WO2007007050A1 - Electrostatic atomiser - Google Patents

Electrostatic atomiser Download PDF

Info

Publication number
WO2007007050A1
WO2007007050A1 PCT/GB2006/002506 GB2006002506W WO2007007050A1 WO 2007007050 A1 WO2007007050 A1 WO 2007007050A1 GB 2006002506 W GB2006002506 W GB 2006002506W WO 2007007050 A1 WO2007007050 A1 WO 2007007050A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
droplets
orifices
atomiser
electrostatic atomiser
Prior art date
Application number
PCT/GB2006/002506
Other languages
English (en)
French (fr)
Inventor
Jeffrey Allen
Paul Bartholomew Ravenhill
Original Assignee
Scion-Sprays Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scion-Sprays Limited filed Critical Scion-Sprays Limited
Priority to AU2006268415A priority Critical patent/AU2006268415A1/en
Priority to US11/993,517 priority patent/US20100044474A1/en
Priority to EP06755724A priority patent/EP1901851A1/en
Priority to JP2008519996A priority patent/JP2009500160A/ja
Publication of WO2007007050A1 publication Critical patent/WO2007007050A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns

Definitions

  • the invention relates to electrostatic atomisers which may have a wide variety of applications, particularly in the fields of drying, coating and mixing, where, despite a need for large flow rates, it is very important that the drops are of a consistent size, i.e. their diameters fall within a selected range of diameters .
  • the present invention provides an electrostatic fluid atomiser, comprising: a fluid inlet; one or more orifices out of which fluid emerges in an atomised form which comprises at least a first set of droplets of comparable size to each other and second set of droplets of comparable size to each other and of a smaller size to the droplets of the first set; a fluid channel connecting the fluid inlet to the orifice(s); and at least two charging electrodes for applying a charge to fluid passing through the fluid channel; wherein the electrostatic atomiser comprises a fluid droplet separator downstream of the orifices having a separator electrode which is either earthed or electrically charged and which applies an electrical force on the droplets which deflects the second set of smaller droplets to a droplet collector of the atomiser while allowing the first set of larger droplets to continue out of a droplet outlet of the atomiser.
  • This configuration is advantageous because it allows the electrostatic fluid atomiser to output only fluid droplets of sizes falling within a selected range.
  • the droplet collector can comprise an absorbent wall or a porous wall.
  • the wall can be cylindrical and disposed surrounding the droplets as they leave the orifices.
  • the fluid droplet connector can be connected to a fluid return line. The fluid return line can easily avoid crossing the path of the orifices when the droplet collector comprises a cylindrical wall surrounding the droplets emerging from the orifices.
  • the fluid return line returns the collected droplets to the fluid input.
  • This configuration maximises the efficiency of the electrostatic atomiser; there is no waste or only minimal waste .
  • the orifices may comprise multiple orifices in close proximity to a substantially flat surface of one of the charging electrodes which spans the multiple orifices . This configuration will provide an ideal combination of evenly spread atomisation across multiple orifices and efficient collection of a second set of droplets.
  • the orifices can be angled to generate a converging or a diverging stream of atomised droplets. In certain applications, generating directed streams will allow improved collection by the droplet collector, when compared to the use of parallel straight orifices.
  • the orifices are preferably provided in an orifice wall and the droplet collector can then be provided with a plurality of portions projecting from the orifice wall between the orifices in a downstream direction. This will allow improved collection of small droplets within a central portion of an array of orifices as well as maintaining excellent small droplet collection from the outer portions of the ejected jet of fluid.
  • the separator electrode of the fluid droplet separator could be electrically connected to one of said charging electrodes.
  • Figure 1 is a perspective view, partly in cross- section, of a first embodiment of an electrostatic fluid atomiser according to the present invention with components external to the atomiser shown schematically;
  • Figures 2a and 2b show alternative geometries of orifices of the atomiser of Figure 1 (or of the atomiser of Figures 3 and 4) ;
  • Figure 3 shows in cross-section a second embodiment of electrostatic fluid atomiser according to the present invention, with components external to the atomiser again shown schematically;
  • Figure 4 shows a third embodiment of electrostatic fluid atomiser according to the present invention, with components external to the atomiser once more shown schematically.
  • Figure 1 shows an electrostatic atomiser 1 with a fluid inlet 2.
  • a fluid channel 3 connects the fluid inlet 3 to an array of multiple orifices 100 provided in an orifice wall 6. Fluid passing through the channel 3 is electrostatically charged by a pair of charging electrodes comprising an electrode 4 and the orifice wall 5.
  • a high voltage source 18 is connected to apply a charge of a first polarity to the charging electrode 4 and to apply a charge of the opposite polarity to the wall 6.
  • the electrode 4 has a tip 5 which is substantially flat and spans the array of multiple orifices 100.
  • the fluid which may be of the any kind of chargeable fluid, is pumped into the fluid inlet by a pump 7. Prior to pumping, the fluid is filtered by a filter 8.
  • the fluid On emerging from the orifices 6 the fluid is atomised, initially forming so-called "ligament" jets 9, 10 and 11, which shortly thereafter break up into substantially two sets of droplets which differ in size, a first set comprising droplets such as droplet 12 (a relatively large droplet) and a second set comprising droplets such as droplet 13 (a relatively small droplet) .
  • the small droplets will each inevitably have a lower mass with a much higher specific electrical charge than the large droplets.
  • the atomiser 1 is provided with a fluid droplet separator 200 for separating the set of small-sized droplets (e.g. 12) from the set of large-sized droplets (e.g. 13), so that only the large-sized droplets leave a fluid outlet 201 of the atomiser.
  • the separator 200 has a cylindrical wall 16 which surrounds the droplets leaving the orifices 100.
  • the wall 16 functions as a separator electrode and is either appropriately charged or earthed, in order to attract the droplets .
  • the wall 16 is connected to the high voltage source and charged with the same polarity as the wall 6. The smaller droplets are attracted to a greater extent than the larger droplets.
  • the separator 200 has a layer 14 of a porous absorbent material located radially inwardly of the wall 16.
  • the wall 16 has a downstream portion which extends around a downstream end of the porous layer 14, the wall 16 extending radially inwardly to form a fluid channel 15 at the downstream end of layer 14.
  • Collected fluid is withdrawn from channel 15 by a scavenge pump 17.
  • the scavenge pump 17 draws the fluid from the droplet collector 100 and relays the fluid to an accumulator tank 101. Fluid from the tank 101 is then filtered and pumped back into the fluid inlet 2.
  • the voltage applied to the charging electrodes 4, 6 and to the wall 16 (which functions as the separator electrode) and the sizes of orifices 100 may be adjusted in accordance with the properties of the fluid used, the flow rate chosen and the desired output droplet sizes.
  • the wall 6 is provided with multiple straight parallel orifices 100.
  • An alternative geometry of orifices is shown in Figures 2a and 2b.
  • Figure 2a shows a diverging array of orifices 110 which would provide diverging streams of droplets.
  • Figure 2b shows a converging array of orifices 111 which would provide converging streams of droplets.
  • the use of the orifices 110, 111 of Figures 3a or 3b may be preferred for certain fluids .
  • FIG. 3 shows a second embodiment of electrostatic atomiser 19.
  • the atomiser has two charging electrodes 26, 27. They are both connected to the high voltage source 18 and a voltage of a first polarity is applied to electrode 26 and a voltage of a second opposite polarity is applied to the electrode formed by orifice wall 27.
  • the orifice wall 27 has a number of orifices referenced 20, 21, 22, 23. Fluid passing through orifices 20, 21, 22, 23 is atomised and forms droplets in two sets, one set of smaller-sized droplets and one set of larger-sized droplets. The droplets all pass into a droplet separator 24.
  • the droplet separator 24 has an outer wall 25 which is charged or earthed to attract and collect small droplets from outer jets 28, 29.
  • the separator wall 25 is connected to the high voltage source 18 and is charged with the same polarity as the orifice wall 27.
  • the droplet separator 24 also has a central collecting rod 30, which is charged or earthed to attract and so collect droplets of central streams 31 and 32.
  • the electrode 30 is electrically connected to charging electrode 27 and is charged with the same polarity.
  • Both the outer wall 25 and the rod 30 are provided with an absorbent layer; there is a layer 34 for wall 25 and a layer 35 for rod 30.
  • a scavenge pump 33 is provided to extract fluid collected by the rod 27 through a pipe 36 to be passed to an accumulator tank 101.
  • the pipe 36 passes through a central passage provided through electrode 26.
  • the lowermost surface of charging electrode 26 is provided with a roughened surface opposite the orifices 20, 21, 22, 23 to improve the charging of the fluid, e.g. by the provision of faceted elements in a diamond coating or similar (as described in the applicant's own previous patent application PCT/GB2004/000458) . Only the part of the surface opposite the orifices 20, 21, 22, 23 need be roughened/coated.
  • the invention also envisages using several spaced apart rods of the same type as rod 30 in a large multi-orifice array so as to minimise the occurrence of any small droplets exiting the atomiser.
  • the rods would extend from the orifice wall 27 downwardly (i.e. downstream), would be spaced apart from one another and would extend from parts of the wall 27 located between the orifices in the wall 27.
  • FIG. 4 shows a further embodiment of electrostatic atomiser 39, which has components identical to those of figure 1; identical components having identical reference numerals.
  • it has an input fluid line 40, charging electrode 41, an array of multiple orifices 42, 43, 44, 45 in an orifice wall 46 which also functions as a second charging electrode, and a droplet separator 47 with a charged or earthed external cylindrical droplet collector wall 48.
  • the collector wall 48 is connected to the high voltage source 18 and charged with the same polarity as the orifice wall 46.
  • a central rod 50 is located within a spray channel 49 in the separator 47 and the rod 50 is appropriately charged to repel the small Charged droplets towards the wall 48 where they are collected.
  • the top of the rod 50 is separated from the orifice wall 46 by an insulator 51.
  • the rod 50 is electrically connected to the charging electrode 41 by connector 52.
  • the planar bottom face of electrode 41 is provided with faceted elements only in the region facing the orifices 42, 43, 44, 45.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Electrostatic Separation (AREA)
PCT/GB2006/002506 2005-07-08 2006-07-06 Electrostatic atomiser WO2007007050A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2006268415A AU2006268415A1 (en) 2005-07-08 2006-07-06 Electrostatic atomiser
US11/993,517 US20100044474A1 (en) 2005-07-08 2006-07-06 Electrostatic atomiser
EP06755724A EP1901851A1 (en) 2005-07-08 2006-07-06 Electrostatic atomiser
JP2008519996A JP2009500160A (ja) 2005-07-08 2006-07-06 静電霧化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0514000.9A GB0514000D0 (en) 2005-07-08 2005-07-08 Electrostatic atomiser
GB0514000.9 2005-07-08

Publications (1)

Publication Number Publication Date
WO2007007050A1 true WO2007007050A1 (en) 2007-01-18

Family

ID=34896911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2006/002506 WO2007007050A1 (en) 2005-07-08 2006-07-06 Electrostatic atomiser

Country Status (7)

Country Link
US (1) US20100044474A1 (zh)
EP (1) EP1901851A1 (zh)
JP (1) JP2009500160A (zh)
CN (1) CN101218037A (zh)
AU (1) AU2006268415A1 (zh)
GB (1) GB0514000D0 (zh)
WO (1) WO2007007050A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117721B1 (ko) * 2012-07-09 2020-06-01 가부시키가이샤 세라프토 조해성 성분 함유 미스트 방출 핀부재 및 이를 이용한 정전 무화장치
JP2014042872A (ja) * 2012-08-24 2014-03-13 Sumitomo Chemical Co Ltd 静電噴霧装置
CN104759367A (zh) * 2015-05-04 2015-07-08 石河子开发区汇智元科技有限责任公司 一种增强型静电喷头
JP6880367B2 (ja) * 2016-11-28 2021-06-02 アネスト岩田株式会社 静電噴霧装置及び静電噴霧方法
CN108225987A (zh) * 2017-12-27 2018-06-29 天津科技大学 解决微米级液滴撞击球形表面冷冻涂覆的系统与方法
US10815046B2 (en) 2018-03-03 2020-10-27 Byoplanet International, LLC Size-selective aerosol nozzle device
CN109174456B (zh) * 2018-08-23 2021-11-26 北京工业大学 一种用于雾化湿式静电除尘的装置及方法
CN110051466B (zh) * 2019-04-15 2021-07-20 江苏师范大学 一种用于眼科医治的滴药水系统
CN112974006B (zh) * 2021-02-09 2023-05-05 宁波凯普电子有限公司 提高静电喷雾器药液中带电荷量的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380584A (en) * 1965-06-04 1968-04-30 Atomic Energy Commission Usa Particle separator
US4168460A (en) * 1976-07-22 1979-09-18 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Particle sorting apparatus
US4538733A (en) * 1983-10-14 1985-09-03 Becton, Dickinson And Company Particle sorter with neutralized collection wells and method of using same
EP0422616A2 (en) * 1989-10-11 1991-04-17 Canon Kabushiki Kaisha Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380584A (en) * 1965-06-04 1968-04-30 Atomic Energy Commission Usa Particle separator
US4168460A (en) * 1976-07-22 1979-09-18 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Particle sorting apparatus
US4538733A (en) * 1983-10-14 1985-09-03 Becton, Dickinson And Company Particle sorter with neutralized collection wells and method of using same
EP0422616A2 (en) * 1989-10-11 1991-04-17 Canon Kabushiki Kaisha Apparatus for and method of fractionating particle in particle-suspended liquid in conformity with the properties thereof

Also Published As

Publication number Publication date
US20100044474A1 (en) 2010-02-25
EP1901851A1 (en) 2008-03-26
JP2009500160A (ja) 2009-01-08
GB0514000D0 (en) 2005-08-17
AU2006268415A2 (en) 2008-05-15
AU2006268415A1 (en) 2007-01-18
CN101218037A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
US20100044474A1 (en) Electrostatic atomiser
EP1802400B1 (en) Electrostatic spray nozzle with internal and external electrodes
CA1284272C (en) Electrostatic spraying apparatus
DE60024992T2 (de) Richtungsverstellbarer ehd- aerosol-zerstäuber
EP2448679B1 (en) Apparatus and methods for producing charged fluid droplets
JP2002203657A (ja) イオン発生器
CS233702B2 (en) Device for spraying of pesticides
KR100743049B1 (ko) 액체 분무 방법
Wang et al. Experimental study on electrohydrodynamic atomization (EHDA) in stable cone-jet with middle viscous and low conductive liquid
EP0134951B1 (de) Verfahren und Vorrichtung zum grossflächigen Ausbringen und Verteilen elektrisch leitfähiger Flüssigkeiten
JPH01159068A (ja) 導電性噴霧液体を使用する際に静電噴霧装置の高電圧から噴霧液体源を絶縁する装置
Sen et al. Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications
US20030205629A1 (en) Method and apparatus for high throughput charge injection
US4489894A (en) Inductively charged spraying apparatus
KR100312855B1 (ko) 초미세입자를 이용한 분진포집장치 및 그 방법
CN219377559U (zh) 静电雾化装置
RU2293608C1 (ru) Способ создания наэлектризованного аэрозоля диэлектрической жидкости с ядохимикатами и лекарственными препаратами
KR20200106298A (ko) 고유량 정전분무를 위한 추출판이 결합된 정전분무 시스템 및 이를 통한 정전분무 방법
KR100479461B1 (ko) 정압 유지장치
Nguyen et al. Neutralized Micro-Droplet Generated by On-Chip Electrohydrodynamic
WO2024030666A1 (en) Systems and methods for an electrostatic atomizer of moderately conductive fluids
CN117983432A (zh) 静电雾化装置
Lee et al. Generation of uniform Fine Droplets Under Spindle Mode in Electrohydrodynamic Atomization
KR20010078078A (ko) 분무입자의 유도가 가능한 전기수력학적 분사장치
Sen et al. Modeling of a Novel Multi-Jet Emitter for ESI-MS Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006755724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11993517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 21/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200680024519.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008519996

Country of ref document: JP

Ref document number: 2006268415

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006268415

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006268415

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006755724

Country of ref document: EP