WO2007003679A1 - Nanoparticle magnesium hydride, preparation method thereof and use of same - Google Patents

Nanoparticle magnesium hydride, preparation method thereof and use of same Download PDF

Info

Publication number
WO2007003679A1
WO2007003679A1 PCT/ES2006/070097 ES2006070097W WO2007003679A1 WO 2007003679 A1 WO2007003679 A1 WO 2007003679A1 ES 2006070097 W ES2006070097 W ES 2006070097W WO 2007003679 A1 WO2007003679 A1 WO 2007003679A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium hydride
magnesium
hydrogen
nanoparticulate
nanoparticles
Prior art date
Application number
PCT/ES2006/070097
Other languages
Spanish (es)
French (fr)
Inventor
Olier Friedrichs
Juan Carlos SÁNCHEZ LÓPEZ
Mª Asunción FERNÁNDEZ CAMACHO
Lukasz Kolodziejczyk
Diego MARTÍNEZ MARTÍNEZ
Vanda Cristina Fortio Godinho
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2007003679A1 publication Critical patent/WO2007003679A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof

Definitions

  • the object of the present invention is part of the development of new materials useful for the storage and transport of hydrogen.
  • a nanoparticulate Mg-based material would be available that has a controlled microstructure and improves hydrogen absorption and desorption kinetics in relation to the temperatures, process times and working pressures required in loading and unloading processes.
  • the invention has application in the development of processes for the manufacture of nanocrystalline metal hydrides of controlled microstructure.
  • the object of the present invention is constituted by nanoparticulate magnesium hydride, characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous particle size distributions and low degree of aggregation.
  • the use of this nanoparticulate magnesium hydride in hydrogen storage and transport systems with improved properties in the kinetics of hydrogen absorption and desorption is also an object of the present invention. It is also object of the present invention a process of preparing said nanoparticles by evaporation of magnesium in an atmosphere of an inert gas at low pressure followed by an in situ treatment with hydrogen for loading.
  • Magnesium is a light, abundant and quite cheap element that has a hydrogen storage capacity that can reach a value of 7.6% by weight. It is therefore an attractive material for the transport and storage of hydrogen that can then be used as a clean fuel in energy production (L. Schlapbach, A. Züttel, Nature 414 (2001) 23).
  • the main disadvantages of magnesium were its slow kinetics of absorption (and desorption) of hydrogen, the high temperatures required (> 400 ° C for desorption) and its high reactivity to oxygen.
  • a nanoparticulate and nanocrystalline material of Mg which can then undergo hydration.
  • This material is characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous distributions of size and low degree of aggregation that distinguish it from the material produced by mechanical grinding.
  • An object of the present invention is a nanoparticulate magnesium hydride, in which at least 80% of the magnesium hydride nanoparticles have a size between 50 and 150 nm. Each of said magnesium hydride nanoparticles constitutes a crystalline monodomain and has a specific surface area greater than 15 m 2 / g after dehydration. It is also object of the present invention a process of preparation of magnesium hydride nanoparticulate comprising the following steps: a) resistive evaporation magnesium at a temperature between 700 and 900 0 C in an atmosphere of an inert gas, prticualrmente helium, and a pressure between 1 and 50 Torr. b) loading the magnesium powder produced in the previous step with hydrogen for a period comprised between 2 and 25 hours, at a temperature between 200 0 C and 35O 0 C and a pressure between 1, 5 and 3 bars.
  • nanoparticulate magnesium hydride in hydrogen storage and transport systems is object of the present invention, being able to store up to 7.2% by weight of hydrogen.
  • the rate of hydrogen absorption is at least 0.06% by weight per second and the desorption is at least 0.023% by weight per second.
  • Figure 1 Scheme of the preparation chamber by the gas phase condensation method with an expansion of the evaporation unit: 1) manipulator; 2) bellows; 3) UHV valve; 4) cooling / heating container; 5) pressure gauge; 6) helium inlet; 7) H 2 input; 8) UHV valve; 9) thermocouple connections; 10) evaporation bowl; 11) copper cylinder; 12) magnet inside the container 4; 13) scraper with dust collection container; 14) scraper carrier Figure 2.
  • TEM micrograph of a sample of magnesium hydride nanoparticles (a) and particle size distribution histogram (b).
  • Figure 4 X-ray diffraction diagrams for the initial sample of nanocrystalline magnesium (a) and after its subsequent hydration process (b).
  • Figure 5. Kinetics of adsorption and desorption of hydrogen at 300 0 C obtained for a sample of magnesium hydride prepared by gas phase condensation at 900 0 C and 250 0 C. hydriding to
  • the first object of the present invention is a process for preparing magnesium hydride nanoparticles by evaporating magnesium in an atmosphere of an inert gas at low pressure followed by an in situ treatment with hydrogen for loading.
  • Figure 1 shows the experimental device developed.
  • the system has an ultra-high-vacuum chamber with a pumping system, He and Hydrogen gas inlets, pressure meters, ultra-high-vacuum valves and a manipulator.
  • the nanoparticle preparation process consists of two stages: i) stage of evaporation of magnesium and condensation in the gas phase (CFG) to be collected in the form of ultrafine powder and ii) stage of hydration of nanoparticulate magnesium powder obtained in the stage previous. These two stages are described below: i) Magnesium CFG stage.
  • the central preparation chamber ( Figure 1) contains an evaporator formed by a tungsten bowl that can be resistively heated in a temperature range from room temperature to about 1000 0 C.
  • the bowl is welded with a thermocouple for continuous temperature control.
  • the bowl is loaded with the magnesium pieces and then empty into the chamber. Gaps in the range of 10 "8 are achieved after heating the walls of the chamber.
  • the material to be evaporated is degassed by vacuum heating at 150 0 C for several hours.
  • the chamber contains a container placed on top of the evaporator that is cooled with liquid nitrogen and acts as a magnesium collector during the evaporation process, a pressure of He is introduced into the chamber that can vary in a typical range of 1 to 50 Torr and the bowl is resistively heated to evaporate the magnesium at temperatures in a range of 700 to 900 0 C.
  • the evaporated material condenses in the gas phase by collisions with the atoms of He and it is collected on the container cooled with liquid nitrogen. Finally, the whole system is allowed to warm to room temperature, ii) Nanoparticulate Mg hydration stage.
  • the He is evacuated from the chamber and Hydrogen is introduced at a pressure that can vary in the range of 1.5 to 3 bars.
  • the cold finger is placed on the Mg is then heated to 250 0 C for about 20 hours producing Ia complete hydriding material.
  • a magnet placed in the container attracts a piece (see Figure 1) that acts as a scraper and collector of magnesium hydride powder. This piece is collected by a carrier that is removed with the help of a manipulator. The area with the collected material is isolated with a valve and taken to a glove box where the material is stored.
  • the second object of the present invention is constituted by nanoparticulate magnesium hydride and prepared according to the procedure described in the previous section.
  • the material is characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous particle size distributions and low degree of aggregation.
  • Figure 2 shows a micrograph corresponding to a typical material obtained by the procedure described in this patent.
  • Figure 3 depicts measures of aggregate size distribution for nanocrystalline magnesium samples dispersed in toluene and obtained with light scattering measurements.
  • a sample of nanoparticulate magnesium hydride obtained by the gas phase condensation method presented in this patent has been included, together with a sample obtained by mechanical milling of magnesium hydride for 700 hours.
  • Figure 4 shows the X-ray diffraction diagrams of a sample of nanoparticulate magnesium obtained after the CFG stage, and of the nanoparticulate magnesium hydride obtained after hydration of the latter.
  • this nanoparticulate magnesium hydride in storage and transport systems is also an object of the present invention.
  • hydrogen with improved properties in the kinetics of absorption and desorption of hydrogen.
  • the values found so far indicate a hydrogen storage capacity of up to 7.2% by weight, a hydrogen absorption rate of at least 0.06% by weight per second and a hydrogen desorption rate of at least - 0.023% by weight per second. These values are among the highest recorded in the literature with absorption and desorption rates comparable to those known for a nanocrystalline magnesium hydride prepared by mechanical grinding which is the method mostly used today.
  • the process of preparing nanocrystalline magnesium hydride comprises two stages. In the first one (condensation in the gas phase-CFG), nanocrystalline magnesium is generated, which is subjected to a pressure loading treatment of hydrogen (hydration) that results in the final product. For the final material its hydrogen storage capacity has been tested by volumetric analysis of the gas released / adsorbed during loading / unloading cycles. All the preparation and collection of the material takes place in the absence of air (controlled atmosphere).
  • EXAMPLE 1 Magnesium hydride nanoparticles prepared by condensation in the gas phase for hydrogen storage. Synthesis: The synthesis was performed by resistive evaporation of magnesium (Aldrich 99.98%) at a temperature selected from the range of 700 to 900 0 C (700 0 C), in a helium atmosphere at a pressure of 3 Torr. Figure 1 shows a schematic drawing of the preparation system used. Prior to evaporation, a high vacuum is made in the chamber with heating of the walls to reach residual voids in the range of 10 "8 Torr. The material to be evaporated is also degassed previously for a few hours at 150 ° C.
  • the evaporated material is cooled by collisions with the atoms of the inert gas and condenses in the form of an ultra-fine powder that is collected on a surface cooled with liquid nitrogen, then the helium is replaced by a hydrogen atmosphere at a pressure of 2 bars for the loading of the magnesium powder.
  • the collecting surface is now heated to 25O 0 C for a period of 25 hours.
  • the collected material has been characterized by X-ray diffraction techniques (XRD) and transmission electron microscopy.
  • Figure 2 shows a TEM micrograph taken of the final material after the loading process together with the corresponding particle size distribution histogram.
  • the microstructure is formed by small particles of approximate average size of about 100 nm that are arranged in the form of loose aggregates.
  • Figure 4 illustrates the phase transformation that occurred during the hydration stage of the nanocrystalline magnesium obtained in the first stage of CFG.
  • the analysis of the x-ray diffraction diagrams for both samples highlights the formation of the tetragonal phase of the magnesium hydride and the complete disappearance of the characteristic peaks of the metal after the treatment in H 2 atmosphere (2 bar / 250 ° C).
  • Kinetic assay The behavior of the final sample was made by studying the curves of absorption and desorption of hydrogen at a temperature of 300 0 C ( Figure 5). The percentage of stored hydrogen reaches 7.2% by weight at the saturation level and the hydrogen absorption and desorption rates are in the range of + 0.06% by weight per second and -0.023% by weight respectively.

Abstract

The invention relates to the preparation of a material that is formed by nanoparticles of magnesium hydride, using the gas-phase condensation method, and to the use thereof as a hydrogen storage and transport system. According to the invention, the synthesis of the particles comprises the evaporation of the magnesium in a low-pressure inert gas atmosphere followed by an in situ hydrogen loading treatment. The magnesium hydride thus synthesised is characterised in that it comprises uniformly-distributed particles of nanometric size, having a low degree of aggregation and good crystallinity. The aforementioned microstructural aspects (size, morphology and crystallinity) are essential for improving the kinetic performance of the hydrogen adsorption/desorption steps in relation to a magnesium hydride prepared using the existing alternative methods in which said characteristics cannot be controlled so precisely.

Description

TITULOTITLE
HIDRURO DE MAGNESIO NANOPARTICULADO, PROCEDIMIENTO DE PREPARACIÓN Y UTILIZACIÓN.NANOPARTICULATED MAGNESIUM HYDRIDE, PREPARATION AND USE PROCEDURE.
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
El objeto de Ia presente invención se enmarca dentro del desarrollo de nuevos materiales útiles para el almacenamiento y transporte de hidrógeno. Se dispondría de un material nanoparticulado de base Mg que presenta una microestructura controlada y que mejora las cinéticas de absorción y desorción de hidrógeno en Io relativo a las temperaturas, tiempos de proceso y presiones de trabajo necesarias en los procesos de carga y descarga. La invención tiene aplicación en el desarrollo de procesos para Ia fabricación de hidruros metálicos nanocristalinos de microestructura controlada.The object of the present invention is part of the development of new materials useful for the storage and transport of hydrogen. A nanoparticulate Mg-based material would be available that has a controlled microstructure and improves hydrogen absorption and desorption kinetics in relation to the temperatures, process times and working pressures required in loading and unloading processes. The invention has application in the development of processes for the manufacture of nanocrystalline metal hydrides of controlled microstructure.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
El objeto de Ia presente invención está constitutido por hidruro de magnesio nanoparticulado, caracterizado por un tamaño de partícula comprendido entre 50 y 150 nm, con una microestructura nanocristalina monodominio, distribuciones homogéneas de tamaño de partícula y bajo grado de agregación. Constituye también objeto de Ia presente invención el uso de este hidruro de magnesio nanoparticulado en sistemas de almacenamiento y transporte de hidrógeno con propiedades mejoradas en las cinéticas de absorción y desorción de hidrógeno. Es igualmente objeto de Ia presente invención un procedimiento de preparación de dichas nanopartículas por evaporación de magnesio en el seno de una atmósfera de un gas inerte a baja presión seguido de un tratamiento in situ con hidrógeno para su carga.The object of the present invention is constituted by nanoparticulate magnesium hydride, characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous particle size distributions and low degree of aggregation. The use of this nanoparticulate magnesium hydride in hydrogen storage and transport systems with improved properties in the kinetics of hydrogen absorption and desorption is also an object of the present invention. It is also object of the present invention a process of preparing said nanoparticles by evaporation of magnesium in an atmosphere of an inert gas at low pressure followed by an in situ treatment with hydrogen for loading.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El magnesio es un elemento ligero, abundante y bastante barato que posee una capacidad de almacenamiento de hidrógeno que puede alcanzar un valor del 7.6% en peso. Se trata por tanto de un material atractivo para el transporte y almacenamiento de hidrógeno que pueda ser luego utilizado como combustible limpio en producción de energía (L.Schlapbach, A.Züttel, Nature 414 (2001 ) 23). Hasta hace unos años las principales desventajas del magnesio eran sus cinéticas lentas de absorción (y desorción) del hidrógeno, las altas temperaturas necesarias (>400°C para Ia desorción) y su alta reactividad al oxígeno. Recientemente se han producido sin embargo progresos significativos usando polvos nanocristalinos de hidruro de magnesio producidos por molienda mecánica (L.Zaluska, S.Hosatte, P.Tessier, D.H.Ryan, J.O.Stroem-Olsen, M.LTrudeau, et al., Z.Phys.Chem. 183 (1994) 45; L.Zaluski, A.Zaluska, P.Tessier, J.O.Stroem-Olsen, R.SchuIz, J.AIIoys Compd. 267 (1998) 302; G.Liang, S.Boily, J.Huot, A.Van Neste, R.SchuIz, J.AIIoys Compd. 267 (1998) 302; K.J.Gross, P.Spatz, A.Zuettel, L.Schlapbach, J.AIIoys Compd. 240 (1996) 206; WO2005/021424 A2), por adición de aditivos de metales de transición durante el proceso de molienda del hidruro de magnesio (I.G.Konstanchuk, E.Y.Ivanov, M.Pezat, B.Darriet, V.V.Boldyrev, P.Hagenmuller, J.Less-Common Metals 131 (1987) 181 ; 289 (1999) 197; J.F.Pelletier, J.Huot, M.Sutton, R.SchuIz, A.R.Sandy, LB.Lurio et al., Phys.Rev.B 63 (2001) 052103), por adición de aditivos de óxidos de metales de transición durante Ia molienda (W.Oelerich, T.KIassen, R.Bormann, J.AIloy Compd. 315 (2001 ) 237; W.Oelerich, T.KIassen, R.Boemann, J.AIIoys Compd. 322 (2001 ) L5; US 6.387.152 B1 ; US 2002/0061814 A1 ; US 2003/0013605 A1 ; WO 2005/021424 A2), y por adición de aditivos de nitruros y carburos igualmente durante Ia molienda (US 2003/0013605 A). Se han alcanzado así cinéticas más rápidas de absorción y desorción que alcanzan valores de 0.185 % en peso por segundo y -0.05 % en peso por segundo respectivamente. En el momento actual Ia adición de Nb2O5 produce una de las cinéticas más rápidas (G.Barkhordarian, T.KIassen, R.Bormann, Scripta Mater. 49 (2003) 213; G.Barkhordarian, T.KIassen, R.Bormann, J.AIIoys Compd. 364 (2004) 242). En todos estos procesos de molienda mecánica, con ó sin aditivos, se consiguen materiales de tamaño de grano bastante heterogéneo y comprendido mayoritariamente en el rango de 170-500 nm. El material presenta agregados con superficies específicas en torno a los 12 m2/g tras Ia des-hidruración. En Ia presente patente se propone el uso del método de condensación en fase gas (un método ya conocido: H.Gleiter, Adv.Mater. 4(1992) 474) para Ia obtención de un material nanoparticulado y nanocristalino de Mg que puede después someterse a hidruración. Este material se caracteriza por un tamaño de partícula comprendido entre 50 y 150 nm, con una microestructura nanocristalina monodominio, distribuciones homogéneas de tamaño y bajo grado de agregación que Io distinguen del material producido por molienda mecánica.Magnesium is a light, abundant and quite cheap element that has a hydrogen storage capacity that can reach a value of 7.6% by weight. It is therefore an attractive material for the transport and storage of hydrogen that can then be used as a clean fuel in energy production (L. Schlapbach, A. Züttel, Nature 414 (2001) 23). Until a few years ago the main disadvantages of magnesium were its slow kinetics of absorption (and desorption) of hydrogen, the high temperatures required (> 400 ° C for desorption) and its high reactivity to oxygen. Recently, however, significant progress has been made using nanocrystalline magnesium hydride powders produced by mechanical grinding (L. Zaluska, S.Hosatte, P.Tessier, DHRyan, JOStroem-Olsen, M.LTrudeau, et al., Z.Phys. Chem. 183 (1994) 45; L. Zaluski, A. Zaluska, P. Tessier, JOStroem-Olsen, R. Schuz, J. AIIoys Compd. 267 (1998) 302; G. Liang, S. Boily, J. Huot , A. Van Neste, R. Schuz, J.AIIoys Compd. 267 (1998) 302; KJGross, P.Spatz, A.Zuettel, L. Schlapbach, J.AIIoys Compd. 240 (1996) 206; WO2005 / 021424 A2 ), by the addition of transition metal additives during the milling process of magnesium hydride (IGKonstanchuk, EYIvanov, M. Peezat, B. Darriet, VVBoldyrev, P. Hagenmuller, J.Less-Common Metals 131 (1987) 181; 289 (1999) 197; JFPelletier, J.Huot, M.Sutton, R. SchIz, ARSandy, LB.Lurio et al., Phys.Rev.B 63 (2001) 052103), by the addition of metal oxide additives of Transition during milling (W. Olelerich, T. Kassen, R. Bormann, J. Alloy Compd. 315 (2001) 237; W. Olelerich, T. Kassen, R. Boemann, J. AIIoys Compd. 322 (2001) L5; US 6,387,152 B1; US 2002/0061814 A1; US 2003/0013605 A1; WO 2005/021424 A2), and by the addition of nitride and carbide additives also during milling (US 2003/0013605 A). Faster absorption and desorption kinetics have thus been reached, reaching values of 0.185% by weight per second and -0.05% by weight per second respectively. At the present time, the addition of Nb 2 O 5 produces one of the fastest kinetics (G.Barkhordarian, T.Kassen, R.Bormann, Scripta Mater. 49 (2003) 213; G.Barkhordarian, T.Kassen, R. Bormann, J. AIIoys Compd. 364 (2004) 242). In all these processes of mechanical grinding, with or without additives, materials of grain size are obtained quite heterogeneous and mostly comprised in the range of 170-500 nm. The material has aggregates with specific surfaces around 12 m 2 / g after dehydration. This patent proposes the use of the gas phase condensation method (a method already known: H.Gleiter, Adv.Mater. 4 (1992) 474) to obtain a nanoparticulate and nanocrystalline material of Mg which can then undergo hydration. This material is characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous distributions of size and low degree of aggregation that distinguish it from the material produced by mechanical grinding.
El método de condensación en fase gas es bien conocido y se ha aplicado a Ia síntesis de un gran número de materiales. En particular, existe una patente (US 634,799) que describe el uso de este método para Ia síntesis de polvos de Mg y aleaciones con otros metales. No se dan sin embargo datos relativos a Ia microestructura del material ni de su utilización posterior para Ia síntesis de MgH2 nanoparticulado. Igualmente existen patentes previas (UK 513,257) que describen Ia evaporación de Mg para producir metalización. Este método produce películas delgadas y no es significativo para Ia presente invención. Se ha encontrado también una referencia bibliográfica anterior (R.L.Holtz, M.A.Imam, J.Mat.Sci. 32 (1997) 2267) en Ia que se describen aleaciones MgNi de tamaño de partícula submicrónico. Los materiales descritos en este trabajo se han preparado por molienda mecánica y por Ia técnica de pulverización catódica a alta presión. Este método conduce a Ia formación de muestras particuladas por condensación en fase gaseosa pero los materiales obtenidos son de mayores tamaños de grano y un mayor grado de agregación que los materiales presentados en Ia presente patente. Se ha descrito también de una manera detallada (F.T.Ferguson, J.A.Nuth, L.U.Lilleleht, J.Chem.Phys. 104 (1996) 3205) el proceso de condensación en fase vapor para Mg pero no se han descrito sus procesos de hidruración y sus buenas capacidades para el almacenamiento de hidrógeno.The gas phase condensation method is well known and has been applied to the synthesis of a large number of materials. In particular, there is a patent (US 634,799) that describes the use of this method for the synthesis of Mg powders and alloys with other metals. However, no data are given regarding the microstructure of the material or its subsequent use for the synthesis of nanoparticulate MgH 2 . There are also previous patents (UK 513,257) that describe the evaporation of Mg to produce metallization. This method produces thin films and is not significant for the present invention. An earlier bibliographic reference has also been found (RLHoltz, MAImam, J.Mat.Sci. 32 (1997) 2267) in which MgNi alloys of submicronic particle size are described. The materials described in this work have been prepared by mechanical grinding and by the high pressure sputtering technique. This method leads to the formation of particulate samples by condensation in the gas phase but the materials obtained are of larger grain sizes and a greater degree of aggregation than the materials presented in the present patent. The vapor phase condensation process for Mg has also been described in a detailed manner (FTFerguson, JANuth, LULilleleht, J.Chem.Phys. 104 (1996) 3205) but its hydration processes and its good capacities for Hydrogen storage
EXPLICACIÓN DE LA INVENCIÓNEXPLANATION OF THE INVENTION
Constituye un objeto de Ia presente invención un hidruro de magnesio nanoparticulado, en el cual al menos el 80% de las nanopartículas de hidruro de magnesio presenta un tamaño comprendido entre 50 y 150 nm. Cada una de dichas nanopartículas de hidruro de magnesio constituye un monodominio cristalino y presentan una superficie específica mayor de 15 m2/g tras Ia deshidruración. Es igualmente objeto de Ia presente invención un procedimiento de preparación del hidruro de magnesio nanoparticulado que comprende las siguientes etapas: a) evaporación resistiva de magnesio a una temperatura comprendida entre 700 y 9000C en una atmósfera de un gas inerte, prticualrmente helio, y a una presión comprendida entre 1 y 50 Torr. b) carga del polvo de magnesio producido en Ia etapa anterior con hidrógeno durante un periodo de tiempo comprendido entre 2 y 25 horas, a una temperatura entre 2000C y 35O0C y a una presión comprendida entre 1 ,5 y 3 bares.An object of the present invention is a nanoparticulate magnesium hydride, in which at least 80% of the magnesium hydride nanoparticles have a size between 50 and 150 nm. Each of said magnesium hydride nanoparticles constitutes a crystalline monodomain and has a specific surface area greater than 15 m 2 / g after dehydration. It is also object of the present invention a process of preparation of magnesium hydride nanoparticulate comprising the following steps: a) resistive evaporation magnesium at a temperature between 700 and 900 0 C in an atmosphere of an inert gas, prticualrmente helium, and a pressure between 1 and 50 Torr. b) loading the magnesium powder produced in the previous step with hydrogen for a period comprised between 2 and 25 hours, at a temperature between 200 0 C and 35O 0 C and a pressure between 1, 5 and 3 bars.
Asimismo, es objeto de Ia presente invención Ia utilización del hidruro de magnesio nanoparticulado en sistemas de almacenamiento y transporte de hidrógeno, consiguiéndose almacenar hasta el 7,2% en peso de hidrógeno. Mediante Ia utilización de las nanoparticulas de hidruro de magnesio, Ia velocidad de absorción de hidrógeno es de al menos 0,06% en peso por segundo y Ia de desorción es de al menos 0,023% en peso por segundo.Likewise, the use of nanoparticulate magnesium hydride in hydrogen storage and transport systems is object of the present invention, being able to store up to 7.2% by weight of hydrogen. By using the nanoparticles of magnesium hydride, the rate of hydrogen absorption is at least 0.06% by weight per second and the desorption is at least 0.023% by weight per second.
BREVE DESCRIPCIÓN DE LAS FIGURASBRIEF DESCRIPTION OF THE FIGURES
Figura 1. Esquema de Ia cámara de preparación por el método de condensación en fase gaseosa con una ampliación de Ia unidad de evaporación: 1 ) manipulador; 2) fuelle; 3) válvula de UHV; 4) contenedor enfriamiento/calentamiento; 5) medidor de presión; 6) entrada de helio; 7) entrada de H2; 8) válvula de UHV; 9) conexiones para el termopar; 10) cazoleta de evaporación; 11 ) cilindro de cobre; 12) imán en el interior del contendor 4; 13) rascador con contenedor para recoger el polvo; 14) portador para rascador Figura 2. Micrografía TEM de una muestra de nanoparticulas de hidruro de magnesio (a) e histograma de distribución de tamaño de partículas (b). Figura 3. Distribuciones de tamaños de partícula, obtenidas por dispersión de luz, para una muestra de nanoparticulas de hidruro de magnesio obtenidas por condensación en fase gas (GPC) y por molienda mecánica durante 700 horas (a efectos comparativos)Figure 1. Scheme of the preparation chamber by the gas phase condensation method with an expansion of the evaporation unit: 1) manipulator; 2) bellows; 3) UHV valve; 4) cooling / heating container; 5) pressure gauge; 6) helium inlet; 7) H 2 input; 8) UHV valve; 9) thermocouple connections; 10) evaporation bowl; 11) copper cylinder; 12) magnet inside the container 4; 13) scraper with dust collection container; 14) scraper carrier Figure 2. TEM micrograph of a sample of magnesium hydride nanoparticles (a) and particle size distribution histogram (b). Figure 3. Particle size distributions, obtained by light scattering, for a sample of magnesium hydride nanoparticles obtained by gas phase condensation (GPC) and by mechanical grinding for 700 hours (for comparative purposes)
Figura 4. Diagramas de difracción de rayos X para Ia muestra inicial de magnesio nanocristalino (a) y tras su posterior proceso de hidruración (b). Figura 5. Cinéticas de adsorción y desorción de hidrógeno a 300 0C obtenidas para una muestra de hidruro de magnesio preparado por condensación en fase gaseosa a 900 0C e hidruración a 250 0C.Figure 4. X-ray diffraction diagrams for the initial sample of nanocrystalline magnesium (a) and after its subsequent hydration process (b). Figure 5. Kinetics of adsorption and desorption of hydrogen at 300 0 C obtained for a sample of magnesium hydride prepared by gas phase condensation at 900 0 C and 250 0 C. hydriding to
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
El primer objeto de Ia presente invención es un procedimiento de preparación de nanopartículas de hidruro de magnesio por evaporación de magnesio en el seno de una atmósfera de un gas inerte a baja presión seguido de un tratamiento in situ con hidrógeno para su carga. La figura 1 recoge el dispositivo experimental desarrollado. El sistema dispone de una cámara de ultra-alto-vacío con un sistema de bombeo, entradas de gases He e Hidrógeno, medidores de presión, válvulas de ultra-alto-vacío y un manipulador. El proceso de preparación de las nanopartículas consta de dos etapas: i) etapa de evaporación del magnesio y condensación en fase gaseosa (CFG) para ser recogido en forma de polvo ultrafino y ii) etapa de hidruración del polvo de magnesio nanoparticulado obtenido en Ia etapa anterior. Seguidamente se describen estas dos etapas: i) Etapa de CFG de magnesio. La cámara central de preparación (Figura 1 ) contiene un evaporador formado por una cazoleta de tungsteno que puede calentarse resistivamente en un rango de temperaturas desde temperatura ambiente hasta unos 1000 0C. La cazoleta lleva soldado un termopar para el control continuo de Ia temperatura. En primer lugar se carga Ia cazoleta con los trozos de magnesio para pasar luego a hacer vacío en Ia cámara. Se consiguen vacíos en el rango de 10"8 tras calentamiento de las paredes de Ia cámara. Previo a Ia evaporación del magnesio se desgasifica el material a evaporar por calentamiento a vacío a 150 0C durante varias horas. La cámara contiene un contenedor colocado encima del evaporador que se enfría con nitrógeno líquido y hace de colector de magnesio durante el proceso de evaporación. Se introduce una presión de He en Ia cámara que puede variar en un rango típico de 1 a 50 Torr y se calienta resistivamente Ia cazoleta para evaporar el magnesio a temperaturas en un rango de 700 a 900 0C. El material evaporado condensa en Ia fase gaseosa por colisiones con los átomos de He y se recoge sobre el contenedor enfriado con nitrógeno liquido. Finalmente todo el sistema se deja calentar hasta temperatura ambiente, ii) Etapa de hidruración del Mg nanoparticulado. Se evacúa el He de Ia cámara y se introduce Hidrógeno en una presión que puede variar en el rango de 1.5 a 3 bares. El dedo frío sobre el que está depositado el Mg se calienta entonces a 250 0C durante unas 20 horas produciéndose Ia hidruración total del material. Un imán colocado en el contenedor atrae a una pieza (ver Figura 1) que actúa de rascador y colector del polvo de hidruro de magnesio. Esta pieza es recogida por un portador que se retira con Ia ayuda de un manipulador. La zona con el material recogido se aisla con una válvula y se lleva a una caja de guantes en donde se almacena el material.The first object of the present invention is a process for preparing magnesium hydride nanoparticles by evaporating magnesium in an atmosphere of an inert gas at low pressure followed by an in situ treatment with hydrogen for loading. Figure 1 shows the experimental device developed. The system has an ultra-high-vacuum chamber with a pumping system, He and Hydrogen gas inlets, pressure meters, ultra-high-vacuum valves and a manipulator. The nanoparticle preparation process consists of two stages: i) stage of evaporation of magnesium and condensation in the gas phase (CFG) to be collected in the form of ultrafine powder and ii) stage of hydration of nanoparticulate magnesium powder obtained in the stage previous. These two stages are described below: i) Magnesium CFG stage. The central preparation chamber (Figure 1) contains an evaporator formed by a tungsten bowl that can be resistively heated in a temperature range from room temperature to about 1000 0 C. The bowl is welded with a thermocouple for continuous temperature control. In the first place, the bowl is loaded with the magnesium pieces and then empty into the chamber. Gaps in the range of 10 "8 are achieved after heating the walls of the chamber. Prior to evaporation of magnesium, the material to be evaporated is degassed by vacuum heating at 150 0 C for several hours. The chamber contains a container placed on top of the evaporator that is cooled with liquid nitrogen and acts as a magnesium collector during the evaporation process, a pressure of He is introduced into the chamber that can vary in a typical range of 1 to 50 Torr and the bowl is resistively heated to evaporate the magnesium at temperatures in a range of 700 to 900 0 C. The evaporated material condenses in the gas phase by collisions with the atoms of He and it is collected on the container cooled with liquid nitrogen. Finally, the whole system is allowed to warm to room temperature, ii) Nanoparticulate Mg hydration stage. The He is evacuated from the chamber and Hydrogen is introduced at a pressure that can vary in the range of 1.5 to 3 bars. The cold finger is placed on the Mg is then heated to 250 0 C for about 20 hours producing Ia complete hydriding material. A magnet placed in the container attracts a piece (see Figure 1) that acts as a scraper and collector of magnesium hydride powder. This piece is collected by a carrier that is removed with the help of a manipulator. The area with the collected material is isolated with a valve and taken to a glove box where the material is stored.
El segundo objeto de Ia presente invención está constitutido por el hidruro de magnesio nanoparticulado y preparado según el procedimiento descrito en el apartado anterior. El material se caracteriza por un tamaño de partícula comprendido entre 50 y 150 nm, con una microestructura nanocristalina monodominio, distribuciones homogéneas de tamaño de partícula y bajo grado de agregación. La Figura 2 recoge una micrografía correspondiente a un material típico obtenido por el procedimiento descrito en esta patente. La figura 3 representa medidas de distribución de tamaños de agregados para muestras de magnesio nanocristalino dispersas en tolueno y obtenidas con medidas de dispersión de luz. A efectos comparativos se ha incluido una muestra de hidruro de magnesio nanoparticulado obtenida por el método de condensación en fase gas presentado en esta patente, junto con una muestra obtenida por molienda mecánica de hidruro de magnesio durante 700 horas. Es evidente de esta figura que Ia muestra obtenida por condensación en fase gas se caracteriza por tener partículas de menor tamaño, con distribuciones más homogéneas y menor grado de agregación, Io que garantiza una mayor área superficial para Ia muestra obtenida por condensación en fase gas. La Figura 4 muestra los diagramas de difracción de rayos X de una muestra de magnesio nanoparticulado obtenido tras Ia etapa de CFG, y del hidruro de magnesio nanoparticulado obtenido tras hidruración de aquel.The second object of the present invention is constituted by nanoparticulate magnesium hydride and prepared according to the procedure described in the previous section. The material is characterized by a particle size between 50 and 150 nm, with a monodomain nanocrystalline microstructure, homogeneous particle size distributions and low degree of aggregation. Figure 2 shows a micrograph corresponding to a typical material obtained by the procedure described in this patent. Figure 3 depicts measures of aggregate size distribution for nanocrystalline magnesium samples dispersed in toluene and obtained with light scattering measurements. For comparison purposes a sample of nanoparticulate magnesium hydride obtained by the gas phase condensation method presented in this patent has been included, together with a sample obtained by mechanical milling of magnesium hydride for 700 hours. It is evident from this figure that the sample obtained by condensation in the gas phase is characterized by having smaller particles, with more homogeneous distributions and a lower degree of aggregation, which guarantees a greater surface area for the sample obtained by condensation in the gas phase. Figure 4 shows the X-ray diffraction diagrams of a sample of nanoparticulate magnesium obtained after the CFG stage, and of the nanoparticulate magnesium hydride obtained after hydration of the latter.
Constituye también objeto de Ia presente invención el uso de este hidruro de magnesio nanoparticulado en sistemas de almacenamiento y transporte de hidrógeno con propiedades mejoradas en las cinéticas de absorción y desorción de hidrógeno. Los valores encontrados hasta ahora indican una capacidad de almacenamiento de hidrógeno de hasta el 7,2% en peso, una velocidad de absorción de hidrógeno de al menos 0,06% en peso por segundo y una velocidad de desorción de hidrógeno de al menos -0,023 % en peso por segundo. Estos valores se hallan entre los más altos recogidos en Ia literatura con velocidades de absorción y desorción comparables a las conocidas para un hidruro de magnesio nanocristalino preparado por molienda mecánica que es el método mayormente empleado en Ia actualidad.The use of this nanoparticulate magnesium hydride in storage and transport systems is also an object of the present invention. hydrogen with improved properties in the kinetics of absorption and desorption of hydrogen. The values found so far indicate a hydrogen storage capacity of up to 7.2% by weight, a hydrogen absorption rate of at least 0.06% by weight per second and a hydrogen desorption rate of at least - 0.023% by weight per second. These values are among the highest recorded in the literature with absorption and desorption rates comparable to those known for a nanocrystalline magnesium hydride prepared by mechanical grinding which is the method mostly used today.
MODO DE REALIZACIÓN DE LA INVENCIÓNEMBODIMENT OF THE INVENTION
El procedimiento de preparación del hidruro de magnesio nanocristalino comprende dos etapas. En Ia primera (condensación en fase gaseosa-CFG) se genera magnesio nanocristalino que se somete a un tratamiento de carga en presión de hidrogeno (hidruración) que da como resultado el producto final. Para el material final se ha probado su capacidad de almacenamiento de hidrógeno mediante análisis volumétrico del gas desprendido/adsorbido durante ciclos de carga/descarga. Toda Ia preparación y recogida del material transcurre en ausencia de aire (atmósfera controlada).The process of preparing nanocrystalline magnesium hydride comprises two stages. In the first one (condensation in the gas phase-CFG), nanocrystalline magnesium is generated, which is subjected to a pressure loading treatment of hydrogen (hydration) that results in the final product. For the final material its hydrogen storage capacity has been tested by volumetric analysis of the gas released / adsorbed during loading / unloading cycles. All the preparation and collection of the material takes place in the absence of air (controlled atmosphere).
EJEMPLO 1. Nanopartículas de hidruro de magnesio preparadas por condensación en fase gaseosa para almacenamiento de hidrógeno. Síntesis: La síntesis se ha realizado por evaporación resistiva de magnesio (Aldrich 99,98%) a una temperatura seleccionada del intervalo de 700 a 9000C (7000C), en una atmósfera de helio a una presión de 3 Torr. En Ia figura 1 se presenta un dibujo esquemático del sistema de preparación empleado. Previamente a Ia evaporación se hace alto vacío en Ia cámara con calentamiento de las paredes para alcanzar vacíos residuales en el rango de 10"8 Torr. El material a evaporar se desgasifica también previamente durante unas horas a 150 °C.antes de Ia introducción del He en Ia cámara. El material evaporado es enfriado por colisiones con los átomos del gas inerte y condensa en forma de un polvo ultrafino que se recoge sobre una superficie enfriada con nitrógeno líquido. A continuación, se procede a reemplazar el helio por una atmósfera de hidrógeno a una presión de 2 bares para Ia carga del polvo de magnesio. La superficie colectora es ahora calentada a 25O0C por un periodo de 25 horas. Una vez finalizada Ia etapa de carga el material recogido se ha caracterizado por las técnicas de difracción de rayos X (XRD) y microscopía electrónica de transmisión. En Ia figura 2 se presenta una micrografía TEM tomada del material final tras el proceso de carga junto con el histograma de distribución de tamaño de partículas correspondiente. La microestructura se halla formada por pequeñas partículas de tamaño medio aproximado de unos 100 nm que se disponen en forma de agregados sueltos. La figura 4 ilustra Ia transformación de fase ocurrida durante Ia etapa de hiduración del magnesio nanocristalino obtenido en Ia primera etapa de CFG. El análisis de los diagramas de difracción de rayos x para ambas muestras pone de relieve Ia formación de Ia fase tetragonal del hidruro de magnesio y Ia completa desaparición de los picos característicos del metal tras el tratamiento en atmósfera de H2 (2 bar/250°C).EXAMPLE 1. Magnesium hydride nanoparticles prepared by condensation in the gas phase for hydrogen storage. Synthesis: The synthesis was performed by resistive evaporation of magnesium (Aldrich 99.98%) at a temperature selected from the range of 700 to 900 0 C (700 0 C), in a helium atmosphere at a pressure of 3 Torr. Figure 1 shows a schematic drawing of the preparation system used. Prior to evaporation, a high vacuum is made in the chamber with heating of the walls to reach residual voids in the range of 10 "8 Torr. The material to be evaporated is also degassed previously for a few hours at 150 ° C. before the introduction of the In the chamber, the evaporated material is cooled by collisions with the atoms of the inert gas and condenses in the form of an ultra-fine powder that is collected on a surface cooled with liquid nitrogen, then the helium is replaced by a hydrogen atmosphere at a pressure of 2 bars for the loading of the magnesium powder. The collecting surface is now heated to 25O 0 C for a period of 25 hours. Once the loading stage is finished, the collected material has been characterized by X-ray diffraction techniques (XRD) and transmission electron microscopy. Figure 2 shows a TEM micrograph taken of the final material after the loading process together with the corresponding particle size distribution histogram. The microstructure is formed by small particles of approximate average size of about 100 nm that are arranged in the form of loose aggregates. Figure 4 illustrates the phase transformation that occurred during the hydration stage of the nanocrystalline magnesium obtained in the first stage of CFG. The analysis of the x-ray diffraction diagrams for both samples highlights the formation of the tetragonal phase of the magnesium hydride and the complete disappearance of the characteristic peaks of the metal after the treatment in H 2 atmosphere (2 bar / 250 ° C).
Ensayo cinético: El comportamiento de Ia muestra final se ha realizado por estudio de las curvas de absorción y desorción de hidrógeno a una temperatura de 3000C (figura 5). El porcentaje de hidrógeno almacenado alcanza en el nivel de saturación el 7,2% en peso y las velocidades de absorción y desorción de hidrógeno están en el rango de +0.06% en peso por segundo y -0.023% en peso respectivamente. Kinetic assay: The behavior of the final sample was made by studying the curves of absorption and desorption of hydrogen at a temperature of 300 0 C (Figure 5). The percentage of stored hydrogen reaches 7.2% by weight at the saturation level and the hydrogen absorption and desorption rates are in the range of + 0.06% by weight per second and -0.023% by weight respectively.

Claims

REIVINDICACIONES
1.- Hidruro de magnesio nanoparticulado caracterizado porque al menos el 80% de las nanopartículas de hidruro de magnesio presenta un tamaño comprendido entre 50 y 150 nm. 1.- Nanoparticulate magnesium hydride characterized in that at least 80% of the magnesium hydride nanoparticles have a size between 50 and 150 nm.
2.- Hidruro de magnesio nanoparticulado según Ia reivindicación 1 caracterizado porque cada una de las nanopartículas de hidruro de magnesio constituye un monodominio cristalino.2. Nanoparticulate magnesium hydride according to claim 1, characterized in that each of the magnesium hydride nanoparticles constitutes a crystalline monodomain.
3.- Hidruro de magnesio nanoparticulado según las reivindicaciones 1 y 2, caracterizado porque las nanopartículas de hidruro de magnesio presentan una superficie específica mayor de 15 m2/g tras Ia deshidruración.3. Nanoparticulate magnesium hydride according to claims 1 and 2, characterized in that the magnesium hydride nanoparticles have a specific surface area greater than 15 m 2 / g after dehydration.
4.- Procedimiento de preparación de hidruro de magnesio nanoparticulado, caracterizado porque comprende las siguientes etapas: a) evaporación resistiva de magnesio a una temperatura comprendida entre 700 y 900 0C en una atmósfera de un gas inerte, particularmente helio, y a una presión comprendida entre 1 y 50 Torr. b) carga del polvo de magnesio producido en Ia etapa anterior con hidrógeno durante un periodo de tiempo comprendido entre 2 y 25 horas, a una temperatura entre 200 0C y 350 0C y a una presión comprendida entre 1 ,5 y 3 bares. 4. Process for preparing nanoparticulate magnesium hydride, characterized in that comprises the following steps: a) magnesium resistive evaporation at a temperature between 700 and 900 0 C in an atmosphere of a gas inert, particularly helium, and a pressure between 1 and 50 Torr. b) loading of the magnesium powder produced in the previous stage with hydrogen for a period of time between 2 and 25 hours, at a temperature between 200 0 C and 350 0 C and at a pressure between 1, 5 and 3 bars.
5.- Utilización de hidruro de magnesio nanoparticulado en sistemas de almacenamiento y transporte de hidrógeno, caracterizado porque el hidrógeno almacenado constituye hasta el 7,2% en peso.5.- Use of nanoparticulate magnesium hydride in hydrogen storage and transport systems, characterized in that the hydrogen stored constitutes up to 7.2% by weight.
6.- Utilización de hidruro de magnesio según Ia reivindicación 5, caracterizado porque Ia velocidad de absorción de hidrógeno es de al menos 0,06% en peso por segundo.6. Use of magnesium hydride according to claim 5, characterized in that the hydrogen absorption rate is at least 0.06% by weight per second.
7.- Utilización de hidruro de magnesio según las reivindicaciones 5 y 6, caracterizado porque Ia desorción de hidrógeno es de al menos 0,023 % en peso por segundo. 7. Use of magnesium hydride according to claims 5 and 6, characterized in that the desorption of hydrogen is at least 0.023% by weight per second.
PCT/ES2006/070097 2005-07-06 2006-07-04 Nanoparticle magnesium hydride, preparation method thereof and use of same WO2007003679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200501649 2005-07-06
ES200501649A ES2265282B1 (en) 2005-07-06 2005-07-06 NANOPARTICULATED MAGNESIUM HYDRIDE, PREPARATION AND USE PROCEDURE.

Publications (1)

Publication Number Publication Date
WO2007003679A1 true WO2007003679A1 (en) 2007-01-11

Family

ID=37604105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070097 WO2007003679A1 (en) 2005-07-06 2006-07-04 Nanoparticle magnesium hydride, preparation method thereof and use of same

Country Status (2)

Country Link
ES (1) ES2265282B1 (en)
WO (1) WO2007003679A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431945C (en) * 2007-01-23 2008-11-12 太原理工大学 Method for preparing magnesium based hydrogen storage material
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068517A1 (en) * 2000-03-17 2001-09-20 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068517A1 (en) * 2000-03-17 2001-09-20 Hydro-Quebec Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FATAY D. ET AL.: "Particle size and catalytic effect on the dehydriding of MgH2", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 399, August 2005 (2005-08-01), pages 237 - 241, XP004965712 *
HANADA N. ET AL.: "Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 366, 10 March 2004 (2004-03-10), pages 269 - 273, XP004488327 *
SHAO H. ET AL.: "Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction", MATERIALS SCIENCE AND ENGINEERING B, vol. 110, July 2004 (2004-07-01), pages 221 - 226, XP004510287 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
CN100431945C (en) * 2007-01-23 2008-11-12 太原理工大学 Method for preparing magnesium based hydrogen storage material
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US10215338B2 (en) 2010-02-24 2019-02-26 Hydrexia Pty Ltd. Hydrogen release system
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Also Published As

Publication number Publication date
ES2265282A1 (en) 2007-02-01
ES2265282B1 (en) 2008-02-01

Similar Documents

Publication Publication Date Title
Liu et al. Synthesis and hydrogen storage properties of ultrafine Mg–Zn particles
Skripnyuk et al. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy
Liu et al. Improved hydrogen storage properties of Mg-based nanocomposite by addition of LaNi5 nanoparticles
An et al. In situ synthesized one-dimensional porous Ni@ C nanorods as catalysts for hydrogen storage properties of MgH 2
Kalinichenka et al. Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE= Y, Nd, Gd)
Kishore et al. Hydrogen storage in spherical and platelet palladium nanoparticles
Song et al. Technique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare‐Earth Metals
Liu et al. Synthesis of Mg@ Mg 17 Al 12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma–metal reaction
Zou et al. Hydrogen storage properties of Mg–TM–La (TM= Ti, Fe, Ni) ternary composite powders prepared through arc plasma method
Liu et al. Mg-based nanocomposites with improved hydrogen storage performances
El-Eskandarany et al. Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10 wt% ZrNi5 powders
JP2011508659A (en) Hydrogen storage materials based on magnesium hydride
Pasquini et al. Hydride destabilization in core–shell nanoparticles
ES2265282B1 (en) NANOPARTICULATED MAGNESIUM HYDRIDE, PREPARATION AND USE PROCEDURE.
Machmud et al. Sorption behavior of MgH2-Ti for Hydrogen storage material prepared by high pressure milling
Rahwanto et al. Desorption properties of mechanically milled MgH2 with double catalysts Ni and SiC
Mushnikov et al. Kinetics of interaction of Mg-based mechanically activated alloys with hydrogen
Prabhakaran et al. Aluminium doping composite metal-organic framework by alane nanoconfinement: Impact on the room temperature hydrogen uptake
Bardakhanov et al. Nanopowders obtained by evaporating initial substances in an electron accelerator at atmospheric pressure.
Dehouche et al. Effect of activated alloys on hydrogen discharge kinetics of MgH2 nanocrystals
Bhosle et al. Dehydrogenation of nanocrystalline TiH 2 and consequent consolidation to form dense Ti
Zhu et al. Long-term hydrogen absorption/desorption properties of an AB5-type LaNi4. 75Mn0. 25 alloy
Chen et al. Hydrogen storage in Mg 2 Ni (Fe) H 4 nano particles synthesized from coarse-grained Mg and nano sized Ni (Fe) precursor
Lee et al. The kinetics of isothermal hydrogen reduction of nanocrystalline Fe2O3 powder
Xie et al. Synthesis and hydrogen storing properties of nanostructured ternary Mg–Ni–Co compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06764395

Country of ref document: EP

Kind code of ref document: A1