WO2007007675A1 - Polyolefin having polymer chain responsive to stimulus - Google Patents

Polyolefin having polymer chain responsive to stimulus Download PDF

Info

Publication number
WO2007007675A1
WO2007007675A1 PCT/JP2006/313587 JP2006313587W WO2007007675A1 WO 2007007675 A1 WO2007007675 A1 WO 2007007675A1 JP 2006313587 W JP2006313587 W JP 2006313587W WO 2007007675 A1 WO2007007675 A1 WO 2007007675A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyolefin
stimulus
polymer
chain
Prior art date
Application number
PCT/JP2006/313587
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Kaneko
Shinichi Kojoh
Nobuo Kawahara
Shingo Matsuo
Tomoaki Matsugi
Norio Kashiwa
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2007524630A priority Critical patent/JPWO2007007675A1/en
Publication of WO2007007675A1 publication Critical patent/WO2007007675A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule

Definitions

  • the present invention relates to a polyolefin in which a stimulus-responsive polymer chain whose affinity to a liquid is changed by applying a stimulus is chemically bonded.
  • Examples of temperature responsiveness include poly (N-isopropylacrylamide) and other acrylamide polymers, polybutyl methyl ether, and polymethacrylic acid.
  • Examples of pH responsiveness include polyacrylic acid. ZPVA blends, etc. are known, and attempts have been made to use them in human muscle and other activators, energy conversion materials, drug control releases, and cell culture.
  • Such stimulus responsiveness is basically caused by repeated absorption of the liquid into the polymer material and elimination of the liquid from the polymer material.
  • these stimuli-responsive polymers have poor self-holding properties as they are as they are highly soluble in liquids. Therefore, it is common to partially cross-link molecular chains and use them as gels.
  • polyolefin has been used in various applications as a structural material because it has excellent physical properties and strength. However, since it does not have a functional group, it has printability, paintability, adhesion, and resistance. It was difficult to impart high functionality such as heat resistance, impact resistance, hydrophilicity, and stimulus response.
  • An object of the present invention is to use a block or graft polymer in which a polymer chain having stimuli responsiveness and a polyolefin chain are directly bonded by chemical bonding, thereby having a polymer chain having stimuli responsiveness and
  • the aim is to provide materials that have both excellent physical properties and strength.
  • a block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain whose affinity to a liquid changes upon application of a stimulus, the polyolefin chain and the stimulus-responsive polymer A polymer characterized in that the chain is chemically bonded.
  • the polymer according to (1) which is a polymer chain obtained by polymerizing at least one kind of a-year-old refin represented by a hydrogen fluoride group.
  • a polyolefin having a stimulus-responsive polymer chain according to the present invention is a block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain, and has a polymer chain exhibiting stimulus response.
  • a polymer material with excellent self-holding properties that combines the excellent physical properties and processability of polyolefin as a structural material.
  • the polyolefin having a stimulus-responsive polymer chain according to the present invention is a polymer having both a stimulus-responsive polymer chain and a polyolefin chain in the molecule.
  • the stimulus-responsive polymer used in the present invention has the property of changing the affinity for a liquid by the application of a stimulus.
  • the index representing the change in affinity of the stimulus-responsive polymer with respect to the liquid include a change in the absorbability of the liquid into the polymer and a change in the solubility in the liquid. In general, these affinity changes may be unidirectional or reversible.
  • the change in the absorbability of liquid due to the application of a stimulus is between the state in which the liquid is absorbed into the polymer compound by the application of the stimulus and the state in which the liquid is released from the polymer compound.
  • These changes in the state can be distinguished from the state in which the polymer compound has swollen by absorbing the liquid and the state in which the polymer has been discharged and contracted, and specifically, the length, area, volume, etc. It can be observed as a change in space.
  • the change in solubility in a liquid due to the application of a stimulus refers to a one-phase state in which the polymer compound is dissolved in the liquid and the two components of the polymer compound and the liquid are almost uniform, and the polymer compound.
  • These changes in state can be distinguished by an optically almost transparent state and an opaque light scattering state. Out of these states In the state in which the polymer compound is contracted by releasing the liquid and the inhomogeneous state in which the polymer compound is insoluble in the liquid, the liquid is partially contained even in the solid state in which the liquid is almost excluded from the polymer compound. Semi-solid state.
  • a substance whose affinity for a liquid is changed by application of heat is usually a polymer compound that undergoes a phase transition and is insolubilized or solubilized when heated from 20 ° C to 100 ° C.
  • poly (( (Meth) acrylic acid or metal salts thereof, polybulusulfonic acid, polybulu benzenesulfonic acid, poly (meth) acrylamide alkylsulfonic acid, polymaleic acid or metal salts thereof, or monomer components constituting these polymer compounds Copolymer obtained by using as a main component, polyvinyl alcohol, polyacrylic acid complex or metal salt thereof, poly (ethylene glycol monomethacrylate), metal salt of carboxymethylcellulose, metal salt of carboxyethylcellulose, etc. Examples thereof include a copolymer mainly composed of a high molecular compound.
  • Examples of the compound whose affinity is changed by the application of light include a polymer compound having a group such as a photochromic group whose structure is changed by a photoreaction.
  • Various types such as polybulu alkyl ethers such as polybulumethyl ether and poly (oxyethyleneoxyvinyl ether) s can be used.
  • This change in affinity due to light is caused by, for example, the above-mentioned trifluoromethane derivative being irradiated with ultraviolet rays having a wavelength of about 350 nm, causing a cleavage reaction and improving the solubility in water. Irradiation causes the opposite reaction and decreases the solubility in water.
  • the wavelength of irradiation light is preferably in the range of 250 to 830 nm.
  • CT complex charge transfer complex
  • Amino-substituted (meth) acrylamides such as acrylamide, (meth) acrylic acid amino-substituted alkyl esters such as dimethylaminoethyl acrylate, jetylaminoethyl acrylate, dimethylaminopropyl acrylate, polystyrene derivatives, polyvinyl pyridine derivatives, polybules Strength rubazole derivatives, polydimethylaminostyrene, etc., and electrons such as benzoquinone, 7, 7, 8, 8—tetracyanquinodimethane (TCNQ), tetracyanethylene, chlorael, tri-trobenzene, maleic anhydride and iodine Used in combination with receptive compounds.
  • TCNQ benzoquinone, 7, 7, 8, 8—tetracyanquinodimethane
  • TCNQ tetracyanethylene
  • chlorael tri-trobenzene
  • the liquid used in the polyolefin having the stimulus-responsive polymer chain of the present invention Water, aqueous electrolyte, alcohols such as methanol, ethanol, propanol, butanol, ketones, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, propylene carbonate, other aromatic organic solvents, aliphatic An organic solvent or a mixture thereof may be mentioned.
  • the liquid contains surfactants and response accelerators that can be used to control stimulus response characteristics, Pioguchi derivatives to promote pH changes in the solution, acids, alkalis, salts, dispersion stabilizers, and antioxidants.
  • a stabilizer such as an agent or an ultraviolet absorber may be added.
  • the stimulus-responsive polymer contained in the polyolefin having a stimulus-responsive polymer chain and a liquid include poly N-isopropyl (meth) acrylamide or N-isopropyl (meth) acrylamide.
  • the polyolefin having the stimulus-responsive polymer chain of the present invention can be combined with the liquid and applied with the appropriate stimulus as described above, so that the affinity of the polymer moiety having the stimulus-responsive property in the polyolefin to the liquid is increased. Sex is expected to change.
  • CH CH-R (R is a hydrogen atom or
  • a polymer obtained by superimposing X-year-old refin such as ⁇ -olefin, specifically represented by a hydrocarbon group having 1 to 20 carbon atoms.
  • ⁇ -olefin specifically represented by a hydrocarbon group having 1 to 20 carbon atoms.
  • Examples include linear or branched a-olefins such as 1-dodecene, 1-tetradecene, 1-hexadecene, 1-otatadecene, 1-eicosene, etc.
  • ethylene It is preferable to use at least one or more olefins selected from lopyrene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene.
  • Monomers constituting the stimuli-responsive polymer chain used in the present invention include, for example, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N —N-alkyl-substituted (meth) acrylamides such as isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N dimethyl (meth) acrylamide, (meth) acrylic acid, sodium (meth) acrylate, (meth) Examples thereof include metal salts of (meth) acrylic acid such as lithium acrylate, 2-hydroxyethyl (meth) acrylate, benzene sulfonic acid or metal salts thereof.
  • vinyl monomers within a range that does not affect the stimulus response ability.
  • Specific examples include (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate, and buresters such as vinyl acetate and butyl propionate.
  • Styrene, acrylonitrile and the like can be used, and the content of the monomer used in the copolymerization in the stimulus-responsive polymer chain is preferably within 10 mol%.
  • the olefin-based polymer of the present invention is preferably in the range of 5 to 95% by weight of the total force of the stimuli-responsive polymer chain, more preferably 10 to 80% by weight, even more preferably 10 to 70% by weight.
  • the olefin-based polymer of the present invention has both stimulus responsiveness and excellent physical properties and moldability as a polymer, and has a stimulus-responsive polymer chain that is highly soluble in liquid. The self-holding property as a polymer is not lost in the liquid.
  • the block or graft copolymer which is an olefin-based polymer used in the present invention is characterized in that the stimulus-responsive polymer chain and the polyolefin chain are bonded to each other by a chemical bond.
  • the method for producing such a block or graft copolymer is not particularly limited, and examples thereof include a method using a functional group-containing polyolefin as a raw material. Specifically, (Method 1) a method of polymerizing monomers constituting the above-mentioned stimuli-responsive polymer chain using a functional group-containing polyolefin as an initiator, or (Method 2) a functional group-containing polyolefin as a macromonomer. (Method 3) Functional group-containing polyolefin chain and stimuli-responsive polymer chain Examples include a coupling method.
  • Method 1 is a method of polymerizing the monomer constituting the stimulus-responsive polymer chain using a functional group-containing polyolefin as an initiator.
  • the functional group-containing polyolefin used in this method include polyolefins in which a radical polymerization-initiating ability or a group having a cation-initiating ability is introduced at the end of the molecular chain or in the molecular chain.
  • the group having radical polymerization initiating ability for example, as disclosed in Chem. Rev., 101, 3661 (2001), a group having a nitroxide is bonded and a radical is generated by thermal cleavage.
  • a block or draft polymer in which the polyolefin chain and the stimulus-responsive polymer chain are chemically bonded is formed. Can be manufactured.
  • the block or graft polymer according to the present invention can be obtained, for example, by sequentially performing the following steps (1) to (3).
  • Step (1) Construct a stimulus-responsive polymer chain in the presence of the macroinitiator obtained in the above step A step of polymerizing a monomer to give a stimulus-responsive polymer chain to a polyolefin chain.
  • Step (1) has a functional group (A) selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain end and Z or side chain. This is a process for producing polyolefin.
  • the functional group (A) selected from hydroxyl group, amino group, epoxy group, carboxyl group, acid halogen group, acid anhydride group, isocyanate group at the main chain end and Z or side chain produced in this step
  • Polyolefins having, for example, carbon-carbon unsaturated bonds or groups in the periodic table in polyolefins having groups containing a carbon-carbon unsaturated bond or a group 13 element in the periodic table at the main chain end and Z or side chain Manufactured by converting groups containing group elements.
  • Polyolefin having a carbon-carbon unsaturated bond at the main chain end and Z or side chain used in this step is a carbon in the presence of an olefin polymerization catalyst such as a known Ziegler-Natta catalyst or a metalocene catalyst.
  • olefin polymerization catalyst such as a known Ziegler-Natta catalyst or a metalocene catalyst.
  • Examples of a-olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 3-methinole-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-Otaten or the like is preferably used. It can also be produced by thermally decomposing polyolefin.
  • Polyolefin having a group containing a group 13 element of the periodic table at the main chain end and Z or side chain used in this step is, for example, known polymerization in the presence of a compound containing a group 13 element of the periodic table.
  • It can be produced by a method in which a polyolefin containing a carbon-carbon unsaturated bond is reacted with a compound containing a group 13 element of the periodic table such as diisoptylluminumno, idride or 9- ⁇ .
  • Polyolefin having a group containing a carbon-carbon unsaturated bond or a group 13 element in the periodic table at the end of the main chain and at the side or the side chain is a hydroxyl group, an amino group, an epoxy group, a carboxyl group.
  • Examples of a method for converting to a polyolefin having a functional group (A) having a functional group (A) in which a group, an acid halogen group, an acid anhydride group, and an isocyanate group are also selected include, for example, carbon-carbon unsaturated bonds in polyolefin and organic compounds such as m-peroxybenzoic acid.
  • a method for producing an epoxy group-containing polyolefin by reaction with a peroxyacid, a carbon-carbon unsaturated bond in hydrogen peroxide and hydrogen peroxide in the presence of monoaminomethylphosphonic acid, tungstic acid and a phase transfer catalyst A method of making an epoxy group-containing polyolefin by reaction, a method of making a hydroxyl group-containing polyolefin by reacting a group containing a group 13 element in the periodic table with oxygen and hydrogen peroxide, etc., and a group 13 element in the polyolefin By reacting the containing group with an azide compound such as 1-butyl azide and hydrolyzing, And a method of the fins.
  • the method of converting the polyolefin which has the functional group obtained by said method into another functional group is also illustrated. That is, preferred examples include a method of oxidizing a hydroxyl group-containing polyolefin to a carboxyl group-containing polyolefin, a method of reacting an epoxy group-containing polyolefin with an amine compound such as ethylenediamine or ethanolamine to obtain an amino group-containing polyolefin. Is done.
  • a functional group selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, an isocyanate group at the main chain end and Z or side chain produced in this step (A) can be produced by copolymerizing the above-mentioned ⁇ -olefin with a functional group of olefins using an olefin polymerization catalyst such as a known Ziegler-Natta catalyst or a metacene catalyst. It is.
  • olefins having functional groups used for copolymerization examples include aryl alcohol, 4-pentene 1-ol, 5 hexene 1-ol, 6 heptene 1-ol, 8 nonen 1-ol, 10-undecene.
  • Unsaturated alcohols in which the hydrocarbon moiety is linear such as all, unsaturated carboxylic acids such as 5-hexenoic acid, 6-heptenoic acid, 7-otatenic acid, 8-nonenoic acid, 9-decenoic acid
  • unsaturated carboxylic acids such as 5-hexenoic acid, 6-heptenoic acid, 7-otatenic acid, 8-nonenoic acid, 9-decenoic acid
  • unsaturated amines such as arylamine, 5-hexeneamine, 6-hepteneamine, (2,7-octagel) succinic anhydride, pentapropyl succinic anhydride and the above unsaturated carboxylic acids
  • unsaturated acid anhydrides such as compounds in which a carboxylic acid group is replaced with a carboxylic acid anhydride group
  • Carboxylic groups Sanha Unsaturated carboxylic acid halides such as compounds substituted with a hydride group, 4 Epoxy 1 But
  • step (2) a functional group (A) selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain terminal and Z or side chain.
  • a functional group (A) selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain terminal and Z or side chain.
  • a macroinitiator by imparting a radical having a radical polymerization initiating ability or an anion polymerization initiating ability to the polyolefin.
  • a functional group (P) and a compound (R) having both radical polymerization initiating ability (Q) and a functional group contained in the polyolefin produced in step (1) For example, a method of converting (A) into a group (S) having an ability to initiate cation polymerization.
  • the functional group (P) that can be chemically bonded to the functional group (A) contained in the polyolefin includes a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group. And the like.
  • a preferred combination of the functional group (A) and the functional group (P) is not particularly limited as long as they are a combination that reacts to form a chemical bond, but when the functional group (A) is a hydroxyl group, Epoxy group, carboxyl group, acid halogen group, acid anhydride group and isocyanate group are preferred as the functional group (P).
  • the functional group (A) is an epoxy group, a hydroxyl group is preferred as the functional group (P).
  • the functional group (A) is a carboxyl group or an acid halogen group, the functional group (P) is a hydroxyl group, and the preferred amino group is an amino group.
  • the functional group (A) is an amino group
  • the functional group (P) is a carboxyl group, an acid.
  • a halogen group and an acid anhydride group are preferred.
  • the group (Q) having radical polymerization initiating ability as disclosed in, for example, Trend Polym. Sci., (1996), 4, 456, a group having a nitroxide is bonded to form a thermal group.
  • 2, 2, 6, 6-tetramethylpiperidyl-luoxy 1 (TEMPO) group 4-hydroxy 2, 2, 6, 6-tetramethylpibelidi-lulu 1-oxy group, 2, 2, 5, 5— Tetramethyl-1 pyrrolidi-loxy group, 3 —amino-1, 2, 2, 5, 5-tetramethyl-1- 1-pyrrolidi-loxy group, 2, 2, 5, 5-tetramethyl-1 pyrrolidyl-loxy group, di-t-butylnitroxy
  • a group having an N—O bond such as a group, a carbo group, a cyano group, a sulfole group, and an aryl group, which includes an unsaturated group selected and these unsaturated groups sandwich one carbon atom.
  • TEMPO 2, 2, 6, 6-tetramethylbi-beli-l-oxy
  • dehydrated organic solvents can be generally used as the conditions, but preferably 0 ° C in a hydrocarbon-based organic solvent having a high affinity with polyolefin such as toluene, benzene, hexane, heptane, etc.
  • the reaction is carried out in the temperature range of ⁇ 120 ° C.
  • the reaction may be either a homogeneous system or a heterogeneous system, but a homogeneous system is preferred.
  • a Bronsted acid such as sulfuric acid or formic acid para-toluenesulfonic acid or a Lewis acid such as aluminum chloride may be used as a catalyst.
  • a Lewis acid such as aluminum chloride
  • the reaction may be allowed to proceed efficiently by adding anhydrous magnesium sulfate molecular sieves or removing water under reflux conditions using Dean Stark.
  • an olefin having a hydroxyl group for example, an olefin having a hydroxyl group
  • Polymers include alkali metals such as lithium metal and potassium, alkali metal hydrides such as lithium hydride and potassium hydride, trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, etc. And a method of preparing a metal alkoxide-containing olefin polymer by reacting with an alkylaluminum compound.
  • the polyolefin having the functional group (A) at the main chain end and Z or side chain can be converted into a macroinitiator.
  • step (3) the monomer constituting the stimulus-responsive polymer chain is polymerized in the presence of the macroinitiator obtained in the step (2), and the product obtained in the step (2) is obtained.
  • This is a process of imparting a stimulus-responsive polymer chain (Z) to an object.
  • Examples of the radical polymerization method used in the present invention include the above-described -troxide-mediated radical polymerization method and atom transfer radical polymerization method.
  • the atom transfer radical polymerization in the present invention is one of living radical polymerizations, and is a radical polymerizable monomer using an organic halide or halogenated sulfonyl compound as an initiator and a metal complex having a transition metal as a central metal as a catalyst. This is a method of radical polymerization of a monomer. Specifically, for example, Matyja szewski et al., Chem.
  • the initiator to be used examples include organic halogen compounds, nonogeny sulfonyl compounds, and in particular, the ⁇ - position of a carbon-carbon double bond or a carbon-oxygen double bond.
  • the initiator structure a structure in which a carbon-halogen bond existing in or a plurality of halogens on one carbon atom is attached is suitable.
  • the transition metal complex used as the polymerization catalyst is not particularly limited, but is preferably a metal complex having a central metal of a Group 7, 8, 9, 10, or 11 element of the periodic table. is there. More preferable examples include a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron or divalent nickel. Of these, copper and iron complexes are preferred. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. It is.
  • the polymerization method is not particularly limited, and bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, bulk 'suspension polymerization, and the like can be applied.
  • the solvent that can be used in the radical polymerization of the present invention any solvent that does not inhibit the reaction can be used.
  • aromatics such as benzene, toluene, and xylene are used.
  • Hydrocarbon solvents aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and decahydronaphthalene, chlorine mouth, dichlorobenzene, trichloroethane port benzene, methylene chloride, black hole Holm, four chlorinated hydrocarbon solvents such as carbon tetrachloride and tetrachlorethylene E Chile down, methanol, ethanol, n _ propanol.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane
  • alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and decahydronaphthalene
  • chlorine mouth dichlorobenzene
  • Alcohol solvents such as propanol, n-butanol, sec-butanol and tert-butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; acetic acid Examples thereof include ester solvents such as ethyl and dimethyl phthalate, and ether solvents such as dimethyl ether, jetyl ether, di-n-amyl ether, tetrahydrofuran and dioxyanisole.
  • suspension polymerization and emulsion polymerization can be carried out using water as a solvent. These solvents may be used alone or in combination of two or more. Moreover, it is preferable that the reaction solution becomes a homogeneous phase by using these solvents, but a plurality of non-uniform phases may be used.
  • the reaction temperature may be any temperature as long as the radical polymerization reaction proceeds, and it is not uniform depending on the degree of polymerization of the desired polymer, the type and amount of the radical polymerization initiator and the solvent to be used. 100 ° C to 250 ° C. Preferably, it is ⁇ 50 ° C. to 180 ° C., more preferably 0 ° C. to 160 ° C. In some cases, the reaction can be carried out under reduced pressure, normal pressure or increased pressure.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • examples of the solvent that can be used include aliphatic hydrocarbons such as hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, benzene, and toluene.
  • Aetherole solvents such as aromatic hydrocarbons, jetyl ether, dioxane, tetrahydrofuran (THF), monoglyme and diglyme are used. These solvents can be used alone or in combination of two or more. Of these, aromatic hydrocarbons and ether solvents are preferably used.
  • the polymerization is usually 100 ° C to 100 ° C, preferably 80 ° C to 80 ° C, more preferably — at a polymerization temperature of 70 ° C to 70 ° C, for 1 minute to 500 hours, preferably 10 minutes to 300 It is carried out over a period of time, more preferably 15 minutes to 150 hours.
  • (Method 1) can also produce the block or graft polymer which is the polyolefin according to the present invention by sequentially performing the following steps (4) and (5). .
  • Step (4) is a step of producing a halogen-modified polyolefin by reaction of polyolefin with a halogenating agent.
  • Examples of the polyolefin used in this step include those represented by the following (A1) to (A5).
  • a copolymer with a monoolefin-containing compound having an aromatic ring is a copolymer with a monoolefin-containing compound having an aromatic ring.
  • a copolymer with a cyclic monoolefin compound represented by the following general formula (1) A copolymer with a cyclic monoolefin compound represented by the following general formula (1).
  • Random copolymers with unsaturated carboxylic acids or their derivatives Random copolymers with unsaturated carboxylic acids or their derivatives.
  • is 0 or 1
  • m is 0 or a positive integer
  • q is 0 or 1
  • R 1 to 1 ⁇ and R a and R b are independently (A group force consisting of a hydrogen atom, a halogen atom and a hydrocarbon group also represents an atom or group selected, and R 15 to R 18 may be bonded to each other to form a monocyclic or polycyclic ring.)
  • the halogen-modified polyolefin produced in this step (4) is a polyolefin as described above. And a halogenating agent.
  • Halogen content of the thus modification by halogen polio Refuin obtained is from 0.01 to 70 weight 0/0, preferably from 0.02 to 50 weight 0/0, preferably a further 0.05 to 30 wt% It is.
  • such halogen is selected from fluorine, chlorine, bromine or iodine, and may be a combination thereof.
  • the halogenating agent used in this step (4) is not particularly limited as long as it can produce a halogen-modified polyolefin by halogenating the above-mentioned polyolefin. Specifically, chlorine, bromine, iodine Phosphorus trichloride, Phosphorus tribromide, Phosphorus triiodide, Phosphorus pentachloride, Phosphorus pentabromide, Phosphorus pentaiodide, Chloride thiol, Sulfuryl chloride, Thiol bromide, N Chlorosuccinimide, N —Bromosuccinimide, N-bromocaprolatatam, N-bromophthalimide, 1,3 dib-mouthed Mo 5,5 Dimethylhydantoin, N-chloroglutarimide, N-bromoglutarimide, N, ⁇ '--Dib mouthed moisocyanuric acid, ⁇ Brom
  • the reaction between the polyolefin and the halogenating agent is preferably carried out in an inert gas atmosphere.
  • the inert gas include inert gases such as nitrogen, anoregon, and helium.
  • a solvent can be used for reaction of this invention as needed. Any solvent can be used as long as it does not inhibit the reaction.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene, pentane, hexane, heptane, octane, Aliphatic hydrocarbon solvents such as nonane and decane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and decahydronaphthalene Motokei solvent, black hole, dichlorobenzene, trichloroethane port benzene, methylene chloride, black hole Holm, Yonshioi ⁇ arsenide and tetrachlorethylene, chlorinated hydrocarbon solvents such as tetrachloro E Tan, methanol, ethanol, n _ propanol , iso _ propanol, n _ butanol one Le, alcohol solvents such as sec- butanol and tert- butanol, acetone, Mechirue ethyl ketone and
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane
  • alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and decahydronaphthalene
  • chlorine examples thereof include chlorinated hydrocarbon solvents such as benzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, tetrachlorocarbon, tetrachloroethylene, and tetrachloroethane.
  • These solvents may be used alone or in admixture of two or more.
  • Radical initiators include, for example, azobisisoptyl-tolyl, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis-2-amidinopropane hydrochloride, dimethyl azobisisobutyrate, azobisisobutylamidine hydrochloride Azo initiators such as 4,4'-azobis-4-cyananovaleric acid, benzoyl peroxide, 2,4-dichloroperoxybenzoic acid, di-tert-butyl peroxide, lauroyl peroxide, acetylyl peroxide , Diisopropyl peroxide, tamen hydroperoxide, tert-butyl hydroperoxide, dicumyl peroxide, p-menthane hydroperoxide, pinan hydroperoxide, methyl ethyl
  • azo initiators or peroxide initiators are preferable, and benzoyl peroxide, di-tert-butyl peroxide, lauryl peroxide, acetyl acetyl peroxide, peroxides are more preferable.
  • These radical initiators can be used alone or in combination of two or more at the same time.
  • polyolefin is suspended or dissolved in a solvent, usually at a temperature of 80 ° C to 250 ° C, preferably at a temperature not lower than room temperature and not higher than the boiling point of the solvent.
  • a halogen-modified polyolefin is produced by the above method.
  • Step (5) is a step of polymerizing the monomer constituting the stimulus-responsive polymer chain in the presence of the halogen-modified polyolefin obtained in the above step to give the stimulus-responsive polymer chain to the polyolefin chain.
  • this step (5) there is no particular limitation on the method for polymerizing the monomer constituting the stimulus-responsive polymer chain in the presence of the neuron-modified polyolefin obtained in the above step.
  • the atom transfer radical polymerization method exemplified in the above step (3) is preferably used.
  • the halogen-modified polyolefins of this kind it is possible to use a carbon halogen bond existing at the ⁇ - position of a carbon-carbon double bond or a structure in which multiple halogens are added on one carbon atom as an initiator structure. it can.
  • Method 2 is a method in which a functional group-containing polyolefin is used as a macromonomer and copolymerized with the monomer constituting the stimulus-responsive polymer chain.
  • the functional group-containing polyolefin used in this method has a carbon-carbon double bond such as a polymerizable functional group at the end of the molecular chain or in the molecular chain, for example, a (meth) atalyloyl group or a styryl group.
  • Examples include polyolefins into which groups have been introduced. Specific examples include, for example, JP-A-2004-143403. The structure and the manufacturing method disclosed in Japanese Patent Laid-Open No.
  • 2004-269642 can be exemplified.
  • a graft polymer in which the polyolefin chain and the stimulus-responsive polymer chain are chemically bonded can be produced.
  • a known polymerization method such as radical polymerization, ion polymerization, or coordination polymerization can be used.
  • any initiator used in ordinary radical polymerization can be used as the initiator, such as azobisisobutyoxy-tolyl, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbox.
  • azo initiators or peroxyacid initiators are preferred, and more preferred are azobisisobutyronitrile, azobis 2,4 dimethylvaleronitrile, azobiscyclohexanecarbo-tolyl.
  • radical polymerization initiators can be used alone or in combination of two or more thereof simultaneously or sequentially.
  • Any solvent that does not inhibit the reaction may be used.
  • specific examples include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, and decane, cyclohexane, and methylcyclohexane.
  • Cycloaliphatic hydrocarbon solvents such as xanthane and decahydronaphthalene, chlorine such as chlorobenzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, tetrachlorocarbon and tetrachloroethylene Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; Esters such as ethyl acetate and dimethyl phthalate And ether-based solvents such as sole, etc.
  • suspension polymerization or emulsion polymerization can be performed using water as a solvent.
  • solvents may be used alone or in combination of two or more.
  • the reaction liquid becomes a homogeneous phase by using these solvents, but it may be a heterogeneous plural phase.
  • the reaction temperature may be any temperature as long as the polymerization reaction proceeds, and is not uniform depending on the degree of polymerization of the desired polymer and the type and amount of the radical polymerization initiator and solvent used. 100 ° C to 250 ° C. Preferably, it is ⁇ 50 ° C. to 180 ° C., more preferably 0 ° C. to 160 ° C. In some cases, the reaction can be carried out under reduced pressure, normal pressure or increased pressure.
  • the polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • radical polymerization In addition to the above-described method using a radical polymerization initiator, for example, a living radical polymerization method described in the following literature can be used as the radical polymerization.
  • any of the initiators used in the usual cation polymerization can be used as the cation polymerization initiator, for example, butyl lithium, propylene.
  • Organic lithium compounds such as rulithium, ethyllithium, and methyllithium, Grignard reagents, and the like can be used.
  • solvents examples include aliphatic hydrocarbons such as hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, aromatic hydrocarbons such as benzene and toluene, jetyl ether, dioxane, Ether solvents such as tetrahydrofuran (THF), monoglyme and diglyme are used. These solvents can be used alone or in combination of two or more. Of these, aromatic hydrocarbons and ether solvents are preferably used.
  • the polymerization is usually ⁇ 100 ° C. to 100 ° C., preferably 80 ° C. to 80 ° C., more preferably —70 ° C. to 70 ° C. for 1 minute to 500 hours, preferably 10 minutes to It is carried out for 300 hours, more preferably 15 minutes to 150 hours.
  • Method 3 is a method of coupling a functional group-containing polyolefin chain and a stimulus-responsive polymer chain.
  • functional group-containing polyolefin used in this method reactive groups such as hydroxyl group amino group, carboxyl group, acid halogen group, acid anhydride group, epoxy group, isocyanate group are introduced at the end of the molecular chain or in the molecular chain.
  • the stimuli-responsive polymer chain to be coupled with the polyolefin having such a reactive group must have a functional group capable of reacting with these reactive groups at the end of the molecular chain or in the molecular chain. is there.
  • the block or graft polymer which is the polyolefin according to the present invention can be produced by sequentially performing the following steps (6) to (8).
  • Step (6) Polyolefin having functional group (A) selected from hydroxyl group, amino group, epoxy group, carboxyl group, acid halogen group, acid anhydride group and isocyanate group at the main chain end and Z or side chain Manufacturing process.
  • A functional group selected from hydroxyl group, amino group, epoxy group, carboxyl group, acid halogen group, acid anhydride group and isocyanate group at the main chain end and Z or side chain Manufacturing process.
  • Step (7) A step of producing a stimulus-responsive polymer chain having a functional group at the terminal.
  • Step (8) Polyolefin having the functional group (A) produced in the step (6), and the step (8)
  • step (6) for example, the same method as in step (1) can be used.
  • Step (7) is a step of producing a stimulus-responsive polymer chain having a functional group at the terminal.
  • the functional group (P) capable of chemically bonding with the functional group (A) contained in the polyolefin used in the step (2) and radical polymerization initiating ability are used. It is produced by polymerizing a monomer constituting a stimulus-responsive polymer chain using a compound (R) having both of the group (Q) having a diol as an initiator.
  • the stimulation-responsive polymer chain obtained in this step has a functional group (P) derived from an initiator at its end.
  • the main chain terminal and Z or side chain obtained in the step (6) have a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group.
  • This is a step of performing a coupling reaction between the polyolefin having the selected functional group (A) and the stimulus-responsive polymer chain having a functional group at the terminal obtained in the step (7).
  • a preferred combination of the functional group (A) contained in the polyolefin and the terminal functional group (P) contained in the stimulus-responsive polymer chain when performing this step is described in the step (2).
  • a combination similar to the combination of is mentioned.
  • the reaction conditions for the reaction with the stimulus-responsive polymer chain having a functional group are the same as the conditions described in the above step (2), such as the solvent, the reaction temperature, the reaction time, the condensing agent and the basic catalyst used Conditions can be applied.
  • ethylene gas was passed at 3 L / h and stirred at 50 ° C for 105 minutes.
  • the reaction was stopped with isobutyl alcohol (30 ml) and concentrated hydrochloric acid (6 ml), and poured into 2 L of methanol to precipitate the polymer.
  • the mixture was filtered through a glass filter, and the obtained polymer was dried under reduced pressure conditions of 50 ° C. and lOTorr for 10 hours to obtain 8.63 g of terminal aryl alcohol-modified PE.
  • a PP-g-PNIPAAm graph polymer of PPZPNIPAAm 18Z82 (wt%) was obtained from 3 ⁇ 4-NMR measurement.
  • the polymer was moldable and could be a sheet.
  • the sheet shape was maintained even after being immersed in water at room temperature for 3.5 days.
  • the polymer material comprising the block or graft copolymer of the present invention as a main component has affinity with biological components such as proteins, polysaccharides, lipids, and cell components, and drugs, and thus stimulates. Since it has a stimulus-responsive polymer chain that changes its affinity for liquid when applied, it is possible to control the adsorption and release of these substrates according to each stimulus. And can be used as a control release material.
  • the actuator is suitable as a chemical valve or the like because it shows a volume change with respect to each stimulus. Shishikushi also has a polyolefin chain, so it can be used for various applications as a structural material having both stimulus response and self-holding properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A block or graft polymer comprising a polymer chain responsive to stimuli and a polyolefin chain directly bonded thereto by chemical bonding is provided as a material which has a polymer chain responsive to stimuli and combines excellent properties of polyolefins with the excellent processability of polyolefins. The polymer is a block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain whose affinity for a liquid changes upon reception of a stimulus, and is characterized in that the polyolefin chain has been chemically bonded to the stimulus-responsive polymer chain.

Description

明 細 書  Specification
刺激応答性ポリマー鎖を有するポリオレフイン  Polyolefins with stimuli-responsive polymer chains
技術分野  Technical field
[0001] 本発明は、刺激の付与によって液体への親和性が変化する刺激応答性ポリマー鎖 が化学結合したポリオレフインに関する。  [0001] The present invention relates to a polyolefin in which a stimulus-responsive polymer chain whose affinity to a liquid is changed by applying a stimulus is chemically bonded.
背景技術  Background art
[0002] これまでに刺激の付与によって液体に対する親和性が可逆的に変化する高分子 材料、いわゆる刺激応答性高分子として多くの高分子が知られており、その刺激とし ては熱、光、 pH、イオン強度、物質の吸着、溶媒組成の変化、電流または電界の付 与などが利用されている。  [0002] So far, many polymers have been known as polymer materials whose affinity for liquid reversibly changes by the application of a stimulus, so-called stimulus-responsive polymers. pH, ionic strength, adsorption of substances, changes in solvent composition, application of electric current or electric field are used.
[0003] たとえば温度応答性を示す例としては、ポリ(N—イソプロピルアクリルアミド)を始め とするアクリルアミド系ポリマーやポリビュルメチルエーテル、ポリメタクリル酸などが、 pH応答性を示す例としてはポリアクリル酸 ZPVAブレンド物などが知られており、人 ェ筋肉を始めとするァクチユエータ、エネルギー変換用素材、薬剤のコントロールリリ ース、細胞培養などへの利用が試みられている。  [0003] Examples of temperature responsiveness include poly (N-isopropylacrylamide) and other acrylamide polymers, polybutyl methyl ether, and polymethacrylic acid. Examples of pH responsiveness include polyacrylic acid. ZPVA blends, etc. are known, and attempts have been made to use them in human muscle and other activators, energy conversion materials, drug control releases, and cell culture.
[0004] このような刺激応答性は基本的には高分子材料への液体の吸収と高分子材料から の液体の排除の繰り返しにより起こるものである。  [0004] Such stimulus responsiveness is basically caused by repeated absorption of the liquid into the polymer material and elimination of the liquid from the polymer material.
[0005] し力しながら、これらの刺激応答性高分子は液体への溶解性が高ぐそのままでは 自己保持性に乏しい。そのため、分子鎖を部分的に架橋し、ゲルとして利用するの が一般的である。  [0005] However, these stimuli-responsive polymers have poor self-holding properties as they are as they are highly soluble in liquids. Therefore, it is common to partially cross-link molecular chains and use them as gels.
[0006] 一方、ポリオレフインは、優れた物性と力卩ェ性を有することから構造材料として様々 な用途に利用されているが、官能基を有しないために印刷性、塗装性、接着性、耐 熱性、耐衝撃性、親水性、刺激応答性などの高機能性を付与することは困難であつ た。  [0006] On the other hand, polyolefin has been used in various applications as a structural material because it has excellent physical properties and strength. However, since it does not have a functional group, it has printability, paintability, adhesion, and resistance. It was difficult to impart high functionality such as heat resistance, impact resistance, hydrophilicity, and stimulus response.
[0007] 刺激応答性ポリマーの有する刺激応答性とポリオレフインの優れた物性や加工性と を併せ持つ材料を製造するためにはそれぞれの材料を単純にブレンドすれば基本 的には目的を達成できると考えられるが、実際には多くのポリマー同士は非相容であ るため混ざり合わな 、のが通常であり、互いに相容しな 、ために均一な成形体を製 造することが困難である。しカゝも、たとえ成形が可能であったとしてもそれぞれのポリ マー同士が相分離しているためにポリマー間の相互作用が弱ぐ成形体を液体中で 取り扱う際に液体との親和性が高い刺激応答性ポリマーセグメントだけが流れ出てし まうという欠点がある。したがって、単純にブレンドしただけではそれぞれの材料が持 つ特性を相乗的に発現させることは困難である。本発明者らはこれらの基本的に非 相容であるポリマー同士をィ匕学結合によって直接結合させることによってこれらの問 題点を解決できることを見出した。 [0007] In order to produce a material that combines the stimuli-responsive properties of stimuli-responsive polymers with the excellent physical properties and processability of polyolefins, it is considered that the objectives can be basically achieved by simply blending the materials. In practice, many polymers are incompatible. Therefore, they are usually not mixed, and are incompatible with each other, so that it is difficult to produce a uniform molded body. However, even if molding is possible, each polymer is phase-separated, so the interaction between the polymers is weak. The disadvantage is that only highly stimuli-responsive polymer segments will flow out. Therefore, it is difficult to synergistically express the characteristics of each material simply by blending. The present inventors have found that these problems can be solved by directly bonding these basically incompatible polymers by chemical bonds.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の目的は、刺激応答性を有するポリマー鎖とポリオレフイン鎖とを化学結合 によって直接結合したブロックまたはグラフトポリマーを利用することにより、刺激応答 性を有するポリマー鎖を有しかつポリオレフインの優れた物性や力卩ェ性を併せ持つ 材料を提供することである。  [0008] An object of the present invention is to use a block or graft polymer in which a polymer chain having stimuli responsiveness and a polyolefin chain are directly bonded by chemical bonding, thereby having a polymer chain having stimuli responsiveness and The aim is to provide materials that have both excellent physical properties and strength.
課題を解決するための手段  Means for solving the problem
[0009] (1)ポリオレフイン鎖と、刺激の付与により液体への親和性が変化する刺激応答性ポ リマー鎖とから構成されるブロックまたはグラフト共重合体であって、ポリオレフイン鎖 と刺激応答性ポリマー鎖とが化学的に結合されていることを特徴とする重合体。 [0009] (1) A block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain whose affinity to a liquid changes upon application of a stimulus, the polyolefin chain and the stimulus-responsive polymer A polymer characterized in that the chain is chemically bonded.
(2)ポリオレフイン鎖力 CH =CH— R(Rは水素原子または炭素原子数 1〜20の炭  (2) Polyolefin chain strength CH = CH— R (R is a hydrogen atom or carbon having 1 to 20 carbon atoms.
2  2
化水素基)で表される少なくとも 1種類の a一才レフインを重合することにより得られた ポリマー鎖であることを特徴とする(1)に記載の重合体。  The polymer according to (1), which is a polymer chain obtained by polymerizing at least one kind of a-year-old refin represented by a hydrogen fluoride group.
(3)刺激応答性ポリマー鎖力 ポリ(メタ)アクリルアミド、ポリ—N—イソプロピル (メタ) アクリルアミド等のポリ—N—アルキル置換 (メタ)アクリルアミド、ポリ(メタ)アクリル酸 或いはその金属塩、ポリ 2—ヒドロキシェチル (メタ)アタリレート、ポリビュルべンゼ ンスルホン酸或いはその金属塩、ポリ(エチレングリコールモノメタアタリレート)、ポリ( エチレングリコールモノアタリレート)力もなる群力も選ばれる少なくとも 1種類のポリマ 一鎖であることを特徴とする(1)または(2)に記載の重合体。 発明の効果 (3) Stimulus responsive polymer chain strength Poly-N-alkyl substituted (meth) acrylamide, poly (meth) acrylic acid or its metal salt, poly 2 such as poly (meth) acrylamide, poly-N-isopropyl (meth) acrylamide —Hydroxyethyl (meth) acrylate, polybutylbenzene sulfonic acid or its metal salt, poly (ethylene glycol monometa acrylate), poly (ethylene glycol mono acrylate) At least one kind of polymer that can be selected as a group force The polymer according to (1) or (2), wherein the polymer is a chain. The invention's effect
[0010] 本発明に係る刺激応答性ポリマー鎖を有するポリオレフインは、ポリオレフイン鎖と 刺激応答性ポリマー鎖とから構成されるブロックまたはグラフト共重合体であって、刺 激応答性を示すポリマー鎖を有しかつ構造材料としてのポリオレフインの優れた物性 と加工性とを併せ持った自己保持性に優れた高分子材料を提供できる。  [0010] A polyolefin having a stimulus-responsive polymer chain according to the present invention is a block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain, and has a polymer chain exhibiting stimulus response. In addition, it is possible to provide a polymer material with excellent self-holding properties that combines the excellent physical properties and processability of polyolefin as a structural material.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の刺激応答性ポリマー鎖を有するポリオレフインについて具体的に説 明する。  [0011] Hereinafter, the polyolefin having the stimulus-responsive polymer chain of the present invention will be specifically described.
[0012] 本発明に係る刺激応答性ポリマー鎖を有するポリオレフインは、分子内に刺激応答 性ポリマー鎖とポリオレフイン鎖との両方を有する重合体である。  The polyolefin having a stimulus-responsive polymer chain according to the present invention is a polymer having both a stimulus-responsive polymer chain and a polyolefin chain in the molecule.
[0013] 本発明において使用される刺激の付与により液体に対する親和性が変化する性質 を持つ刺激応答性ポリマーとしては、使用する液体の pH値、イオン強度、化学物質 の吸脱着、溶媒の添加、熱、光、電流や電界の付与などによって親和性が変化し、 使用する液体に親和する状態と親和しな 、状態を容易に形成できるものが好ま U、 。このような刺激応答性ポリマーの液体に対する親和性の変化を表す指標としては、 例えば該ポリマーへの液体の吸収性の変化や、液体に対する溶解性の変化が挙げ られる。一般に、これらの親和性の変化は、一方向のみであっても、あるいは可逆的 であってもよい。  [0013] The stimulus-responsive polymer used in the present invention has the property of changing the affinity for a liquid by the application of a stimulus. The pH value, ionic strength, adsorption / desorption of a chemical substance, addition of a solvent, It is preferable that the affinity changes due to application of heat, light, electric current or electric field, and the state can be easily formed without being compatible with the state that is compatible with the liquid to be used. Examples of the index representing the change in affinity of the stimulus-responsive polymer with respect to the liquid include a change in the absorbability of the liquid into the polymer and a change in the solubility in the liquid. In general, these affinity changes may be unidirectional or reversible.
[0014] 本発明における刺激の付与による液体の吸収性の変化とは、刺激の付与により液 体が高分子化合物の内部に吸収された状態と、高分子化合物から放出された状態と の間の変化として定義することができる。これらの状態の変化は、高分子化合物が液 体を吸収して膨潤した状態と、液体を放出して収縮した状態とにより区別することが でき、具体的には長さ、面積あるいは体積などの空間量の変化として観測することが 可能である。また、本発明における刺激の付与による液体に対する溶解性の変化と は、高分子化合物が液体に溶解し、高分子化合物と液体の二成分がほとんど均一に なった一相の状態と、高分子化合物が液体に不溶化した不均一な二相の状態との 間の変化をとして定義することができる。これらの状態の変化は、光学的にほとんど 透明な状態と不透明な光散乱状態とにより区別することができる。これらの状態のうち 、高分子化合物が液体を放出して収縮した状態および液体に不溶ィヒした不均一な 状態においては、高分子化合物から液体がほとんど排除された固体状態であっても 、部分的に液体を含有した半固体状態であってもよい。 [0014] In the present invention, the change in the absorbability of liquid due to the application of a stimulus is between the state in which the liquid is absorbed into the polymer compound by the application of the stimulus and the state in which the liquid is released from the polymer compound. Can be defined as change. These changes in the state can be distinguished from the state in which the polymer compound has swollen by absorbing the liquid and the state in which the polymer has been discharged and contracted, and specifically, the length, area, volume, etc. It can be observed as a change in space. In the present invention, the change in solubility in a liquid due to the application of a stimulus refers to a one-phase state in which the polymer compound is dissolved in the liquid and the two components of the polymer compound and the liquid are almost uniform, and the polymer compound. Can be defined as the change between an inhomogeneous two-phase state insolubilized in a liquid. These changes in state can be distinguished by an optically almost transparent state and an opaque light scattering state. Out of these states In the state in which the polymer compound is contracted by releasing the liquid and the inhomogeneous state in which the polymer compound is insoluble in the liquid, the liquid is partially contained even in the solid state in which the liquid is almost excluded from the polymer compound. Semi-solid state.
[0015] 本発明に用いられる上記の性質を持つ刺激応答性ポリマーについて説明する。熱 の付与によって液体に対する親和性が変化するものとしては、通常、 20°Cから 100 °Cに加熱すると相転移して液体に不溶化又は可溶化する高分子化合物であって、 具体的には、ポリ (メタ)アクリルアミド、ポリ— N—イソプロピル (メタ)アクリルアミド等の ポリ N アルキル置換 (メタ)アクリルアミド、 N—ビュルイソブチルアミド、ポリビュルメ チルエーテル等のポリビニルアルキルエーテル、ポリ(ォキシエチレンォキシビニル エーテル)、ポリ(メタ)アクリル酸或いはその金属塩、ポリ 2—ヒドロキシェチル (メタ )アタリレート、ポリ N— (メタ)アクリルピぺリジン、ポリ(2—ェチルォキサゾリン)、ポ リビュルアルコール或いはその部分ケン化物、ポリエチレンォキシド、ポリエチレンォ キシドとポリプロピレンォキシドとの共重合体、ポリ(エチレングリコールモノメタアタリレ ート)、ポリ(エチレングリコールモノアタリレート)、メチルセルロース、ェチノレセノレロー ス、ヒドロキシェチルセルロース、ヒドロキシプロピルセルロース等の置換セルロース誘 導体等又はこれらの高分子化合物を主成分とする共重合体が挙げられる。  [0015] The stimulus-responsive polymer having the above-described properties used in the present invention will be described. A substance whose affinity for a liquid is changed by application of heat is usually a polymer compound that undergoes a phase transition and is insolubilized or solubilized when heated from 20 ° C to 100 ° C. Specifically, Poly (meth) acrylamide, poly-N-alkyl substituted (meth) acrylamide such as poly-N-isopropyl (meth) acrylamide, polyvinyl alkyl ether such as N-butylisobutyramide, polybutylmethyl ether, poly (oxyethyleneoxyvinyl ether) , Poly (meth) acrylic acid or metal salts thereof, poly 2-hydroxyethyl (meth) acrylate, poly N— (meth) acrylic piperidine, poly (2-ethyloxazoline), polybutyl alcohol or Its partially saponified product, polyethylene oxide, polyethylene oxide and polypropylene oxide Copolymers, poly (ethylene glycol monometa acrylate), poly (ethylene glycol mono acrylate), substituted cellulose derivatives such as methyl cellulose, ethinoresenolose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. Or the copolymer which has these high molecular compounds as a main component is mentioned.
[0016] また、化学物質の吸脱着、溶媒組成の変化、電流や電界の付与に基づく電極反応 による pH値の変化又はイオン強度の変化によって液体への親和性が変化するもの としては、ポリ(メタ)アクリル酸或いはその金属塩、ポリビュルスルホン酸、ポリビュル ベンゼンスルホン酸、ポリ(メタ)アクリルアミドアルキルスルホン酸、ポリマレイン酸或 いはその金属塩、又はこれらの高分子化合物を構成する単量体成分を主成分として 得られた共重合体、ポリビニルアルコール ポリアクリル酸複合体或いはその金属塩 、ポリ(エチレングリコールモノメタアタリレート)、カルボキシメチルセルロースの金属 塩、カルボキシェチルセルロースの金属塩等又はこれらの高分子化合物を主成分と する共重合体が挙げられる。  [0016] In addition, poly (( (Meth) acrylic acid or metal salts thereof, polybulusulfonic acid, polybulu benzenesulfonic acid, poly (meth) acrylamide alkylsulfonic acid, polymaleic acid or metal salts thereof, or monomer components constituting these polymer compounds Copolymer obtained by using as a main component, polyvinyl alcohol, polyacrylic acid complex or metal salt thereof, poly (ethylene glycol monomethacrylate), metal salt of carboxymethylcellulose, metal salt of carboxyethylcellulose, etc. Examples thereof include a copolymer mainly composed of a high molecular compound.
[0017] 上記の化学物質の吸脱着系には、種々の界面活性剤、アミン類、 4級ァミン塩誘導 体、酸、酸塩化物誘導体等のイオン性低分子化合物を、上記した高分子化合物に 添加し、電界や電流を与えて高分子化合物への吸脱着を制御することにより、その 高分子化合物の親和性を変化させることができる。また、 pH値によって親和性を変 化させる場合、例えば、ポリ(メタ)アクリル酸塩等では pHが 2以下では不溶ィ匕し、そ れ以上の pHでは溶解する。この pH変化の好ましい範囲としては、 pHが 1〜12の範 囲である。このような変化は、酸或いはアルカリの添加又は電極反応により行うことが できる。 [0017] For the adsorption / desorption system of the above chemical substances, various surfactants, amines, quaternary amamine salt derivatives, ionic low molecular compounds such as acids, acid chloride derivatives, etc. By adding an electric field and current to control adsorption / desorption to a polymer compound, The affinity of the polymer compound can be changed. In addition, when the affinity is changed depending on the pH value, for example, poly (meth) acrylate is insoluble when the pH is 2 or less and dissolves at a pH higher than that. A preferred range for this pH change is a pH range of 1-12. Such a change can be performed by addition of an acid or alkali or an electrode reaction.
[0018] 光の付与によって親和性が変化するものとしては、光反応によって構造が変化する フォトクロミック性基等の基を有する高分子化合物等があり、具体的には、光によって イオン解裂するトリフ ニルメタン誘導体、スピロピラン誘導体ゃスピロォキサジン誘 導体等の基を有するポリ(メタ)アクリルアミド系、ポリ— N—イソプロピル (メタ)アクリル アミド等のポリ N—アルキル置換 (メタ)アクリルアミド系、 N -ビュルイソブチルアミド、 ポリビュルメチルエーテル等のポリビュルアルキルエーテル系、ポリ(ォキシエチレン ォキシビニルエーテル)系等の各種のものが挙げられる。この光による親和性の変化 は、例えば、上記のトリフエ-ルメタン誘導体では波長 350nm程度の紫外線を照射 すると解裂反応を起こし、水への溶解性が向上し、その反対に、 400〜600nmの光 を照射するとその逆の反応が起こり水への溶解性が低下する。光を付与する場合の 照射光の波長は、 250〜830nmの範囲のものが好ましい。  [0018] Examples of the compound whose affinity is changed by the application of light include a polymer compound having a group such as a photochromic group whose structure is changed by a photoreaction. Nylmethane derivatives, spiropyran derivatives, poly (meth) acrylamides having groups such as spiroxazine derivatives, poly N-alkyl substituted (meth) acrylamides such as poly-N-isopropyl (meth) acrylamide, N-butylisobutyramide, Various types such as polybulu alkyl ethers such as polybulumethyl ether and poly (oxyethyleneoxyvinyl ether) s can be used. This change in affinity due to light is caused by, for example, the above-mentioned trifluoromethane derivative being irradiated with ultraviolet rays having a wavelength of about 350 nm, causing a cleavage reaction and improving the solubility in water. Irradiation causes the opposite reaction and decreases the solubility in water. When applying light, the wavelength of irradiation light is preferably in the range of 250 to 830 nm.
[0019] 電気による酸化'還元反応によって親和性が変化するものとしては、カチオン性高 分子化合物と電子受容性化合物との CT錯体 (電荷移動錯体)があり、具体的には、 ジメチルァミノプロピルアクリルアミド等のアミノ置換 (メタ)アクリルアミド、ジメチルアミ ノエチルアタリレート、ジェチルアミノエチルアタリレート、ジメチルァミノプロピルアタリ レート等の (メタ)アクリル酸ァミノ置換アルキルエステル、ポリスチレン誘導体、ポリビ -ルピリジン誘導体、ポリビュル力ルバゾール誘導体、ポリジメチルアミノスチレン等と 、ベンゾキノン、 7, 7, 8, 8—テトラシァノキノジメタン (TCNQ)、テトラシァノエチレン 、クロラエル、トリ-トロベンゼン、無水マレイン酸やヨウ素等の電子受容性ィ匕合物とを 組み合わせて使用される。この電流の付与による酸化'還元反応又は電界の付与に よる化学物質の吸脱着による親和性の変化は、電極に 1〜200V程度の電圧を印加 することが好ましい。  [0019] As a substance whose affinity is changed by an oxidation-reduction reaction by electricity, there is a CT complex (charge transfer complex) of a cationic high molecular weight compound and an electron accepting compound, specifically, dimethylaminopropyl. Amino-substituted (meth) acrylamides such as acrylamide, (meth) acrylic acid amino-substituted alkyl esters such as dimethylaminoethyl acrylate, jetylaminoethyl acrylate, dimethylaminopropyl acrylate, polystyrene derivatives, polyvinyl pyridine derivatives, polybules Strength rubazole derivatives, polydimethylaminostyrene, etc., and electrons such as benzoquinone, 7, 7, 8, 8—tetracyanquinodimethane (TCNQ), tetracyanethylene, chlorael, tri-trobenzene, maleic anhydride and iodine Used in combination with receptive compounds. For the change in affinity due to adsorption / desorption of a chemical substance due to the oxidation / reduction reaction or the electric field due to the application of electric current, it is preferable to apply a voltage of about 1 to 200 V to the electrode.
[0020] 本発明の刺激応答性ポリマー鎖を有するポリオレフインに使用される液体としては、 水、電解質水溶液、メタノール、エタノール、プロパノール、ブタノール等のアルコー ル類、ケトン、ジメチルホルムアミド、ジメチルァセトアミド、ジメチルスルホォキシド、ァ セトニトリル、プロピレンカーボネート、その他の芳香族系有機溶剤、脂肪族系有機 溶剤又はそれらの混合物が挙げられる。また、その液体には、刺激応答特性の制御 に利用可能な界面活性剤や応答促進剤、溶液の pH変化を促進させるためのピオ口 ゲン誘導体、酸、アルカリ、塩、分散安定剤、酸化防止剤又は紫外線吸収剤等の安 定剤等を添加してもよい。 [0020] As the liquid used in the polyolefin having the stimulus-responsive polymer chain of the present invention, Water, aqueous electrolyte, alcohols such as methanol, ethanol, propanol, butanol, ketones, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, propylene carbonate, other aromatic organic solvents, aliphatic An organic solvent or a mixture thereof may be mentioned. In addition, the liquid contains surfactants and response accelerators that can be used to control stimulus response characteristics, Pioguchi derivatives to promote pH changes in the solution, acids, alkalis, salts, dispersion stabilizers, and antioxidants. A stabilizer such as an agent or an ultraviolet absorber may be added.
[0021] 本発明において、刺激応答性ポリマー鎖を有するポリオレフイン中に含まれる刺激 応答性ポリマーと液体との好まし 、組み合わせとしては、ポリ N—イソプロピル (メタ) アクリルアミド又は N—イソプロピル (メタ)アクリルアミドを主成分とする共重合体と、水 又は水を主成分とする溶液とカゝらなるもの、ポリビニルメチルエーテル又はビュルメチ ルエーテルを主成分とする共重合体と、水又は水を主成分とする溶液とからなるもの[0021] In the present invention, it is preferable that the stimulus-responsive polymer contained in the polyolefin having a stimulus-responsive polymer chain and a liquid include poly N-isopropyl (meth) acrylamide or N-isopropyl (meth) acrylamide. A copolymer containing water or a solution containing water as a main component, a copolymer containing polyvinyl methyl ether or butyl methyl ether as a main component, and water or water as a main component. Consists of solution
、ポリ (メタ)アクリル酸塩又は (メタ)アクリル酸塩を主成分とする共重合体と、水、電解 質水溶液又は水を主成分とする溶液とからなるもの、ジメチルァミノプロピル (メタ)ァ クリルアミド又はそれを主成分とする共重合体の各錯体と、ケトン、ジメチルホルムアミ ド、ジメチルァセトアミド、ジメチルスルホォキシド、ァセトニトリル、プロピレンカーボネ ート又はその他の芳香族系有機溶剤とからなるもの等が挙げられる。 , Poly (meth) acrylate or a copolymer mainly composed of (meth) acrylate and water, an electrolyte aqueous solution or a solution mainly composed of water, dimethylaminopropyl (meth) Each complex of acrylamide or a copolymer based on it, and ketone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, propylene carbonate or other aromatic organic solvent The thing which consists of etc. is mentioned.
[0022] したがって、本発明の刺激応答性ポリマー鎖を有するポリオレフインは、上記液体と 組み合わせることおよび上記記載の適切な刺激を加えることにより、該ォレフイン中 の刺激応答性を有するポリマー部分の液体に対する親和性が変化することが期待さ れる。 Accordingly, the polyolefin having the stimulus-responsive polymer chain of the present invention can be combined with the liquid and applied with the appropriate stimulus as described above, so that the affinity of the polymer moiety having the stimulus-responsive property in the polyolefin to the liquid is increased. Sex is expected to change.
[0023] 本発明に使用されるポリオレフインとしては、 CH =CH— R (Rは水素原子または  [0023] As the polyolefin used in the present invention, CH = CH-R (R is a hydrogen atom or
2  2
炭素原子数 1〜20の炭化水素基)で表される少なくとも 1種類の (X一才レフインを重 合して得られる重合体が挙げられる。このような α—ォレフィンとしては、具体的には 、エチレン、プロピレン、 1-ブテン、 1-ペンテン、 3-メチノレ- 1-ブテン、 1-へキセン、 4- メチル -1-ペンテン、 3-メチル -1-ペンテン、 1-オタテン、 1-デセン、 1-ドデセン、 1-テ トラデセン、 1-へキサデセン、 1-オタタデセン、 1-エイコセンなどの直鎖状または分岐 状の aーォレフインが挙げられる。これらの例示ォレフィン類の中では、エチレン、プ ロピレン、 1-ブテン、 1-へキセン、 4ーメチルー 1 ペンテン、 1—オタテンから選ばれ る少なくても 1種以上のォレフィンを使用することが好ましい。 And a polymer obtained by superimposing X-year-old refin, such as α-olefin, specifically represented by a hydrocarbon group having 1 to 20 carbon atoms. , Ethylene, propylene, 1-butene, 1-pentene, 3-methinole-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, Examples include linear or branched a-olefins such as 1-dodecene, 1-tetradecene, 1-hexadecene, 1-otatadecene, 1-eicosene, etc. Among these exemplified olefins, ethylene, It is preferable to use at least one or more olefins selected from lopyrene, 1-butene, 1-hexene, 4-methyl-1-pentene, and 1-octene.
[0024] 本発明に使用される刺激応答性ポリマー鎖を構成するモノマーとしては、例えば、( メタ)アクリルアミド、 N メチル (メタ)アクリルアミド、 N ェチル (メタ)アクリルアミド、 N プロピル (メタ)アクリルアミド、 N—イソプロピル (メタ)アクリルアミド、 N ブチル( メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド等の N—アルキル置換 (メタ) アクリルアミド類、(メタ)アクリル酸、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸力リウ ムなどの(メタ)アクリル酸の金属塩類、(メタ)アクリル酸 2—ヒドロキシェチル、ビ- ルベンゼンスルホン酸あるいはその金属塩類などが挙げられる。また、刺激応答能に 影響を及ぼさな 、範囲で他のビニルモノマーと共重合しても構わな 、。具体的な例と しては (メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸ブチルなど の(メタ)アクリル酸エステル類、酢酸ビニル、プロピオン酸ビュルなどのビュルエステ ル類、スチレン、アクリロニトリルなどが利用でき、これらの共重合に用いられるモノマ 一の刺激応答性ポリマー鎖中の含量としては、 10モル%以内が好ましい。  [0024] Monomers constituting the stimuli-responsive polymer chain used in the present invention include, for example, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N —N-alkyl-substituted (meth) acrylamides such as isopropyl (meth) acrylamide, N-butyl (meth) acrylamide, N, N dimethyl (meth) acrylamide, (meth) acrylic acid, sodium (meth) acrylate, (meth) Examples thereof include metal salts of (meth) acrylic acid such as lithium acrylate, 2-hydroxyethyl (meth) acrylate, benzene sulfonic acid or metal salts thereof. Further, it may be copolymerized with other vinyl monomers within a range that does not affect the stimulus response ability. Specific examples include (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate, and buresters such as vinyl acetate and butyl propionate. , Styrene, acrylonitrile and the like can be used, and the content of the monomer used in the copolymerization in the stimulus-responsive polymer chain is preferably within 10 mol%.
[0025] 本発明のォレフィン系ポリマーは、刺激応答性ポリマー鎖の割合力 ポリマー全体 の 5〜95重量%の範囲にあることが好ましぐより好ましくは 10〜80重量%、さらに好 ましくは 10〜70重量%である。これにより、本発明のォレフィン系ポリマーは、刺激応 答性と、ポリマーとしての優れた物性や成形性をともに有し、液体への溶解性が高い 刺激応答性ポリマー鎖を有していても、液体中でポリマーとしての自己保持性が失わ れることがない。  [0025] The olefin-based polymer of the present invention is preferably in the range of 5 to 95% by weight of the total force of the stimuli-responsive polymer chain, more preferably 10 to 80% by weight, even more preferably 10 to 70% by weight. As a result, the olefin-based polymer of the present invention has both stimulus responsiveness and excellent physical properties and moldability as a polymer, and has a stimulus-responsive polymer chain that is highly soluble in liquid. The self-holding property as a polymer is not lost in the liquid.
[0026] 本発明で用いられるォレフィン系ポリマーであるブロックまたはグラフト共重合体は、 上記の刺激応答性ポリマー鎖とポリオレフイン鎖とが互いに化学結合により結合され て 、ることを特徴として 、る。このようなブロックまたはグラフト共重合体の製造方法は 特に制限はないが、例えば官能基含有ポリオレフインを原料とした方法が挙げられる 。具体的には(方法 1)官能基含有ポリオレフインを開始剤に利用して上記の刺激応 答性ポリマー鎖を構成するモノマーを重合する方法や、(方法 2)官能基含有ポリオレ フィンをマクロモノマーに用いて上記の刺激応答性ポリマー鎖を構成するモノマーと 共重合する方法、(方法 3)官能基含有ポリオレフイン鎖と刺激応答性ポリマー鎖とを カップリングする方法などが挙げられる。 [0026] The block or graft copolymer which is an olefin-based polymer used in the present invention is characterized in that the stimulus-responsive polymer chain and the polyolefin chain are bonded to each other by a chemical bond. The method for producing such a block or graft copolymer is not particularly limited, and examples thereof include a method using a functional group-containing polyolefin as a raw material. Specifically, (Method 1) a method of polymerizing monomers constituting the above-mentioned stimuli-responsive polymer chain using a functional group-containing polyolefin as an initiator, or (Method 2) a functional group-containing polyolefin as a macromonomer. (Method 3) Functional group-containing polyolefin chain and stimuli-responsive polymer chain Examples include a coupling method.
[0027] (方法 2)および (方法 3)は公知である力 以下に、上記のブロックまたはグラフト共 重合体の製造方法について、特に (方法 1)について、さらに詳しく説明する。  [Method] (Method 2) and (Method 3) are known forces. Hereinafter, the method for producing the block or graft copolymer described above, particularly (Method 1) will be described in more detail.
[0028] (方法 1)は、官能基含有ポリオレフインを開始剤に利用して上記の刺激応答性ポリ マー鎖を構成するモノマーを重合する方法である。この方法にぉ 、て用いられる官 能基含有ポリオレフインとしては、分子鎖の末端または分子鎖中にラジカル重合開始 能あるいはァ-オン重合開始能を有する基を導入したポリオレフインが挙げられる。ラ ジカル重合開始能を有する基としては、例えば Chem. Rev., 101, 3661 (2001)で開示 されているように、ニトロキシドを有する基を結合し熱的な開裂によりラジカルを発生さ せる、いわゆる-トロキシド媒介ラジカル重合法で用いられるものや、 Chem. Rev., 10 1, 2921 (2001)や Chem. Rev., 101, 3689 (2001)で開示されているような、末端ハロゲ ン原子を有する基が結合し、ルテニウムや銅の塩化物またはそれらの遷移金属原子 を有する錯体を添加することによりラジカルを発生させる、 V、わゆる原子移動ラジカル 重合法で用いられるもの、またはァゾ基を有する基や酸素 酸素結合を有する基が 結合し、熱的な開裂によりラジカルを発生させるものなどを例示することができる。ァ 二オン重合開始能を有する基としては、例えばリチウム、カリウムなどのアルカリ金属 のアルコキシドを有する基などを例示することができる。このような基を導入したポリオ レフインの存在下、刺激応答性ポリマー鎖を構成するモノマーを重合することにより、 ポリオレフイン鎖と刺激応答性ポリマー鎖とが化学的に結合されたブロックまたはダラ フトポリマーを製造することができる。  [0028] (Method 1) is a method of polymerizing the monomer constituting the stimulus-responsive polymer chain using a functional group-containing polyolefin as an initiator. Examples of the functional group-containing polyolefin used in this method include polyolefins in which a radical polymerization-initiating ability or a group having a cation-initiating ability is introduced at the end of the molecular chain or in the molecular chain. As the group having radical polymerization initiating ability, for example, as disclosed in Chem. Rev., 101, 3661 (2001), a group having a nitroxide is bonded and a radical is generated by thermal cleavage. -Used in troxide-mediated radical polymerization methods or have terminal halogen atoms as disclosed in Chem. Rev., 10 1, 2921 (2001) and Chem. Rev., 101, 3689 (2001) A group is bonded, and a radical is generated by adding a ruthenium or copper chloride or a complex having a transition metal atom thereof, V, used in a so-called atom transfer radical polymerization method, or having an azo group Examples thereof include those in which radicals and oxygen-bonded groups are bonded and radicals are generated by thermal cleavage. Examples of the group having an ability to initiate diion polymerization include a group having an alkoxide of an alkali metal such as lithium or potassium. By polymerizing the monomers that make up the stimulus-responsive polymer chain in the presence of polyolefin introduced with such a group, a block or draft polymer in which the polyolefin chain and the stimulus-responsive polymer chain are chemically bonded is formed. Can be manufactured.
[0029] 本発明に係るブロックまたはグラフトポリマーは、例えば下記工程(1)〜(3)を順次 実施すること〖こより得られる。 [0029] The block or graft polymer according to the present invention can be obtained, for example, by sequentially performing the following steps (1) to (3).
(1)主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基、カルボキシル基 (1) Hydroxyl group, amino group, epoxy group, carboxyl group at main chain end and Z or side chain
、 酸ハロゲン基、酸無水物基、イソシァネート基力も選ばれる官能基 (A)を有するポ リ ォレフィンを製造する工程。 A process for producing a polyolefin having a functional group (A) in which an acid halogen group, an acid anhydride group, and an isocyanate group strength are also selected.
(2)前記工程で得られた官能基含有ポリオレフインにラジカル重合開始能またはァ- ォ ン重合開始能を有する基を付与することにより、マクロ開始剤に変換する工程。 (2) A step of converting to a macroinitiator by imparting a radical polymerization initiating ability or a cation polymerization initiating ability to the functional group-containing polyolefin obtained in the above step.
(3)前記工程で得られたマクロ開始剤の存在下、刺激応答性ポリマー鎖を構成する モノマーを重合してポリオレフイン鎖に刺激応答性ポリマー鎖を付与する工程。 工程(1)は、主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基、カル ボキシル基、酸ハロゲン基、酸無水物基、イソシァネート基カゝら選ばれる官能基 (A) を有するポリオレフインを製造する工程である。 (3) Construct a stimulus-responsive polymer chain in the presence of the macroinitiator obtained in the above step A step of polymerizing a monomer to give a stimulus-responsive polymer chain to a polyolefin chain. Step (1) has a functional group (A) selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain end and Z or side chain. This is a process for producing polyolefin.
[0030] 本工程で製造される主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基 、カルボキシル基、酸ハロゲン基、酸無水物基、イソシァネート基カゝら選ばれる官能 基 (A)を有するポリオレフインは、例えば、主鎖末端および Zまたは側鎖に炭素 炭 素不飽和結合または周期律表第 13族元素を含む基を有するポリオレフイン中の炭 素 炭素不飽和結合または周期律表第 13族元素を含む基を変換することにより製 造される。 [0030] The functional group (A) selected from hydroxyl group, amino group, epoxy group, carboxyl group, acid halogen group, acid anhydride group, isocyanate group at the main chain end and Z or side chain produced in this step Polyolefins having, for example, carbon-carbon unsaturated bonds or groups in the periodic table in polyolefins having groups containing a carbon-carbon unsaturated bond or a group 13 element in the periodic table at the main chain end and Z or side chain. Manufactured by converting groups containing group elements.
[0031] 本工程で用いられる主鎖末端および Zまたは側鎖に炭素 炭素不飽和結合を有 するポリオレフインは、例えば既知のチーグラーナッタ触媒やメタ口セン触媒などのォ レフイン重合触媒の存在下に炭素原子数 2〜20の exーォレフインを重合または共重 合させる方法、 α—ォレフインとブタジエンや 1 , 5 へキサジェン、 1 , 7—ォクタジェ ン、 5 ビニル 2 ノルボルネンなどの分子内に炭素 炭素不飽和結合を複数有 する化合物とを共重合させる方法により製造することができる。炭素原子数 2〜20の a—ォレフインとしては、エチレン、プロピレン、 1 -ブテン、 3 -メチノレ- 1 -ブテン、 3 - メチル- 1 -ペンテン、 4 -メチル- 1 -ペンテン、 1—へキセン、 1—オタテンなどが好ま しく用いられる。また、ポリオレフインを熱分解することによつても製造できる。  [0031] Polyolefin having a carbon-carbon unsaturated bond at the main chain end and Z or side chain used in this step is a carbon in the presence of an olefin polymerization catalyst such as a known Ziegler-Natta catalyst or a metalocene catalyst. Polymerization or co-polymerization of ex-olefin with 2-20 atoms, α-olefin and butadiene, 1,5-hexagen, 1,7-octagen, 5 vinyl 2-norbornene, etc. It can be produced by a method of copolymerizing with a compound having a plurality of compounds. Examples of a-olefins having 2 to 20 carbon atoms include ethylene, propylene, 1-butene, 3-methinole-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 1-Otaten or the like is preferably used. It can also be produced by thermally decomposing polyolefin.
[0032] 本工程で用いられる主鎖末端および Zまたは側鎖に周期律表第 13族元素を含む 基を有するポリオレフインは、例えば、周期律表第 13族元素を含む化合物の存在下 で公知重合触媒によって上記 α—才レフインを (共)重合する方法や、上記 α—ォレ フィンと周期律表第 13族元素含有ォレフィンィ匕合物とを共重合させる方法、末端お よび Ζまたは側鎖に炭素 炭素不飽和結合を有するポリオレフインにジイソプチルァ ルミ-ゥムノ、イドライドや 9— ΒΒΝなどの周期律表第 13族元素を含む化合物を反応 させる方法などにより製造することができる。  [0032] Polyolefin having a group containing a group 13 element of the periodic table at the main chain end and Z or side chain used in this step is, for example, known polymerization in the presence of a compound containing a group 13 element of the periodic table. A method of (co) polymerizing the α-olefin with the catalyst, a method of copolymerizing the α-olefin and the group 13 element-containing olefin-containing compound of the periodic table, the terminal and the side or side chain. It can be produced by a method in which a polyolefin containing a carbon-carbon unsaturated bond is reacted with a compound containing a group 13 element of the periodic table such as diisoptylluminumno, idride or 9-ΒΒΝ.
[0033] 主鎖末端および Ζまたは側鎖に炭素 炭素不飽和結合または周期律表第 13族 元素を含む基を有するポリオレフインを水酸基、アミノ基、エポキシ基、カルボキシル 基、酸ハロゲン基、酸無水物基、イソシァネート基力も選ばれる官能基 (A)を有する ポリオレフインに変換する方法としては、例えばポリオレフイン中の炭素 炭素不飽和 結合と m クロ口過安息香酸等の有機過酸ィ匕物との反応によりエポキシ基含有ポリ ォレフィンとする方法、 ひ一ァミノメチルホスホン酸、タングステン酸類および相間移 動触媒の存在下でポリオレフイン中の炭素 炭素不飽和結合と過酸化水素との反応 によりエポキシ基含有ポリオレフインとする方法、ポリオレフイン中の周期律表第 13族 元素を含む基と酸素や過酸化水素などとの反応により水酸基含有ポリオレフインとす る方法、ポリオレフイン中の第 13族元素を含む基を 1 ブチルアジドなどのアジドィ匕 合物と反応させ加水分解することによりアミノ基含有ポリオレフインとする方法などが 挙げられる。また、上記の方法で得られた官能基を有するポリオレフインをさらに別の 官能基へ変換する方法も例示される。すなわち、水酸基含有ポリオレフインを酸化し てカルボキシル基含有ポリオレフインとする方法や、エポキシ基含有ポリオレフインを エチレンジァミンやエタノールァミンなどのアミンィ匕合物と反応させてアミノ基含有ポリ ォレフィンとする方法などが好ましく例示される。 [0033] Polyolefin having a group containing a carbon-carbon unsaturated bond or a group 13 element in the periodic table at the end of the main chain and at the side or the side chain is a hydroxyl group, an amino group, an epoxy group, a carboxyl group. Examples of a method for converting to a polyolefin having a functional group (A) having a functional group (A) in which a group, an acid halogen group, an acid anhydride group, and an isocyanate group are also selected include, for example, carbon-carbon unsaturated bonds in polyolefin and organic compounds such as m-peroxybenzoic acid. A method for producing an epoxy group-containing polyolefin by reaction with a peroxyacid, a carbon-carbon unsaturated bond in hydrogen peroxide and hydrogen peroxide in the presence of monoaminomethylphosphonic acid, tungstic acid and a phase transfer catalyst. A method of making an epoxy group-containing polyolefin by reaction, a method of making a hydroxyl group-containing polyolefin by reacting a group containing a group 13 element in the periodic table with oxygen and hydrogen peroxide, etc., and a group 13 element in the polyolefin By reacting the containing group with an azide compound such as 1-butyl azide and hydrolyzing, And a method of the fins. Moreover, the method of converting the polyolefin which has the functional group obtained by said method into another functional group is also illustrated. That is, preferred examples include a method of oxidizing a hydroxyl group-containing polyolefin to a carboxyl group-containing polyolefin, a method of reacting an epoxy group-containing polyolefin with an amine compound such as ethylenediamine or ethanolamine to obtain an amino group-containing polyolefin. Is done.
また、本工程で製造される主鎖末端および Zまたは側鎖に水酸基、アミノ基、ェポ キシ基、カルボキシル基、酸ハロゲン基、酸無水物基、イソシァネート基カゝら選ばれる 官能基 (A)を有するポリオレフインは、例えば、既知のチーグラーナッタ触媒やメタ口 セン触媒などのォレフィン重合触媒を用い、上記 α—ォレフインと官能基を有するォ レフイン類とを共重合することによって製造することも可能である。共重合に用いられ る官能基を有するォレフィン類としては、ァリルアルコール、 4 ペンテン 1ーォー ル、 5 へキセン一 1—オール、 6 ヘプテン一 1—オール、 8 ノネン一 1—オール 、 10—ゥンデセン 1 オールなどの炭化水素部分が直鎖状である不飽和アルコー ル類、 5—へキセン酸、 6—ヘプテン酸、 7—オタテン酸、 8—ノネン酸、 9ーデセン酸 などの不飽和カルボン酸類、ァリルァミン、 5—へキセンアミン、 6—ヘプテンァミンな どの不飽和アミン類、(2, 7—ォクタジェ -ル)コハク酸無水物、ペンタプロべ-ルコ ハク酸無水物および上記不飽和カルボン酸類にある化合物の例示において、カル ボン酸基をカルボン酸無水物基に置き換えた化合物などの不飽和酸無水物類、上 記不飽和カルボン酸類にある化合物の例示にぉ 、て、カルボン酸基をカルボン酸ハ ライド基に置き換えたィ匕合物などの不飽和カルボン酸ノヽライド類、 4 エポキシ 1 ブテン、 5 エポキシ 1 ペンテン、 6 エポキシ 1一へキセン、 7 エポキシ 1 ヘプテン、 8 エポキシ 1 オタテン、 9 エポキシ 1 ノネン、 10 エポキシ 1ーデセン、 11 エポキシ 1 ゥンデセンなどの不飽和エポキシ化合物類、 9 ァリル一 9 ボラビシクロ [3. 3. 1]ノナン、 9 ブト一 3 ェ-ル 9 ボラビシクロ [3 . 3. 1]ノナン、 9 ペントー 4 ェ-ル 9 ボラビシクロ [3. 3. 1]ノナン、 9 へキ サ一 5 ェ-ル 9 ボラビシクロ [3. 3. 1]ノナン、 9 ヘプター 6 ェ-ル 9 ボ ラビシクロ [3. 3. 1]ノナン、 9—ォクト 7 ェ-ル 9 ボラビシクロ [3. 3. 1]ノナ ン、 9 ノナ一 8 ェ-ル 9 ボラビシクロ [3. 3. 1]ノナン、 9 デカ一 9 ェ-ル —9 ボラビシクロ [3. 3. 1]ノナンなどの不飽和ホウ素化合物類などが挙げられる。 In addition, a functional group selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, an isocyanate group at the main chain end and Z or side chain produced in this step (A For example, can be produced by copolymerizing the above-mentioned α-olefin with a functional group of olefins using an olefin polymerization catalyst such as a known Ziegler-Natta catalyst or a metacene catalyst. It is. Examples of olefins having functional groups used for copolymerization include aryl alcohol, 4-pentene 1-ol, 5 hexene 1-ol, 6 heptene 1-ol, 8 nonen 1-ol, 10-undecene. 1 Unsaturated alcohols in which the hydrocarbon moiety is linear, such as all, unsaturated carboxylic acids such as 5-hexenoic acid, 6-heptenoic acid, 7-otatenic acid, 8-nonenoic acid, 9-decenoic acid, Examples of unsaturated amines such as arylamine, 5-hexeneamine, 6-hepteneamine, (2,7-octagel) succinic anhydride, pentapropyl succinic anhydride and the above unsaturated carboxylic acids In the examples of unsaturated acid anhydrides such as compounds in which a carboxylic acid group is replaced with a carboxylic acid anhydride group, and compounds in the above unsaturated carboxylic acids, Carboxylic groups Sanha Unsaturated carboxylic acid halides such as compounds substituted with a hydride group, 4 Epoxy 1 Butene, 5 Epoxy 1 Penten, 6 Epoxy 1 Hexene, 7 Epoxy 1 Heptene, 8 Epoxy 1 Otaten, 9 Epoxy 1 Nonene 10 unsaturated epoxy compounds such as 10 epoxy 1-decene, 11 epoxy 1undecene, 9 aryl 9 9 borabicyclo [3. 3.1] nonane, 9 but 1 3 ell 9 borabicyclo [3.3.1] nonane, 9 Pentoh 4 ell 9 Borabicyclo [3. 3.1] Nonane, 9 Hexane 5 ber 9 Borabicyclo [3. 3.1] Nonane, 9 Hepter 6 ell 9 Borabicyclo [3.3 1] Nonane, 9—oct 7 ell 9 Borabicyclo [3. 3. 1] Nonan, 9 Nona 8 ell 9 Borabicyclo [3. 3.1] Nonane, 9 Deca 9 ell — 9 Unsaturated boron compounds such as borabicyclo [3.3.1] nonane.
[0035] 工程 (2)は、主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基、カル ボキシル基、酸ハロゲン基、酸無水物基、イソシァネート基カゝら選ばれる官能基 (A) を有するポリオレフインにラジカル重合開始能またはァニオン重合開始能を有する基 を付与することにより、マクロ開始剤に変換する工程である。具体的には、例えば、ェ 程(1)で製造された主鎖末端および Zまたは側鎖に官能基 (A)を有するポリオレフィ ンと、該ポリオレフイン中に含まれる官能基 (A)と化学結合しうる官能基 (P)とラジカ ル重合開始能を有する基 (Q)との両方を有する化合物 (R)を反応させる方法や、ェ 程(1)で製造されたポリオレフイン中に含まれる官能基 (A)をァ-オン重合開始能を 有する基 (S)に変換する方法などが挙げられる。  [0035] In step (2), a functional group (A) selected from a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain terminal and Z or side chain. ) Is converted to a macroinitiator by imparting a radical having a radical polymerization initiating ability or an anion polymerization initiating ability to the polyolefin. Specifically, for example, a polyolefin having a functional group (A) at the main chain end and Z or side chain produced in step (1) and a chemical bond with the functional group (A) contained in the polyolefin. A functional group (P) and a compound (R) having both radical polymerization initiating ability (Q) and a functional group contained in the polyolefin produced in step (1). For example, a method of converting (A) into a group (S) having an ability to initiate cation polymerization.
[0036] ポリオレフイン中に含まれる官能基 (A)と化学結合しうる官能基 (P)としては、水酸 基、アミノ基、エポキシ基、カルボキシル基、酸ハロゲン基、酸無水物基、イソシァネ ート基などが挙げられる。官能基 (A)と官能基 (P)との好ま 、組み合わせとしては、 両者が反応して化学結合を形成する組み合わせであれば特に制限はな 、が、官能 基 (A)が水酸基の場合、官能基 (P)としてエポキシ基、カルボキシル基、酸ハロゲン 基、酸無水物基、イソシァネート基が好ましぐ官能基 (A)がエポキシ基の場合、官 能基 (P)として水酸基が好ましぐ官能基 (A)がカルボキシル基または酸ハロゲン基 の場合、官能基 (P)として水酸基、ァミノ基が好ましぐ官能基 (A)がァミノ基の場合、 官能基 (P)としてカルボキシル基、酸ハロゲン基、酸無水物基が好ましい。 [0037] ラジカル重合開始能を有する基 (Q)としては、例えば Trend Polym. Sci. , ( 1996) , 4, 456 の成書で開示されているように、ニトロキシドを有する基を結合 し熱的な開裂によりラジカルを発生させる、いわゆる-トロキシド媒介ラジカル重合法 で用いられるものや Macromolecules, (1995) , 28, 1721 や Science, (199 6) , 272, 866の成書で開示されているような、いわゆる原子移動ラジカル重合法で 用いられるもの等を例示することができる。具体的には、 2, 2, 6, 6—テトラメチルピ ベリジ-ルー 1 ォキシ (TEMPO)基、 4ーヒドロキシ 2, 2, 6, 6—テトラメチルピ ベリジ-ルー 1 ォキシ基、 2, 2, 5, 5—テトラメチルー 1 ピロリジ -ルォキシ基、 3 —ァミノ一 2, 2, 5, 5—テトラメチル一 1—ピロリジ -ルォキシ基、 2, 2, 5, 5—テトラ メチルー 1 ピロリジ -ルォキシ基、ジー t ブチルニトロキシ基などの N— O結合を 有する基や、カルボ-ル基、シァノ基、スルホ-ル基、およびァリール基力 選ばれる 不飽和基を含みかつこれらの不飽和基が炭素原子 1原子を挟んでハロゲン原子に 結合した構造を有する基などが挙げられる。これらの中では、 2, 2, 6, 6—テトラメチ ルビベリジ-ルー 1ーォキシ (TEMPO)基や、カルボ-ル基が炭素原子 1原子を挟 んで塩素原子または臭素原子に結合した構造を有する基が好ましい。 [0036] The functional group (P) that can be chemically bonded to the functional group (A) contained in the polyolefin includes a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group. And the like. A preferred combination of the functional group (A) and the functional group (P) is not particularly limited as long as they are a combination that reacts to form a chemical bond, but when the functional group (A) is a hydroxyl group, Epoxy group, carboxyl group, acid halogen group, acid anhydride group and isocyanate group are preferred as the functional group (P). When the functional group (A) is an epoxy group, a hydroxyl group is preferred as the functional group (P). When the functional group (A) is a carboxyl group or an acid halogen group, the functional group (P) is a hydroxyl group, and the preferred amino group is an amino group. When the functional group (A) is an amino group, the functional group (P) is a carboxyl group, an acid. A halogen group and an acid anhydride group are preferred. [0037] As the group (Q) having radical polymerization initiating ability, as disclosed in, for example, Trend Polym. Sci., (1996), 4, 456, a group having a nitroxide is bonded to form a thermal group. Used in the so-called -Toroxide-mediated radical polymerization method that generates radicals by free cleavage, as disclosed in Macromolecules, (1995), 28, 1721 and Science, (199 6), 272, 866. Examples thereof include those used in the so-called atom transfer radical polymerization method. Specifically, 2, 2, 6, 6-tetramethylpiperidyl-luoxy 1 (TEMPO) group, 4-hydroxy 2, 2, 6, 6-tetramethylpibelidi-lulu 1-oxy group, 2, 2, 5, 5— Tetramethyl-1 pyrrolidi-loxy group, 3 —amino-1, 2, 2, 5, 5-tetramethyl-1- 1-pyrrolidi-loxy group, 2, 2, 5, 5-tetramethyl-1 pyrrolidyl-loxy group, di-t-butylnitroxy A group having an N—O bond such as a group, a carbo group, a cyano group, a sulfole group, and an aryl group, which includes an unsaturated group selected and these unsaturated groups sandwich one carbon atom. And a group having a structure bonded to a halogen atom. Among these, there are 2, 2, 6, 6-tetramethylbi-beli-l-oxy (TEMPO) groups and groups having a structure in which a carbo group is bonded to a chlorine atom or a bromine atom with one carbon atom in between. preferable.
[0038] 主鎖末端および Zまたは側鎖に官能基 (A)を有するポリオレフインと、官能基 (P) とラジカル重合開始能を有する基 (Q)との両方を有する化合物 (R)との反応条件は 、一般に、脱水有機溶媒全般を用いることができるが、好ましくは、トルエン、ベンゼ ン、へキサン、ヘプタン、などのポリオレフインとの親和性の高い炭化水素系の有機 溶媒中で、 0°C〜120°Cの温度範囲で反応を行う。反応は、均一系、不均一系どちら でも良いが、均一系のほうが好ましい。反応が進行しにくい場合は、硫酸や蟻酸ゃパ ラトルエンスルホン酸などのブレンステッド酸または塩化アルミニウムなどのルイス酸 を触媒として用いることがある。反応により水の発生を伴う場合、無水硫酸マグネシゥ ムゃモレキュラーシーブスを添加したり、ディーンスタークを用い還流条件で水を除 いたりすることで効率的に反応を進行させることができる場合もある。  [0038] Reaction of polyolefin having functional group (A) at the main chain end and Z or side chain with compound (R) having both functional group (P) and radical polymerization initiating group (Q) Generally, dehydrated organic solvents can be generally used as the conditions, but preferably 0 ° C in a hydrocarbon-based organic solvent having a high affinity with polyolefin such as toluene, benzene, hexane, heptane, etc. The reaction is carried out in the temperature range of ~ 120 ° C. The reaction may be either a homogeneous system or a heterogeneous system, but a homogeneous system is preferred. If the reaction does not proceed easily, a Bronsted acid such as sulfuric acid or formic acid para-toluenesulfonic acid or a Lewis acid such as aluminum chloride may be used as a catalyst. When water is generated by the reaction, the reaction may be allowed to proceed efficiently by adding anhydrous magnesium sulfate molecular sieves or removing water under reflux conditions using Dean Stark.
[0039] 主鎖末端および Zまたは側鎖に官能基 (A)を有するポリオレフインと、官能基 (P) とラジカル重合開始能を有する基 (Q)との両方を有する化合物 (R)との反応におけ る化合物 (R)の添加量は、酸素原子または窒素原子を含む官能基 (A)を有するポリ ォレフィン中に存在する官能基 (A)に対し、通常 0. 1〜: LOOO倍モルであり、好ましく は 1〜500倍モルである。反応により得られた生成物は、メタノールやアセトンで析出 させ、濾過するとともに化合物 (R)が溶解する溶媒で洗浄することで、容易に未反応 の化合物 (R)を除去することができる。 [0039] Reaction of polyolefin having functional group (A) at the main chain end and Z or side chain with compound (R) having both functional group (P) and radical polymerization initiating ability (Q) The amount of the compound (R) added to the polymer is such that the polyfunctional group (A) containing an oxygen atom or a nitrogen atom is contained. The functional group (A) present in the olefin is usually 0.1 to: LOOO times mol, preferably 1 to 500 times mol. The product obtained by the reaction is precipitated with methanol or acetone, filtered, and washed with a solvent in which compound (R) is dissolved, whereby unreacted compound (R) can be easily removed.
[0040] また、上記工程(1)で製造されたポリオレフイン中に含まれる官能基 (A)をァ-オン 重合開始能を有する基 (S)に変換する方法としては、例えば水酸基を有するォレフィ ン重合体を、金属リチウムや金属カリウムなどのアルカリ金属類、水素化リチウムや水 素化カリウムなどのアルカリ金属の水素化物類、トリメチルアルミニウム、トリェチルァ ルミ二ゥム、トリイソブチルアルミニウム、トリへキシルアルミニウムなどのアルキルアル ミニゥム化合物類などと反応させることによって金属アルコキシド含有ォレフィン重合 体とする方法が挙げられる。 [0040] Further, as a method for converting the functional group (A) contained in the polyolefin produced in the above step (1) into a group (S) having a cation polymerization initiating ability, for example, an olefin having a hydroxyl group Polymers include alkali metals such as lithium metal and potassium, alkali metal hydrides such as lithium hydride and potassium hydride, trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, etc. And a method of preparing a metal alkoxide-containing olefin polymer by reacting with an alkylaluminum compound.
[0041] 上記の方法により、主鎖末端および Zまたは側鎖に官能基 (A)を有するポリオレフ インをマクロ開始剤に変換することができる。 [0041] By the above method, the polyolefin having the functional group (A) at the main chain end and Z or side chain can be converted into a macroinitiator.
[0042] 工程 (3)は、上記工程 (2)により得られたマクロ開始剤の存在下、刺激応答性ポリ マー鎖を構成するモノマーを重合して、上記工程 (2)で得られた生成物に、刺激応 答性ポリマー鎖 (Z)を付与する工程である。  [0042] In the step (3), the monomer constituting the stimulus-responsive polymer chain is polymerized in the presence of the macroinitiator obtained in the step (2), and the product obtained in the step (2) is obtained. This is a process of imparting a stimulus-responsive polymer chain (Z) to an object.
[0043] 本発明で用いられるラジカル重合法としては、例えば前述した-トロキシド媒介ラジ カル重合法や、原子移動ラジカル重合法が挙げられる。本発明における原子移動ラ ジカル重合とは、リビングラジカル重合の一つであり、有機ハロゲンィ匕物又はハロゲ ン化スルホニル化合物を開始剤、遷移金属を中心金属とする金属錯体を触媒として ラジカル重合性単量体をラジカル重合する方法である。具体的には、例えば、 Matyja szewskiら、 Chem. Rev., 101, 2921 (2001)、 WO96/30421号公報、 W097/182 47号公報、 WO98Z01480号公報、 WO98Z40415号公報、 WOOO/156795 号公報、あるいは澤本ら、 Chem. Rev., 101, 3689 (2001)、特開平 8— 41117号公報 、特開平 9— 208616号公報、特開 2000— 264914号公報、特開 2001— 316410 号公報、特開 2002— 80523号公報、特開 2004— 307872号公報など力挙げられ る。用いられる開始剤としては、例えば有機ハロゲンィ匕物ゃノヽロゲンィ匕スルホニルイ匕 合物が挙げられるが、特に炭素 炭素二重結合または炭素 酸素二重結合の α位 に存在する炭素 ハロゲン結合、あるいは一つの炭素原子上に複数のハロゲンが付 カロした構造が開始剤構造として好適である。 [0043] Examples of the radical polymerization method used in the present invention include the above-described -troxide-mediated radical polymerization method and atom transfer radical polymerization method. The atom transfer radical polymerization in the present invention is one of living radical polymerizations, and is a radical polymerizable monomer using an organic halide or halogenated sulfonyl compound as an initiator and a metal complex having a transition metal as a central metal as a catalyst. This is a method of radical polymerization of a monomer. Specifically, for example, Matyja szewski et al., Chem. Rev., 101, 2921 (2001), WO96 / 30421 publication, W097 / 18247 publication, WO98Z01480 publication, WO98Z40415 publication, WOOO / 156795 publication, Alternatively, Sawamoto et al., Chem. Rev., 101, 3689 (2001), JP-A-8-41117, JP-A-9-208616, JP-A-2000-264914, JP-A-2001-316410, JP No. 2002-80523, JP-A No. 2004-307872, etc. Examples of the initiator to be used include organic halogen compounds, nonogeny sulfonyl compounds, and in particular, the α- position of a carbon-carbon double bond or a carbon-oxygen double bond. As the initiator structure, a structure in which a carbon-halogen bond existing in or a plurality of halogens on one carbon atom is attached is suitable.
[0044] 重合触媒として用いられる遷移金属錯体としては特に限定されな 、が、好ましくは 周期律表第 7族、 8族、 9族、 10族、または 11族元素を中心金属とする金属錯体であ る。更に好ましいものとして、 0価の銅、 1価の銅、 2価のルテニウム、 2価の鉄又は 2 価のニッケルの錯体が挙げられる。なかでも、銅および鉄の錯体が好ましい。 1価の 銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シ アン化第一銅、酸化第一銅、過塩素酸第一銅等である。銅化合物を用いる場合、触 媒活性を高めるために 2, 2' —ビビリジル若しくはその誘導体、 1, 10—フエナント口 リン若しくはその誘導体、又はテトラメチルエチレンジァミン、ペンタメチルジェチレン トリァミン若しくはへキサメチルトリス(2—アミノエチル)ァミン等のポリアミン等が配位 子として添加される。また、 2価の塩化ルテニウムのトリストリフエ-ルホスフィン錯体( RuCl (PPh ) )も触媒として好適である。ルテニウム化合物を触媒として用いる場合 [0044] The transition metal complex used as the polymerization catalyst is not particularly limited, but is preferably a metal complex having a central metal of a Group 7, 8, 9, 10, or 11 element of the periodic table. is there. More preferable examples include a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron or divalent nickel. Of these, copper and iron complexes are preferred. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. It is. In the case of using a copper compound, 2, 2′-bibilidyl or a derivative thereof, 1, 10-phenanthoxylin or a derivative thereof, or tetramethylethylenediamine, pentamethyljetylenetriamine or hexane is used to increase the catalytic activity. Polyamines such as methyltris (2-aminoethyl) amine are added as ligands. A tristriphenyl-phosphine complex of divalent ruthenium chloride (RuCl (PPh)) is also suitable as a catalyst. When using ruthenium compounds as catalysts
2 3 3 2 3 3
は、活性化剤としてアルミニウムアルコキシド類が添加される。更に、 2価の鉄のピスト リフエ-ルホスフィン錯体(FeCl (PPh ) ) , 2価のニッケルのビストリフエ-ルホスフィ  In this case, aluminum alkoxides are added as activators. In addition, divalent iron piston phosphine phosphine complex (FeCl (PPh)), divalent nickel bistriphenyl phosphite.
2 3 2  2 3 2
ン錯体(NiCl (PPh ) )、及び、 2価のニッケルのビストリブチルホスフィン錯体(NiBr  Complex (NiCl (PPh)) and divalent nickel bistributylphosphine complex (NiBr
2 3 2  2 3 2
(PBu ) )も、触媒として好適である。  (PBu)) is also suitable as a catalyst.
2 3 2  2 3 2
[0045] 本発明の製造方法において、重合方法は特に限定されず、塊状重合、溶液重合、 懸濁重合、乳化重合、塊状'懸濁重合などを適用することができる。本発明のラジカ ル重合にお ヽて使用できる溶媒としては、反応を阻害しな!ヽものであれば何れでも 使用することができる力 例えば、具体例として、ベンゼン、トルエンおよびキシレン等 の芳香族炭化水素系溶媒、ペンタン、へキサン、ヘプタン、オクタン、ノナンおよびデ カン等の脂肪族炭化水素系溶媒、シクロへキサン、メチルシクロへキサンおよびデカ ヒドロナフタレンのような脂環族炭化水素系溶媒、クロ口ベンゼン、ジクロロベンゼン、 トリクロ口ベンゼン、塩化メチレン、クロ口ホルム、四塩化炭素およびテトラクロルェチレ ン等の塩素化炭化水素系溶媒、メタノール、エタノール、 n_プロパノール、 。—プロパ ノール、 n-ブタノール、 sec-ブタノールおよび tert-ブタノール等のアルコール系溶媒 、アセトン、メチルェチルケトンおよびメチルイソブチルケトン等のケトン系溶媒;酢酸 ェチルおよびジメチルフタレート等のエステル系溶媒、ジメチルエーテル、ジェチル エーテル、ジ- n-ァミルエーテル、テトラヒドロフランおよびジォキシァニソールのような エーテル系溶媒等を挙げることができる。また、水を溶媒として、懸濁重合、乳化重 合することもできる。これらの溶媒は、単独でもまたは 2種以上を混合して使用しても よい。また、これらの溶媒の使用によって、反応液が均一相となることが好ましいが、 不均一な複数の相となっても構わない。 [0045] In the production method of the present invention, the polymerization method is not particularly limited, and bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, bulk 'suspension polymerization, and the like can be applied. As the solvent that can be used in the radical polymerization of the present invention, any solvent that does not inhibit the reaction can be used. For example, as specific examples, aromatics such as benzene, toluene, and xylene are used. Hydrocarbon solvents, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and decahydronaphthalene, chlorine mouth, dichlorobenzene, trichloroethane port benzene, methylene chloride, black hole Holm, four chlorinated hydrocarbon solvents such as carbon tetrachloride and tetrachlorethylene E Chile down, methanol, ethanol, n _ propanol. —Alcohol solvents such as propanol, n-butanol, sec-butanol and tert-butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; acetic acid Examples thereof include ester solvents such as ethyl and dimethyl phthalate, and ether solvents such as dimethyl ether, jetyl ether, di-n-amyl ether, tetrahydrofuran and dioxyanisole. Further, suspension polymerization and emulsion polymerization can be carried out using water as a solvent. These solvents may be used alone or in combination of two or more. Moreover, it is preferable that the reaction solution becomes a homogeneous phase by using these solvents, but a plurality of non-uniform phases may be used.
[0046] 反応温度はラジカル重合反応が進行する温度であれば何れでも構わず、所望する 重合体の重合度、使用するラジカル重合開始剤および溶媒の種類や量によって一 様ではないが、通常、 100°C〜250°Cである。好ましくは— 50°C〜180°Cであり、 更に好ましくは 0°C〜160°Cである。反応は場合によって減圧、常圧または加圧の何 れでも実施できる。上記重合反応は、窒素やアルゴン等の不活性ガス雰囲気下で行 うことが好ましい。 [0046] The reaction temperature may be any temperature as long as the radical polymerization reaction proceeds, and it is not uniform depending on the degree of polymerization of the desired polymer, the type and amount of the radical polymerization initiator and the solvent to be used. 100 ° C to 250 ° C. Preferably, it is −50 ° C. to 180 ° C., more preferably 0 ° C. to 160 ° C. In some cases, the reaction can be carried out under reduced pressure, normal pressure or increased pressure. The polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
[0047] 本発明で用いられるラジカル重合においては、使用できる溶媒としては、例えば、 へキサン、ヘプタンなどの脂肪族炭化水素、シクロペンタン、シクロへキサンなどの脂 環式炭化水素、ベンゼン、トルエンなどの芳香族炭化水素、ジェチルエーテル、ジォ キサン、テトラヒドロフラン (THF)、モノグリム、ジグリムなどのエーテノレ系溶媒などが 用いられる。これらの溶媒は、 1種単独または 2種以上組み合わせて用いることができ る。中でも、芳香族炭化水素とエーテル系溶媒が好ましく用いられる。重合は、通常 100°C〜100°C、好ましくは 80°C〜80°C、より好ましくは— 70°C〜70°Cの重合 温度で、 1分間〜 500時間、好ましくは 10分間〜 300時間、より好ましくは 15分間〜 150時間かけて実施される。  [0047] In the radical polymerization used in the present invention, examples of the solvent that can be used include aliphatic hydrocarbons such as hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, benzene, and toluene. Aetherole solvents such as aromatic hydrocarbons, jetyl ether, dioxane, tetrahydrofuran (THF), monoglyme and diglyme are used. These solvents can be used alone or in combination of two or more. Of these, aromatic hydrocarbons and ether solvents are preferably used. The polymerization is usually 100 ° C to 100 ° C, preferably 80 ° C to 80 ° C, more preferably — at a polymerization temperature of 70 ° C to 70 ° C, for 1 minute to 500 hours, preferably 10 minutes to 300 It is carried out over a period of time, more preferably 15 minutes to 150 hours.
[0048] また、(方法 1)は、次に示される工程 (4)、 (5)を順次実施することによつても本発 明に係るポリオレフインであるブロックまたはグラフトポリマーを製造することができる。 [0048] In addition, (Method 1) can also produce the block or graft polymer which is the polyolefin according to the present invention by sequentially performing the following steps (4) and (5). .
(4)ポリオレフインとハロゲン化剤との反応によりハロゲン変性ポリオレフインを製造 する工程。 (4) A process for producing halogen-modified polyolefin by reaction of polyolefin with a halogenating agent.
(5)前記工程で得られたハロゲン変性ポリオレフインの存在下、刺激応答性ポリマー 鎖 を構成するモノマーを重合してポリオレフイン鎖に刺激応答性ポリマー鎖を付与 する工程。 [0049] 工程 (4)は、ポリオレフインとハロゲン化剤との反応によりハロゲン変性ポリオレフィ ンを製造する工程である。 (5) A step of polymerizing monomers constituting the stimulus-responsive polymer chain in the presence of the halogen-modified polyolefin obtained in the above step to give the stimulus-responsive polymer chain to the polyolefin chain. [0049] Step (4) is a step of producing a halogen-modified polyolefin by reaction of polyolefin with a halogenating agent.
[0050] 本工程で使用されるポリオレフインとしては、例えば、下記 (A1)〜 (A5)で示される ものが挙げられる。 [0050] Examples of the polyolefin used in this step include those represented by the following (A1) to (A5).
(Al) CH =CH-C H (xは 0または正の整数)で示される α—ォレフイン化合物の  (Al) CH = CH-C H (where x is 0 or a positive integer)
2 2χ+1  2 2χ + 1
単独重合体または共重合体。  Homopolymer or copolymer.
(A2) CH =CH-C H (xは 0または正の整数)で示される α—ォレフイン化合物と  (A2) an α-olefin compound represented by CH = CH-C H (x is 0 or a positive integer) and
2 2χ+1  2 2χ + 1
芳香環を有するモノォレフィンィ匕合物との共重合体。  A copolymer with a monoolefin-containing compound having an aromatic ring.
(A3) CH =CH-C H (xは 0または正の整数)で示される α—ォレフイン化合物と  (A3) an α-olefin compound represented by CH = CH-C H (x is 0 or a positive integer) and
2 2χ+1  2 2χ + 1
下記一般式(1)で表される環状モノォレフィン化合物との共重合体。  A copolymer with a cyclic monoolefin compound represented by the following general formula (1).
(A4) CH =CH-C H (xは 0または正の整数)で示される α—ォレフイン化合物と  (A4) an α-olefin compound represented by CH = CH-C H (x is 0 or a positive integer) and
2 2χ+1  2 2χ + 1
不飽和カルボン酸またはその誘導体とのランダム共重合体。  Random copolymers with unsaturated carboxylic acids or their derivatives.
(Α5)前記 (A1)〜 (Α4)で表される重合体を不飽和カルボン酸またはその誘導体に より、変性したポリオレフイン。  (Α5) A polyolefin obtained by modifying the polymer represented by (A1) to (Α4) with an unsaturated carboxylic acid or a derivative thereof.
[0051] [化 1] [0051] [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
(式(1)において、 ηは 0または 1であり、 mは 0または正の整数であり、 qは 0または 1で あり、 R1〜1^ならびに Raおよび Rbは、それぞれ独立に、水素原子、ハロゲン原子お よび炭化水素基よりなる群力も選ばれる原子または基を表し、 R15〜R18は、互いに結 合して単環または多環を形成していてもよい。 ) (In the formula (1), η is 0 or 1, m is 0 or a positive integer, q is 0 or 1, R 1 to 1 ^ and R a and R b are independently (A group force consisting of a hydrogen atom, a halogen atom and a hydrocarbon group also represents an atom or group selected, and R 15 to R 18 may be bonded to each other to form a monocyclic or polycyclic ring.)
本工程 (4)で製造されるハロゲン変性ポリオレフインは、上記のようなポリオレフイン とハロゲン化剤との反応により製造される。このようにして得られたハロゲン変性ポリオ レフインのハロゲン含有率は、 0. 01〜70重量0 /0、好ましくは 0. 02〜50重量0 /0、さら に好ましくは 0. 05〜30重量%である。本発明では、このようなハロゲンは、フッ素、 塩素、臭素またはヨウ素力 選ばれ、これらの組み合わせであってもよい。 The halogen-modified polyolefin produced in this step (4) is a polyolefin as described above. And a halogenating agent. Halogen content of the thus modification by halogen polio Refuin obtained is from 0.01 to 70 weight 0/0, preferably from 0.02 to 50 weight 0/0, preferably a further 0.05 to 30 wt% It is. In the present invention, such halogen is selected from fluorine, chlorine, bromine or iodine, and may be a combination thereof.
[0053] 本工程 (4)で用いられるハロゲン化剤としては、上記ポリオレフインをハロゲン化し てハロゲン変性ポリオレフインを製造できるものであれば特に制限はな 、が、具体的 には、塩素、臭素、ヨウ素、三塩化リン、三臭化リン、三ヨウ化リン、五塩化リン、五臭 化リン、五ヨウ化リン、塩ィ匕チォ -ル、塩化スルフリル、臭化チォ -ル、 N クロロスク シンイミド、 N—ブロモスクシンイミド、 N ブロモカプロラタタム、 N—ブロモフタルイミ ド、 1, 3 ジブ口モー 5, 5 ジメチルヒダントイン、 N クロログルタルイミド、 N—ブロ モグルタルイミド、 N, Ν '—ジブ口モイソシァヌル酸、 Ν ブロモアセトアミド、 Ν ブロ モカルバミド酸エステル、ジォキサンジブ口ミド、フエ-ルトリメチルアンモ-ゥムトリブ 口ミド、ピリジ-ゥムヒドロブロミドペルプロミド、ピロリドンヒドロトリブ口ミド、次亜塩素酸 t プチル、次亜臭素酸 t プチル、塩化銅 (II)、臭化銅 (II)、塩ィ匕鉄 (III)、塩化ォキ サリル、 IBrなどが挙げられる。これらのうち、好ましくは塩素、臭素、 N—クロロスクシ ンイミド、 N ブロモスクシンイミド、 N ブロモカプロラタタム、 N ブロモフタノレイミド 、 1, 3 ジブ口モー 5, 5 ジメチルヒダントイン、 N—クロログルタルイミド、 N ブロモ グルタルイミド、 N, Ν '—ジブ口モイソシァヌル酸であり、より好ましくは臭素および、 Ν ーブロモスクシンイミド、 Ν ブロモカプロラタタム、 Ν ブロモフタルイミド、 1, 3 ジ ブロモー 5, 5—ジメチルヒダントイン、 Ν ブロモグルタルイミド、 Ν, N '—ジブ口モイ ソシァヌル酸などの Ν— Br結合を有する化合物である。  [0053] The halogenating agent used in this step (4) is not particularly limited as long as it can produce a halogen-modified polyolefin by halogenating the above-mentioned polyolefin. Specifically, chlorine, bromine, iodine Phosphorus trichloride, Phosphorus tribromide, Phosphorus triiodide, Phosphorus pentachloride, Phosphorus pentabromide, Phosphorus pentaiodide, Chloride thiol, Sulfuryl chloride, Thiol bromide, N Chlorosuccinimide, N —Bromosuccinimide, N-bromocaprolatatam, N-bromophthalimide, 1,3 dib-mouthed Mo 5,5 Dimethylhydantoin, N-chloroglutarimide, N-bromoglutarimide, N, Ν '--Dib mouthed moisocyanuric acid, Ν Bromoacetamide, ブ ロ Bromocarbamic acid ester, Dioxanedibuguchimide, Phenoltrimethylammomutribu Mouthamide, Pyridihum hydrobromide Perpromide, pyrrolidone hydrotrib mouthamide, t-butyl hypochlorite, t-butyl hypobromite, copper (II) chloride, copper (II) bromide, salt iron (III), oxalyl chloride, IBr, etc. Is mentioned. Of these, chlorine, bromine, N-chlorosuccinimide, N bromosuccinimide, N bromocaprolatatam, N bromophthalanolimide, 1,3 dib-mouthed 5,5 dimethylhydantoin, N-chloroglutarimide, N Bromoglutarimide, N, Ν '—Dibu-mouthed moisocyanuric acid, more preferably bromine and Ν-bromosuccinimide, ブ ロ モ bromocaprolatatam, Ν bromophthalimide, 1,3 dibromo-5,5-dimethylhydantoin It is a compound having a Br-Br bond such as bromoglutarimide, Ν, N'-dib mouth moisocyanuric acid.
[0054] ポリオレフインとハロゲン化剤との反応は、不活性ガス雰囲気下で行うことが好まし い。不活性ガスとしては、例えば窒素、ァノレゴン、ヘリウムなどの不活性ガスが挙げら れる。また、本発明の反応には、必要に応じて溶媒を使用することができる。溶媒とし ては反応を阻害しないものであれば何れでも使用することができるが、例えば、具体 例として、ベンゼン、トルエンおよびキシレン等の芳香族炭化水素系溶媒、ペンタン、 へキサン、ヘプタン、オクタン、ノナンおよびデカン等の脂肪族炭化水素系溶媒、シク 口へキサン、メチルシクロへキサンおよびデカヒドロナフタレンのような脂環族炭化水 素系溶媒、クロ口ベンゼン、ジクロロベンゼン、トリクロ口ベンゼン、塩化メチレン、クロ 口ホルム、四塩ィ匕炭素およびテトラクロロエチレン、テトラクロロェタン等の塩素化炭化 水素系溶媒、メタノール、エタノール、 n_プロパノール、 iso_プロパノール、 n_ブタノ一 ル、 sec-ブタノールおよび tert-ブタノール等のアルコール系溶媒、アセトン、メチルェ チルケトンおよびメチルイソブチルケトン等のケトン系溶媒;酢酸ェチルおよびジメチ ルフタレート等のエステル系溶媒、ジメチルエーテル、ジェチルエーテル、ジ- n-アミ ルエーテル、テトラヒドロフランおよびジォキシァ-ソールのようなエーテル系溶媒等 を挙げることができる。好ましくは、ペンタン、へキサン、ヘプタン、オクタン、ノナンお よびデカン等の脂肪族炭化水素系溶媒、シクロへキサン、メチルシクロへキサンおよ びデカヒドロナフタレンのような脂環族炭化水素系溶媒、クロ口ベンゼン、ジクロロべ ンゼン、トリクロ口ベンゼン、塩化メチレン、クロ口ホルム、四塩ィ匕炭素およびテトラクロ 口エチレン、テトラクロロェタン等の塩素化炭化水素系溶媒が挙げられる。これらの溶 媒は、単独でもまたは 2種以上を混合して使用してもよい。また、これらの溶媒の使用 によって、反応液が均一相となることが好ましいが、不均一な複数の相となっても構 わない。 [0054] The reaction between the polyolefin and the halogenating agent is preferably carried out in an inert gas atmosphere. Examples of the inert gas include inert gases such as nitrogen, anoregon, and helium. Moreover, a solvent can be used for reaction of this invention as needed. Any solvent can be used as long as it does not inhibit the reaction. For example, aromatic hydrocarbon solvents such as benzene, toluene and xylene, pentane, hexane, heptane, octane, Aliphatic hydrocarbon solvents such as nonane and decane, alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and decahydronaphthalene Motokei solvent, black hole, dichlorobenzene, trichloroethane port benzene, methylene chloride, black hole Holm, Yonshioi匕炭arsenide and tetrachlorethylene, chlorinated hydrocarbon solvents such as tetrachloro E Tan, methanol, ethanol, n _ propanol , iso _ propanol, n _ butanol one Le, alcohol solvents such as sec- butanol and tert- butanol, acetone, Mechirue ethyl ketone and ketone solvents such as methyl isobutyl ketone; ester solvents such as acetic Echiru and dimethylcarbamoyl Rufutareto, dimethyl ether And ether solvents such as jetyl ether, di-n-amyl ether, tetrahydrofuran and dioxy-sol. Preferably, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane, alicyclic hydrocarbon solvents such as cyclohexane, methylcyclohexane and decahydronaphthalene, chlorine Examples thereof include chlorinated hydrocarbon solvents such as benzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, tetrachlorocarbon, tetrachloroethylene, and tetrachloroethane. These solvents may be used alone or in admixture of two or more. Moreover, it is preferable that the reaction liquid becomes a homogeneous phase by using these solvents, but a plurality of non-uniform phases may be used.
ハロゲン化剤との反応においては、反応を促進するために必要に応じてラジカル開 始剤を添加することもできる。ラジカル開始剤としては、例えば、ァゾビスイソプチ口- トリル、ァゾビス- 2,4-ジメチルバレロニトリル、ァゾビスシクロへキサンカルボ二トリル、 ァゾビス- 2-アミジノプロパン塩酸塩、ァゾビスイソ酪酸ジメチル、ァゾビスイソブチル アミジン塩酸塩または 4,4'-ァゾビス- 4-シァノ吉草酸等のァゾ系開始剤、過酸化ベン ゾィル、 2,4-ジクロル過酸化べンゾィル、過酸化ジ- tert-ブチル、過酸化ラウロイル、 過酸化ァセチル、過酸化ジイソプロピルジカーボネート、タメンヒドロペルォキシド、 te rt-ブチルヒドロペルォキシド、ジクミルペルォキシド、 p-メンタンヒドロペルォキシド、ピ ナンヒドロペルォキシド、メチルェチルケトンペルォキシド、シクロへキサノンペルォキ シド、ジイソプロピルペルォキシジカルボナート、 tert-ブチルペルォキシラウレート、 ジ -tert-ブチルペルォキシフタレート、ジベンジルォキシドまたは 2,5-ジメチルへキサ ン -2,5-ジヒドロペルォキシド等の過酸化物系開始剤、または過酸化ベンゾィル -Ν,Ν -ジメチルァ-リンまたはペルォキソ二硫酸—亜硫酸水素ナトリウム等のレドックス系 開始剤等が挙げられる。これらのうち、ァゾ系開始剤または過酸ィ匕物系開始剤が好 ましぐ更に好ましくは、過酸化べンゾィル、過酸化ジ- tert-ブチル、過酸化ラウロイ ル、過酸化ァセチル、過酸化ジイソプロピルジカーボネート、タメンヒドロペルォキシド 、 tert-ブチルヒドロペルォキシド、ジクミルペルォキシド、ァゾビスイソブチ口-トリル、 ァゾビス- 2,4-ジメチルバレロニトリル、ァゾビスシクロへキサンカルボ二トリル、ァゾビ スイソ酪酸ジメチルである。これらのラジカル開始剤は、単独でもまたは 2種以上を同 時にまたは順次に使用することもできる。 In the reaction with the halogenating agent, a radical initiator may be added as necessary to accelerate the reaction. Radical initiators include, for example, azobisisoptyl-tolyl, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, azobis-2-amidinopropane hydrochloride, dimethyl azobisisobutyrate, azobisisobutylamidine hydrochloride Azo initiators such as 4,4'-azobis-4-cyananovaleric acid, benzoyl peroxide, 2,4-dichloroperoxybenzoic acid, di-tert-butyl peroxide, lauroyl peroxide, acetylyl peroxide , Diisopropyl peroxide, tamen hydroperoxide, tert-butyl hydroperoxide, dicumyl peroxide, p-menthane hydroperoxide, pinan hydroperoxide, methyl ethyl ketone peroxide Xoxide, cyclohexanone peroxide, diisopropylperoxydicarbonate, tert-butyl Peroxide initiators such as oxylaurate, di-tert-butylperoxyphthalate, dibenzyloxide or 2,5-dimethylhexane-2,5-dihydroperoxide, or benzoyl peroxide Redox systems such as -Ν, Ν -dimethylaline or peroxodisulfuric acid-sodium hydrogen sulfite An initiator etc. are mentioned. Of these, azo initiators or peroxide initiators are preferable, and benzoyl peroxide, di-tert-butyl peroxide, lauryl peroxide, acetyl acetyl peroxide, peroxides are more preferable. Diisopropyl dicarbonate, tamen hydroperoxide, tert-butyl hydroperoxide, dicumyl peroxide, azobisisobutyoxy-tolyl, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitryl, dimethyl azobisisobutyrate It is. These radical initiators can be used alone or in combination of two or more at the same time.
[0056] また、ポリオレフインとハロゲン化剤とを反応させる方法については、従来公知の種 々の方法が採用できる。例えば、ポリオレフインを溶媒に懸濁させ、あるいは溶解させ て、通常— 80°C〜250°Cの温度、好ましくは室温以上溶媒の沸点以下の温度で、 ノ、ロゲン化剤と必要に応じてラジカル開始剤などを添加混合して反応させる方法、あ るいはポリオレフインをその融点以上、例えば、 180〜300°Cの温度で溶融混練下に ノ、ロゲン化剤と必要に応じてラジカル開始剤とを接触させる方法などが挙げられる。 [0056] As the method of reacting the polyolefin and the halogenating agent, various conventionally known methods can be employed. For example, polyolefin is suspended or dissolved in a solvent, usually at a temperature of 80 ° C to 250 ° C, preferably at a temperature not lower than room temperature and not higher than the boiling point of the solvent. A method in which an initiator is added and mixed, or the polyolefin is melted and kneaded at a temperature not lower than its melting point, for example, 180 to 300 ° C, with a rogenizing agent and, if necessary, a radical initiator. The method of making it contact is mentioned.
[0057] 以上の方法により、ハロゲン変性ポリオレフインが製造される。  [0057] A halogen-modified polyolefin is produced by the above method.
[0058] 工程 (5)は、前記工程で得られたハロゲン変性ポリオレフインの存在下、刺激応答 性ポリマー鎖を構成するモノマーを重合してポリオレフイン鎖に刺激応答性ポリマー 鎖を付与する工程である。 [0058] Step (5) is a step of polymerizing the monomer constituting the stimulus-responsive polymer chain in the presence of the halogen-modified polyolefin obtained in the above step to give the stimulus-responsive polymer chain to the polyolefin chain.
[0059] 本工程 (5)にお 、て、前記工程で得られたノヽロゲン変性ポリオレフインの存在下、 刺激応答性ポリマー鎖を構成するモノマーを重合する方法に特に制限はないが、例 えば、上記工程(3)で例示した原子移動ラジカル重合法が好ましく用いられる。本ェ 程のハロゲン変性ポリオレフインにおいては、炭素 炭素二重結合の α位に存在す る炭素 ハロゲン結合、あるいは一つの炭素原子上に複数のハロゲンが付加した構 造を開始剤構造として利用することができる。 [0059] In this step (5), there is no particular limitation on the method for polymerizing the monomer constituting the stimulus-responsive polymer chain in the presence of the neuron-modified polyolefin obtained in the above step. The atom transfer radical polymerization method exemplified in the above step (3) is preferably used. In the halogen-modified polyolefins of this kind, it is possible to use a carbon halogen bond existing at the α- position of a carbon-carbon double bond or a structure in which multiple halogens are added on one carbon atom as an initiator structure. it can.
(方法 2)は、官能基含有ポリオレフインをマクロモノマーに用いて上記の刺激応答性 ポリマー鎖を構成するモノマーと共重合する方法である。この方法にぉ 、て用いられ る官能基含有ポリオレフインとしては、分子鎖の末端あるいは分子鎖中に重合性の官 能基、例えば (メタ)アタリロイル基ゃスチリル基などの炭素 炭素二重結合を有する 基を導入したポリオレフインが挙げられ、具体的には、例えば特開 2004— 143403 号公報ゃ特開 2004— 269642号公報で開示されて ヽる構造および製造方法を例 示することができる。このような基を導入したポリオレフインと刺激応答性ポリマー鎖を 構成するモノマーとを共重合することにより、ポリオレフイン鎖と刺激応答性ポリマー 鎖とが化学的に結合されたグラフトポリマーを製造することができる。上記の官能基 含有ポリオレフインと刺激応答性ポリマー鎖を構成するモノマーとを共重合する方法 については、例えば、ラジカル重合またはァ-オン重合、配位重合等公知の重合法 を利用することができる。 (Method 2) is a method in which a functional group-containing polyolefin is used as a macromonomer and copolymerized with the monomer constituting the stimulus-responsive polymer chain. In this method, the functional group-containing polyolefin used in this method has a carbon-carbon double bond such as a polymerizable functional group at the end of the molecular chain or in the molecular chain, for example, a (meth) atalyloyl group or a styryl group. Examples include polyolefins into which groups have been introduced. Specific examples include, for example, JP-A-2004-143403. The structure and the manufacturing method disclosed in Japanese Patent Laid-Open No. 2004-269642 can be exemplified. By copolymerizing such a group-introduced polyolefin and the monomer constituting the stimulus-responsive polymer chain, a graft polymer in which the polyolefin chain and the stimulus-responsive polymer chain are chemically bonded can be produced. . As a method for copolymerizing the functional group-containing polyolefin and the monomer constituting the stimulus-responsive polymer chain, for example, a known polymerization method such as radical polymerization, ion polymerization, or coordination polymerization can be used.
[0060] ラジカル重合においては、開始剤として、通常のラジカル重合において用いられる 開始剤はいずれも使用することができ、例えば、ァゾビスイソブチ口-トリル、ァゾビス - 2, 4ージメチルバレロニトリル、ァゾビスシクロへキサンカルボ二トリル、ァゾビス 2 アミジノプロパン塩酸塩、ァゾビスイソ酪酸ジメチル、ァゾビスイソブチルアミジン塩 酸塩または 4, 4'ーァゾビスー4 シァノ吉草酸等のァゾ系開始剤、過酸化べンゾィ ル、 2, 4 ジクロル過酸化べンゾィル、過酸化ジー tert—ブチル、過酸化ラウロイル 、過酸化ァセチル、過酸化ジイソプロピルジカーボネート、タメンヒドロペルォキシド、 t ert—ブチルヒドロペルォキシド、ジクミルペルォキシド、 p—メンタンヒドロペルォキシ ド、ピナンヒドロペルォキシド、メチルェチルケトンペルォキシド、シクロへキサノンぺ ルォキシド、ジイソプロピルペルォキシジカルボナート、 tert ブチルペルォキシラウ レート、ジー tert ブチルペルォキシフタレート、ジベンジルォキシドまたは 2, 5 ジ メチルへキサン 2, 5 ジヒドロペルォキシド等の過酸ィ匕物系開始剤、または過酸 化べンゾィルー N, N ジメチルァ-リンまたはペルォキソ二硫酸 亜硫酸水素ナト リウム等のレドックス系開始剤等が挙げられる。 [0060] In the radical polymerization, any initiator used in ordinary radical polymerization can be used as the initiator, such as azobisisobutyoxy-tolyl, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbox. Nitril, azobis 2 amidinopropane hydrochloride, dimethyl azobisisobutyrate, azobisisobutylamidine hydrochloride or 4,4'-azobis-4 cyanovaleric acid, azo initiators, benzoyl peroxide, 2, 4 dichloro Benzoyl peroxide, di-tert-butyl peroxide, lauroyl peroxide, acetyl peroxide, diisopropyl dicarbonate, tamen hydroperoxide, t ert-butyl hydroperoxide, dicumyl peroxide, p- Menthane hydroperoxide, pinane hydroperoxide, methylethyl Tonperoxide, cyclohexanone peroxide, diisopropylperoxydicarbonate, tert-butylperoxylaurate, di-tert-butylperoxyphthalate, dibenzyloxide or 2,5-dimethylhexane 2,5-dihydroperoxide Examples thereof include peroxyacid-based initiators such as xoxide, or redox-based initiators such as peroxybenzoic acid N, N dimethylaline or peroxodisulfuric acid sodium hydrogen sulfite.
[0061] これらのうち、ァゾ系開始剤または過酸ィ匕物系開始剤が好ましぐ更に好ましくは、 ァゾビスイソブチロニトリル、ァゾビス 2, 4 ジメチルバレロニトリル、ァゾビスシクロ へキサンカルボ-トリル、ァゾビスイソ酪酸ジメチル、過酸化べンゾィル、 2, 4 ジクロ ル過酸化べンゾィル、過酸化ジー tert—ブチル、過酸化ラウロイル、過酸化ジィソプ 口ピルジカーボネートまたは過酸ィ匕ァセチルである。これらのラジカル重合開始剤は 、単独でもまたは 2種以上を同時にまたは順次に使用することもできる。  Of these, azo initiators or peroxyacid initiators are preferred, and more preferred are azobisisobutyronitrile, azobis 2,4 dimethylvaleronitrile, azobiscyclohexanecarbo-tolyl. Dimethyl azobisisobutyrate, benzoyl peroxide, benzoyl 2,4 dichloroperoxide, di-tert-butyl peroxide, lauroyl peroxide, disodium peroxide pyrrole dicarbonate or peroxyacetyl peroxide. These radical polymerization initiators can be used alone or in combination of two or more thereof simultaneously or sequentially.
[0062] 使用できる溶媒としては、反応を阻害しないものであれば何れでも使用することが できるが、例えば、具体例として、ベンゼン、トルエンおよびキシレン等の芳香族炭化 水素系溶媒、ペンタン、へキサン、ヘプタン、オクタン、ノナンおよびデカン等の脂肪 族炭化水素系溶媒、シクロへキサン、メチルシクロへキサンおよびデカヒドロナフタレ ンのような脂環族炭化水素系溶媒、クロルベンゼン、ジクロルベンゼン、トリクロルベン ゼン、塩化メチレン、クロ口ホルム、四塩ィ匕炭素およびテトラクロルエチレン等の塩素 ィ匕炭化水素系溶媒、メタノール、エタノール、 n-プロパノール、 iso-プロパノール、 n- ブタノール、 sec-ブタノールおよび tert-ブタノール等のアルコール系溶媒、アセトン、 メチルェチルケトンおよびメチルイソブチルケトン等のケトン系溶媒;酢酸ェチルおよ びジメチルフタレート等のエステル系溶媒、ジメチルエーテル、ジェチルエーテル、 ジ -n-ァミルエーテル、テトラヒドロフランおよびジォキシァ-ソールのようなエーテル 系溶媒等を挙げることができる。また、水を溶媒として、懸濁重合、乳化重合すること もできる。これらの溶媒は、単独でもまたは 2種以上を混合して使用してもよい。また、 これらの溶媒の使用によって、反応液が均一相となることが好ましいが、不均一な複 数の相となっても構わない。 [0062] Any solvent that does not inhibit the reaction may be used. For example, specific examples include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, and decane, cyclohexane, and methylcyclohexane. Cycloaliphatic hydrocarbon solvents such as xanthane and decahydronaphthalene, chlorine such as chlorobenzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, tetrachlorocarbon and tetrachloroethylene Hydrocarbon solvents, alcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol and tert-butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; Esters such as ethyl acetate and dimethyl phthalate And ether-based solvents such as sole, etc. - solvent, dimethyl ether, Jefferies chill ether, di -n- Amirueteru, tetrahydrofuran and Jiokishia. In addition, suspension polymerization or emulsion polymerization can be performed using water as a solvent. These solvents may be used alone or in combination of two or more. In addition, it is preferable that the reaction liquid becomes a homogeneous phase by using these solvents, but it may be a heterogeneous plural phase.
[0063] 反応温度は重合反応が進行する温度であれば何れでも構わず、所望する重合体 の重合度、使用するラジカル重合開始剤および溶媒の種類や量によって一様では ないが、通常、— 100°C〜250°Cである。好ましくは— 50°C〜180°Cであり、更に好 ましくは 0°C〜160°Cである。反応は場合によって減圧、常圧または加圧の何れでも 実施できる。上記重合反応は、窒素やアルゴン等の不活性ガス雰囲気下で行うこと が好ましい。 [0063] The reaction temperature may be any temperature as long as the polymerization reaction proceeds, and is not uniform depending on the degree of polymerization of the desired polymer and the type and amount of the radical polymerization initiator and solvent used. 100 ° C to 250 ° C. Preferably, it is −50 ° C. to 180 ° C., more preferably 0 ° C. to 160 ° C. In some cases, the reaction can be carried out under reduced pressure, normal pressure or increased pressure. The polymerization reaction is preferably performed in an inert gas atmosphere such as nitrogen or argon.
[0064] また、ラジカル重合としては上記ラジカル重合開始剤を用いる方法以外に、例えば 以下に述べる文献に記載されているようなリビングラジカル重合法を用いることもでき る。  [0064] In addition to the above-described method using a radical polymerization initiator, for example, a living radical polymerization method described in the following literature can be used as the radical polymerization.
1) Chem. Rev., 101 2921 (2001)  1) Chem. Rev., 101 2921 (2001)
2) Chem. Rev., 101 3689 (2001)  2) Chem. Rev., 101 3689 (2001)
3) Chem. Rev., 101 3661 (2001)  3) Chem. Rev., 101 3661 (2001)
ァ-オン重合においては、ァ-オン重合開始剤として、通常のァ-オン重合におい て用いられる開始剤はいずれも使用することができ、例えば、プチルリチウム、プロピ ルリチウム、ェチルリチウム、メチルリチウム等の有機リチウム化合物や、 Grignard試 薬等を用いることができる。 In the cation polymerization, any of the initiators used in the usual cation polymerization can be used as the cation polymerization initiator, for example, butyl lithium, propylene. Organic lithium compounds such as rulithium, ethyllithium, and methyllithium, Grignard reagents, and the like can be used.
使用できる溶媒としては、例えば、へキサン、ヘプタンなどの脂肪族炭化水素、シク 口ペンタン、シクロへキサンなどの脂環式炭化水素、ベンゼン、トルエンなどの芳香族 炭化水素、ジェチルエーテル、ジォキサン、テトラヒドロフラン (THF)、モノグリム、ジ グリムなどのエーテル系溶媒などが用いられる。これらの溶媒は、 1種単独または 2種 以上組み合わせて用いることができる。中でも、芳香族炭化水素とエーテル系溶媒 が好ましく用いられる。重合は、通常— 100°C〜100°C、好ましくは 80°C〜80°C、 より好ましくは— 70°C〜70°Cの重合温度で、 1分間〜 500時間、好ましくは 10分間 〜300時間、より好ましくは 15分間〜 150時間かけて実施される。  Examples of the solvent that can be used include aliphatic hydrocarbons such as hexane and heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, aromatic hydrocarbons such as benzene and toluene, jetyl ether, dioxane, Ether solvents such as tetrahydrofuran (THF), monoglyme and diglyme are used. These solvents can be used alone or in combination of two or more. Of these, aromatic hydrocarbons and ether solvents are preferably used. The polymerization is usually −100 ° C. to 100 ° C., preferably 80 ° C. to 80 ° C., more preferably —70 ° C. to 70 ° C. for 1 minute to 500 hours, preferably 10 minutes to It is carried out for 300 hours, more preferably 15 minutes to 150 hours.
(方法 3)は、官能基含有ポリオレフイン鎖と刺激応答性ポリマー鎖とをカップリングす る方法である。この方法において用いられる官能基含有ポリオレフインとしては、分子 鎖の末端あるいは分子鎖中に水酸基ゃァミノ基、カルボキシル基、酸ハロゲン基、酸 無水物基、エポキシ基、イソシァネート基などの反応性基を導入したポリオレフインが 挙げられる。このような反応性基を有するポリオレフインとカップリングさせる刺激応答 性ポリマー鎖には、これらの反応性基と反応しうる官能基が分子鎖の末端あるいは分 子鎖中に存在して 、る必要がある。これらの反応性基を有するポリマー鎖同士を反 応させることにより、ポリオレフイン鎖と刺激応答性ポリマー鎖とが化学的に結合され たブロックまたはグラフトポリマーを製造することができる。 (Method 3) is a method of coupling a functional group-containing polyolefin chain and a stimulus-responsive polymer chain. As functional group-containing polyolefin used in this method, reactive groups such as hydroxyl group amino group, carboxyl group, acid halogen group, acid anhydride group, epoxy group, isocyanate group are introduced at the end of the molecular chain or in the molecular chain. Polyolefins. The stimuli-responsive polymer chain to be coupled with the polyolefin having such a reactive group must have a functional group capable of reacting with these reactive groups at the end of the molecular chain or in the molecular chain. is there. By reacting polymer chains having these reactive groups, a block or graft polymer in which a polyolefin chain and a stimulus-responsive polymer chain are chemically bonded can be produced.
(方法 3)は、次に示される工程 (6)〜(8)を順次実施することによって、本発明に係 るポリオレフインであるブロックまたはグラフトポリマーを製造することができる。  In (Method 3), the block or graft polymer which is the polyolefin according to the present invention can be produced by sequentially performing the following steps (6) to (8).
工程 (6)主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基、カルボキシ ル基、酸ハロゲン基、酸無水物基、イソシァネート基から選ばれる官能基 (A)を有す る ポリオレフインを製造する工程。 Step (6) Polyolefin having functional group (A) selected from hydroxyl group, amino group, epoxy group, carboxyl group, acid halogen group, acid anhydride group and isocyanate group at the main chain end and Z or side chain Manufacturing process.
工程 (7)末端に官能基を有する刺激応答性ポリマー鎖を製造する工程。 Step (7) A step of producing a stimulus-responsive polymer chain having a functional group at the terminal.
工程 (8)前記工程 (6)で製造される官能基 (A)を有するポリオレフインと、前記工程 (Step (8) Polyolefin having the functional group (A) produced in the step (6), and the step (8)
7)で製造される末端に官能基を有する刺激応答性ポリマー鎖とを結合する工程。 [0066] A step of binding the stimulus-responsive polymer chain having a functional group at the terminal produced in 7). [0066]
以下、各工程別に本発明のブロックまたはグラフトポリマーの製造方法について詳 細に述べる。  Hereinafter, the method for producing the block or graft polymer of the present invention will be described in detail for each step.
[0067] 工程 (6)は、例えば前記工程(1)と同様の方法を用いることができる。  [0067] In step (6), for example, the same method as in step (1) can be used.
[0068] 工程 (7)は、末端に官能基を有する刺激応答性ポリマー鎖を製造する工程である。  [0068] Step (7) is a step of producing a stimulus-responsive polymer chain having a functional group at the terminal.
このようなポリマー鎖を製造する方法としては、例えば、前記工程(2)において使用し た、ポリオレフイン中に含まれる官能基 (A)と化学結合しうる官能基 (P)とラジカル重 合開始能を有する基 (Q)との両方を有する化合物 (R)を開始剤として、刺激応答性 ポリマー鎖を構成するモノマーを重合することにより製造される。本工程で得られる刺 激応答性ポリマー鎖は、その末端に開始剤に由来する官能基 (P)を有する。  As a method for producing such a polymer chain, for example, the functional group (P) capable of chemically bonding with the functional group (A) contained in the polyolefin used in the step (2) and radical polymerization initiating ability are used. It is produced by polymerizing a monomer constituting a stimulus-responsive polymer chain using a compound (R) having both of the group (Q) having a diol as an initiator. The stimulation-responsive polymer chain obtained in this step has a functional group (P) derived from an initiator at its end.
[0069] 工程 (8)は、前記工程 (6)により得られた主鎖末端および Zまたは側鎖に水酸基、 アミノ基、エポキシ基、カルボキシル基、酸ハロゲン基、酸無水物基、イソシァネート 基力も選ばれる官能基 (A)を有するポリオレフインと、前記工程(7)により得られた末 端に官能基を有する刺激応答性ポリマー鎖とのカップリング反応を行う工程である。 この工程を実施する際の、ポリオレフイン中に含まれる官能基 (A)と、刺激応答性ポリ マー鎖中に含まれる末端官能基 (P)との好ましい組み合わせについては、前記工程 (2)で記載の組み合わせと同様の組み合わせが挙げられる。  [0069] In the step (8), the main chain terminal and Z or side chain obtained in the step (6) have a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group. This is a step of performing a coupling reaction between the polyolefin having the selected functional group (A) and the stimulus-responsive polymer chain having a functional group at the terminal obtained in the step (7). A preferred combination of the functional group (A) contained in the polyolefin and the terminal functional group (P) contained in the stimulus-responsive polymer chain when performing this step is described in the step (2). A combination similar to the combination of is mentioned.
[0070] 主鎖末端および Zまたは側鎖に水酸基、アミノ基、エポキシ基、カルボキシル基、 酸ハロゲン基、酸無水物基、イソシァネート基力も選ばれる官能基 (A)を有するポリ ォレフィンと、末端に官能基を有する刺激応答性ポリマー鎖との反応に際しての反応 溶媒、反応温度、反応時間、用いる縮合剤や塩基性触媒などの各反応条件は、前 記工程 (2)に記載の条件と同一の条件を適用できる。  [0070] Polyolefin having a functional group (A) having a hydroxyl group, an amino group, an epoxy group, a carboxyl group, an acid halogen group, an acid anhydride group, and an isocyanate group at the main chain terminal and Z or side chain, and a terminal. The reaction conditions for the reaction with the stimulus-responsive polymer chain having a functional group are the same as the conditions described in the above step (2), such as the solvent, the reaction temperature, the reaction time, the condensing agent and the basic catalyst used Conditions can be applied.
[0071] 以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれら実 施例に限定されるものではない。  Hereinafter, the power for further specifically explaining the present invention based on examples, the present invention is not limited to these examples.
実施例 1  Example 1
[0072] [末端ァリルアルコール修飾 PEの合成]  [0072] [Synthesis of terminal aryl alcohol-modified PE]
窒素置換された 1Lガラス製重合器に、トルエン 900mLを入れ、トリェチルアルミ-ゥ ム 6. 6ml (48mmol)、ァリルアルコール 2. 72ml (40mmol)を加え、 50。Cで 5分間 撹拌した。別の窒素置換された 20mLシュレンクフラスコに、下記式 (I)で表されるメ タロセン 17. 6mgを入れ、メチルアルモキサン(MAO)のトルエン溶液(Al=l. 28M ) 1. 12mlを加え、約 10秒間撹拌した後、その溶液を重合溶液に添加した。同時に、 エチレンガスを 3L/hで流通させ、 50°Cで 105分撹拌した。イソブチルアルコール( 30ml)と濃塩酸 (6ml)で反応を停止させ、 2Lのメタノールに注ぎポリマーを析出させ た。一晩撹拌させた後、グラスフィルターでろ過し、得られたポリマーを 50°C、 lOTorr の減圧条件下で 10時間乾燥させ、 8. 63gの末端ァリルアルコール修飾 PEを得た。 ゲルパーミエーシヨンクロマトグラフィー(GPC)で解析の結果、本ポリマーの分子量 は、重量平均分子量(Mw)で 26500、分子量分布(MwZMn)は、 2. 26であった。 iH—NMR測定の結果から、 δ =3.3-3.4 ppmに、ァリルアルコールの導入に由来す る末端ヒドロキシメチレン (-CH -OH)のピークが観察された。 To a 1 L glass polymerization vessel purged with nitrogen, 900 mL of toluene was added, and 6.6 ml (48 mmol) of triethyl aluminum and 2.72 ml (40 mmol) of aryl alcohol were added. 5 minutes at C Stir. Into another nitrogen-substituted 20 mL Schlenk flask, 17.6 mg of methacene represented by the following formula (I) is added, and 1.12 ml of a toluene solution of methylalumoxane (MAO) (Al = l.28M) is added, After stirring for about 10 seconds, the solution was added to the polymerization solution. At the same time, ethylene gas was passed at 3 L / h and stirred at 50 ° C for 105 minutes. The reaction was stopped with isobutyl alcohol (30 ml) and concentrated hydrochloric acid (6 ml), and poured into 2 L of methanol to precipitate the polymer. After stirring overnight, the mixture was filtered through a glass filter, and the obtained polymer was dried under reduced pressure conditions of 50 ° C. and lOTorr for 10 hours to obtain 8.63 g of terminal aryl alcohol-modified PE. As a result of analysis by gel permeation chromatography (GPC), the polymer had a weight average molecular weight (Mw) of 26500 and a molecular weight distribution (MwZMn) of 2.26. From the result of iH-NMR measurement, a peak of terminal hydroxymethylene (—CH 2 —OH) derived from introduction of allylic alcohol was observed at δ = 3.3-3.4 ppm.
2  2
[0073] [化 2]  [0073] [Chemical 2]
Figure imgf000025_0001
Figure imgf000025_0001
[0074] [2—ブロモイソブチリル基修飾 PEの合成] [0074] [Synthesis of 2-bromoisobutyryl group-modified PE]
末端ァリルアルコール修飾 PE (Mw= 26500, Mw/Mn= 2. 26) 5. 6gを、脱気 窒素置換された 500mL2口ナスフラスコに入れ、乾燥トルエン 200ml、トリェチルアミ ン 0. 55ml, 2—ブロモイソブチリルブロミド 0. 99mlをそれぞれ添カ卩し、 80°Cに昇温 し、 3時間加熱撹拌した。反応液をメタノール 2Lに注ぎ析出したポリマーをグラスフィ ルターで濾過した。このとき、グラスフィルター上のポリマーをメタノール 100mlで 3回 、 1N塩酸 100mlで 1回、メタノール 100mlで 2回順次洗浄した。ポリマーを 50°C、 10 Torrの減圧条件下で 10時間乾燥させた。 NMRの結果から、 δ =3.8-4.1 ppm に末端メチレン(-CH - OCOCBr(CH ) )が、 δ = 1.8 ppmに末端メチル(-CH - OCO  Terminal aryl alcohol-modified PE (Mw = 26500, Mw / Mn = 2. 26) 5.6 g was placed in a 500 mL 2-neck eggplant flask purged with nitrogen and purged with 200 ml of dry toluene, 0.55 ml of triethylamine, 2-bromo 0.999 ml of isobutyryl bromide was added thereto, the temperature was raised to 80 ° C., and the mixture was heated and stirred for 3 hours. The reaction solution was poured into 2 L of methanol, and the precipitated polymer was filtered with a glass filter. At this time, the polymer on the glass filter was sequentially washed three times with 100 ml of methanol, once with 100 ml of 1N hydrochloric acid, and twice with 100 ml of methanol. The polymer was dried for 10 hours under reduced pressure at 50 ° C. and 10 Torr. NMR results show that terminal methylene (-CH-OCOCBr (CH)) at δ = 3.8-4.1 ppm and terminal methyl (-CH-OCO at δ = 1.8 ppm
2 3 2 2 2 3 2 2
CBr(CH;) )基が観察され、原料のヒドロキシメチレンピークが観察されないことから、CBr (CH;)) group is observed and the raw material hydroxymethylene peak is not observed.
3 2 3 2
すべてのヒドロキシル基が修飾された 2—ブロモイソブチリル基修飾 PEが得られたも のと同定された。 A 2-bromoisobutyryl group-modified PE with all hydroxyl groups modified was obtained. Identified.
[PE— b—ポリ(N—イソプロピルアクリルアミド)ブロックポリマーの合成]  [Synthesis of PE-b-poly (N-isopropylacrylamide) block polymer]
脱気窒素置換された 100mlシュレンクフラスコに、 2 ブロモイソブチリル基修飾 P E 6. 9gをいれ、真空ポンプで脱気、窒素置換を 5回繰り返した。窒素気流下、 RuCl (  In a 100 ml Schlenk flask purged with nitrogen, 6.9 g of 2 bromoisobutyryl group-modified PE was added, and deaeration with a vacuum pump and nitrogen substitution were repeated 5 times. RuCl (under nitrogen flow
2 2
PPh ) 96mg、 o キシレン 10ml、アルミニウムイソプロポキシド 82mg, N—イソプロPPh) 96mg, o Xylene 10ml, Aluminum isopropoxide 82mg, N-Isopro
3 3 3 3
ピルアクリルアミド (NIPAAm) 9. lgを順次加え、セプタムキャップを取り付けた。 12 0°Cに昇温し、撹拌しながら 9時間反応させた。反応シュレンクフラスコを氷水で冷却 した後、メタノール約 5mlをカ卩ぇ反応を停止させ、更に、 600mlのアセトン中に注ぎ一 晚撹拌した。析出したポリマーをグラスフィルターで濾別し、ポリマーを 120°Cで 10時 間真空乾燥させ、 9. 7gのポリマーを得た。 NMR測定より、 PE/PNIPAAm = 69Z31 (wt%)の PE— b— PNIPAAmブロックポリマーを得た。本ポリマーは、成形 可能でシートとすることができた。また、水に常温で 3. 5日浸漬しても、シート形状を 保持していた。 Pyracrylamide (NIPAAm) 9. lg was sequentially added and a septum cap was attached. The temperature was raised to 120 ° C., and the mixture was reacted for 9 hours with stirring. After cooling the reaction Schlenk flask with ice water, about 5 ml of methanol was used to stop the reaction, and the mixture was poured into 600 ml of acetone and stirred. The precipitated polymer was separated by filtration with a glass filter, and the polymer was vacuum-dried at 120 ° C for 10 hours to obtain 9.7 g of polymer. From the NMR measurement, PE-b-PNIPAAm block polymer of PE / PNIPAAm = 69Z31 (wt%) was obtained. The polymer could be molded into a sheet. In addition, the sheet shape was maintained even after being immersed in water at room temperature for 3.5 days.
実施例 2 Example 2
[プロピレン Zl 1 ゥンデセン 1 オール共重合体の合成] [Synthesis of propylene Zl 1 undecene 1-ol copolymer]
攪拌器を備え、充分に窒素置換した内容積 1Lのガラス製重合器に、トルエン 800 mlを導入し、プロピレンガス(lOOLZh)を供給しながら温度を 60°Cに保った。トリイ ソブチルアルミニウム 22mmolと 11 ゥンデセン— 1 オール 44mmolを加え 10分 間攪拌した後、 MAO 1. 5mmolで活性ィ匕されたジメチルシリルビス(2—メチル 4 —フエ-ルインデュル)ジルコニウムジクロライド 0. 003mmolを重合器内に加え、温 度を 60°Cに保ちながら 15分間重合を行った。メタノールを重合器内に導入して重合 を終了し、重合液を 2Lの塩酸含有のメタノール中に注ぎ込み、ろ過によりポリマーを 回収した。 80°Cで 10時間真空乾燥し、得られたポリマーは 17. 4gであった。得られ たポリマーの極限粘度([ 7? ])は 1. 12であり、 — NMR測定よりポリマー中の OH基 含量は、 2. 34mol%であった。  800 ml of toluene was introduced into a 1 L glass polymerization vessel equipped with a stirrer and sufficiently purged with nitrogen, and the temperature was maintained at 60 ° C. while propylene gas (lOOLZh) was supplied. After adding 22 mmol of triisobutylaluminum and 44 mmol of 11 undecene-1ol and stirring for 10 minutes, dimethylsilylbis (2-methyl-4-phenylindulyl) zirconium dichloride activated with 1.5 mmol of MAO was added to 0.003 mmol. In addition to the polymerization vessel, the polymerization was carried out for 15 minutes while maintaining the temperature at 60 ° C. Methanol was introduced into the polymerization vessel to terminate the polymerization, and the polymerization solution was poured into 2 L of hydrochloric acid-containing methanol, and the polymer was recovered by filtration. The polymer was vacuum-dried at 80 ° C. for 10 hours, and the obtained polymer was 17.4 g. The intrinsic viscosity ([7?]) Of the obtained polymer was 1.12. From the NMR measurement, the OH group content in the polymer was 2.34 mol%.
[2 ブロモイソブチリル基修飾 PPの合成] [2 Synthesis of PP modified with bromoisobutyryl group]
上記で得られたプロピレン Z11—ゥンデセン— 1—オール共重合体 7. 0gを、脱気 窒素置換された 500mLガラス製反応器に入れ、乾燥トルエン 250ml、トリェチルアミ ン 7. 6ml、 2 ブロモイソブチリルブロミド 6. 3mlをそれぞれ添カ卩し、 80°Cに昇温し、 3時間加熱撹拌した。反応液をメタノール 2Lに注ぎ析出したポリマーをグラスフィルタ 一で濾過した。得られたポリマーを 80°Cで 10時間真空乾燥し、 7. 6gの粉末状ポリ マーを得た。 NMRの結果から、 δ =3.8-4.1 ppmに末端メチレン(- CH - OCOC 7.0 g of the propylene Z11-undecene-1-ol copolymer obtained above was put into a 500 mL glass reactor deaerated and purged with nitrogen, 250 ml of dry toluene, 7.6 ml and 2 bromoisobutyryl bromide 6.3 ml were added, heated to 80 ° C. and stirred for 3 hours. The reaction solution was poured into 2 L of methanol and the precipitated polymer was filtered through a glass filter. The obtained polymer was vacuum-dried at 80 ° C. for 10 hours to obtain 7.6 g of a powdery polymer. NMR results show that δ = 3.8-4.1 ppm at terminal methylene (-CH-OCOC
2 2
Br(CH ) )が、 δ = 1.8 ppmに末端メチル (-CH - OCOCBr(CH ) )基が観察され、原Br (CH)) is observed to have a terminal methyl (-CH -OCOCBr (CH)) group at δ = 1.8 ppm.
3 2 2 3 2 3 2 2 3 2
料のヒドロキシメチレンピークが観察されな 、ことから、すべてのヒドロキシル基が修飾 されたポリマーが得られたものと同定された。 Since no hydroxymethylene peak of the sample was observed, it was identified that a polymer with all hydroxyl groups modified was obtained.
[PP-g- PNIPAAmグラフトポリマーの合成]  [Synthesis of PP-g-PNIPAAm graft polymer]
脱気窒素置換された 100mlシュレンクフラスコに、上記で得られた 2 ブロモイソブ チリル基修飾プロピレン Z11—ゥンデセン 1 オール共重合体 3. 9gをいれ、真 空ポンプで脱気、窒素置換を 5回繰り返した。窒素気流下、 RuCl (PPh ) 959mg、 o  Into a 100 ml Schlenk flask purged with degassed nitrogen, 3.9 g of the 2-bromoisobutyryl group-modified propylene Z11-undecene 1-ol copolymer obtained above was added, and degassed with a vacuum pump and nitrogen purged 5 times. . RuCl (PPh) 959mg, o under nitrogen flow
2 3 3  2 3 3
—キシレン 100ml、アルミニウムイソプロポキシド 820mg, NIPAAm45gを順次加 え、セプタムキャップを取り付けた。 120°Cに昇温し、撹拌しながら 3時間反応させた 。反応シュレンクフラスコを氷水で冷却した後、メタノール約 5mlをカ卩ぇ反応を停止さ せ、更に、 1Lのアセトン中に注ぎ一晩撹拌した。析出したポリマーをグラスフィルター で濾別し、ポリマーを 120°Cで 10時間真空乾燥させ、 27. 4gのポリマーを得た。 ¾ - NMR測定より、 PPZPNIPAAm = 18Z82 (wt%)の PP— g— PNIPAAmグラ フトポリマーを得た。本ポリマーは、成形可能でシートとすることができた。また、水に 常温で 3. 5日浸漬しても、シート形状を保持していた。  —100 ml of xylene, 820 mg of aluminum isopropoxide, and 45 g of NIPAAm were sequentially added, and a septum cap was attached. The temperature was raised to 120 ° C, and the mixture was reacted for 3 hours with stirring. After the reaction Schlenk flask was cooled with ice water, about 5 ml of methanol was quenched and poured into 1 L of acetone and stirred overnight. The precipitated polymer was filtered off with a glass filter, and the polymer was vacuum-dried at 120 ° C. for 10 hours to obtain 27.4 g of polymer. A PP-g-PNIPAAm graph polymer of PPZPNIPAAm = 18Z82 (wt%) was obtained from ¾-NMR measurement. The polymer was moldable and could be a sheet. In addition, the sheet shape was maintained even after being immersed in water at room temperature for 3.5 days.
産業上の利用可能性 Industrial applicability
本発明のブロックまたはグラフト共重合体を主構成成分とする高分子材料は、蛋白 質、多糖類、脂質、細胞成分などの生体成分および薬剤などとの親和性を有してお り、刺激を付与することにより液体への親和性が変化する刺激応答性ポリマー鎖を有 していることから、各刺激に応じてこれらの基質の吸着、放出を制御することが可能で あり、分離精製用材料やコントロールリリース用材料として利用できる。また、各刺激 に対して体積変化を示すためァクチユエータゃケミカルバルブなどとしても好適であ る。しカゝも、ポリオレフイン鎖を有しているため、刺激応答性と自己保持性とを併せ持 つ構造材料として各種の用途に用いることが可能と考えられる。  The polymer material comprising the block or graft copolymer of the present invention as a main component has affinity with biological components such as proteins, polysaccharides, lipids, and cell components, and drugs, and thus stimulates. Since it has a stimulus-responsive polymer chain that changes its affinity for liquid when applied, it is possible to control the adsorption and release of these substrates according to each stimulus. And can be used as a control release material. In addition, the actuator is suitable as a chemical valve or the like because it shows a volume change with respect to each stimulus. Shishikushi also has a polyolefin chain, so it can be used for various applications as a structural material having both stimulus response and self-holding properties.

Claims

請求の範囲 The scope of the claims
[1] ポリオレフイン鎖と、刺激の付与により液体への親和性が変化する刺激応答性ポリ マー鎖とから構成されるブロックまたはグラフト共重合体であって、ポリオレフイン鎖と 刺激応答性ポリマー鎖とが化学的に結合されていることを特徴とする重合体。  [1] A block or graft copolymer composed of a polyolefin chain and a stimulus-responsive polymer chain whose affinity to a liquid changes upon application of a stimulus, wherein the polyolefin chain and the stimulus-responsive polymer chain A polymer characterized by being chemically bonded.
[2] ポリオレフイン鎖が、 CH =CH— R(Rは水素原子または炭素原子数 1〜20の炭化  [2] The polyolefin chain is CH = CH—R (where R is a hydrogen atom or a carbon atom having 1 to 20 carbon atoms.
2  2
水素基)で表される少なくとも 1種類の aーォレフインを重合することにより得られたポ リマー鎖であることを特徴とする請求項 1に記載の重合体。  2. The polymer according to claim 1, which is a polymer chain obtained by polymerizing at least one kind of a-olefin represented by (hydrogen group).
[3] 刺激応答性ポリマー鎖力 ポリ(メタ)アクリルアミド、ポリ— N—イソプロピル (メタ)ァ クリルアミド等のポリ—N—アルキル置換 (メタ)アクリルアミド、ポリ(メタ)アクリル酸或 いはその金属塩、ポリ 2—ヒドロキシェチル (メタ)アタリレート、ポリビュルベンゼン スルホン酸或いはその金属塩、ポリ(エチレングリコールモノメタアタリレート)、ポリ(ェ チレングリコールモノアタリレート)力もなる群力も選ばれる少なくとも 1種類のポリマー 鎖であることを特徴とする請求項 1または 2に記載の重合体。 [3] Stimulus-responsive polymer chain strength Poly-N-alkyl-substituted (meth) acrylamides such as poly (meth) acrylamide, poly-N-isopropyl (meth) acrylamide, poly (meth) acrylic acid or metal salts thereof , Poly-2-hydroxyethyl (meth) acrylate, polybutylbenzene sulfonic acid or its metal salt, poly (ethylene glycol monomethacrylate), poly (ethylene glycol monoacrylate) group forces that can be selected at least 1 The polymer according to claim 1 or 2, wherein the polymer chain is of a kind.
PCT/JP2006/313587 2005-07-07 2006-07-07 Polyolefin having polymer chain responsive to stimulus WO2007007675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524630A JPWO2007007675A1 (en) 2005-07-07 2006-07-07 Polyolefins with stimuli-responsive polymer chains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-199447 2005-07-07
JP2005199447 2005-07-07

Publications (1)

Publication Number Publication Date
WO2007007675A1 true WO2007007675A1 (en) 2007-01-18

Family

ID=37637068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313587 WO2007007675A1 (en) 2005-07-07 2006-07-07 Polyolefin having polymer chain responsive to stimulus

Country Status (3)

Country Link
JP (1) JPWO2007007675A1 (en)
TW (1) TW200710106A (en)
WO (1) WO2007007675A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066749A1 (en) * 2005-12-09 2007-06-14 Mitsui Chemicals, Inc. Olefin polymer, composition thereof, and adhesive resin composed of such composition
JP2009161724A (en) * 2007-12-10 2009-07-23 Takashi Sawaguchi Oligoolefin halogenated at both ends and triblock copolymer produced from the same
CN102190766A (en) * 2011-04-11 2011-09-21 中山大学 Polyvinyl environmentally responsive diblock and triblock copolymers and preparation methods thereof
JP2018154752A (en) * 2017-03-17 2018-10-04 東ソー株式会社 Copolymer and manufacturing method therefor
CN108976469A (en) * 2018-08-01 2018-12-11 中国科学院长春应用化学研究所 A kind of temperature/pH dual responsiveness polymer gel and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193604A (en) * 1986-02-21 1987-08-25 Bio Material Yunibaasu:Kk Production of membrane responsive to external stimulation by graft polymerization
JPH05133937A (en) * 1991-10-08 1993-05-28 W R Grace & Co Supporting body for electrophoresis and electrophoresis method using supporting body
JPH1081709A (en) * 1996-04-30 1998-03-31 Wako Pure Chem Ind Ltd New azo group-containing poymeric compound and copolymer obtained by using he same
JPH10194816A (en) * 1997-01-16 1998-07-28 Mitsui Chem Inc Cement composition
WO2002064654A1 (en) * 2001-02-09 2002-08-22 Reika Kogyo Kabushiki Kaisha Functional particle and method for preparation thereof and method of plasma treatment
JP2004026694A (en) * 2002-06-24 2004-01-29 Asahi Kasei Chemicals Corp Holding agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193604A (en) * 1986-02-21 1987-08-25 Bio Material Yunibaasu:Kk Production of membrane responsive to external stimulation by graft polymerization
JPH05133937A (en) * 1991-10-08 1993-05-28 W R Grace & Co Supporting body for electrophoresis and electrophoresis method using supporting body
JPH1081709A (en) * 1996-04-30 1998-03-31 Wako Pure Chem Ind Ltd New azo group-containing poymeric compound and copolymer obtained by using he same
JPH10194816A (en) * 1997-01-16 1998-07-28 Mitsui Chem Inc Cement composition
WO2002064654A1 (en) * 2001-02-09 2002-08-22 Reika Kogyo Kabushiki Kaisha Functional particle and method for preparation thereof and method of plasma treatment
JP2004026694A (en) * 2002-06-24 2004-01-29 Asahi Kasei Chemicals Corp Holding agent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066749A1 (en) * 2005-12-09 2007-06-14 Mitsui Chemicals, Inc. Olefin polymer, composition thereof, and adhesive resin composed of such composition
JP2009161724A (en) * 2007-12-10 2009-07-23 Takashi Sawaguchi Oligoolefin halogenated at both ends and triblock copolymer produced from the same
CN102190766A (en) * 2011-04-11 2011-09-21 中山大学 Polyvinyl environmentally responsive diblock and triblock copolymers and preparation methods thereof
JP2018154752A (en) * 2017-03-17 2018-10-04 東ソー株式会社 Copolymer and manufacturing method therefor
CN108976469A (en) * 2018-08-01 2018-12-11 中国科学院长春应用化学研究所 A kind of temperature/pH dual responsiveness polymer gel and preparation method thereof

Also Published As

Publication number Publication date
TW200710106A (en) 2007-03-16
JPWO2007007675A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
Keyes et al. Olefins and vinyl polar monomers: bridging the gap for next generation materials
Cho et al. Synthesis of poly (OEOMA) using macromonomers via “grafting-through” ATRP
JP5264030B2 (en) Catalytic process for the controlled polymerization of free-radically (co) polymerizable monomers and functional polymer systems produced thereby
KR100950819B1 (en) Hybrid polymer and method for production thereof
Arredondo et al. Synthesis of CO 2-responsive cellulose nanocrystals by surface-initiated Cu (0)-mediated polymerisation
EP1994066B1 (en) 1-alkene-acrylate based copolymer
Hong et al. Facile functionalization of polyethylene via click chemistry
US6248837B1 (en) Process for preparing polyolefin diblock copolymers involving borane chain transfer reaction in transition metal-mediated olefin polymerization
Dufour et al. Polar three-arm star block copolymer thermoplastic elastomers based on polyacrylonitrile
WO2007007675A1 (en) Polyolefin having polymer chain responsive to stimulus
CN109689705B (en) Polyolefin-based emulsifiers and their use for the preparation of high internal phase emulsions and porous polymer materials
ES2407851T3 (en) Resin composition and use thereof
JP5250641B2 (en) pH-sensitive polyethylene oxide copolymers and methods for their synthesis
US7335703B2 (en) Polyolefin graft copolymer prepared in the presence of coordination polymerization catalyst based on late transition metal complex and method for making the same
Wei et al. Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety
JP2003147032A (en) Polyolefin graft copolymer produced with coordination polymerization catalyst based on complex of transition metal appearing in later period and process for producing the same
JP2010241885A (en) Core-shell particle, method for producing the same, and application thereof
Mallakpour et al. Thermoplastic vinyl polymers: From macro to nanostructure
WO1992016566A1 (en) Terminally modified polyolefin
Wang et al. Catalytic synthesis and characterization of well-defined polypropylene graft copolymers
Zheng et al. Synthesis of core-crosslinked star polymers via organocatalyzed living radical polymerization
JP2019137845A (en) Method for producing olefinic resin
JPH0460127B2 (en)
Mohajery et al. Synthesis and properties of poly (ethylene oxide)‐grafted polyethylene copolymer and terpolymer
JPH03285903A (en) Graft copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524630

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767997

Country of ref document: EP

Kind code of ref document: A1