全面積 のうち貫通している孔の面積割合が 60%以上であり、表面観察力 その貫通孔の膜 表面と平行方向の平均孔径が 10.9 m、平均開口径が 8.2 mの微細孔を有し、表 面開口率は 8.9%であることを確認した。また、エネルギー分散型蛍光 X線分析装置 による分析から、ビス (2-ェチルへキシルスルホコハク酸ナトリウム)由来の S成分の濃 度分布が孔辺縁部にぉ 、て特に高 、ことを確認した。  From the cross-sectional observation with an optical microscope, the area ratio of the through-holes in the cross-section perpendicular to the surface of the structure is 60% or more. It was confirmed that it had micropores with a pore size of 10.9 m and an average aperture size of 8.2 m, and a surface aperture ratio of 8.9%. In addition, analysis with an energy dispersive X-ray fluorescence spectrometer confirmed that the concentration distribution of S component derived from bis (2-ethylhexylsulfosulphate sodium) was particularly high at the edge of the hole.
[0061] 実施例 16ないし 18において、両親媒性物質の添力卩量を一定として、水の添加量を l.OOg (実施例 16)、 3.00g (実施例 17)、 5.00g (実施例 18)とした。その他の条件は 実施例 15と同様にして膜を作製した。光学顕微鏡による断面観察から、得られた構 造体の表面に垂直な断面における孔の全面積のうち貫通孔の面積割合が 60%以上 であり、また光学顕微鏡観察から平均開口径及び表面開口率を求めた。 [0061] In Examples 16 to 18, the amount of water added to the amphiphile is constant, and the amount of water added is l.OOg (Example 16), 3.00 g (Example 17), 5.00 g (Example) 18). The other conditions were the same as in Example 15 to produce a film. From the cross-sectional observation with the optical microscope, the area ratio of the through-holes is 60% or more of the total area of the holes in the cross-section perpendicular to the surface of the obtained structure. Asked.
逆ミセル溶液調製条件 (各成分、 Rw及び Rp)、並びに平均開口径、表面開口率、 及び膜厚の測定結果を表 5にまとめて示す。  Table 5 summarizes the reverse micelle solution preparation conditions (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness measurement results.
[0062] [表 5] [0062] [Table 5]
実施例, 比較例番号 実施例 13 実施例 14 実施例 15 実施例 16 実施例 17 実施例 18 Example, Comparative Example No. Example 13 Example 14 Example 15 Example 16 Example 17 Example 18
有機ポリマー ( ε) 0.03 0.67 0.67 0.67 0.67 0.67 実両親媒性物質 PIC A0T A0T A0T A0T A0T  Organic polymer (ε) 0.03 0.67 0.67 0.67 0.67 0.67 Real amphiphile PIC A0T A0T A0T A0T A0T
(g) 0.23 5, 00 1 1 1 1 験疎水性有機溶媒 一 クロ口 ルム クロ。ホルム クロ ホルム クロ ホルム クロ口ホルム クロ ホルム  (g) 0.23 5, 00 1 1 1 1 Experimental hydrophobic organic solvent. Holm Kuro Holm Kuro Holm Kuroguchi Holm Kuro Holm
(ml) 3 20.00 20 20 20 20 条水 (g) 0.1 5.00 0.50 1.00 3.00 5.00  (ml) 3 20.00 20 20 20 20 Water (g) 0.1 5.00 0.50 1.00 3.00 5.00
R 一 0.43 1.00 0.50 1.00 3.00 5.00 件 p ― 0.12 0.12 0, 40 0.40 0.40 0.40  R 1 0.43 1.00 0.50 1.00 3.00 5.00 cases p ― 0.12 0.12 0, 40 0.40 0.40 0.40
R s 一 0.28 0.47 0.23 0.37 0.64 0.75 孔の形態 ― 開口 貫通孔 貫通孔 貫通孔 貫通孔 貫通孔 平均開口径 m) 0, 75 10.89 8.2 22 43 50 果表面開口率 (%) 6.7 36.6 8.9 15.1 20.2 22.2  R s 1 0.28 0.47 0.23 0.37 0.64 0.75 Hole type-Opening Through-hole Through-hole Through-hole Through-hole Through-hole Average opening diameter m) 0, 75 10.89 8.2 22 43 50 Fruit surface opening ratio (%) 6.7 36.6 8.9 15.1 20.2 22.2
膜厚 (n m) m) 4.0 1.18 9.1 9.5 8.1 8.3  Film thickness (nm) m) 4.0 1.18 9.1 9.5 8.1 8.3
Rw : [水] Z [|*)親媒性物質] (重量比)  Rw: [Water] Z [| *) Amphiphile] (weight ratio)
R p : [有機ホ' -]/ ([有機ホ Ί?- ] + [両親媒性物質]) (重量比)  R p : [Organic organic '-] / ([Organic organic Ί?-] + [Amphiphile]) (weight ratio)
R s : [水]/ ([有機ホ 'リマ-] + [両親媒性物 «] + [水]) (重量比)  R s: [Water] / ([Organic polymer] + [Amphiphile «] + [Water]) (weight ratio)
[0063] [比較例 1] [0063] [Comparative Example 1]
比較例 1において、実施例 15で用いたと同様の成分を使用して、両親媒性物質 1.0 g、有機ポリマー 0.67g、水 0.25g、クロ口ホルム 20mlの配合割合とし、マグネチック'ス ターラーを用いて撹拌を約 30秒間とした以外は実施例 15と同様にして膜を作製した  In Comparative Example 1, using the same components as used in Example 15, the mixing ratio of amphiphile 1.0 g, organic polymer 0.67 g, water 0.25 g, black mouth form 20 ml, magnetic 'stirrer was used. A membrane was prepared in the same manner as in Example 15 except that stirring was performed for about 30 seconds.
Rwiま 0.25、 Rpiま 0.4であった。 Rwi was 0.25 and Rpi was 0.4.
得られた膜を光学顕微鏡で観察した。その結果、微細孔は確認されなカゝつた。 比較的孔径の大き ヽ逆ミセルが多く存在し、また有機溶媒として比重が比較的大き いクロ口ホルムを使用していたので、溶媒の蒸発時には表面に逆ミセルが多く分布し て微細孔は殆ど形成されな力 た。  The obtained film was observed with an optical microscope. As a result, fine pores were not confirmed. Relatively large pore size ヽ Many reverse micelles exist, and Kuroguchi Form, which has a relatively large specific gravity, was used as the organic solvent. Unformed power.
[0064] [実施例 19〜21] [0064] [Examples 19 to 21]
実施例 19〜21において、有機ポリマー以外の配合量を一定として、有機ポリマー と両親媒性物質の重量配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒 性物質〕 ) )が 0.1〜0.6の範囲となる条件で多孔質構造体を作製した。  In Examples 19 to 21, the blending ratio Rp ((organic polymer) / ((organic polymer) + [amphiphile])) of the organic polymer and the amphiphilic substance is constant with the blending amount other than the organic polymer being constant. A porous structure was produced under the condition of 0.1 to 0.6.
実施例 19〜21において、水と両親媒性物質の添加量は一定 (Rw:0.5)とし、有 機ポリマーを Rpが 0.1(実施例 19)、0.2(実施例 20)、0.6 (実施例 21)となるよう に添加した。その他の条件は実施例 15と全く同様にして多孔質膜を作製した。  In Examples 19 to 21, the amount of water and amphiphile added is constant (Rw: 0.5), and the organic polymer has Rp of 0.1 (Example 19), 0.2 (Example 20), and 0.6 (Example 21). ) Was added. Other conditions were the same as in Example 15 to produce a porous membrane.
光学顕微鏡による断面観察から、得られた構造体の表面に垂直な断面における孔 の全面積のうち貫通している孔の面積割合がすべて 60%以上であり、また光学顕微 鏡観察から平均開口径及び表面開口率を求めた。尚、表面観察から実施例 19にお いて貫通孔の膜表面と平行方向の平均孔径は 13.6 mであった。逆ミセル溶液調製 条件 (各成分、 Rw及び Rp)、並びに平均開口径、表面開口率、及び膜厚の測定結 果を併せて表 6にまとめて示す。 Holes in the cross section perpendicular to the surface of the structure obtained from cross-sectional observation with an optical microscope Of these total areas, the ratio of the area of the penetrating holes was 60% or more, and the average aperture diameter and the surface aperture ratio were obtained from observation with an optical microscope. From the surface observation, in Example 19, the average pore diameter in the direction parallel to the membrane surface of the through-hole was 13.6 m. Table 6 summarizes the conditions for preparing the reverse micelle solution (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness measurement results.
[0065] [表 6] [0065] [Table 6]
Figure imgf000037_0001
Figure imgf000037_0001
R w: [水] / [两親媒性物質] (重量比)  R w: [water] / [two amphiphiles] (weight ratio)
R p : [有機ホ'リマ-] / ( [有機 リマ ] + [両親媒性物質] ) (重量比)  R p: [Organic Lima-] / ([Organic Lima] + [Amphiphile]) (Weight ratio)
R s : [水] Z ([有機ホ'リマ-] + [両親媒性物質] + [水] ) (重量比)  R s: [Water] Z ([Organic polymer] + [Amphiphile] + [Water]) (weight ratio)
[0066] [比較例 2] [0066] [Comparative Example 2]
比較例 2において、実施例 19で用いたと同様の成分を使用して、両親媒性物質 1.0 g、有機ポリマー 9.0g、水 0.5g、クロ口ホルム 20mlの配合割合とし、マグネチック'スタ 一ラーを用いて撹拌を約 30秒間とした以外は実施例 19と同様にして膜を作製した。  In Comparative Example 2, the same components as those used in Example 19 were used, and the mixing ratio was 1.0 g of amphiphile, 9.0 g of organic polymer, 0.5 g of water, and 20 ml of black mouth form. A membrane was prepared in the same manner as in Example 19 except that stirring was performed for about 30 seconds.
Rwは 0.50、 Rpは 0.90であった。  Rw was 0.50 and Rp was 0.90.
比較例 2において、微細孔は確認されな力 た。逆ミセルを形成する際の撹拌が不 十分であり、また相対的に有機ポリマー量が多ぐ両親媒性物質が少ない条件であ つたために膜全体における逆ミセルの割合が少なくなり、微細孔が確認されな力つた と思われる。  In Comparative Example 2, no fine pores were observed. The agitation during the formation of reverse micelles is insufficient, and the ratio of reverse micelles in the entire membrane is reduced due to the relatively small amount of amphiphiles with a relatively large amount of organic polymer. It seems that it was confirmed power.
[0067] [実施例 22] [0067] [Example 22]
多孔質膜に機能性材料として銅微粒子を多孔質構造体に導入する実験を行った。 実施例 15において、添加する水 0. 5gに更に銅微粒子 (平均粒径 50nm)3. 5mgを 配合して、スターラーで約 5分間攪拌して分散させ、逆ミセルが形成された疎水性有 機溶媒溶液を調製した。この溶液をブレードコーターを用い厚さ 0. 5mmでガラス基 板上に塗布した後、実施例 15と同様に有機溶媒と水を自然蒸発させ、貫通孔を多く 有する膜厚 6 μ mの薄膜を得た。光学顕微鏡による観察から、平均開口径 5 μ mの微 細孔を有し、該細孔内に選択的に銅微粒子が存在することを確認した。 An experiment was conducted in which copper fine particles were introduced into the porous structure as a functional material in the porous membrane. In Example 15, 0.5 mg of copper fine particles (average particle size 50 nm) was added to 0.5 g of water to be added. The resultant mixture was stirred and dispersed with a stirrer for about 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. After applying this solution to a glass substrate with a thickness of 0.5 mm using a blade coater, the organic solvent and water were naturally evaporated in the same manner as in Example 15 to form a 6 μm-thick thin film with many through holes. Obtained. From observation with an optical microscope, it was confirmed that fine pores having an average opening diameter of 5 μm were present, and copper fine particles were selectively present in the pores.
[0068] [実施例 23〜25] [0068] [Examples 23 to 25]
疎水性有機溶媒と水の配合量を一定として、有機ポリマーと両親媒性物質の重量 配合割合 Rp (〔有機ポリマー〕 / (〔有機ポリマー〕 +〔両親媒性物質〕 ) )が 0.12〜0.6 の範囲となる条件で、平均開口径を制御する実験を行った。  Weight ratio of organic polymer and amphiphile Rp ((Organic polymer) / ((Organic polymer) + (Amphiphile))) is 0.12 ~ 0.6 An experiment was conducted to control the average aperture diameter under the range condition.
実施例 13に記載したと同様に、実施例 23〜25において、表 7に示す量のポリスチ レンと、ジへキサデシルジメチルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコ ンプレックス(PIC)とをクロ口ホルム 3mlに溶解し、さらに水 0. lgを添カ卩して 5分間超 音波分散し、逆ミセルが形成された疎水性有機溶媒溶液を調製した。それぞれの成 分の配合比等は表 7に示す。この溶液をブレードコーターを用いて厚さ 100 mでガ ラス基板上に塗布した。疎水性有機溶媒溶液を調製してから約 30秒経過後に、この 溶液を塗布したガラス基板上に温度 26°Cで乾燥空気 (相対湿度 17%)を流速 3(L/mi n)で流しながら有機溶媒と水を自然蒸発させ、ガラス基板上に膜厚 4 mの薄膜を得 た。  In the same manner as described in Example 13, in Examples 23 to 25, the amounts of polystyrene shown in Table 7 were mixed with dihexadecyldimethylammonium and polystyrene sulfonate polyion complex (PIC). Dissolved in 3 ml of mouth form, further added 0.1 lg of water and ultrasonically dispersed for 5 minutes to prepare a hydrophobic organic solvent solution in which reverse micelles were formed. Table 7 shows the composition ratio of each component. This solution was applied onto a glass substrate with a thickness of 100 m using a blade coater. About 30 seconds after the preparation of the hydrophobic organic solvent solution, dry air (relative humidity 17%) flows at a flow rate of 3 (L / min) at a temperature of 26 ° C on the glass substrate coated with this solution. The organic solvent and water were naturally evaporated to obtain a 4 m thin film on the glass substrate.
光学顕微鏡による断面観察から、得られた構造体の表面に垂直な断面における孔 の全面積のうち貫通孔の面積割合が 60%以上であり、また光学顕微鏡観察力 平均 開口径及び表面開口率を求めた。  From the cross-sectional observation with the optical microscope, the area ratio of the through-holes is 60% or more of the total area of the holes in the cross section perpendicular to the surface of the obtained structure, and the optical microscope observation power average aperture diameter and surface aperture ratio are Asked.
逆ミセル溶液調製条件 (各成分、 Rw及び Rp)、並びに平均開口径、表面開口率、 及び膜厚の測定結果を併せて表 7に示す。  Table 7 shows the conditions for preparing the reverse micelle solution (each component, Rw and Rp), and the average aperture diameter, surface aperture ratio, and film thickness.
[0069] [表 7] 実施例番号 実施例 13 実施例 23 実施例 24 実施例 25 [0069] [Table 7] Example No.Example 13 Example 23 Example 24 Example 25
有機ポリマー ( g ) 0.03 0.08 0. 13 0. 15  Organic polymer (g) 0.03 0.08 0. 13 0. 15
実両親媒性物質 一 PIC PIC PIC PIC  Real Amphiphile I PIC PIC PIC PIC
( g ) 0.23 0. 18 0.13 0. 10  (g) 0.23 0. 18 0.13 0. 10
験疎水性有機溶媒 ク 口ホルム クロ口ホルム ク 口ホルム クロ ホルム  Hydrophobic organic solvent
(ml) 3 3 3 3  (ml) 3 3 3 3
条水 ( g ) 0. 1 0. 1 0. 1 0.1  Water (g) 0. 1 0. 1 0. 1 0.1
Rw 一 0.43 0.56 0.77 1.00  Rw 1 0.43 0.56 0.77 1.00
件 R p 一 0.12 0.31 0.50 0.60  R p 1 0.12 0.31 0.50 0.60
R s 0.28 0.28 0.28 0.29  R s 0.28 0.28 0.28 0.29
孔の形態 一 貫通孔 貫通孔 貫通孔 貫通孔  Form of hole 1 Through hole Through hole Through hole Through hole
結平均開口径 m) 0.75 15 30 35  (Average diameter m) 0.75 15 30 35
果表面開口率 (%) 6.7 14.9 12.4 8.4  Fruit surface opening ratio (%) 6.7 14.9 12.4 8.4
膜厚 m) 4.0 5.0 4.4 4. 1  Film thickness m) 4.0 5.0 4.4 4. 1
Rw: [水] [両親媒性物質] (重量比)  Rw: [Water] [Amphiphile] (weight ratio)
R p : [有機ホ° Ϊマ ]ノ ([有機ホ'リマ ] + [両親媒性物質]) (重量比)  R p: [Organic web] [(Organic polymer] + [Amphiphile]) (weight ratio)
R s : [水]/" ([有機ホ'リマ-] + [両親媒性物質] + [水]) (重量比)  R s: [Water] / "([Organic polymer] + [Amphiphile] + [Water]) (weight ratio)
[0070] [比較例 3] [0070] [Comparative Example 3]
実施例 15において、疎水性有機溶媒溶液に水のみを添加せず、その他は実施例 15と全く同様にして成膜を行った。光学顕微鏡による観察を行ったが、フィルム表面 は平滑であり、細孔は観察されな力つた。  In Example 15, a film was formed in exactly the same manner as Example 15 except that only water was not added to the hydrophobic organic solvent solution. Observation with an optical microscope revealed that the film surface was smooth and no pores were observed.
産業上の利用可能性  Industrial applicability
[0071] 本発明の方法により得られる多層構造体は、光学フィルターや回折素子等として利 用することが可能であり、また半導体、キャパシタ、磁気メモリ、メモリ、 DVD、発光デ バイス、又はバイオチップ用の分野で広く使用することができる。 [0071] The multilayer structure obtained by the method of the present invention can be used as an optical filter, a diffractive element, or the like, and also includes a semiconductor, a capacitor, a magnetic memory, a memory, a DVD, a light emitting device, or a biochip. Can be widely used in the field of application.
尚、本願の基礎出願である日本出願の出願番号特願 2005-205961 (出願日:2005 年 7月 14日)及び同出願番号特願 2006-191742 (出願日:2006年 7月 12日)に開示さ れている、明細書、図面及び請求の範囲の内容は本願発明に取り入れられる。  Application No. 2005-205961 (Application date: July 14, 2005) and Application No. 2006-191742 (Application date: July 12, 2006) of the Japanese application that is the basic application of this application The contents of the specification, drawings, and claims disclosed are incorporated into the present invention.

Claims

請求の範囲 The scope of the claims
[1] 下記 (i)な ヽし (iii)に記載する工程を含む、疎水性有機溶媒溶液中に形成された 逆ミセルの铸型を孔の形成に利用する多孔質構造体の製造方法。  [1] A method for producing a porous structure using the reverse micelle cage shape formed in a hydrophobic organic solvent solution for forming pores, comprising the following steps (i) and (iii):
(i)少なくとも両親媒性物質、疎水性を有する有機ポリマー、親水性液体及び該有機 ポリマーを溶解する疎水性有機溶媒カゝらなる溶液を撹拌して、逆ミセルが形成された 疎水性有機溶媒溶液を得る工程 (工程 1)  (i) A hydrophobic organic solvent in which reverse micelles are formed by stirring at least an amphiphile, a hydrophobic organic polymer, a hydrophilic liquid, and a hydrophobic organic solvent that dissolves the organic polymer. Step of obtaining a solution (Step 1)
(ii)前記疎水性有機溶媒溶液を基板上にキャストする工程 (工程 2)  (ii) A step of casting the hydrophobic organic solvent solution onto a substrate (Step 2)
(iii)前記基板上の疎水性有機溶媒溶液から、疎水性有機溶媒と親水性液体を蒸発 させて多孔質の構造体を形成する工程 (工程 3)  (iii) A step of evaporating the hydrophobic organic solvent and the hydrophilic liquid from the hydrophobic organic solvent solution on the substrate to form a porous structure (step 3)
[2] 工程 1における親水性液体と両親媒性物質の重量配合比 Rw (親水性液体,両親 媒性物質)が 0. 1ないし 15である請求項 1に記載の多孔質構造体の製造方法。  [2] The method for producing a porous structure according to claim 1, wherein the weight mixing ratio Rw (hydrophilic liquid, amphiphile) of the hydrophilic liquid and the amphiphile in step 1 is 0.1 to 15. .
[3] 工程 1における有機ポリマーと両親媒性物質の重量配合割合 Rp (有機ポリマー/〔 有機ポリマー +両親媒性物質〕)が 0. 1ないし 0. 9である請求項 1に記載の多孔質 構造体の製造方法。  [3] The porous composition according to claim 1, wherein the weight mixing ratio Rp (organic polymer / [organic polymer + amphiphile]) of the organic polymer and the amphiphile in step 1 is 0.1 to 0.9. Manufacturing method of structure.
[4] 前記疎水性有機溶媒が、 20°Cにおける誘電率が 5以下であるノルマルペンタン、ノ ルマルへキサン、シクロへキサン、イソオクタン、ノルマルヘプタン、ノルマルデカン、 ベンゼン、トルエン、ェチルベンゼン、オルソキシレン、メタキシレン、パラキシレン、混 合キシレン、四塩化炭素、クロロホノレム、及びトランス 1,2,-ジクロロエチレン、 並びに 20°Cにおける誘電率が 5を越える、酢酸ブチル、ジクロロメタン、 1,1,2,2—テト ラクロロルェタン、シス 1,2—ジクロロェタン、及びイソブチルメチルケトン  [4] The hydrophobic organic solvent is a normal pentane, normal hexane, cyclohexane, isooctane, normal heptane, normal decane, benzene, toluene, ethylbenzene, orthoxylene, having a dielectric constant at 20 ° C. of 5 or less. Meta-xylene, para-xylene, mixed xylene, carbon tetrachloride, chlorophenol, and trans 1,2, -dichloroethylene, and butyl acetate, dichloromethane, 1,1,2,2- Tetrachloroluethane, cis 1,2-dichloroethane, and isobutyl methyl ketone
力 選ばれた 1種以上である請求項 1に記載の多孔質構造体の製造方法。  2. The method for producing a porous structure according to claim 1, wherein at least one selected from force is used.
[5] 前記両親媒性物質がビス(2—ェチルへキシルスルホコハク酸ナトリウム)、ジォクチ ルスルホコハク酸ナトリウム、ジイソプチルスルホコハク酸ナトリウム、ジシクロへキシル スルホコハク酸ナトリウム、ジへキシルスルホコハク酸ナトリウム、ジへキサデシルジメ チルアンモ-ゥムとポリスチレンスルホン酸のポリイオンコンプレックス、エチレングリコ ールとプロピレングリコールから得られるブロックコポリマー、エチレンオキサイドとプロ ピレンオキサイド力 得られるブロックコポリマー力 選ばれた 1種以上である請求項 1に記載の多孔質構造体の製造方法。 [5] The amphiphile is bis (2-ethylhexylsulfosuccinate sodium), dioctylsulfosuccinate sodium, diisoptylsulfosuccinate sodium, dicyclohexylsulfosuccinate sodium, dihexylsulfosuccinate sodium, dihexene A polyion complex of xadecyldimethylammonium and polystyrene sulfonic acid, a block copolymer obtained from ethylene glycol and propylene glycol, an ethylene oxide and propylene oxide force, a block copolymer force obtained, and one or more selected. The manufacturing method of the porous structure of description.
[6] 前記有機ポリマーがポリエチレン、ポリプロピレン、ポリ— 4—メチルペンテン— 1、シ クロポリオレフイン、ポリ塩化ビニル、ポリ塩ィ匕ビニリデン、ポリスチレン、アタリロニトリ ル—スチレン榭脂 (AS榭脂)、アクリロニトリル—ブタジエン—スチレン榭脂 (ABS榭 脂)、メタクリル酸エステル榭脂、アクリル酸エステル榭脂、エチレンビュルアルコール 共重合榭脂、ポリアルキレンオキサイド、ポリアミド、ポリアセタール、ポリカーボネート 、変性ポリフエ-レンエーテル、熱可塑性ポリエステル、ポリフエ-レンスルフイド、ポリ スルフォン、ポリエーテルイミド、ポリエーテルスルフォン、ポリエーテルケトン、ポリエ 一テルエーテルケトン、及びポリアミドイミドから選ばれた 1種以上である請求項 1に記 載の多孔質構造体の製造方法。 [6] The organic polymer is polyethylene, polypropylene, poly-4-methylpentene-1, cyclopolyolefin, polyvinyl chloride, polyvinyl chloride, polyvinylidene, polystyrene, acrylonitrile-styrene resin (AS resin), acrylonitrile— Butadiene-styrene resin (ABS resin), methacrylate ester resin, acrylate ester resin, ethylene butyl alcohol copolymer resin, polyalkylene oxide, polyamide, polyacetal, polycarbonate, modified polyphenylene ether, thermoplastic polyester 2. The porous structure according to claim 1, wherein the porous structure is at least one selected from the group consisting of polyphenylene sulfide, polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide. Production method.
[7] 前記基板がガラス、金属、セラミックス、ポリプロピレン、ポリエチレン、ポリエチレン テレフタレート、ポリエーテルケトン、ポリフッ化工チレン力も選ばれたいずれか 1種あ るいはこれらの 、ずれ力 1種以上を複合した基板である請求項 1に記載の多孔質構 造体の製造方法。 [7] The substrate is any one selected from glass, metal, ceramics, polypropylene, polyethylene, polyethylene terephthalate, polyether ketone, and polyfluorinated styrene power, or a composite of one or more of these displacement forces. The method for producing a porous structure according to claim 1.
[8] 工程 1で逆ミセルを含む疎水性有機溶媒溶液を形成した後、工程 2で基板上に前 記疎水性有機溶媒溶液の厚みが 0. 01〜5mmになるようにキャストする請求項 1に 記載の多孔質構造体の製造方法。  [8] The method according to claim 1, wherein after forming the hydrophobic organic solvent solution containing reverse micelles in step 1, casting is performed on the substrate in step 2 so that the thickness of the hydrophobic organic solvent solution is 0.01 to 5 mm. The manufacturing method of the porous structure as described in above.
[9] 工程 3における疎水性有機溶媒と親水性液体の蒸発を乾燥ガス流通下で行う請求 項 1に記載の多孔質構造体の製造方法。  [9] The method for producing a porous structure according to [1], wherein the hydrophobic organic solvent and the hydrophilic liquid in step 3 are evaporated under a circulation of a dry gas.
[10] 工程 1における 20°Cでの誘電率が 5以下で同温度での比重が 0. 65〜0. 90であ る前記疎水性有機溶媒を使用し、かつ工程 3における前記疎水性有機溶媒の蒸発 を行うことにより、逆ミセルの铸型カも形成される孔が構造体内にほぼ均一に分布し て 、る構造体で、かつ前記構造体の孔(開口及び貫通して!/、る孔を除く)の径の平 均値が 0. 1〜: L0 mである構造体を形成する請求項 1に記載の多孔質構造体の製 造方法。  [10] The hydrophobic organic solvent having a dielectric constant of 20 or less at 20 ° C. in step 1 and a specific gravity of 0.65 to 0.90 at the same temperature is used, and the hydrophobic organic solvent in step 3 is used. By evaporating the solvent, the holes in which reverse micelle cages are also formed are distributed almost uniformly in the structure, and the structure has holes (opening and penetrating! /, 2. The method for producing a porous structure according to claim 1, wherein a structure having an average diameter of 0.1 to L0 m is formed.
[11] 工程 1における比重が親水性液体の比重よりも大き 、前記有機ポリマー及び Z又 は前記疎水性有機溶媒を使用し、かつ工程 3における前記疎水性有機溶媒の蒸発 により、構造体表面に垂直な断面における孔の全面積のうち表面で開口(貫通を除く )している孔(開口孔)の面積割合が 60%以上又は表面開口率が 5%以上である構 造体で、かつ前記開口孔の平均開口径が 0. 1-100 μ mである構造体を形成する 請求項 1に記載の多孔質構造体の製造方法。 [11] The specific gravity in step 1 is larger than the specific gravity of the hydrophilic liquid, the organic polymer and Z or the hydrophobic organic solvent are used, and the hydrophobic organic solvent is evaporated in step 3 to the surface of the structure. Of the total area of holes in a vertical cross section, the area ratio of holes (open holes) that are open (excluding through holes) on the surface is 60% or more, or the surface opening ratio is 5% or more. 2. The method for producing a porous structure according to claim 1, wherein the structure is formed and a structure having an average opening diameter of 0.1 to 100 μm is formed.
[12] 工程 1における前記 Rw (親水性液体 Z両親媒性物質)を 3ないし 15とし、工程 2〖こ おいて工程 3における疎水性有機溶媒蒸発後の多層構造体の厚みが 1〜50 mと なるように前記疎水性有機溶媒溶液を基板上にキャストし、かつ工程 3における前記 疎水性有機溶媒の蒸発により、構造体表面に垂直な断面における孔の全面積のうち 貫通している孔(貫通孔)の面積割合が 60%以上又は貫通孔に基づく表面開口率 力 7%以上である構造体で、かつ前記貫通孔の構造体表面と平行方向の平均孔径 力^〜 50 m又は前記貫通孔の平均開口径が 1〜50 mである構造体を形成する 請求項 1に記載の多孔質構造体の製造方法。  [12] The Rw (hydrophilic liquid Z amphiphile) in step 1 is 3 to 15, and the thickness of the multilayer structure after evaporation of the hydrophobic organic solvent in step 3 is 1 to 50 m in step 2 The hydrophobic organic solvent solution is cast on a substrate so as to be, and by the evaporation of the hydrophobic organic solvent in step 3, a hole penetrating through the entire area of the hole in the cross section perpendicular to the structure surface ( The through hole has an area ratio of 60% or more, or a surface opening ratio force based on the through hole of 7% or more, and the average hole diameter force in the direction parallel to the structure surface of the through hole is ~ 50 m or the through The method for producing a porous structure according to claim 1, wherein a structure having an average opening diameter of pores of 1 to 50 m is formed.
[13] 前記工程 3で形成された基板上の多孔質構造体カゝら基板を除去して得られる多孔 質構造体が自己支持性を有する請求項 1に記載の多孔質構造体の製造方法。  13. The method for producing a porous structure according to claim 1, wherein the porous structure obtained by removing the substrate from the porous structure on the substrate formed in the step 3 has a self-supporting property. .
[14] 工程 1の疎水性有機溶媒溶液が両親媒性物質、疎水性を有する有機ポリマー、疎 水性有機溶媒、親水性液体、及び該親水性液体相中に分散した金属、合金又は金 属化合物微粒子からなり、かつ工程 3で得られた多孔質構造体の孔中に前記金属、 合金又は金属化合物微粒子が含まれて!/、る請求項 1に記載の多孔質構造体の製造 方法。  [14] The hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a metal, alloy, or metal compound dispersed in the hydrophilic liquid phase. The metal, alloy or metal compound fine particles are contained in the pores of the porous structure made of fine particles and obtained in step 3! The method for producing a porous structure according to claim 1.
[15] 工程 1の疎水性有機溶媒溶液が両親媒性物質、疎水性を有する有機ポリマー、疎 水性有機溶媒、親水性液体、及び該親水性液体相中に分散又は溶解した機能性材 料カゝらなり、かつ工程 3で得られた多孔質構造体の孔中に該機能性材料が含まれて おり、該機能性材料が Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr及び Tiからなる金属 、半導体材料、酸化物、セラミックス材料、金属錯体、強誘電体材料、強磁性体材料 、抵抗変化材料、相変化材料、光機能材料、並びに蛍光機能材料カゝら選択される 1 種以上の機能性材料である請求項 1に記載の多孔質構造体の製造方法。  [15] The hydrophobic organic solvent solution in Step 1 is an amphiphilic substance, a hydrophobic organic polymer, a hydrophobic organic solvent, a hydrophilic liquid, and a functional material dispersed or dissolved in the hydrophilic liquid phase. The functional material is contained in the pores of the porous structure obtained in step 3, and the functional material is Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Selected from metals consisting of Cr and Ti, semiconductor materials, oxides, ceramic materials, metal complexes, ferroelectric materials, ferromagnetic materials, resistance change materials, phase change materials, optical functional materials, and fluorescent functional materials The method for producing a porous structure according to claim 1, wherein the method is one or more functional materials.
[16] 疎水性を有する有機ポリマー、及び分子量が 10000以下の親水基に陰イオン性 基を有する両親媒性物質から構成される多孔質構造体であって、該両親媒性物質 が孔の辺縁部を構成し、かつ各孔が該有機ポリマーカゝらなる仕切壁により仕切られ て 、て該構造体の表面と平行方向に連通して 、な 、多孔質構造体。 [16] A porous structure composed of an organic polymer having hydrophobicity and an amphiphilic substance having an anionic group in a hydrophilic group having a molecular weight of 10,000 or less, wherein the amphiphile is a side of the pore. A porous structure comprising an edge and each hole being partitioned by a partition wall made of the organic polymer cover and communicating in a direction parallel to the surface of the structure.
[17] 前記両親媒性物質がビス(2 ェチルへキシルスルホコハク酸ナトリウム)、ジォクチ ルスルホコハク酸ナトリウム、ジイソプチルスルホコハク酸ナトリウム、ジシクロへキシル スルホコハク酸ナトリウム、及びジへキシルスルホコハク酸ナトリウムから選ばれた少な くとも 1種である請求項 16に記載の多孔質構造体。 [17] The amphiphile is selected from bis (sodium 2-ethylhexylsulfosuccinate), sodium dioctylsulfosuccinate, sodium diisoptylsulfosuccinate, sodium dicyclohexylsulfosuccinate, and sodium dihexylsulfosuccinate. The porous structure according to claim 16, which is at least one kind.
[18] 前記有機ポリマーがポリエチレン、ポリプロピレン、ポリ 4ーメチルペンテン 1、シ クロポリオレフイン、ポリ塩化ビニル、ポリ塩ィ匕ビニリデン、ポリスチレン、アタリロニトリ ル—スチレン榭脂 (AS榭脂)、アクリロニトリル—ブタジエン—スチレン榭脂 (ABS榭 脂)、メタクリル酸エステル榭脂、アクリル酸エステル榭脂、エチレンビュルアルコール 共重合榭脂、ポリアルキレンオキサイド、ポリアミド、ポリアセタール、ポリカーボネート 、変性ポリフエ-レンエーテル、熱可塑性ポリエステル、ポリフエ-レンスルフイド、ポリ スルフォン、ポリエーテルイミド、ポリエーテルスルフォン、ポリエーテルケトン、ポリエ 一テルエーテルケトン、及びポリアミドイミドから選ばれた少なくとも 1種である請求項 16に記載の多孔質構造体。  [18] The organic polymer is polyethylene, polypropylene, poly-4-methylpentene 1, cyclopolyolefin, polyvinyl chloride, polyvinyl chloride, vinylidene, polystyrene, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin. Fat (ABS resin), Methacrylate ester resin, Acrylate ester resin, Ethylene butyl alcohol copolymer resin, Polyalkylene oxide, Polyamide, Polyacetal, Polycarbonate, Modified polyphenylene ether, Thermoplastic polyester, Polyphenylene sulfide The porous structure according to claim 16, wherein the porous structure is at least one selected from the group consisting of polysulfone, polyetherimide, polyethersulfone, polyetherketone, polyetheretherketone, and polyamideimide. .
[19] 前記多孔質構造体中の有機ポリマーと両親媒性物質の重量配合割合 (有機ポリマ 一 Z〔有機ポリマー +両親媒性物質〕)が 0. 1ないし 0. 9である請求項 16項に記載 の多孔質構造体。  19. The weight blending ratio of organic polymer and amphiphile (organic polymer Z [organic polymer + amphiphile]) in the porous structure is 0.1 to 0.9. A porous structure according to 1.
[20] 前記多孔質構造体が自己支持性を有する多孔質膜である請求項 16に記載の多 孔質構造体。  20. The porous structure according to claim 16, wherein the porous structure is a porous film having self-supporting properties.
[21] 前記構造体中の孔が構造体内にほぼ均一に分布しており、その平均孔径(開口及 び貫通している孔を除く)が 0. 1〜: L0 mである請求項 16に記載の多孔質構造体。  [21] The structure according to claim 16, wherein the pores in the structure are distributed substantially uniformly in the structure, and the average pore diameter (excluding openings and through-holes) is 0.1 to L0 m. The porous structure described.
[22] 前記構造体の構造体表面に垂直な断面における孔の全面積のうち表面で開口し ている孔(開口孔)の面積割合が 60%以上、又は表面開口率が 5%以上であり、 っ該開口孔の平均開口径が 0. 1〜: L00 mである請求項 16に記載の多孔質構造 体。  [22] Of the total area of the holes in the cross section perpendicular to the structure surface of the structure, the area ratio of holes (open holes) opened on the surface is 60% or more, or the surface opening ratio is 5% or more. The porous structure according to claim 16, wherein the average opening diameter of the opening holes is 0.1 to L00 m.
[23] 前記構造体の構造体表面に垂直な断面における孔の全面積のうち貫通している孔  [23] The hole penetrating out of the total area of the hole in a cross section perpendicular to the structure surface of the structure
(貫通孔)の面積割合が 60%以上、又は貫通孔に基づく表面開口率が 7%以上であ り、かつ該貫通孔の構造体表面と平行方向の平均孔径が 1〜50 m、又は該貫通 孔の平均開口径が 1〜50 μ mである請求項 16に記載の多孔質構造体。 The area ratio of (through hole) is 60% or more, or the surface opening ratio based on the through hole is 7% or more, and the average hole diameter in the direction parallel to the structure surface of the through hole is 1 to 50 m, or 17. The porous structure according to claim 16, wherein the average opening diameter of the through holes is 1 to 50 μm.
[24] 前記多孔質構造体が膜状であり、かつその厚みが 0. 001〜lmmである請求項 16 に記載の多孔質構造体。 24. The porous structure according to claim 16, wherein the porous structure is a film and has a thickness of 0.001 to 1 mm.
[25] 前記多孔質構造体の孔内に金属、合金又は金属化合物微粒子が存在する請求項 16に記載の多孔質構造体。  25. The porous structure according to claim 16, wherein metal, alloy or metal compound fine particles are present in the pores of the porous structure.
[26] 前記多孔質構造体の孔内に、 Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr及び Tiの 内の少なくとも 1種の金属、半導体材料、酸化物、セラミックス材料、金属錯体、強誘 電体材料、強磁性体材料、抵抗変化材料、相変化材料、光機能材料、並びに蛍光 機能材料カゝら選択される 1種の機能性材料が存在する請求項 16に記載の多孔質構 造体。  [26] In the pores of the porous structure, at least one metal selected from Au, Ag, Cu, Pt, Fe, Ni, Co, Mn, Cr and Ti, a semiconductor material, an oxide, a ceramic material, 17. The functional material according to claim 16, wherein there is one functional material selected from a metal complex, a strong dielectric material, a ferromagnetic material, a resistance change material, a phase change material, an optical functional material, and a fluorescent functional material. Porous structure.
[27] 前記多孔質構造体が基板上に形成されている請求項 16に記載の多孔質構造体。  27. The porous structure according to claim 16, wherein the porous structure is formed on a substrate.
[28] 前記基板がガラス、金属、セラミックス基板、ポリプロピレン、ポリエチレン、ポリェチ レンテレフタレート、ポリエーテルケトン、ポリフッ化工チレンから選ばれたいずれか 1 種あるいはこれらのいずれか 1種以上を複合した基板である請求項 27に記載の多孔 質構造体。 [28] The substrate is any one selected from glass, metal, ceramic substrate, polypropylene, polyethylene, polyethylene terephthalate, polyether ketone, and polyfluorinated styrene, or a composite of any one or more of these. 28. The porous structure according to claim 27.
PCT/JP2006/314067 2005-07-14 2006-07-14 Process for producing porous structure and porous structure obtained by the process WO2007007877A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005205961 2005-07-14
JP2005-205961 2005-07-14
JP2006-191742 2006-07-12
JP2006191742A JP2007046042A (en) 2005-07-14 2006-07-12 Method for producing porous structure, and porous structure obtained from the compound method

Publications (1)

Publication Number Publication Date
WO2007007877A1 true WO2007007877A1 (en) 2007-01-18

Family

ID=37637251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314067 WO2007007877A1 (en) 2005-07-14 2006-07-14 Process for producing porous structure and porous structure obtained by the process

Country Status (2)

Country Link
JP (1) JP2007046042A (en)
WO (1) WO2007007877A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745447A (en) * 2021-08-11 2021-12-03 国联汽车动力电池研究院有限责任公司 Construction method of pole piece with porous structure and lithium ion battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009041376A1 (en) * 2007-09-27 2011-01-27 富士フイルム株式会社 Method for producing porous structure
JP5422230B2 (en) * 2008-03-17 2014-02-19 富士フイルム株式会社 Method and apparatus for producing porous film
KR100932949B1 (en) 2008-07-14 2009-12-21 한국기계연구원 Porous ceramic ball including hierarchically porous structure and the preparation method thereof
CN102281938B (en) * 2008-11-21 2016-08-03 3M创新有限公司 Microporous membrane and forming method
JP5405374B2 (en) * 2010-03-26 2014-02-05 富士フイルム株式会社 Manufacturing method of honeycomb structure film
KR101363934B1 (en) 2012-02-23 2014-02-20 한서대학교 산학협력단 Manufacturing method of functional porous ceramics material using direct forming method
EP3064567B1 (en) 2013-10-29 2019-05-22 School Juridical Person Kitasato Institute Device for cell or tissue cryopreservation by vitrification
US20190169447A1 (en) * 2017-12-01 2019-06-06 Flosfia Inc. Solvent and method of forming organic film using solvent
KR102159437B1 (en) * 2018-11-09 2020-09-23 한양대학교 에리카산학협력단 A porous elastic structure, a surface-modified porous elastic structure, and the methods of manufacturing the same
JP7465428B2 (en) * 2020-02-27 2024-04-11 トヨタ自動車株式会社 Method for producing porous resin body
KR102630082B1 (en) * 2020-11-30 2024-01-29 한국화학연구원 Paste composition for preparing porous electrode with elasticity and conductivity, porous electrode using the same and preparing method thereof
WO2022114590A1 (en) * 2020-11-30 2022-06-02 한국화학연구원 Paste composition for manufacturing porous electrode having stretchability and conductivity, porous electrode using same, and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239734A (en) * 1990-02-16 1991-10-25 Sanyo Chem Ind Ltd Production of porous sheet material
JPH0425534A (en) * 1990-05-22 1992-01-29 Dainippon Printing Co Ltd Monolayer porous sheet and its production
JPH05239175A (en) * 1992-03-02 1993-09-17 Mitsubishi Kasei Corp Porous sheet material
JPH1180415A (en) * 1997-09-12 1999-03-26 Japan Steel Works Ltd:The Production of porous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03239734A (en) * 1990-02-16 1991-10-25 Sanyo Chem Ind Ltd Production of porous sheet material
JPH0425534A (en) * 1990-05-22 1992-01-29 Dainippon Printing Co Ltd Monolayer porous sheet and its production
JPH05239175A (en) * 1992-03-02 1993-09-17 Mitsubishi Kasei Corp Porous sheet material
JPH1180415A (en) * 1997-09-12 1999-03-26 Japan Steel Works Ltd:The Production of porous membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745447A (en) * 2021-08-11 2021-12-03 国联汽车动力电池研究院有限责任公司 Construction method of pole piece with porous structure and lithium ion battery

Also Published As

Publication number Publication date
JP2007046042A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
WO2007007877A1 (en) Process for producing porous structure and porous structure obtained by the process
Yang et al. Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation
Zhang et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsion
Loget et al. Bulk synthesis of Janus objects and asymmetric patchy particles
An et al. Janus membranes with charged carbon nanotube coatings for deemulsification and separation of oil-in-water emulsions
Franco et al. Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating
Dugyala et al. Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization
US20200048841A1 (en) Silane based surfaces with extreme wettabilities
Li et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration
Shin et al. Development of shape-tuned, monodisperse block copolymer particles through solvent-mediated particle restructuring
Mansouri et al. Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach
Jaleh et al. Preparation and characterization of polyvinylpyrrolidone/polysulfone ultrafiltration membrane modified by graphene oxide and titanium dioxide for enhancing hydrophilicity and antifouling properties
Qu et al. Graphene oxide nanofiltration membrane based on three-dimensional size-controllable metal–organic frameworks for water treatment
CN104209021A (en) Preparation method of aromatic polyamide film modified by ZIF-8 type metal-organic framework material
Song Simple and fast fabrication of superhydrophobic metal wire mesh for efficiently gravity-driven oil/water separation
JP2007106118A (en) Multilayer structure and manufacturing process of the same
Nikitin et al. Supercritical carbon dioxide: A reactive medium for chemical processes involving fluoropolymers
Guo et al. Protein valves prepared by click reaction grafting of poly (N-isopropylacrylamide) to electrospun poly (vinyl chloride) fibrous membranes
Reddy et al. Hydrophobic/hydrophilic nanostructured polymer blends
WO2012027647A2 (en) Flexible microfluidic device with interconnected porous network
Yeh et al. Tunable nanostructured stainless-steel coating for high-selective and high-permeable separation membranes for oil/water emulsions
CN107737535B (en) A kind of mixed substrate membrane containing nano-grade molecular sieve and preparation method thereof
Siegel et al. Synthesis and Polyelectrolyte Functionalization of Hollow Fiber Membranes Formed by Solvent Transfer Induced Phase Separation
Long et al. MXene sheets surface constructed a strong hydrogel coating for sustainable oily wastewater separation
Abdallah et al. Performance and characterization for blend membrane of PES with manganese (III) acetylacetonate as metalorganic nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768227

Country of ref document: EP

Kind code of ref document: A1