WO2007007761A1 - Receiving apparatus and receiving method - Google Patents

Receiving apparatus and receiving method Download PDF

Info

Publication number
WO2007007761A1
WO2007007761A1 PCT/JP2006/313784 JP2006313784W WO2007007761A1 WO 2007007761 A1 WO2007007761 A1 WO 2007007761A1 JP 2006313784 W JP2006313784 W JP 2006313784W WO 2007007761 A1 WO2007007761 A1 WO 2007007761A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
filter
band
decoding
Prior art date
Application number
PCT/JP2006/313784
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Takeyama
Takashi Enoki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007007761A1 publication Critical patent/WO2007007761A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B1/1036Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal with automatic suppression of narrow band noise or interference, e.g. by using tuneable notch filters

Definitions

  • the present invention relates to a receiving device and a receiving method, and more particularly to a receiving device and a receiving method in a system to which multicarrier communication is applied.
  • An OFDM (Orthogonal Frequency Division Multiplex) system is known as a transmission system using a wide bandwidth of a radio bandwidth of 100 MHz (see Non-Patent Document 1 and Non-Patent Document 2).
  • the OFDM signal is a frequency division multiplexing digital modulation method that transmits digital information using multiple orthogonal subcarriers. It is multipath-resistant, is not susceptible to interference in other transmission systems, is not susceptible to interference, and is used in frequency. It has characteristics such as relatively high efficiency.
  • FIG. 1 is a configuration diagram showing an example of a wideband signal receiving apparatus using an OFDM decoding algorithm (see Patent Document 1).
  • a receiving apparatus 10 shown in FIG. 1 includes an antenna 11, a front end unit 12, a band limiting unit 13, an A / D (Analog to Digital) conversion unit 14, and an OFDM signal processing unit 15.
  • the front end unit 12 amplifies the received signal with low noise and converts it to an IF (Intermediate Frequency) frequency.
  • the band limiting unit 13 includes a wide band filter 16 and a band suppression filter (notch filter) 17 that gives sharp attenuation to a specific frequency.
  • the wideband filter 16 extracts the band of the OFDM signal converted into the IF frequency band.
  • a frequency selective filter is used as a band limiting filter.
  • An excellent filter for example, a SAW (Surface Acoustic Wave) filter using a surface vibration wave of a piezoelectric element is often used.
  • band limiting is performed using a low-pass filter in the baseband frequency band! Yes.
  • the band suppression filter 17 removes adjacent interference components that cannot be removed by the wideband filter 16 alone. Normally, the band suppression filter 17 affects the phase in the OFDM band. However, in the case of OFDM, the phase change is compensated by equalization and demodulation processing of delay detection, so the phase effect is virtually eliminated. It has a special feature.
  • the AZD conversion unit 14 performs A / D conversion on the signal band-limited by the band limiting unit 13 and outputs the AZD-converted signal to the OFDM signal processing unit 15.
  • the OFDM signal processing unit 15 has functions of orthogonal demodulation processing, FFT (Fast Fourier Transform) processing, and channel estimation processing, and performs OF DM decoding processing on the AZD converted signal. .
  • the oversampling number is as large as possible.
  • Non-patent document 1 ITU—RS contribution (TGI 1Z3)
  • Non-Patent Document 2 Television Society Research Report Vol.17, No.54, p7-12, BCS 93-33 (Sep.l99 3)
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-13357
  • An object of the present invention is to provide a receiving apparatus and a receiving apparatus that can suppress undesired signals even when a band-limiting filter having a non-steep suppression characteristic and a variation in frequency characteristics is used in multicarrier communication. Is to provide a method.
  • a receiving apparatus includes a receiving unit that receives a signal including frequency components corresponding to a plurality of carriers to which information data is assigned, and all of the signals included in the received signal.
  • Frequency conversion means for shifting the frequency component frequency, a filter for suppressing the frequency-shifted frequency of some of the frequency components included in the received signal, and the plurality of frequency components among the frequency components remaining without being suppressed.
  • Decoding means for decoding a frequency component corresponding to a carrier, wherein the frequency conversion means matches the frequency of an undesired frequency component whose reception quality does not satisfy a predetermined standard with a frequency suppressed by the filter.
  • undesired signals can be suppressed even in the case of using a band limiting filter having a variation in frequency characteristics that is not sharp in suppression characteristics in multicarrier communication.
  • FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus
  • FIG. 2 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing frequency characteristics of a received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
  • FIG. 6 is a diagram showing frequency characteristics of a received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
  • FIG. 7 shows the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
  • FIG. 8 A diagram showing the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
  • FIG. 9 is a diagram showing the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
  • FIG. 10 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram showing frequency characteristics of frequency domain signals after fast Fourier transform of the receiving apparatus according to Embodiment 2;
  • FIG. 12 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 13 shows frequency characteristics of frequency domain signals after fast Fourier transform of the receiving apparatus according to Embodiment 3.
  • FIG. 14 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 4 of the present invention.
  • FIG. 16 is a diagram showing frequency characteristics of a received signal, a band suppression filter, and a bandpass filter in the IF frequency band of the receiving apparatus according to Embodiment 4
  • FIG. 17 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 5 of the present invention.
  • FIG. 2 is a block diagram showing a configuration of receiving apparatus 100 according to Embodiment 1 of the present invention.
  • the receiving apparatus 100 shown in FIG. 2 includes an antenna 101, an antenna sharing unit 102, a low noise amplification unit 103, a frequency conversion unit 104, a bandpass filter 105, an AGC (Auto Gain Control) 106, an oral signal oscillator 107, an orthogonal Demodulator 108, low-pass filter 109-1, low-pass filter 109-2, AZD converter 110-1, AZD converter 110-2, FFT unit 111, frequency selector 112, frequency variable local A signal oscillator 113 and a decoding unit 114 are provided.
  • AGC Automatic Gain Control
  • the antenna sharing unit 102 is illustrated as a receiving system in which the antenna 101 is configured by the above blocks. Share with a non-transmission system.
  • the low noise amplification unit 103 amplifies the received signal with low noise and outputs the amplified signal to the frequency conversion unit 104.
  • Frequency conversion section 104 multiplies the amplified received signal by a local signal output from frequency variable local signal oscillator 113 to convert it to an IF frequency, and outputs the converted IF signal to bandpass filter 105 To do.
  • the bandpass filter 105 limits the band of the IF signal and outputs the obtained IF signal to the AGC 106.
  • the AGC 106 adjusts the amplitude level of the IF signal to an optimum level by using the AZD conversion unit 110-1 and the AZD conversion unit 110-2 in the subsequent process, and orthogonally recovers the level-adjusted IF signal. Output to control unit 108.
  • the local signal oscillator 107 converts a local signal having a frequency f (MHz) into a quadrature demodulator 108.
  • the quadrature demodulator 108 converts the level-adjusted IF signal into I and Q baseband signals, and converts the obtained baseband signal into a low-pass filter 109-1 and a low-pass filter 109. — Output to 2.
  • the low-pass filter 109-1 and the low-pass filter 109-2 remove unnecessary components from the I and Q baseband signals, respectively, and obtain the obtained I and Q baseband signals. Output to AZD converter 110-1 and AZD converter 110-2.
  • the AZD conversion unit 110-1 and the AZD conversion unit 110-2 are used for I and Q baseband signals.
  • AZD conversion is performed, and the AZD converted I and Q baseband signals are output to the FFT unit 111.
  • the FFT unit 111 performs fast Fourier transform on the AZD-converted I and Q baseband signals to convert a time domain signal into a frequency domain signal.
  • the FFT unit 111 outputs the obtained frequency domain signal to the decoding unit 114.
  • Frequency selection section 112 measures the filter characteristics of bandpass filter 105 output from a filter characteristic measurement section (not shown) and the frequency arrangement of its own channel or the noise signal frequency measurement section (not shown). Noise based on the noise signal frequency and level
  • the control frequency ⁇ ⁇ that controls the frequency of the frequency variable low-power signal oscillator 113 is selected so that the signal shifts to the suppression band of the bandpass filter 105. For example, when there is a signal of a system other than the OFDM signal constantly in the reception environment, the frequency selection unit 112 selects the control frequency ⁇ ⁇ using the frequency of the signal of the other system as the frequency of the noise signal.
  • the frequency selection unit 112 outputs a control signal for shifting the frequency by ⁇ to the variable frequency local signal oscillator 113 and outputs the information about the control frequency ⁇ f to the decoding unit 114.
  • variable frequency local signal oscillator 113 generates a local signal having a frequency f ⁇ f ⁇ ⁇ (MHz) based on the control signal output from the frequency selection unit 112 and performs frequency conversion.
  • f represents the center frequency of the OFDM signal
  • ⁇ ⁇ represents the control frequency selected by the frequency selection unit 112.
  • Decoding section 114 performs OFDM decoding on the signal converted to the frequency domain. At this time, based on the information on the control frequency ⁇ output from the frequency selection unit 112, the subcarrier to which the information data is assigned is selected, and OFDM decoding is performed. Subcarrier selection will be described in detail later. Decoding section 114 outputs the received data obtained to the subsequent process.
  • the OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
  • the amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency converter 104 and converted to an IF frequency, and the converted IF signal is converted into a bandpass filter 105. Is output.
  • the frequency of the local signal output from the frequency variable low-power signal oscillator 113 is shifted by the control frequency ⁇ f selected by the frequency selector 112. The selection of the control frequency ⁇ f controlled by the frequency selection unit 112 will be described in detail later.
  • a control signal for shifting the frequency by ⁇ ⁇ is output to frequency variable local signal oscillator 113, and information about control frequency ⁇ ⁇ is output to decoding unit 114. Is done.
  • the IF signal converted to the IF frequency is band-limited by the bandpass filter 105, and the obtained IF signal is output to the AGC 106. And by AGC106, I
  • the F signal is adjusted to an optimum level by the AZD conversion unit 110-1 and the AZD conversion unit 110-2, and is output to the quadrature demodulation unit 108.
  • the level-adjusted IF signal is multiplied by a local signal from which the local signal oscillator 107 output is also output by the quadrature demodulator 108, and converted into an I and Q baseband signal.
  • the I and Q baseband signals pass through the low-pass filter 109-1 and the low-pass filter 109-2, respectively, and then pass through the AZD converter 110-1 and the AZD converter 110-2.
  • AZD conversion is performed and output to FFT section 111.
  • the I and Q baseband signals are converted into signals in the time domain force frequency domain by the FFT unit 111, and the frequency domain signal is output to the decoding unit 114.
  • the decoding unit 114 Based on the control frequency ⁇ output from the frequency selection unit 112, the decoding unit 114 selects a subcarrier to which the information data is assigned, and performs OFDM decoding. Received data obtained by OFDM decoding is output to a subsequent process.
  • FIG. 3A shows frequency characteristics of an OFDM signal having a center frequency f (MHz) and a signal bandwidth of 50 MHz composed of 682 subcarriers (USC).
  • the horizontal axis represents frequency (MHz)
  • the second horizontal axis represents subcarrier (SB) number
  • the vertical axis represents power (dBm).
  • a time domain signal is generated from a frequency domain signal by IFFT (Inverse Fast Fourier Transform).
  • Time domain signals are often calculated using the number of power subcarriers.
  • the OFDM signal is often not composed of a power of 2 subcarrier due to the limitation of the subcarrier spacing due to the phase noise of the local frequency. Therefore, the transmitting apparatus assigns null data to subcarriers, and generates a power-of-two subcarrier. Specifically, 682 subs as shown in Figure 3A.
  • An OFDM signal with a signal bandwidth of 50 MHz consisting of carriers is assigned information data only to 682 subcarriers out of 1024 subcarriers, and the remaining 342 subcarriers are assigned null data as unused subcarriers. Thus, the power of unused subcarriers is generated with zero. As a result, in the radio frequency band, an OFDM signal composed of 682 subcarriers is transmitted with a signal bandwidth of 50 MHz.
  • FIG. 3A Figures 3B, 3C, and 3D show f -f (MHz), f -f + 12.5 (MHz), and f --f --12. 5 (MHz) local signal c if c if c if
  • FIGS. 3B, 3C, and 3D The frequency characteristics of the baseband signal multiplied by the local signal (MHz) and input to the low-pass filter 109-1 and low-pass filter 109-2 are shown.
  • the horizontal axis represents frequency (MHz)
  • the second horizontal axis represents subcarrier (SB) number
  • the vertical axis represents power (dBm). Show me.
  • the decoding unit 114 selects and demodulates the used subcarriers to which the information data is assigned, so that the receiving apparatus 100 can perform frequency characteristics shown in FIGS. 3B, 3C, and 3D. Any baseband signal with can be demodulated.
  • information data is obtained by selecting subcarrier numbers 172 to 853 as used subcarriers and performing OFDM decoding in the same manner as the OFDM signal shown in FIG. 3A. Can be decrypted.
  • information data can be decoded by selecting subcarrier numbers 1 to 682 as used subcarriers and performing OFDM decoding.
  • information data can be decoded by selecting subcarrier numbers 342 to 1024 as used subcarriers and performing OFDM decoding.
  • the frequency band in which the power of 2 subcarrier power used in the fast Fourier transform is also configured that is, the subcarrier used is included in the frequency range that can be decoded in decoder 114.
  • the decoding unit 114 correctly detects the used subcarriers, so that all the used subcarriers are detected. It is possible to decrypt information data using For example, for an OF DM signal as shown in FIG. 3A, if the control frequency ⁇ ⁇ satisfies ⁇ 12.5 ⁇ ⁇ ⁇ 12.5 ⁇ ( ⁇ ), the subcarrier to which the information data is assigned is assigned. It is possible to decrypt information data using all of these.
  • the receiving operation when receiving apparatus 100 receives an OFDM signal and a noise signal as shown in FIG. 4 will be described.
  • the horizontal axis shows the frequency (MHz)
  • the vertical axis shows the noise signal in the vicinity of the OFDM signal with power (dBm)
  • center frequency f (MHz) center frequency f (MHz)
  • bandwidth 50MHz bandwidth 50MHz.
  • the noise signal is 57MHz higher than its center frequency f (MHz) force and has a bandwidth of 12MHz.
  • the sampling frequency f of the AZD conversion unit 110-1 and the AZD conversion unit 110-2 is 75 MHz. At this time, the received signal s in the IF frequency band of receiving apparatus 100
  • Figure 5A shows the frequency characteristics of the signal.
  • the horizontal axis represents frequency (MHz)
  • the vertical axis represents signal level (dBm)
  • the second vertical axis represents filter suppression (dB). Note that the horizontal axis is the frequency (MHz) and the vertical axis is the signal level (dB).
  • the second vertical axis represents the amount of filter suppression (dB).
  • FIG. 5A shows the OFDM signal, the filter characteristics of the bandpass filter 105, the noise signal, and the noise signal after passing through the bandpass filter 105 as the desired signal, filter characteristics, neighborhood noise, and input noise, respectively. Show me.
  • FIG. 5B shows the frequency characteristics of the desired signal and input noise in the baseband frequency band output from quadrature demodulator 108.
  • FIG. 6A is a graph obtained when the slope of the suppression characteristic of the bandpass filter 105 is relaxed compared to FIG. 5A. Shows the frequency characteristics of the received signal in the IF frequency band. From FIG. 6A, it can be seen that the input noise after passing through the band-pass filter 105 is larger than that in FIG. 5A. As shown in Fig. 6B, the noise signal level that is folded back in the band is also large, so the quality of the desired signal deteriorates due to the relaxation of the filter characteristics.
  • the frequency of the frequency variable local signal oscillator 113 is f -f -6.25 (MHz).
  • FIG. 7B shows frequency characteristics of the received signal in the baseband frequency band. As shown in Fig. 7B, it can be seen that the signal level folded back in the band is lower than that in Fig. 6B.
  • control frequency ⁇ ⁇ is within the range of ⁇ 12.5 ⁇ ⁇ ⁇ ⁇ 12.5 ⁇ (MHz)
  • the subcarrier is appropriately selected based on the control frequency ⁇ ⁇ . This makes it possible to OFDM-decode the desired signal.
  • the frequency of the variable frequency local signal oscillator 115 is set to f f 6.
  • the frequency of frequency variable local signal oscillator 113 is controlled using “OFDM signal subcarrier offset demodulation” to filter undesired signals in the filter suppression band. Shift to, and OFDM decode.
  • OFDM signal subcarrier offset demodulation to filter undesired signals in the filter suppression band. Shift to, and OFDM decode.
  • the OFDM signal may also be used when converting to the baseband frequency band by direct conversion without converting to the IF frequency band.
  • subcarrier offset demodulation even when the filter characteristics of the low-pass filter deteriorate, it is possible to suppress the undesired signal by avoiding the performance deterioration of the filter characteristics and perform OFDM decoding. Become.
  • a filter output from a filter characteristic measurement unit (not shown).
  • the filter characteristic may be predicted using a temperature sensor.
  • devices such as SAW filters predict the fluctuation of the center frequency according to the temperature at which the center frequency fluctuates according to the temperature, and apply “OFDM signal subcarrier offset demodulation” as described above. The same effect as the OFDM receiver shown in Fig. 2 can be obtained.
  • Embodiment 2 of the present invention is that the frequency of the undesired signal is estimated and the undesired signal is shifted to the suppression band of the band limiting filter.
  • FIG. 10 is a block diagram showing a configuration of receiving apparatus 100 according to Embodiment 2 of the present invention.
  • the same components as in FIG. 2 are assigned the same reference numerals as those in FIG. 10 employs a configuration in which a frequency selection unit 202 is provided instead of the frequency selection unit 112 and a noise measurement unit 201 is added to FIG.
  • the noise measuring unit 201 measures the signal power to noise power ratio of the noise signal in the vicinity of the desired signal for each frequency component, and the measured signal power to noise power. Frequency components whose ratio is equal to or greater than a predetermined threshold are determined (estimated) as noise signal frequencies. Regarding the measurement of the signal power-to-noise power ratio and the frequency of the noise signal in the noise measuring unit 201, the case where the bandpass filter 105 has the filter characteristics as shown in FIG. 5A and receives a signal as shown in FIG. To do.
  • the frequency characteristics of the desired signal and input noise in several bands are as shown in Fig. 5B.
  • the FFT unit 111 performs fast Fourier transform on the signal shown in FIG. 5B
  • the frequency characteristics of the output after the fast Fourier transform are shown in FIG.
  • the noise measurement unit 201 measures the signal power to noise power ratio in unused subcarriers for each carrier, and the measurement result power also determines (estimates) the frequency of the noise signal. For example, when the noise measurement unit 201 detects that the signal power-to-noise power ratio is equal to or higher than a predetermined threshold when the subcarrier number 1 of the unused subcarriers is also 172 as shown in FIG. 11, noise is detected in the frequency domain.
  • the signal exists or is higher frequency than the desired signal
  • There is a noise signal and it is estimated that the level has increased due to the aliasing, and the frequency of the noise signal is estimated.
  • the noise measurement unit 201 outputs the estimated frequency of the noise signal and the signal power to noise power ratio to the frequency selection unit 202.
  • the estimation method of the noise signal frequency and the signal power to noise power ratio is not limited to this, and other estimation methods may be used.
  • the frequency selection unit 202 is a frequency variable local signal oscillator so as to shift a noise signal having a measured signal power-to-noise power ratio for each carrier equal to or higher than a predetermined threshold to the suppression band of the bandpass filter 105. Select the control frequency ⁇ f that controls the frequency of 113. Then, the frequency selection unit 202 outputs a control signal for shifting the frequency by ⁇ to the frequency variable local signal oscillator 113, and outputs information about the control frequency ⁇ f to the decoding unit 114. .
  • the OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
  • the amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency converter 104 and converted to an IF frequency, and the converted IF signal is converted into a bandpass filter 105. Is output.
  • the frequency of the local signal output from the frequency variable low-power signal oscillator 113 is shifted by the control frequency ⁇ ⁇ selected by the frequency selector 202.
  • the control frequency ⁇ ⁇ is selected from the level of the noise signal estimated by the noise measuring unit 201 so that a noise signal having a level equal to or higher than a predetermined threshold is shifted to the suppression band of the bandpass filter 105.
  • a control signal for shifting the frequency by ⁇ ⁇ is output to frequency variable local signal oscillator 113, and information about control frequency ⁇ ⁇ is output to decoding unit 114.
  • the IF signal converted into the IF frequency is the same as in the first embodiment.
  • the bandpass filter 105, the AGC 106, the quadrature demodulation unit 108, the low-pass filter 109-1, and the low-pass filter The data is output to the FFT unit 111 via the filter 109-2, the AZD conversion unit 110-1 and the AZD conversion unit 110-2.
  • the I and Q baseband signals are converted into time domain power frequency domain signals by the FFT unit 111, and the frequency domain signals are output to the decoding unit 114.
  • the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information on the control frequency ⁇ output from the frequency selection unit 112, as in the first embodiment, and performs OFDM. Decryption is performed. The obtained received data is output to the later stage.
  • the frequency of the frequency variable local signal oscillator 113 is controlled by estimating the frequency of the undesired signal using “OFDM signal subcarrier offset demodulation”. Then, the undesired signal is shifted to the filter suppression band and subjected to OFDM decoding. As a result, even in an environment where the level and frequency of the undesired signal fluctuate, the undesired signal can always be suppressed and OFDM decoding can be performed, and reception performance can be improved.
  • Embodiment 3 of the present invention is that the subcarrier with the lowest level is detected and the subcarrier with the lowest level is shifted to the suppression band of the filter characteristics.
  • FIG. 12 is a block diagram showing the configuration of the receiving apparatus according to Embodiment 3 of the present invention.
  • FIG. 12 shows a direct conversion receiving device.
  • AGC106, low-pass filter 109-1, low-pass filter 109-1, and frequency selector 112 are replaced with AGC302- 1, AGC302-2, low-pass filter 301-1, 1, low-pass filter 301-2, and frequency selector 30 4; frequency converter 104, bandpass filter 105, and local signal oscillator 1 07 Is deleted, and the level determination unit 303 is added.
  • the low-pass filter 301-1 and the low-pass filter 301-2 remove unnecessary components from the I and Q baseband signals, respectively, and use the obtained I and Q baseband signals. Output to AGC302-1 and AGC302-2. Note that the low-pass filter 301-1 and The low-pass filter 301-2 has a configuration that cuts the DC component by placing a capacitor in series in the signal transmission path (C coupling) to avoid DC offset caused by local signal leakage. Have it.
  • Level determination section 303 measures the signal level of each subcarrier from the frequency domain signal after the fast Fourier transform, and determines the subcarrier with the lowest reception level. Level determination section 303 outputs information about the determined subcarrier frequency to frequency selection section 304.
  • the frequency selection unit 304 uses the frequency of the subcarrier with the lowest reception level determined by the level determination unit 303 to determine whether the subcarrier is a low-pass filter 301-1 and a low-pass filter 301-2.
  • the control frequency ⁇ ⁇ of the variable frequency local signal oscillator 113 is selected so as to coincide with the suppression band. Then, the frequency selection unit 304 outputs a control signal for shifting the frequency by ⁇ ⁇ to the frequency variable local signal oscillator 113 and outputs the information about the control frequency ⁇ f to the decoding unit 114.
  • the OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by the low noise amplification unit 103 and output to the frequency modulation unit 108.
  • the amplified received signal is multiplied by the local signal output from frequency variable local signal oscillator 113 by frequency demodulator 108 and converted to an I or Q baseband signal.
  • the converted baseband signal is output to the low-pass filter 301-1 and the low-pass filter 301-2.
  • the frequency of the local signal output from the frequency variable local signal oscillator 113 is shifted by the control frequency ⁇ f selected by the frequency selection unit 304. Selection of the control frequency ⁇ f by the frequency selection unit 304 will be described with reference to FIG.
  • FIG. 13 shows a signal in the frequency domain after the fast Fourier transform output from the FFT unit 111, where the horizontal axis indicates the subcarrier number and the vertical axis indicates the signal level.
  • the horizontal axis indicates the subcarrier number
  • the vertical axis indicates the signal level.
  • FIG. 13 it is generally known that mobile communication has a frequency band in which the reception level drops due to propagation conditions such as fading.
  • Figure 13 shows the frequency band with subcarrier number 520. This shows how the signal level drops in the area.
  • the frequency selection unit 304 makes the frequency of the subcarrier number 520 having the lowest reception level match the suppression band of the low-pass filter 301-1 and the low-pass filter 301-2.
  • the control frequency ⁇ ⁇ for controlling the frequency of the frequency variable type local signal generator 113 is selected.
  • the frequency at which the signal level drops varies with time, the frequency at which the reception level drops is always detected by the level determination unit 303, and the frequency at which the reception level drops is detected by the bandpass filter 301-.
  • the control frequency ⁇ f in the frequency selection unit 304 so as to coincide with the suppression band of the first and low-pass filters 301-2, it is possible to mitigate the deterioration in reception performance.
  • a control signal for shifting the frequency by ⁇ ⁇ is output to frequency variable local signal oscillator 113, and information about control frequency ⁇ ⁇ is output to decoding unit 114.
  • the baseband signal is output to the FFT unit 111 via the AGC 302-1 and AGC 302-2, the AZD conversion unit 110-1 and the AZD conversion unit 110-2.
  • the FFT unit 111 converts the I and Q baseband signals into a signal in the time domain force frequency domain, and outputs the signal in the frequency domain to the decoding unit 114.
  • the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information regarding the control frequency ⁇ output from the frequency selection unit 304, and performs OFDM. Decryption is performed. The obtained received data is output to the later stage.
  • the subcarrier with the minimum received signal strength after fast Fourier transform is detected, and the frequency variable type is detected.
  • the carrier having the lowest reception level is shifted to the suppression band of the band limiting filter, and OFDM decoding is performed.
  • the carrier with the lowest reception level is suppressed by the band limiting filter, and the carrier with the higher reception level is used for decoding, so that the degradation in reception performance can be reduced.
  • Embodiment 4 of the present invention is that the frequency of the undesired signal is shifted to the suppression band of the band suppression filter.
  • FIG. 14 is a block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. FIG. 14 shows a receiving apparatus that performs undersampling.
  • the bandpass filter 105, AGC 106, AZD conversion unit 110-1, 80 conversion unit 110-2, and frequency selection unit 112 are replaced with AGC402.
  • the band pass filter 403, the AZD conversion unit 404, and the frequency selection unit 405 are provided, and the band suppression filter 401 is added.
  • the band suppression filter 401 suppresses a narrowband undesired signal.
  • the IF signal after passing through the band suppression filter 401 is output to the AGC 402.
  • AGC 402 converts the level of the IF signal to an optimum level in AZD conversion section 404, and outputs the level-converted IF signal to bandpass filter 403.
  • the bandpass filter 403 removes unnecessary components from the IF signal and outputs the obtained IF signal to the AZD conversion unit 404.
  • the AZD conversion unit 404 performs undersampling on the IF signal. Undersampling is performed using a frequency lower than the frequency of the IF signal. For this reason, the aliasing component of the desired signal and the aliasing component of the undesired signal included in the IF signal may overlap, and the desired signal may not be reproduced. This will be specifically described below with reference to FIG. In FIG. 15, the horizontal axis represents frequency and the vertical axis represents signal level.
  • FIG. 15A shows the frequency characteristics of the desired signal and undesired signal in the radio frequency band
  • FIG. 15B shows the frequency characteristics of the desired signal and undesired signal after undersampling. As shown in Fig. 15B, it can be seen that the undesired signal may be superimposed on the desired signal after undersampling. For this reason, it is effective to exclude the undesired signal by band limiting by the band suppression filter 401 before the undersampling is performed.
  • Frequency selection section 405 is measured by a band suppression filter characteristic measurement section (not shown). Based on the characteristics of the band suppression filter 401, the control frequency ⁇ ⁇ that controls the frequency of the frequency variable local signal oscillator 113 is selected so that the undesired signal is shifted to the suppression band of the filter. Thereby, the frequency of the undesired signal is shifted to the suppression band of the band suppression filter 401, and the undesired signal can be efficiently suppressed.
  • frequency selection section 405 outputs a control signal for shifting the frequency by ⁇ to frequency variable local signal oscillator 113 and also decodes the information for control frequency ⁇ f. Output to.
  • the OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
  • the amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency conversion unit 104 and converted to an IF frequency, and the converted IF signal is converted into the band suppression filter 401. Is output.
  • FIG. 16 shows the frequency characteristics of the desired signal and the undesired signal output from frequency converter 104 and the frequency characteristics of band suppression filter 401 and bandpass filter 403.
  • FIG. 16 shows that the suppression band of the band suppression filter 401 does not match the frequency of the undesired signal.
  • the band suppression filter 401 is a resonance circuit, and there is a variation in the frequency characteristics in which the band where the amount of attenuation can be taken is narrow, so the frequency of the undesired signal and the suppression band of the band suppression filter 401 are In some cases, there is a case.
  • the suppression band of the band suppression filter measured by the filter characteristic measurement unit (not shown) matches the frequency of the undesired signal measured by the undesired signal measurement unit (not shown).
  • the frequency selection unit 405 selects the control frequency ⁇ ⁇ of the frequency of the local signal output from the variable frequency local signal oscillator 113.
  • the undesired signal is removed in the previous stage of undersampling, and it is possible to reduce the deterioration of the reception performance in which the desired signal and the undesired signal are not superimposed after undersampling.
  • a control signal for shifting the frequency by ⁇ ⁇ is output to frequency variable local signal oscillator 113, and information about control frequency ⁇ ⁇ is output to decoding unit 114.
  • the IF signal after passing through the filter suppression filter 401 is output to the AZD conversion unit 404 via the band suppression filter 401, AG C402, and bandpass filter 403. Then, the AZD conversion unit 404 performs oversampling on the IF signal, and the quadrature modulator 108 converts it into I and Q baseband signals.
  • the I and Q baseband signals pass through the low-pass filters 109-1 and 109-2 and are output to the FFT unit 111, respectively. Then, the FFT unit 111 converts the I and Q baseband signals into a time domain force frequency domain signal and outputs the frequency domain signal to the decoding unit 114.
  • the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information regarding the control frequency ⁇ ⁇ output from the frequency selection unit 405, and transmits the OFDM Decryption is performed. Then, the received data obtained by the decoding unit 114 is output to a subsequent process.
  • the frequency of the frequency variable local signal oscillator 113 is controlled using “OFDM signal subcarrier offset demodulation”, and the frequency of the undesired signal is set to the band. Shift to the suppression band of the suppression filter and perform OFDM decoding.
  • OFDM signal subcarrier offset demodulation the frequency of the undesired signal is set to the band. Shift to the suppression band of the suppression filter and perform OFDM decoding.
  • the power described for the receiver using undersampling is not limited to this, and by performing frequency conversion so that the undesired signal matches the suppression band of the band suppression filter, other sampling is performed. The same effect can be obtained when the method is used.
  • a feature of Embodiment 5 of the present invention is that, in a composite receiving apparatus having a function of receiving a modulated signal of another system having a wider signal band than the OFDM signal band, when receiving an OFDM signal, the undesired signal is wideband. In the suppression band of the band limit filter optimal for the signal It is to do.
  • FIG. 17 is a block diagram showing a configuration of receiving apparatus 500 according to Embodiment 5 of the present invention.
  • the receiving apparatus shown in FIG. 17 is a composite receiving apparatus having a function of receiving a modulated signal (for example, a CDMA signal) of another system having a wider signal band than the OFDM signal band.
  • a modulated signal for example, a CDMA signal
  • the same reference numerals as those in FIG. FIG. 17 differs from FIG. 12 in that a low-pass filter 501-1, a low-pass filter 301-1, a low-pass filter 301-1, and a frequency selector 112 are replaced with a low-pass filter 501-1.
  • a configuration is employed in which a filter 501-2 and a frequency selection unit 504 are included, the level determination unit 303 is deleted, and a system selection unit 502 and another system decoding unit 503 are added.
  • the low-pass filter 501-1 and the low-pass filter 501-2 perform band limitation on both OFDM signals having different signal bands and modulation signals of other systems. Since receiving apparatus 500 limits the band of both modulated signals having different signal bands, the pass band has a wide signal band and is optimal for modulated signals of other systems.
  • the system selection unit 502 uses the FFT unit 111 or the baseband signals I and Q output from the AZD conversion unit 110-1 and the AZD conversion unit 110-2 based on instruction information not shown. Is output to the other system decoding unit 503.
  • the instruction information indicates the modulation method of the signal received by receiving apparatus 500.
  • system selection unit 502 outputs I and Q baseband signals to FFT unit 111, and other systems
  • the modulated signal of I the baseband signals of I and Q are output to other system decoding section 503. Further, the system selection unit 502 outputs the instruction information to the frequency selection unit 504.
  • Other system decoding section 503 performs a decoding process on the baseband signal using a decoding method applied in the other system, and outputs the received data obtained to the subsequent process.
  • Frequency selection section 504 selects control frequency ⁇ ⁇ of variable frequency local signal oscillator 113 based on the instruction information. Specifically, when the indication information indicates an OFDM modulation system, the frequency selection unit 504 makes the frequency of the undesired signal coincide with the suppression band of the filter characteristic output from the filter characteristic measurement unit (not shown). The control frequency ⁇ ⁇ of the frequency variable type local signal oscillator 113 is selected. As mentioned above, the low pass type The filter band of the filter 501-1 and the low-pass filter 501-2 has a wide signal band, and is suitable for the modulation signal of other systems.
  • the undesired signal can be suppressed while sharing the band limiting filter by shifting the undesired signal to the suppression band of the low-pass filter 501-1 and the low-pass filter 501-2. Is possible. As a result, it is not necessary to prepare a band-limiting filter for each system, which enables downsizing and cost reduction.
  • the OFDM signal is output to the low noise amplifying unit 103 via the antenna 101 and the antenna sharing unit 102. Then, the received signal is amplified by the low noise amplification unit 103 and output to the frequency modulation unit 108.
  • the amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency demodulator 108, converted into an I and Q baseband signal, and converted into a converted baseband signal.
  • the signal is output to the low-pass filter 501-1 and the low-pass filter 501-2.
  • the frequency of the local signal output from the frequency variable local signal oscillator 113 is shifted by the control frequency ⁇ ⁇ selected by the frequency selection unit 504.
  • the control frequency ⁇ ⁇ is selected so that the undesired signal is shifted to the suppression band of the filter characteristic output from the filter characteristic measurement unit (not shown).
  • Control frequency ⁇ ⁇ selected by frequency selection section 504 is output to frequency variable local signal oscillator 113 and also output to decoding section 114.
  • the baseband signal is output to system selection unit 502 via AGC302-1, AGC302-2, AZD conversion unit 110-1, and AZD conversion unit 110-2.
  • the baseband signal is obtained from the instruction information (not shown) by the system selection unit 502.
  • the baseband signal output to FFT section 111 is converted from a time domain signal to a frequency domain signal, and the frequency domain signal is output to decoding section 114.
  • the output from the frequency selection unit 112 is performed by the decoding unit 114 in the same manner as in the first embodiment.
  • the subcarrier number to which the information data is assigned is selected, and OFDM decoding is performed.
  • the received data obtained by the decoding unit 114 is output to a subsequent process.
  • the baseband signal output to other system decoding section 503 is subjected to the decoding system of the other system, and the obtained received data is output to the subsequent process.
  • the undesired signal is converted into a suppression characteristic of a band-limited filter suitable for other systems.
  • the frequency of the frequency variable local signal oscillator 113 is controlled so as to match, and OFDM decoding is performed. As a result, it is possible to share the band limiting filter with other systems, which enables downsizing and cost reduction.
  • the low-pass filter 501-1 and the low-pass filter 501-2 have the OFDM signal power after passing through the latter FFT unit 111. If the frequency is within the decodable frequency range, a frequency change that again shifts the frequency of the OFDM signal is placed downstream of the low-pass filter 501-1 and the low-pass filter 501-2. It may be provided. As a result, the OFDM signal in which the undesired signal is suppressed is shifted again to a decodable frequency range, and as a result, all carriers to which information data is allocated can be used for decoding, and reception performance is improved. Deterioration can be prevented.
  • the receiving apparatus includes a receiving means for receiving a signal including frequency components corresponding to a plurality of carriers to which information data is assigned, and all of the reception signals.
  • Frequency conversion means for shifting the frequency of the frequency component, a filter for suppressing the frequency after frequency shift of some of the frequency components included in the received signal, and the plurality of carriers among the frequency components remaining without being suppressed
  • Decoding means for decoding the frequency component corresponding to the frequency component, and the frequency conversion means matches the frequency of the undesired frequency component whose reception quality does not meet a predetermined standard with the frequency suppressed by the filter. Take the configuration.
  • the frequency shift is performed by shifting the frequencies of all the frequency components included in the signal including the frequency components corresponding to the plurality of carriers to which the information data is assigned.
  • the frequency of the undesired frequency component whose reception quality does not satisfy a predetermined standard is suppressed by the filter, and the frequency components remaining without being suppressed are applied to a plurality of carriers.
  • the deterioration of the filter characteristic can be reduced without requiring a circuit for correcting the deterioration of the filter characteristic.
  • the frequency of undesired frequency components can be suppressed, and reception performance can be improved.
  • the frequency conversion unit may convert frequency components other than frequency components corresponding to the plurality of carriers to undesired frequency components.
  • the configuration is as follows.
  • the frequency conversion means measures a signal power to noise power ratio for each frequency component included in the received signal. And a noise measurement unit, wherein a frequency component having a measured signal power to noise power ratio equal to or greater than a predetermined threshold is used as an undesired frequency component.
  • the noise level included in the received signal is estimated, and the frequency component corresponding to the noise whose estimated level is equal to or greater than the predetermined threshold is set as the undesired frequency component. Even in an environment where the frequency fluctuates, it is always possible to improve the reception performance by suppressing the frequency component corresponding to the noise whose estimated level is equal to or higher than a predetermined threshold and suppressing it.
  • the frequency conversion means measures the level for each frequency component corresponding to the plurality of carriers.
  • the frequency component with the lowest measured level is the undesired frequency component.
  • the level of each frequency component corresponding to a plurality of carriers to which information data is assigned is measured, and the frequency component with the smallest measured level is determined as an undesired frequency. Because it is a component, among the frequency components corresponding to multiple carriers, the frequency component with the highest level is not suppressed, and only the frequency component with the lowest reception level is suppressed. Can be reduced.
  • the frequency conversion means uses the decoding means to determine the frequencies of all frequency components corresponding to the plurality of carriers. A configuration is adopted that shifts to a frequency range that can be decoded.
  • the frequencies of all the frequency components corresponding to the plurality of carriers to which the information data is allocated are shifted to the range of frequencies that can be decoded. All frequency components corresponding to the carrier can be used for decoding.
  • the decoding means corresponds to the plurality of carriers based on a frequency shift amount by the frequency converting means. Select a frequency component to be decoded and decode the selected frequency component
  • the decoding means has a frequency component frequency that remains without being suppressed within a frequency range that can be decoded.
  • a re-frequency conversion unit that shifts again, and adopts a configuration for decoding frequency components corresponding to the plurality of carriers after the re-frequency shift.
  • the frequency of the frequency component that remains without being suppressed is shifted again to a decodable frequency range, and it corresponds to a plurality of carriers to which information data after re-frequency shift is assigned. Even when a filter with a wider pass band than the signal bands of multiple carriers to which information data is assigned is used, the frequency of the undesired frequency component is suppressed and the information data is assigned. All the frequency components of multiple received carriers can be used for decoding, and deterioration of reception performance can be prevented. it can.
  • the signal band is wider than the signal bands of multiple carriers to which information data is assigned, and a composite receiver having a function of receiving a modulated signal of another system can share a filter. As a result, downsizing and low cost can be achieved.
  • the reception method includes a reception step of receiving a signal including frequency components corresponding to a plurality of carriers to which information data is allocated, and all of the reception signals.
  • the frequencies of all frequency components included in a signal including frequency components corresponding to a plurality of carriers to which information data is assigned are shifted and included in the received signal after the frequency shift.
  • the frequency of undesired frequency components whose received quality does not meet a predetermined standard is suppressed by the filter, and the frequency components corresponding to multiple carriers are decoded from the remaining frequency components without being suppressed.
  • the frequency of the undesired frequency component can be reduced by reducing the deterioration of the filter characteristics without requiring a circuit for correcting the deterioration of the filter characteristics. It is possible to suppress it and improve the reception performance.
  • the receiving apparatus and the receiving method of the present invention can suppress undesired signals even in the case of using a band limiting filter in which the suppression characteristics are not steep and the frequency characteristics vary in multicarrier communication. For example, it is useful for a receiving apparatus and a receiving method in a system to which multicarrier communication is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

A receiving apparatus capable of suppressing non-desired signals even when using a band limiting filter, the suppression characteristic of which is not steep and which exhibits variation in frequency characteristic, in a multicarrier communication. In this apparatus, a frequency selecting part (112) selects a control frequency (Δf), which controls the frequency of a frequency-variable local signal oscillator (113), such that a noise signal shifts to a suppressing band of the band limiting filter. The frequency selecting part (112) outputs the control signal, which is to shift the frequency by (Δf), to the frequency-variable local signal oscillator (113), while outputting information about the control frequency (Δf) to a decoding part (114). The decoding part (114) selects, based on the information of the control frequency (Δf) from the frequency selecting part (112), a subcarrier to which information data is assigned, thereby performing an OFDM decoding.

Description

受信装置および受信方法  Receiving apparatus and receiving method
技術分野  Technical field
[0001] 本発明は、受信装置および受信方法に関し、特に、マルチキャリア通信が適用され るシステムにおける受信装置および受信方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a receiving device and a receiving method, and more particularly to a receiving device and a receiving method in a system to which multicarrier communication is applied.
背景技術  Background art
[0002] 近年、移動体通信システムにおいても、 100Mbps以上のスループットを広範囲の カバレッジにわたって提供するためにシステム容量の増大に向けた検討がなされて おり、例えば、無線帯域幅が 100MHz以上の移動体通信システムを用いた検討が 報告されている。  [0002] In recent years, even in mobile communication systems, studies have been made to increase system capacity in order to provide a throughput of 100 Mbps or higher over a wide range of coverage. For example, mobile communication with a radio bandwidth of 100 MHz or higher has been studied. Studies using the system have been reported.
[0003] 無線帯域幅が 100MHzと広い帯域を用いた伝送方式として、 OFDM(Orthogonal Frequency Division Multiplex:直交周波数分割多重)方式が知られている(非特許文 献 1および非特許文献 2参照)。 OFDM信号は、直交する複数のサブキャリアを用い てディジタル情報を伝送する周波数分割多重のディジタル変調方式であり、マルチ パスに強い、他の伝送系に妨害を与えにくい、妨害を受けにくい、周波数利用効率 が比較的高 、などの特徴を有して 、る。  [0003] An OFDM (Orthogonal Frequency Division Multiplex) system is known as a transmission system using a wide bandwidth of a radio bandwidth of 100 MHz (see Non-Patent Document 1 and Non-Patent Document 2). The OFDM signal is a frequency division multiplexing digital modulation method that transmits digital information using multiple orthogonal subcarriers. It is multipath-resistant, is not susceptible to interference in other transmission systems, is not susceptible to interference, and is used in frequency. It has characteristics such as relatively high efficiency.
[0004] ところで、 OFDM受信装置として、例えば特許文献 1に開示されたものが知られて いる。図 1は、 OFDM復号のアルゴリズムを利用した広帯域信号の受信装置の一例 を示す構成図である (特許文献 1参照)。図 1に示す受信装置 10は、アンテナ 11、フ ロントエンド部 12、帯域制限部 13、 A/D (Analog to Digital)変換部 14、および OF DM信号処理部 15を有して 、る。  [0004] Incidentally, as an OFDM receiver, for example, one disclosed in Patent Document 1 is known. FIG. 1 is a configuration diagram showing an example of a wideband signal receiving apparatus using an OFDM decoding algorithm (see Patent Document 1). A receiving apparatus 10 shown in FIG. 1 includes an antenna 11, a front end unit 12, a band limiting unit 13, an A / D (Analog to Digital) conversion unit 14, and an OFDM signal processing unit 15.
[0005] フロントエンド部 12は、受信された信号を低雑音増幅して IF (Intermediate Frequen cy)周波数に変換する。  [0005] The front end unit 12 amplifies the received signal with low noise and converts it to an IF (Intermediate Frequency) frequency.
[0006] 帯域制限部 13は、広帯域フィルタ 16および特定の周波数に急峻な減衰を与える バンド抑圧フィルタ(ノッチフィルタ) 17を含んでいる。  [0006] The band limiting unit 13 includes a wide band filter 16 and a band suppression filter (notch filter) 17 that gives sharp attenuation to a specific frequency.
[0007] 広帯域フィルタ 16は、 IF周波数帯に変換された OFDM信号の帯域を抜き出す。  [0007] The wideband filter 16 extracts the band of the OFDM signal converted into the IF frequency band.
一般に、移動体通信システムにおいては、帯域制限フィルタとして周波数選択性の 優れたフィルタ、例えば、圧電素子の表面振動波を利用した SAW (Surface Acoustic Wave:弾性表面波)フィルタが用いられることが多い。また、受信された信号を IF周 波数に変換せずにベースバンド周波数に変換するダイレクトコンバージョン受信 IC 等では、ベースバンド周波数帯にお!、て低域通過型フィルタを用いて帯域制限を行 つている。 Generally, in a mobile communication system, a frequency selective filter is used as a band limiting filter. An excellent filter, for example, a SAW (Surface Acoustic Wave) filter using a surface vibration wave of a piezoelectric element is often used. Also, in direct conversion receiver ICs that convert received signals to baseband frequencies without converting them to IF frequencies, band limiting is performed using a low-pass filter in the baseband frequency band! Yes.
[0008] バンド抑圧フィルタ 17は、広帯域フィルタ 16だけでは除去できない隣接妨害成分 を除去する。通常、バンド抑圧フィルタ 17は OFDM帯域内の位相に影響を与えるが 、 OFDMの場合は、等化や遅延検波の復調処理により位相変化分が補償されるの で、実質上は位相の影響はなくなると 、う特徴を持って 、る。  [0008] The band suppression filter 17 removes adjacent interference components that cannot be removed by the wideband filter 16 alone. Normally, the band suppression filter 17 affects the phase in the OFDM band. However, in the case of OFDM, the phase change is compensated by equalization and demodulation processing of delay detection, so the phase effect is virtually eliminated. It has a special feature.
[0009] AZD変換部 14は、帯域制限部 13によって帯域制限された信号に対し、 A/D変 換を施し、 AZD変換された信号を OFDM信号処理部 15へ出力する。  The AZD conversion unit 14 performs A / D conversion on the signal band-limited by the band limiting unit 13 and outputs the AZD-converted signal to the OFDM signal processing unit 15.
[0010] OFDM信号処理部 15は、直交復調処理、 FFT(Fast Fourier Transform:高速フ 一リエ変換)処理、回線推定処理の機能を備えて、 AZD変換された信号に対し OF DM復号処理を行う。  [0010] The OFDM signal processing unit 15 has functions of orthogonal demodulation processing, FFT (Fast Fourier Transform) processing, and channel estimation processing, and performs OF DM decoding processing on the AZD converted signal. .
[0011] ところで、 AZD変換部 14においては、オーバサンプリング数は大きいほど望まし いが、一般にロジック部品の消費電力や装置容積やコスト等を考慮した場合、オーバ サンプリング数を大きく取ることが難しい。そのため、 AZD変換部 14におけるサンプ リングによって、ノイズ信号が折り返されて信号帯域内に入ってくる可能性がある。し たがって、 AZD変換部 14の前段に、急峻な周波数特性を有する帯域制限フィルタ を設けることが必須となる。  [0011] By the way, in the AZD conversion unit 14, it is desirable that the oversampling number is as large as possible. However, it is generally difficult to increase the oversampling number in consideration of the power consumption of the logic components, the device volume, the cost, and the like. Therefore, there is a possibility that the noise signal is folded back and enters the signal band by the sampling in the AZD converter 14. Therefore, it is indispensable to provide a band limiting filter having a steep frequency characteristic before the AZD conversion unit 14.
非特許文献 1: ITU— RS寄書 (TGI 1Z3)  Non-patent document 1: ITU—RS contribution (TGI 1Z3)
非特許文献 2 :テレビジョン学会研究報告 Vol.17, No.54, p7-12, BCS 93-33(Sep.l99 3)  Non-Patent Document 2: Television Society Research Report Vol.17, No.54, p7-12, BCS 93-33 (Sep.l99 3)
特許文献 1 :特開 2000— 13357号公報  Patent Document 1: Japanese Patent Laid-Open No. 2000-13357
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] し力しながら、急峻な抑圧特性を有し、周波数特性にばらつきのない帯域制限フィ ルタを実現しょうとした場合、回路規模が大きくなるとともに、コストが増大するという問 題がある。さらに、半導体フィルタを用いた場合、フィルタ次数が多くなることによって 消費電力が多くなるという問題がある。 However, when trying to realize a band limiting filter that has a steep suppression characteristic and has no variation in frequency characteristics, the circuit scale increases and the cost increases. There is a title. Furthermore, when a semiconductor filter is used, there is a problem that power consumption increases due to an increase in the filter order.
[0013] 本発明の目的は、マルチキャリア通信において、抑圧特性が急峻でなく周波数特 性にばらつきがある帯域制限フィルタを用いた場合にも、非希望信号を抑圧すること ができる受信装置および受信方法を提供することである。  [0013] An object of the present invention is to provide a receiving apparatus and a receiving apparatus that can suppress undesired signals even when a band-limiting filter having a non-steep suppression characteristic and a variation in frequency characteristics is used in multicarrier communication. Is to provide a method.
課題を解決するための手段  Means for solving the problem
[0014] 力かる課題を解決するため、本発明に係る受信装置は、情報データが割り当てられ た複数のキャリアに対応する周波数成分を含む信号を受信する受信手段と、受信信 号に含まれるすべての周波数成分の周波数をシフトする周波数変換手段と、受信信 号に含まれる一部の周波数成分の周波数シフト後の周波数を抑圧するフィルタと、 周波数が抑圧されずに残る周波数成分のうち前記複数のキャリアに対応する周波数 成分を復号する復号手段と、を有し、前記周波数変換手段は、受信品質が所定の基 準に満たない非希望周波数成分の周波数を前記フィルタにおいて抑圧される周波 数に一致させる構成を採る。 [0014] In order to solve a problem, a receiving apparatus according to the present invention includes a receiving unit that receives a signal including frequency components corresponding to a plurality of carriers to which information data is assigned, and all of the signals included in the received signal. Frequency conversion means for shifting the frequency component frequency, a filter for suppressing the frequency-shifted frequency of some of the frequency components included in the received signal, and the plurality of frequency components among the frequency components remaining without being suppressed. Decoding means for decoding a frequency component corresponding to a carrier, wherein the frequency conversion means matches the frequency of an undesired frequency component whose reception quality does not satisfy a predetermined standard with a frequency suppressed by the filter. Use a configuration that allows
発明の効果  The invention's effect
[0015] 本発明によれば、マルチキャリア通信において、抑圧特性が急峻でなぐ周波数特 性にばらつきがある帯域制限フィルタを用いた場合にも、非希望信号を抑圧すること ができる。  [0015] According to the present invention, undesired signals can be suppressed even in the case of using a band limiting filter having a variation in frequency characteristics that is not sharp in suppression characteristics in multicarrier communication.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]従来の受信装置の構成を示すブロック図 FIG. 1 is a block diagram showing a configuration of a conventional receiving apparatus
[図 2]本発明の実施の形態 1に係る受信装置の構成を示すブロック図  FIG. 2 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
[図 3]OFDM信号の周波数特性を示す図  [Figure 3] Diagram showing frequency characteristics of OFDM signal
[図 4]希望信号と近傍ノイズの周波数特性を示す図  [Figure 4] Diagram showing frequency characteristics of desired signal and nearby noise
[図 5]実施の形態 1に係る受信装置の IF周波数帯での受信信号の周波数特性を示 す図  FIG. 5 is a diagram showing frequency characteristics of a received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
[図 6]実施の形態 1に係る受信装置の IF周波数帯での受信信号の周波数特性を示 す図  FIG. 6 is a diagram showing frequency characteristics of a received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
[図 7]実施の形態 1に係る受信装置の IF周波数帯での受信信号の周波数特性を示 す図 FIG. 7 shows the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1. Figure
[図 8]実施の形態 1に係る受信装置の IF周波数帯での受信信号の周波数特性を示 す図  [FIG. 8] A diagram showing the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
[図 9]実施の形態 1に係る受信装置の IF周波数帯での受信信号の周波数特性を示 す図  FIG. 9 is a diagram showing the frequency characteristics of the received signal in the IF frequency band of the receiving apparatus according to Embodiment 1.
[図 10]本発明の実施の形態 2に係る受信装置の構成を示すブロック図  FIG. 10 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 2 of the present invention.
[図 11]実施の形態 2に係る受信装置の高速フーリエ変換後の周波数領域の信号の 周波数特性を示す図  FIG. 11 is a diagram showing frequency characteristics of frequency domain signals after fast Fourier transform of the receiving apparatus according to Embodiment 2;
[図 12]本発明の実施の形態 3に係る受信装置の構成を示すブロック図  FIG. 12 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 3 of the present invention.
[図 13]実施の形態 3に係る受信装置の高速フーリエ変換後の周波数領域の信号の 周波数特性を示す図  FIG. 13 shows frequency characteristics of frequency domain signals after fast Fourier transform of the receiving apparatus according to Embodiment 3.
[図 14]本発明の実施の形態 4に係る受信装置の構成を示すブロック図  FIG. 14 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 4 of the present invention.
[図 15]アンダーサンプリング後の希望信号および非希望信号の周波数特性を示す 図  [Figure 15] Figure showing the frequency characteristics of desired and undesired signals after undersampling
[図 16]実施の形態 4に係る受信装置の IF周波数帯での受信信号、バンド抑圧フィル タおよびバンドパスフィルタの周波数特性を示す図  FIG. 16 is a diagram showing frequency characteristics of a received signal, a band suppression filter, and a bandpass filter in the IF frequency band of the receiving apparatus according to Embodiment 4
[図 17]本発明の実施の形態 5に係る受信装置の構成を示すブロック図  FIG. 17 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 5 of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施の形態について図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018] (実施の形態 1)  [0018] (Embodiment 1)
図 2は、本発明の実施の形態 1に係る受信装置 100の構成を示すブロック図である 。図 2に示す受信装置 100は、アンテナ 101、アンテナ共用部 102、低雑音増幅部 1 03、周波数変換部 104、バンドパスフィルタ 105、 AGC (Auto Gain Control) 106、口 一カル信号発振器 107、直交復調部 108、低域通過型フィルタ 109— 1、低域通過 型フィルタ 109— 2、 AZD変換部 110— 1、 AZD変換部 110— 2、 FFT部 111、周 波数選択部 112、周波数可変型ローカル信号発振器 113、および復号部 114を有 している。  FIG. 2 is a block diagram showing a configuration of receiving apparatus 100 according to Embodiment 1 of the present invention. The receiving apparatus 100 shown in FIG. 2 includes an antenna 101, an antenna sharing unit 102, a low noise amplification unit 103, a frequency conversion unit 104, a bandpass filter 105, an AGC (Auto Gain Control) 106, an oral signal oscillator 107, an orthogonal Demodulator 108, low-pass filter 109-1, low-pass filter 109-2, AZD converter 110-1, AZD converter 110-2, FFT unit 111, frequency selector 112, frequency variable local A signal oscillator 113 and a decoding unit 114 are provided.
[0019] アンテナ共用部 102は、アンテナ 101を上記ブロックにより構成される受信系と図示 せぬ送信系とを共用させて 、る。 [0019] The antenna sharing unit 102 is illustrated as a receiving system in which the antenna 101 is configured by the above blocks. Share with a non-transmission system.
[0020] 低雑音増幅部 103は、受信した信号を低雑音で増幅し、周波数変換部 104へ出力 する。  The low noise amplification unit 103 amplifies the received signal with low noise and outputs the amplified signal to the frequency conversion unit 104.
[0021] 周波数変換部 104は、増幅された受信信号に周波数可変型ローカル信号発振器 113から出力されるローカル信号を乗算して IF周波数に変換し、変換された IF信号 をバンドパスフィルタ 105へ出力する。  [0021] Frequency conversion section 104 multiplies the amplified received signal by a local signal output from frequency variable local signal oscillator 113 to convert it to an IF frequency, and outputs the converted IF signal to bandpass filter 105 To do.
[0022] バンドパスフィルタ 105は、 IF信号に帯域制限を施し、得られた IF信号を AGC106 へ出力する。  [0022] The bandpass filter 105 limits the band of the IF signal and outputs the obtained IF signal to the AGC 106.
[0023] AGC106は、 IF信号の振幅レベルを後工程の AZD変換部 110— 1および AZD 変換部 110— 2にお!/ヽて最適なレベルへ調整し、レベル調整された IF信号を直交復 調部 108へ出力する。  [0023] The AGC 106 adjusts the amplitude level of the IF signal to an optimum level by using the AZD conversion unit 110-1 and the AZD conversion unit 110-2 in the subsequent process, and orthogonally recovers the level-adjusted IF signal. Output to control unit 108.
[0024] ローカル信号発振器 107は、周波数 f (MHz)のローカル信号を直交復調部 108  The local signal oscillator 107 converts a local signal having a frequency f (MHz) into a quadrature demodulator 108.
if  if
へ出力する。  Output to.
[0025] 直交復調部 108は、レベル調整された IF信号を I、 Qのベースバンド信号に変換し 、得られたベースバンド信号を低域通過型フィルタ 109— 1および低域通過型フィル タ 109— 2へ出力する。  The quadrature demodulator 108 converts the level-adjusted IF signal into I and Q baseband signals, and converts the obtained baseband signal into a low-pass filter 109-1 and a low-pass filter 109. — Output to 2.
[0026] 低域通過型フィルタ 109— 1および低域通過型フィルタ 109— 2は、 I、 Qのベース バンド信号に対してそれぞれ不要成分を除去し、得られた I、 Qのベースバンド信号 を AZD変換部 110— 1、 AZD変換部 110— 2へ出力する。  [0026] The low-pass filter 109-1 and the low-pass filter 109-2 remove unnecessary components from the I and Q baseband signals, respectively, and obtain the obtained I and Q baseband signals. Output to AZD converter 110-1 and AZD converter 110-2.
[0027] AZD変換部 110—1および AZD変換部 110— 2は、 I、 Qのベースバンド信号に[0027] The AZD conversion unit 110-1 and the AZD conversion unit 110-2 are used for I and Q baseband signals.
AZD変換を施し、 AZD変換された I、 Qのベースバンド信号を FFT部 111へ出力 する。 AZD conversion is performed, and the AZD converted I and Q baseband signals are output to the FFT unit 111.
[0028] FFT部 111は、 AZD変換された I、 Qのベースバンド信号に対し高速フーリエ変換 を行い、時間領域の信号を周波数領域の信号へ変換する。 FFT部 111は、得られた 周波数領域の信号を復号部 114へ出力する。  [0028] The FFT unit 111 performs fast Fourier transform on the AZD-converted I and Q baseband signals to convert a time domain signal into a frequency domain signal. The FFT unit 111 outputs the obtained frequency domain signal to the decoding unit 114.
[0029] 周波数選択部 112は、図示せぬフィルタ特性測定部から出力されるバンドパスフィ ルタ 105のフィルタ特性と、自チャンネルの周波数配置または図示せぬノイズ信号周 波数測定部にぉ 、て測定されるノイズ信号周波数およびレベルに基づ ヽて、ノイズ 信号がバンドパスフィルタ 105の抑圧帯域にシフトするように、周波数可変型ロー力 ル信号発振器 113の周波数を制御する制御周波数 Δ ίを選択する。例えば、受信環 境において定常的に OFDM信号以外の他システムの信号が存在する場合、周波数 選択部 112は、他システムの信号の周波数をノイズ信号の周波数として、制御周波 数 Δ ίを選択する。周波数選択部 112は、 Δ ίだけ周波数をシフトさせるための制御 信号を周波数可変型ローカル信号発振器 113へ出力するとともに、制御周波数 Δ f につ 、ての情報を復号部 114へ出力する。 [0029] Frequency selection section 112 measures the filter characteristics of bandpass filter 105 output from a filter characteristic measurement section (not shown) and the frequency arrangement of its own channel or the noise signal frequency measurement section (not shown). Noise based on the noise signal frequency and level The control frequency Δ ί that controls the frequency of the frequency variable low-power signal oscillator 113 is selected so that the signal shifts to the suppression band of the bandpass filter 105. For example, when there is a signal of a system other than the OFDM signal constantly in the reception environment, the frequency selection unit 112 selects the control frequency Δ ί using the frequency of the signal of the other system as the frequency of the noise signal. The frequency selection unit 112 outputs a control signal for shifting the frequency by Δί to the variable frequency local signal oscillator 113 and outputs the information about the control frequency Δ f to the decoding unit 114.
[0030] 周波数可変型ローカル信号発振器 113は、周波数選択部 112から出力される制御 信号に基づいて、周波数 f -f Δ ί (MHz)のローカル信号を生成し、周波数変換 The variable frequency local signal oscillator 113 generates a local signal having a frequency f −f Δ ί (MHz) based on the control signal output from the frequency selection unit 112 and performs frequency conversion.
c if  c if
部 104へ出力する。ここで、 f は OFDM信号の中心周波数、 Δ ίは、周波数選択部 1 12によって選択された制御周波数を示す。  Output to part 104. Here, f represents the center frequency of the OFDM signal, and Δ ί represents the control frequency selected by the frequency selection unit 112.
[0031] 復号部 114は、周波数領域へ変換された信号に対して OFDM復号を施す。このと き、周波数選択部 112から出力される制御周波数 Δ ίに関する情報に基づいて、情 報データが割り当てられたサブキャリアを選択して、 OFDM復号を行う。サブキャリア の選択については後に詳述する。復号部 114は、得られた受信データを後工程へ出 力する。 [0031] Decoding section 114 performs OFDM decoding on the signal converted to the frequency domain. At this time, based on the information on the control frequency Δί output from the frequency selection unit 112, the subcarrier to which the information data is assigned is selected, and OFDM decoding is performed. Subcarrier selection will be described in detail later. Decoding section 114 outputs the received data obtained to the subsequent process.
[0032] 次いで、上記のように構成された受信装置 100による受信動作について説明する。  [0032] Next, a reception operation by the receiving apparatus 100 configured as described above will be described.
[0033] OFDM信号は、アンテナ 101およびアンテナ共用部 102を経由して、低雑音増幅 部 103へ出力される。そして、低雑音増幅部 103によって受信信号は増幅されて、周 波数変換部 104へ出力される。  The OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
[0034] 増幅された受信信号は、周波数変換部 104によって、周波数可変型ローカル信号 発振器 113から出力されるローカル信号と乗算されて IF周波数に変換され、変換さ れた IF信号はバンドパスフィルタ 105へ出力される。このとき、周波数可変型ロー力 ル信号発振器 113から出力されるローカル信号の周波数は、周波数選択部 112によ つて選択された制御周波数 Δ fだけシフトされる。周波数選択部 112によって制御さ れる制御周波数 Δ fの選択にっ 、ては後に詳述する。  [0034] The amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency converter 104 and converted to an IF frequency, and the converted IF signal is converted into a bandpass filter 105. Is output. At this time, the frequency of the local signal output from the frequency variable low-power signal oscillator 113 is shifted by the control frequency Δf selected by the frequency selector 112. The selection of the control frequency Δf controlled by the frequency selection unit 112 will be described in detail later.
[0035] Δ ίだけ周波数をシフトさせるための制御信号は、周波数可変型ローカル信号発振 器 113へ出力されるとともに、制御周波数 Δ ίについての情報は、復号部 114へ出力 される。 A control signal for shifting the frequency by Δ ί is output to frequency variable local signal oscillator 113, and information about control frequency Δ ί is output to decoding unit 114. Is done.
[0036] そして、 IF周波数に変換された IF信号は、バンドパスフィルタ 105によって帯域制 限されて、得られた IF信号は AGC106へ出力される。そして、 AGC106によって、 I [0036] Then, the IF signal converted to the IF frequency is band-limited by the bandpass filter 105, and the obtained IF signal is output to the AGC 106. And by AGC106, I
F信号は、 AZD変換部 110- 1および AZD変換部 110- 2にお 、て最適なレベル にレベル調整されて、直交復調部 108へ出力される。 The F signal is adjusted to an optimum level by the AZD conversion unit 110-1 and the AZD conversion unit 110-2, and is output to the quadrature demodulation unit 108.
[0037] レベル調整された IF信号は、直交復調部 108によって、ローカル信号発振器 107 力も出力されるローカル信号が乗算されて、 I、 Qのベースバンド信号に変換される。 [0037] The level-adjusted IF signal is multiplied by a local signal from which the local signal oscillator 107 output is also output by the quadrature demodulator 108, and converted into an I and Q baseband signal.
[0038] I、 Qのベースバンド信号は、それぞれ低域通過型フィルタ 109— 1、低域通過型フ ィルタ 109— 2を通過した後、 AZD変換部 110— 1、 AZD変換部 110— 2において[0038] The I and Q baseband signals pass through the low-pass filter 109-1 and the low-pass filter 109-2, respectively, and then pass through the AZD converter 110-1 and the AZD converter 110-2.
AZD変換が施されて FFT部 111へ出力される。 AZD conversion is performed and output to FFT section 111.
[0039] そして、 I、 Qのベースバンド信号は、 FFT部 111によって時間領域力 周波数領域 の信号に変換されて、周波数領域の信号は復号部 114へ出力される。 Then, the I and Q baseband signals are converted into signals in the time domain force frequency domain by the FFT unit 111, and the frequency domain signal is output to the decoding unit 114.
[0040] そして、復号部 114によって、周波数選択部 112から出力される制御周波数 Δ ίに 基づ 、て、情報データが割り当てられたサブキャリアが選択されて OFDM復号が行 われる。 OFDM復号により得られた受信データは、後工程へ出力される。 [0040] Based on the control frequency Δί output from the frequency selection unit 112, the decoding unit 114 selects a subcarrier to which the information data is assigned, and performs OFDM decoding. Received data obtained by OFDM decoding is output to a subsequent process.
[0041] 次いで、受信装置 100が図 3に示すような OFDM信号を受信する場合の受信動作 について説明する。 [0041] Next, the receiving operation when receiving apparatus 100 receives an OFDM signal as shown in FIG. 3 will be described.
[0042] 図 3Aは、使用サブキャリア(Using Sub Career:USC)数 682本から構成される中心 周波数 f (MHz)、信号帯域幅 50MHzの OFDM信号の周波数特性を示している。 図 3Aにおいて、横軸は周波数 (MHz)、第 2横軸はサブキャリア(Sub Carrier: SB) 番号、縦軸は電力(dBm)を示して 、る。  FIG. 3A shows frequency characteristics of an OFDM signal having a center frequency f (MHz) and a signal bandwidth of 50 MHz composed of 682 subcarriers (USC). In FIG. 3A, the horizontal axis represents frequency (MHz), the second horizontal axis represents subcarrier (SB) number, and the vertical axis represents power (dBm).
[0043] ところで、 OFDMの送信装置では、 IFFT (Inverse Fast Fourier Transform:逆高速 フーリエ変換)により周波数領域の信号から時間領域の信号が生成されるが、このと き IFFT処理の機能上、 2のべき乗のサブキャリア数が用いられて時間領域の信号が 算出されることが多い。し力しながら、一般には、ローカル周波数の位相雑音による サブキャリア間隔の制限により OFDM信号が 2のべき乗のサブキャリア力 構成され ない場合が多い。そこで、送信装置は、ヌルデータをサブキャリアに割り当てて、 2の べき乗のサブキャリアを生成している。具体的には、図 3Aに示すような 682本のサブ キャリアから構成される信号帯域幅 50MHzの OFDM信号を、 1024本のサブキヤリ ァのうち 682本のサブキャリアにのみ情報データを割り当て、残りの 342本のサブキヤ リアは未使用のサブキャリアとしてヌルデータを割り当てて、未使用のサブキャリアの 電力をゼロにして生成する。これにより、無線周波数帯域においては、信号帯域幅が 50MHzで、 682本のサブキャリアで構成される OFDM信号が送信されることになる By the way, in an OFDM transmitter, a time domain signal is generated from a frequency domain signal by IFFT (Inverse Fast Fourier Transform). Time domain signals are often calculated using the number of power subcarriers. However, in general, the OFDM signal is often not composed of a power of 2 subcarrier due to the limitation of the subcarrier spacing due to the phase noise of the local frequency. Therefore, the transmitting apparatus assigns null data to subcarriers, and generates a power-of-two subcarrier. Specifically, 682 subs as shown in Figure 3A. An OFDM signal with a signal bandwidth of 50 MHz consisting of carriers is assigned information data only to 682 subcarriers out of 1024 subcarriers, and the remaining 342 subcarriers are assigned null data as unused subcarriers. Thus, the power of unused subcarriers is generated with zero. As a result, in the radio frequency band, an OFDM signal composed of 682 subcarriers is transmitted with a signal bandwidth of 50 MHz.
[0044] 図 3Aに示す OFDM信号を受信装置 100にて受信する場合を考える。図 3B、図 3 C、および図 3Dは、それぞれ、周波数可変型ローカル信号発振器 113から出力され る f -f (MHz)、f -f + 12. 5 (MHz)、および f —f —12. 5 (MHz)のローカル信 c if c if c if Consider a case where the receiving apparatus 100 receives the OFDM signal shown in FIG. 3A. Figures 3B, 3C, and 3D show f -f (MHz), f -f + 12.5 (MHz), and f --f --12. 5 (MHz) local signal c if c if c if
号と周波数変換部 104において乗算された後、ローカル信号発振器 107において f  Signal and frequency converter 104, and f
if if
(MHz)のローカル信号と乗算されて低域通過フィルタ 109— 1および低域通過フィ ルタ 109— 2に入力されるベースバンド信号の周波数特性を示す。ここで、図 3B、図 3C、および図 3Dにおいて、いずれも図 3Aと同様に、横軸は周波数 (MHz)、第 2横 軸はサブキャリア(SB)番号、縦軸は電力(dBm)を示して 、る。 The frequency characteristics of the baseband signal multiplied by the local signal (MHz) and input to the low-pass filter 109-1 and low-pass filter 109-2 are shown. In FIGS. 3B, 3C, and 3D, as in FIG. 3A, the horizontal axis represents frequency (MHz), the second horizontal axis represents subcarrier (SB) number, and the vertical axis represents power (dBm). Show me.
[0045] このとき、上述したように、復号部 114において、情報データが割り当てられた使用 サブキャリアを選択して復調することにより、受信装置 100では図 3B、図 3Cおよび図 3Dに示す周波数特性を持ついずれのベースバンド信号も復調することができる。  [0045] At this time, as described above, the decoding unit 114 selects and demodulates the used subcarriers to which the information data is assigned, so that the receiving apparatus 100 can perform frequency characteristics shown in FIGS. 3B, 3C, and 3D. Any baseband signal with can be demodulated.
[0046] 例えば、図 3Bに示す OFDM信号に対しては、図 3Aに示す OFDM信号と同様に サブキャリア番号 172から 853までを使用サブキャリアとして選択して OFDM復号す ることで、情報データを復号することができる。また、図 3Cに示す OFDM信号に対し ては、サブキャリア番号 1から 682までを使用サブキャリアとして選択して OFDM復号 することで、情報データを復号することができる。図 3Dに示す OFDM信号に対して はサブキャリア番号 342から 1024までを使用サブキャリアとして選択して OFDM復 号することで、情報データを復号することができる。  [0046] For example, for the OFDM signal shown in FIG. 3B, information data is obtained by selecting subcarrier numbers 172 to 853 as used subcarriers and performing OFDM decoding in the same manner as the OFDM signal shown in FIG. 3A. Can be decrypted. Also, for the OFDM signal shown in FIG. 3C, information data can be decoded by selecting subcarrier numbers 1 to 682 as used subcarriers and performing OFDM decoding. For the OFDM signal shown in FIG. 3D, information data can be decoded by selecting subcarrier numbers 342 to 1024 as used subcarriers and performing OFDM decoding.
[0047] すなわち、周波数変換部 104において、高速フーリエ変換において用いられる 2の べき乗のサブキャリア数力も構成される周波数帯域、つまり、復号部 114において復 号可能な周波数範囲に使用サブキャリアが含まれるよう周波数変換された場合、復 号部 114において使用サブキャリアを正しく検出することで、使用サブキャリアのすべ てを用いて情報データを復号することが可能となる。例えば、図 3Aに示すような OF DM信号に対しては、制御周波数 Δ ίが、 - 12. 5≤ Δ ί≤12. 5Η (ΜΗζ)を満たす 場合には、情報データが割り当てられたサブキャリアをすベて用いて情報データを復 号することが可能となる。 That is, in frequency converter 104, the frequency band in which the power of 2 subcarrier power used in the fast Fourier transform is also configured, that is, the subcarrier used is included in the frequency range that can be decoded in decoder 114. When the frequency conversion is performed, the decoding unit 114 correctly detects the used subcarriers, so that all the used subcarriers are detected. It is possible to decrypt information data using For example, for an OF DM signal as shown in FIG. 3A, if the control frequency Δ ί satisfies −12.5 ≦ Δ ί≤12.5Η (ΜΗζ), the subcarrier to which the information data is assigned is assigned. It is possible to decrypt information data using all of these.
[0048] 以後、周波数可変型ローカル信号発振器 113から出力されるローカル信号の周波 数を制御して、制御周波数 Δ fに基づ 、てサブキャリアを選択して OFDM復号する 方法を「OFDM信号サブキャリアオフセット復調」と記載する。  [0048] Hereinafter, a method of controlling the frequency of the local signal output from the frequency variable local signal oscillator 113, selecting a subcarrier based on the control frequency Δf, and performing OFDM decoding is described as "OFDM signal sub "Carrier offset demodulation".
[0049] 次いで、受信装置 100が図 4に示すような OFDM信号およびノイズ信号を受信す る場合の受信動作について説明する。図 4において、横軸は周波数 (MHz)、縦軸 は電力(dBm)、中心周波数 f (MHz)、帯域幅 50MHzの OFDM信号の近傍に、ノ ィズ信号が存在している様子を示している。ノイズ信号は、その中心周波数 f (MHz )力 より 57MHz高く、帯域幅 12MHzの信号である。  [0049] Next, the receiving operation when receiving apparatus 100 receives an OFDM signal and a noise signal as shown in FIG. 4 will be described. In Fig. 4, the horizontal axis shows the frequency (MHz), the vertical axis shows the noise signal in the vicinity of the OFDM signal with power (dBm), center frequency f (MHz), and bandwidth 50MHz. Yes. The noise signal is 57MHz higher than its center frequency f (MHz) force and has a bandwidth of 12MHz.
[0050] 以下では、 AZD変換部 110— 1および AZD変換部 110— 2のサンプリング周波 数 fが 75MHzの場合を考える。このとき、受信装置 100の IF周波数帯での受信信 s  [0050] In the following, it is assumed that the sampling frequency f of the AZD conversion unit 110-1 and the AZD conversion unit 110-2 is 75 MHz. At this time, the received signal s in the IF frequency band of receiving apparatus 100
号の周波数特性は図 5Aのようになる。図 5Aは、横軸は周波数 (MHz)、縦軸は信 号レベル (dBm)、第 2縦軸はフィルタ抑圧量 (dB)を示している。なお、以後で用い る図 5B,図 6〜図 9についても同様に横軸は周波数 (MHz)、縦軸は信号レベル (d Figure 5A shows the frequency characteristics of the signal. In FIG. 5A, the horizontal axis represents frequency (MHz), the vertical axis represents signal level (dBm), and the second vertical axis represents filter suppression (dB). Note that the horizontal axis is the frequency (MHz) and the vertical axis is the signal level (d
Bm)、第 2縦軸はフィルタ抑圧量 (dB)を示す。 Bm), the second vertical axis represents the amount of filter suppression (dB).
[0051] 図 5Aは、 OFDM信号、バンドパスフィルタ 105のフィルタ特性、ノイズ信号、および バンドパスフィルタ 105通過後のノイズ信号について、それぞれ、希望信号、 Filter特 性、近傍ノイズおよび入力ノイズと記載し示して 、る。 [0051] FIG. 5A shows the OFDM signal, the filter characteristics of the bandpass filter 105, the noise signal, and the noise signal after passing through the bandpass filter 105 as the desired signal, filter characteristics, neighborhood noise, and input noise, respectively. Show me.
[0052] 図 5Bは、直交復調部 108から出力されるベースバンド周波数帯での希望信号およ び入力ノイズの周波数特性を示して 、る。 FIG. 5B shows the frequency characteristics of the desired signal and input noise in the baseband frequency band output from quadrature demodulator 108.
[0053] AZD変換部 110- 1および AZD変換部 110— 2におけるサンプリング周波数が[0053] Sampling frequency in AZD converter 110-1 and AZD converter 110-2 is
75MHzの場合、 37. 5 ( = 75Z2) MHzより高い周波数成分が帯域内に折り返され る。したがって、 AZD変換された後、図 5Bに示す折り返しノイズが帯域内に入力さ れること〖こなる。 In the case of 75 MHz, frequency components higher than 37.5 (= 75Z2) MHz are folded back into the band. Therefore, after the AZD conversion, the aliasing noise shown in FIG. 5B is input into the band.
[0054] 図 6Aは、図 5Aに対し、バンドパスフィルタ 105の抑圧特性の傾きを緩和したときの IF周波数帯での受信信号の周波数特性を示して 、る。図 6Aよりバンドパスフィルタ 1 05通過後の入力ノイズが図 5Aに比べて大きいことが分かる。図 6Bに示すように、帯 域内に折り返されるノイズ信号レベルも大きいため、フィルタ特性の緩和により希望信 号の品質が劣化する。 [0054] FIG. 6A is a graph obtained when the slope of the suppression characteristic of the bandpass filter 105 is relaxed compared to FIG. 5A. Shows the frequency characteristics of the received signal in the IF frequency band. From FIG. 6A, it can be seen that the input noise after passing through the band-pass filter 105 is larger than that in FIG. 5A. As shown in Fig. 6B, the noise signal level that is folded back in the band is also large, so the quality of the desired signal deteriorates due to the relaxation of the filter characteristics.
[0055] ここで周波数可変型ローカル信号発振器 113の周波数を f -f -6. 25 (MHz)と  [0055] Here, the frequency of the frequency variable local signal oscillator 113 is f -f -6.25 (MHz).
C if  C if
して、「OFDM信号サブキャリアオフセット復調」を用いて復調する場合につ!、て説 明する。このとき、 IF周波数帯での受信信号の周波数特性は図 7Aに示すように、希 望信号およびノイズ信号が高周波側に 6. 25MHzシフトする。これにより、ノイズ信号 1S 抑圧量が大きい周波数領域にシフトして、バンドパスフィルタ 105通過後のノイズ 信号レベルが図 6Aに比べ低くなり、図 5Aと同等の特性を得ることができる。  Thus, the case of demodulating using “OFDM signal subcarrier offset demodulation” will be described. At this time, as shown in Fig. 7A, the frequency characteristics of the received signal in the IF frequency band shift the desired signal and noise signal to 6.25 MHz toward the high frequency side. As a result, the noise signal 1S suppression amount shifts to a large frequency region, and the noise signal level after passing through the band-pass filter 105 becomes lower than that in FIG. 6A, and the same characteristics as in FIG. 5A can be obtained.
[0056] 図 7Bにベースバンド周波数帯での受信信号の周波数特性を示す。図 7Bに示すよ うに、帯域内に折り返される信号レベルが図 6Bに比べ低くなつていることが分かる。  FIG. 7B shows frequency characteristics of the received signal in the baseband frequency band. As shown in Fig. 7B, it can be seen that the signal level folded back in the band is lower than that in Fig. 6B.
[0057] 上述したように、制御周波数 Δ ίは、 - 12. 5≤ Δ ί≤12. 5Η (MHz)の範囲内にあ るので、制御周波数 Δ ίに基づいてサブキャリアを適切に選択することにより希望信 号を OFDM復号することが可能となる。  [0057] As described above, since the control frequency Δ ί is within the range of −12.5 ≦ Δ ί ≦ 12.5Η (MHz), the subcarrier is appropriately selected based on the control frequency Δ ί. This makes it possible to OFDM-decode the desired signal.
[0058] すなわち、「OFDM信号サブキャリアオフセット復調」を用いて、周波数可変型ロー カル信号発振器 113の周波数をシフトさせて復調することで、帯域制限フィルタの抑 圧特性を緩和した場合にも、ノイズ信号を除去して OFDM復号することができる。こ の結果、帯域制限フィルタとして次数の低いフィルタが用いることが可能となり、安価 な、半導体フィルタを用いた場合には低消費電力なフィルタを用いることができる。  That is, even when the suppression characteristic of the band limiting filter is relaxed by shifting the frequency of the frequency variable local signal oscillator 113 using “OFDM signal subcarrier offset demodulation” and demodulating, The noise signal can be removed and OFDM decoding can be performed. As a result, a low-order filter can be used as the band limiting filter, and a low-power consumption filter can be used when an inexpensive semiconductor filter is used.
[0059] 上述した例では、バンドパスフィルタ 105の抑圧特性が劣化した場合にっ 、て説明 したが、次いで、バンドパスフィルタ 105の周波数特性が中心周波数に対し非対称で ある場合について説明する。一般にアナログデバイスにはばらつきがあり、そのばら つき方によって機部の性能を劣化させることがある。例えば、図 5Aに示すフィルタ特 性を基本値に持つバンドパスフィルタ 105がばらついて中心周波数が高周波側にシ フトした場合、図 8Aに示すようなフィルタ特性となる。このとき、図 4に示すような OFD M信号およびノイズ信号が、図 8Aに示すフィルタ特性を持つバンドパスフィルタ 105 を通過した場合、入力ノイズのレベルは図 5Aに比べ大きくなる。また、図 8Bに示すよ うに帯域内に折り返されるノイズ信号のレベルも大きくなり、受信した希望信号の品質 が劣化する。 In the above-described example, the case where the suppression characteristic of the bandpass filter 105 has been described has been described. Next, the case where the frequency characteristic of the bandpass filter 105 is asymmetric with respect to the center frequency will be described. In general, there are variations in analog devices, and depending on how they vary, the performance of the machine may be degraded. For example, when the bandpass filter 105 having the filter characteristics shown in FIG. 5A as a basic value varies and the center frequency is shifted to the high frequency side, the filter characteristics shown in FIG. 8A are obtained. At this time, when the OFD M signal and the noise signal as shown in FIG. 4 pass through the band-pass filter 105 having the filter characteristics shown in FIG. 8A, the level of the input noise becomes larger than that in FIG. 5A. Also shown in Figure 8B. In addition, the level of the noise signal that is folded back within the band increases, and the quality of the received desired signal deteriorates.
[0060] この場合において、周波数可変型ローカル信号発振部 115の周波数を f f 6.  [0060] In this case, the frequency of the variable frequency local signal oscillator 115 is set to f f 6.
C if C if
25 (MHz)として、「OFDM信号サブキャリアオフセット復調」を用いて復調する場合 ついて説明する。このとき、バンドパスフィルタ 105通過後の受信信号の IF周波数特 性は、図 9Aに示すように希望信号およびノイズ信号が高周波側に 6. 25MHzシフト する。これにより、ノイズ信号が高周波側にシフトして、バンドパスフィルタ 105通過後 のノイズ信号レベルが図 8Aに比べ低くなり、図 5Aと同等の特性が得られる。また、図 9Bに示すように帯域内に折り返されるノイズ信号のレベルも図 5Bと同程度となる。 The case of demodulation using “OFDM signal subcarrier offset demodulation” at 25 (MHz) will be described. At this time, the IF frequency characteristics of the received signal after passing through the band-pass filter 105 shift the desired signal and the noise signal to 6.25 MHz to the high frequency side as shown in FIG. 9A. As a result, the noise signal shifts to the high frequency side, and the noise signal level after passing through the bandpass filter 105 becomes lower than that in FIG. 8A, and the same characteristics as in FIG. 5A can be obtained. In addition, as shown in FIG. 9B, the level of the noise signal folded back within the band is also similar to that in FIG. 5B.
[0061] すなわち、「OFDM信号サブキャリアオフセット復調」を用いて、周波数可変型ロー カル信号発振器 113の周波数をシフトさせて復調することで、帯域制限フィルタの周 波数特性にばらつきがあった場合において、ばらつき補正回路を必要とせず、周波 数特性のばらつきによる性能劣化を軽減して、ノイズ信号を除去して OFDM復号す ることが可能となる。 That is, in the case where the frequency characteristics of the band-limiting filter vary by demodulating by shifting the frequency of the frequency variable local signal oscillator 113 using “OFDM signal subcarrier offset demodulation”. This eliminates the need for a variation correction circuit, reduces performance degradation due to variations in frequency characteristics, and eliminates noise signals and enables OFDM decoding.
[0062] 以上のように、本実施の形態によれば、「OFDM信号サブキャリアオフセット復調」 を用いて、周波数可変型ローカル信号発振器 113の周波数を制御して、非希望信 号をフィルタ抑圧帯域へシフトさせて OFDM復号する。これにより、帯域制限フィルタ のフィルタ特性が劣化した場合において、劣化を補正する回路を必要とせず、フィル タ特性の劣化を軽減して、非希望信号を抑圧して OFDM復号することができ、受信 性能を改善することができる。また、 A/D変換部 110— 1および AZD変換部 110 2に入力されるノイズ成分が減ることにより、量子化雑音による性能劣化が軽減して 、受信性能を改善する効果もある。  As described above, according to the present embodiment, the frequency of frequency variable local signal oscillator 113 is controlled using “OFDM signal subcarrier offset demodulation” to filter undesired signals in the filter suppression band. Shift to, and OFDM decode. As a result, when the filter characteristics of the band limiting filter deteriorate, a circuit that corrects the deterioration is not required, the deterioration of the filter characteristic can be reduced, and undesired signals can be suppressed and OFDM decoding can be performed. The performance can be improved. In addition, since noise components input to the A / D conversion unit 110-1 and the AZD conversion unit 1102 are reduced, performance degradation due to quantization noise is reduced, and reception performance is improved.
[0063] なお、上述した例では、受信装置 100がバンドパスフィルタを用いる場合について 説明したが、 IF周波数帯へ変換せず、ダイレクトコンバージョンによりベースバンド周 波数帯に変換する場合にも「OFDM信号サブキャリアオフセット復調」を適用するこ とで、低域通過フィルタのフィルタ特性が劣化した場合においても、フィルタ特性の性 能劣化を回避して非希望信号を抑圧し、 OFDM復号することが可能となる。  [0063] In the above-described example, the case where the receiving apparatus 100 uses a bandpass filter has been described. However, the OFDM signal may also be used when converting to the baseband frequency band by direct conversion without converting to the IF frequency band. By applying subcarrier offset demodulation, even when the filter characteristics of the low-pass filter deteriorate, it is possible to suppress the undesired signal by avoiding the performance deterioration of the filter characteristics and perform OFDM decoding. Become.
[0064] また、周波数選択部 112において、図示せぬフィルタ特性測定部から出力されるフ ィルタ特性を用いる代わりに、温度センサを用いてフィルタ特性を予測してもよい。一 般に SAWフィルタ等のデバイスは温度によって中心周波数が変動する力 温度に 応じて中心周波数の変動を予測し、上述したように「OFDM信号サブキャリアオフセ ット復調」を適用することで、図 2に示す OFDM受信装置と同様の効果を奏すること ができる。 [0064] Further, in the frequency selection unit 112, a filter output from a filter characteristic measurement unit (not shown). Instead of using the filter characteristic, the filter characteristic may be predicted using a temperature sensor. In general, devices such as SAW filters predict the fluctuation of the center frequency according to the temperature at which the center frequency fluctuates according to the temperature, and apply “OFDM signal subcarrier offset demodulation” as described above. The same effect as the OFDM receiver shown in Fig. 2 can be obtained.
[0065] (実施の形態 2)  [Embodiment 2]
本発明の実施の形態 2の特徴は、非希望信号の周波数を推定して、非希望信号を 帯域制限フィルタの抑圧帯域にシフトすることである。  The feature of Embodiment 2 of the present invention is that the frequency of the undesired signal is estimated and the undesired signal is shifted to the suppression band of the band limiting filter.
[0066] 図 10は、本発明の実施の形態 2に係る受信装置 100の構成を示すブロック図であ る。なお、図 10の本実施の形態の受信装置において、図 2と共通する構成部分には 、図 2と同一の符号を付して説明を省略する。図 10は、図 2に対して、周波数選択部 112に代えて、周波数選択部 202を有し、ノイズ測定部 201を追加した構成を採る。  FIG. 10 is a block diagram showing a configuration of receiving apparatus 100 according to Embodiment 2 of the present invention. In the receiving apparatus of the present embodiment in FIG. 10, the same components as in FIG. 2 are assigned the same reference numerals as those in FIG. 10 employs a configuration in which a frequency selection unit 202 is provided instead of the frequency selection unit 112 and a noise measurement unit 201 is added to FIG.
[0067] ノイズ測定部 201は、 FFT部 111から出力される周波数領域の信号力も希望信号 近傍のノイズ信号の信号電力対雑音電力比を周波数成分ごとに測定し、測定された 信号電力対雑音電力比が所定の閾値以上の周波数成分をノイズ信号の周波数と判 断 (推定)する。ノイズ測定部 201における信号電力対雑音電力比およびノイズ信号 の周波数の測定について、バンドパスフィルタ 105が図 5Aに示すようなフィルタ特性 を有し、図 4に示すような信号を受信する場合について説明する。  [0067] The noise measuring unit 201 measures the signal power to noise power ratio of the noise signal in the vicinity of the desired signal for each frequency component, and the measured signal power to noise power. Frequency components whose ratio is equal to or greater than a predetermined threshold are determined (estimated) as noise signal frequencies. Regarding the measurement of the signal power-to-noise power ratio and the frequency of the noise signal in the noise measuring unit 201, the case where the bandpass filter 105 has the filter characteristics as shown in FIG. 5A and receives a signal as shown in FIG. To do.
[0068] 実施の形態 1と同様に AZD変換部 110- 1および AZD変換部 110— 2のサンプ リングクロック fが 75MHzの場合、直交復調部 108から出力されるベースバンド周波 s  [0068] Similarly to Embodiment 1, when the sampling clock f of the AZD conversion unit 110-1 and the AZD conversion unit 110-2 is 75 MHz, the baseband frequency s output from the orthogonal demodulation unit 108
数帯での希望信号および入力ノイズの周波数特性は図 5Bに示されるようになる。そ して、図 5Bに示す信号に対して FFT部 111にお ヽて高速フーリエ変換が行われた 場合、高速フーリエ変換後の出力の周波数特性は図 11のように示される。このとき、 ノイズ測定部 201は、未使用サブキャリアにおける信号電力対雑音電力比をキャリア ごとに測定して、その測定結果力もノイズ信号の周波数を判断 (推定)する。例えば、 ノイズ測定部 201が、図 11に示すように未使用サブキャリアのうちサブキャリア番号 1 力も 172にかけて信号電力対雑音電力比が所定の閾値以上であると検出した場合、 その周波数領域にノイズ信号が存在している、もしくは、希望信号に対して高周波側 にノイズ信号があり、その折り返しによりレベルが上がっていると推測して、ノイズ信号 の周波数を推定する。ノイズ測定部 201は、推定したノイズ信号の周波数および信号 電力対雑音電力比を周波数選択部 202へ出力する。なお、ノイズ信号の周波数およ び信号電力対雑音電力比の推定方法は、これに限らず他の推定方法を用いてもよ い。 The frequency characteristics of the desired signal and input noise in several bands are as shown in Fig. 5B. When the FFT unit 111 performs fast Fourier transform on the signal shown in FIG. 5B, the frequency characteristics of the output after the fast Fourier transform are shown in FIG. At this time, the noise measurement unit 201 measures the signal power to noise power ratio in unused subcarriers for each carrier, and the measurement result power also determines (estimates) the frequency of the noise signal. For example, when the noise measurement unit 201 detects that the signal power-to-noise power ratio is equal to or higher than a predetermined threshold when the subcarrier number 1 of the unused subcarriers is also 172 as shown in FIG. 11, noise is detected in the frequency domain. The signal exists or is higher frequency than the desired signal There is a noise signal, and it is estimated that the level has increased due to the aliasing, and the frequency of the noise signal is estimated. The noise measurement unit 201 outputs the estimated frequency of the noise signal and the signal power to noise power ratio to the frequency selection unit 202. The estimation method of the noise signal frequency and the signal power to noise power ratio is not limited to this, and other estimation methods may be used.
[0069] 周波数選択部 202は、測定されたキャリアごとの信号電力対雑音電力比が所定の 閾値以上のノイズ信号をバンドパスフィルタ 105の抑圧帯域にシフトするように、周波 数可変型ローカル信号発振器 113の周波数を制御する制御周波数 Δ fを選択する。 そして、周波数選択部 202は、 Δ ίだけ周波数をシフトさせるための制御信号を周波 数可変型ローカル信号発振器 113へ出力するとともに、制御周波数 Δ fにつ 、ての 情報を復号部 114へ出力する。  [0069] The frequency selection unit 202 is a frequency variable local signal oscillator so as to shift a noise signal having a measured signal power-to-noise power ratio for each carrier equal to or higher than a predetermined threshold to the suppression band of the bandpass filter 105. Select the control frequency Δ f that controls the frequency of 113. Then, the frequency selection unit 202 outputs a control signal for shifting the frequency by Δί to the frequency variable local signal oscillator 113, and outputs information about the control frequency Δf to the decoding unit 114. .
[0070] 次いで、上記のように構成された受信装置 100による受信動作について説明する。  [0070] Next, a reception operation by the receiving apparatus 100 configured as described above will be described.
[0071] OFDM信号は、アンテナ 101およびアンテナ共用部 102を経由して、低雑音増幅 部 103へ出力される。そして、低雑音増幅部 103によって受信信号は増幅されて、周 波数変換部 104へ出力される。  The OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
[0072] 増幅された受信信号は、周波数変換部 104によって、周波数可変型ローカル信号 発振器 113から出力されるローカル信号と乗算されて IF周波数に変換され、変換さ れた IF信号はバンドパスフィルタ 105へ出力される。このとき、周波数可変型ロー力 ル信号発振器 113から出力されるローカル信号の周波数は、周波数選択部 202によ つて選択された制御周波数 Δ ίだけシフトされる。制御周波数 Δ ίは、上述したように、 ノイズ測定部 201によって推定されたノイズ信号のレベルから、レベルが所定の閾値 以上のノイズ信号がバンドパスフィルタ 105の抑圧帯域へシフトするように選択される  [0072] The amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency converter 104 and converted to an IF frequency, and the converted IF signal is converted into a bandpass filter 105. Is output. At this time, the frequency of the local signal output from the frequency variable low-power signal oscillator 113 is shifted by the control frequency Δ ί selected by the frequency selector 202. As described above, the control frequency Δ ί is selected from the level of the noise signal estimated by the noise measuring unit 201 so that a noise signal having a level equal to or higher than a predetermined threshold is shifted to the suppression band of the bandpass filter 105.
[0073] Δ ίだけ周波数をシフトさせるための制御信号は、周波数可変型ローカル信号発振 器 113へ出力されるとともに、制御周波数 Δ ίについての情報は、復号部 114へ出力 される。 A control signal for shifting the frequency by Δ ί is output to frequency variable local signal oscillator 113, and information about control frequency Δ ί is output to decoding unit 114.
[0074] IF周波数に変換された IF信号は、実施の形態 1と同様に、バンドパスフィルタ 105 、 AGC106、直交復調部 108、低域通過型フィルタ 109— 1および低域通過型フィ ルタ 109— 2、 AZD変換部 110— 1および AZD変換部 110— 2を経由して、 FFT 部 111へ出力される。 [0074] The IF signal converted into the IF frequency is the same as in the first embodiment. The bandpass filter 105, the AGC 106, the quadrature demodulation unit 108, the low-pass filter 109-1, and the low-pass filter The data is output to the FFT unit 111 via the filter 109-2, the AZD conversion unit 110-1 and the AZD conversion unit 110-2.
[0075] そして、 FFT部 111によって、 I、 Qのベースバンド信号が時間領域力 周波数領域 の信号に変換されて、周波数領域の信号は復号部 114へ出力される。  [0075] Then, the I and Q baseband signals are converted into time domain power frequency domain signals by the FFT unit 111, and the frequency domain signals are output to the decoding unit 114.
[0076] 以後、復号部 114によって実施の形態 1と同様に、周波数選択部 112から出力され る制御周波数 Δ ίに関する情報に基づいて、情報データが割り当てられたサブキヤリ ァ番号が選択されて、 OFDM復号が行われる。そして、得られた受信データは後ェ 程へ出力される。  Thereafter, the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information on the control frequency Δί output from the frequency selection unit 112, as in the first embodiment, and performs OFDM. Decryption is performed. The obtained received data is output to the later stage.
[0077] 以上のように、本実施の形態によれば、「OFDM信号サブキャリアオフセット復調」 を用いて、非希望信号の周波数を推定して、周波数可変型ローカル信号発振器 11 3の周波数を制御して、非希望信号をフィルタ抑圧帯域へシフトさせて OFDM復号 する。これにより、非希望信号のレベルや周波数が変動する環境下においても、常に 非希望信号を抑圧して OFDM復号することができ、受信性能を改善することができ る。  As described above, according to the present embodiment, the frequency of the frequency variable local signal oscillator 113 is controlled by estimating the frequency of the undesired signal using “OFDM signal subcarrier offset demodulation”. Then, the undesired signal is shifted to the filter suppression band and subjected to OFDM decoding. As a result, even in an environment where the level and frequency of the undesired signal fluctuate, the undesired signal can always be suppressed and OFDM decoding can be performed, and reception performance can be improved.
[0078] (実施の形態 3)  [Embodiment 3]
本発明の実施の形態 3の特徴は、レベルが最も小さいサブキャリアを検出して、レ ベルが最小のサブキャリアをフィルタ特性の抑圧帯域にシフトすることである。  The feature of Embodiment 3 of the present invention is that the subcarrier with the lowest level is detected and the subcarrier with the lowest level is shifted to the suppression band of the filter characteristics.
[0079] 図 12は、本発明の実施の形態 3に係る受信装置の構成を示すブロック図である。  FIG. 12 is a block diagram showing the configuration of the receiving apparatus according to Embodiment 3 of the present invention.
なお、図 12の本実施の形態の受信装置において、図 2と共通する構成部分には、図 2と同一の符号を付して説明を省略する。図 12は、ダイレクトコンバージョンによる受 信装置で、図 2に対して、 AGC106、低域通過型フィルタ 109— 1、低域通過型フィ ルタ 109— 2、および周波数選択部 112に代えて、 AGC302— 1、 AGC302— 2、 低域通過型フィルタ 301— 1、低域通過型フィルタ 301— 2、および周波数選択部 30 4を有し、周波数変換部 104、バンドパスフィルタ 105、およびローカル信号発振器 1 07を削除して、レベル判定部 303を追加した構成を採る。  In the receiving apparatus of the present embodiment in FIG. 12, the same components as in FIG. 2 are assigned the same reference numerals as in FIG. Fig. 12 shows a direct conversion receiving device. Compared with Fig. 2, AGC106, low-pass filter 109-1, low-pass filter 109-1, and frequency selector 112 are replaced with AGC302- 1, AGC302-2, low-pass filter 301-1, 1, low-pass filter 301-2, and frequency selector 30 4; frequency converter 104, bandpass filter 105, and local signal oscillator 1 07 Is deleted, and the level determination unit 303 is added.
[0080] 低域通過型フィルタ 301— 1および低域通過型フィルタ 301— 2は、 I、 Qのベース バンド信号に対してそれぞれ不要成分を除去し、得られた I、 Qのベースバンド信号 を AGC302— 1、 AGC302— 2へ出力する。なお、低域通過型フィルタ 301—1およ び低域通過型フィルタ 301— 2は、ローカル信号の漏洩によって発生する DCオフセ ットを回避するために信号伝送経路に直列にコンデンサを配置 (C結合)して DC成 分をカットする構成を有して 、る。 [0080] The low-pass filter 301-1 and the low-pass filter 301-2 remove unnecessary components from the I and Q baseband signals, respectively, and use the obtained I and Q baseband signals. Output to AGC302-1 and AGC302-2. Note that the low-pass filter 301-1 and The low-pass filter 301-2 has a configuration that cuts the DC component by placing a capacitor in series in the signal transmission path (C coupling) to avoid DC offset caused by local signal leakage. Have it.
[0081] レベル判定部 303は、高速フーリエ変換後の周波数領域の信号から、それぞれの サブキャリアの信号レベルを測定し、受信レベルが最小のサブキャリアを判定する。 レベル判定部 303は、判定したサブキャリアの周波数についての情報を周波数選択 部 304に出力する。 [0081] Level determination section 303 measures the signal level of each subcarrier from the frequency domain signal after the fast Fourier transform, and determines the subcarrier with the lowest reception level. Level determination section 303 outputs information about the determined subcarrier frequency to frequency selection section 304.
[0082] 周波数選択部 304は、レベル判定部 303において判定された受信レベルが最小 のサブキャリアの周波数から、このサブキャリアが低域通過型フィルタ 301— 1および 低域通過型フィルタ 301— 2の抑圧帯域と一致するように周波数可変型ローカル信 号発振器 113の制御周波数 Δ ίを選択する。そして、周波数選択部 304は、 Δ ίだけ 周波数をシフトさせるための制御信号を周波数可変型ローカル信号発振器 113へ出 力するとともに、制御周波数 Δ fにつ 、ての情報を復号部 114へ出力する。  [0082] The frequency selection unit 304 uses the frequency of the subcarrier with the lowest reception level determined by the level determination unit 303 to determine whether the subcarrier is a low-pass filter 301-1 and a low-pass filter 301-2. The control frequency Δ ί of the variable frequency local signal oscillator 113 is selected so as to coincide with the suppression band. Then, the frequency selection unit 304 outputs a control signal for shifting the frequency by Δ ί to the frequency variable local signal oscillator 113 and outputs the information about the control frequency Δ f to the decoding unit 114. .
[0083] 次いで、上記のように構成された受信装置 100による受信動作について説明する。  [0083] Next, a reception operation by the receiving apparatus 100 configured as described above will be described.
[0084] OFDM信号は、アンテナ 101およびアンテナ共用部 102を経由して、低雑音増幅 部 103へ出力される。そして、低雑音増幅部 103によって受信信号は増幅されて、周 波数変調部 108へ出力される。  The OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by the low noise amplification unit 103 and output to the frequency modulation unit 108.
[0085] 増幅された受信信号は、周波数復調部 108によって、周波数可変型ローカル信号 発振器 113から出力されるローカル信号と乗算されて I、 Qのベースバンド信号に変 換される。そして、変換されたベースバンド信号は低域通過型フィルタ 301— 1、低域 通過型フィルタ 301— 2へ出力される。このとき、周波数可変型ローカル信号発振器 113から出力されるローカル信号の周波数は、周波数選択部 304によって選択され た制御周波数 Δ fだけシフトされる。周波数選択部 304による制御周波数 Δ fの選択 につ 、て図 13を用いて説明する。  The amplified received signal is multiplied by the local signal output from frequency variable local signal oscillator 113 by frequency demodulator 108 and converted to an I or Q baseband signal. The converted baseband signal is output to the low-pass filter 301-1 and the low-pass filter 301-2. At this time, the frequency of the local signal output from the frequency variable local signal oscillator 113 is shifted by the control frequency Δf selected by the frequency selection unit 304. Selection of the control frequency Δf by the frequency selection unit 304 will be described with reference to FIG.
[0086] 図 13は、 FFT部 111から出力される高速フーリエ変換後の周波数領域での信号で 、横軸はサブキャリア番号を示し、縦軸は信号レベルを示す。図 13に示すように、一 般に、移動体通信においてはフェージング等の伝搬条件により受信レベルが落ち込 む周波数帯があることが知られている。図 13は、サブキャリア番号が 520の周波数帯 域にぉ 、て信号レベルが落ち込んで 、る様子を示す。 FIG. 13 shows a signal in the frequency domain after the fast Fourier transform output from the FFT unit 111, where the horizontal axis indicates the subcarrier number and the vertical axis indicates the signal level. As shown in FIG. 13, it is generally known that mobile communication has a frequency band in which the reception level drops due to propagation conditions such as fading. Figure 13 shows the frequency band with subcarrier number 520. This shows how the signal level drops in the area.
[0087] このとき、周波数選択部 304は、受信レベルが最小のサブキャリア番号 520の周波 数が低域通過型フィルタ 301— 1および低域通過型フィルタ 301— 2の抑圧帯域に 一致するように、周波数可変型ローカル信号発生器 113の周波数を制御するための 制御周波数 Δ ίを選択する。  [0087] At this time, the frequency selection unit 304 makes the frequency of the subcarrier number 520 having the lowest reception level match the suppression band of the low-pass filter 301-1 and the low-pass filter 301-2. The control frequency Δ ί for controlling the frequency of the frequency variable type local signal generator 113 is selected.
[0088] 信号レベルが落ち込む周波数は時間的に変動するため、レベル判定部 303にお いて受信レベルが最小となる周波数を常時検出して、受信レベルが落ち込んだ周波 数が域通過型フィルタ 301— 1および低域通過型フィルタ 301— 2の抑圧帯域と一致 するように周波数選択部 304にお 、て制御周波数 Δ fを選択することで、受信性能の 劣化を緩和することができる。  [0088] Since the frequency at which the signal level drops varies with time, the frequency at which the reception level drops is always detected by the level determination unit 303, and the frequency at which the reception level drops is detected by the bandpass filter 301-. By selecting the control frequency Δf in the frequency selection unit 304 so as to coincide with the suppression band of the first and low-pass filters 301-2, it is possible to mitigate the deterioration in reception performance.
[0089] Δ ίだけ周波数をシフトさせるための制御信号は、周波数可変型ローカル信号発振 器 113へ出力されるとともに、制御周波数 Δ ίについての情報は、復号部 114へ出力 される。  A control signal for shifting the frequency by Δ ί is output to frequency variable local signal oscillator 113, and information about control frequency Δ ί is output to decoding unit 114.
[0090] ベースバンド信号は、 AGC302—1および AGC302— 2、 AZD変換部 110—1お よび AZD変換部 110— 2を経由して、 FFT部 111へ出力される。  The baseband signal is output to the FFT unit 111 via the AGC 302-1 and AGC 302-2, the AZD conversion unit 110-1 and the AZD conversion unit 110-2.
[0091] そして、 FFT部 111によって、 I、 Qのベースバンド信号が時間領域力 周波数領域 の信号に変換されて、周波数領域の信号は復号部 114へ出力される。  [0091] Then, the FFT unit 111 converts the I and Q baseband signals into a signal in the time domain force frequency domain, and outputs the signal in the frequency domain to the decoding unit 114.
[0092] 以後、復号部 114によって実施の形態 1と同様に、周波数選択部 304から出力され る制御周波数 Δ ίに関する情報に基づいて、情報データが割り当てられたサブキヤリ ァ番号が選択されて、 OFDM復号が行われる。そして、得られた受信データは後ェ 程へ出力される。  Thereafter, as in Embodiment 1, the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information regarding the control frequency Δί output from the frequency selection unit 304, and performs OFDM. Decryption is performed. The obtained received data is output to the later stage.
[0093] 以上のように、本実施の形態によれば、「OFDM信号サブキャリアオフセット復調」 を用いて、高速フーリエ変換後の信号力 受信レベルが最小のサブキャリアを検出し て、周波数可変型ローカル信号発振器 113の周波数を制御して、受信レベルが最 小のキャリアを帯域制限フィルタの抑圧帯域へシフトさせて OFDM復号する。これに より、受信レベルが最小のキャリアが帯域制限フィルタにより抑圧されて、受信レベル の高いキャリアが復号に用いられることになつて、受信性能の劣化を低減することが できる。 [0094] (実施の形態 4) [0093] As described above, according to the present embodiment, by using "OFDM signal subcarrier offset demodulation", the subcarrier with the minimum received signal strength after fast Fourier transform is detected, and the frequency variable type is detected. By controlling the frequency of the local signal oscillator 113, the carrier having the lowest reception level is shifted to the suppression band of the band limiting filter, and OFDM decoding is performed. As a result, the carrier with the lowest reception level is suppressed by the band limiting filter, and the carrier with the higher reception level is used for decoding, so that the degradation in reception performance can be reduced. [0094] (Embodiment 4)
本発明の実施の形態 4の特徴は、非希望信号の周波数をバンド抑圧フィルタの抑 圧帯域にシフトすることである。  The feature of Embodiment 4 of the present invention is that the frequency of the undesired signal is shifted to the suppression band of the band suppression filter.
[0095] 図 14は、本発明の実施の形態 4に係る受信装置の構成を示すブロック図である。  FIG. 14 is a block diagram showing the configuration of the receiving apparatus according to Embodiment 4 of the present invention.
なお、図 14の本実施の形態の受信装置において、図 2と共通する構成部分には、図 2と同一の符号を付して説明を省略する。図 14は、アンダーサンプリングを行う受信 装置で、図 2に対して、バンドパスフィルタ 105、 AGC106、 AZD変換部 110— 1、 八 0変換部110— 2、および周波数選択部 112に代えて、 AGC402、バンドパスフ ィルタ 403、 AZD変換部 404、および周波数選択部 405を有し、バンド抑圧フィルタ 401を追加した構成を採る。  In the receiving apparatus of the present embodiment shown in FIG. 14, the same reference numerals as those in FIG. FIG. 14 shows a receiving apparatus that performs undersampling. Compared to FIG. 2, the bandpass filter 105, AGC 106, AZD conversion unit 110-1, 80 conversion unit 110-2, and frequency selection unit 112 are replaced with AGC402. In addition, the band pass filter 403, the AZD conversion unit 404, and the frequency selection unit 405 are provided, and the band suppression filter 401 is added.
[0096] バンド抑圧フィルタ 401は、狭帯域の非希望信号を抑圧する。バンド抑圧フィルタ 4 01通過後の IF信号は、 AGC402へ出力される。  [0096] The band suppression filter 401 suppresses a narrowband undesired signal. The IF signal after passing through the band suppression filter 401 is output to the AGC 402.
[0097] AGC402は、 IF信号のレベルを AZD変換部 404において最適なレベルへ変換し 、レベル変換された IF信号をバンドパスフィルタ 403へ出力する。  AGC 402 converts the level of the IF signal to an optimum level in AZD conversion section 404, and outputs the level-converted IF signal to bandpass filter 403.
[0098] バンドパスフィルタ 403は、 IF信号に対して不要成分を除去し、得られた IF信号を AZD変換部 404へ出力する。  The bandpass filter 403 removes unnecessary components from the IF signal and outputs the obtained IF signal to the AZD conversion unit 404.
[0099] AZD変換部 404は、 IF信号に対しアンダーサンプリングを行う。アンダーサンプリ ングは、 IF信号の周波数よりも低い周波数を用いてサンプリングを行う。このため、 IF 信号に含まれる希望信号の折り返し成分と非希望信号との折り返し成分とが重なり合 い、希望信号を再現することができない場合がある。以下、図 15を用いて具体的に 説明する。図 15において、横軸は周波数、縦軸は信号レベルを示す。図 15Aは、無 線周波数帯における希望信号および非希望信号の周波数特性の様子を、図 15Bは 、アンダーサンプリング後の希望信号および非希望信号の周波数特性の様子を示す 。図 15Bに示されるように、アンダーサンプリング後の希望信号に非希望信号が重畳 されてしまう場合があることがわかる。そのため、アンダーサンプリングを施す前段に、 バンド抑圧フィルタ 401によって帯域制限をかけて、非希望信号を除外しておくこと が有効となる。  [0099] The AZD conversion unit 404 performs undersampling on the IF signal. Undersampling is performed using a frequency lower than the frequency of the IF signal. For this reason, the aliasing component of the desired signal and the aliasing component of the undesired signal included in the IF signal may overlap, and the desired signal may not be reproduced. This will be specifically described below with reference to FIG. In FIG. 15, the horizontal axis represents frequency and the vertical axis represents signal level. FIG. 15A shows the frequency characteristics of the desired signal and undesired signal in the radio frequency band, and FIG. 15B shows the frequency characteristics of the desired signal and undesired signal after undersampling. As shown in Fig. 15B, it can be seen that the undesired signal may be superimposed on the desired signal after undersampling. For this reason, it is effective to exclude the undesired signal by band limiting by the band suppression filter 401 before the undersampling is performed.
[0100] 周波数選択部 405は、図示せぬバンド抑圧フィルタ特性測定部において測定され るバンド抑圧フィルタ 401の特性に基づいて非希望信号がフィルタの抑圧帯域にシ フトするように、周波数可変型ローカル信号発振器 113の周波数を制御する制御周 波数 Δ ίを選択する。これにより、非希望信号の周波数がバンド抑圧フィルタ 401の 抑圧帯域にシフトされ、非希望信号を効率的に抑圧することができる。 [0100] Frequency selection section 405 is measured by a band suppression filter characteristic measurement section (not shown). Based on the characteristics of the band suppression filter 401, the control frequency Δ ί that controls the frequency of the frequency variable local signal oscillator 113 is selected so that the undesired signal is shifted to the suppression band of the filter. Thereby, the frequency of the undesired signal is shifted to the suppression band of the band suppression filter 401, and the undesired signal can be efficiently suppressed.
[0101] そして、周波数選択部 405は、周波数を Δ ίだけシフトさせるための制御信号を周 波数可変型ローカル信号発振器 113へ出力するとともに、制御周波数 Δ fにつ 、て の情報を復号部 114へ出力する。  Then, frequency selection section 405 outputs a control signal for shifting the frequency by Δί to frequency variable local signal oscillator 113 and also decodes the information for control frequency Δf. Output to.
[0102] 次いで、上記のように構成された受信装置 100による受信動作について説明する。  [0102] Next, a reception operation by the receiving apparatus 100 configured as described above will be described.
[0103] OFDM信号は、アンテナ 101およびアンテナ共用部 102を経由して、低雑音増幅 部 103へ出力される。そして、低雑音増幅部 103によって受信信号は増幅されて、周 波数変換部 104へ出力される。  [0103] The OFDM signal is output to low noise amplification section 103 via antenna 101 and antenna sharing section 102. Then, the received signal is amplified by low noise amplification section 103 and output to frequency conversion section 104.
[0104] 増幅された受信信号は、周波数変換部 104によって、周波数可変型ローカル信号 発振器 113から出力されるローカル信号と乗算されて IF周波数に変換され、変換さ れた IF信号はバンド抑圧フィルタ 401へ出力される。  The amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency conversion unit 104 and converted to an IF frequency, and the converted IF signal is converted into the band suppression filter 401. Is output.
[0105] 図 16は、周波数変換部 104から出力される希望信号および非希望信号の周波数 特性と、バンド抑圧フィルタ 401およびバンドパスフィルタ 403の周波数特性を示す。 図 16は、バンド抑圧フィルタ 401の抑圧帯域と、非希望信号の周波数が一致してい ない様子を示している。一般に、バンド抑圧フィルタ 401は共振回路で、減衰量が大 きぐ取れる帯域が狭ぐ周波数特性にばらつきがあるため、図 16に示すように非希 望信号の周波数と、バンド抑圧フィルタ 401の抑圧帯域とがー致して 、な 、場合があ る。  FIG. 16 shows the frequency characteristics of the desired signal and the undesired signal output from frequency converter 104 and the frequency characteristics of band suppression filter 401 and bandpass filter 403. FIG. 16 shows that the suppression band of the band suppression filter 401 does not match the frequency of the undesired signal. In general, the band suppression filter 401 is a resonance circuit, and there is a variation in the frequency characteristics in which the band where the amount of attenuation can be taken is narrow, so the frequency of the undesired signal and the suppression band of the band suppression filter 401 are In some cases, there is a case.
[0106] このとき、図示せぬフィルタ特性測定部によって測定されるバンド抑圧フィルタの抑 圧帯域と、図示せぬ非希望信号測定部によって測定される非希望信号の周波数と がー致するように、周波数選択部 405によって、周波数可変型ローカル信号発振器 113から出力されるローカル信号の周波数の制御周波数 Δ ίが選択される。これによ り、非希望信号がアンダーサンプリングの前段で除去されて、アンダーサンプリング 後において希望信号と非希望信号とが重畳されることなぐ受信性能の劣化を低減 することができる。 [0107] Δ ίだけ周波数をシフトさせるための制御信号は、周波数可変型ローカル信号発振 器 113へ出力されるとともに、制御周波数 Δ ίについての情報は、復号部 114へ出力 される。 At this time, the suppression band of the band suppression filter measured by the filter characteristic measurement unit (not shown) matches the frequency of the undesired signal measured by the undesired signal measurement unit (not shown). The frequency selection unit 405 selects the control frequency Δ ί of the frequency of the local signal output from the variable frequency local signal oscillator 113. As a result, the undesired signal is removed in the previous stage of undersampling, and it is possible to reduce the deterioration of the reception performance in which the desired signal and the undesired signal are not superimposed after undersampling. A control signal for shifting the frequency by Δ ί is output to frequency variable local signal oscillator 113, and information about control frequency Δ ί is output to decoding unit 114.
[0108] そして、フィルタ抑圧フィルタ 401通過後の IF信号は、バンド抑圧フィルタ 401、 AG C402、バンドパスフィルタ 403を経由して、 AZD変換部 404へ出力される。そして、 AZD変換部 404によって、 IF信号に対しオーバサンプリングが施されて、直交変調 器 108によって I、 Qのベースバンド信号に変換される。  Then, the IF signal after passing through the filter suppression filter 401 is output to the AZD conversion unit 404 via the band suppression filter 401, AG C402, and bandpass filter 403. Then, the AZD conversion unit 404 performs oversampling on the IF signal, and the quadrature modulator 108 converts it into I and Q baseband signals.
[0109] I、 Qのベースバンド信号は、それぞれ低域通過型フィルタ 109— 1、 109— 2を通 過して FFT部 111へ出力される。そして、 FFT部 111〖こよって、 I、 Qのベースバンド 信号が時間領域力 周波数領域の信号に変換されて、周波数領域の信号は復号部 114へ出力される。  [0109] The I and Q baseband signals pass through the low-pass filters 109-1 and 109-2 and are output to the FFT unit 111, respectively. Then, the FFT unit 111 converts the I and Q baseband signals into a time domain force frequency domain signal and outputs the frequency domain signal to the decoding unit 114.
[0110] 以後、復号部 114によって実施の形態 1と同様に、周波数選択部 405から出力され る制御周波数 Δ ίに関する情報に基づいて、情報データが割り当てられたサブキヤリ ァ番号が選択されて、 OFDM復号が行われる。そして、復号部 114によって、得られ た受信データは後工程へ出力される。  [0110] Thereafter, as in the first embodiment, the decoding unit 114 selects the subcarrier number to which the information data is assigned based on the information regarding the control frequency Δ ί output from the frequency selection unit 405, and transmits the OFDM Decryption is performed. Then, the received data obtained by the decoding unit 114 is output to a subsequent process.
[0111] 以上のように、本実施の形態によれば、「OFDM信号サブキャリアオフセット復調」 を用いて、周波数可変型ローカル信号発振器 113の周波数を制御して、非希望信 号の周波数をバンド抑圧フィルタの抑圧帯域へシフトさせて OFDM復号する。これ により、帯域制限フィルタの周波数特性にばらつきがあった場合において、ばらつき 補正回路を必要とせず、周波数特性のばらつきによる性能劣化を軽減して、非希望 信号を除去して OFDM復号することが可能となる。  As described above, according to the present embodiment, the frequency of the frequency variable local signal oscillator 113 is controlled using “OFDM signal subcarrier offset demodulation”, and the frequency of the undesired signal is set to the band. Shift to the suppression band of the suppression filter and perform OFDM decoding. As a result, when there is variation in the frequency characteristics of the band-limiting filter, it is possible to eliminate the undesired signal and perform OFDM decoding without reducing the performance degradation due to the variation in frequency characteristics without the need for a variation correction circuit. It becomes.
[0112] なお、図 14では、アンダーサンプリングを用いる受信装置について説明した力 こ れに限らず、バンド抑圧フィルタの抑圧帯域に非希望信号が一致するように周波数 変換をすることで、他のサンプリング方式を用いた場合にも同様の効果を奏する。  [0112] In addition, in FIG. 14, the power described for the receiver using undersampling is not limited to this, and by performing frequency conversion so that the undesired signal matches the suppression band of the band suppression filter, other sampling is performed. The same effect can be obtained when the method is used.
[0113] (実施の形態 5)  [0113] (Embodiment 5)
本発明の実施の形態 5の特徴は、 OFDM信号の帯域に比べ信号帯域が広い他シ ステムの変調信号を受信する機能を備える複合受信装置において、 OFDM信号を 受信する際、非希望信号を広帯域信号に最適な帯域制限フィルタの抑圧帯域にシ フトすることである。 A feature of Embodiment 5 of the present invention is that, in a composite receiving apparatus having a function of receiving a modulated signal of another system having a wider signal band than the OFDM signal band, when receiving an OFDM signal, the undesired signal is wideband. In the suppression band of the band limit filter optimal for the signal It is to do.
[0114] 図 17は、本発明の実施の形態 5に係る受信装置 500の構成を示すブロック図であ る。図 17に示す受信装置は、 OFDM信号の帯域に比べ信号帯域が広い他システム の変調信号 (例えば、 CDMA信号)を受信する機能を備える複合受信装置である。 なお、図 17の本実施の形態の受信装置 500において、図 12と共通する構成部分に は、図 12と同一の符号を付して説明を省略する。図 17は、図 12に対して、低域通過 型フィルタ 301— 1、低域通過型フィルタ 301— 2、および周波数選択部 112に代え て、低域通過型フィルタ 501— 1、低域通過型フィルタ 501— 2、および周波数選択 部 504を有し、レベル判定部 303を削除して、システム選択部 502および他システム 復号部 503を追加した構成を採る。  FIG. 17 is a block diagram showing a configuration of receiving apparatus 500 according to Embodiment 5 of the present invention. The receiving apparatus shown in FIG. 17 is a composite receiving apparatus having a function of receiving a modulated signal (for example, a CDMA signal) of another system having a wider signal band than the OFDM signal band. In the receiving apparatus 500 of the present embodiment in FIG. 17, the same reference numerals as those in FIG. FIG. 17 differs from FIG. 12 in that a low-pass filter 501-1, a low-pass filter 301-1, a low-pass filter 301-1, and a frequency selector 112 are replaced with a low-pass filter 501-1. A configuration is employed in which a filter 501-2 and a frequency selection unit 504 are included, the level determination unit 303 is deleted, and a system selection unit 502 and another system decoding unit 503 are added.
[0115] 低域通過型フィルタ 501— 1および低域通過型フィルタ 501— 2は、異なる信号帯 域を持つ OFDM信号および他システムの変調信号の双方に対し帯域制限を施す。 受信装置 500は、信号帯域の異なる双方の変調信号に帯域制限を施すため、通過 帯域は信号帯域の広 、他システムの変調信号に最適となって 、る。  [0115] The low-pass filter 501-1 and the low-pass filter 501-2 perform band limitation on both OFDM signals having different signal bands and modulation signals of other systems. Since receiving apparatus 500 limits the band of both modulated signals having different signal bands, the pass band has a wide signal band and is optimal for modulated signals of other systems.
[0116] システム選択部 502は、 AZD変換部 110— 1および AZD変換部 110— 2から出 力される I、 Qのベースバンド信号を図示せぬ指示情報に基づいて、 FFT部 111、ま たは、他システム復号部 503へ出力する。指示情報は、受信装置 500が受信した信 号の変調方式を示していて、 OFDM変調信号の場合は、システム選択部 502は、 I、 Qのベースバンド信号を FFT部 111へ出力し、他システムの変調信号の場合は、 I、 Qのベースバンド信号を他システム復号部 503へ出力する。また、システム選択部 50 2は、指示情報を周波数選択部 504に出力する。  [0116] The system selection unit 502 uses the FFT unit 111 or the baseband signals I and Q output from the AZD conversion unit 110-1 and the AZD conversion unit 110-2 based on instruction information not shown. Is output to the other system decoding unit 503. The instruction information indicates the modulation method of the signal received by receiving apparatus 500. In the case of an OFDM modulated signal, system selection unit 502 outputs I and Q baseband signals to FFT unit 111, and other systems In the case of the modulated signal of I, the baseband signals of I and Q are output to other system decoding section 503. Further, the system selection unit 502 outputs the instruction information to the frequency selection unit 504.
[0117] 他システム復号部 503は、ベースバンド信号に対し他システムにおいて適用される 復号方式を用 ヽて復号処理を施し、得られた受信データを後工程へ出力する。  [0117] Other system decoding section 503 performs a decoding process on the baseband signal using a decoding method applied in the other system, and outputs the received data obtained to the subsequent process.
[0118] 周波数選択部 504は、指示情報に基づいて、周波数可変型ローカル信号発振器 1 13の制御周波数 Δ ίを選択する。具体的には、指示情報が OFDM変調システムを 示す場合に、周波数選択部 504は、図示せぬフィルタ特性測定部から出力されるフ ィルタ特性の抑圧帯域に非希望信号の周波数が一致するように、周波数可変型ロー カル信号発振器 113の制御周波数 Δ ίを選択する。上述したように、低域通過型フィ ルタ 501— 1および低域通過型フィルタ 501— 2の通過帯域は、信号帯域が広!、他 システムの変調信号に最適となっている力 周波数可変型ローカル信号発振器 113 のローカル信号の周波数を制御して、低域通過型フィルタ 501— 1および低域通過 型フィルタ 501— 2の抑圧帯域に、非希望信号をシフトさせることにより、帯域制限フ ィルタを共用しつつ、非希望信号を抑圧することが可能となる。この結果、システムご とに帯域制限フィルタを用意する必要が無ぐこれにより、小型化を図れるとともにコ ストダウンが図れる。 [0118] Frequency selection section 504 selects control frequency Δ ί of variable frequency local signal oscillator 113 based on the instruction information. Specifically, when the indication information indicates an OFDM modulation system, the frequency selection unit 504 makes the frequency of the undesired signal coincide with the suppression band of the filter characteristic output from the filter characteristic measurement unit (not shown). The control frequency Δ ί of the frequency variable type local signal oscillator 113 is selected. As mentioned above, the low pass type The filter band of the filter 501-1 and the low-pass filter 501-2 has a wide signal band, and is suitable for the modulation signal of other systems. Controls the frequency of the local signal of the variable frequency local signal oscillator 113 Then, the undesired signal can be suppressed while sharing the band limiting filter by shifting the undesired signal to the suppression band of the low-pass filter 501-1 and the low-pass filter 501-2. Is possible. As a result, it is not necessary to prepare a band-limiting filter for each system, which enables downsizing and cost reduction.
[0119] 次いで、上記のように構成された受信装置 100による受信動作について説明する。  [0119] Next, a reception operation by the receiving apparatus 100 configured as described above will be described.
[0120] OFDM信号は、アンテナ 101およびアンテナ共用部 102を経由して、低雑音増幅 部 103へ出力される。そして、低雑音増幅部 103によって受信信号は増幅されて、周 波数変調部 108へ出力される。 [0120] The OFDM signal is output to the low noise amplifying unit 103 via the antenna 101 and the antenna sharing unit 102. Then, the received signal is amplified by the low noise amplification unit 103 and output to the frequency modulation unit 108.
[0121] 増幅された受信信号は、周波数復調部 108によって、周波数可変型ローカル信号 発振器 113から出力されるローカル信号と乗算されて I、 Qのベースバンド信号に変 換され、変換されたベースバンド信号を低域通過型フィルタ 501— 1、低域通過型フ ィルタ 501— 2へ出力される。このとき、周波数可変型ローカル信号発振器 113から 出力されるローカル信号の周波数は、周波数選択部 504によって選択された制御周 波数 Δ ίだけシフトされる。上述したように、制御周波数 Δ ίは、図示せぬフィルタ特性 測定部から出力されるフィルタ特性の抑圧帯域に、非希望信号がシフトするように選 択される。 [0121] The amplified received signal is multiplied by the local signal output from the frequency variable local signal oscillator 113 by the frequency demodulator 108, converted into an I and Q baseband signal, and converted into a converted baseband signal. The signal is output to the low-pass filter 501-1 and the low-pass filter 501-2. At this time, the frequency of the local signal output from the frequency variable local signal oscillator 113 is shifted by the control frequency Δ ί selected by the frequency selection unit 504. As described above, the control frequency Δ ί is selected so that the undesired signal is shifted to the suppression band of the filter characteristic output from the filter characteristic measurement unit (not shown).
[0122] 周波数選択部 504によって選択された制御周波数 Δ ίは、周波数可変型ローカル 信号発振器 113へ出力されるとともに、復号部 114へ出力される。  Control frequency Δ ί selected by frequency selection section 504 is output to frequency variable local signal oscillator 113 and also output to decoding section 114.
[0123] ベースバンド信号は、 AGC302—1および AGC302— 2、 AZD変換部 110—1お よび AZD変換部 110— 2を経由して、システム選択部 502へ出力される。 [0123] The baseband signal is output to system selection unit 502 via AGC302-1, AGC302-2, AZD conversion unit 110-1, and AZD conversion unit 110-2.
[0124] そして、システム選択部 502によって、図示せぬ指示情報よりベースバンド信号は、[0124] Then, the baseband signal is obtained from the instruction information (not shown) by the system selection unit 502.
FFT部 111、または、他システム復号部 503へ出力される。 It is output to the FFT unit 111 or the other system decoding unit 503.
[0125] FFT部 111へ出力されたベースバンド信号は、時間領域から周波数領域の信号に 変換されて、周波数領域の信号は復号部 114へ出力される。 [0125] The baseband signal output to FFT section 111 is converted from a time domain signal to a frequency domain signal, and the frequency domain signal is output to decoding section 114.
[0126] 以後、復号部 114によって、実施の形態 1と同様に、周波数選択部 112から出力さ れる制御周波数 Δ fに関する情報に基づ 、て、情報データが割り当てられたサブキヤ リア番号が選択されて、 OFDM復号が行われる。そして、復号部 114によって、得ら れた受信データは後工程へ出力される。 [0126] Thereafter, the output from the frequency selection unit 112 is performed by the decoding unit 114 in the same manner as in the first embodiment. Based on the information regarding the control frequency Δf to be transmitted, the subcarrier number to which the information data is assigned is selected, and OFDM decoding is performed. Then, the received data obtained by the decoding unit 114 is output to a subsequent process.
[0127] 一方、他システム復号部 503へ出力されたベースバンド信号は、他システムの復号 方式が施されて、得られた受信データは後工程へ出力される。  [0127] On the other hand, the baseband signal output to other system decoding section 503 is subjected to the decoding system of the other system, and the obtained received data is output to the subsequent process.
[0128] 以上のように、本実施の形態によれば、「OFDM信号サブキャリアオフセット復調」 を用いて、 OFDM信号受信時に、非希望信号を他システムに適した帯域制限フィル タの抑圧特性に合わるように周波数可変型ローカル信号発振器 113の周波数を制 御して、 OFDM復号する。これにより、他システムと帯域制限フィルタを共用すること ができ、小型化が図れるとともにコストダウンが可能となる。  [0128] As described above, according to the present embodiment, by using "OFDM signal subcarrier offset demodulation", when receiving an OFDM signal, the undesired signal is converted into a suppression characteristic of a band-limited filter suitable for other systems. The frequency of the frequency variable local signal oscillator 113 is controlled so as to match, and OFDM decoding is performed. As a result, it is possible to share the band limiting filter with other systems, which enables downsizing and cost reduction.
[0129] なお、 OFDM信号と他システムの変調信号の信号帯域の違いによって、低域通過 型フィルタ 501— 1および低域通過型フィルタ 501— 2通過後の OFDM信号力 後 段の FFT部 111にお 、て復号可能な周波数領域内にな 、場合には、低域通過型フ ィルタ 501— 1および低域通過型フィルタ 501— 2の後段に、再度 OFDM信号の周 波数をシフトさせる周波数変 を設けても良い。これにより、非希望信号が抑圧さ れた OFDM信号が復号可能な周波数範囲に再度シフトされて、結果として、情報デ ータが割り当てられたすべてのキャリアを復号に用いることができ、受信性能の劣化 を防止することができる。  [0129] Depending on the signal band difference between the OFDM signal and the modulation signal of the other system, the low-pass filter 501-1 and the low-pass filter 501-2 have the OFDM signal power after passing through the latter FFT unit 111. If the frequency is within the decodable frequency range, a frequency change that again shifts the frequency of the OFDM signal is placed downstream of the low-pass filter 501-1 and the low-pass filter 501-2. It may be provided. As a result, the OFDM signal in which the undesired signal is suppressed is shifted again to a decodable frequency range, and as a result, all carriers to which information data is allocated can be used for decoding, and reception performance is improved. Deterioration can be prevented.
[0130] 本発明の第 1の実施の形態に係る受信装置は、情報データが割り当てられた複数 のキャリアに対応する周波数成分を含む信号を受信する受信手段と、受信信号に含 まれるすべての周波数成分の周波数をシフトする周波数変換手段と、受信信号に含 まれる一部の周波数成分の周波数シフト後の周波数を抑圧するフィルタと、周波数 が抑圧されずに残る周波数成分のうち前記複数のキャリアに対応する周波数成分を 復号する復号手段と、を有し、前記周波数変換手段は、受信品質が所定の基準に満 たない非希望周波数成分の周波数を前記フィルタにおいて抑圧される周波数に一 致させる構成を採る。  [0130] The receiving apparatus according to the first embodiment of the present invention includes a receiving means for receiving a signal including frequency components corresponding to a plurality of carriers to which information data is assigned, and all of the reception signals. Frequency conversion means for shifting the frequency of the frequency component, a filter for suppressing the frequency after frequency shift of some of the frequency components included in the received signal, and the plurality of carriers among the frequency components remaining without being suppressed Decoding means for decoding the frequency component corresponding to the frequency component, and the frequency conversion means matches the frequency of the undesired frequency component whose reception quality does not meet a predetermined standard with the frequency suppressed by the filter. Take the configuration.
[0131] この構成によれば、情報データが割り当てられた複数のキャリアに対応する周波数 成分を含む信号に含まれるすべての周波数成分の周波数をシフトして、周波数シフ ト後の受信信号に含まれる周波数成分のうち、受信品質が所定の基準に満たない非 希望周波数成分の周波数をフィルタにおいて抑圧し、周波数が抑圧されずに残る周 波数成分のうち複数のキャリアに対応する周波数成分を復号するため、抑圧特性が 急峻でなく周波数特性にばらつきのあるフィルタを用いた場合にも、フィルタ特性の 劣化を補正する回路を必要とせずにフィルタ特性の劣化を軽減して非希望周波数成 分の周波数を抑圧することができ、受信性能を改善することができる。 [0131] According to this configuration, the frequency shift is performed by shifting the frequencies of all the frequency components included in the signal including the frequency components corresponding to the plurality of carriers to which the information data is assigned. Among the frequency components included in the received signal after the transmission, the frequency of the undesired frequency component whose reception quality does not satisfy a predetermined standard is suppressed by the filter, and the frequency components remaining without being suppressed are applied to a plurality of carriers. In order to decode the corresponding frequency components, even when a filter with a steep suppression characteristic and a variation in frequency characteristic is used, the deterioration of the filter characteristic can be reduced without requiring a circuit for correcting the deterioration of the filter characteristic. The frequency of undesired frequency components can be suppressed, and reception performance can be improved.
[0132] 本発明の第 2の実施の形態に係る受信装置は、上記第 1の態様において、前記周 波数変換手段は、前記複数のキャリアに対応する周波数成分以外の周波数成分を 非希望周波数成分とする構成を採る。  [0132] In the reception device according to the second exemplary embodiment of the present invention, in the first aspect, the frequency conversion unit may convert frequency components other than frequency components corresponding to the plurality of carriers to undesired frequency components. The configuration is as follows.
[0133] この構成によれば、情報データが割り当てられた複数のキャリアに対応する周波数 成分以外の周波数成分を非希望周波数成分とするため、複数のキャリアに対応する 周波数成分以外の周波数のみが抑圧されて、複数のキャリアに対応する周波数成 分の周波数は抑圧されず復号されることになり、受信性能を改善することができる。  [0133] According to this configuration, since frequency components other than frequency components corresponding to a plurality of carriers to which information data is assigned are set as undesired frequency components, only frequencies other than frequency components corresponding to a plurality of carriers are suppressed. Thus, the frequency components corresponding to a plurality of carriers are decoded without being suppressed, and reception performance can be improved.
[0134] 本発明の第 3の実施の形態に係る受信装置は、上記第 1の態様において、前記周 波数変換手段は、受信信号に含まれる周波数成分ごとの信号電力対雑音電力比を 測定するノイズ測定部、を含み、測定された信号電力対雑音電力比が所定の閾値以 上の周波数成分を非希望周波数成分とする構成を採る。  [0134] In the receiver according to the third embodiment of the present invention, in the first aspect, the frequency conversion means measures a signal power to noise power ratio for each frequency component included in the received signal. And a noise measurement unit, wherein a frequency component having a measured signal power to noise power ratio equal to or greater than a predetermined threshold is used as an undesired frequency component.
[0135] この構成によれば、受信信号に含まれるノイズのレベルを推定し、推定されたレべ ルが所定の閾値以上のノイズに対応する周波数成分を非希望周波数成分とするた め、ノイズが変動する環境下においても、常に、推定されたレベルが所定の閾値以上 のノイズに対応する周波数成分の周波数がフィルタで抑圧されて除去され、受信性 能を改善することできる。  [0135] According to this configuration, the noise level included in the received signal is estimated, and the frequency component corresponding to the noise whose estimated level is equal to or greater than the predetermined threshold is set as the undesired frequency component. Even in an environment where the frequency fluctuates, it is always possible to improve the reception performance by suppressing the frequency component corresponding to the noise whose estimated level is equal to or higher than a predetermined threshold and suppressing it.
[0136] 本発明の第 4の実施の形態に係る受信装置は、上記第 1の態様において、前記周 波数変換手段は、前記複数のキャリアに対応する周波数成分ごとのレベルを測定す るレベル測定部、を含み、測定されたレベルが最小の周波数成分を非希望周波数 成分とする構成を採る。  [0136] In the reception apparatus according to the fourth exemplary embodiment of the present invention, in the first aspect, the frequency conversion means measures the level for each frequency component corresponding to the plurality of carriers. The frequency component with the lowest measured level is the undesired frequency component.
[0137] この構成によれば、情報データが割り当てられた複数のキャリアに対応する周波数 成分ごとのレベルを測定し、測定されたレベルが最小の周波数成分を非希望周波数 成分とするため、複数のキャリアに対応する周波数成分のうち、レベルが大きい周波 数成分の周波数は抑圧されず、受信レベルが最小の周波数成分の周波数のみが抑 圧されることになり、受信性能の劣化を低減することができる。 [0137] According to this configuration, the level of each frequency component corresponding to a plurality of carriers to which information data is assigned is measured, and the frequency component with the smallest measured level is determined as an undesired frequency. Because it is a component, among the frequency components corresponding to multiple carriers, the frequency component with the highest level is not suppressed, and only the frequency component with the lowest reception level is suppressed. Can be reduced.
[0138] 本発明の第 5の実施の形態に係る受信装置は、上記第 1の態様において、前記周 波数変換手段は、前記複数のキャリアに対応するすべての周波数成分の周波数を 前記復号手段によって復号可能な周波数の範囲にシフトする構成を採る。  [0138] In the reception apparatus according to the fifth exemplary embodiment of the present invention, in the first aspect, the frequency conversion means uses the decoding means to determine the frequencies of all frequency components corresponding to the plurality of carriers. A configuration is adopted that shifts to a frequency range that can be decoded.
[0139] この構成によれば、情報データが割り当てられた複数のキャリアに対応するすべて の周波数成分の周波数が、復号可能な周波数の範囲にシフトされるため、情報デー タが割り当てられた複数のキャリアに対応するすべての周波数成分を復号に用いるこ とがでさる。  [0139] According to this configuration, the frequencies of all the frequency components corresponding to the plurality of carriers to which the information data is allocated are shifted to the range of frequencies that can be decoded. All frequency components corresponding to the carrier can be used for decoding.
[0140] 本発明の第 6の実施の形態に係る受信装置は、上記第 1の態様において、前記復 号手段は、前記周波数変換手段による周波数のシフト量に基づいて前記複数のキヤ リアに対応する周波数成分を選択し、選択された周波数成分を復号する構成を採る  [0140] In the receiver according to the sixth embodiment of the present invention, in the first aspect, the decoding means corresponds to the plurality of carriers based on a frequency shift amount by the frequency converting means. Select a frequency component to be decoded and decode the selected frequency component
[0141] この構成によれば、周波数のシフト量に基づいて、情報データが割り当てられた複 数のキャリアに対応する周波数成分が選択されて、選択された周波数成分が復号さ れるため、情報データが割り当てられた複数のキャリアに対応するすべての周波数成 分が適切に用いられて復号される。 [0141] According to this configuration, since the frequency components corresponding to the plurality of carriers to which the information data is assigned are selected based on the frequency shift amount, and the selected frequency components are decoded, the information data All frequency components corresponding to a plurality of carriers to which are assigned are appropriately used and decoded.
[0142] 本発明の第 7の実施の形態に係る受信装置は、上記第 1の態様において、前記復 号手段は、周波数が抑圧されずに残る周波数成分の周波数を復号可能な周波数の 範囲に再度シフトする再周波数変換部、を含み、再周波数シフト後の前記複数のキ ャリアに対応する周波数成分を復号する構成を採る。  [0142] In the reception device according to the seventh exemplary embodiment of the present invention, in the first aspect, the decoding means has a frequency component frequency that remains without being suppressed within a frequency range that can be decoded. A re-frequency conversion unit that shifts again, and adopts a configuration for decoding frequency components corresponding to the plurality of carriers after the re-frequency shift.
[0143] この構成によれば、周波数が抑圧されずに残る周波数成分の周波数を復号可能な 周波数の範囲に再度シフトして、再周波数シフト後の情報データが割り当てられた複 数のキャリアに対応する周波数成分を復号するため、情報データが割り当てられた 複数のキャリアの信号帯域に比べ通過帯域が広いフィルタを用いた場合にも、非希 望周波数成分の周波数を抑圧して、情報データが割り当てられた複数のキャリアの すべての周波数成分を復号に用いることができ、受信性能の劣化を防止することが できる。また、情報データが割り当てられた複数のキャリアの信号帯域に比べ信号帯 域が広!、他システムの変調信号を受信する機能を備える複合受信装置にお!、ては 、フィルタを共用することができて、小型化、低コストィ匕が図れる。 [0143] According to this configuration, the frequency of the frequency component that remains without being suppressed is shifted again to a decodable frequency range, and it corresponds to a plurality of carriers to which information data after re-frequency shift is assigned. Even when a filter with a wider pass band than the signal bands of multiple carriers to which information data is assigned is used, the frequency of the undesired frequency component is suppressed and the information data is assigned. All the frequency components of multiple received carriers can be used for decoding, and deterioration of reception performance can be prevented. it can. In addition, the signal band is wider than the signal bands of multiple carriers to which information data is assigned, and a composite receiver having a function of receiving a modulated signal of another system can share a filter. As a result, downsizing and low cost can be achieved.
[0144] 本発明の第 8の実施の形態に係る受信方法は、情報データが割り当てられた複数 のキャリアに対応する周波数成分を含む信号を受信する受信工程と、受信信号に含 まれるすべての周波数成分の周波数をシフトする周波数変換工程と、受信信号に含 まれる一部の周波数成分の周波数シフト後の周波数を抑圧する抑圧工程と、周波数 が抑圧されずに残る周波数成分のうち前記複数のキャリアに対応する周波数成分を 復号する復号工程と、を有し、前記周波数変換工程は、受信品質が所定の基準に満 たない非希望周波数成分の周波数を前記フィルタにおいて抑圧される周波数に一 致させる工程を採る。  [0144] The reception method according to the eighth embodiment of the present invention includes a reception step of receiving a signal including frequency components corresponding to a plurality of carriers to which information data is allocated, and all of the reception signals. A frequency conversion step for shifting the frequency of the frequency component, a suppression step for suppressing the frequency after the frequency shift of some of the frequency components included in the received signal, and the plurality of frequency components among the frequency components remaining without being suppressed. A decoding step of decoding a frequency component corresponding to a carrier, wherein the frequency conversion step matches a frequency of an undesired frequency component whose reception quality does not satisfy a predetermined standard with a frequency suppressed by the filter. The process to make is taken.
[0145] この方法によれば、情報データが割り当てられた複数のキャリアに対応する周波数 成分を含む信号に含まれるすべての周波数成分の周波数をシフトして、周波数シフ ト後の受信信号に含まれる周波数成分のうち、受信品質が所定の基準に満たない非 希望周波数成分の周波数をフィルタにおいて抑圧し、周波数が抑圧されずに残る周 波数成分のうち複数のキャリアに対応する周波数成分を復号するため、抑圧特性が 急峻でなく周波数特性にばらつきのあるフィルタを用いた場合にも、フィルタ特性の 劣化を補正する回路を必要とせずにフィルタ特性の劣化を軽減して非希望周波数成 分の周波数を抑圧することができ、受信性能を改善することができる。  [0145] According to this method, the frequencies of all frequency components included in a signal including frequency components corresponding to a plurality of carriers to which information data is assigned are shifted and included in the received signal after the frequency shift. Of the frequency components, the frequency of undesired frequency components whose received quality does not meet a predetermined standard is suppressed by the filter, and the frequency components corresponding to multiple carriers are decoded from the remaining frequency components without being suppressed. Even when a filter with a steep suppression characteristic and a variation in frequency characteristics is used, the frequency of the undesired frequency component can be reduced by reducing the deterioration of the filter characteristics without requiring a circuit for correcting the deterioration of the filter characteristics. It is possible to suppress it and improve the reception performance.
[0146] 本明糸田書 ίま、 2005年 7月 12日出願の特願 2005— 203340に基づく。この内容【ま すべてここに含めておく。  [0146] Based on Japanese Patent Application 2005-203340 filed on July 12, 2005. This content [all included here.
産業上の利用可能性  Industrial applicability
[0147] 本発明の受信装置および受信方法は、マルチキャリア通信において、抑圧特性が 急峻でなく周波数特性にばらつきがある帯域制限フィルタを用いた場合にも、非希 望信号を抑圧することができ、例えばマルチキャリア通信が適用されるシステムにお ける受信装置および受信方法などに有用である。 [0147] The receiving apparatus and the receiving method of the present invention can suppress undesired signals even in the case of using a band limiting filter in which the suppression characteristics are not steep and the frequency characteristics vary in multicarrier communication. For example, it is useful for a receiving apparatus and a receiving method in a system to which multicarrier communication is applied.

Claims

請求の範囲  The scope of the claims
情報データが割り当てられた複数のキャリアに対応する周波数成分を含む信号を 受信する受信手段と、  Receiving means for receiving a signal including frequency components corresponding to a plurality of carriers to which information data is assigned;
受信信号に含まれるすべての周波数成分の周波数をシフトする周波数変換手段と 受信信号に含まれる一部の周波数成分の周波数シフト後の周波数を抑圧するフィ ノレタと、  A frequency converting means for shifting the frequencies of all frequency components included in the received signal; a finerator for suppressing the frequency after frequency shifting of some frequency components included in the received signal;
周波数が抑圧されずに残る周波数成分のうち前記複数のキャリアに対応する周波 数成分を復号する復号手段と、を有し、  Decoding means for decoding frequency components corresponding to the plurality of carriers among frequency components remaining without being suppressed,
前記周波数変換手段は、  The frequency conversion means includes
受信品質が所定の基準に満たない非希望周波数成分の周波数を前記フィルタに お!、て抑圧される周波数に一致させる受信装置。  A receiving apparatus that matches a frequency of an undesired frequency component whose reception quality does not satisfy a predetermined standard with a frequency that is suppressed by the filter.
前記周波数変換手段は、  The frequency conversion means includes
前記複数のキャリアに対応する周波数成分以外の周波数成分を非希望周波数成 分とする請求項 1記載の受信装置。  The receiving apparatus according to claim 1, wherein frequency components other than frequency components corresponding to the plurality of carriers are set as undesired frequency components.
前記周波数変換手段は、  The frequency conversion means includes
受信信号に含まれる周波数成分ごとの信号電力対雑音電力比を測定するノイズ測 定部、を含み、  A noise measurement unit that measures the signal power to noise power ratio for each frequency component included in the received signal,
測定された信号電力対雑音電力比が所定の閾値以上の周波数成分を非希望周 波数成分とする請求項 1記載の受信装置。  2. The receiving apparatus according to claim 1, wherein a frequency component having a measured signal power to noise power ratio equal to or greater than a predetermined threshold is set as an undesired frequency component.
前記周波数変換手段は、  The frequency conversion means includes
前記複数のキャリアに対応する周波数成分ごとのレベルを測定するレベル測定部 、を含み、  A level measuring unit that measures the level of each frequency component corresponding to the plurality of carriers,
測定されたレベルが最小の周波数成分を非希望周波数成分とする請求項 1記載の 受信装置。  The receiving apparatus according to claim 1, wherein the frequency component having the minimum measured level is set as an undesired frequency component.
前記周波数変換手段は、  The frequency conversion means includes
前記複数のキャリアに対応するすべての周波数成分の周波数を前記復号手段によ つて復号可能な周波数の範囲にシフトする請求項 1記載の受信装置。 [6] 前記復号手段は、 2. The receiving apparatus according to claim 1, wherein frequencies of all frequency components corresponding to the plurality of carriers are shifted to a frequency range that can be decoded by the decoding unit. [6] The decoding means includes:
前記周波数変換手段による周波数のシフト量に基づいて前記複数のキャリアに対 応する周波数成分を選択し、選択された周波数成分を復号する請求項 1記載の受信 装置。  2. The receiving device according to claim 1, wherein a frequency component corresponding to the plurality of carriers is selected based on a frequency shift amount by the frequency converting means, and the selected frequency component is decoded.
[7] 前記復号手段は、  [7] The decoding means includes
周波数が抑圧されずに残る周波数成分の周波数を復号可能な周波数の範囲に再 度シフトする再周波数変換部、を含み、  A re-frequency converter that re-shifts the frequency of the frequency component that remains without being suppressed to a decodable frequency range;
再周波数シフト後の前記複数のキャリアに対応する周波数成分を復号する請求項 1記載の受信装置。  2. The receiving apparatus according to claim 1, wherein frequency components corresponding to the plurality of carriers after re-frequency shifting are decoded.
[8] 情報データが割り当てられた複数のキャリアに対応する周波数成分を含む信号を 受信する受信工程と、  [8] A reception step of receiving a signal including frequency components corresponding to a plurality of carriers to which information data is assigned;
受信信号に含まれるすべての周波数成分の周波数をシフトする周波数変換工程と 受信信号に含まれる一部の周波数成分の周波数シフト後の周波数を抑圧する抑 圧工程と、  A frequency conversion step for shifting the frequencies of all frequency components included in the received signal, a suppression step for suppressing the frequency after frequency shift of some frequency components included in the received signal,
周波数が抑圧されずに残る周波数成分のうち前記複数のキャリアに対応する周波 数成分を復号する復号工程と、を有し、  Decoding a frequency component corresponding to the plurality of carriers among frequency components remaining without being suppressed, and
前記周波数変換工程は、  The frequency conversion step includes
受信品質が所定の基準に満たない非希望周波数成分の周波数を前記フィルタに お!、て抑圧される周波数に一致させる受信方法。  A receiving method in which a frequency of an undesired frequency component whose reception quality does not satisfy a predetermined standard is matched with a frequency to be suppressed by the filter.
PCT/JP2006/313784 2005-07-12 2006-07-11 Receiving apparatus and receiving method WO2007007761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005203340A JP2007027879A (en) 2005-07-12 2005-07-12 Receiver and reception method
JP2005-203340 2005-07-12

Publications (1)

Publication Number Publication Date
WO2007007761A1 true WO2007007761A1 (en) 2007-01-18

Family

ID=37637152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313784 WO2007007761A1 (en) 2005-07-12 2006-07-11 Receiving apparatus and receiving method

Country Status (2)

Country Link
JP (1) JP2007027879A (en)
WO (1) WO2007007761A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086116A2 (en) * 2008-01-31 2009-08-05 ST Wireless SA Method and arrangement for signal processing in a receiver that can be tuned to different carriers
EP2398151A1 (en) * 2010-06-21 2011-12-21 Nxp B.V. Radio receiver apparatus and method for operating the apparatus
TWI826409B (en) * 2017-12-20 2023-12-21 南韓商三星電子股份有限公司 Method of operating wireless communication apparatus, wireless communication apparatus and non-transitory processor-readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969665B1 (en) 2008-11-18 2010-07-14 주식회사 텔레칩스 Reception performance improvement apparatus of OFDM communication system and method for the same
JP2017169096A (en) * 2016-03-17 2017-09-21 ソニー株式会社 Signal receiving chip, signal receiving method, and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (en) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm receiver
JP2003018485A (en) * 2001-07-05 2003-01-17 Kenwood Corp Receiver and reception method
JP2003259244A (en) * 2002-02-27 2003-09-12 Fujitsu Ltd Ground wave digital broadcasting receiver
JP2004040295A (en) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp Multicarrier cdma communication system, demodulation processing circuit therefor, receiver, and demodulation processing method and reception method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000013357A (en) * 1998-06-22 2000-01-14 Toshiba Corp Ofdm receiver
JP2003018485A (en) * 2001-07-05 2003-01-17 Kenwood Corp Receiver and reception method
JP2003259244A (en) * 2002-02-27 2003-09-12 Fujitsu Ltd Ground wave digital broadcasting receiver
JP2004040295A (en) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp Multicarrier cdma communication system, demodulation processing circuit therefor, receiver, and demodulation processing method and reception method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086116A2 (en) * 2008-01-31 2009-08-05 ST Wireless SA Method and arrangement for signal processing in a receiver that can be tuned to different carriers
EP2086116A3 (en) * 2008-01-31 2013-10-16 ST Wireless SA Method and arrangement for signal processing in a receiver that can be tuned to different carriers
EP2398151A1 (en) * 2010-06-21 2011-12-21 Nxp B.V. Radio receiver apparatus and method for operating the apparatus
TWI826409B (en) * 2017-12-20 2023-12-21 南韓商三星電子股份有限公司 Method of operating wireless communication apparatus, wireless communication apparatus and non-transitory processor-readable storage medium

Also Published As

Publication number Publication date
JP2007027879A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
KR101364783B1 (en) Communication apparatus, communication method, and integrated circuit
JP4998476B2 (en) Multi-carrier signal transmission apparatus and multi-carrier signal transmission method
US8644399B2 (en) Transmission apparatus, transmission method, reception apparatus, reception method, and transmission system
JP2011193079A (en) Wireless communication-receiving circuit
JP2011135161A (en) Ofdm wireless communication terminal
WO2006041054A1 (en) Multicarrier communication apparatus and peak power suppressing method
US20100119019A1 (en) Receiving apparatus and method, program and recording medium used for the same
JP4711819B2 (en) Communication apparatus and communication method
US8649463B2 (en) Radio communication apparatus
WO2007007761A1 (en) Receiving apparatus and receiving method
JP5014293B2 (en) MIMO-OFDM receiver
JP5174969B2 (en) Wireless communication system and wireless communication apparatus
KR101266804B1 (en) Ofdm receiver apparatus
US20100183105A1 (en) Ofdm receiver
JP2009118388A (en) Receiver
JP3109445B2 (en) Diversity receiver for frequency division multiplexed signal
KR100898523B1 (en) Mb-ofdm receiver and dc-offset estimation and compensation method thereof
JP4941560B2 (en) Receiver and receiving method for receiving orthogonal frequency division multiplexed signal by Zero-IF method
JP2011041060A (en) Receiving device
US7848459B2 (en) Radio receiving apparatus and radio receiving method
JP2005191662A (en) Method of demodulating ofdm signal
US7664186B2 (en) Channel decoding for multicarrier signal transmission by means of DC-offset and carrier-frequency offset-dependent weighting of reliability information
JP2007088983A (en) Ofdm reception circuit, communication apparatus, and broadcast receiver
WO2021176634A1 (en) Multicarrier receiver
US8130866B2 (en) Peak suppressing apparatus, peak suppressing method, and wireless communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768097

Country of ref document: EP

Kind code of ref document: A1