WO2007004514A1 - Photovoltaic power generation system utilizing commercial system power supply - Google Patents

Photovoltaic power generation system utilizing commercial system power supply Download PDF

Info

Publication number
WO2007004514A1
WO2007004514A1 PCT/JP2006/313006 JP2006313006W WO2007004514A1 WO 2007004514 A1 WO2007004514 A1 WO 2007004514A1 JP 2006313006 W JP2006313006 W JP 2006313006W WO 2007004514 A1 WO2007004514 A1 WO 2007004514A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
inverter
circuit
generation system
power generation
Prior art date
Application number
PCT/JP2006/313006
Other languages
French (fr)
Japanese (ja)
Inventor
Ayumi Yagi
Mitsuo Okamoto
Koji Miyamae
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007004514A1 publication Critical patent/WO2007004514A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/108Parallel operation of dc sources using diodes blocking reverse current flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar power generation system, and more particularly to a solar power generation system using a commercial power supply.
  • FIG. 6 is a diagram showing a daily power generation amount of a general solar cell. Referring to Fig. 6, sufficient power generation can be obtained during clear daytime, whereas power generation decreases sharply at sunrise and sunset, and no power generation can be obtained at night. In cloudy weather and rainy weather, the amount of power generation is greatly reduced compared to that in fine weather.
  • FIG. 7 is a diagram showing a configuration of a grid-connected general photovoltaic power generation system.
  • this solar power generation system includes solar cell modules 1A to 1C, step-up / step-down circuits 2A to 2C, and an inverter 3.
  • Solar cell modules 1A to 1C generate DC power from received sunlight.
  • the step-up / step-down circuits 2A to 2C adjust the voltage value of the DC power generated by the solar cell modules 1A to 1C to a predetermined voltage value.
  • Inverter 3 converts DC power received by step-up / step-down circuits 2A to 2C into AC power.
  • the inverter 3 then reversely flows the converted AC power to the commercial power supply 6.
  • the AC power generated by the inverter 3 is sent to the power company's transmission line network via the commercial power supply 6.
  • the commercial system power supply 6 supplies electric power of the power company's transmission line network to the loads 7A to 7C.
  • loads 7A-7C are household appliances, for example.
  • the user connects the outlets 7A to 7C of home appliances to the outlet of the commercial grid power supply 6 for use.
  • FIG. 8 is a diagram showing a configuration of a stand-alone general photovoltaic power generation system.
  • this solar power generation system includes a solar cell module 1A, a step-up / down circuit 2A, an inverter 3, and a storage battery 18.
  • the storage battery 18 stores the DC power also received by the buck-boost circuits 2A to 2C. Further, when the power consumption of the load 7A is larger than the AC power generated by the inverter 3, the storage battery 18 discharges the stored DC power and supplies it to the inverter 3 to compensate for the shortage.
  • Inverter 3 converts DC power received from step-up / down circuit 2A and DC power discharged from storage battery 18 into AC power. Then, the inverter 3 supplies the converted AC power to the load 7A.
  • Patent Document 1 a photovoltaic power generation system power similar to that of the photovoltaic power generation system shown in FIG. 7 is disclosed in Japanese Patent Laid-Open No. 7-194134 (Patent Document 1).
  • a FET Field Effect Transistor
  • an error signal between the sinusoidal waveform pattern signal read from the waveform pattern storage unit and the inverter output current signal from which the current transformer force is also output is amplified by an error amplifier, and this signal is PWM (Pulse Since the PWM control is performed by the width control unit and the gate drive signal is generated by the gate drive signal generation unit, feedback control is realized so that the output current signal matches the read sine waveform pattern.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-194134
  • an object of the present invention is to provide a photovoltaic power generation system capable of preventing an increase in installation cost and operation cost.
  • a photovoltaic power generation system is a photovoltaic power generation system that supplies power to a load, and is generated by a solar cell module and the solar cell module.
  • a buck-boost circuit that adjusts the voltage value of the DC power
  • a rectifier circuit that converts AC power from the commercial power supply into DC power
  • a DC power that has been adjusted by the buck-boost circuit and the rectifier circuit.
  • an inverter that generates AC power to be supplied from DC power to the load.
  • the photovoltaic power generation system further lacks DC power whose voltage value is adjusted by a step-up / down circuit relative to DC power necessary to generate AC power to be supplied to a load.
  • the control circuit determines that the shortage of the DC power whose voltage value has been adjusted by the step-up / down circuit is compensated by the DC power converted by the rectifier circuit.
  • AC power from commercial power supply is converted to DC power, and the converted DC power is output to the inverter.
  • the photovoltaic power generation system further includes AC power generated by an inverter and AC power from a commercial power source based on the amount of DC power whose voltage value is adjusted by a step-up / down circuit.
  • a control circuit that selects either of these, and a control that switches between output of AC power generated by the inverter to the load or output of AC power of commercial power supply to the load based on the selection of the control circuit With a switch.
  • the control circuit selects the AC power from the commercial power supply when the DC power whose voltage value is adjusted by the step-up / down circuit satisfies the following formula.
  • PK PX (1—AXB) / A 0 where P is the power consumption of the load, P1 is the DC power whose voltage value is adjusted by the buck-boost circuit, A is the inverter efficiency, and B is the rectifier circuit Efficiency.
  • the inverter further adjusts the phase of the AC power to be converted so that it matches the phase of the AC power of the commercial power supply power when the control circuit changes the selection of the AC power.
  • the control circuit changes the selection of AC power after the inverter performs AC power phase adjustment.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an electric circuit of the photovoltaic power generation system according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing power and efficiency in the photovoltaic power generation system according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing AC power phase adjustment performed by the photovoltaic power generation system according to the embodiment of the present invention.
  • FIG. 6 A graph showing the daily power generation of a general solar cell.
  • FIG. 7 is a diagram showing a configuration of a grid-connected general photovoltaic power generation system.
  • FIG. 8 is a diagram showing a configuration of a stand-alone general photovoltaic power generation system.
  • 1A- LC solar cell module, 2A-2C buck-boost circuit, 3 inverter, 4 control switch, 5 rectifier circuit, 10 control circuit, 11 switch, D1-D2 diode, CT1-CT2, PT1 sensor, 7A load , 8A ⁇ 8B Outlet, 9A ⁇ 9B
  • Cable 18 storage batteries, 100 solar power system.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
  • a photovoltaic power generation system 100 includes a solar cell module 1A, a step-up / down circuit 2A, an inverter 3, a control switch 4, a rectifier circuit 5, a control circuit 10, and a switch. 11, diode D1, diode D2, sensor CT1, sensor CT2, sensor PT1, outlet 8B, and cable 9A.
  • the switch 11 rectifies the AC power received from the commercial power supply 6 in the on state.
  • the rectifier circuit 5 converts AC power from the commercial power supply 6 into DC power and outputs it to the inverter 3.
  • the diode D1 and the diode D2 prevent backflow of the output currents of the step-up / step-down circuit 2A and the rectifier circuit 5.
  • Inverter 3 converts the DC power received from step-up / step-down circuit 2 A and the DC power received from rectifier circuit 5 into AC power, and outputs the converted AC power to control switch 4.
  • the control switch 4 Based on a control signal received from a control circuit 10 to be described later, the control switch 4 generates a power for outputting the AC power generated by the inverter 3 to the load 7A or the AC power from the commercial power source 6. Switches whether to output to load 7A.
  • the sensor CT1 measures a current output to the step-up / step-down circuit 2A force inverter 3.
  • Sensor PT1 measures the voltage output to step-up / down circuit 2A force inverter 3.
  • Sensor CT2 measures the load current, that is, the current output by inverter 3 to load 7A.
  • the control circuit 10 receives the measurement result of each sensor, and outputs the DC power adjusted from the voltage value output from the step-up / down circuit 2A and the power consumption of the load, that is, the AC power to be supplied to the load 7A. (Hereinafter referred to as target AC power).
  • the control circuit 10 uses DC power output from the step-up / step-down circuit 2A due to cloudy weather or the like to generate target AC power (hereinafter referred to as target DC power). If the target AC power generated by the inverter 3 is less efficient than using the AC power from the commercial power supply 6 directly, the rectifier circuit 5 can compensate for the shortage relative to the target DC power. Decide to make up for the DC power to be converted. In this case, the control circuit 10 selects the AC power generated by the inverter 3 and outputs a control signal representing the selection result to the control switch 4. Further, in this case, the control circuit 10 performs control to turn on the switch 11 and supply AC power from the commercial power supply 6 to the rectifier circuit 5.
  • target DC power target AC power
  • the control circuit 10 has a DC power output from the step-up / step-down circuit 2A smaller than the target DC power, and the inverter 3 does not generate the target AC power. If it is more efficient to use the AC power directly from 6, the AC power from the commercial power supply 6 is selected and a control signal representing the selection result is output to the control switch 4. In this case, the control circuit 10 performs control to turn off the supply of AC power from the commercial power supply 6 to the rectifier circuit 5 by turning off the switch 11. For example, when the power generation amount of the solar cell module 1A cannot be obtained at all, such as at night, the control circuit 10 selects the AC power from the commercial power source 6. With this configuration, AC power from the commercial power supply 6 is output to the load 7A without passing through the rectifier circuit 5 and the inverter 3, thus avoiding losses caused by power conversion in the rectifier circuit 5 and the inverter 3. can do.
  • the control circuit 10 performs control to limit the DC power supplied from the step-up / down circuit 2A to the inverter 3 .
  • the control circuit 10 turns off the switch 11 and turns off the commercial power supply. Control to stop the supply of AC power from 6 to rectifier circuit 5 is performed.
  • the control circuit 10 selects the AC power generated by the inverter 3 and outputs a control signal representing the selection result. Output to control switch 4. In this case, the control circuit 10 performs control to turn off the supply of AC power from the commercial power supply 6 to the rectifier circuit 5 by turning off the switch 11.
  • FIG. 2 is a diagram showing an electric circuit of the photovoltaic power generation system according to the embodiment of the present invention.
  • DC power supply E1 represents a DC voltage on the step-up / down circuit 2A side
  • DC power supply E2 represents a DC voltage on the rectifier circuit 5 side
  • the DC power supply E1 and the current limiting resistor rl correspond to the step-up / down circuit 2A
  • the DC power supply E2 and the current limiting resistor r2 correspond to the rectifier circuit 5.
  • the conversion from DC power to AC power in the inverter 3 is omitted, and DC power is directly supplied to the load 7A.
  • the current II is a current supplied to the inverter 3 from the step-up / down circuit 2A.
  • the current 12 is a current supplied from the rectifier circuit 5 to the inverter 3.
  • Resistance values of the current limiting resistor rl and the current limiting resistor r2 change based on control from the control circuit 10.
  • the control circuit 10 monitors the load voltage V measured by a sensor (not shown), and increases or decreases the load current I so as to keep the load voltage V constant, that is, the inverter 3 generates target AC power. By performing the control, the load is stably operated.
  • FIG. 3 shows the current-voltage characteristics of the solar cell.
  • the control circuit 10 first sets the current limiting resistance rl. Control to increase the current II by decreasing the resistance value.
  • the control circuit 10 reduces the AC power generated by the inverter 3 below the target AC power even if the current II is increased by decreasing the resistance value of the current limiting resistor rl, and the target AC power is output by the inverter 3. If the power generation is more efficient than the direct use of AC power from the commercial grid power supply 6, control is performed to increase the current 12 by reducing the resistance value of the current limiting resistor r2. In other words, the shortage of the DC power output from the step-up / down circuit 2A with respect to the target DC power is supplemented with the DC power converted by the rectifier circuit 5.
  • control circuit 10 first performs control to limit the current 12 by increasing the resistance value of the current limiting resistor r2.
  • FIG. 4 is a diagram showing power and efficiency in the photovoltaic power generation system according to the embodiment of the present invention.
  • the amount of AC power supplied to load 7A that is, the power consumption of load 7A is Po
  • the amount of DC power output from buck-boost circuit 2A is P1
  • AC power received by rectifier circuit 5 from commercial power supply 6 is P2
  • AC power received by control switch 4 from commercial power supply 6 is P3
  • inverter 3 efficiency is A
  • rectifier circuit 5 efficiency is B.
  • the control circuit 10 when the amount of DC power output from the buck-boost circuit 2 is reduced, the control circuit 10 performs control to compensate for the shortage relative to the target DC power with the DC power received from the rectifier circuit 5 as described above. In addition, the amount of DC power received by inverter 3 from rectifier circuit 5 increases. If the AC power ⁇ 2 output from the commercial power supply 6 to the rectifier circuit 5 exceeds the AC power ⁇ 3 output from the commercial power supply 6 to the control switch 4, the target AC power is not generated by the inverter 3. Therefore, it is more efficient to use AC power directly from the commercial power source 6 for the power supply! Therefore, the control circuit 10 selects the AC power generated by the inverter 3 from the AC power generated by the inverter 3 to the AC power from the commercial power source 6. The condition for switching is expressed by the following formula.
  • Equation (A1) Equation ( ⁇ 2) and Equation (A3) Forces are also obtained by eliminating ⁇ 2 and ⁇ 3.
  • control circuit 10 determines that the AC power generated by the inverter 3 is AC power from the commercial power source 6 when the amount of DC power P1 output from the step-up / step-down circuit 2 ⁇ satisfies the formula ( ⁇ 4). Switch the selection to. With such a configuration, it is possible to improve the power use efficiency in the photovoltaic power generation system.
  • FIG. 5 is a diagram showing phase adjustment of AC power performed by the solar power generation system according to the embodiment of the present invention.
  • the waveforms of (1) and (4) are the AC power on the inverter side, that is, the waveform of the AC power that control switch 4 receives from inverter 3, and the waveforms of (2) and (5)
  • the waveform is the AC power on the commercial power supply side, that is, the AC power waveform received by the control switch 4 from the commercial power supply 6.
  • the waveforms in (3) and (6) are the AC power output from the control switch 4. It is a waveform.
  • the waveforms of (1) and (2) are 90 degrees out of phase.
  • the waveform of AC power output from control switch 4 is as shown in (3) It becomes a discontinuous waveform, causing problems such as an abnormal current flowing instantaneously from control switch 4.
  • control circuit 10 issues a phase adjustment command when switching between the AC power on the inverter side and the AC power on the commercial system power supply side. Output to inverter 3.
  • Inverter 3 in response to the phase adjustment command from control circuit 10, receives the AC power to be output to control switch 4 so that the phase of the AC power on the inverter side matches the phase of the AC power on the commercial power supply side. Adjust the phase as shown in (4).
  • control circuit 10 changes the selection from the AC power on the inverter side to the AC power on the commercial power supply side at time tl, and the selection result Is output to control switch 4.
  • the waveform of the AC power output from the control switch 4 becomes a continuous waveform as shown in (6) even before and after switching, so that an abnormal current and an instantaneous power failure occur in the control switch 4.
  • control circuit 10 switches the selection from the AC power on the inverter side to the AC power on the commercial system power supply side.
  • the control circuit 10 is switched from the AC power on the commercial system power supply side to the inverter side.
  • the phase of the AC power output from inverter 3 to control switch 4 is adjusted as shown in (4) .
  • the AC power from the commercial power supply side is changed to the inverter side
  • the storage battery 18 needs to be enlarged in order to cover all household power with photovoltaic power generation because it is not connected to the commercial power source 6.
  • storage batteries since storage batteries have a short life, they must be replaced and maintained regularly, which increases installation costs and operation costs.
  • the rectifier circuit 5 converts AC power from the commercial power supply 6 into DC power and outputs it to the inverter 3.
  • the inverter 3 converts the DC power received from the rectifier circuit 5 and the DC power generated by the solar cell module 1A received via the step-up / down circuit 2A into AC power.
  • control circuit 10 turns off switch 11 when the DC power output from step-up / down circuit 2A is equal to or higher than the target DC power. As a state, control is performed to stop the supply of AC power from the commercial power supply 6 to the rectifier circuit 5. Therefore, it is possible to prevent the AC power from the commercial power supply 6 from being wasted and to improve the power usage efficiency.
  • the AC power from the commercial power source 6 is supplied to the photovoltaic power generation system by connecting the cable 9A to the household outlet 8A. Connect the cable 9B of the home appliance with a load of 7A. By connecting the solar cell module 1A to a place where the sun hits, connecting to the cent 8B, AC power from the photovoltaic power generation system is supplied to the household electrical appliance with the load 7A. Therefore, in the photovoltaic power generation system according to the embodiment of the present invention, a user who does not need to be connected to the commercial power supply 6 can easily install and remove.
  • the photovoltaic power generation system according to the embodiment of the present invention, the DC power output from the step-up / down circuit 2A with respect to the target DC power is converted by the rectifier circuit 5, that is, the DC power.
  • the photovoltaic power generation system can be installed in a narrow space such as a veranda, and can also be used for loads that regularly consume power regardless of day or night, such as a refrigerator. Can be used.

Abstract

A photovoltaic power generation system (100) comprises a solar cell module (1A), a step up/down circuit (2A) for regulating the voltage level of DC power generated from the solar cell module (1A), a rectifier circuit (5) for converting the AC power from a commercial system power supply (6) into a DC power, and an inverter (3) for producing an AC power to be supplied to a load (7A) from the DC power having a voltage level regulated by the step up/down circuit (2A) and the DC power converted by the rectifier circuit (5).

Description

明 細 書  Specification
商用系統電源を利用する太陽光発電システム  Solar power generation system using commercial power supply
技術分野  Technical field
[0001] 本発明は、太陽光発電システムに関し、特に、商用系統電源を利用する太陽光発 電システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a solar power generation system, and more particularly to a solar power generation system using a commercial power supply.
背景技術  Background art
[0002] 近年、化石燃料の枯渴によるエネルギー危機への対策および炭酸ガスの排出によ る地球温暖化の防止等の対策として、クリーンで無尽蔵な太陽光エネルギーの利用 が注目されている。これに伴い、太陽光エネルギーを電気エネルギーに変換する太 陽電池モジュールが急速に普及して、民間および公共の大規模な施設だけでなぐ 一般家庭にも既に導入されて 、る。  [0002] In recent years, the use of clean and inexhaustible solar energy has attracted attention as a measure against the energy crisis caused by fossil fuel depletion and the prevention of global warming caused by carbon dioxide emissions. Along with this, solar cell modules that convert solar energy into electrical energy have rapidly spread and have already been introduced into ordinary households, not just large-scale private and public facilities.
[0003] 図 6は、一般的な太陽電池の一日の発電量を示す図である。図 6を参照して、晴天 の昼間は十分な発電量が得られるのに対して、日の出および日没は発電量が急激 に低下し、また、夜間は発電量が全く得られらない。そして、曇天および雨天の場合 にも、発電量は晴天の場合と比べて大きく低下する。  [0003] FIG. 6 is a diagram showing a daily power generation amount of a general solar cell. Referring to Fig. 6, sufficient power generation can be obtained during clear daytime, whereas power generation decreases sharply at sunrise and sunset, and no power generation can be obtained at night. In cloudy weather and rainy weather, the amount of power generation is greatly reduced compared to that in fine weather.
[0004] このような太陽電池の発電量の変動に対応するために、以下のような太陽光発電シ ステムが提案されている。  [0004] In order to cope with such fluctuations in the amount of power generated by solar cells, the following solar power generation systems have been proposed.
[0005] 図 7は、系統連系型の一般的な太陽光発電システムの構成を示す図である。  FIG. 7 is a diagram showing a configuration of a grid-connected general photovoltaic power generation system.
図 7を参照して、この太陽光発電システムは、太陽電池モジュール 1A〜1Cと、昇 降圧回路 2A〜2Cと、インバータ 3とを備える。  Referring to FIG. 7, this solar power generation system includes solar cell modules 1A to 1C, step-up / step-down circuits 2A to 2C, and an inverter 3.
[0006] 太陽電池モジュール 1A〜1Cは、受光した太陽光から直流電力を発電する。  [0006] Solar cell modules 1A to 1C generate DC power from received sunlight.
昇降圧回路 2A〜2Cは、太陽電池モジュール 1A〜1Cで発電された直流電力の 電圧値を所定の電圧値に調整する。  The step-up / step-down circuits 2A to 2C adjust the voltage value of the DC power generated by the solar cell modules 1A to 1C to a predetermined voltage value.
[0007] インバータ 3は、昇降圧回路 2A〜2C力 受けた直流電力を交流電力に変換する。  [0007] Inverter 3 converts DC power received by step-up / step-down circuits 2A to 2C into AC power.
そして、インバータ 3は、変換した交流電力を商用系統電源 6へ逆潮流する。すなわ ち、インバータ 3が生成した交流電力は商用系統電源 6を介して電力会社の送電線 網へ送られる。 [0008] 商用系統電源 6は、電力会社の送電線網力もの電力を負荷 7A〜7Cに供給する。 ここで、負荷 7A〜7Cは、たとえば家電機器である。ユーザは、商用系統電源 6のコ ンセントに家電機器等の負荷 7A〜7Cを接続して使用する。 The inverter 3 then reversely flows the converted AC power to the commercial power supply 6. In other words, the AC power generated by the inverter 3 is sent to the power company's transmission line network via the commercial power supply 6. [0008] The commercial system power supply 6 supplies electric power of the power company's transmission line network to the loads 7A to 7C. Here, loads 7A-7C are household appliances, for example. The user connects the outlets 7A to 7C of home appliances to the outlet of the commercial grid power supply 6 for use.
[0009] この太陽光発電システムでは、晴天の昼間など太陽電池の発電する電力量が家電 機器で消費される電力量より大きい場合は余剰電力を電力会社に売ることができる。 また、曇天および夜間など太陽電池の発電する電力量が家電機器で消費される電 力量より小さい場合は不足分の電力を電力会社から買うことができる。したがって、曇 天および夜間など太陽電池モジュールの発電量が十分でない場合でも安定して家 電機器に電力を供給することができる。  [0009] In this solar power generation system, surplus power can be sold to an electric power company when the amount of power generated by a solar cell is larger than the amount of power consumed by home appliances, such as in the daytime on a clear day. In addition, when the amount of power generated by solar cells is less than the amount of power consumed by home appliances, such as overcast or at night, the shortage can be purchased from an electric power company. Therefore, even when the amount of power generated by the solar cell module is not sufficient, such as when it is cloudy or at night, it is possible to stably supply power to the home appliances.
[0010] 図 8は、独立型の一般的な太陽光発電システムの構成を示す図である。  FIG. 8 is a diagram showing a configuration of a stand-alone general photovoltaic power generation system.
図 8を参照して、この太陽光発電システムは、太陽電池モジュール 1Aと、昇降圧回 路 2Aと、インバータ 3と、蓄電池 18とを備える。  Referring to FIG. 8, this solar power generation system includes a solar cell module 1A, a step-up / down circuit 2A, an inverter 3, and a storage battery 18.
[0011] 蓄電池 18は、負荷 7Aの消費電力がインバータ 3の生成する交流電力より小さい場 合には昇降圧回路 2A〜2C力も受けた直流電力を蓄える。また、蓄電池 18は、負荷 7Aの消費電力がインバータ 3の生成する交流電力より大きい場合には、蓄えている 直流電力を放電してインバータ 3へ供給し、不足分を補う。  [0011] When the power consumption of the load 7A is smaller than the AC power generated by the inverter 3, the storage battery 18 stores the DC power also received by the buck-boost circuits 2A to 2C. Further, when the power consumption of the load 7A is larger than the AC power generated by the inverter 3, the storage battery 18 discharges the stored DC power and supplies it to the inverter 3 to compensate for the shortage.
[0012] インバータ 3は、昇降圧回路 2Aから受けた直流電力および蓄電池 18が放電した直 流電力を交流電力に変換する。そして、インバータ 3は、変換した交流電力を負荷 7 Aに供給する。  Inverter 3 converts DC power received from step-up / down circuit 2A and DC power discharged from storage battery 18 into AC power. Then, the inverter 3 supplies the converted AC power to the load 7A.
[0013] その他の構成および動作は図 7に示す太陽光発電システムと同様であるので説明 は繰り返さない。  Other configurations and operations are the same as those of the photovoltaic power generation system shown in FIG. 7, and therefore description thereof will not be repeated.
[0014] ここで、図 7に示す太陽光発電システムと同様の太陽光発電システム力 特開平 7 — 194134号公報 (特許文献 1)に開示されている。すなわち、正弦波で PWM変調 を施されたゲートパルス信号によって、 FET (Field Effect Transistor)ブリッジ回路 をスイッチングすることで、系統連系インバータの出力に正弦波電流が流れるように 制御して、電力系統に太陽電池の出力電力を供給する。このとき、波形パターン記 憶部から読出された正弦波波形パターン信号と、カレントトランス力も出力されたイン バータ出力電流信号との誤差信号を誤差増幅器で増幅し、この信号を PWM (Pulse Width Modulation)変調制御部で PWM変調してゲートドライブ信号生成部でゲー トドライブ信号とするため、出力電流信号が上記読出された正弦波波形パターンと一 致するようなフィードバック制御が実現される。 Here, a photovoltaic power generation system power similar to that of the photovoltaic power generation system shown in FIG. 7 is disclosed in Japanese Patent Laid-Open No. 7-194134 (Patent Document 1). In other words, by switching a FET (Field Effect Transistor) bridge circuit using a gate pulse signal that has been PWM modulated with a sine wave, it is controlled so that a sine wave current flows through the output of the grid-connected inverter. Supply the output power of the solar cell. At this time, an error signal between the sinusoidal waveform pattern signal read from the waveform pattern storage unit and the inverter output current signal from which the current transformer force is also output is amplified by an error amplifier, and this signal is PWM (Pulse Since the PWM control is performed by the width control unit and the gate drive signal is generated by the gate drive signal generation unit, feedback control is realized so that the output current signal matches the read sine waveform pattern.
特許文献 1:特開平 7— 194134号公報  Patent Document 1: Japanese Patent Laid-Open No. 7-194134
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0015] し力しながら、特許文献 1記載の系統連系型の太陽光発電システムおよび図 7に示 す系統連系型の太陽光発電システムでは、家庭の全電力を太陽光発電で賄うため に多数の太陽電池モジュールを設置する必要があり、設置費用が増大するという問 題点があった。 However, in the grid-connected photovoltaic power generation system described in Patent Document 1 and the grid-connected photovoltaic power generation system shown in FIG. 7, all power in the home is covered by photovoltaic power generation. It was necessary to install a large number of solar cell modules, and the installation cost increased.
[0016] また、図 8に示す独立型の太陽光発電システムでは、商用系統電源 6に連系しない ことから家庭の全電力を太陽光発電で賄うために蓄電池 18を大型化する必要があり 、また、蓄電池は寿命が短いために定期的に買い換えおよびメンテナンス等が必要 となり、設置費用および運用費用が増大するという問題点があった。  [0016] In addition, in the stand-alone photovoltaic power generation system shown in FIG. 8, it is necessary to enlarge the storage battery 18 in order to cover all household power with photovoltaic power generation because it is not linked to the commercial power source 6. In addition, since storage batteries have a short life, they must be replaced and maintained regularly, which increases installation costs and operation costs.
[0017] それゆえに、本発明の目的は、設置費用および運用費用の増大を防ぐことが可能 な太陽光発電システムを提供することである。  [0017] Therefore, an object of the present invention is to provide a photovoltaic power generation system capable of preventing an increase in installation cost and operation cost.
課題を解決するための手段  Means for solving the problem
[0018] 上記課題を解決するために、この発明のある局面に係わる太陽光発電システムは、 負荷に電力を供給する太陽光発電システムであって、太陽電池モジュールと、太陽 電池モジュールで発電された直流電力の電圧値を調整する昇降圧回路と、商用系 統電源からの交流電力を直流電力に変換する整流回路と、昇降圧回路で電圧値が 調整された直流電力および整流回路で変換された直流電力から負荷に供給すべき 交流電力を生成するインバータとを備える。  [0018] In order to solve the above problems, a photovoltaic power generation system according to an aspect of the present invention is a photovoltaic power generation system that supplies power to a load, and is generated by a solar cell module and the solar cell module. A buck-boost circuit that adjusts the voltage value of the DC power, a rectifier circuit that converts AC power from the commercial power supply into DC power, and a DC power that has been adjusted by the buck-boost circuit and the rectifier circuit. And an inverter that generates AC power to be supplied from DC power to the load.
[0019] 好ましくは、太陽光発電システムは、さらに、負荷に供給すべき交流電力を生成す るために必要な直流電力に対して、昇降圧回路で電圧値が調整された直流電力が 不足する場合には、昇降圧回路で電圧値が調整された直流電力の不足分を整流回 路で変換される直流電力で補うことを決定する制御回路を備え、整流回路は、制御 回路が直流電力の不足分を整流回路で変換される直流電力で補うことを決定した場 合には、商用系統電源力 の交流電力を直流電力に変換し、変換した直流電力をィ ンバータへ出力する。 [0019] Preferably, the photovoltaic power generation system further lacks DC power whose voltage value is adjusted by a step-up / down circuit relative to DC power necessary to generate AC power to be supplied to a load. In such a case, the control circuit determines that the shortage of the DC power whose voltage value has been adjusted by the step-up / down circuit is compensated by the DC power converted by the rectifier circuit. When it is decided to make up for the shortfall with DC power converted by the rectifier circuit In this case, AC power from commercial power supply is converted to DC power, and the converted DC power is output to the inverter.
[0020] 好ましくは、太陽光発電システムは、さらに、昇降圧回路で電圧値が調整された直 流電力の電力量に基づいて、インバータで生成された交流電力および商用系統電 源からの交流電力のいずれか一方を選択する制御回路と、制御回路の選択に基づ いて、インバータで生成された交流電力を負荷へ出力する力 または商用系統電源 力もの交流電力を負荷へ出力するかを切り替える制御スィッチとを備える。  [0020] Preferably, the photovoltaic power generation system further includes AC power generated by an inverter and AC power from a commercial power source based on the amount of DC power whose voltage value is adjusted by a step-up / down circuit. A control circuit that selects either of these, and a control that switches between output of AC power generated by the inverter to the load or output of AC power of commercial power supply to the load based on the selection of the control circuit With a switch.
[0021] より好ましくは、制御回路は、昇降圧回路で電圧値が調整された直流電力が以下 の式を満たす場合には、商用系統電源からの交流電力を選択する。 PK P X (1— A X B) /A0ただし、 Pは負荷の消費電力であり、 P1は昇降圧回路で電圧値が調整 された直流電力であり、 Aはインバータの効率であり、 Bは整流回路の効率である。 [0021] More preferably, the control circuit selects the AC power from the commercial power supply when the DC power whose voltage value is adjusted by the step-up / down circuit satisfies the following formula. PK PX (1—AXB) / A 0 where P is the power consumption of the load, P1 is the DC power whose voltage value is adjusted by the buck-boost circuit, A is the inverter efficiency, and B is the rectifier circuit Efficiency.
[0022] より好ましくは、インバータは、さらに、制御回路が交流電力の選択を変更する場合 には、商用系統電源力 の交流電力の位相と一致するように、変換する交流電力の 位相を調整し、制御回路は、インバータが交流電力の位相調整を行なった後に交流 電力の選択を変更する。  [0022] More preferably, the inverter further adjusts the phase of the AC power to be converted so that it matches the phase of the AC power of the commercial power supply power when the control circuit changes the selection of the AC power. The control circuit changes the selection of AC power after the inverter performs AC power phase adjustment.
発明の効果  The invention's effect
[0023] 本発明によれば、一枚の太陽電池モジュール力 成るような簡単なシステムでも、 家庭用電気機器の電源として導入できる。  [0023] According to the present invention, even a simple system consisting of a single solar cell module can be introduced as a power source for household electric appliances.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の実施の形態に係る太陽光発電システムの構成を示す図である。 FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
[図 2]本発明の実施の形態に係る太陽光発電システムを電気回路で表わした図であ る。  FIG. 2 is a diagram showing an electric circuit of the photovoltaic power generation system according to the embodiment of the present invention.
[図 3]太陽電池の電流 電圧特性を示す。  [Figure 3] Shows the current-voltage characteristics of solar cells.
[図 4]本発明の実施の形態に係る太陽光発電システムにおける電力および効率を示 す図である。  FIG. 4 is a diagram showing power and efficiency in the photovoltaic power generation system according to the embodiment of the present invention.
[図 5]本発明の実施の形態に係る太陽光発電システムが行なう交流電力の位相調整 を示す図である。  FIG. 5 is a diagram showing AC power phase adjustment performed by the photovoltaic power generation system according to the embodiment of the present invention.
[図 6]—般的な太陽電池の一日の発電量を示す図である。 [図 7]系統連系型の一般的な太陽光発電システムの構成を示す図である。 [FIG. 6] —A graph showing the daily power generation of a general solar cell. FIG. 7 is a diagram showing a configuration of a grid-connected general photovoltaic power generation system.
[図 8]独立型の一般的な太陽光発電システムの構成を示す図である。  FIG. 8 is a diagram showing a configuration of a stand-alone general photovoltaic power generation system.
符号の説明  Explanation of symbols
[0025] 1A〜: LC 太陽電池モジュール、 2A〜2C 昇降圧回路、 3 インバータ、 4 制御 スィッチ、 5 整流回路、 10 制御回路、 11 スィッチ、 D1〜D2 ダイオード、 CT1 〜CT2, PT1 センサ、 7A 負荷、 8A〜8B コンセント、 9A〜9B  [0025] 1A-: LC solar cell module, 2A-2C buck-boost circuit, 3 inverter, 4 control switch, 5 rectifier circuit, 10 control circuit, 11 switch, D1-D2 diode, CT1-CT2, PT1 sensor, 7A load , 8A ~ 8B Outlet, 9A ~ 9B
ケーブル、 18 蓄電池、 100 太陽光発電システム。  Cable, 18 storage batteries, 100 solar power system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の実施の形態に係る太陽光発電システムの構成を示す図である。  FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.
[0027] 図 1を参照して、太陽光発電システム 100は、太陽電池モジュール 1Aと、昇降圧回 路 2Aと、インバータ 3と、制御スィッチ 4と、整流回路 5と、制御回路 10と、スィッチ 11 と、ダイオード D1と、ダイオード D2と、センサ CT1と、センサ CT2と、センサ PT1と、 コンセント 8Bと、ケーブル 9Aとを備える。 Referring to FIG. 1, a photovoltaic power generation system 100 includes a solar cell module 1A, a step-up / down circuit 2A, an inverter 3, a control switch 4, a rectifier circuit 5, a control circuit 10, and a switch. 11, diode D1, diode D2, sensor CT1, sensor CT2, sensor PT1, outlet 8B, and cable 9A.
[0028] 太陽電池モジュール 1Aおよび昇降圧回路 2Aは図 7に示す太陽光発電システムと 同様であるため、ここでは説明を繰り返さない。 [0028] Since solar cell module 1A and step-up / down circuit 2A are similar to the solar power generation system shown in FIG. 7, description thereof will not be repeated here.
[0029] スィッチ 11は、オン状態において商用系統電源 6から受けた交流電力を整流回路[0029] The switch 11 rectifies the AC power received from the commercial power supply 6 in the on state.
5へ出力し、オフ状態において商用系統電源 6から受けた交流電力の出力を停止す る。 Output to 5 and stop the output of AC power received from commercial power supply 6 in the off state.
[0030] 整流回路 5は、商用系統電源 6からの交流電力を直流電力に変換し、インバータ 3 へ出力する。  The rectifier circuit 5 converts AC power from the commercial power supply 6 into DC power and outputs it to the inverter 3.
[0031] ダイオード D1およびダイオード D2は、昇降圧回路 2Aおよび整流回路 5の出力電 流の逆流を防止する。  [0031] The diode D1 and the diode D2 prevent backflow of the output currents of the step-up / step-down circuit 2A and the rectifier circuit 5.
[0032] インバータ 3は、昇降圧回路 2Aから受けた直流電力および整流回路 5から受けた 直流電力を交流電力に変換し、変換した交流電力を制御スィッチ 4へ出力する。  Inverter 3 converts the DC power received from step-up / step-down circuit 2 A and the DC power received from rectifier circuit 5 into AC power, and outputs the converted AC power to control switch 4.
[0033] 制御スィッチ 4は、後述する制御回路 10から受けた制御信号に基づいて、インバー タ 3で生成された交流電力を負荷 7Aへ出力する力、または商用系統電源 6からの交 流電力を負荷 7Aへ出力するかを切り替える。 [0034] センサ CT1は、昇降圧回路 2A力インバータ 3へ出力する電流を測定する。センサ PT1は、昇降圧回路 2A力インバータ 3へ出力する電圧を測定する。センサ CT2は、 負荷電流、すなわちインバータ 3が負荷 7Aへ出力する電流を測定する。そして、制 御回路 10は、各センサの測定結果を受けて、昇降圧回路 2Aから出力される、電圧 値が調整された直流電力と、負荷の消費電力、すなわち負荷 7Aに供給すべき交流 電力(以下、目標交流電力という。)とを認識する。 [0033] Based on a control signal received from a control circuit 10 to be described later, the control switch 4 generates a power for outputting the AC power generated by the inverter 3 to the load 7A or the AC power from the commercial power source 6. Switches whether to output to load 7A. The sensor CT1 measures a current output to the step-up / step-down circuit 2A force inverter 3. Sensor PT1 measures the voltage output to step-up / down circuit 2A force inverter 3. Sensor CT2 measures the load current, that is, the current output by inverter 3 to load 7A. The control circuit 10 receives the measurement result of each sensor, and outputs the DC power adjusted from the voltage value output from the step-up / down circuit 2A and the power consumption of the load, that is, the AC power to be supplied to the load 7A. (Hereinafter referred to as target AC power).
[0035] 制御回路 10は、曇天等のために、昇降圧回路 2Aから出力される直流電力が、目 標交流電力を生成するために必要な直流電力(以下、目標直流電力という。)ょり少 なぐかつ、インバータ 3で目標交流電力を生成する方が商用系統電源 6からの交流 電力を直接使用するよりも電力の使用効率がよい場合には、目標直流電力に対する 不足分を整流回路 5で変換される直流電力で補うことを決定する。この場合、制御回 路 10は、インバータ 3で生成された交流電力を選択し、選択結果を表わす制御信号 を制御スィッチ 4へ出力する。またこの場合、制御回路 10は、スィッチ 11をオン状態 として商用系統電源 6からの交流電力を整流回路 5に供給する制御を行なう。  [0035] The control circuit 10 uses DC power output from the step-up / step-down circuit 2A due to cloudy weather or the like to generate target AC power (hereinafter referred to as target DC power). If the target AC power generated by the inverter 3 is less efficient than using the AC power from the commercial power supply 6 directly, the rectifier circuit 5 can compensate for the shortage relative to the target DC power. Decide to make up for the DC power to be converted. In this case, the control circuit 10 selects the AC power generated by the inverter 3 and outputs a control signal representing the selection result to the control switch 4. Further, in this case, the control circuit 10 performs control to turn on the switch 11 and supply AC power from the commercial power supply 6 to the rectifier circuit 5.
[0036] また、制御回路 10は、曇天等のために、昇降圧回路 2Aから出力される直流電力 が目標直流電力より少なぐかつ、インバータ 3で目標交流電力を生成せずに商用系 統電源 6からの交流電力を直接使用する方が電力の使用効率がよ 、場合には、商 用系統電源 6からの交流電力を選択し、選択結果を表わす制御信号を制御スィッチ 4へ出力する。この場合、制御回路 10は、スィッチ 11をオフ状態として商用系統電源 6から整流回路 5への交流電力の供給を停止する制御を行なう。たとえば、夜間など 太陽電池モジュール 1Aの発電量が全く得られない場合には、制御回路 10は、商用 系統電源 6からの交流電力を選択する。このような構成により、商用系統電源 6からの 交流電力が整流回路 5およびインバータ 3を経由せずに負荷 7Aへ出力されるため、 整流回路 5およびインバータ 3における電力変換等に起因するロスを回避することが できる。  [0036] Further, because of the cloudy weather, the control circuit 10 has a DC power output from the step-up / step-down circuit 2A smaller than the target DC power, and the inverter 3 does not generate the target AC power. If it is more efficient to use the AC power directly from 6, the AC power from the commercial power supply 6 is selected and a control signal representing the selection result is output to the control switch 4. In this case, the control circuit 10 performs control to turn off the supply of AC power from the commercial power supply 6 to the rectifier circuit 5 by turning off the switch 11. For example, when the power generation amount of the solar cell module 1A cannot be obtained at all, such as at night, the control circuit 10 selects the AC power from the commercial power source 6. With this configuration, AC power from the commercial power supply 6 is output to the load 7A without passing through the rectifier circuit 5 and the inverter 3, thus avoiding losses caused by power conversion in the rectifier circuit 5 and the inverter 3. can do.
[0037] 一方、制御回路 10は、昇降圧回路 2Aから出力される直流電力が目標直流電力よ り多い場合には、昇降圧回路 2Aからインバータ 3へ供給される直流電力を制限する 制御を行なう。この場合、制御回路 10は、スィッチ 11をオフ状態として商用系統電源 6から整流回路 5への交流電力の供給を停止する制御を行なう。 [0037] On the other hand, when the DC power output from the step-up / down circuit 2A is larger than the target DC power, the control circuit 10 performs control to limit the DC power supplied from the step-up / down circuit 2A to the inverter 3 . In this case, the control circuit 10 turns off the switch 11 and turns off the commercial power supply. Control to stop the supply of AC power from 6 to rectifier circuit 5 is performed.
[0038] また、制御回路 10は、昇降圧回路 2Aから出力される直流電力および目標直流電 力が等しい場合には、インバータ 3で生成された交流電力を選択し、選択結果を表 わす制御信号を制御スィッチ 4へ出力する。またこの場合、制御回路 10は、スィッチ 11をオフ状態として商用系統電源 6から整流回路 5への交流電力の供給を停止する 制御を行なう。 [0038] When the DC power output from the step-up / step-down circuit 2A and the target DC power are equal, the control circuit 10 selects the AC power generated by the inverter 3 and outputs a control signal representing the selection result. Output to control switch 4. In this case, the control circuit 10 performs control to turn off the supply of AC power from the commercial power supply 6 to the rectifier circuit 5 by turning off the switch 11.
[0039] 次に、本発明の実施の形態に係る太陽光発電システムにおける制御回路 10力 昇 降圧回路 2A力 出力される直流電力に基づいて各回路を制御する際の動作につ いて説明する。  [0039] Next, an operation when each circuit is controlled based on the output DC power will be described in the control circuit 10 power step-up / step-down circuit 2A power in the photovoltaic power generation system according to the embodiment of the present invention.
[0040] 図 2は、本発明の実施の形態に係る太陽光発電システムを電気回路で表わした図 である。  [0040] FIG. 2 is a diagram showing an electric circuit of the photovoltaic power generation system according to the embodiment of the present invention.
[0041] 図 2を参照して、直流電源 E1は昇降圧回路 2A側の直流電圧を表わし、直流電源 E2は整流回路 5側の直流電圧を表わす。また、直流電源 E1および電流制限抵抗 rl が昇降圧回路 2Aに相当し、直流電源 E2および電流制限抵抗 r2が整流回路 5に相 当する。また、図 2では、説明を簡単にするためにインバータ 3における直流電力から 交流電力への変換を省略し、直流電力が直接負荷 7Aに供給される状態としている。  Referring to FIG. 2, DC power supply E1 represents a DC voltage on the step-up / down circuit 2A side, and DC power supply E2 represents a DC voltage on the rectifier circuit 5 side. The DC power supply E1 and the current limiting resistor rl correspond to the step-up / down circuit 2A, and the DC power supply E2 and the current limiting resistor r2 correspond to the rectifier circuit 5. In FIG. 2, for the sake of simplicity, the conversion from DC power to AC power in the inverter 3 is omitted, and DC power is directly supplied to the load 7A.
[0042] 電流 IIは、昇降圧回路 2Aからインバータ 3に供給される電流である。また、電流 12 は、整流回路 5からインバータ 3に供給される電流である。  [0042] The current II is a current supplied to the inverter 3 from the step-up / down circuit 2A. The current 12 is a current supplied from the rectifier circuit 5 to the inverter 3.
[0043] 電流制限抵抗 rlおよび電流制限抵抗 r2は、制御回路 10からの制御に基づいて抵 抗値が変化する。  [0043] Resistance values of the current limiting resistor rl and the current limiting resistor r2 change based on control from the control circuit 10.
[0044] 負荷 7Aに流れる負荷電流 1=11 +12となり、負荷 7Aに印加される負荷電圧 V=R  [0044] The load current flowing through the load 7A becomes 1 = 11 +12, and the load voltage applied to the load 7A V = R
X Iとなり、負荷 7Aの消費電力 P=RX I2となる。  X I and power consumption of load 7A P = RX I2.
[0045] 制御回路 10は、図示しないセンサによって測定される負荷電圧 Vを監視し、負荷 電圧 Vを一定に保つように、すなわちインバータ 3が目標交流電力を生成するように 負荷電流 Iを増減する制御を行なうことにより、負荷を安定して動作させる。 [0045] The control circuit 10 monitors the load voltage V measured by a sensor (not shown), and increases or decreases the load current I so as to keep the load voltage V constant, that is, the inverter 3 generates target AC power. By performing the control, the load is stably operated.
[0046] 図 3は、太陽電池の電流 電圧特性を示す。 FIG. 3 shows the current-voltage characteristics of the solar cell.
図 3を参照して、太陽電池の受光量が少ない場合には、太陽電池からの出力電流 および出力電圧が小さくなる。この場合、制御回路 10は、まず、電流制限抵抗 rlの 抵抗値を小さくして電流 IIを増加させる制御を行なう。そして、制御回路 10は、電流 制限抵抗 rlの抵抗値を小さくして電流 IIを増加させる制御を行なってもインバータ 3 で生成される交流電力が目標交流電力より少なぐかつ、インバータ 3で目標交流電 力を生成する方が商用系統電源 6からの交流電力を直接使用するよりも電力の使用 効率がよい場合には、電流制限抵抗 r2の抵抗値を小さくして電流 12を増カロさせる制 御を行なう、すなわち、昇降圧回路 2Aから出力される直流電力の、目標直流電力に 対する不足分を整流回路 5で変換される直流電力で補う。 Referring to Fig. 3, when the amount of light received by the solar cell is small, the output current and output voltage from the solar cell become small. In this case, the control circuit 10 first sets the current limiting resistance rl. Control to increase the current II by decreasing the resistance value. The control circuit 10 reduces the AC power generated by the inverter 3 below the target AC power even if the current II is increased by decreasing the resistance value of the current limiting resistor rl, and the target AC power is output by the inverter 3. If the power generation is more efficient than the direct use of AC power from the commercial grid power supply 6, control is performed to increase the current 12 by reducing the resistance value of the current limiting resistor r2. In other words, the shortage of the DC power output from the step-up / down circuit 2A with respect to the target DC power is supplemented with the DC power converted by the rectifier circuit 5.
[0047] 一方、太陽電池の受光量が多い場合には、太陽電池からの出力電流および出力 電圧が大きくなる。この場合、制御回路 10は、まず、電流制限抵抗 r 2の抵抗値を大 きくして電流 12を制限する制御を行なう。  [0047] On the other hand, when the amount of light received by the solar cell is large, the output current and output voltage from the solar cell increase. In this case, the control circuit 10 first performs control to limit the current 12 by increasing the resistance value of the current limiting resistor r2.
[0048] そして、制御回路 10は、電流 12 = 0、すなわち整流回路 5からインバータ 3への直 流電力の供給を停止してもインバータ 3で生成される交流電力が目標交流電力より 多い場合には、電流制限抵抗 rlの抵抗値を大きくして電流 IIを制限する制御を行な う。なお、制御回路 10は、電流制限抵抗 r2の抵抗値を大きくして電流 12 = 0とする代 わりに、スィッチ 11をオフ状態として商用系統電源 6から整流回路 5への交流電力の 供給を停止する制御を行なってもよ ヽ。  [0048] Then, the control circuit 10 has a current 12 = 0, that is, when the AC power generated by the inverter 3 is larger than the target AC power even when the supply of DC power from the rectifier circuit 5 to the inverter 3 is stopped. Controls the current II by increasing the resistance value of the current limiting resistor rl. The control circuit 10 stops the supply of AC power from the commercial power supply 6 to the rectifier circuit 5 by turning off the switch 11 instead of increasing the resistance value of the current limiting resistor r2 and setting the current 12 = 0. You can control it.
[0049] 次に、本発明の実施の形態に係る太陽光発電システムにおける制御回路 10力 ィ ンバータ 3で生成された交流電力および商用系統電源 6からの交流電力の選択を切 り替える際の動作について説明する。  [0049] Next, the operation when switching the selection of the AC power generated by the control circuit 10-power inverter 3 and the AC power from the commercial power source 6 in the photovoltaic power generation system according to the embodiment of the present invention Will be described.
[0050] 図 4は、本発明の実施の形態に係る太陽光発電システムにおける電力および効率 を示す図である。  FIG. 4 is a diagram showing power and efficiency in the photovoltaic power generation system according to the embodiment of the present invention.
[0051] 図 4を参照して、負荷 7Aに供給される交流電力の電力量、すなわち負荷 7Aの消 費電力を Poとし、昇降圧回路 2Aから出力される直流電力の電力量を P1とし、整流 回路 5が商用系統電源 6から受ける交流電力を P2とし、制御スィッチ 4が商用系統電 源 6から受ける交流電力を P3とし、インバータ 3の効率を Aとし、整流回路 5の効率を Bとすると、制御スィッチ 4がインバータ 3で生成された交流電力を負荷 7Aへ出力す る場合には、 Poは以下の式で表わされる。  [0051] Referring to FIG. 4, the amount of AC power supplied to load 7A, that is, the power consumption of load 7A is Po, and the amount of DC power output from buck-boost circuit 2A is P1, Assume that AC power received by rectifier circuit 5 from commercial power supply 6 is P2, AC power received by control switch 4 from commercial power supply 6 is P3, inverter 3 efficiency is A, and rectifier circuit 5 efficiency is B. When the control switch 4 outputs the AC power generated by the inverter 3 to the load 7A, Po is expressed by the following equation.
[0052] Ρο=Α Χ Ρ1 +ΑΧ Β Χ Ρ2· · · (A1) 一方、制御スィッチ 4が商用系統電源 6からの交流電力を負荷 7Aへ出力する場合 には、 Poは以下の式で表わされる。 [0052] 0052ο = Α Χ Ρ1 + ΑΧ Β Χ Ρ2 ... (A1) On the other hand, when the control switch 4 outputs AC power from the commercial power supply 6 to the load 7A, Po is expressed by the following equation.
[0053] Ρο = Ρ3 · · · (Α2)  [0053] Ρο = Ρ3 · · · · (Α2)
ここで、昇降圧回路 2Α力 出力される直流電力の電力量が低下すると、制御回路 10は、前述のように目標直流電力に対する不足分を整流回路 5から受けた直流電力 で補う制御を行なうために、インバータ 3が整流回路 5から受ける直流電力の電力量 が増加する。そして、商用系統電源 6が整流回路 5へ出力する交流電力 Ρ2が、商用 系統電源 6が制御スィッチ 4へ出力する交流電力 Ρ3より多くなる場合には、インバー タ 3で目標交流電力を生成せずに商用系統電源 6からの交流電力を直接使用する 方が電力の使用効率がよ!、ことから、制御回路 10がインバータ 3で生成された交流 電力から商用系統電源 6からの交流電力に選択を切り替える条件は、以下の式で表 わされる。  Here, when the amount of DC power output from the buck-boost circuit 2 is reduced, the control circuit 10 performs control to compensate for the shortage relative to the target DC power with the DC power received from the rectifier circuit 5 as described above. In addition, the amount of DC power received by inverter 3 from rectifier circuit 5 increases. If the AC power Ρ2 output from the commercial power supply 6 to the rectifier circuit 5 exceeds the AC power Ρ3 output from the commercial power supply 6 to the control switch 4, the target AC power is not generated by the inverter 3. Therefore, it is more efficient to use AC power directly from the commercial power source 6 for the power supply! Therefore, the control circuit 10 selects the AC power generated by the inverter 3 from the AC power generated by the inverter 3 to the AC power from the commercial power source 6. The condition for switching is expressed by the following formula.
[0054] Ρ3< Ρ2· · · (A3)  [0054] Ρ3 <Ρ2 · · · (A3)
式 (A1)式 (Α2)および式 (A3)力も Ρ2および Ρ3を消去すると、以下の式となる。  Equation (A1) Equation (Α2) and Equation (A3) Forces are also obtained by eliminating Ρ2 and Ρ3.
[0055] ΡΚ Ρο Χ (1 -Α Χ Β) /Α· · · (Α4)  [0055] ΡΚ Ρο Χ (1 -Α Χ Β) / Α · · · (Α4)
したがって、制御回路 10は、昇降圧回路 2Αから出力される直流電力の電力量 P1 が式 (Α4)を満たす場合には、インバータ 3で生成された交流電力力 商用系統電 源 6からの交流電力に選択を切り替える。このような構成により、太陽光発電システム における電力の使用効率を向上させることができる。  Therefore, the control circuit 10 determines that the AC power generated by the inverter 3 is AC power from the commercial power source 6 when the amount of DC power P1 output from the step-up / step-down circuit 2Α satisfies the formula (Α4). Switch the selection to. With such a configuration, it is possible to improve the power use efficiency in the photovoltaic power generation system.
[0056] 次に、本発明の実施の形態に係る太陽光発電システムが、インバータ 3で生成され た交流電力および商用系統電源 6からの交流電力の選択を切り替える際の動作に ついて説明する。  Next, the operation when the photovoltaic power generation system according to the embodiment of the present invention switches the selection between the AC power generated by the inverter 3 and the AC power from the commercial power supply 6 will be described.
[0057] 図 5は、本発明の実施の形態に係る太陽光発電システムが行なう交流電力の位相 調整を示す図である。  FIG. 5 is a diagram showing phase adjustment of AC power performed by the solar power generation system according to the embodiment of the present invention.
[0058] 図 5を参照して、(1)および (4)の波形はインバータ側の交流電力、すなわち制御 スィッチ 4がインバータ 3から受ける交流電力の波形であり、(2)および(5)の波形は 商用系統電源側の交流電力、すなわち制御スィッチ 4が商用系統電源 6から受ける 交流電力の波形であり、 (3)および (6)の波形は制御スィッチ 4の出力する交流電力 の波形である。 Referring to FIG. 5, the waveforms of (1) and (4) are the AC power on the inverter side, that is, the waveform of the AC power that control switch 4 receives from inverter 3, and the waveforms of (2) and (5) The waveform is the AC power on the commercial power supply side, that is, the AC power waveform received by the control switch 4 from the commercial power supply 6.The waveforms in (3) and (6) are the AC power output from the control switch 4. It is a waveform.
[0059] (1)の波形および(2)の波形は位相が 90度ずれている。ここで、単純に時刻 tlに おいて制御スィッチ 4の出力を(1)の交流電力から(2)の交流電力に切り替えると、 制御スィッチ 4の出力する交流電力の波形は(3)のように不連続の波形となり、制御 スィッチ 4から瞬間的に異常電流が流れる等の不具合が生じてしまう。  [0059] The waveforms of (1) and (2) are 90 degrees out of phase. Here, simply switching the output of control switch 4 from AC power of (1) to AC power of (2) at time tl, the waveform of AC power output from control switch 4 is as shown in (3) It becomes a discontinuous waveform, causing problems such as an abnormal current flowing instantaneously from control switch 4.
[0060] そこで、本発明の実施の形態に係る太陽光発電システムでは、制御回路 10は、ィ ンバータ側の交流電力および商用系統電源側の交流電力の選択を切り替える場合 には、位相調整命令をインバータ 3へ出力する。  Therefore, in the photovoltaic power generation system according to the embodiment of the present invention, the control circuit 10 issues a phase adjustment command when switching between the AC power on the inverter side and the AC power on the commercial system power supply side. Output to inverter 3.
[0061] インバータ 3は、制御回路 10から位相調整命令を受けて、インバータ側の交流電力 の位相および商用系統電源側の交流電力の位相が一致するように、制御スィッチ 4 へ出力する交流電力の位相を (4)のように調整する。  [0061] Inverter 3, in response to the phase adjustment command from control circuit 10, receives the AC power to be output to control switch 4 so that the phase of the AC power on the inverter side matches the phase of the AC power on the commercial power supply side. Adjust the phase as shown in (4).
[0062] そして、制御回路 10は、インバータ 3が交流電力の位相調整を行なった後に、時刻 tlにお 、てインバータ側の交流電力から商用系統電源側の交流電力に選択を変更 し、選択結果を表わす制御信号を制御スィッチ 4へ出力する。  [0062] Then, after the inverter 3 adjusts the phase of the AC power, the control circuit 10 changes the selection from the AC power on the inverter side to the AC power on the commercial power supply side at time tl, and the selection result Is output to control switch 4.
[0063] そうすると、制御スィッチ 4の出力する交流電力の波形は切り替えの前後において も(6)に示すように連続した波形となるため、制御スィッチ 4における異常電流の発生 および瞬時停電が発生することを防ぎ、負荷 7Aである家電機器を常に安定して動作 させることができる。したがって、本発明の実施の形態に係る太陽光発電システムは、 コンピュータ等の精密機器にも使用することができる。  [0063] As a result, the waveform of the AC power output from the control switch 4 becomes a continuous waveform as shown in (6) even before and after switching, so that an abnormal current and an instantaneous power failure occur in the control switch 4. Can prevent household appliances with a load of 7A from operating constantly. Therefore, the photovoltaic power generation system according to the embodiment of the present invention can be used for precision equipment such as a computer.
[0064] なお、ここでは、制御回路 10がインバータ側の交流電力から商用系統電源側の交 流電力に選択を切り替える場合について説明したが、制御回路 10が商用系統電源 側の交流電力からインバータ側の交流電力に選択を切り替える場合についても同様 である。すなわち、インバータ 3が制御スィッチ 4へ出力する交流電力の位相を (4)の ように調整し、制御回路 10力 インバータ 3による交流電力の位相調整の後に、商用 系統電源側の交流電力からインバータ側の交流電力に選択を変更することで、制御 スィッチ 4において異常電流が発生することを防ぎ、負荷 7Aである家電機器を常に 安定して動作させることができる。  [0064] Although the case where the control circuit 10 switches the selection from the AC power on the inverter side to the AC power on the commercial system power supply side has been described here, the control circuit 10 is switched from the AC power on the commercial system power supply side to the inverter side. The same applies to the case of switching the selection to other AC power. In other words, the phase of the AC power output from inverter 3 to control switch 4 is adjusted as shown in (4) .After the AC power phase is adjusted by control circuit 10-power inverter 3, the AC power from the commercial power supply side is changed to the inverter side By changing the selection to AC power, it is possible to prevent abnormal current from occurring in the control switch 4 and to operate the home appliance with the load 7A stably at all times.
[0065] ところで、特許文献 1記載の系統連系型の太陽光発電システムおよび図 7に示す系 統連系型の太陽光発電システムでは、家庭の全電力を太陽光発電で賄うために多 数の太陽電池モジュールを設置する必要があり、設置費用が増大するという問題点 があった。 Incidentally, the grid-connected solar power generation system described in Patent Document 1 and the system shown in FIG. In the grid-connected solar power generation system, it is necessary to install a large number of solar cell modules in order to cover all household power with solar power generation, which increases the installation cost.
[0066] また、図 8に示す独立型の太陽光発電システムでは、商用系統電源 6に連系しない ことから家庭の全電力を太陽光発電で賄うために蓄電池 18を大型化する必要があり 、また、蓄電池は寿命が短いために定期的に買い換えおよびメンテナンス等が必要 となり、設置費用および運用費用が増大するという問題点があった。  [0066] In addition, in the stand-alone photovoltaic power generation system shown in FIG. 8, the storage battery 18 needs to be enlarged in order to cover all household power with photovoltaic power generation because it is not connected to the commercial power source 6. In addition, since storage batteries have a short life, they must be replaced and maintained regularly, which increases installation costs and operation costs.
[0067] し力しながら、本発明の実施の形態に係る太陽光発電システムでは、整流回路 5が 、商用系統電源 6からの交流電力を直流電力に変換し、インバータ 3へ出力する。そ して、インバータ 3が、整流回路 5から受けた直流電力および昇降圧回路 2Aを介して 受けた、太陽電池モジュール 1 Aで発電された直流電力を交流電力に変換する。こ のような構成により、家庭の全電力を太陽光発電で賄う必要がないことから、多数の 太陽電池モジュールを設置する必要がなぐまた、蓄電池を設置する必要がない。  However, in the photovoltaic power generation system according to the embodiment of the present invention, the rectifier circuit 5 converts AC power from the commercial power supply 6 into DC power and outputs it to the inverter 3. Then, the inverter 3 converts the DC power received from the rectifier circuit 5 and the DC power generated by the solar cell module 1A received via the step-up / down circuit 2A into AC power. With such a configuration, it is not necessary to cover all household power with photovoltaic power generation, so there is no need to install a large number of solar cell modules, and there is no need to install storage batteries.
[0068] したがって、本発明の実施の形態に係る太陽光発電システムでは、設置費用およ び運用費用の増大を防ぐことができる。  [0068] Therefore, in the photovoltaic power generation system according to the embodiment of the present invention, an increase in installation cost and operation cost can be prevented.
[0069] また、本発明の実施の形態に係る太陽光発電システムでは、制御回路 10は、昇降 圧回路 2Aから出力される直流電力が目標直流電力以上である場合には、スィッチ 1 1をオフ状態として商用系統電源 6から整流回路 5への交流電力の供給を停止する 制御を行なう。したがって、商用系統電源 6からの交流電力が無駄に使用されること を防ぎ、電力の使用効率を向上させることができる。  [0069] In the photovoltaic power generation system according to the embodiment of the present invention, control circuit 10 turns off switch 11 when the DC power output from step-up / down circuit 2A is equal to or higher than the target DC power. As a state, control is performed to stop the supply of AC power from the commercial power supply 6 to the rectifier circuit 5. Therefore, it is possible to prevent the AC power from the commercial power supply 6 from being wasted and to improve the power usage efficiency.
[0070] また、特許文献 1記載の系統連系型の太陽光発電システムおよび図 7に示す系統 連系型の太陽光発電システムでは、少数の太陽電池モジュールを設置する場合でも 、太陽光発電システムを商用系統電源に連系 (接続)する申請を電力会社等に行な い、所定の資格を持った業者に設置させる必要があるために、一般的な家電製品の ようにユーザが気軽に設置および取り外しをすることができな 、と 、う問題点がある。  [0070] In the grid-connected solar power generation system described in Patent Document 1 and the grid-connected solar power generation system shown in Fig. 7, even when a small number of solar cell modules are installed, the solar power generation system Because it is necessary to apply to a power company etc. to connect (connect) to the commercial power supply and install it in a contractor with a predetermined qualification, the user can easily install it like a general household appliance. In addition, there is a problem that it cannot be removed.
[0071] し力しながら、本発明の実施の形態に係る太陽光発電システムでは、家庭用のコン セント 8Aにケーブル 9Aを接続することにより商用系統電源 6からの交流電力が太陽 光発電システムに供給されるようにし、負荷 7Aである家電機器のケーブル 9Bをコン セント 8Bに接続し、更に、太陽電池モジュール 1Aを太陽のあたる場所に置くことによ り、太陽光発電システムからの交流電力が負荷 7Aである家電機器に供給される。し たがって、本発明の実施の形態に係る太陽光発電システムでは、商用系統電源 6に 連系する必要がなぐユーザが気軽に設置および取り外しをすることができる。 However, in the photovoltaic power generation system according to the embodiment of the present invention, the AC power from the commercial power source 6 is supplied to the photovoltaic power generation system by connecting the cable 9A to the household outlet 8A. Connect the cable 9B of the home appliance with a load of 7A. By connecting the solar cell module 1A to a place where the sun hits, connecting to the cent 8B, AC power from the photovoltaic power generation system is supplied to the household electrical appliance with the load 7A. Therefore, in the photovoltaic power generation system according to the embodiment of the present invention, a user who does not need to be connected to the commercial power supply 6 can easily install and remove.
[0072] また、本発明の実施の形態に係る太陽光発電システムでは、昇降圧回路 2Aから出 力される直流電力の、目標直流電力に対する不足分を整流回路 5で変換される直流 電力、すなわち商用系統電源 6からの交流電力で補うことによって、太陽電池モジュ ールが 1枚だけでも負荷に安定して電力を供給することができる。したがって、本発 明の実施の形態に係る太陽光発電システムは、ベランダ等の狭いスペースに設置す ることができ、また、冷蔵庫等の昼夜を問わず定常的に電力を消費する負荷にも使 用することができる。 [0072] Further, in the photovoltaic power generation system according to the embodiment of the present invention, the DC power output from the step-up / down circuit 2A with respect to the target DC power is converted by the rectifier circuit 5, that is, the DC power. By supplementing with AC power from the commercial power supply 6, even a single solar cell module can stably supply power to the load. Therefore, the photovoltaic power generation system according to the embodiment of the present invention can be installed in a narrow space such as a veranda, and can also be used for loads that regularly consume power regardless of day or night, such as a refrigerator. Can be used.
[0073] 今回開示された実施の形態はすべての点で例示であって制限的なものではないと 考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって 示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが 意図される。  [0073] The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims

請求の範囲 The scope of the claims
[1] 負荷 (7A)に電力を供給する太陽光発電システム(100)であって、  [1] A photovoltaic power generation system (100) for supplying power to a load (7A),
太陽電池モジュール( 1 A)と、  Solar cell module (1 A),
前記太陽電池モジュール(1A)で発電された直流電力の電圧値を調整する昇降圧 回路 (2A)と、  A step-up / down circuit (2A) for adjusting the voltage value of the DC power generated by the solar cell module (1A);
商用系統電源 (6)からの交流電力を直流電力に変換する整流回路 (5)と、 前記昇降圧回路(2A)で電圧値が調整された直流電力および前記整流回路(5) で変換された直流電力から前記負荷 (7A)に供給すべき交流電力を生成するインバ ータ(3)とを備える太陽光発電システム。  A rectifier circuit (5) for converting AC power from a commercial power supply (6) into DC power, and DC power whose voltage value is adjusted by the step-up / down circuit (2A) and converted by the rectifier circuit (5) A photovoltaic power generation system comprising an inverter (3) that generates AC power to be supplied from DC power to the load (7A).
[2] 前記太陽光発電システム(100)は、さらに、 [2] The solar power generation system (100) further includes:
前記負荷(7A)に供給すべき交流電力を生成するために必要な直流電力に対して 、前記昇降圧回路 (2A)で電圧値が調整された直流電力が不足する場合には、前記 昇降圧回路(2A)で電圧値が調整された直流電力の不足分を前記整流回路(5)で 変換される直流電力で補うことを決定する制御回路(10)を備え、  When the DC power whose voltage value is adjusted by the step-up / down circuit (2A) is insufficient with respect to the direct-current power required to generate the AC power to be supplied to the load (7A), the step-up / step-down circuit A control circuit (10) for deciding to compensate for the shortage of DC power whose voltage value is adjusted by the circuit (2A) with DC power converted by the rectifier circuit (5);
前記整流回路 (5)は、前記制御回路(10)が前記直流電力の不足分を前記整流回 路 (5)で変換される直流電力で補うことを決定した場合には、前記商用系統電源 (6) 力 の交流電力を直流電力に変換し、前記変換した直流電力を前記インバータ (3) へ出力する請求項 1記載の太陽光発電システム。  The rectifier circuit (5), when the control circuit (10) decides to supplement the shortage of the DC power with the DC power converted by the rectifier circuit (5), the commercial power supply ( 6) The photovoltaic power generation system according to claim 1, wherein the AC power is converted into DC power, and the converted DC power is output to the inverter (3).
[3] 前記太陽光発電システム(100)は、さらに、 [3] The photovoltaic power generation system (100) further includes:
前記昇降圧回路(2A)で電圧値が調整された直流電力の電力量に基づ 、て、前 記インバータ(3)で生成された前記交流電力および前記商用系統電源 (6)からの交 流電力の!/、ずれか一方を選択する制御回路( 10)と、  Based on the amount of DC power whose voltage value is adjusted by the step-up / down circuit (2A), the AC power generated by the inverter (3) and the AC power from the commercial power supply (6) A control circuit (10) that selects either of!
前記制御回路(10)の選択に基づ 、て、前記インバータ(3)で生成された前記交流 電力を前記負荷 (7A)へ出力するか、または前記商用系統電源 (6)からの交流電力 を前記負荷(7A)へ出力するかを切り替える制御スィッチ (4)とを備える請求項 1記 載の太陽光発電システム。  Based on the selection of the control circuit (10), the AC power generated by the inverter (3) is output to the load (7A), or the AC power from the commercial power supply (6) is The photovoltaic power generation system according to claim 1, further comprising a control switch (4) for switching whether to output to the load (7A).
[4] 前記制御回路(10)は、前記昇降圧回路 (2A)で電圧値が調整された直流電力が 以下の式を満たす場合には、前記商用系統電源(6)からの交流電力を選択する請 求項 3記載の太陽光発電システム。 [4] The control circuit (10) selects the AC power from the commercial power supply (6) when the DC power whose voltage value is adjusted by the step-up / down circuit (2A) satisfies the following equation: Contract The photovoltaic power generation system according to claim 3.
PK P X (1 -AX B) /A  PK P X (1 -AX B) / A
ただし、 Pは前記負荷 (7A)の消費電力であり、 P1は前記昇降圧回路(2A)で電圧 値が調整された直流電力であり、 Aは前記インバータ(3)の効率であり、 Bは前記整 流回路(5)の効率である。  Where P is the power consumption of the load (7A), P1 is the DC power whose voltage value is adjusted by the buck-boost circuit (2A), A is the efficiency of the inverter (3), and B is This is the efficiency of the rectifier circuit (5).
前記インバータ(3)は、さらに、前記制御回路(10)が前記交流電力の選択を変更 する場合には、前記商用系統電源 (6)からの交流電力の位相と一致するように、前 記変換する交流電力の位相を調整し、  Further, when the control circuit (10) changes the selection of the AC power, the inverter (3) further converts the conversion so as to match the phase of the AC power from the commercial power supply (6). Adjust the phase of AC power to
前記制御回路(10)は、前記インバータ(3)が前記交流電力の位相調整を行なつ た後に前記交流電力の選択を変更する請求項 3記載の太陽光発電システム。  The photovoltaic power generation system according to claim 3, wherein the control circuit (10) changes the selection of the AC power after the inverter (3) performs phase adjustment of the AC power.
PCT/JP2006/313006 2005-07-06 2006-06-29 Photovoltaic power generation system utilizing commercial system power supply WO2007004514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-197854 2005-07-06
JP2005197854A JP2007018180A (en) 2005-07-06 2005-07-06 Solar energy power generation system

Publications (1)

Publication Number Publication Date
WO2007004514A1 true WO2007004514A1 (en) 2007-01-11

Family

ID=37604382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313006 WO2007004514A1 (en) 2005-07-06 2006-06-29 Photovoltaic power generation system utilizing commercial system power supply

Country Status (2)

Country Link
JP (1) JP2007018180A (en)
WO (1) WO2007004514A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094215A1 (en) * 2009-02-23 2010-08-26 中山大洋电机制造有限公司 Power supply control device and ventilating device using same
JP3164059U (en) * 2010-08-31 2010-11-11 オズテック株式会社 Solar power plant
EP2485377A1 (en) * 2009-09-30 2012-08-08 Toshiba Lighting&Technology Corporation Dc power supply feeding system
EP3104485A1 (en) * 2015-06-09 2016-12-14 CSI Technology Co., Ltd. Power providing apparatus for use with multiple electricity sources
EP2365598B1 (en) * 2010-03-02 2017-04-19 Silvio Sottocorno System for supplying electrical energy from multiple sources to a load
EP3232529A1 (en) * 2016-04-14 2017-10-18 DET International Holding Limited Power supply arrangement
WO2023005132A1 (en) * 2021-07-26 2023-02-02 东莞市嘉达磁电制品有限公司 Self-compensating photoelectric mains automatic compensation system and device, and method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004610B2 (en) * 2007-02-14 2012-08-22 シャープ株式会社 Photovoltaic power generation system, management device, and power generation monitoring device
JP5470087B2 (en) * 2010-02-22 2014-04-16 Kddi株式会社 Rectifier control method for photovoltaic power generation system
JP6017150B2 (en) * 2012-02-28 2016-10-26 シャープ株式会社 Power supply switching device, remote control device, and photovoltaic power generation system
JP2016208568A (en) * 2015-04-15 2016-12-08 シャープ株式会社 Mobile electronic apparatus case
JP6414905B2 (en) * 2016-11-30 2018-10-31 ニチコン株式会社 Junction box, hybrid power storage system, and system operation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138962A (en) * 1992-08-17 1994-05-20 Nissin Electric Co Ltd Sunbeam power generating equipment
JP2004222341A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Power supply system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138962A (en) * 1992-08-17 1994-05-20 Nissin Electric Co Ltd Sunbeam power generating equipment
JP2004222341A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Power supply system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010094215A1 (en) * 2009-02-23 2010-08-26 中山大洋电机制造有限公司 Power supply control device and ventilating device using same
EP2485377A1 (en) * 2009-09-30 2012-08-08 Toshiba Lighting&Technology Corporation Dc power supply feeding system
EP2485377A4 (en) * 2009-09-30 2014-02-19 Toshiba Lighting & Technology Dc power supply feeding system
EP2365598B1 (en) * 2010-03-02 2017-04-19 Silvio Sottocorno System for supplying electrical energy from multiple sources to a load
JP3164059U (en) * 2010-08-31 2010-11-11 オズテック株式会社 Solar power plant
EP3104485A1 (en) * 2015-06-09 2016-12-14 CSI Technology Co., Ltd. Power providing apparatus for use with multiple electricity sources
EP3232529A1 (en) * 2016-04-14 2017-10-18 DET International Holding Limited Power supply arrangement
CN107302226A (en) * 2016-04-14 2017-10-27 Det 国际控股有限公司 Power supply arrangement
US11139656B2 (en) 2016-04-14 2021-10-05 Delta Electronics (Thailand) Public Co., Ltd. Power supply arrangement
WO2023005132A1 (en) * 2021-07-26 2023-02-02 东莞市嘉达磁电制品有限公司 Self-compensating photoelectric mains automatic compensation system and device, and method thereof

Also Published As

Publication number Publication date
JP2007018180A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2007004514A1 (en) Photovoltaic power generation system utilizing commercial system power supply
EP2715904B1 (en) System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
An et al. Design of a single-switch DC/DC converter for a PV-battery-powered pump system with PFM+ PWM control
US6914418B2 (en) Multi-mode renewable power converter system
US8053929B2 (en) Solar power array with maximized panel power extraction
KR100993108B1 (en) A grid-interactive photovoltaic generation system with power quality control and energy saving
JP5929258B2 (en) Power supply system and power supply device
US20050105224A1 (en) Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
KR101116428B1 (en) Energy Storage System
Bharath et al. Control of bidirectional DC-DC converter in renewable based DC microgrid with improved voltage stability
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
JP2007124864A (en) Power conversion system
JP5836164B2 (en) Solar power system
TWI460963B (en) Photovoltaic powered system with adaptive power control and method of operating the same
US10734913B2 (en) Method and apparatus for bidirectional power production in a power module
CA2778404A1 (en) Maximum power point tracking bidirectional charge controllers for photovoltaic systems
JP4570245B2 (en) Distributed power system
US11735926B2 (en) Solar PV and AC source power blending controller
WO2014097554A1 (en) Power transmission system
JP2007215257A (en) Decentralized power distributing system and decentralized power system
CN103501020A (en) Hybrid power supply system consisting of mains supply network and photovoltaic assembly and control method thereof
Jaen et al. Overview of maximum power point tracking control techniques used in photovoltaic systems
KR101281079B1 (en) Photoelectric cell system with improved power quality and operating method of it
JP2007300728A (en) Power generating device
JP2024513793A (en) Power conversion device having a multilevel structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767623

Country of ref document: EP

Kind code of ref document: A1