WO2007007697A1 - Methyl lithium solution and method for producing same - Google Patents

Methyl lithium solution and method for producing same Download PDF

Info

Publication number
WO2007007697A1
WO2007007697A1 PCT/JP2006/313645 JP2006313645W WO2007007697A1 WO 2007007697 A1 WO2007007697 A1 WO 2007007697A1 JP 2006313645 W JP2006313645 W JP 2006313645W WO 2007007697 A1 WO2007007697 A1 WO 2007007697A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyllithium
methyl
lithium
solution
carbon atoms
Prior art date
Application number
PCT/JP2006/313645
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Kaneko
Original Assignee
Tosoh Finechem Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corporation filed Critical Tosoh Finechem Corporation
Publication of WO2007007697A1 publication Critical patent/WO2007007697A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds

Definitions

  • the present invention relates to a methyllithium solution having excellent storage stability and a method for producing the same.
  • Methyllithium is widely used as a methylating agent in organic synthesis reactions.
  • Methyllithium is hardly soluble in hydrocarbon solvents, and is commercially available as a solution diluted with an ether solvent.
  • methyllithium diluted with jetyl ether, THF, and other normal ether solvents has poor storage stability (Non-patent Document 1).
  • Methyllithium is generally prepared by the reaction of lithium and methyl halide. Methyllithium, which is also prepared from odorous methyl iodide or methyl iodide, is coordinated with lithium bromide or lithium iodide in a solvent. And exist. Thus, methyllithium containing lithium bromide is excellent in storage stability and is commercially available as an ether solution.
  • methyllithium having a low halogen content can be obtained by reacting methyl chloride and lithium in a jetyl ether solvent (Non-patent Document 2).
  • the methyllithium solution thus obtained is a pyrophoric liquid in addition to the use of jetyl ether as a solvent, as described above, which makes handling more difficult. It was a thing.
  • methyllithium prepared by reacting methyl chloride with lithium using an aromatic hydrocarbon solvent and a Lewis base such as THF as a solvent is excellent in storage stability. It has been proposed as a solution (Patent Documents 1 and 2). In fact, methyllithium using cumene and THF as a solvent is commercially available. However, when a high-boiling aromatic hydrocarbon such as cumene is used as a solvent, it may be difficult to separate and remove it.
  • Methyl lithium using an acetal such as diethoxymethane as a solvent has also been proposed (Patent Document 3). Although dimethoxyethane can be used to obtain high-concentration methyllithium, it is a pyrophoric solution and difficult to handle.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-32673
  • Patent Document 2 U.S. Patent No. 6,861,011
  • Patent Document 3 Japanese Patent Laid-Open No. 8-53465
  • Non-Patent Document 1 Organometallics inSynthesis A Manual.Second Edition, WILEY, 2002, p.290
  • Non-Patent Document 2 Organic Synthesis, CV7.346
  • An object of the present invention is to provide a methyllithium solution that is excellent in storage stability and easy to handle.
  • Another object of the present invention is to provide a method for producing methyl lithium with good yield.
  • the gist of the present invention is as follows.
  • Methyllithium is represented by the general formula (1)
  • R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms
  • Alkyl is a group
  • R 2 is methyl lithium solvent solution, characterized in that it is diluted in an asymmetric ether solvent represented by R 1 and an alkyl group having 1 to 10 carbon atoms but not identical).
  • R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group
  • R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1.
  • R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group
  • R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1.
  • Methyl according to item 7 or 8 characterized in that the methyl halide is methyl chloride A method for producing a lithium solution.
  • the methyllithium solution of the present invention is excellent in storage stability and easy to handle.
  • R 1 O—R 2 is used as a dilution solvent for methyllithium.
  • R 1 is a secondary to tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, specifically, isopropyl, sbutyl, t-butyl, tamyl group, cyclopropyl, cyclobutyl, cyclopentyl, Examples include a cyclohexyl group.
  • R 2 is not the same as R 1 and is an alkyl group having 1 to 10 carbon atoms, and specific examples include methyl, ethyl, and n-propyl groups.
  • asymmetric ether in the present invention examples include t-butyl methyl ether, t-butyl ethinoreatenore, t-amino retinoreatenore, s butinoremethino reeenore, and cyclopentyl methyl ether.
  • This diluting solvent can be used as a solvent during the synthesis of methyllithium, a highly polar solvent is preferred from the viewpoint of methyllithium yield and methyllithium solubility.
  • Ether having a dielectric constant of 4.0 or more is preferable.
  • a solvent is preferred because of low solubility in water.
  • cyclopentyl methyl ether which has a relatively high dielectric constant of 4.76 at 25 ° C and a water solubility of 1.1 g / 100 g (23 ° C), is particularly a solvent. As preferred! /.
  • the reason why the asymmetric ether is preferable is considered as follows. Degradation of the methyllithium solution during storage proceeds by extracting the ⁇ -position proton of the ether due to its strong basicity. This abstraction reaction is suppressed by using a hydrocarbon group bonded to the oxygen atom of the ether as a secondary or tertiary alkyl group! / ⁇ as a cycloalkyl group. can do. On the other hand, from the viewpoint of the polarity of the solvent, it is preferable that unpaired electrons on oxygen are exposed. Ethers in which two bulky alkyl groups are bonded to the oxygen atom have a decreased polarity, and the solubility of methyllithium is reduced. As a result, the yield during production of methyllithium is reduced. Thus, from the viewpoints of productivity and stability of the methyllithium solution, the asymmetric ether indicated by V in the present invention is a particularly well-balanced solvent.
  • the methyllithium solution in the present invention is stable at normal temperature as it is, it has become clear that the storage stability is further improved by including magnesium in the solution. Magnesium seems to be dissolved as dimethylmagnesium in the methyllithium solution.
  • the amount of magnesium contained in the methyllithium solution of the present invention is preferably such that the molar ratio of magnesium to methyllithium is 0.2: 1 or less. If a large amount of magnesium is present in excess of this amount, the reactivity and selectivity of the reaction using a methyllithium solution may change significantly.
  • the methyl lithium in the present invention may contain lithium bromide.
  • a methyllithium solution containing lithium bromide also improves storage stability.
  • the molar ratio of lithium bromide to methyllithium is preferably 1.5: 1 or less. If a large amount of lithium bromide is present in excess of this amount, it may be difficult to handle the viscosity of the methyllithium solution.
  • the method for producing a methyllithium solution in the present invention is achieved by dispersing lithium in a solvent, reacting the halogenated methyl with this, and then removing insolubles by filtration.
  • a methyllithium solution containing magnesium can be produced by reacting methyl halide with a suspension in which magnesium is dispersed together with lithium, and removing insolubles by filtration.
  • the shape of lithium used in the production of the methyllithium solution includes agglomerated, granular, wire, and dish purge, and any of them may be used, but from the viewpoint of reactivity, the ratio is as much as possible. It is preferable to use lithium having a large surface area.
  • lithium arrays containing a small amount of sodium or lithium arrays containing naphthalene or 4,4, -di-tert-butyl biphenyl and other arene compounds are added. You can also use -do.
  • As the halogen methyl, methyl chloride, methyl odor and methyl iodide are used.
  • methyl chloride when methyl chloride is used as the methyl halide, the lithium chloride produced by the reaction with lithium is difficult to produce a coordination compound with methyllithium.
  • a lithium solution can be obtained.
  • the halogen content in a methyllithium solution synthesized using methyl chloride is 10 mol% or less with respect to methyllithium.
  • the presence of an inorganic salt is considered to be reactive or selective. It can be suitably used in a reaction system that adversely affects the reaction.
  • methyllithium solution containing 0.8 to 1.2 equivalents of lithium bromide with respect to methyllithium can be obtained.
  • a methyllithium solution containing lithium bromide can be suitably used in a reaction system in which the presence of an inorganic salt is useful or negligible.
  • the amount of methyl halide used for lithium is preferably 0.5 equivalent or less. If methyl halide is used in excess of this, unreacted methyl halide may remain in the methyllithium solution, and the storage stability of the methyllithium solution may deteriorate.
  • the amount of magnesium used when preparing a methyllithium solution containing magnesium is preferably 0.2 equivalent or less with respect to the methyl halide used. If magnesium is used in excess of this, the molar ratio of magnesium to methyllithium in the resulting methyllithium solution will be 0.2: 1 or more, and the reactivity and selectivity of the reaction using the methyllithium solution will be improved. It can change greatly.
  • the reaction temperature between lithium and methyl halide is preferably 20 to 60 ° C. If the reaction is carried out beyond this range, the produced methyllithium may be decomposed. If the temperature is lower than this range, the reaction rate during the production of methyllithium is lowered.
  • a methyllithium solution having a concentration of 2 to: LOwt% can be prepared.
  • Example 1 [0029] To a flask equipped with a stirrer and a thermometer, 3.51 g (0.51 gram atoms) of lithium dispersion containing 3% sodium and 130 mL of cyclopentyl methyl ether were added under an argon atmosphere. To this, 11. lg (0.22 mol) of methyl chloride was added for 1 hour with stirring on ice. After the addition, the mixture was stirred at room temperature for 1 hour, and the insoluble matter was removed with a glass filter to obtain 105 g of a colorless and transparent 4.27 wt% methyllithium cyclopentylmethyl ether solution (92% yield). Chlorine content in the solution is 0. 39 wt%, corresponding to 5.4 mol 0/0 for methyl lithium.
  • This methyllithium solution was not pyrophoric.
  • the concentration of methyllithium after one month was 4.13 wt%
  • the concentration after two months was 4.10 wt%
  • the decomposition rate was about 0.07% —Methyllithium Z days.
  • Dibutyl ether has a dielectric constant of 3.08, and it is considered that the reaction did not proceed because of its low polarity.
  • the methyllithium solution of the present invention is excellent in storage stability and easy to handle. Thus, it is useful as a methylating agent in organic synthesis reactions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

Disclosed is a methyl lithium solution which can be easily handled while having excellent storage stability. Specifically disclosed is a methyl lithium solution obtained by diluting a methyl lithium with an unsymmetrical ether solvent represented by the following general formula (1): R1-O-R2 (In the formula, R1 represents a secondary or tertiary alkyl group having 3-10 carbon atoms or a cycloalkyl group, and R2 represents an alkyl group having 1-10 carbon atoms which is different from R1.)

Description

明 細 書  Specification
メチルリチウム溶液およびその製造方法  Methyllithium solution and method for producing the same
技術分野  Technical field
[0001] 本発明は保存安定性に優れるメチルリチウム溶液およびその製造方法に関する。  [0001] The present invention relates to a methyllithium solution having excellent storage stability and a method for producing the same.
背景技術  Background art
[0002] メチルリチウムは有機合成反応におけるメチル化剤として広く用いられている。  [0002] Methyllithium is widely used as a methylating agent in organic synthesis reactions.
[0003] メチルリチウムは炭化水素溶媒には難溶であり、エーテル系溶媒で希釈された溶液 として市販されて 、る。しかしながらジェチルエーテルや THFと!、つた通常のエーテ ル系溶媒で希釈したメチルリチウムは、保存安定性が良くないものであった (非特許 文献 1)。 [0003] Methyllithium is hardly soluble in hydrocarbon solvents, and is commercially available as a solution diluted with an ether solvent. However, methyllithium diluted with jetyl ether, THF, and other normal ether solvents has poor storage stability (Non-patent Document 1).
[0004] メチルリチウムは一般にリチウムとハロゲン化メチルとの反応によって調製される力 臭ィ匕メチルあるいはヨウ化メチルカも調製したメチルリチウムは、溶媒中にて臭化リチ ゥムあるいはヨウ化リチウムと配位し存在する。このように臭化リチウムを含むメチルリ チウムは保存安定性に優れ、エーテル溶液として市販されて 、る。  [0004] Methyllithium is generally prepared by the reaction of lithium and methyl halide. Methyllithium, which is also prepared from odorous methyl iodide or methyl iodide, is coordinated with lithium bromide or lithium iodide in a solvent. And exist. Thus, methyllithium containing lithium bromide is excellent in storage stability and is commercially available as an ether solution.
[0005] し力しながら、溶媒のジェチルエーテルは揮発性が高ぐ引火点および沸点が低い こと力ら、工業的なスケールでの取り扱いは困難であった。  [0005] However, the solvent jetyl ether has been difficult to handle on an industrial scale because of its high volatility and low flash point and low boiling point.
[0006] 一方で、メチルリチウムを用いる反応の種類によっては、臭化リチウムのような無機 塩が多量存在すると、反応性および選択性に影響を及ぼすことがあり、無機塩の少 な!、メチルリチウム溶液が望まれて!/、た。  [0006] On the other hand, depending on the type of reaction using methyllithium, if a large amount of an inorganic salt such as lithium bromide is present, the reactivity and selectivity may be affected. Lithium solution is desired! /
[0007] ジェチルエーテル溶媒中、塩化メチルとリチウムとを反応させることで、ハロゲン含 量の少な 、メチルリチウムを得られることが知られて 、る(非特許文献 2)。しかしなが ら、このようにして得られたメチルリチウム溶液は、上記と同様に、溶媒としてジェチル エーテルを用いていることに加えて、自然発火性液体であることから、取り扱いはさら に困難なものであった。  [0007] It is known that methyllithium having a low halogen content can be obtained by reacting methyl chloride and lithium in a jetyl ether solvent (Non-patent Document 2). However, the methyllithium solution thus obtained is a pyrophoric liquid in addition to the use of jetyl ether as a solvent, as described above, which makes handling more difficult. It was a thing.
[0008] ジェチルエーテル以外の溶媒として、芳香族炭化水素溶媒および THFのようなル イス塩基を溶媒として用い、塩化メチルとリチウムとを反応させて調製したメチルリチウ ムが保存安定性に優れるメチルリチウム溶液として提案されている(特許文献 1、 2)。 実際、溶媒にクメンおよび THFを用いたメチルリチウムが市販されている。ただし、ク メンのような高沸点の芳香族炭化水素を溶媒として用いた場合、その分離、除去が 困難となる場合があった。 [0008] As a solvent other than jetyl ether, methyllithium prepared by reacting methyl chloride with lithium using an aromatic hydrocarbon solvent and a Lewis base such as THF as a solvent is excellent in storage stability. It has been proposed as a solution (Patent Documents 1 and 2). In fact, methyllithium using cumene and THF as a solvent is commercially available. However, when a high-boiling aromatic hydrocarbon such as cumene is used as a solvent, it may be difficult to separate and remove it.
[0009] ジエトキシメタンのようなァセタールを溶媒として用いたメチルリチウムも提案されて いる(特許文献 3)。ジメトキシェタンを用いることで高濃度なメチルリチウムを得ること ができるものの、自然発火性の溶液となり取り扱いが困難である。 [0009] Methyl lithium using an acetal such as diethoxymethane as a solvent has also been proposed (Patent Document 3). Although dimethoxyethane can be used to obtain high-concentration methyllithium, it is a pyrophoric solution and difficult to handle.
[0010] また、 THFゃジエトキシメタンを溶媒として用いた場合、これらは水〖こ可溶であること から、メチルリチウムを使用した際、反応の後処理として加水分解した際の水層にとけ 込んで環境に悪影響を及ぼしたり、また有機溶媒による過度の抽出操作が必要とな るなどの問題が生ずることがある。 [0010] In addition, when THF or diethoxymethane is used as a solvent, these are soluble in water so that when methyllithium is used, it is dissolved in the aqueous layer when hydrolyzed as a post-treatment of the reaction. May adversely affect the environment and may require problems such as excessive extraction with organic solvents.
特許文献 1:特開平 5-32673号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-32673
特許文献 2 :米国特許第 6,861,011号明細書  Patent Document 2: U.S. Patent No. 6,861,011
特許文献 3:特開平 8-53465号公報  Patent Document 3: Japanese Patent Laid-Open No. 8-53465
非特許文献 1: Organometallics inSynthesis A Manual.Second Edition, WILEY,2002,p .290  Non-Patent Document 1: Organometallics inSynthesis A Manual.Second Edition, WILEY, 2002, p.290
非特許文献 2 : Organic Synthesis, CV7.346  Non-Patent Document 2: Organic Synthesis, CV7.346
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 本発明は、保存安定性に優れ、かつ取り扱いの容易なメチルリチウム溶液を提供 することにある。 [0011] An object of the present invention is to provide a methyllithium solution that is excellent in storage stability and easy to handle.
また、収率良くメチルリチウムを製造する方法を提供することにある。  Another object of the present invention is to provide a method for producing methyl lithium with good yield.
課題を解決するための手段  Means for solving the problem
[0012] 上記の課題はメチルリチウムの希釈溶媒として非対称エーテルを使用することで達 成された。 [0012] The above problem has been achieved by using an asymmetric ether as a diluting solvent for methyllithium.
[0013] 本発明の要旨は、以下のようである。  [0013] The gist of the present invention is as follows.
1. メチルリチウムが、一般式(1)  1. Methyllithium is represented by the general formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒で希釈されていることを特徴とするメチルリチウム溶 液。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, Alkyl is a group, R 2 is methyl lithium solvent solution, characterized in that it is diluted in an asymmetric ether solvent represented by R 1 and an alkyl group having 1 to 10 carbon atoms but not identical).
2. メチルリチウムに対して 20モル%以下のマグネシウムを含有することを特徴とす る 1項に記載のメチルリチウム溶液。  2. The methyllithium solution according to item 1, which contains 20 mol% or less of magnesium with respect to methyllithium.
3. ハロゲン含量カ^チルリチウムに対して 10モル%以下であることを特徴とする 1 又は 2項に記載のメチルリチウム溶液。  3. The methyllithium solution according to item 1 or 2, wherein the halogen content is 10 mol% or less with respect to cation lithium.
4. メチルリチウムに対して 1. 5倍モル以下の臭化リチウムを含んでなる 1又は 2項 に記載のメチルリチウム溶液。  4. The methyllithium solution according to 1 or 2, comprising 1.5 times mole or less of lithium bromide with respect to methyllithium.
5. 非対称エーテル溶媒の 25°Cにおける誘電率が 4. 0以上であることを特徴とする 1な!、し 4項の 、ずれ力 1項に記載のメチルリチウム溶液。  5. The dielectric constant of an asymmetric ether solvent at 25 ° C is 4.0 or higher. 4. The methyllithium solution according to item 4, wherein the displacement force is item 1.
6. 非対称エーテル溶媒がシクロペンチルメチルエーテルであることを特徴とする 1 な!、し 4項の 、ずれか 1項に記載のメチルリチウム溶液。  6. The methyllithium solution according to item 1, wherein the asymmetric ether solvent is cyclopentyl methyl ether.
7. 一般式 (1)  7. General formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒中にリチウムを分散させ、これにハロゲン化メチルを 加え反応させた後、濾過により不溶物をとり除くことを特徴とするメチルリチウム溶液 の製造方法。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, and R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1. A method for producing a methyllithium solution, wherein lithium is dispersed in an asymmetric ether solvent represented by the formula (1), methyl halide is added to the mixture and reacted, and then insolubles are removed by filtration.
8. 一般式 (1)  8. General formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒中にリチウムおよびマグネシウムを分散させ、これに ハロゲン化メチルを加え反応させた後、濾過により不溶物をとり除くことを特徴とするメ チルリチウム溶液の製造方法。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, and R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1. A method for producing a methyllithium solution, wherein lithium and magnesium are dispersed in an asymmetric ether solvent represented by the formula (1), methyl halide is added thereto and reacted, and then insoluble materials are removed by filtration.
9. ハロゲン化メチルが塩化メチルであることを特徴とする 7又は 8項に記載のメチル リチウム溶液の製造方法。 9. Methyl according to item 7 or 8, characterized in that the methyl halide is methyl chloride A method for producing a lithium solution.
10. 非対称エーテル溶媒の 25°Cにおける誘電率が 4. 0以上であることを特徴とす る 7ないし 9項のいずれか 1項に記載のメチルリチウム溶液の製造方法。  10. The method for producing a methyllithium solution according to any one of 7 to 9, wherein the dielectric constant of the asymmetric ether solvent at 25 ° C. is 4.0 or more.
11. 非対称エーテル溶媒がシクロペンチルメチルエーテルであることを特徴とする 7な 、し 9項の 、ずれか 1項に記載のメチルリチウム溶液の製造方法。  11. The method for producing a methyllithium solution according to any one of 7 to 9, wherein the asymmetric ether solvent is cyclopentyl methyl ether.
発明の効果  The invention's effect
[0014] 本発明のメチルリチウム溶液は、保存安定性に優れ、かつ取り扱いが容易である。  [0014] The methyllithium solution of the present invention is excellent in storage stability and easy to handle.
[0015] また収率良くメチルリチウム溶液を製造する方法を提供する。 [0015] Also provided is a method for producing a methyllithium solution with good yield.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明においてメチルリチウムの希釈溶媒には、前記一般式(l)R1 O— R2で表 される非対称エーテルが用いられる。 R1は炭素原子 3〜10個である 2級ないし 3級の アルキル基、あるいはシクロアルキル基であり、具体的にはイソプロピル、 s ブチル 、 tーブチル、 tーァミル基、シクロプロピル、シクロブチル、シクロペンチル、シクロへ キシル基などが例示される。 R2は R1と同一ではなぐ炭素原子 1〜10個のアルキル 基であり、具体的にはメチル、ェチル、 n—プロピル基などが例示される。本発明にお ける、非対称エーテルとしては、具体的には t—ブチルメチルエーテル、 t—ブチルェ チノレエーテノレ、 t アミノレメチノレエーテノレ、 s ブチノレメチノレエーテノレ、シクロペンチ ルメチルエーテルなどが例示される。この希釈溶媒は、メチルリチウムの合成時の溶 媒として使用しうることから、メチルリチウムの製造時の収率およびメチルリチウムの溶 解性の観点から、極性の高い溶媒が好ましぐ 25°Cにおける誘電率が 4. 0以上であ るエーテルが好ましい。さらにメチルリチウム溶液を使用した際の反応の後処理にお ける作業性および安全性の観点からは水への溶解性低 、溶媒が好まし 、。そのよう な観点から、 25°Cでの誘電率が 4. 76と比較的極性が高くかつ水への溶解性が 1. 1 g/100g (23°C)と低 ヽシクロペンチルメチルエーテルが特に溶媒として好まし!/、。 In the present invention, the asymmetric ether represented by the general formula (1) R 1 O—R 2 is used as a dilution solvent for methyllithium. R 1 is a secondary to tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, specifically, isopropyl, sbutyl, t-butyl, tamyl group, cyclopropyl, cyclobutyl, cyclopentyl, Examples include a cyclohexyl group. R 2 is not the same as R 1 and is an alkyl group having 1 to 10 carbon atoms, and specific examples include methyl, ethyl, and n-propyl groups. Specific examples of the asymmetric ether in the present invention include t-butyl methyl ether, t-butyl ethinoreatenore, t-amino retinoreatenore, s butinoremethino reeenore, and cyclopentyl methyl ether. The Since this diluting solvent can be used as a solvent during the synthesis of methyllithium, a highly polar solvent is preferred from the viewpoint of methyllithium yield and methyllithium solubility. Ether having a dielectric constant of 4.0 or more is preferable. Furthermore, from the viewpoint of workability and safety in the post-treatment of the reaction when using a methyllithium solution, a solvent is preferred because of low solubility in water. From this perspective, cyclopentyl methyl ether, which has a relatively high dielectric constant of 4.76 at 25 ° C and a water solubility of 1.1 g / 100 g (23 ° C), is particularly a solvent. As preferred! /.
[0017] 非対称エーテルが好ましい理由としては、以下のように考える。メチルリチウム溶液 の保存時の分解は、その強い塩基性のため、エーテルの α位のプロトンを引き抜き を起こすことで進行する。この引き抜き反応は、エーテルの酸素原子に結合した炭化 水素基を、 2級あるいは 3級のアルキル基ある!/ヽはシクロアルキル基とすることで抑制 することができる。一方、溶媒の極性の観点からは酸素上の不対電子が露出してい た方が好ましぐ嵩高いアルキル基が酸素原子に 2つ結合したエーテルでは極性が 低下し、メチルリチウムの溶解性や、メチルリチウム製造時の収率が低下することとな る。このように、メチルリチウム溶液の生産性、安定性といった観点から、本発明にお V、て示した非対称エーテルが特にバランスのとれた溶媒であると 、える。 [0017] The reason why the asymmetric ether is preferable is considered as follows. Degradation of the methyllithium solution during storage proceeds by extracting the α-position proton of the ether due to its strong basicity. This abstraction reaction is suppressed by using a hydrocarbon group bonded to the oxygen atom of the ether as a secondary or tertiary alkyl group! / ヽ as a cycloalkyl group. can do. On the other hand, from the viewpoint of the polarity of the solvent, it is preferable that unpaired electrons on oxygen are exposed. Ethers in which two bulky alkyl groups are bonded to the oxygen atom have a decreased polarity, and the solubility of methyllithium is reduced. As a result, the yield during production of methyllithium is reduced. Thus, from the viewpoints of productivity and stability of the methyllithium solution, the asymmetric ether indicated by V in the present invention is a particularly well-balanced solvent.
[0018] 本発明におけるメチルリチウム溶液は、そのままでも常温において安定であるが、 その溶液中にマグネシウムが含まれることによって、さらに保存安定性が向上すること が明ら力となった。マグネシウムは、メチルリチウム溶液中ではジメチルマグネシウムと して溶解して ヽるものと思われる。本発明のメチルリチウム溶液に含まれるマグネシゥ ム量は、マグネシウム対メチルリチウムのモル比が 0. 2 : 1以下であることが好ましい。 この量を超えてマグネシウムが多く存在する場合は、メチルリチウム溶液を使用して なる反応の反応性及び選択性が大きく変わることがある。  [0018] Although the methyllithium solution in the present invention is stable at normal temperature as it is, it has become clear that the storage stability is further improved by including magnesium in the solution. Magnesium seems to be dissolved as dimethylmagnesium in the methyllithium solution. The amount of magnesium contained in the methyllithium solution of the present invention is preferably such that the molar ratio of magnesium to methyllithium is 0.2: 1 or less. If a large amount of magnesium is present in excess of this amount, the reactivity and selectivity of the reaction using a methyllithium solution may change significantly.
[0019] また、本発明におけるメチルリチウムは臭化リチウムを含んで 、てもよ 、。臭化リチウ ムを含むメチルリチウム溶液もまた保存安定性が向上する。臭化リチウムを含む場合 の臭化リチウムのメチルリチウムに対するモル比が 1. 5 : 1以下であることが好ましい。 この量を超えて臭化リチウムが多く存在する場合は、メチルリチウム溶液の粘性が上 力 Sり取り扱!/、が困難となることがある。  [0019] The methyl lithium in the present invention may contain lithium bromide. A methyllithium solution containing lithium bromide also improves storage stability. When lithium bromide is included, the molar ratio of lithium bromide to methyllithium is preferably 1.5: 1 or less. If a large amount of lithium bromide is present in excess of this amount, it may be difficult to handle the viscosity of the methyllithium solution.
[0020] 本発明におけるメチルリチウム溶液の製造方法としては、溶媒中にリチウムを分散さ せ、これにハロゲン化メチルをカ卩ぇ反応させた後、濾過により不溶物をとり除くことに よって達成される。また、マグネシウムを含有するメチルリチウム溶液は、リチウムと共 にマグネシウムを分散させた懸濁液に、ハロゲン化メチルを反応させ、濾過により不 溶物をとり除くことによって製造することができる。  [0020] The method for producing a methyllithium solution in the present invention is achieved by dispersing lithium in a solvent, reacting the halogenated methyl with this, and then removing insolubles by filtration. . A methyllithium solution containing magnesium can be produced by reacting methyl halide with a suspension in which magnesium is dispersed together with lithium, and removing insolubles by filtration.
[0021] メチルリチウム溶液の製造において用いられるリチウムの形状には塊状、粒状、ワイ ヤー、デイスパージヨン等が挙げられ、いずれを用いても問題はないが、反応性の観 点からはできるだけ比表面積の大きなリチウムを用いることが好ましい。また、ハロゲ ン化メチルとの反応性を高めるために、少量のナトリウムを含むリチウムを用いたり、 ナフタレンや 4、 4,ージ tーブチルビフエ-ルなどのァレーン化合物を当量もしくは 触媒量加えたリチウムアレー-ドを用いることもできる。 [0022] ハロゲンィ匕メチルとしては塩化メチル、臭ィ匕メチルおよびヨウ化メチルが用いられる 。特に、ハロゲン化メチルに塩化メチルを用いた場合には、リチウムとの反応により生 成する塩化リチウムが、メチルリチウムとの配位ィ匕合物を生成し難いため、ハロゲン含 量の少な ヽメチルリチウム溶液を得ることができる。塩化メチルを用いて合成されたメ チルリチウム溶液中のハロゲン含量は、メチルリチウムに対して 10モル%以下となり、 メチルリチウムを用いた反応を行うに際して、無機塩の存在が、反応性あるいは選択 性に悪影響を及ぼすような反応系にお 、て好適に用いることができる。 [0021] The shape of lithium used in the production of the methyllithium solution includes agglomerated, granular, wire, and dish purge, and any of them may be used, but from the viewpoint of reactivity, the ratio is as much as possible. It is preferable to use lithium having a large surface area. In addition, in order to increase the reactivity with methyl halides, lithium arrays containing a small amount of sodium or lithium arrays containing naphthalene or 4,4, -di-tert-butyl biphenyl and other arene compounds are added. You can also use -do. [0022] As the halogen methyl, methyl chloride, methyl odor and methyl iodide are used. In particular, when methyl chloride is used as the methyl halide, the lithium chloride produced by the reaction with lithium is difficult to produce a coordination compound with methyllithium. A lithium solution can be obtained. The halogen content in a methyllithium solution synthesized using methyl chloride is 10 mol% or less with respect to methyllithium. When a reaction using methyllithium is performed, the presence of an inorganic salt is considered to be reactive or selective. It can be suitably used in a reaction system that adversely affects the reaction.
[0023] 一方、ハロゲン化メチルに臭化リチウムを用いた場合には、メチルリチウムに対して 0. 8〜1. 2当量の臭化リチウムを含んでなるメチルリチウム溶液を得ることができる。 臭化リチウムを含んでなるメチルリチウム溶液は、無機塩の存在が有用あるいは無視 できるような反応系にお 、て好適に用いることができる。  On the other hand, when lithium bromide is used as the methyl halide, a methyllithium solution containing 0.8 to 1.2 equivalents of lithium bromide with respect to methyllithium can be obtained. A methyllithium solution containing lithium bromide can be suitably used in a reaction system in which the presence of an inorganic salt is useful or negligible.
[0024] メチルリチウム溶液の製造にお!、て用いられるハロゲン化メチルのリチウムに対する 量は 0. 5当量以下であることが好ましい。これを超えてハロゲン化メチルを使用した 場合、メチルリチウム溶液中に未反応のハロゲン化メチルが残存することがあり、メチ ルリチウム溶液の保存安定性が悪ィ匕する場合がある。  [0024] In the production of the methyllithium solution, the amount of methyl halide used for lithium is preferably 0.5 equivalent or less. If methyl halide is used in excess of this, unreacted methyl halide may remain in the methyllithium solution, and the storage stability of the methyllithium solution may deteriorate.
[0025] マグネシウムを含有するメチルリチウム溶液を調整する場合に使用する場合のマグ ネシゥム量は、使用するハロゲン化メチルに対して、 0. 2当量以下であることが好まし い。これを超えてマグネシウムを用いた場合、得られるメチルリチウム溶液中のマグネ シゥム対メチルリチウムのモル比が 0. 2 : 1以上となり、メチルリチウム溶液を使用して なる反応の反応性及び選択性が大きく変わることがある。  [0025] The amount of magnesium used when preparing a methyllithium solution containing magnesium is preferably 0.2 equivalent or less with respect to the methyl halide used. If magnesium is used in excess of this, the molar ratio of magnesium to methyllithium in the resulting methyllithium solution will be 0.2: 1 or more, and the reactivity and selectivity of the reaction using the methyllithium solution will be improved. It can change greatly.
[0026] リチウムとハロゲン化メチルとの反応温度は 20〜60°Cの範囲にて行うことが好ま しい。この範囲を超えて反応を行った場合、生成したメチルリチウムの分解が起こるこ とがある。またこの範囲未満の温度では、メチルリチウム製造時の反応速度が低下す る。  [0026] The reaction temperature between lithium and methyl halide is preferably 20 to 60 ° C. If the reaction is carried out beyond this range, the produced methyllithium may be decomposed. If the temperature is lower than this range, the reaction rate during the production of methyllithium is lowered.
[0027] 本発明の方法によれば 2〜: LOwt%の濃度のメチルリチウム溶液を調製することが できる。  [0027] According to the method of the present invention, a methyllithium solution having a concentration of 2 to: LOwt% can be prepared.
[0028] 以下、本発明の実施例を示す。  [0028] Examples of the present invention will be described below.
実施例 1 [0029] 攪拌機、温度計を備えたフラスコに、アルゴン雰囲気下、 3%のナトリウムを含んで なるリチウム分散 3. 51g (0. 51グラム原子)とシクロペンチルメチルエーテル 130mL を加えた。これに、氷冷攪拌下、塩化メチル 11. lg (0. 22モル)を 1時間かけて添カロ した。添加後、室温にて 1時間攪拌し、不溶分をガラスフィルターにてとり除き、無色 透明の 4. 27wt%メチルリチウムのシクロペンチルメチルエーテル溶液、 105gを得 た(収率 92%)。溶液中の塩素含量は 0. 39wt%であり、メチルリチウムに対して 5. 4モル0 /0に相当する。 Example 1 [0029] To a flask equipped with a stirrer and a thermometer, 3.51 g (0.51 gram atoms) of lithium dispersion containing 3% sodium and 130 mL of cyclopentyl methyl ether were added under an argon atmosphere. To this, 11. lg (0.22 mol) of methyl chloride was added for 1 hour with stirring on ice. After the addition, the mixture was stirred at room temperature for 1 hour, and the insoluble matter was removed with a glass filter to obtain 105 g of a colorless and transparent 4.27 wt% methyllithium cyclopentylmethyl ether solution (92% yield). Chlorine content in the solution is 0. 39 wt%, corresponding to 5.4 mol 0/0 for methyl lithium.
[0030] このメチルリチウム溶液は自然発火性を示さなカゝつた。得られたメチルリチウムを 23 °Cにて窒素雰囲気下で保存したところ、 1ヶ月後のメチルリチウムの濃度は 4. 13wt %、 2ヶ月後の濃度は 4. 10wt%であり、分解速度は約 0. 07%—メチルリチウム Z 日であった。  [0030] This methyllithium solution was not pyrophoric. When the obtained methyllithium was stored at 23 ° C under a nitrogen atmosphere, the concentration of methyllithium after one month was 4.13 wt%, the concentration after two months was 4.10 wt%, and the decomposition rate was about 0.07% —Methyllithium Z days.
実施例 2  Example 2
[0031] 攪拌機、温度計を備えたフラスコに、アルゴン雰囲気下、 3%のナトリウムを含んで なるリチウム分散 2. 95g (0. 43グラム原子)、マグネシウム片 0. 53g (0. 02グラム原 子)およびシクロペンチルメチルエーテル 85mLを加えた。これに、氷冷攪拌下、塩 ィ匕メチル 10. 6g (0. 21モル)を 1時間かけて添加した。添加後、室温にて 1時間攪拌 し、不溶分をガラスフィルターにてとり除き、無色透明の 4. 86wt%メチルリチウムの シクロペンチルメチルエーテル溶液、 85gを得た (収率 89%)。溶液中の塩素含量は 0. 20wt%であり、メチルリチウムに対して 3. 0モル0 /0に相当する。マグネシウムは 0 . 57wt%であり、メチルリチウムに対して 12. 6モル%に相当する。 [0031] Lithium dispersion containing 3% sodium in an argon atmosphere with a stirrer and thermometer 2.95 g (0.43 gram atom), magnesium piece 0.53 g (0.02 gram atom) ) And 85 mL of cyclopentyl methyl ether. To this, 10.6 g (0.21 mol) of methyl chloride was added over 1 hour with stirring under ice cooling. After the addition, the mixture was stirred at room temperature for 1 hour, and the insoluble matter was removed by a glass filter to obtain 85 g of a colorless and transparent 4.86 wt% methyllithium cyclopentylmethyl ether solution (yield 89%). Chlorine content in the solution is 0. 20 wt%, corresponding to 3.0 mol 0/0 for methyl lithium. Magnesium is 0.57 wt%, which corresponds to 12.6 mol% with respect to methyllithium.
[0032] このメチルリチウム溶液は自然発火性を示さな力つた。  [0032] This methyllithium solution was not pyrophoric.
[0033] 得られたメチルリチウムを 23°Cにて窒素雰囲気下で保存したところ、 2ヶ月後の濃 度は 4. 74wt%であり、分解速度は約 0. 04%—メチルリチウム Z日であった。  [0033] When the obtained methyllithium was stored at 23 ° C under a nitrogen atmosphere, the concentration after 2 months was 4.74 wt%, and the decomposition rate was about 0.04% -methyllithium Z days. there were.
実施例 3  Example 3
[0034] 攪拌機、温度計を備えたフラスコに、アルゴン雰囲気下、 3%のナトリウムを含んで なるリチウム分散 2. 70g (0. 39グラム原子)、マグネシウム片 0. 47g (0. 02グラム原 子)およびシクロペンチルメチルエーテル 140mLをカ卩えた。これに、氷冷攪拌下、塩 ィ匕メチル 8. 8g (0. 17モル)を 1時間かけて添加した。添加後、室温にて 1時間攪拌 し、不溶分をガラスフィルターにてとり除き、無色透明の 2. 87wt%メチルリチウムの シクロペンチルメチルエーテル溶液、 116gを得た (収率 93%)。溶液中の塩素含量 は 0. 17wt%であり、メチルリチウムに対して 4. 0モル0 /0に相当する。マグネシウムは 0. 27wt%であり、メチルリチウムに対して 9. 2モル%に相当する。 [0034] Lithium dispersion containing 3% sodium in an argon atmosphere in a flask equipped with a stirrer and thermometer 2.70 g (0.39 gram atom), magnesium piece 0.47 g (0.02 gram atom) ) And 140 mL of cyclopentyl methyl ether. To this, 8.8 g (0.17 mol) of methyl chloride was added over 1 hour with stirring on ice. After addition, stir at room temperature for 1 hour The insoluble matter was removed with a glass filter to obtain 116 g of a colorless and transparent cyclopentylmethyl ether solution of 2.87 wt% methyllithium (yield 93%). Chlorine content in the solution is 0. 17 wt%, corresponding to 4.0 mol 0/0 for methyl lithium. Magnesium is 0.27 wt%, corresponding to 9.2 mol% with respect to methyllithium.
[0035] このメチルリチウム溶液は自然発火性を示さな力つた。 [0035] This methyl lithium solution was not pyrophoric.
[0036] 得られたメチルリチウムを 23°Cにて窒素雰囲気下で保存したところ、 2ヶ月後も濃度 の低下はみられな力つた。  [0036] When the obtained methyl lithium was stored at 23 ° C in a nitrogen atmosphere, the concentration did not decrease even after 2 months.
実施例 4  Example 4
[0037] 攪拌機、温度計を備えたフラスコに、アルゴン雰囲気下、 3%のナトリウムを含んで なるリチウム分散 8. 52g (l. 23グラム原子)、およびシクロペンチルメチルエーテル 2 26mLをカ卩えた。これに、氷冷攪拌下、臭ィ匕メチル 39. Og (0. 41モル)を 2. 5時間 かけて添加した。添加後、室温にて 1時間攪拌し、不溶分をガラスフィルターにてとり 除き、 3. 5 lwt%メチルリチウムのシクロペンチルメチルエーテル溶液 241. 7gを得 た(収率 94%)。溶液中のリチウム量は 2. 23wt%、臭素量は 13. 16wt%であり、メ チルリチウム 1モルに対して 1. 0モルに相当する臭化リチウムが溶液中に共存してい る。  [0037] A flask equipped with a stirrer and a thermometer was charged with 8.52 g (l. 23 gram atom) of lithium dispersion containing 3% sodium and 26 mL of cyclopentyl methyl ether under an argon atmosphere. To this, 39. Og of odorous methyl (0.41 mol) was added over 2.5 hours with stirring on ice. After the addition, the mixture was stirred at room temperature for 1 hour, and the insoluble matter was removed with a glass filter to obtain 241.7 g of a 3.5 lwt% methyllithium cyclopentylmethyl ether solution (yield 94%). The amount of lithium in the solution is 2.23 wt%, the amount of bromine is 13.16 wt%, and lithium bromide equivalent to 1.0 mol per 1 mol of methyllithium coexists in the solution.
[0038] このメチルリチウム溶液は自然発火性を示さな力つた。  [0038] This methyllithium solution was not pyrophoric.
[0039] 得られたメチルリチウムを 40°Cにて窒素雰囲気下で保存したところ、メチルリチウム の濃度は 3. 31wt%であり、分解速度は約 0. 18%—メチルリチウム Z日であった。 比較例 1  [0039] When the obtained methyllithium was stored at 40 ° C under a nitrogen atmosphere, the concentration of methyllithium was 3.31 wt% and the decomposition rate was about 0.18% -methyllithium Z days. . Comparative Example 1
[0040] シクロペンチルメチルエーテルに変えてジブチルエーテルを溶媒に用いた以外は 実施例 1と同じ方法にてリチウムと塩化メチルとの反応を行った。  [0040] Lithium and methyl chloride were reacted in the same manner as in Example 1 except that dibutyl ether was used as a solvent instead of cyclopentyl methyl ether.
[0041] 濾過後得られた無色透明溶液中にはメチルリチウムは検出されな力つた (収率 0%[0041] Methyllithium was not detected in the colorless and transparent solution obtained after filtration (yield 0%
) o ) o
[0042] ジブチルエーテルの誘電率は 3. 08であり、極性が低いため反応が進行しなかった ものと考えられる。  [0042] Dibutyl ether has a dielectric constant of 3.08, and it is considered that the reaction did not proceed because of its low polarity.
産業上の利用可能性  Industrial applicability
[0043] 本発明のメチルリチウム溶液は、保存安定性に優れ、かつ取り扱いの容易であるの で、有機合成反応におけるメチル化剤として有用である。 [0043] The methyllithium solution of the present invention is excellent in storage stability and easy to handle. Thus, it is useful as a methylating agent in organic synthesis reactions.

Claims

請求の範囲 The scope of the claims
[1] メチルリチウムが、一般式(1)  [1] Methyllithium is represented by the general formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒で希釈されていることを特徴とするメチルリチウム溶 液。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, and R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1. A methyllithium solution characterized by being diluted with an asymmetric ether solvent represented by
[2] メチルリチウムに対して 20モル%以下のマグネシウムを含有することを特徴とする 請求項 1に記載のメチルリチウム溶液。  [2] The methyllithium solution according to [1], which contains 20 mol% or less of magnesium with respect to methyllithium.
[3] ノ、ロゲン含量カ チルリチウムに対して 10モル%以下であることを特徴とする請求 項 1又は 2に記載のメチルリチウム溶液。 [3] The methyllithium solution according to [1] or [2], wherein the methyl and lithium content is 10 mol% or less relative to the lithium lithium content.
[4] メチルリチウムに対して 1. 5倍モル以下の臭化リチウムを含んでなる請求項 1又は 2 に記載のメチルリチウム溶液。 [4] The methyllithium solution according to [1] or [2], comprising 1.5 times mole or less of lithium bromide with respect to methyllithium.
[5] 非対称エーテル溶媒の 25°Cにおける誘電率が 4. 0以上であることを特徴とする請 求項 1な!、し 4の 、ずれ力 1項に記載のメチルリチウム溶液。 [5] The methyllithium solution according to claim 1, wherein the dielectric constant of the asymmetric ether solvent at 25 ° C. is 4.0 or more, and the deviation force 1 is 4.
[6] 非対称エーテル溶媒がシクロペンチルメチルエーテルであることを特徴とする請求 項 1な 、し 4の 、ずれ力 1項に記載のメチルリチウム溶液。 [6] The methyllithium solution according to any one of items 1 to 4, wherein the asymmetric ether solvent is cyclopentyl methyl ether.
[7] 一般式 (1) [7] General formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒中にリチウムを分散させ、これにハロゲン化メチルを 加え反応させた後、濾過により不溶物をとり除くことを特徴とするメチルリチウム溶液 の製造方法。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, and R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1. A method for producing a methyllithium solution, wherein lithium is dispersed in an asymmetric ether solvent represented by the formula (1), methyl halide is added to the mixture and reacted, and then insolubles are removed by filtration.
[8] 一般式 (1) [8] General formula (1)
R1 - O - R2 (1) R 1 -O-R 2 (1)
(式中、 R1は炭素原子 3〜10個である 2級ないし 3級のアルキル基、あるいはシクロア ルキル基であり、 R2は R1と同一ではない炭素原子 1〜10個のアルキル基である) で表される非対称エーテル溶媒中にリチウムおよびマグネシウムを分散させ、これに ノ、ロゲン化メチルを加え反応させた後、濾過により不溶物をとり除くことを特徴とするメ チルリチウム溶液の製造方法。 (Wherein R 1 is a secondary or tertiary alkyl group having 3 to 10 carbon atoms, or a cycloalkyl group, and R 2 is an alkyl group having 1 to 10 carbon atoms that is not the same as R 1. is there) A method for producing a methyllithium solution, comprising dispersing lithium and magnesium in an asymmetric ether solvent represented by the formula, adding and reacting methyl and rogenated thereto, and then removing insolubles by filtration.
[9] ノ、ロゲン化メチルが塩化メチルであることを特徴とする請求項 7又は 8に記載のメチ ルリチウム溶液の製造方法。  [9] The method for producing a methyllithium solution according to [7] or [8], wherein the methylated and rogenated methyl is methyl chloride.
[10] 非対称エーテル溶媒の 25°Cにおける誘電率が 4. 0以上であることを特徴とする請 求項 7な 、し 9の 、ずれか 1項に記載のメチルリチウム溶液の製造方法。 [10] The method for producing a methyllithium solution according to claim 7, wherein the dielectric constant of the asymmetric ether solvent at 25 ° C. is 4.0 or more.
[11] 非対称エーテル溶媒がシクロペンチルメチルエーテルであることを特徴とする請求 項 7な 、し 9の 、ずれか 1項に記載のメチルリチウム溶液の製造方法。 [11] The method for producing a methyllithium solution according to any one of [7] to [9], wherein the asymmetric ether solvent is cyclopentyl methyl ether.
PCT/JP2006/313645 2005-07-12 2006-07-10 Methyl lithium solution and method for producing same WO2007007697A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005202592A JP2007022921A (en) 2005-07-12 2005-07-12 Methyl lithium solution and its manufacturing method
JP2005-202592 2005-07-12

Publications (1)

Publication Number Publication Date
WO2007007697A1 true WO2007007697A1 (en) 2007-01-18

Family

ID=37637087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313645 WO2007007697A1 (en) 2005-07-12 2006-07-10 Methyl lithium solution and method for producing same

Country Status (2)

Country Link
JP (1) JP2007022921A (en)
WO (1) WO2007007697A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268058A (en) * 2011-05-24 2011-12-07 湖南诺凯生物医药有限公司 Method for preparing 17 alpha-hydropxygenenolone or analogue thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023037935A1 (en) * 2021-09-13 2023-03-16

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002500A1 (en) * 2001-06-28 2003-01-09 Zeon Corporation Solvents containing cycloalkyl alkyl ethers and process for production of the ethers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002500A1 (en) * 2001-06-28 2003-01-09 Zeon Corporation Solvents containing cycloalkyl alkyl ethers and process for production of the ethers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268058A (en) * 2011-05-24 2011-12-07 湖南诺凯生物医药有限公司 Method for preparing 17 alpha-hydropxygenenolone or analogue thereof
WO2012159561A1 (en) * 2011-05-24 2012-11-29 湖南诺凯生物医药有限公司 PREPARATION METHOD FOR 17α-HYDROXYPROGESTERONE OR ANALOGS THEREOF

Also Published As

Publication number Publication date
JP2007022921A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US6958415B2 (en) Synthesis of pentafluorosulfuranyl arylenes
WO2007007697A1 (en) Methyl lithium solution and method for producing same
US5600004A (en) Process for preparing pentafluorophenyl compounds
JPH06157569A (en) Preparation of metallocene
US4342708A (en) Hydrocarbon-soluble diorganomagnesium compounds, hydrocarbon solutions containing the same and processes for preparation thereof
US6303057B1 (en) Preparation of cycloalkylacetylene compounds
JP2001039979A (en) PRODUCTION OF OCTAHYDROPYRROLO[3,4-b]PYRIDINE
JP4163763B2 (en) Method for alkylating cyclopentadiene compounds
JPH0532674A (en) Organometallic amide composition containing no ether
JP4584588B2 (en) Grignard production of unsaturated organic compounds
JP5485583B2 (en) Method for producing diaryliodonium compound
TW458991B (en) Process for preparing polyprenols
JP4651351B2 (en) Method for producing fluoroalkyl fluoroalkanesulfonate
JP7081698B2 (en) Method for manufacturing a coupling compound
JPH11302287A (en) Grignard reagent solution or its stabilization
JP2000159702A (en) Production of 1-(4-chlorophenyl)-omega-bromoalkane
JP2007320938A (en) Lithium t-butyldiethyl zincate, method for producing the same and method for using the same
JP2003313194A (en) Method for producing tertiary phosphine bonded with bulky hydrocarbon group
JP2001072638A (en) PRODUCTION OF alpha-BROMOALKYLPHENONES
JPH10330381A (en) Production of triarylborane amine complex
WO2013031839A1 (en) Production method for 2-alkenylamine compound
JP2016160240A (en) Production process for xanthene
JP2003292498A (en) Method for producing bulky hydrocarbon group-bound tertiary phosphine
JP2023514166A (en) An Efficient and Selective Route for the Synthesis of Alkyl 2-Benzoylbenzoates
JP2003221354A (en) 1-(tert-BUTOXYPHENYL)-omega-HALOALKANE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780917

Country of ref document: EP

Kind code of ref document: A1