WO2007007794A1 - Motor control method and motor control system - Google Patents

Motor control method and motor control system Download PDF

Info

Publication number
WO2007007794A1
WO2007007794A1 PCT/JP2006/313873 JP2006313873W WO2007007794A1 WO 2007007794 A1 WO2007007794 A1 WO 2007007794A1 JP 2006313873 W JP2006313873 W JP 2006313873W WO 2007007794 A1 WO2007007794 A1 WO 2007007794A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
duty value
value
allowable
duty
Prior art date
Application number
PCT/JP2006/313873
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Amagasa
Original Assignee
Mitsuba Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corporation filed Critical Mitsuba Corporation
Priority to DE112006001839T priority Critical patent/DE112006001839T5/en
Priority to JP2007524680A priority patent/JP4878598B2/en
Publication of WO2007007794A1 publication Critical patent/WO2007007794A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • H02P7/2913Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Definitions

  • the present invention relates to a method for controlling a motor used in a wiper system of an automobile, and more particularly
  • the present invention relates to a motor control method and a motor control system capable of improving the acceleration characteristics of a motor while suppressing the amount of current during overload and motor lock.
  • an electromagnetic motor provided with a field magnet (permanent magnet) is frequently used as a drive source.
  • Such motors must be able to withstand use in a low temperature range of about ⁇ 40 ° C. according to the usage conditions of automobiles, etc., and operate without problems even in such low temperature environments. In other words, it is required to start without any problems even at low-temperature forces such as when the motor is cold, and to operate the wiper etc. in the same way as at normal temperature.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-39062
  • Patent Document 2 Japanese Patent Laid-Open No. 11-122703
  • Patent Document 3 Japanese Patent Application No. 2004-327299
  • An object of the present invention is to provide a motor control method and a motor control system capable of improving the acceleration characteristics of a motor while suppressing the amount of current at the time of overload or motor lock.
  • the motor control method of the present invention applies a voltage having a pulse waveform having an ON period and an OFF period, and effectively changes the applied voltage by changing the ON / OFF ratio of the voltage.
  • a control method for a motor to be changed wherein an allowable duty value indicating a ratio of an ON period of the voltage that can be applied to the motor when the motor is locked is set based on an allowable current amount of the motor.
  • the ratio of the applied voltage during the ON period is suppressed to the allowable duty value or less, while when the motor is accelerating, the allowable duty is The value is corrected to a duty value for acceleration set to a higher value than the allowable duty value.
  • the rotational speed is increased.
  • the allowable duty value is corrected to a higher value during motor acceleration. Therefore, the torque required for acceleration is ensured by correcting the duty value while suppressing the current value during overload to lock using the allowable duty value.
  • a voltage having a pulse-like waveform having an ON period and an OFF period is applied, and the applied voltage is effectively reduced by changing the ON / OFF ratio of the voltage.
  • a control method for a motor to be changed which is based on an allowable current amount of the motor, and an allowable duty value indicating a 0 N period ratio of the voltage that can be applied to the motor when the motor is locked. Is set to a different value between when the motor is accelerating and when the motor is decelerating.
  • a duty value is selected as appropriate, and a ratio of the ON period of the applied voltage is suppressed to be equal to or less than the selected allowable duty value.
  • the allowable duty value when the motor is accelerating may be set higher than the allowable duty value when the motor is decelerating.
  • the allowable duty value is set differently during acceleration and deceleration, and the allowable duty value is appropriately set based on the acceleration / deceleration state of the motor. Since it is selected, the allowable duty value that matches the state at the time of motor deceleration or acceleration can be selected. For this reason, the torque required during acceleration is ensured while suppressing the current value during overload to lock.
  • the motor control system of the present invention applies a voltage having a pulse waveform having an ON period and an OFF period, and effectively changes the applied voltage by changing the ON / OFF ratio of the voltage.
  • a motor control system that controls the drive of the motor by changing the rotation detection means that outputs a signal as the motor rotates, and the motor is locked based on the allowable current amount of the motor.
  • Storage means for storing an allowable duty value indicating the ON-period ratio of the voltage that can be applied to the motor, and the allowable duty value based on a signal output from the rotation detecting means.
  • Allowable duty value calculating means for calculating; motor driving state detecting means for detecting the acceleration / deceleration status of the motor based on a signal output from the rotation detecting means; and the motor being accelerated by the motor driving state detecting means If detected, Yes and allowable Duty value correcting means for correcting the allowable Duty value It is characterized by doing.
  • the allowable duty value is corrected by the allowable duty value correction means.
  • the torque required for acceleration is ensured by correcting the duty value while suppressing the current value during overload to lock.
  • the allowable duty value when the motor is accelerating by the allowable duty value correction means, the allowable duty value is multiplied by a predetermined correction coefficient to increase the allowable duty value to a higher value. You may make it correct
  • the storage means stores an acceleration duty value used when the motor is accelerating and a deceleration duty value used when the motor is decelerating, When the motor is accelerating by an allowable duty value correction means, the allowable duty value may be corrected using the acceleration duty value.
  • an allowable duty value indicating a PWM duty value that can be applied when the motor is locked is set based on the allowable current amount of the motor.
  • the PWM duty value is suppressed to the allowable duty value or less.
  • the allowable duty value is higher than the allowable duty value.
  • the duty value for acceleration is set to, so the torque required for acceleration is secured by correcting the duty value during acceleration while suppressing the current value during overload to lock using the allowable duty value. It becomes possible to do. Accordingly, it is possible to improve the acceleration performance of the motor while reducing the cost of the magnet and the switching element and reducing the motor weight by suppressing the demagnetization.
  • an allowable duty value indicating a PWM duty value that can be applied when the motor is locked based on the allowable current amount of the motor is set to the motor.
  • the motor is accelerating and decelerating, the motor is set to a different value, and when the motor speed falls below the specified value, the allowable duty value is selected appropriately based on the motor acceleration / deceleration status, and the PWM Since the duty value is suppressed below the selected allowable duty value, the motor is driven with the allowable duty value that matches the state during motor deceleration or acceleration.
  • the rotation detection means and the PWM that is set based on the allowable current amount of the motor and can be applied when the motor is locked.
  • the storage means for storing the allowable duty value indicating the duty value, the allowable duty value calculating means for calculating the allowable duty value based on the output signal from the rotation detecting means, and the motor based on the output signal of the rotation detecting means force
  • the motor drive state detection means that detects the acceleration / deceleration status of the motor and the allowable duty value correction means that corrects the allowable duty value when the motor is accelerating are provided, so that the allowable duty value correction is performed when the motor is accelerating.
  • the allowable duty value can be corrected by means, and the torque required for acceleration can be secured while suppressing the current value during overload to lock using the allowable duty value. Therefore, by suppressing demagnetization, it is possible to improve the acceleration performance of the motor while reducing the cost of the magnet and the switching element and reducing the weight of the motor.
  • FIG. 1 is a block diagram showing a configuration of a motor control system to which a motor control method according to an embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing a processing procedure of a motor control method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing a Max. Duty calculation processing procedure in step S 3 of FIG.
  • FIG. 5 Map showing Max. Duty value (duty value for deceleration) corresponding to deceleration.
  • FIG. 1 shows an illustration of the present invention. It is a block diagram which shows the structure of the motor control system to which the motor control method which is an Example is applied.
  • the motor 1 shown in FIG. 1 is used as a drive source for an automobile wiper system, supplied with power from the battery 2, and driven and controlled by the CPU 3.
  • the motor 1 is driven forward and backward by an H-bridge circuit 10 using four FETs.
  • the motor 1 is provided with a rotation detection means 4 using a Hall IC, and the speed (number of rotations) can be detected by the frequency of the pulse signal (motor rotation frequency) output from the rotation detection means 4. Talk to you.
  • CPU 3 performs PID control of motor 1 based on the calculated rotation speed of the pulse signal force.
  • PWM control Pulse Width Modulation
  • the applied voltage is set by turning the power supply voltage ON / OFF. Is effectively changed to control the amount of current supplied to motor 1.
  • CPU 3 sets the duty ratio (Duty) of the ON period of the pulse voltage and sends a control signal to motor drive device 5.
  • the motor drive device 5 Upon receiving this control signal, the motor drive device 5 applies a set duty pulse voltage to the motor 1, whereby the rotational speed of the motor 1 is appropriately controlled.
  • a voltage sensor 6 is connected to the battery 2.
  • the voltage sensor 6 detects the power supply voltage applied to the motor 1 and sends the value to the CPU 3.
  • a temperature sensor 7 for detecting the temperature in the motor, particularly the temperature of the armature winding is provided.
  • the temperature sensor 7 is also connected to the CPU 3, and the temperature in the motor 1 detected by the temperature sensor 7 is sent to the CPU 3 as motor temperature information.
  • CPU 3 constantly monitors the temperature in motor 1 using this temperature information.
  • the CPU 3 controls the motor drive device 5 based on the power supply voltage, the motor rotation frequency, the motor temperature information, and the like so that the current value does not exceed a predetermined value when the motor is locked.
  • the CPU 3 refers to the control map 9 and the like stored in the ROM (storage means) 8 to limit the maximum value of the PWM duty of the motor 1 and suppress the motor supply current.
  • control duty calculation means 11 includes battery voltage and motor Based on the rotation frequency, motor temperature information, etc., the current state of the motor 1 is detected, and a control duty value suitable for the load state is calculated.
  • the motor 1 is normally PID controlled by the duty value obtained by the control duty calculation means 11.
  • the motor 1 is normally driven and controlled by the control duty value by the PID control.
  • the PWM duty that can be applied at the time of locking is allowed.
  • Value Max.Duty
  • the Max. Duty calculation means 12 sets the allowable duty value based on the battery voltage, the motor rotation frequency, and the motor temperature information.
  • the allowable duty value is stored in the ROM 8 as the control map 9, and the Max. Duty calculation means 12 calculates the allowable duty value with reference to the control map 9 based on each detected value.
  • Motor state detection means 13 detects the acceleration / deceleration state of motor 1.
  • the motor state detection means 13 receives the motor rotation frequency from the rotation detection means 4 and compares the previous detection value with the current detection value to determine the acceleration / deceleration state of the motor. ing. For example, when the current rotational speed is faster (higher rotational frequency) than immediately before, the motor state detection means 13 determines that the motor 1 is in an acceleration state.
  • the Max. Duty correction unit 14 appropriately corrects the allowable duty value calculated by the Max. Duty calculation unit 12 according to the acceleration / deceleration state of the motor. As described above, simply setting the duty upper limit value to suppress the motor current amount! /, The desired acceleration performance cannot be obtained with the control method. Therefore, in this system, considering the characteristics of the motor that the current value decreases as the rotation speed increases, the allowable duty value mentioned above is corrected to be slightly higher during motor acceleration.
  • the Max. Duty correction means 14 creates a correction duty value by multiplying the value of the control map 9 by a predetermined coefficient.
  • control duty value calculated by the control duty calculation means 11 the allowable duty value calculated by the Max. Duty calculation means 12, and the correction duty corrected by the Max. Duty correction means 14
  • the y value is sent from the duty value output means 15 as a control signal. This control signal is sent to the motor drive device 5, and the motor 1 is driven according to the duty value set by the CPU 3.
  • FIG. 2 is a flowchart showing a processing procedure for motor drive control according to an embodiment of the present invention.
  • the control shown in FIG. 2 is executed by the system shown in FIG. 1.
  • the process shown in FIG. 2 is started.
  • step S1 the motor rotation frequency f is detected.
  • the frequency of the output signal of the rotation detection means 4 is used.
  • the output cannula signal is output along with the rotation of the motor 1, so that the current rotation speed and rotation state of the motor 1 can be grasped.
  • the rotation detection means 4 outputs 12 pulses per motor rotation. For example, when the output pulse is 200 Hz, the motor rotation speed is about lOOOrpm. Since the output frequency and the motor speed have a one-to-one relationship, in this embodiment, the frequency of the output pulse is regarded as the motor speed, and the motor rotation frequency f is directly used. Drive control is performed.
  • FIG. 3 is a flowchart showing the Max. Duty calculation processing procedure in step S3.
  • the ROM 8 force also acquires the lock judgment frequency d (step S 11).
  • the power supply voltage E is detected in step S12.
  • the power supply voltage E is detected by the voltage sensor 6, and the voltage currently applied to the motor 1 is detected by the notch 2.
  • the higher the power supply voltage the smaller the motor duty corresponding to a certain allowable current value. For this reason, even in this control method, the voltage value of battery 2 is detected and used as one of the control parameters.
  • the lock determination frequency d and the power supply voltage E are not limited to the order described above, which may be set first and detected.
  • step S15 After detecting d and E, d and f are compared. If f is greater than or equal to d, that is, if the motor rotation frequency is greater than or equal to the lock judgment frequency, calculate the maximum duty value (Max.Duty) of motor 1 based on the following formula! In step S15, set the Max.Duty value and exit the routine.
  • DO is an allowable duty value
  • Kf is a frequency adjustment coefficient
  • DO is a value that depends on power supply voltage E, and CPU3 uses the power supply voltage E acquired in step S12 as a parameter to obtain DO using the following equation.
  • Equation 2 a and b are fixed values set in advance for each motor (or for each motor model, etc.), a is a fixed duty value for which the allowable current capacity at the time of locking is also required, and b depends on the motor characteristics Duty characteristic coefficient determined by These values are stored in the ROM 8 in advance.
  • the fixed duty value a is determined by how many amperes the lock current is to be fixed, and is an intercept value of DO expressed by a linear function with E as a variable.
  • the value of a increases as the allowable current amount increases, and the value of a decreases as the allowable current amount decreases.
  • the duty characteristic coefficient b is determined based on the characteristics of each motor according to the motor's shore resistance, etc., and is the DO slope expressed by a linear function with E as a variable. As described above, when the power supply voltage E is high, it is necessary to keep the allowable duty value DO low.
  • b is a positive value, and the graph showing DO goes to the right.
  • the allowable duty value DO is set according to the characteristics of each motor based on the maximum allowable lock current value, and varies depending on the magnitude of the power supply voltage E.
  • the allowable maximum block current value is set so that the demagnetization of the magnet is kept within the allowable range.
  • the duty value is forcibly set in accordance with the power supply voltage E. If suppressed to the following, excessive current at the time of low temperature lock can be prevented, and demagnetization of the magnet is suppressed.
  • step S3 the allowable duty value is corrected according to the motor rotation frequency f, and the duty value allowed for the motor rotation speed at that time is individually set to prevent overcurrent according to the motor status. Measures are being implemented.
  • the DO adjustment coefficient for this is Kf in Equation 1. [0039] That is, the frequency adjustment coefficient Kf is a coefficient that depends on the motor rotation frequency f.
  • the current motor rotation frequency f is an adjustment value for determining how many Max.Duty values should be based on DO. is there. Therefore, the Max.
  • Duty value obtained from Equation 1 is also a kind of allowable duty value.
  • the value obtained by correcting the allowable duty value DO according to the motor rotation frequency is used.
  • CPU3 uses the motor rotation frequency f and the lock determination frequency d acquired previously to determine Kf by the following equation.
  • c in Equation 3 is a limit start frequency, which is a fixed value that determines how many Hz the motor rotational frequency reaches when the duty value starts to be limited, and is stored in the ROM 8 in advance.
  • c 420 (Hz) is set correspondingly.
  • DO set as shown in Fig. 4 is applied.
  • DO takes the value shown in FIG. 4 according to the power supply voltage E.
  • E exceeds 13.5V and is 14.0V or less
  • DO 58%.
  • the maximum Duty value is gradually limited as the rotational speed of the motor 1 decreases.
  • DO is a value that takes into account the current capacity of the switching element of the magnet.
  • the process proceeds to step S16.
  • the Max.Duty value is set to the above-mentioned DO, and the process proceeds to step S15 to exit the routine. As a result, even if the motor 1 is locked immediately after starting, the Max. Duty value is kept at D 0.
  • step S4 the motor state detection means 13 detects the motor drive state.
  • the acceleration / deceleration state of the motor is determined from the change in the rotation speed, and the motor rotation speed (f) in the previous processing (previous processing) and the latest (current processing) motor rotation speed are determined. To be compared. If the rotation speed at the time of the previous process is greater than or equal to this time, it is determined that the motor 1 is at the same rotation speed or is in a decelerating state, and the process proceeds to step S5 and uses the Max. Proceed to S7.
  • step S6 Max.Duty correction means 14 calculates the Max calculated in step S3. .Duty value is multiplied by acceleration correction factor Kp.
  • Fig. 6 is a map that shows the correction value (duty value for acceleration) by multiplying the Max. Duty value for deceleration (Fig. 5) by 1.2.
  • ROM8 such a correction map for acceleration is stored in advance, and in step S6, the Max.Duty value is corrected with reference to it.
  • the Max. Duty value is set higher during motor acceleration than during deceleration.
  • the load is slightly higher and the rotational speed is reduced! In some cases, the duty value was suppressed more than necessary, and the desired acceleration characteristics were not obtained.
  • the control method according to the present invention the acceleration / deceleration state of the motor is detected and the Max.Duty value is corrected to be higher during acceleration. Therefore, it is necessary for acceleration while suppressing the current value during overload to lock. Torque can be secured. For this reason, it is possible to improve acceleration performance while reducing magnet and switching element costs and reducing motor weight by suppressing demagnetization.
  • Step S5 Set the Max.Duty value in Steps S5, 6 'After correction, proceed to Step S7 and compare the control duty value (Duty (l)) obtained in Step S2 with the Max.Duty value . If Duty (l) is less than Max.Duty value, it is not necessary to suppress the Duty value.Proceed to Step S8, set Duty (1) as the output Duty value, and output the Duty value in Step S10. Means 15 force is also output to the motor drive 5 and the routine is exited. On the other hand, if Duty (l) exceeds the Max.Duty value, if this Duty (l) is output as it is, the current value may become excessive and demagnetization may occur. Therefore, proceed to step S9, set the Max.
  • Duty value as the output duty value, and suppress the duty value. Then, go to step S10, output the Max. Duty value, and exit the routine.
  • the PWM duty is held constant (Max. Duty value), and the motor output is stopped when the specified time has elapsed. As a result, excessive current at the time of motor lock is suppressed, and demagnetization of the magnet is prevented.
  • the Max. Duty value is corrected to a higher value, and acceleration performance is improved.
  • FIG. 7 is a flowchart showing the processing procedure in that case.
  • the Max.Duty value is calculated in step S34 using the rotation speed and current value detected in steps S31 and 33.
  • Other processing is the same as in Fig. 2.
  • the current value can be detected by using a current sensor, shunt resistor, rotation It can be detected by various methods such as the relationship between number and duty.
  • ROM 8 may store only a map of the duty value for deceleration and multiply that value by Kp during acceleration.
  • the duty value for deceleration may also be calculated on the spot using Equation 1, which is not a map.
  • the Max.Duty value may be corrected based on the motor temperature information obtained from the temperature sensor 7.
  • D1 100— (100—Max.D uty) * T (T :)
  • the Max.Duty value may be corrected in a form such as (temperature) and multiplied by Kp to obtain the Max.Duty value during acceleration.
  • the present invention is applied to a motor for a wiper system of an automobile.
  • the application target of the present invention is not limited to this, and a motor for driving a window or a door, or It can be applied to various on-board motors and motors used in pumps used in cold regions.
  • the present invention can also be applied to control of a motor that rotates only in one direction of force, which is shown as a motor 1 that is driven forward and backward by a drive circuit 10.
  • the numerical values given in the above embodiment and the maps of FIGS. 4 and 6 are merely examples, and it goes without saying that the present invention is not limited to these numerical values.

Abstract

In a motor undergoing PWM control, rotational frequency f of the motor is detected (S1), and then a PID control Duty value is calculated (S2) and a Max.Duty value is set (S3). Acceleration/deceleration state of the motor is judged from variation in rotation speed (S4), and if the motor is under acceleration state, the Max.Duty value is multiplied by an acceleration correction coefficient Kp to obtain a corrected Max.Duty value (S6). Otherwise, the Max.Duty value is used as it is (S5). When the control Duty value exceeds the Max.Duty value, the output Duty is limited to the Max.Duty value (S9). When the control Duty value is equal to or smaller than the Max.Duty value, the control Duty value is used, as it is, as the output Duty value (S8). During acceleration of the motor, the Max.Duty value is corrected to a larger value thus securing a torque required during acceleration.

Description

明 細 書  Specification
モータ制御方法及びモータ制御システム  Motor control method and motor control system
技術分野  Technical field
[0001] 本発明は、自動車のワイパシステム等に使用されるモータの制御方法に関し、特に TECHNICAL FIELD [0001] The present invention relates to a method for controlling a motor used in a wiper system of an automobile, and more particularly
、過負荷時やモータロック時の電流量を抑えつつ、モータの加速特性を改善可能な モータ制御方法及びモータ制御システムに関する。 The present invention relates to a motor control method and a motor control system capable of improving the acceleration characteristics of a motor while suppressing the amount of current during overload and motor lock.
背景技術  Background art
[0002] 従来より、自動車のワイパシステム等では、その駆動源として、界磁マグネット (永久 磁石)を備えた電磁モータが多用されている。このようなモータは、自動車等の使用 条件に合わせ、—40° C程度の低温域の使用に耐え、かつ、かかる低温環境下で も支障なく作動する必要がある。すなわち、モータが冷え切っているような低温状態 力もでも問題なく始動し、ワイパ等を常温時と同様に作動させることが求められる。  Conventionally, in an automobile wiper system or the like, an electromagnetic motor provided with a field magnet (permanent magnet) is frequently used as a drive source. Such motors must be able to withstand use in a low temperature range of about −40 ° C. according to the usage conditions of automobiles, etc., and operate without problems even in such low temperature environments. In other words, it is required to start without any problems even at low-temperature forces such as when the motor is cold, and to operate the wiper etc. in the same way as at normal temperature.
[0003] ところが、モータが低温環境下に置かれると、電機子卷線として使用されている銅 線の抵抗が小さくなり、卷線に電流が流れやすくなる。このため、低温下にてモータ が過負荷状態となりモータがロックすると、卷線電流 (ロック電流)が著しく大きくなり、 その影響により界磁マグネットが減磁しゃすくなる。例えば、低温ィ匕において、モータ を作動させた直後に、揺動したワイパアームが下反転位置にある雪等の障害物に当 接してモータがロック状態になると、ロック電流が増大し、界磁マグネットが減磁する おそれがある。特に、フェライト系のマグネットでは、マグネット自体の保磁力が低温 時に低下し易いため、低温環境下における減磁がより顕著になる。マグネットが減磁 すると、モータ出力が低下するのみならず、雰囲気温度が常温に戻っても所望のモ ータ特性を得ることができなくなるおそれがある。  [0003] However, when the motor is placed in a low temperature environment, the resistance of the copper wire used as the armature winding becomes small, and current easily flows through the winding. For this reason, when the motor is overloaded at low temperatures and the motor is locked, the winding current (lock current) becomes extremely large, which causes the field magnet to become demagnetized. For example, when the motor is locked in the low temperature zone immediately after the motor is operated and the swinging wiper arm comes into contact with an obstacle such as snow in the reverse position, the lock current increases and the field magnet increases. May be demagnetized. In particular, in a ferrite-based magnet, the coercive force of the magnet itself tends to decrease at low temperatures, so demagnetization in a low temperature environment becomes more prominent. When the magnet is demagnetized, not only the motor output decreases, but there is a possibility that desired motor characteristics cannot be obtained even when the ambient temperature returns to room temperature.
[0004] このため、低温環境で使用される可能性のあるモータでは、マグネットの減磁を防 止すベぐ保磁力の高いマグネットを使用したり、マグネットの肉厚を大きくしたりする 必要がある。し力しながら、高保磁力のマグネットは価格が高ぐその分、製品コスト が増大するという問題がある。また、マグネットの肉厚を増力!]させると、その分、モータ が大型化し、重量も大きくなるという問題がある。また、卷線電流が大きくなると、モー タ駆動回路においても、モータのロック電流に合わせて電流容量の大き!/、高価なスィ ツチング素子を使用する必要が生じる。特に、高トルク、高回転のモータを駆動する 場合には、より電流容量の大きいスイッチング素子が必要となることから、素子価格が さらに嵩み製品コストが増大するという問題もあった。 [0004] For this reason, in a motor that may be used in a low-temperature environment, it is necessary to use a magnet with a high coercive force that prevents demagnetization of the magnet, or to increase the thickness of the magnet. is there. However, high coercivity magnets have the problem of increasing the cost of the product as the price increases. In addition, increase the thickness of the magnet! ], There is a problem that the motor becomes larger and the weight increases accordingly. Also, when the winding current increases, the mode Even in a motor drive circuit, it is necessary to use an expensive switching element with a large current capacity according to the lock current of the motor. In particular, when driving a high-torque, high-rotation motor, a switching element with a larger current capacity is required, which increases the cost of the element and increases the product cost.
特許文献 1:特開平 7-39062号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-39062
特許文献 2:特開平 11-122703号公報  Patent Document 2: Japanese Patent Laid-Open No. 11-122703
特許文献 3:特願 2004-327299号公報  Patent Document 3: Japanese Patent Application No. 2004-327299
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] そこで、低温時のマグネット減磁対策として、モータ回転数と PWM Dutyから現在モ ータに流れている電流値を予測し、過負荷時の電流を適宜制限する制御形態が考 えられる。しカゝしながら、単純にモータ回転数と PWM Dutyから電流の上限値を設定 してモータ電流量を抑制するという制御方式では、やや負荷が高い場合、加速が求 められる状況においても電流制限が掛カり PWM Dutyが所定値以下に抑えられる場 合がある。かかる場合、ロック状態に至らない程度の中負荷であるにもかかわらず所 望の加速性能が得られず、モータ回転数がなかなか上がらないという問題があった。  [0005] Therefore, as a countermeasure against magnet demagnetization at low temperatures, a control form in which the current value flowing to the motor from the motor rotation speed and PWM duty is predicted and the current during overload is appropriately limited can be considered. . However, the control method that simply sets the upper limit value of the current based on the motor speed and PWM duty and suppresses the motor current is limited even when the load is slightly high and acceleration is required. In some cases, the PWM duty may be kept below the specified value. In such a case, there was a problem that the desired acceleration performance could not be obtained even though the load was medium enough not to reach the locked state, and the motor rotation speed did not increase easily.
[0006] 本発明の目的は、過負荷時やモータロック時の電流量を抑えつつ、モータの加速 特性を改善可能なモータ制御方法及びモータ制御システムを提供することにある。 課題を解決するための手段  An object of the present invention is to provide a motor control method and a motor control system capable of improving the acceleration characteristics of a motor while suppressing the amount of current at the time of overload or motor lock. Means for solving the problem
[0007] 本発明のモータ制御方法は、 ON期間と OFF期間を備えたパルス状の波形を有す る電圧を印加し、前記電圧の ON/OFF比率を変化させることにより印加電圧を実効 的に変化させるモータの制御方法であって、前記モータの許容電流量に基づいて、 前記モータがロック状態となったときに前記モータに印加可能な前記電圧の ON期間 時比率を示す許容 Duty値を設定し、前記モータの回転数が所定値以下となったとき 、前記印加電圧の ON期間時比率を前記許容 Duty値以下に抑制する一方、前記モ ータが加速中の場合には、前記許容 Duty値を該許容 Duty値よりも高 ヽ値に設定さ れた加速時用 Duty値に補正することを特徴とする。  [0007] The motor control method of the present invention applies a voltage having a pulse waveform having an ON period and an OFF period, and effectively changes the applied voltage by changing the ON / OFF ratio of the voltage. A control method for a motor to be changed, wherein an allowable duty value indicating a ratio of an ON period of the voltage that can be applied to the motor when the motor is locked is set based on an allowable current amount of the motor. When the rotation speed of the motor becomes equal to or less than a predetermined value, the ratio of the applied voltage during the ON period is suppressed to the allowable duty value or less, while when the motor is accelerating, the allowable duty is The value is corrected to a duty value for acceleration set to a higher value than the allowable duty value.
[0008] 本発明にあっては、いわゆる PWM制御が実行されるモータにおいて、回転数が上 力 ¾と電流値が下がるというモータの特性に鑑み、モータ加速時には許容 Duty値を より高い値に補正する。このため、許容 Duty値を用いて過負荷〜ロック時の電流値を 抑えつつ、 Duty値の補正により加速時に必要なトルクが確保される。 [0008] In the present invention, in a motor in which so-called PWM control is executed, the rotational speed is increased. In view of the motor characteristics that force and current values decrease, the allowable duty value is corrected to a higher value during motor acceleration. Therefore, the torque required for acceleration is ensured by correcting the duty value while suppressing the current value during overload to lock using the allowable duty value.
[0009] 本発明の他のモータ制御方法は、 ON期間と OFF期間を備えたパルス状の波形を 有する電圧を印加し、前記電圧の ON/OFF比率を変化させることにより印加電圧を 実効的に変化させるモータの制御方法であって、前記モータの許容電流量に基づ いて、前記モータがロック状態となったときに前記モータに印加可能な前記電圧の 0 N期間時比率を示す許容 Duty値を、前記モータが加速中の場合と減速中の場合と で異なる値に設定し、前記モータの回転数が所定値以下となったとき、前記モータの 加減速状況に基づ!ヽて前記許容 Duty値を適宜選択し、前記印加電圧の ON期間時 比率を選択した前記許容 Duty値以下に抑制することを特徴とする。この場合、前記 モータが加速中の場合の前記許容 Duty値を、前記モータが減速中の場合の前記許 容 Duty値よりも高 、値が設定するようにしても良!、。  In another motor control method of the present invention, a voltage having a pulse-like waveform having an ON period and an OFF period is applied, and the applied voltage is effectively reduced by changing the ON / OFF ratio of the voltage. A control method for a motor to be changed, which is based on an allowable current amount of the motor, and an allowable duty value indicating a 0 N period ratio of the voltage that can be applied to the motor when the motor is locked. Is set to a different value between when the motor is accelerating and when the motor is decelerating. A duty value is selected as appropriate, and a ratio of the ON period of the applied voltage is suppressed to be equal to or less than the selected allowable duty value. In this case, the allowable duty value when the motor is accelerating may be set higher than the allowable duty value when the motor is decelerating.
[0010] 本発明にあっては、いわゆる PWM制御が実行されるモータにおいて、許容 Duty値 を加速中と減速中とで異なる値に設定し、モータの加減速状況に基づいて許容 Duty 値を適宜選択するので、モータ減速時や加速時にその状態に合った許容 Duty値を 選択できる。このため、過負荷〜ロック時の電流値を抑えつつ、加速時に必要なトル クが確保される。  [0010] In the present invention, in a motor in which so-called PWM control is executed, the allowable duty value is set differently during acceleration and deceleration, and the allowable duty value is appropriately set based on the acceleration / deceleration state of the motor. Since it is selected, the allowable duty value that matches the state at the time of motor deceleration or acceleration can be selected. For this reason, the torque required during acceleration is ensured while suppressing the current value during overload to lock.
[0011] 本発明のモータ制御システムは、 ON期間と OFF期間を備えたパルス状の波形を有 する電圧を印加し、前記電圧の ON/OFF比率を変化させることにより印加電圧を実 効的に変化させてモータの駆動制御を行うモータ制御システムであって、モータの回 転に伴って信号を出力する回転検出手段と、前記モータの許容電流量に基づいて 設定され前記モータがロック状態となったときに前記モータに印加可能な前記電圧 の ON期間時比率を示す許容 Duty値を格納する記憶手段と、前記回転検出手段か ら出力される信号に基づ!/ヽて前記許容 Duty値を算出する許容 Duty値算出手段と、 前記回転検出手段から出力される信号に基づいて前記モータの加減速状況を検出 するモータ駆動状態検出手段と、前記モータ駆動状態検出手段にて前記モータが 加速中と検出された場合、前記許容 Duty値を補正する許容 Duty値補正手段とを有 することを特徴とする。 [0011] The motor control system of the present invention applies a voltage having a pulse waveform having an ON period and an OFF period, and effectively changes the applied voltage by changing the ON / OFF ratio of the voltage. A motor control system that controls the drive of the motor by changing the rotation detection means that outputs a signal as the motor rotates, and the motor is locked based on the allowable current amount of the motor. Storage means for storing an allowable duty value indicating the ON-period ratio of the voltage that can be applied to the motor, and the allowable duty value based on a signal output from the rotation detecting means. Allowable duty value calculating means for calculating; motor driving state detecting means for detecting the acceleration / deceleration status of the motor based on a signal output from the rotation detecting means; and the motor being accelerated by the motor driving state detecting means If detected, Yes and allowable Duty value correcting means for correcting the allowable Duty value It is characterized by doing.
[0012] 本発明にあっては、いわゆる PWM制御が実行されるモータの制御システムにおい て、モータが加速中の場合、許容 Duty値補正手段にて許容 Duty値を補正するので、 許容 Duty値を用いて過負荷〜ロック時の電流値を抑えつつ、 Duty値の補正により加 速時に必要なトルクが確保される。  In the present invention, in the motor control system in which so-called PWM control is executed, when the motor is accelerating, the allowable duty value is corrected by the allowable duty value correction means. The torque required for acceleration is ensured by correcting the duty value while suppressing the current value during overload to lock.
[0013] 前記モータ制御システムにお 、て、前記許容 Duty値補正手段により、前記モータ が加速中の場合、前記許容 Duty値に対して所定の補正係数を乗じ、前記許容 Duty 値をより高い値に補正するようにしても良い。また、前記モータ制御システムにおいて 、前記記憶手段に、前記モータが加速中の場合に使用する加速時用 Duty値と、前 記モータが減速中に使用する減速時用 Duty値とを格納し、前記許容 Duty値補正手 段により、前記モータが加速中の場合、前記加速時用 Duty値を用いて前記許容 Dut y値を補正するようにしても良 、。  [0013] In the motor control system, when the motor is accelerating by the allowable duty value correction means, the allowable duty value is multiplied by a predetermined correction coefficient to increase the allowable duty value to a higher value. You may make it correct | amend. In the motor control system, the storage means stores an acceleration duty value used when the motor is accelerating and a deceleration duty value used when the motor is decelerating, When the motor is accelerating by an allowable duty value correction means, the allowable duty value may be corrected using the acceleration duty value.
発明の効果  The invention's effect
[0014] 本発明のモータ制御方法によれば、いわゆる PWM制御が実行されるモータにて、 モータの許容電流量に基づ 、てモータロック時に印加可能な PWM Duty値を示す 許容 Duty値を設定し、モータの回転数が所定値以下となったとき PWM Duty値を許 容 Duty値以下に抑制する一方、モータが加速中の場合には、許容 Duty値を該許容 Duty値よりも高 、値に設定された加速時用 Duty値に補正するようにしたので、許容 D uty値を用いて過負荷〜ロック時の電流値を抑えつつ、加速時の Duty値補正により 加速に必要なトルクを確保することが可能となる。従って、減磁抑制によりマグネット やスイッチング素子のコスト低減やモータ重量の軽減を図りつつ、モータの加速性能 の向上を図ることが可能となる。  [0014] According to the motor control method of the present invention, in a motor for which so-called PWM control is executed, an allowable duty value indicating a PWM duty value that can be applied when the motor is locked is set based on the allowable current amount of the motor. When the motor speed falls below the specified value, the PWM duty value is suppressed to the allowable duty value or less.On the other hand, when the motor is accelerating, the allowable duty value is higher than the allowable duty value. The duty value for acceleration is set to, so the torque required for acceleration is secured by correcting the duty value during acceleration while suppressing the current value during overload to lock using the allowable duty value. It becomes possible to do. Accordingly, it is possible to improve the acceleration performance of the motor while reducing the cost of the magnet and the switching element and reducing the motor weight by suppressing the demagnetization.
[0015] 本発明の他のモータ制御方法によれば、いわゆる PWM制御が実行されるモータ にて、モータの許容電流量に基づいてモータロック時に印加可能な PWM Duty値を 示す許容 Duty値をモータが加速中の場合と減速中の場合とで異なる値に設定し、モ ータの回転数が所定値以下となったとき、モータの加減速状況に基づいて許容 Duty 値を適宜選択し、 PWM Duty値をこの選択した許容 Duty値以下に抑制するようにし たので、モータ減速時や加速時にその状態に合った許容 Duty値にてモータを駆動 するでき、減速時用の許容 Duty値を用いて過負荷〜ロック時の電流値を抑えつつ、 加速時用の許容 Duty値を用いて加速時に必要なトルクを確保することが可能となる。 従って、減磁抑制によりマグネットやスイッチング素子のコスト低減やモータ重量の軽 減を図りつつ、モータの加速性能の向上を図ることが可能となる。 [0015] According to another motor control method of the present invention, in a motor in which so-called PWM control is executed, an allowable duty value indicating a PWM duty value that can be applied when the motor is locked based on the allowable current amount of the motor is set to the motor. When the motor is accelerating and decelerating, the motor is set to a different value, and when the motor speed falls below the specified value, the allowable duty value is selected appropriately based on the motor acceleration / deceleration status, and the PWM Since the duty value is suppressed below the selected allowable duty value, the motor is driven with the allowable duty value that matches the state during motor deceleration or acceleration. It is possible to secure the necessary torque during acceleration using the allowable duty value for acceleration while suppressing the current value during overload to lock using the allowable duty value for deceleration. Accordingly, it is possible to improve the acceleration performance of the motor while reducing the cost of the magnet and the switching element and reducing the motor weight by suppressing the demagnetization.
[0016] 本発明のモータ制御システムによれば、いわゆる PWM制御が実行されるモータの 制御システムに、回転検出手段と、前記モータの許容電流量に基づいて設定されモ 一タロック時に印加可能な PWM Duty値を示す許容 Duty値を格納する記憶手段と、 回転検出手段からの出力信号に基づ ヽて許容 Duty値を算出する許容 Duty値算出 手段と、回転検出手段力 の出力信号に基づいてモータの加減速状況を検出する モータ駆動状態検出手段と、モータが加速中の場合、許容 Duty値を補正する許容 D uty値補正手段とを設けたので、モータが加速中の場合、許容 Duty値補正手段にて 許容 Duty値を補正することができ、許容 Duty値を用いて過負荷〜ロック時の電流値 を抑えつつ、加速時に必要なトルクを確保することが可能となる。従って、減磁抑制 によりマグネットやスイッチング素子のコスト低減やモータ重量の軽減を図りつつ、モ ータの加速性能の向上を図ることが可能となる。 [0016] According to the motor control system of the present invention, in the motor control system in which so-called PWM control is executed, the rotation detection means and the PWM that is set based on the allowable current amount of the motor and can be applied when the motor is locked. The storage means for storing the allowable duty value indicating the duty value, the allowable duty value calculating means for calculating the allowable duty value based on the output signal from the rotation detecting means, and the motor based on the output signal of the rotation detecting means force The motor drive state detection means that detects the acceleration / deceleration status of the motor and the allowable duty value correction means that corrects the allowable duty value when the motor is accelerating are provided, so that the allowable duty value correction is performed when the motor is accelerating. The allowable duty value can be corrected by means, and the torque required for acceleration can be secured while suppressing the current value during overload to lock using the allowable duty value. Therefore, by suppressing demagnetization, it is possible to improve the acceleration performance of the motor while reducing the cost of the magnet and the switching element and reducing the weight of the motor.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施例であるモータ制御方法が適用されるモータ制御システムの 構成を示すブロック図である。  FIG. 1 is a block diagram showing a configuration of a motor control system to which a motor control method according to an embodiment of the present invention is applied.
[図 2]本発明の一実施例であるモータ制御方法の処理手順を示すフローチャートで ある。  FIG. 2 is a flowchart showing a processing procedure of a motor control method according to an embodiment of the present invention.
[図 3]図 2のステップ S 3における Max.Duty算出処理手順を示すフローチャートである  FIG. 3 is a flowchart showing a Max. Duty calculation processing procedure in step S 3 of FIG.
[図 4]式 2において、 a = 124,b=4.7とした場合の Eと DOとの関係を示すグラフ図であ る。 FIG. 4 is a graph showing the relationship between E and DO when a = 124 and b = 4.7 in Equation 2.
[図 5]減速時対応の Max.Duty値 (減速時用 Duty値)を示すマップである。  [Fig. 5] Map showing Max. Duty value (duty value for deceleration) corresponding to deceleration.
[図 6]減速時対応の Max.Duty値に Kp = 1.2を乗じた補正値 (加速時用 Duty値)を示 すマップである。  [Fig. 6] Map showing the correction value (duty value for acceleration) by multiplying Max.Duty value corresponding to deceleration by Kp = 1.2.
[図 7]電流値と回転数力 Max.Duty値を求める場合のモータ制御方法の処理手順を 示すフローチャートである。 [Fig.7] Process procedure of motor control method when obtaining current value and rotational force Max.Duty value It is a flowchart to show.
符号の説明  Explanation of symbols
[0018] 1 モータ  [0018] 1 motor
2 バッテリ  2 Battery
3 CPU  3 CPU
4 回転検出手段  4 Rotation detection means
5 モータ駆動装置  5 Motor drive device
6 電圧センサ  6 Voltage sensor
7 温度センサ  7 Temperature sensor
8 ROM  8 ROM
9 制御マップ  9 Control map
10 Hブリッジ回路  10 H bridge circuit
11 制御 Duty算出手段  11 Control duty calculation means
12 Max.Duty算出手段 (許容 Duty値算出手段)  12 Max.Duty calculation means (allowable duty value calculation means)
13 モータ状態検出手段  13 Motor status detection means
14 Max.Duty補正手段 (許容 Duty値補正手段)  14 Max.Duty correction means (allowable duty value correction means)
15 Duty値出力手段  15 Duty value output means
DO 許容 Duty値  DO tolerance duty value
Kf 周波数調整係数  Kf Frequency adjustment factor
Kp 加速補正係数  Kp acceleration correction factor
Ε 電源電圧  Ε Power supply voltage
a 固定 Duty値  a Fixed duty value
b Duty特性係数  b Duty characteristic coefficient
c 制限開始周波数  c Limit start frequency
d ロック判断周波数  d Lock judgment frequency
f モータ回転周波数  f Motor rotation frequency
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施例を図面に基づいて詳細に説明する。図 1は、本発明の一実 施例であるモータ制御方法が適用されるモータ制御システムの構成を示すブロック 図である。図 1のモータ 1は、自動車のワイパシステムの駆動源として使用され、バッ テリ 2から電源が供給され、 CPU3によって駆動制御される。モータ 1は、 4個の FET を用いた Hブリッジ回路 10によって正逆転駆動される。モータ 1には、ホール ICを用 いた回転検出手段 4が設けられており、回転検出手段 4から出力されるパルス信号の 周波数 (モータ回転周波数)によってその速度(回転数)を検出できるようになって ヽ る。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Figure 1 shows an illustration of the present invention. It is a block diagram which shows the structure of the motor control system to which the motor control method which is an Example is applied. The motor 1 shown in FIG. 1 is used as a drive source for an automobile wiper system, supplied with power from the battery 2, and driven and controlled by the CPU 3. The motor 1 is driven forward and backward by an H-bridge circuit 10 using four FETs. The motor 1 is provided with a rotation detection means 4 using a Hall IC, and the speed (number of rotations) can be detected by the frequency of the pulse signal (motor rotation frequency) output from the rotation detection means 4. Talk to you.
[0020] CPU3は、パルス信号力も算出した回転数に基づき、モータ 1を PID制御する。モ ータ 1に対しては、印加電圧のパルス幅の ONZOFF比率を変化させて駆動制御を 行う PWM制御(Pulse Width Modulation:パルス幅変調)が実行され、電源電圧を O NZOFFさせることにより印加電圧を実効的に変化させてモータ 1への供給電流量 を制御する。 PWM制御に際し、 CPU3はパルス電圧の ON期間の時比率 (Duty)を 設定し、モータ駆動装置 5に制御信号を送出する。モータ駆動装置 5は、この制御信 号を受けて、設定された Dutyのパルス電圧をモータ 1に印加し、これによりモータ 1の 回転数が適宜制御される。  [0020] CPU 3 performs PID control of motor 1 based on the calculated rotation speed of the pulse signal force. For motor 1, PWM control (Pulse Width Modulation) that controls the drive by changing the ONZOFF ratio of the pulse width of the applied voltage is executed, and the applied voltage is set by turning the power supply voltage ON / OFF. Is effectively changed to control the amount of current supplied to motor 1. During PWM control, CPU 3 sets the duty ratio (Duty) of the ON period of the pulse voltage and sends a control signal to motor drive device 5. Upon receiving this control signal, the motor drive device 5 applies a set duty pulse voltage to the motor 1, whereby the rotational speed of the motor 1 is appropriately controlled.
[0021] バッテリ 2には、電圧センサ 6が接続されている。電圧センサ 6は、モータ 1に印加さ れる電源電圧を検出し、その値を CPU3に送出する。また、モータ 1の内部には、モ ータ内の温度、特に電機子卷線の温度を検知する温度センサ 7が設けられている。 温度センサ 7もまた CPU3に接続されており、温度センサ 7によって検出されたモータ 1内の温度は、モータ温度情報として CPU3に送られる。 CPU3は、この温度情報を 用いてモータ 1内の温度を常時モニタしている。 CPU3は、電源電圧やモータ回転 周波数,モータ温度情報等に基づいて、モータロック時に電流値が所定値以上とな らないようにモータ駆動装置 5を制御する。この際、 CPU3は、 ROM (記憶手段) 8内 に格納された制御マップ 9等を参照し、モータ 1の PWM Dutyの最大値を制限し、モ ータ供給電流を抑制する。  A voltage sensor 6 is connected to the battery 2. The voltage sensor 6 detects the power supply voltage applied to the motor 1 and sends the value to the CPU 3. Further, inside the motor 1, a temperature sensor 7 for detecting the temperature in the motor, particularly the temperature of the armature winding is provided. The temperature sensor 7 is also connected to the CPU 3, and the temperature in the motor 1 detected by the temperature sensor 7 is sent to the CPU 3 as motor temperature information. CPU 3 constantly monitors the temperature in motor 1 using this temperature information. The CPU 3 controls the motor drive device 5 based on the power supply voltage, the motor rotation frequency, the motor temperature information, and the like so that the current value does not exceed a predetermined value when the motor is locked. At this time, the CPU 3 refers to the control map 9 and the like stored in the ROM (storage means) 8 to limit the maximum value of the PWM duty of the motor 1 and suppress the motor supply current.
[0022] CPU3内には、制御 Duty算出手段 11、 Max. Duty算出手段 (許容 Duty値算出手段 ) 12、モータ状態検出手段 13、 Max.Duty補正手段 (許容 Duty値補正手段) 14、 Dut y値出力手段 15が設けられている。制御 Duty算出手段 11は、バッテリ電圧やモータ 回転周波数、モータ温度情報等に基づいて、モータ 1の現在の状態を検出し、その 負荷状態に合った制御 Duty値を算出する。モータ 1は、通常時はこの制御 Duty算出 手段 11にて求めた Duty値によって PID制御される。 [0022] In CPU 3, control duty calculation means 11, Max. Duty calculation means (allowable duty value calculation means) 12, motor state detection means 13, Max. Duty correction means (allowable duty value correction means) 14, Duty Value output means 15 is provided. Control duty calculation means 11 includes battery voltage and motor Based on the rotation frequency, motor temperature information, etc., the current state of the motor 1 is detected, and a control duty value suitable for the load state is calculated. The motor 1 is normally PID controlled by the duty value obtained by the control duty calculation means 11.
[0023] このように、モータ 1は、通常時は PID制御による制御 Duty値によって駆動制御され ているが、当該システムでは、ロック電流による減磁防止のため、ロック時に印加可能 な PWM Dutyの許容値(Max.Duty)が設定される。 Max.Duty算出手段 12は、この許 容 Duty値を、バッテリ電圧やモータ回転周波数、モータ温度情報に基づいて設定す る。許容 Duty値は ROM8内に制御マップ 9として格納されており、 Max.Duty算出手 段 12は、各検出値に基づき制御マップ 9を参照して許容 Duty値を算出する。  [0023] As described above, the motor 1 is normally driven and controlled by the control duty value by the PID control. However, in this system, to prevent demagnetization due to the lock current, the PWM duty that can be applied at the time of locking is allowed. Value (Max.Duty) is set. The Max. Duty calculation means 12 sets the allowable duty value based on the battery voltage, the motor rotation frequency, and the motor temperature information. The allowable duty value is stored in the ROM 8 as the control map 9, and the Max. Duty calculation means 12 calculates the allowable duty value with reference to the control map 9 based on each detected value.
[0024] モータ状態検出手段 13は、モータ 1の加減速状態を検出する。モータ状態検出手 段 13には、回転検出手段 4からモータ回転周波数が入力されており、そこでは、直 前の検出値と現在の検出値とを比較して、モータの加減速状態を判断している。例 えば、直前よりも現在の方が回転数が速い(回転周波数が高い)場合には、モータ状 態検出手段 13は、モータ 1は加速状態にあると判断する。  Motor state detection means 13 detects the acceleration / deceleration state of motor 1. The motor state detection means 13 receives the motor rotation frequency from the rotation detection means 4 and compares the previous detection value with the current detection value to determine the acceleration / deceleration state of the motor. ing. For example, when the current rotational speed is faster (higher rotational frequency) than immediately before, the motor state detection means 13 determines that the motor 1 is in an acceleration state.
[0025] Max.Duty補正手段 14は、モータの加減速状態に合わせて、 Max.Duty算出手段 1 2にて算出した許容 Duty値を適宜補正する。前述のように、単純に Duty上限値を設 定してモータ電流量を抑制すると!/、う制御方式では所望の加速性能が得られな 、。 そこで、当該システムでは、回転数が増加するとその分、電流値が低下するといぅモ ータの特性を考慮して、モータ加速時には前述の許容 Duty値をやや高めに補正す る。 Max.Duty補正手段 14では、モータ状態検出手段 13にてモータが加速状態と判 断されると、制御マップ 9の値に所定の係数を乗じて補正 Duty値を作成する。  [0025] The Max. Duty correction unit 14 appropriately corrects the allowable duty value calculated by the Max. Duty calculation unit 12 according to the acceleration / deceleration state of the motor. As described above, simply setting the duty upper limit value to suppress the motor current amount! /, The desired acceleration performance cannot be obtained with the control method. Therefore, in this system, considering the characteristics of the motor that the current value decreases as the rotation speed increases, the allowable duty value mentioned above is corrected to be slightly higher during motor acceleration. When the motor state detection means 13 determines that the motor is in an acceleration state, the Max. Duty correction means 14 creates a correction duty value by multiplying the value of the control map 9 by a predetermined coefficient.
[0026] このようにして制御 Duty算出手段 11にて算出された制御 Duty値や、 Max.Duty算出 手段 12にて算出された許容 Duty値、 Max.Duty補正手段 14にて補正された補正 Dut y値は、 Duty値出力手段 15から制御信号として送出される。この制御信号はモータ 駆動装置 5に送られ、 CPU3にて設定された Duty値に従ってモータ 1が駆動される。  [0026] In this way, the control duty value calculated by the control duty calculation means 11, the allowable duty value calculated by the Max. Duty calculation means 12, and the correction duty corrected by the Max. Duty correction means 14 The y value is sent from the duty value output means 15 as a control signal. This control signal is sent to the motor drive device 5, and the motor 1 is driven according to the duty value set by the CPU 3.
[0027] 図 2は、本発明の一実施例であるモータ駆動制御の処理手順を示すフローチヤ一 トである。図 2の制御は図 1のシステムにて実行され、自動車のイグニッションキーが ONされると、図 2の処理が開始される。 [0028] 図 2に示すように、ここではまず、ステップ S1にてモータ回転周波数 fが検出される 。モータ回転周波数 fとしては、回転検出手段 4の出カノ ルス信号の周波数が使用さ れる。出カノ ルス信号は、モータ 1の回転に伴って出力され、これにより、現在のモー タ 1の回転数や回転状態を把握することができる。回転検出手段 4では、モータ 1回 転当たり 12パルスが出力され、例えば、出力パルスが 200Hzの場合、モータ回転数 は約 lOOOrpmとなる。出カノ ルスの周波数とモータ回転数とは 1対 1の関係にあるた め、本実施例では、出力パルスの周波数をモータ回転数として捉え、モータ回転周 波数 fを直接使用してモータ 1の駆動制御を行う。 FIG. 2 is a flowchart showing a processing procedure for motor drive control according to an embodiment of the present invention. The control shown in FIG. 2 is executed by the system shown in FIG. 1. When the ignition key of the automobile is turned on, the process shown in FIG. 2 is started. [0028] As shown in FIG. 2, first, in step S1, the motor rotation frequency f is detected. As the motor rotation frequency f, the frequency of the output signal of the rotation detection means 4 is used. The output cannula signal is output along with the rotation of the motor 1, so that the current rotation speed and rotation state of the motor 1 can be grasped. The rotation detection means 4 outputs 12 pulses per motor rotation. For example, when the output pulse is 200 Hz, the motor rotation speed is about lOOOrpm. Since the output frequency and the motor speed have a one-to-one relationship, in this embodiment, the frequency of the output pulse is regarded as the motor speed, and the motor rotation frequency f is directly used. Drive control is performed.
[0029] 次に、 S1にて検出したモータ回転数に基づき、制御 Duty算出手段 11にて PID制 御方式に基づき制御 Duty値 (Duty(l))を算出する。 Duty(l)を算出した後、ステップ S 3に進み、 Max.Duty算出手段 12にて Max.Duty値を算出する。図 3は、ステップ S3に おける Max.Duty算出処理手順を示すフローチャートである。そこでは、まず、 ROM8 力もロック判断周波数 dを取得する (ステップ S 11)。ロック判断周波数 dは、モータ回 転周波数が何 Hzとなったときに「ロック状態」と判断するかを決定する数値である。例 えば、ロック判断周波数を d=300に設定すると、 300Hzにてモータ 1がロック状態と判 断される。この dの値は、モータ特性や負荷の程度'種類等によって 0〜400程度の範 囲で適宜設定される。  Next, based on the motor rotation speed detected in S 1, the control duty calculation means 11 calculates a control duty value (Duty (l)) based on the PID control method. After calculating Duty (l), the process proceeds to step S 3 and the Max.Duty calculation means 12 calculates the Max.Duty value. FIG. 3 is a flowchart showing the Max. Duty calculation processing procedure in step S3. First, the ROM 8 force also acquires the lock judgment frequency d (step S 11). The lock determination frequency d is a numerical value that determines how many Hz the motor rotation frequency is determined as “lock state”. For example, if the lock judgment frequency is set to d = 300, motor 1 is judged to be locked at 300Hz. The value of d is appropriately set within a range of about 0 to 400 depending on the motor characteristics and the load level.
[0030] 次に、ステップ S12にて電源電圧 Eが検出される。電源電圧 Eは、電圧センサ 6によ つて検出され、ノ ッテリ 2によって現時点でモータ 1に印加されている電圧が検出され る。電源電圧が高ければ、その分、ある許容電流値に対応するモータ Dutyは小さくな る。このため、当該制御方法でもノ ッテリ 2の電圧値を検出し、それを制御上のパラメ ータの一つとして用いている。なお、ロック判断周波数 dや電源電圧 Eは何れを先に 設定'検出しても良ぐ上述の順序には限定されない。  Next, the power supply voltage E is detected in step S12. The power supply voltage E is detected by the voltage sensor 6, and the voltage currently applied to the motor 1 is detected by the notch 2. The higher the power supply voltage, the smaller the motor duty corresponding to a certain allowable current value. For this reason, even in this control method, the voltage value of battery 2 is detected and used as one of the control parameters. Note that the lock determination frequency d and the power supply voltage E are not limited to the order described above, which may be set first and detected.
[0031] 前記 d,Eを検出等した後、 dと fを比較する。 fが d以上の場合、すなわち、モータ回 転周波数がロック判断周波数以上である場合には、モータ 1の Dutyの最大値 (Max.D uty)を次式に基づ!/ヽて算出した後、ステップ S 15にて Max.Duty値を設定して当該ル 一チンを抜ける。  [0031] After detecting d and E, d and f are compared. If f is greater than or equal to d, that is, if the motor rotation frequency is greater than or equal to the lock judgment frequency, calculate the maximum duty value (Max.Duty) of motor 1 based on the following formula! In step S15, set the Max.Duty value and exit the routine.
[0032] Max.Duty = DO * Kf (式 1) [0033] 前式にぉ 、て、 DOは許容 Duty値、 Kfは周波数調整係数である。 DOは、モータ 1 力 ック状態 (f = 0)となったとき、マグネットの減磁ゃスイッチング素子の電流容量な どの観点から、モータ 1に印可可能な Duty値である。 DOは電源電圧 Eに依存する値 であり、 CPU3は、ステップ S12にて取得した電源電圧 Eをパラメータとして、次式に よって DOを求める。 [0032] Max.Duty = DO * Kf (Formula 1) [0033] In the above equation, DO is an allowable duty value, and Kf is a frequency adjustment coefficient. DO is a duty value that can be applied to motor 1 from the viewpoint of the demagnetization of the magnet and the current capacity of the switching element when the motor 1 is in a locked state (f = 0). DO is a value that depends on power supply voltage E, and CPU3 uses the power supply voltage E acquired in step S12 as a parameter to obtain DO using the following equation.
[0034] DO = a-bE (式 2)  [0034] DO = a-bE (Formula 2)
[0035] 式 2の a,bはモータ毎(あるいはモータ機種毎等)に予め設定される固定値であり、 a はロック時の許容電流量力も求められる固定 Duty値、 bはモータ特性に応じて決まる Duty特性係数である。これらの値は、予め ROM8内に格納されている。図 4は、式 2 において、 a= 124,b = 4.7とした場合の Eと DOとの関係を示すグラフ図である。  [0035] In Equation 2, a and b are fixed values set in advance for each motor (or for each motor model, etc.), a is a fixed duty value for which the allowable current capacity at the time of locking is also required, and b depends on the motor characteristics Duty characteristic coefficient determined by These values are stored in the ROM 8 in advance. FIG. 4 is a graph showing the relationship between E and DO when a = 124 and b = 4.7 in Equation 2.
[0036] 固定 Duty値 aは、ロック電流を何アンペアに固定したいかによつて決まり、 Eを変数 とした一次関数で表現される DOの切片値となる。 aの値は、許容電流量が大きけれ ば大きくなり、許容電流量が小さければ aの値は小さくなる。 Duty特性係数 bは、モー タの卷線抵抗等に応じて、各モータの特性に基づいて決定され、 Eを変数とした一次 関数で表現される DOの傾きとなる。前述のように、電源電圧 Eが高いときは許容 Duty 値 DOを低く抑える必要があり、ここでは bは正の値となり、 DOを示すグラフは右下がり となる。  [0036] The fixed duty value a is determined by how many amperes the lock current is to be fixed, and is an intercept value of DO expressed by a linear function with E as a variable. The value of a increases as the allowable current amount increases, and the value of a decreases as the allowable current amount decreases. The duty characteristic coefficient b is determined based on the characteristics of each motor according to the motor's shore resistance, etc., and is the DO slope expressed by a linear function with E as a variable. As described above, when the power supply voltage E is high, it is necessary to keep the allowable duty value DO low. Here, b is a positive value, and the graph showing DO goes to the right.
[0037] このように、許容 Duty値 DOは、許容される最大ロック電流値に基づき、各モータの 特性に応じて設定され、電源電圧 Eの大小によって変化する。この場合、許容最大口 ック電流値は、マグネットの減磁が許容範囲内に抑えられる値が設定され、ロックを検 知した場合には、電源電圧 Eに応じて Duty値を強制的に DO以下に抑制すれば、低 温ロック時の過大電流が防止でき、マグネットの減磁は抑制される。  In this way, the allowable duty value DO is set according to the characteristics of each motor based on the maximum allowable lock current value, and varies depending on the magnitude of the power supply voltage E. In this case, the allowable maximum block current value is set so that the demagnetization of the magnet is kept within the allowable range.When lock is detected, the duty value is forcibly set in accordance with the power supply voltage E. If suppressed to the following, excessive current at the time of low temperature lock can be prevented, and demagnetization of the magnet is suppressed.
[0038] 一方、このような制御形態では、過負荷によって徐々にモータ回転数が低減し、卷 線電流値が増大している状態でも、モータが停止しない限り Duty値は強制設定され ない。そこで、ステップ S3の処理では、モータ回転周波数 fに応じて許容 Duty値を補 正し、その時点でのモータ回転数で許される Duty値を個々に設定し、モータの状態 に合わせた過電流防止対策を実施している。そのための DO調整用の係数が式 1の Kfである。 [0039] すなわち、周波数調整係数 Kfは、モータ回転周波数 fに依存する係数であり、現在 のモータ回転周波数 fでは Max.Duty値をいくつにすべきかを、 DOに基づいて求める ための調整値である。従って、式 1にて求められる Max.Duty値もまた許容 Duty値の 一種であり、ここでは、許容 Duty値 DOをモータ回転周波数に応じて補正した値を使 用する。 CPU3は、先に取得したモータ回転周波数 fとロック判断周波数 dを用いて、 次式によって Kfを求める。 On the other hand, in such a control mode, even when the motor rotational speed is gradually reduced due to overload and the winding current value is increased, the duty value is not forcibly set unless the motor stops. Therefore, in the process of step S3, the allowable duty value is corrected according to the motor rotation frequency f, and the duty value allowed for the motor rotation speed at that time is individually set to prevent overcurrent according to the motor status. Measures are being implemented. The DO adjustment coefficient for this is Kf in Equation 1. [0039] That is, the frequency adjustment coefficient Kf is a coefficient that depends on the motor rotation frequency f. The current motor rotation frequency f is an adjustment value for determining how many Max.Duty values should be based on DO. is there. Therefore, the Max. Duty value obtained from Equation 1 is also a kind of allowable duty value. Here, the value obtained by correcting the allowable duty value DO according to the motor rotation frequency is used. CPU3 uses the motor rotation frequency f and the lock determination frequency d acquired previously to determine Kf by the following equation.
[0040] Kf= l + (f-d)/c (式 3)  [0040] Kf = l + (f-d) / c (Formula 3)
[0041] 式 3の cは制限開始周波数であり、モータ回転周波数が何 Hzとなった時点力も Duty 値の制限を開始するかを定める固定値であって、予め ROM8内に格納されている。 cの値としては、例えば、ロック判断周波数を d=300とした場合、それに対応して c=420 (Hz)が設定される。また、 f— dは、モータ回転周波数 fがロック判断周波数 dに達した とき 0となり、このとき Kf= lとなる。この際、許容 Duty値 DOは X 1、すなわち、 DOその ものとなり、 fが dに達すると、 f = 0とならなくとも Max.Duty値が DOとなる。  [0041] c in Equation 3 is a limit start frequency, which is a fixed value that determines how many Hz the motor rotational frequency reaches when the duty value starts to be limited, and is stored in the ROM 8 in advance. As the value of c, for example, when the lock determination frequency is d = 300, c = 420 (Hz) is set correspondingly. F−d becomes 0 when the motor rotation frequency f reaches the lock judgment frequency d, and Kf = l at this time. At this time, the allowable duty value DO is X 1, that is, DO itself, and when f reaches d, the Max.Duty value becomes DO even if f = 0 is not satisfied.
[0042] 図 5は、 a = 124,b=4.7,c=420,d=300とした場合の Max.Duty値(減速時用 Duty値 )を示す制御マップ 9の一例であり、 ROM8内に格納されている。ここでは、 dは 300 (f = 300Hzでロックと判断)となっており、モータが減速し周波数が 300Hzとなったとき、 図 4のような設定の DOが適用される。つまり、式 1は、図 5のマップでは、 Max.Duty = DO * (l + (f— 300)Z420) : (式 4)で表され、 f=300Hzでは Max.Duty = DOとなる。な お、例えば、 d=400と設定すると、 f =400のとき DOが適用されるように図 5のテープ ルが読み替えられる。  [0042] Fig. 5 is an example of a control map 9 showing the Max. Duty value (duty value for deceleration) when a = 124, b = 4.7, c = 420, and d = 300. Stored. Here, d is 300 (determined to be locked when f = 300 Hz). When the motor decelerates and the frequency reaches 300 Hz, DO set as shown in Fig. 4 is applied. In other words, Equation 1 is expressed as Max.Duty = DO * (l + (f-300) Z420): (Equation 4) in the map of Fig. 5, and Max.Duty = DO at f = 300Hz. For example, if d = 400 is set, the table in FIG. 5 is read so that DO is applied when f = 400.
[0043] DOは、電源電圧 Eに応じて図 4に示した値を取り、例えば、電源電圧 Eが 13.5Vを 超え 14.0V以下の場合には、 DO = 58%となる。すなわち、図 5において、 E = 14.0(V) 以下,周波数 300(Hz)以下の場合の値は 58%となる。これは、 Eが 13.5V超 14.0V以 下の際にモータ 1がロックした場合は、 Dutyの最大値を 58%に絞ることを意味してい る。  [0043] DO takes the value shown in FIG. 4 according to the power supply voltage E. For example, when the power supply voltage E exceeds 13.5V and is 14.0V or less, DO = 58%. In other words, in Fig. 5, the value for E = 14.0 (V) or less and the frequency of 300 (Hz) or less is 58%. This means that if motor 1 locks when E is greater than 13.5V and less than 14.0V, the maximum duty is reduced to 58%.
[0044] また、図 5に示すように、電源電圧が前記同様 13.5V〜14.0Vの場合、 f=400Hzで は Max.Duty=72%、 f = 500Hzでは Max.Duty=86%などと Duty値が制限される。 f= 600Hzでは、 Max.Dutvの計算値が 100%を超え、この場合は Duty値 100%が可能であ るため、 Duty制限は行われない。また、図 5の網掛け部のように Max.Dutyの計算値が 100%以上の場合につ!、ては、計算値に関わらず Max.Duty= 100(%)となる。 Further, as shown in FIG. 5, when the power supply voltage is 13.5V to 14.0V as described above, Max.Duty = 72% at f = 400Hz and Max.Duty = 86% at f = 500Hz. Value is limited. At f = 600Hz, the calculated value of Max.Dutv exceeds 100%. In this case, a duty value of 100% is possible. Therefore, there is no duty restriction. Further, when the calculated value of Max.Duty is 100% or more as shown by the shaded portion in FIG. 5, Max.Duty = 100 (%) regardless of the calculated value.
[0045] このように、式 1に基づいて Max.Duty値の制限を行うと、モータ 1の回転数が低下す るのに伴い、 Duty最大値が徐々に制限される。そして、モータロック時には、 Duty最 大値は、マグネットの減磁ゃスィッチング素子の電流容量を考慮した値である DOに 抑制される。一方、ステップ S 13にて、モータ回転周波数 fがロック判断周波数 d未満 の場合には、ステップ S16に進む。この場合は、既にモータ 1はロック状態にあると判 断されるので、 Max.Duty値は前述の DOに設定され、ステップ S15に進み、ルーチン を抜ける。これにより、モータ 1が始動直後からロック状態となっても、 Max.Duty値は D 0に抑えられる。 [0045] As described above, when the Max. Duty value is limited based on Equation 1, the maximum Duty value is gradually limited as the rotational speed of the motor 1 decreases. When the motor is locked, the maximum Duty value is suppressed to DO, which is a value that takes into account the current capacity of the switching element of the magnet. On the other hand, if the motor rotation frequency f is less than the lock determination frequency d in step S13, the process proceeds to step S16. In this case, since it is determined that the motor 1 is already in the locked state, the Max.Duty value is set to the above-mentioned DO, and the process proceeds to step S15 to exit the routine. As a result, even if the motor 1 is locked immediately after starting, the Max. Duty value is kept at D 0.
[0046] このようにステップ S3にて Max.Duty値を算出した後、ステップ S4に進み、モータ状 態検出手段 13にてモータの駆動状態が検出される。ここでは、回転数の変化からモ ータの加減速状態を判定し、当該処理の一つ前の処理 (前回処理)におけるモータ 回転数 (f)と最新 (今回処理)のモータ回転数とが比較される。前回処理時の回転数 が今回以上の場合には、モータ 1は同回転数か減速状態にあると判断され、ステップ S5に進み、ステップ S3にて算出した Max.Duty値をそのまま使用し、ステップ S7に進 む。これに対し、前回処理時の回転数が今回よりも小さい場合には、モータ 1は加速 状態にあると判断され、ステップ S6に進み、 Max.Duty補正手段 14にてステップ S3に て算出した Max.Duty値に加速補正係数 Kpが乗じられる。  [0046] After the Max. Duty value is calculated in step S3 as described above, the process proceeds to step S4, and the motor state detection means 13 detects the motor drive state. Here, the acceleration / deceleration state of the motor is determined from the change in the rotation speed, and the motor rotation speed (f) in the previous processing (previous processing) and the latest (current processing) motor rotation speed are determined. To be compared. If the rotation speed at the time of the previous process is greater than or equal to this time, it is determined that the motor 1 is at the same rotation speed or is in a decelerating state, and the process proceeds to step S5 and uses the Max. Proceed to S7. On the other hand, if the rotational speed at the time of the previous processing is smaller than this time, it is determined that the motor 1 is in an acceleration state, the process proceeds to step S6, and Max.Duty correction means 14 calculates the Max calculated in step S3. .Duty value is multiplied by acceleration correction factor Kp.
[0047] ステップ S6では、例えば、 Max.Duty値に Κρ = 1.2が乗じられ、その値は通常制御 時の 1.2倍に高められる。図 6は、減速時対応の Max.Duty値(図 5)に 1.2を乗じた補 正値 (加速時用 Duty値)を示すマップである。 ROM8内にはこのような加速時対応の 補正マップが予め格納されており、ステップ S6では、それを参照して Max.Duty値を 補正する。図 6のマップでは、例えば、 13.5V〜14.0Vの場合、 f = 300Hz以下では Ma x.Duty=70%、 f = 400Hzでは Max.Duty=86%などと Duty値が制限される。 f=500H z以上では、 Max.Duty値は 100%となる。この場合、加速により回転数が増大すれば、 電流値は相対的に減少するため、許容 Duty値をその減少分だけ高く設定しても、マ グネット減磁などの不都合は生じな 、。 [0048] このように当該制御方法では、モータ加速時には、減速時に比して Max.Duty値が 高く設定される。前述のように、図 5のような減速時対応マップによる制御では、やや 負荷が高く回転数が減少して!/ヽる状態で加速を行!ヽた!、場合には、必要以上に Dut y値が抑制され、所望の加速特性が得られな力つた。これに対し、本発明による制御 方法では、モータの加減速状態を検出し、加速時には Max.Duty値を高めに補正す るので、過負荷〜ロック時の電流値を抑えつつ、加速時に必要なトルクを確保できる 。このため、減磁抑制によりマグネットやスイッチング素子のコスト低減やモータ重量 の軽減を図りつつ、加速性能の向上を図ることが可能となる。 [0047] In step S6, for example, Max.Duty value is multiplied by Κρ = 1.2, and the value is increased to 1.2 times that in normal control. Fig. 6 is a map that shows the correction value (duty value for acceleration) by multiplying the Max. Duty value for deceleration (Fig. 5) by 1.2. In ROM8, such a correction map for acceleration is stored in advance, and in step S6, the Max.Duty value is corrected with reference to it. In the map of FIG. 6, for example, in the case of 13.5V to 14.0V, Duty value is limited to Max.Duty = 70% at f = 300Hz or less and Max.Duty = 86% at f = 400Hz. Above f = 500Hz, Max.Duty value is 100%. In this case, if the rotational speed increases due to acceleration, the current value decreases relatively, so even if the allowable duty value is set higher by that amount, inconveniences such as magnet demagnetization do not occur. [0048] As described above, in this control method, the Max. Duty value is set higher during motor acceleration than during deceleration. As described above, with the deceleration response map as shown in Fig. 5, the load is slightly higher and the rotational speed is reduced! In some cases, the duty value was suppressed more than necessary, and the desired acceleration characteristics were not obtained. On the other hand, in the control method according to the present invention, the acceleration / deceleration state of the motor is detected and the Max.Duty value is corrected to be higher during acceleration. Therefore, it is necessary for acceleration while suppressing the current value during overload to lock. Torque can be secured. For this reason, it is possible to improve acceleration performance while reducing magnet and switching element costs and reducing motor weight by suppressing demagnetization.
[0049] ステップ S5,6にて Max.Duty値を設定 '補正した後、ステップ S7に進み、ステップ S2 にて求めた制御 Duty値(Duty(l))と、 Max.Duty値とを比較する。 Duty(l)が Max.Duty 値以下の場合には、 Duty値を抑制する必要はなぐステップ S8に進みそのまま Duty( 1)を出力 Duty値に設定し、ステップ S10にてその値を Duty値出力手段 15力もモータ 駆動装置 5に出力してルーチンを抜ける。これに対し、 Duty(l)が Max.Duty値を超え ている場合には、この Duty(l)をそのまま出力すると、電流値が過剰となり減磁が生じ るおそれがある。このため、ステップ S9に進み、 Max.Duty値を出力 Duty値として設定 し、 Duty値を抑制する。その後、ステップ S10に進み、 Max. Duty値を出力しルーチン を抜ける。そして、減速時には PWM Dutyが一定 (Max.Duty値)に保持され、その状 態が所定時間経過するとモータの出力が停止される。これにより、モータロック時の 過剰電流が抑えられ、マグネットの減磁防止が図られる。一方、加速時には、 Max.Du ty値が高めに補正され、加速性能向上が図られる。  [0049] Set the Max.Duty value in Steps S5, 6 'After correction, proceed to Step S7 and compare the control duty value (Duty (l)) obtained in Step S2 with the Max.Duty value . If Duty (l) is less than Max.Duty value, it is not necessary to suppress the Duty value.Proceed to Step S8, set Duty (1) as the output Duty value, and output the Duty value in Step S10. Means 15 force is also output to the motor drive 5 and the routine is exited. On the other hand, if Duty (l) exceeds the Max.Duty value, if this Duty (l) is output as it is, the current value may become excessive and demagnetization may occur. Therefore, proceed to step S9, set the Max. Duty value as the output duty value, and suppress the duty value. Then, go to step S10, output the Max. Duty value, and exit the routine. During deceleration, the PWM duty is held constant (Max. Duty value), and the motor output is stopped when the specified time has elapsed. As a result, excessive current at the time of motor lock is suppressed, and demagnetization of the magnet is prevented. On the other hand, during acceleration, the Max. Duty value is corrected to a higher value, and acceleration performance is improved.
[0050] 本発明は前記実施例に限定されるものではなぐその要旨を逸脱しない範囲で種 々変更可能であることは言うまでもな 、。  [0050] It goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
例えば、前述の実施例では、 Max.Duty値を式 1を用いて算出する制御形態を示し たが、 Max.Duty値の算出方法はこれには限定されず、例えば、電流値と回転数から Max.Duty値を求めても良い。図 7は、その場合の処理手順を示すフローチャートであ る。ここでは、図 2のステップ S3の処理に代えて、ステップ S31, 33にて検出した回転 数と電流値を用いて、ステップ S34にて Max.Duty値を算出している。その他の処理 は図 2と同様である。なお、電流値の検出方法は、電流センサやシャント抵抗、回転 数と Dutyの関係等、種々の方法にて検出可能である。 For example, in the above-described embodiment, the control form in which the Max.Duty value is calculated using Equation 1 is shown, but the method for calculating the Max.Duty value is not limited to this. The Max.Duty value may be obtained. FIG. 7 is a flowchart showing the processing procedure in that case. Here, instead of the process of step S3 of FIG. 2, the Max.Duty value is calculated in step S34 using the rotation speed and current value detected in steps S31 and 33. Other processing is the same as in Fig. 2. The current value can be detected by using a current sensor, shunt resistor, rotation It can be detected by various methods such as the relationship between number and duty.
[0051] また、前述の実施例では、 ROM8内に減速時用 Duty値と加速時用 Duty値の両マ ップを格納し、加減速状況に応じてそれら適宜参照する制御形態を示したが、 ROM 8内には減速時用 Duty値のマップのみを格納し、加速時にはその値に Kpを乗じるよ うにしても良い。勿論、減速時用 Duty値もマップではなぐ式 1を用いてその場で演算 するようにしても良い。さらに、モータ温度を考慮し、温度センサ 7から得たモータ温 度情報に基づいて Max.Duty値を補正しても良ぐ例えば、 D1 = 100—(100— Max.D uty) *T(T:温度)のような形で Max.Duty値を補正し、これに Kpを乗じて加速時の Ma x.Duty値としても良い。 In the above-described embodiment, the control form in which both maps of the duty value for deceleration and the duty value for acceleration are stored in the ROM 8 and appropriately referred to according to the acceleration / deceleration situation is shown. ROM 8 may store only a map of the duty value for deceleration and multiply that value by Kp during acceleration. Of course, the duty value for deceleration may also be calculated on the spot using Equation 1, which is not a map. Furthermore, considering the motor temperature, the Max.Duty value may be corrected based on the motor temperature information obtained from the temperature sensor 7. For example, D1 = 100— (100—Max.D uty) * T (T :) The Max.Duty value may be corrected in a form such as (temperature) and multiplied by Kp to obtain the Max.Duty value during acceleration.
[0052] 力!]えて、前述の実施例では、本発明を自動車のワイパシステム用モータに適用した 例を示したが、本発明の適用対象はこれには限定されず、窓やドアを駆動するモー タ、或いは他の車載モータや、寒冷地にて使用されるポンプ等に使用されるモータな ど、種々のモータに適用可能である。また、モータ 1として、駆動回路 10によって正逆 転駆動されるものを示した力 一方向にのみ回転するモータの制御に本発明を適用 することも可能である。なお、前述実施例にて挙げた数値や図 4,6のマップなどはあく までも一例であり、本発明がこれらの数値に限定されないことは言うまでもない。  [0052] Power! In the above embodiment, the present invention is applied to a motor for a wiper system of an automobile. However, the application target of the present invention is not limited to this, and a motor for driving a window or a door, or It can be applied to various on-board motors and motors used in pumps used in cold regions. Further, the present invention can also be applied to control of a motor that rotates only in one direction of force, which is shown as a motor 1 that is driven forward and backward by a drive circuit 10. It should be noted that the numerical values given in the above embodiment and the maps of FIGS. 4 and 6 are merely examples, and it goes without saying that the present invention is not limited to these numerical values.

Claims

請求の範囲 The scope of the claims
[1] ON期間と OFF期間を備えたパルス状の波形を有する電圧を印加し、前記電圧の O N/OFF比率を変化させることにより印加電圧を実効的に変化させるモータの制御方 法であって、  [1] A motor control method in which a voltage having a pulse-like waveform having an ON period and an OFF period is applied, and the applied voltage is effectively changed by changing the ON / OFF ratio of the voltage. ,
前記モータの許容電流量に基づいて、前記モータがロック状態となったときに前記 モータに印加可能な前記電圧の ON期間時比率を示す許容 Duty値を設定し、 前記モータの回転数が所定値以下となったとき、前記印加電圧の ON期間時比率 を前記許容 Duty値以下に抑制する一方、  Based on the allowable current amount of the motor, an allowable duty value indicating a ratio of the ON period of the voltage that can be applied to the motor when the motor is locked is set, and the rotational speed of the motor is a predetermined value When the ratio is less than or equal to the ON duty ratio of the applied voltage to the allowable duty value or less,
前記モータが加速中の場合には、前記許容 Duty値を該許容 Duty値よりも高 、値に 設定された加速時用 Duty値に補正することを特徴とするモータ制御方法。  When the motor is accelerating, the allowable duty value is corrected to an acceleration duty value that is set to a value that is higher than the allowable duty value.
[2] ON期間と OFF期間を備えたパルス状の波形を有する電圧を印加し、前記電圧の 0[2] Apply a voltage having a pulse waveform with an ON period and an OFF period, and
N/OFF比率を変化させることにより印加電圧を実効的に変化させるモータの制御方 法であって、 A motor control method that effectively changes the applied voltage by changing the N / OFF ratio.
前記モータの許容電流量に基づいて、前記モータがロック状態となったときに前記 モータに印加可能な前記電圧の ON期間時比率を示す許容 Duty値を、前記モータ が加速中の場合と減速中の場合とで異なる値に設定し、  Based on the allowable current amount of the motor, an allowable duty value indicating a ratio of the ON period of the voltage that can be applied to the motor when the motor is in a locked state, when the motor is accelerating and decelerating. Set to a different value in the case of
前記モータの回転数が所定値以下となったとき、前記モータの加減速状況に基づ いて前記許容 Duty値を適宜選択し、前記印加電圧の ON期間時比率を選択した前 記許容 Duty値以下に抑制することを特徴とするモータ制御方法。  When the number of rotations of the motor becomes a predetermined value or less, the allowable duty value is appropriately selected based on the acceleration / deceleration state of the motor, and the ratio of the applied voltage during the ON period is selected or less. The motor control method characterized by restraining to.
[3] 請求項 2記載のモータ制御方法において、前記モータが加速中の場合の前記許 容 Duty値は、前記モータが減速中の場合の前記許容 Duty値よりも高い値が設定さ れることを特徴とするモータ制御方法。 [3] The motor control method according to claim 2, wherein the allowable duty value when the motor is accelerating is set higher than the allowable duty value when the motor is decelerating. A motor control method.
[4] ON期間と OFF期間を備えたパルス状の波形を有する電圧を印加し、前記電圧の 0[4] A voltage having a pulse-like waveform having an ON period and an OFF period is applied, and 0% of the voltage is applied.
N/OFF比率を変化させることにより印加電圧を実効的に変化させてモータの駆動制 御を行うモータ制御システムであって、 A motor control system that performs motor drive control by effectively changing the applied voltage by changing the N / OFF ratio,
モータの回転に伴って信号を出力する回転検出手段と、  Rotation detection means for outputting a signal along with the rotation of the motor;
前記モータの許容電流量に基づいて設定され前記モータがロック状態となったとき に前記モータに印加可能な前記電圧の ON期間時比率を示す許容 Duty値を格納す る記憶手段と、 Stores an allowable duty value that is set based on the allowable current amount of the motor and indicates the ratio of the ON period of the voltage that can be applied to the motor when the motor is locked. Storage means
前記回転検出手段力 出力される信号に基づいて前記許容 Duty値を算出する許 容 Duty値算出手段と、  The rotation detection means force An allowable duty value calculation means for calculating the allowable duty value based on an output signal;
前記回転検出手段から出力される信号に基づいて前記モータの加減速状況を検 出するモータ駆動状態検出手段と、  Motor drive state detection means for detecting the acceleration / deceleration status of the motor based on a signal output from the rotation detection means;
前記モータ駆動状態検出手段にて前記モータが加速中と検出された場合、前記許 容 Duty値を補正する許容 Duty値補正手段とを有することを特徴とするモータ制御シ ステム。  A motor control system comprising: an allowable duty value correcting means for correcting the allowable duty value when the motor driving state detecting means detects that the motor is accelerating.
[5] 請求項 5記載のモータ制御システムにお 、て、前記許容 Duty値補正手段は、前記 モータが加速中の場合、前記許容 Duty値に対して所定の補正係数を乗じ、前記許 容 Duty値をより高い値に補正することを特徴とするモータ制御システム。  [5] The motor control system according to claim 5, wherein when the motor is accelerating, the allowable duty value correction means multiplies the allowable duty value by a predetermined correction coefficient to calculate the allowable duty value. A motor control system characterized by correcting the value to a higher value.
[6] 請求項 5記載のモータ制御システムにお 、て、前記記憶手段は、前記モータが加 速中の場合に使用する加速時用 Duty値と、前記モータが減速中に使用する減速時 用 Duty値とを備え、前記許容 Duty値補正手段は、前記モータが加速中の場合、前 記加速時用 Duty値を用いて前記許容 Duty値を補正することを特徴とするモータ制御 システム。  [6] In the motor control system according to claim 5, the storage means is an acceleration duty value used when the motor is accelerating and a deceleration time value used when the motor is decelerating. A motor control system comprising: a duty value; and the allowable duty value correction means corrects the allowable duty value using the acceleration duty value when the motor is accelerating.
PCT/JP2006/313873 2005-07-13 2006-07-12 Motor control method and motor control system WO2007007794A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112006001839T DE112006001839T5 (en) 2005-07-13 2006-07-12 Engine control method and engine control system
JP2007524680A JP4878598B2 (en) 2005-07-13 2006-07-12 Motor control method and motor control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-204777 2005-07-13
JP2005204777 2005-07-13

Publications (1)

Publication Number Publication Date
WO2007007794A1 true WO2007007794A1 (en) 2007-01-18

Family

ID=37637184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313873 WO2007007794A1 (en) 2005-07-13 2006-07-12 Motor control method and motor control system

Country Status (3)

Country Link
JP (1) JP4878598B2 (en)
DE (1) DE112006001839T5 (en)
WO (1) WO2007007794A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175369A (en) * 2017-04-12 2018-11-15 オムロン株式会社 Game machine
JP2018182893A (en) * 2017-04-12 2018-11-15 オムロン株式会社 Motor control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064418B2 (en) * 1985-10-02 1994-01-19 株式会社豊田自動織機製作所 Power steering device for vehicles used in low temperature environment
JPH11252979A (en) * 1998-03-05 1999-09-17 Kokusan Denki Co Ltd Load torque detection circuit for dc motor
JP2001095286A (en) * 1999-09-24 2001-04-06 Yazaki Corp Power supply controller, and power supply control method
JP2005080492A (en) * 2003-09-04 2005-03-24 Taiheiyo Seiko Kk Motor lock control unit for vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064418B2 (en) * 1985-10-02 1994-01-19 株式会社豊田自動織機製作所 Power steering device for vehicles used in low temperature environment
JPH11252979A (en) * 1998-03-05 1999-09-17 Kokusan Denki Co Ltd Load torque detection circuit for dc motor
JP2001095286A (en) * 1999-09-24 2001-04-06 Yazaki Corp Power supply controller, and power supply control method
JP2005080492A (en) * 2003-09-04 2005-03-24 Taiheiyo Seiko Kk Motor lock control unit for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018175369A (en) * 2017-04-12 2018-11-15 オムロン株式会社 Game machine
JP2018182893A (en) * 2017-04-12 2018-11-15 オムロン株式会社 Motor control device

Also Published As

Publication number Publication date
JP4878598B2 (en) 2012-02-15
DE112006001839T5 (en) 2008-05-15
JPWO2007007794A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4795250B2 (en) Motor control method and motor control system
US6647325B2 (en) Control system for electric motor for driving electric vehicle
US8710788B2 (en) Brushless motor drive apparatus and drive method
US10680542B2 (en) Shift range control device
JP4577227B2 (en) Vehicle power generation control device
US20190271303A1 (en) Electric Oil Pump Device
US9712103B2 (en) Actuator controller and actuator control method
US20190195357A1 (en) Shift range control device
JP2001069787A (en) Controller for driving motor
JP2005012914A (en) Driver for motor
EP1187306B1 (en) Apparatus and method for controlling rotation speed of rotor of brushless motor
US20180272845A1 (en) Vehicular opening/closing body control device and motor control device
JP5014133B2 (en) Motor control method and motor control system
WO2007007794A1 (en) Motor control method and motor control system
WO2004073154A1 (en) Motor control method and motor controller
US11499542B2 (en) Electric pump
JP3084941B2 (en) Control drive of electric compressor for automobile
JP2006094590A (en) Motor control method and motor control system
JP4062228B2 (en) DC motor drive device
US6781334B2 (en) Motor controller and control method thereof
JP3436665B2 (en) Electric vehicle speed control device
JP7088043B2 (en) Motor control device
JPH08186902A (en) Controller of motor for vehicle
JP2020188552A (en) Motor control device and motor control method
JP2889996B2 (en) DC motor control circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524680

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120060018396

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006001839

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 06768137

Country of ref document: EP

Kind code of ref document: A1