WO2007003134A1 - A device system and method for implementing the multi-carrier high speed downlink packet access service - Google Patents

A device system and method for implementing the multi-carrier high speed downlink packet access service Download PDF

Info

Publication number
WO2007003134A1
WO2007003134A1 PCT/CN2006/001548 CN2006001548W WO2007003134A1 WO 2007003134 A1 WO2007003134 A1 WO 2007003134A1 CN 2006001548 W CN2006001548 W CN 2006001548W WO 2007003134 A1 WO2007003134 A1 WO 2007003134A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
speed downlink
downlink packet
module
terminal
Prior art date
Application number
PCT/CN2006/001548
Other languages
English (en)
French (fr)
Inventor
Shaohui Sun
Zhuo Gao
Haijun Zhou
Jinling Hu
Original Assignee
Shanghai Ultimate Power Communications Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Ultimate Power Communications Technology Co., Ltd. filed Critical Shanghai Ultimate Power Communications Technology Co., Ltd.
Priority to US11/994,775 priority Critical patent/US9019900B2/en
Priority to EP06761347A priority patent/EP1901494B1/en
Priority to JP2008518602A priority patent/JP2008547333A/ja
Publication of WO2007003134A1 publication Critical patent/WO2007003134A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2441Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/34Flow control; Congestion control ensuring sequence integrity, e.g. using sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/43Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR]
    • H04L47/431Assembling or disassembling of packets, e.g. segmentation and reassembly [SAR] using padding or de-padding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/50Queue scheduling
    • H04L47/62Queue scheduling characterised by scheduling criteria
    • H04L47/6215Individual queue per QOS, rate or priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9084Reactions to storage capacity overflow
    • H04L49/9089Reactions to storage capacity overflow replacing packets in a storage arrangement, e.g. pushout
    • H04L49/9094Arrangements for simultaneous transmit and receive, e.g. simultaneous reading/writing from/to the storage element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a device, system, and method for implementing a multi-carrier high-speed downlink packet access service.
  • HSDPA High Speed Downlink Packet Access
  • WCDMAFDD Wideband Code Division Multiple Access Frequency Division Duplex
  • UTRATDD General Terrestrial Radio Access Time Division Duplex
  • HSDPA Time Division - Synchronous Code Division Multiple Access
  • HS-DSCH High Speed Downlink Shared Channel
  • the corresponding functional entities are added to complete; from the bottom, mainly introducing AMC (Adaptive Modulation Coding) and HARQ (Hybrid Automatic Retransmission) technologies to increase data throughput;
  • AMC Adaptive Modulation Coding
  • HARQ Hybrid Automatic Retransmission
  • it mainly enhances the processing function of the NodeB (base station), and introduces a new MAC-hs (media access control entity) in the MAC (Media Access Control) layer of the NodeB to specifically complete the relevant parameters of the HS-DSCH.
  • MAC-hs media access control entity
  • Related processing with the HARQ protocol, etc. adding relevant operational signaling at the upper layer and the interface.
  • Figure 1 shows the MAC-hs model on the UTRAN side.
  • the entity is located at the NodeB and includes the following functional modules: flow control module, scheduling and priority management module, hybrid automatic repeat request module, transport format and resource merge selection module.
  • the processing process of the data on the UTRAN side MAC-hs (data transmission process) is as follows:
  • the upper layer sends data to the MAC-hs entity located at the NodeB through the Iub port (the interface between the NodeB and the radio network controller RNC).
  • the scheduling and priority processing module stores the data in the corresponding priority queue according to the mapping relationship of the high-level configuration at the time of connection establishment.
  • the scheduling and priority processing module determines the currently scheduled priority queue according to the adopted packet scheduling algorithm, and determines whether to transmit new data or retransmit the erroneous data. 4.
  • the scheduling and priority processing module assembles several MAC-hs SDUs (service data units) in the scheduled priority queue into MAC-hs PDUs (Protocol Data Units), and determines the Queue ID (Queue ID) and TSN ( Transfer sequence number).
  • the MAC-hs PDUs in different priority queues are independently numbered, and the initial value of the TSN is 0. For each queue, each time a new MAC-hs PDU is transmitted, the value of the TSN is incremented by one.
  • the scheduling and priority processing module submits the assembled MAC-hs PDU to the HARQ module and notifies the corresponding Queue ID and TSN.
  • the HARQ module is responsible for selecting the appropriate HARQ process to transmit the MAC-hs PDU and setting the Queue ID and TSN values therein. In the mode, and notify the physical layer, and deliver the MAC-hs PDU to the physical layer.
  • the physical layer notifies the UE (User Equipment) of the modulation scheme and transmission block size through the HS-SCCH (Shared Control Channel), and transmits the MAC-hs PDU to the UE through the HS-PDSCH (High Speed Physical Downlink Shared Channel) channel.
  • Figure 2 shows the MAC-hs model on the UE side, including the following functional modules: HARQ (Hybrid Automatic Repeat Request) module, rearrangement queue allocation module, rearrangement module, and disassembly module.
  • HARQ Hybrid Automatic Repeat Request
  • the processing process (data receiving process) of the MAC-hs on the UE side is as follows:
  • the HARQ module judges the HARQ process used by the currently transmitted MAC-hs PDU according to the information carried on the control channel, and whether it is new data or retransmitted data.
  • the data is retransmitted, it is merged with the original erroneous data and then judged whether it can be decoded correctly. If correctly decoded, an acknowledgment message ACK is generated and the data is delivered to the rearrangement queue allocation module. If not correctly decoded, a negative information NACK is generated and the combined data is stored. The generated ACK or NACK information will be fed back to the UTRAN side for processing through the control channel.
  • the rearrangement queue allocation module will according to the queue ID in the received MAC-hs PDU.
  • the MAC-hs PDU is assigned to the corresponding reflow buffer.
  • the rearrangement module processes the data in the rearrangement buffer, and determines whether the data is sequentially received according to the TSN in the MAC-hs PDU. If it is received in sequence, the MAC-hs PDU is delivered to the disassembly module, if not If the data is received in sequence, the data is temporarily stored in the buffer. When the other MAC-hs PDUs whose TSN is smaller than the MAC-hs PDU TSN are sequentially received, the MAC-hs PDU is delivered.
  • the disassembly module removes the received MAC-hs PDU header information and possible padding bits, and sends the MAC-d PDU contained in the MAC-hs PDU to the corresponding MAC-d entity.
  • the implementation methods of existing wireless networks and terminals are mainly proposed for single-carrier HSDPA, and it is not convenient to manage and schedule resources of multiple carriers.
  • the existing model allows only one MAC-hs PDU from one priority queue to be transmitted per transmission time interval (TTI), and the UTRAN side only establishes one HARQ entity for each UE. Therefore, when a logical cell has multiple carriers for supporting HSDPA, based on the wireless network and the terminal, the existing implementation method cannot meet the requirements of the multi-carrier HSDPA.
  • An object of the present invention is to provide a base station and a terminal for implementing a multi-carrier high-speed downlink packet access service, to overcome the disadvantages of the base station and the terminal supporting only single-carrier HSDPA in the prior art, and implementing multiple pairs on the base station and the terminal respectively. Management of carrier HSDPA resources.
  • Another object of the present invention is to provide a system for implementing multi-carrier high-speed downlink packet access service, which enables HSDPA-based wireless mobile communication system to support not only single-carrier HSDPA data transmission but also multi-carrier HSDPA data transmission. .
  • Another object of the present invention is to provide a method for implementing a multi-carrier high-speed downlink packet access service, which transmits HSDPA data by multiple carriers, thereby further improving the downlink data transmission rate.
  • a base station implementing a multi-carrier high-speed downlink packet access service completes transmission of a multi-carrier high-speed downlink packet access service by its internal network-side multi-carrier high-speed downlink packet processing apparatus
  • the network side multi-carrier high-speed downlink packet processing apparatus includes: a flow control module, a scheduling and priority processing module, and further includes:
  • Each network side hybrid automatic repeat request module is respectively coupled to the scheduling and priority management module, configured to manage a hybrid automatic repeat request process of the corresponding carrier; each transport format and resource merge selection module are respectively coupled to the corresponding hybrid automatic weight And a requesting module, configured to select a suitable transmission format and channel resources for data transmitted on the high speed downlink shared channel HS-DSCH of the corresponding carrier.
  • a terminal for implementing a multi-carrier high-speed downlink packet access service which performs the transmission of the multi-carrier high-speed downlink packet service by the internal terminal-side multi-carrier high-speed downlink packet processing device, where the terminal-side multi-carrier high-speed downlink packet processing device includes:
  • the rearrangement queue allocation module, the at least one rearrangement module, and the disassembly module corresponding to the rearrangement module further include:
  • a system for implementing a multi-carrier high-speed downlink packet access service comprising a base station and a terminal, wherein the base station and the terminal respectively pass the internal network side multi-carrier high-speed downlink packet processing device and the terminal-side multi-carrier high-speed downlink packet processing
  • the device performs the transmission of the multi-carrier high-speed downlink packet service
  • the network-side multi-carrier high-speed downlink packet processing device includes: a flow control module, a scheduling and priority processing module
  • the terminal-side multi-carrier high-speed downlink packet processing device includes: a rearrangement queue allocation module, at least one rearrangement module, and a disassembly module corresponding to the rearrangement module, wherein
  • the network side multi-carrier high-speed downlink packet processing apparatus further includes: a plurality of network-side hybrid automatic repeat request modules corresponding to each carrier of the cell, and a transport format and resource merge selection module, wherein each network side hybrid automatic repeat request module And respectively coupled to the scheduling and priority management module, configured to manage a hybrid automatic repeat request process of the corresponding carrier; each transport format and resource merge selection module is respectively coupled to a corresponding hybrid automatic repeat request module, configured to be a corresponding carrier
  • the data transmitted on the high-speed downlink shared channel HS-DSCH is selected for proper transmission. Format and channel resources;
  • the terminal-side multi-carrier high-speed downlink packet processing apparatus further includes: a plurality of terminal-side hybrid automatic repeat request modules corresponding to the carriers supported by the terminal, respectively coupled to the rearrangement queue allocation module, configured to process the corresponding carrier
  • the hybrid automatic repeat request process on the network completes the media access control function associated with the hybrid automatic repeat request protocol.
  • a method for implementing a high-speed downlink packet access service by using a multi-carrier for realizing transmission of a high-speed downlink packet service between a base station and a terminal in a wireless mobile communication system supporting multiple carriers comprising the steps of:
  • the base station determines the carrier allocated for the user and the high speed downlink packet data that each carrier needs to transmit;
  • the terminal receives the high-speed downlink packet data sent by each carrier according to the received control information on the downlink shared control channel, and determines the corresponding sending process;
  • the step A can be implemented as follows:
  • A1 Store the service data that the base station needs to send to the corresponding priority queue.
  • A2. Determine a carrier allocated to the user and a corresponding priority queue according to a predetermined packet scheduling algorithm.
  • A3 Generate, according to the priority queue, a protocol data unit that needs to be transmitted on each carrier.
  • the high speed downlink packet data transmitted by a single carrier is from the same priority queue, and the high speed downlink packet data transmitted by different carriers is from the same or different priority queues.
  • A31 Assemble the service data in the priority queue into a protocol data unit, and determine The queue number and the transmission sequence number TSN of each protocol data unit;
  • A32 Scheduling the protocol data unit onto its corresponding carrier according to the packet scheduling algorithm.
  • the high speed downlink packet data is sent to the terminal according to the following steps:
  • the physical layer sends the protocol data unit to the terminal by using a high-speed physical downlink shared channel HS-PDSCH.
  • each carrier adopts the same or different coding modulation manner.
  • the present invention fully considers the characteristics of the multi-carrier HSDPA, and establishes a device supporting the multi-carrier HSDPA service on the base station and the terminal respectively, where each carrier supported by the UE is in the device.
  • a HARQ module is established to establish an independent process for transmitting and receiving HARQ packet data, and manage HARQ resources of each carrier, so that the base station and the terminal can flexibly implement resource allocation and scheduling when multiple carriers support HSDPA.
  • the use of multiple carriers to implement HSDPA data transmission can further improve the data transmission rate in the downlink direction and improve the system performance using HSDPA technology.
  • FIG. 1 is a MAC-hs model of an existing UTRAN side
  • 2 is a MAC-hs model of an existing UE side
  • FIG. 3 is a block diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of a terminal in accordance with one embodiment of the present invention.
  • FIG. 5 is a block diagram of a system in accordance with one embodiment of the present invention.
  • FIG. 6 is a flow chart of a method in accordance with one embodiment of the present invention.
  • the core of the present invention is to establish a network side multi-carrier high-speed downlink packet processing apparatus and a terminal-side multi-carrier high-speed downlink packet processing apparatus on a base station and a terminal, respectively, to complete transmission of a multi-carrier high-speed downlink packet access service.
  • the network side hybrid automatic repeat request module corresponding to each carrier in the network side multi-carrier high-speed downlink packet processing apparatus independently manages the HARQ process of the carrier; when receiving data, the terminal side multi-carrier high-speed downlink packet processing apparatus
  • the network side hybrid automatic repeat request module corresponding to each carrier independently manages the HARQ process of the carrier.
  • FIG. 3 is a block diagram showing an embodiment of a base station for implementing a multi-carrier high-speed downlink packet access service according to the present invention:
  • the base station adds a network side multi-carrier high-speed downlink packet processing device 30 in order to implement the multi-carrier HARQ function, and all HARQ functions are completed by the device.
  • the data processed by the higher layer processing unit in the RNC (Radio Network Controller) is sent to the device, which distributes the data to a plurality of carriers, and then the RF processing unit transmits the data to the corresponding terminal.
  • RNC Radio Network Controller
  • a baseband processing unit is further included between the radio frequency processing unit 302 and the network side multicarrier high speed downlink packet processing apparatus 30, which is not shown in FIG.
  • the network side multi-carrier high-speed downlink packet processing apparatus 30 includes:
  • the data transmitted on the downlink shared channel HS-DSCH selects an appropriate transport format and channel resources.
  • Flow Control Module Compute with the flow control module (not shown) responsible for managing common and shared channels and dedicated channels in the RNC.
  • the HARQ data processed by the high-level processing unit is placed in the corresponding priority queue.
  • the scheduling and priority processing module is configured to assemble the service data units in the priority queue into protocol data units and allocate them to the corresponding network side hybrid automatic repeat request module. Since multiple carriers can transmit data for one terminal at the same time, that is, each port can send multiple protocol data units to the same terminal, when scheduling, the protocol data unit can be selected from the same priority queue, or can be different from different priorities. The protocol data unit is selected in the level queue, and the specific selection is determined by the adopted packet scheduling algorithm.
  • Network side hybrid automatic repeat request module Used to manage all HARQ processes of the corresponding carrier.
  • the hybrid automatic repeat request module for different carriers is independent.
  • Transport format and resource merge selection module This module selects the appropriate transport format and channel resources for the data transmitted on the HS-DSCH channel of the corresponding carrier.
  • the processing process of the data on the network side multi-carrier high-speed downlink packet processing device is as follows:
  • the upper layer transmits data to the network side multi-carrier high-speed downlink packet processing device located in the base station through the Iub port.
  • the scheduling and priority processing module stores the data in the corresponding priority queue according to the mapping relationship of the high-level configuration at the time of connection establishment, and determines the carrier allocated for the user and the data transmitted on each carrier according to the adopted packet scheduling algorithm.
  • Priority queue and is to transmit new data or retransmit erroneous data; then, assemble several SDUs (service data units) in the scheduled priority queue into PDUs (protocol data units), and determine their Queue ID (queue number) And TSN (transmission sequence number), and deliver the assembled PDU to the network corresponding to each carrier
  • PDUs program data units
  • TSN transmission sequence number
  • the PDUs in different priority queues are numbered independently.
  • the initial value of the TSN is 0.
  • the value of the TSN is incremented by one for each new PDU transmitted. If the data in one priority queue is transmitted on multiple carriers, one PDU is assembled for each carrier.
  • the network side hybrid automatic repeat request module corresponding to each carrier is responsible for selecting an appropriate HARQ process to transmit PDUs, and independently managing the HARQ process of the carrier.
  • FIG. 4 is a schematic block diagram of a terminal for implementing a multi-carrier high-speed downlink packet access service according to the present invention:
  • the terminal further adds the terminal-side multi-carrier high-speed downlink packet processing device 40, in order to implement the multi-carrier HARQ function, and all the HARQ functions are The device is completed.
  • Receiving, by the radio frequency processing unit, the radio signal of the base station, and the demodulated data is sent to the device, and the device allocates an independent receiving process for each carrier, decodes the received data, and generates response information according to the decoding result;
  • the decoded data is rearranged and disassembled, the correct protocol data unit is recovered, and the high-level processing unit 401 is finally sent to obtain the required signal.
  • a baseband processing unit (not shown) is further included to complete the processing of the baseband signal.
  • the terminal side multi-carrier high-speed downlink packet processing apparatus 40 includes:
  • the number of reordering modules is the same as the number of priority queues.
  • the HARQ function is completed by multiple terminal side hybrid automatic repeat request modules S41, S42, and S4n corresponding to the carriers supported by the terminal, and each hybrid automatic repeat request module is respectively coupled to the rearrangement queue allocation module for processing the corresponding carrier.
  • the HARQ request on the device completes the media access control function related to the HARQ protocol. The functions implemented by each module are described in detail below:
  • Terminal side hybrid automatic repeat request module This module is responsible for processing all the carriers on one carrier.
  • the HARQ process completes the MAC function related to the HARQ protocol, including merging decisions of PDUs, generation of ACKs, and NACKs.
  • Rearrangement queue allocation module The module allocates the PDU to the corresponding reordering buffer according to the queue ID in the received PDU.
  • each Queue ID has a corresponding rearrangement module, which is responsible for sending the sequentially received PDUs in the rearrangement buffer to the corresponding disassembly module.
  • Disassembly module • The module is responsible for removing PDU header information and possible padding bits, and transmitting the service data units contained in the PDU to the higher layer processing unit.
  • the processing process of the data on the terminal side multi-carrier high-speed downlink packet processing device is as follows:
  • the terminal side hybrid automatic repeat request module determines, according to the information carried on the control channel, the HARQ process used by the current PDU transmitted by each carrier, and whether it is new data or retransmitted data.
  • the data is retransmitted, it is merged with the original erroneous data and then judged whether it can be decoded correctly. If correctly decoded, an acknowledgment message ACK is generated and the data is delivered to the rearrangement queue allocation module. If not correctly decoded, a negative information NACK is generated and the combined data is stored. The generated ACK or NACK information will be fed back to the network side for processing through the control channel.
  • the processing of the HARQ receiving process of the terminal side hybrid automatic repeat request module corresponding to each carrier is independent of each other.
  • the rearrangement queue allocation module allocates the PDU to the corresponding rearrangement buffer based on the queue ID in the received PDU.
  • the rearrangement module processes the data in the rearrangement buffer, and determines whether the data is sequentially received according to the TSN in the PDU. If it is received in sequence, the PDU is delivered to the disassembly module. If it is not received in sequence, it will be temporarily The data is stored in a buffer. When the TSN is smaller than the PDU TSN After the other PDUs are sequentially received, the PDU is delivered.
  • the disassembly module removes the received PDU header information and possible padding bits, and transmits the service data unit contained in the PDU to the higher layer processing unit.
  • the system structure of the multi-carrier high-speed downlink packet access service is as shown in FIG. 5: wherein the base station 1 and the terminal 2 respectively pass the internal network side multi-carrier high-speed downlink packet processing device 30 and the terminal-side multi-carrier high-speed downlink packet.
  • the processing device 40 performs the transmission of the multi-carrier high-speed downlink packet service, and the radio-frequency processing units 302 and 402 on the base station and the network side respectively use for transmitting and receiving signals, where
  • the network side multi-carrier high-speed downlink packet processing device includes: a flow control module, a scheduling and priority processing module, a plurality of network-side hybrid automatic repeat request modules corresponding to each carrier of the cell, and a transport format and resource merge selection module, and the specific structure thereof See Figure 3.
  • the terminal-side multi-carrier high-speed downlink packet processing apparatus includes: a rearrangement queue allocation module, at least one rearrangement module, and a disassembly module corresponding to the rearrangement module, and multiple terminal side hybrid automatic weights corresponding to each carrier supported by the terminal
  • a rearrangement queue allocation module at least one rearrangement module
  • a disassembly module corresponding to the rearrangement module
  • the related functions of HARQ are mainly implemented by the network side hybrid automatic repeat request module and the terminal side hybrid automatic repeat request module.
  • the detailed working process can refer to the previous description.
  • the network side hybrid automatic repeat request module required for the terminal should be equal to the number of carriers used by the cell for HSDPA. That is to say, in the actual application, the number of the network side hybrid automatic repeat request module configured for the terminal in the base station corresponds to the number of the terminal side hybrid automatic repeat request module required in the terminal, and the number of carriers providing the HSDPA service for the cell The smaller of the number of carriers supported by the terminal.
  • FIG. 6 shows a method implementation process according to an embodiment of the present invention, including the following steps: Step 601: The base station determines a carrier allocated for a user and high-speed downlink packet data that each carrier needs to transmit.
  • the service data that the base station needs to send is stored in the corresponding priority queue.
  • the carrier allocated to the user and the corresponding priority queue are determined according to a predetermined packet scheduling algorithm, and the service data in the scheduled priority queue is processed.
  • Units are assembled into protocol data units, and the queue number and transmission sequence number TSN of each protocol data unit are determined;
  • the algorithm dispatches the protocol data unit to its corresponding carrier.
  • One carrier can correspond to one or more priority queues. That is to say, the data in one priority queue can be transmitted on one carrier or on multiple carriers. When data in a priority queue needs to be transmitted on multiple carriers, a protocol data unit is assembled for each carrier.
  • Step 602 Assign an independent sending process to each carrier to send the high speed downlink packet data carried by the carrier to the terminal.
  • each carrier is allocated an independent transmission process, and the coding modulation mode of the carrier is determined.
  • Each carrier may adopt the same coding modulation mode or different coding modulation modes.
  • the protocol data unit to be transmitted on the carrier is sent to the physical layer according to the determined coding and modulation mode; and the protocol data unit is sent by the physical layer to the terminal through the high-speed physical downlink shared channel HS-PDSCH high.
  • Step 603 The terminal receives the high-speed downlink packet data sent by each carrier according to the received control information on the downlink shared control channel, and determines the corresponding sending process.
  • Step 604 Allocating the high speed downlink packet data to the received receiving process corresponding to the sending process, and decoding the high speed downlink packet data.
  • Step 605 Acquire required service data according to the high-speed downlink packet data correctly decoded by each receiving process.
  • the queue number of the protocol data unit decoded by each receiving process and the transmission sequence number TSN are obtained; then, the protocol data unit is rearranged according to the obtained queue number and the transmission sequence number TSN, and the packet data queue corresponding to the priority queue is obtained; The header information and the padding bits in each protocol data unit in the packet data queue are removed, and the required service data can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

实现多载波高速下行分组接入业务的设备、 系统及方法
技术领域
本发明涉及移动通信技术领域, 具体涉及一种实现多载波高速下行 分组接入业务的设备、 系统及方法。
背景技术
为了适应日益增长的数据业务的需求, 3GPP Release 5 (第三代伙伴 工程版本 5 ) 引入了 HSDPA (高速下行分组接入)技术, 以提高下行方 向的数据传输速率。 HSDPA技术同时适用于 WCDMAFDD (宽带码分多 址频分双工)、 UTRATDD (通用地面无线接入时分双工)和 TD-SCDMA
(时分-同步码分多址)三种不同模式。 从技术角度来看, HSDPA主要是 通过引入 HS-DSCH (高速下行共享信道)增强空中接口, 并在 UTRAN
(通用地面无线接入网) 中增加相应的功能实体来完成的; 从底层来看, 主要是引入 AMC (自适应调制编码)和 HARQ (混合自动重传)技术来 增加数据吞吐量; 从整体构架来看, 主要是增强 NodeB (基站) 的处理 功能,在 NodeB的 MAC (媒体接入控制)层中引入一个新的 MAC-hs (媒 体接入控制实体), 专门完成 HS-DSCH的相关参数和 HARQ协议等相关 处理, 在高层和接口加入相关操作信令。
图 1示出了 UTRAN侧的 MAC-hs模型, 该实体位于 NodeB, 包括 以下功能模块: 流量控制模块、 调度与优先权管理模块、 混合自动重传 请求模块、 传输格式与资源合并选择模块。
UTRAN侧 MAC-hs对数据的处理过程(数据发送过程)如下:
1. 根据 MAC-hs流量控制模块分配的容量, 高层通过 Iub口(NodeB 与无线网络控制器 RNC 之间的接口) 将数据发送到位于 NodeB 的 MAC-hs实体。
2. 调度与优先权处理模块根据连接建立时高层配置的映射关系将数 据存放到相应的优先级队列。
3. 调度与优先权处理模块根据采用的分组调度算法确定当前被调度 的优先级队列, 并确定是传输新数据或者重传错误数据。 4. 调度与优先权处理模块将被调度的优先级队列中的若干 MAC-hs SDU (业务数据单元)组装成 MAC-hs PDU (协议数据单元), 并确定 Queue ID(队列标识)和 TSN(传送顺序号)。不同优先级队列中的 MAC-hs PDU是独立编号的, TSN 的初始值为 0, 对各队列, 每传输一个新的 MAC-hs PDU, TSN的值加 1。
5. 调度与优先级处理模块将组装好的 MAC-hs PDU递交到 HARQ 模块, 并通知相应的 Queue ID和 TSN。
6. HARQ模块负责选择合适的 HARQ进程传输 MAC-hs PDU,并设 置其中的 Queue ID和 TSN的值。 方式, 并通知物理层, 同时将 MAC-hs PDU递交到物理层。 物理层通过 HS-SCCH (共享控制信道)通知 UE (用户设备 )所采用的调制方式和传 输块大小, 并通过 HS-PDSCH (高速物理下行共享信道)信道向 UE发送 MAC-hs PDU。
图 2示出了 UE侧的 MAC-hs模型, 包括以下功能模块: HARQ (混 合自动重传请求)模块、 重排队列分配模块、 重排模块、 拆解模块。
UE侧 MAC-hs对数据的处理过程(数据接收过程)如下:
1. HARQ模块根据控制信道上携带的信息判断当前传输的 MAC-hs PDU使用的 HARQ进程, 以及是新数据还是重传数据。
如果是新数据, 则进行解码并判断是否正确接收, 若正确接收则产 生确认信息 ACK, 并将数据递交到重排队列分配模块, 若未正确接收, 则产生否定信息 NACK, 并存储出错的数据。对于产生的 ACK或 NACK 信息, 通过控制信道反馈给 UTRAN侧进行处理。
如果是重传数据, 则将其与原有出错的数据合并, 然后判断是否可 以正确解码。 若正确解码, 则产生确认信息 ACK, 并将数据递交到重排 队列分配模块, 若未正确解码, 则产生否定信息 NACK, 并存储合并后 的数据。对于产生的 ACK或 NACK信息,将通过控制信道反馈给 UTRAN 侧进行处理。
2. 重排队列分配模块根据接收到的 MAC-hs PDU中的 queue ID将 MAC-hs PDU分配到相应的重排緩冲区。
3. 重排模块对重排緩冲区中的数据进行处理, 根据 MAC-hs PDU中 的 TSN判断数据是否顺序接收, 如果是顺序接收, 则将 MAC-hs PDU递 交到拆解模块, 如果不是顺序接收, 则暂时将数据存于緩冲区, 当 TSN 小于该 MAC-hs PDU TSN的其他 MAC-hs PDU都被顺序接收后,再递交 该 MAC-hs PDU。
4.拆解模块去除接收到的 MAC-hs PDU头信息和可能存在的填充比 特,并将包含在 MAC-hs PDU中的 MAC-d PDU发送到相应的 MAC-d实 体。
现有无线网絡和终端的实现方法主要是针对单载波 HSDPA提出的, 不便于管理和调度多个载波的资源。 因为对任一个 UE而言,现有模型每 个传输时间间隔 (TTI )只允许传输来自一个优先级队列的一个 MAC-hs PDU, 并且 UTRAN侧为每个 UE只建立了一个 HARQ实体。 因此, 当 一个逻辑小区有多个载波用于支持 HSDPA时 ,基于这种无线网络和终端, 采用现有的实现方法, 将无法满足多载波 HSDPA的需求。
发明内容 本发明的目的是提供一种实现多载波高速下行分组接入业务的基站 和终端, 以克服现有技术中基站和终端仅支持单载波 HSDPA的缺点, 在 基站和终端上分别实现对多载波 HSDPA资源的管理。
本发明的另一个目的是提供一种实现多载波高速下行分組接入业务 的系统, 使基于 HSDPA技术的无线移动通信系统不仅支持单载波的 HSDPA数据的传输, 而且支持多载波的 HSDPA数据的传输。
本发明的另一个目的是提供一种实现多载波高速下行分组接入业务 的方法, 通过多载波对 HSDPA数据进行传输, 进一步提高下行数据传输 速率。
为此, 本发明提供如下的技术方案:
一种实现多载波高速下行分组接入业务的基站, 通过其内部的网絡 侧多载波高速下行分组处理装置完成多载波高速下行分组接入业务的传 输, 所述网络侧多载波高速下行分組处理装置包括: 流量控制模块、 调 度与优先权处理模块, 还包括:
与小区各载波对应的多个网络侧混合自动重传请求模块和传输格式 与资源合并选择模块, 其中,
各网络侧混合自动重传请求模块分别耦合于所述调度与优先权管理 模块, 用于管理对应载波的混合自动重传请求进程; 各传输格式与资源 合并选择模块分别耦合于对应的混合自动重传请求模块, 用于为对应载 波的高速下行共享信道 HS-DSCH上所传输的数据选择合适传输格式和 信道资源。
一种实现多载波高速下行分組接入业务的终端, 通过其内部的终端 侧多载波高速下行分组处理装置完成多载波高速下行分组业务的传输, 所述终端侧多载波高速下行分组处理装置包括: 重排队列分配模块、 至 少一个重排模块、 与所述重排模块对应的拆解模块, 还包括:
与终端支持的各载波对应的多个终端侧混合自动重传请求模块, 分 别耦合于所述重排队列分配模块, 用于负责处理对应载波上的混合自动 重传请求, 完成与所述混合自动重传请求协议相关的媒体接入控制功能。
一种实现多载波高速下行分组接入业务的系统, 所述系统包括基站 和终端, 所述基站和终端分别通过其内部的网絡侧多载波高速下行分組 处理装置和终端侧多载波高速下行分组处理装置完成多载波高速下行分 组业务的传输, 其中, 所述网络侧多载波高速下行分组处理装置包括: 流量控制模块、 调度与优先权处理模块; 所述终端侧多载波高速下行分 组处理装置包括: 重排队列分配模块、 至少一个重排模块、 与所述重排 模块对应的拆解模块, 其中,
所述网络侧多载波高速下行分组处理装置还包括: 与小区各载波对 应的多个网络侧混合自动重传请求模块和传输格式与资源合并选择模 块, 其中, 各网絡侧混合自动重传请求模块分别耦合于所述调度与优先 权管理模块, 用于管理对应载波的混合自动重传请求进程; 各传输格式 与资源合并选择模块分别耦合于对应的混合自动重传请求模块, 用于为 对应载波的高速下行共享信道 HS-DSCH上所传输的数据选择合适传输 格式和信道资源;
所述终端侧多载波高速下行分组处理装置还包括: 与终端支持的各 载波对应的多个终端侧混合自动重传请求模块, 分别耦合于所述重排队 列分配模块, 用于负责处理对应载波上的混合自动重传请求进程, 完成 与所述混合自动重传请求协议相关的媒体接入控制功能。
一种多载波实现高速下行分组接入业务的方法, 用于在支持多载波 的无线移动通信系统中实现基站和终端间高速下行分组业务的传输, 所 述方法包括步骤:
A、基站确定为用户分配的载波及各载波需要传送的高速下行分组数 据;
B、为各载波分配独立的发送进程将所述高速下行分组数据发送给终 端;
C;、终端根据收到的下行共享控制信道上的控制信息接收各载波发送 的高速下行分组数据, 并确定其对应的发送进程;
D、 为接收的高速下行分组数据分配与其发送进程对应的接收进程, 对所述高速下行分组数据进行解码;
E、 根据各接收进程解码后的高速下行分组数据获取需要的业务数 据。
所述步骤 A可以这样实现:
A1、 将基站需要发送的业务数据存放到对应的优先级队列中;
A2、 根据预定的分组调度算法确定为用户分配的载波及对应的优先 级队列;
A3、 根据所述优先级队列生成各载波上需要传送的协议数据单元。 可选地, 同一传输时间间隔内, 单个载波传输的高速下行分组数据 来自同一优先级队列, 不同载波传输的高速下行分组数据来自同一或不 同的优先级队列。
其中:
A31、将所述优先級队列中的业务数据组装为协议数据单元, 并确定 各协议数据单元的队列号和传送顺序号 TSN;
A32、根据所述分组调度算法将所述协议数据单元调度到其对应的载 波上。
按照下述步骤将所述高速下行分组数据发送给终端:
Bl、 为各载波分配独立的发送进程, 并确定该载波的编码调制方式;
B2、 根据确定的编码调制方式将该载波上需要传送的协议数据单元 发送到物理层;
B3、 所述物理层通过高速物理下行共享信道 HS-PDSCH将所述协议 数据单元发送给终端。
可选地, 各载波采用的编码调制方式相同或不同。
按照下述步骤根据各接收进程解码后的高速下行分组数据获取需要 的业务数据:
E1、 获取各接收进程正确解码后的协议数据单元的队列号和传送顺 序号 TSN;
E2、 根据所述队列号和传送顺序号 TSN对所述协议数据单元进行重 排 , 获取与所述优先级队列对应的分组数据队列;
E3、 去除所述分组数据队列中各协议数据单元中的头信息及填充比 特, 获取需要的业务数据。
由以上本发明提供的技术方案可以看出, 本发明充分考虑了多载波 HSDPA的特点, 分别在基站及终端上建立支持多载波 HSDPA业务的装 置, 在该装置中为 UE支持的每个载波均建立一个 HARQ模块, 为发送 和接收 HARQ分组数据建立独立的进程, 管理各个载波的 HARQ资源, 使得基站和终端可以灵活地实现多个载波支持 HSDPA时资源的分配与调 度。 利用多载波实现 HSDPA数据传输, 可以进一步提高下行方向的数据 传输速率, 提高采用 HSDPA技术的系统性能。
附图说明 图 1是现有 UTRAN侧的 MAC-hs模型; 图 2是现有 UE侧的 MAC-hs模型;
图 3是根据本发明一个实施例的基站框图;
图 4是根据本发明一个实施例的终端框图;
图 5是根据本发明一个实施例的系统框图;
图 6是根据本发明一个实施例的方法流程图。
具体实施方式 本发明的核心在于分别在基站及终端上建立网络侧多载波高速下行 分組处理装置及终端侧多载波高速下行分组处理装置, 完成多载波高速 下行分组接入业务的传输。 发送数据时, 由网络侧多载波高速下行分组 处理装置中与各载波对应的网絡侧混合自动重传请求模块独立管理该载 波的 HARQ进程; 接收数据时, 由终端侧多载波高速下行分组处理装置中 与各载波对应的网络侧混合自动重传请求模块独立管理该载波的 HARQ 进程。 从而实现多载波高速下行分组数据的发送和接收。
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和 实施方式对本发明作进一步的详细说明。
参照图 3 , 图 3示出了本发明实现多载波高速下行分组接入业务的基 站的实施例框图:
该基站除了射频处理单元 302外, 为了实现多载波的 HARQ功能, 还 增加了网络侧多载波高速下行分组处理装置 30,所有 HARQ功能由该装置 完成。 经过 RNC (无线网络控制器) 中的高层处理单元处理后的数据发 送给该装置, 由该装置将这些数据分配给多个载波, 然后由射频处理单 元发送给相应的终端。
当然, 在射频处理单元 302和网络侧多载波高速下行分组处理装置 30 之间还包括基带处理单元, 在图 3中未示出。
网络侧多载波高速下行分组处理装置 30包括:
流量控制模块 31, 与其相连的调度与优先权处理模块 32, 与小区各 载波对应的多个网络侧混合自动重传请求模块 Sl l , S12, ..., Sin, 传输 格式与资源合并选择模块 S21 , S22, ..., S2n, 其中, 传输格式与资源合 并选择模块与网络侧混合自动重传请求模块——对应相连, 各网络侧混 合自动重传请求模块用于管理对应载波的 HARQ资源;各传输格式与资源 合并选择模块用于为对应载波的高速下行共享信道 HS-DSCH上所传输的 数据选择合适传输格式和信道资源。
下面详细描述各模块实现的操作:
流量控制模块: 与 RNC中负责管理公共和共享信道和专用信道的流 量控制模块(图中未示出)共同完成流控功能。 将经过高层处理单元处 理后的 HARQ数据放入对应的优先级队列。 通过控制 Iub口 (基站与无线 网络控制器之间的接口) 的数据流量, 限制层 2的信令时延, 并减少由于 高速下行共享信道(HS-DSCH )拥塞造成的数据丟弃与重传。
调度与优先权处理模块: 用于将优先级队列中的业务数据单元组装 为协议数据单元, 并将其分配给相应的网络侧混合自动重传请求模块。 由于可以有多个载波同时为一个终端发送数据, 即每个 ΤΉ可发送多个协 议数据单元给同一终端, 进行调度时, 可以从同一优先级队列中选择协 议数据单元, 也可以从不同的优先级队列中选择协议数据单元, 具体如 何选择由采用的分组调度算法决定。
网络侧混合自动重传请求模块: 用于管理对应载波的所有 HARQ进 程。 不同载波的混合自动重传请求模块是独立的。
传输格式与资源合并选择模块:该模块为对应载波的 HS-DSCH信道 上所传输数据选择合适传输格式和信道资源。
网络侧多载波高速下行分组处理装置对数据的处理过程如下:
1. 根据流量控制模块分配的容量, 高层通过 Iub口将数据发送到位 于基站内的网络侧多载波高速下行分组处理装置。
2. 调度与优先权处理模块根据连接建立时高层配置的映射关系将数 据存放到相应的优先级队列, 并根据采用的分組调度算法确定为用户分 配的载波及每个载波上传输的数据来自哪个优先级队列, 以及是传输新 数据或者重传错误数据; 然后,将被调度的优先级队列中的若干 SDU (业 务数据单元)组装成 PDU (协议数据单元), 确定其 Queue ID (队列号) 和 TSN (传送顺序号), 并将组装好的 PDU递交到各个载波对应的网络 侧混合自动重传请求模块, 并通知相应的 Queue ID和 TSN。
不同优先级队列中的 PDU独立编号, TSN的初始值为 0,对各队列, 每传输一个新的 PDU, TSN的值加 1。 若一个优先级队列中的数据在多 个载波上传输, 则为每个载波均要组装一个 PDU。
3. 每个载波对应的网络侧混合自动重传请求模块负责选择合适的 HARQ进程传输 PDU, 独立地管理该载波的 HARQ进程。
4. 传输格式与资源合并选择模块在对应的网络侧混合自动重传请求 模块选择的 HARQ进程中为该载波选择合适的编码调制方式, 并通知物 理层。 同时将该载波上传输的 PDU递交到物理层。 物理层通过共享控制 信道(HS-SCCH )通知 UE所采用的调制方式和传输块大小。 参照图 4, 图 4示出了本发明实现多载波高速下行分組接入业务的终 端的原理框图:
该终端除了负责对高层的数据进行解封装的高层处理单元 401、 射频 处理单元 402外, 为了实现多载波的 HARQ功能, 还增加了终端侧多载波 高速下行分组处理装置 40, 所有 HARQ功能由该装置完成。 由射频处理单 元接收基站的无线信号, 经过解调处理后的数据发送给该装置, 由该装 置为各载波分配独立的接收进程, 对接收的数据进行解码, 并根据解码 结果产生回应信息; 然后对解码后的数据进行重排和拆解, 恢复出正确 的协议数据单元, 交给高层处理单元 401 , 最终获取所需的信号。
当然, 在射频处理单元 402和终端侧多载波高速下行分组处理装置 40 之间还包括基带处理单元(图中未示出) , 完成基带信号的处理。
终端侧多载波高速下行分组处理装置 40包括:
重排队列分配模块 41、 多个重排模块 S51 , S5m、 与重排模块对 应的拆解模块 S61 , S6m。重排模块的个数与优先级队列的个数相同。 HARQ 功能由与终端支持的各载波对应的多个终端侧混合自动重传请求 模块 S41、 S42, S4n完成, 各混合自动重传请求模块分别耦合于重 排队列分配模块,用于负责处理对应载波上的 HARQ请求,完成与 HARQ 协议相关的媒体接入控制功能。 下面详细描述各模块实现的功能:
终端侧混合自动重传请求模块: 该模块负责处理一个载波上的所有
HARQ进程, 完成与 HARQ协议相关的 MAC功能, 包括 PDU的合并判 决, ACK 、 NACK的生成。
重排队列分配模块:该模块根据接收到的 PDU中的 queue ID将 PDU 分配到相应的重排緩冲区。
重排模块: 在终端侧, 每个 Queue ID都有一个相应的重排模块, 负 责将重排緩冲区中顺序接收到的 PDU发送到对应的拆解模块。
拆解模块: ·该模块负责去除 PDU头信息和可能存在的填充比特, 并 将包含在 PDU中的业务数据单元发送到高层处理单元。
终端侧多载波高速下行分组处理装置对数据的处理过程如下:
1. 终端侧混合自动重传请求模块根据控制信道上携带的信息判断当 前各载波传输的 PDU使用的 HARQ进程, 以及是新数据还是重传数据。
如果是新数据, 则进行解码并判断是否正确接收, 若正确接收则产 生确认信息 ACK, 并将数据递交到重排队列分配模块, 若未正确接收, 则产生否定信息 NACK,并将出错的数据存储。对于产生的 ACK或 NACK 信息, 将通过控制信道反馈给网絡侧进行处理。
如果是重传数据, 则将其与原有出错的数据合并, 然后判断是否可 以正确解码。 若正确解码, 则产生确认信息 ACK, 并将数据递交到重排 队列分配模块, 若未正确解码, 则产生否定信息 NACK, 并将合并后的 数据存储。对于产生的 ACK或 NACK信息,将通过控制信道反馈给网络 侧进行处理。
每个载波对应的终端侧混合自动重传请求模块的 HARQ接收进程的 处理是相互独立的。
2. 重排队列分配模块根据接收到的 PDU中的 queue ID将 PDU分配 到相应的重排缓冲区。
3. 重排模块对重排緩冲区中的数据进行处理, 根据 PDU中的 TSN 判断数据是否顺序接收, 如果是顺序接收, 则将 PDU递交到拆解模块, 如果不是顺序接收, 则暂时将数据存于緩冲区。 当 TSN小于该 PDU TSN 的其它 PDU都被顺序接收后, 再递交该 PDU。
4.拆解模块去除接收到的 PDU头信息和可能存在的填充比特,并将 包含在 PDU中的业务数据单元发送到高层处理单元。
本发明实现多载波高速下行分组接入业务的系统结构如图 5所示: 其中, 基站 1和终端 2分別通过其内部的网络侧多载波高速下行分 组处理装置 30和终端侧多载波高速下行分组处理装置 40完成多载波高 速下行分组业务的传输, 基站和网絡侧的射频处理单元 302、 402分别用 于信号的发送和接收, 其中,
网络侧多载波高速下行分组处理装置包括: 流量控制模块、 调度与 优先权处理模块, 与小区各载波对应的多个网络侧混合自动重传请求模 块和传输格式与资源合并选择模块, 其具体结构可参照图 3。
终端侧多载波高速下行分组处理装置包括: 重排队列分配模块、 至 少一个重排模块、 与所述重排模块对应的拆解模块, 与终端支持的各载 波对应的多个终端侧混合自动重传请求模块, 其具体结构可参照图 4。
HARQ 的相关功能主要由网络侧混合自动重传请求模块及终端侧混 合自动重传请求模块完成。 其详细工作过程可参照前面的描述。
需要说明的是,如果某小区提供 HSDPA服务的载波数小于终端支持 的载波数, 那么针对该终端所需的网络侧混合自动重传请求模块应等于 小区用于 HSDPA的载波数。 也就是说, 实际应用中, 基站中为终端配置 的网络侧混合自动重传请求模块与终端中所需的终端侧混合自动重传请 求模块的个数相对应,为小区提供 HSDPA服务的载波数与终端支持的载 波数中较小的一个。
图 6示出了才艮据本发明一个实施例的方法实现流程, 包括以下步骤: 步骤 601:基站确定为用户分配的载波及各载波需要传送的高速下行 分组数据。
首先, 将基站需要发送的业务数据存放到对应的优先级队列中; 然 后根据预定的分组调度算法确定为用户分配的载波及对应的优先级队 列 , 将被调度的优先级队列中的若干业务数据单元组装成协议数据单元, 并确定各协议数据单元的队列号和传送顺序号 TSN; 然后根据分组调度 算法将协议数据单元调度到其对应的载波上。
一个载波可以对应一个或多个优先级队列。 也就是说, 一个优先级 队列中的数据可以在一个载波上传输, 也可以在多个载波上传输。 当一 个优先级队列中的数据需要在多个载波上传输时, 则要为每个载波均组 装一个协议数据单元。
步驟 602:为各载波分配独立的发送进程将其承载的高速下行分組数 据发送给终端。
首先, 为各载波分配独立的发送进程, 并确定该载波的编码调制方 式, 各载波可以采用相同的编码调制方式, 也可以采用不同的编码调制 方式。
然后, 根据确定的编码调制方式将该载波上需要传送的协议数据单 元发送到物理层; 由物理层通过高速物理下行共享信道 HS-PDSCH高将 所述协议数据单元发送给终端。
步骤 603:终端才 据收到的下行共享控制信道上的控制信息接收各载 波发送的高速下行分组数据, 并确定其对应的发送进程。
步骤 604:为接收的高速下行分组数据分配与其发送进程对应的接收 进程, 对所述高速下行分组数据进行解码。
步骤 605:根据各接收进程正确解码后的高速下行分组数据获取需要 的业务数据。
首先获取各接收进程解码后的协议数据单元的队列号和传送顺序号 TSN; 然后根据得到的队列号和传送顺序号 TSN对协议数据单元进行重 排, 获取与优先级队列对应的分組数据队列; 去除分组数据队列中各协 议数据单元中的头信息及填充比特, 即可获取需要的业务数据。
可见, 利用本发明方法, 只需为各载波分配独立的发送及接收进程 分别处理各载波的 HARQ进程, 即可实现基站和终端对多载波 HARQ的 支持。 其实现简单, 扩展性较好。
虽然通过实施例描绘了本发明, 本领域普通技术人员知道, 本发明 有许多变形和变化而不脱离本发明的精神, 希望所附的权利要求包括这 些变形和变化而不脱离本发明的精神。

Claims

权 利 要 求
1、 一种实现多载波高速下行分組接入业务的基站, 通过其内部的网 络侧多载波高速下行分组处理装置完成多载波高速下行分组接入业务的 传输, 所述网络侧多载波高速下行分组处理装置包括: 流量控制模块、 调度与优先权处理模块, 其特征在于, 还包括:
与小区各载波对应的多个网络侧混合自动重传请求模块和传输格式 与资源合并选择模块, 其中,
各网络侧混合自动重传请求模块分別耦合于所述调度与优先权管理 模块, 用于管理对应载波的混合自动重传请求进程; 各传输格式与资源 合并选择模块分别耦合于对应的混合自动重传请求模块, 用于为对应载 波的高速下行共享信道 HS-DSCH上所传输的数据选择合适传输格式和 信道资源。
2、 一种实现多载波高速下行分组接入业务的终端, 通过其内部的终 端侧多载波高速下行分组处理装置完成多载波高速下行分组业务的传 输, 所述终端侧多载波高速下行分组处理装置包括: 重排队列分配模块、 至少一个重排模块、 与所述重排模块对应的拆解模块, 其特征在于, 还 包括:
与终端支持的各载波对应的多个终端侧混合自动重传请求模块, 分 别耦合于所述重排队列分配模块, 用于负责处理对应载波上的混合自动 重传请求, 完成与所述混合自动重传请求协议相关的媒体接入控制操作。
3、 一种实现多载波高速下行分组接入业务的系统, 所述系统包括基 站和终端, 所述基站和终端分别通过其内部的网络侧多载波高速下行分 组处理装置和终端侧多载波高速下行分组处理装置完成多载波高速下行 分组业务的传输, 其中, 所述网络侧多载波高速下行分组处理装置包括: 流量控制模块、 调度与优先权处理模块; 所述终端侧多载波高速下行分 組处理装置包括: 重排队列分配模块、 至少一个重排模块、 与所述重排 模块对应的拆解模块, 其特征在于,
所述网络侧多载波高速下行分组处理装置还包括: 与小区各载波对 应的多个网絡侧混合自动重传请求模块和传输格式与资源合并选择模 块, 其中, 各网絡侧混合自动重传请求模块分别耦合于所述调度与优先 权管理模块, 用于管理对应载波的混合自动重传请求进程; 各传输格式 与资源合并选择模块分别耦合于对应的混合自动重传请求模块, 用于为 对应载波的高速下行共享信道 HS-DSCH上所传输的数据选择合适传输 格式和信道资源;
所述终端侧多载波高速下行分组处理装置还包括: 与终端支持的各 载波对应的多个终端侧混合自动重传请求模块, 分别耦合于所述重排队 列分配模块, 用于负责处理对应载波上的混合自动重传请求进程, 完成 与所述混合自动重传请求协议相关的媒体接入控制功能。
4、 一种多载波实现高速下行分组接入业务的方法, 用于在支持多载 波的无线移动通信系统中实现基站和终端间高速下行分组业务的传输, 其特征在于, 所述方法包括步骤:
A、基站确定为用户分配的载波及各载波需要传送的高速下行分组数 据;
B、为各载波分配独立的发送进程将所述高速下行分组数据发送给终 端;
C、终端根据收到的下行共享控制信道上的控制信息接收各载波发送 的高速下行分组数据, 并确定其对应的发送进程;
D、 为接收的高速下行分组数据分配与其发送进程对应的接收进程, 对所述高速下行分组数据进行解码;
E、 根据各接收进程解码后的高速下行分组数据获取需要的业务数 据。
5、 根据权利要求 4所述的方法, 其特征在于,
Al、 将基站需要发送的业务数据存放到对应的优先级队列中;
A2、 根据预定的分组调度算法确定为用户分配的载波及对应的优先 级队列;
A3、 根据所述优先级队列生成各载波上需要传送的协议数据单元。
6、 才艮据权利要求 5所述的方法, 其特征在于,
同一传输时间间隔内, 单个载波传输的高速下行分组数据来自同一 优先级队列, 不同载波传输的高速下行分组数据来自同一或不同的优先 级队列。
7、 根据权利要求 5所述的方法, 其特征在于,
A31、将所述优先级队列中的业务数据组装为协议数据单元, 并确定 各协议数据单元的队列号和传送顺序号 TSN;
A32、根据所述分组调度算法将所述协议数据单元调度到其对应的载 波上。
8、 根据权利要求 4或 5所述的方法, 其特征在于, 按照下述步骤将 所述高速下行分组数据发送给终端:
Bl、 确定载波的编码调制方式;
B2、 根据确定的编码调制方式将该载波上需要传送的协议数据单元 发送到物理层;
B3、 所述物理层通过高速物理下行共享信道 HS-PDSCH将所述协议 数据单元发送给终端。
9、 根据权利要求 8所述的方法, 其特征在于, 各载波采用的编码调 制方式相同或不同。
10、 根据权利要求 4或 5所述的方法, 其特征在于, 按照下述步骤 根据各接收进程解码后的高速下行分组数据获取需要的业务数据:
E1、 获取各接收进程解码后的协议数据单元的队列号和传送顺序号 TSN;
E2、 根据所述队列号和传送顺序号 TSN对所述协议数据单元进行重 排, 获取与所述优先级队列对应的分组数据队列;
E3、 去除所述分组数据队列中各协议数据单元中的头信息及填充比 特, 获取需要的业务数据。
PCT/CN2006/001548 2005-07-04 2006-07-03 A device system and method for implementing the multi-carrier high speed downlink packet access service WO2007003134A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/994,775 US9019900B2 (en) 2005-07-04 2006-07-03 Device and system for implementing multi-carrier high speed downlink packet access service
EP06761347A EP1901494B1 (en) 2005-07-04 2006-07-03 A device system and method for implementing the multi-carrier high speed downlink packet access service
JP2008518602A JP2008547333A (ja) 2005-07-04 2006-07-03 マルチキャリア高速ダウンリンクパケットアクセスサービスを実現する装置、システム及び方法。

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510080639.6 2005-07-04
CNB2005100806396A CN100574178C (zh) 2005-07-04 2005-07-04 实现多载波高速下行分组接入业务的设备、系统及方法

Publications (1)

Publication Number Publication Date
WO2007003134A1 true WO2007003134A1 (en) 2007-01-11

Family

ID=37597879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001548 WO2007003134A1 (en) 2005-07-04 2006-07-03 A device system and method for implementing the multi-carrier high speed downlink packet access service

Country Status (6)

Country Link
US (1) US9019900B2 (zh)
EP (1) EP1901494B1 (zh)
JP (1) JP2008547333A (zh)
KR (1) KR100951514B1 (zh)
CN (1) CN100574178C (zh)
WO (1) WO2007003134A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009070092A1 (en) * 2007-11-30 2009-06-04 Telefonaktiebolaget L M Ericsson (Publ) Improved uplink scheduling in a cellular system.
WO2008041824A3 (en) * 2006-10-02 2009-09-03 Lg Electronics Inc. Methods for retransmitting data in the multi-carrier system
EP2045946A3 (en) * 2007-10-02 2013-03-06 Infineon Technologies AG Retransmission in data communication systems
US8638773B2 (en) 2009-01-29 2014-01-28 Qualcomm Incorporated RLC for multi-carrier LTE systems

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100574178C (zh) * 2005-07-04 2009-12-23 上海原动力通信科技有限公司 实现多载波高速下行分组接入业务的设备、系统及方法
US7969948B2 (en) * 2005-08-19 2011-06-28 Zte Corporation Method for implementing HSDPA for TD-SCDMA
CN101558595B (zh) * 2006-12-15 2012-12-26 Lm爱立信电话有限公司 UTRAN HSDPA无线网络中的增强MAC-d复用
US8761144B2 (en) * 2007-06-28 2014-06-24 Telefonaktiebolaget Lm Ericsson (Publ) HS-PDSCH blind decoding
KR101379976B1 (ko) * 2007-07-09 2014-04-01 엘지전자 주식회사 Harq를 이용한 데이터 전송 방법
CN101345608B (zh) * 2007-07-13 2011-08-17 电信科学技术研究院 管理多载波tdd上行的harq进程的方法及装置
WO2009009964A1 (fr) * 2007-07-18 2009-01-22 Datang Mobile Communications Equipment Co., Ltd Gestion de processus, procédé et dispositif de codage dans un système de duplexage par répartition dans le temps en multiporteuse
CN101384071B (zh) * 2007-09-07 2012-04-04 中兴通讯股份有限公司 非小区专用信道状态下的hs-dsch的传输方法
US8340014B2 (en) * 2007-12-26 2012-12-25 Lg Electronics Inc. Method for transmitting and receiving signals using multi-band radio frequencies
CN101547513B (zh) * 2008-03-25 2011-09-14 华为技术有限公司 一种多频点系统中控制用户设备接入的方法及网络设备
US8239721B2 (en) 2008-04-25 2012-08-07 Interdigital Patent Holdings, Inc. HARQ process utilization in multiple carrier wireless communications
US8391244B2 (en) 2008-08-14 2013-03-05 Intel Mobile Communications GmbH Radio communication terminal devices, radio communication network system, method for operating a radio communication terminal device
KR101199572B1 (ko) * 2008-09-05 2012-11-12 삼성전자주식회사 다중 반송파 통신 시스템의 데이터 송신 장치 및 방법과 데이터 수신 방법 및 장치
CN101686196B (zh) * 2008-09-26 2012-04-25 电信科学技术研究院 业务调度方法与装置
US8358614B2 (en) * 2008-10-31 2013-01-22 Interdigital Patent Holdings, Inc. Method and apparatus for handling uplink transmissions using multiple uplink carriers
US8917643B2 (en) 2009-06-12 2014-12-23 Lg Electronics Inc. Method for efficiently managing carriers in broadband wireless access system
KR101644882B1 (ko) * 2009-07-28 2016-08-02 엘지전자 주식회사 다중반송파 지원 광대역 무선 통신 시스템에서의 반송파 관리 절차 수행 방법 및 장치
CN101998680B (zh) * 2009-08-24 2016-01-13 中兴通讯股份有限公司 帧序列号的发送方法及节点b和服务无线网络控制器
CN102036310B (zh) * 2009-09-29 2013-07-31 电信科学技术研究院 一种数据传输方法和设备
TWI542168B (zh) 2010-01-15 2016-07-11 諾基亞科技公司 針對四載波高速下行鏈接封包接取多重輸入多重輸出之混成自動重覆請求確認頻道編碼技術
CN103078721B (zh) * 2011-10-25 2016-03-30 联芯科技有限公司 混合自适应重传请求方法及终端
CN103428109B (zh) * 2012-05-23 2016-12-14 鼎桥通信技术有限公司 一种多载波用户的数据传输方法和装置
WO2014121847A1 (en) * 2013-02-08 2014-08-14 Huawei Technologies Co., Ltd. Base station and method for controlling radio resources allocation
CN105100931B (zh) * 2015-08-29 2018-04-10 天脉聚源(北京)科技有限公司 互动信号的处理方法和装置
CN112804713B (zh) * 2019-11-14 2022-05-06 大唐移动通信设备有限公司 一种数据传输方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395386A (zh) * 2001-06-29 2003-02-05 三星电子株式会社 发送高速下行链路分组接入业务信息的方法
CN1472973A (zh) * 2002-04-09 2004-02-04 日本电气株式会社 用于高速下行链路分组接入的改进的信令方案
US20040165554A1 (en) * 2002-04-05 2004-08-26 Interdigital Technology Corporation System for efficient recovery of node B buffered data following serving high speed downlink shared channel cell change
WO2004075569A2 (en) * 2003-02-19 2004-09-02 Fujitsu Limited Packet scheduling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107528B2 (ja) 1997-08-07 2000-11-13 日本電信電話株式会社 誤り補償方法およびマルチキャリア伝送装置
US7376879B2 (en) * 2001-10-19 2008-05-20 Interdigital Technology Corporation MAC architecture in wireless communication systems supporting H-ARQ
DE10154629A1 (de) 2001-11-07 2003-05-22 Siemens Ag Verfahren zur Signalübertragung in einem Funk-Kommunikationssystem
US7283508B2 (en) * 2002-02-07 2007-10-16 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving serving HS-SCCH set information in an HSDPA communication system
US6901063B2 (en) 2002-05-13 2005-05-31 Qualcomm, Incorporated Data delivery in conjunction with a hybrid automatic retransmission mechanism in CDMA communication systems
EP1389847B1 (en) * 2002-08-13 2006-12-27 Matsushita Electric Industrial Co., Ltd. Hybrid automatic repeat request protocol
CN1523797B (zh) * 2003-02-17 2012-07-04 北京三星通信技术研究有限公司 Wcdma系统增强型上行专用信道harq的重排序方法
GB2405289B (en) 2003-08-20 2006-10-25 Ipwireless Inc Method,base station,remote station and system for HSDPA communication
RU2360363C2 (ru) * 2003-11-10 2009-06-27 Эл Джи Электроникс Инк. Способ обновления данных о порядковом номере следующей ожидаемой передачи и окна получателя, чтобы избежать состояния останова
CN100355231C (zh) * 2003-12-19 2007-12-12 上海贝尔阿尔卡特股份有限公司 多载波系统中具有混合自动重传请求的数据传输方法
CN100574178C (zh) 2005-07-04 2009-12-23 上海原动力通信科技有限公司 实现多载波高速下行分组接入业务的设备、系统及方法
CN100336332C (zh) * 2005-11-16 2007-09-05 中兴通讯股份有限公司 一种多频点小区中混合自动重传请求的实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1395386A (zh) * 2001-06-29 2003-02-05 三星电子株式会社 发送高速下行链路分组接入业务信息的方法
US20040165554A1 (en) * 2002-04-05 2004-08-26 Interdigital Technology Corporation System for efficient recovery of node B buffered data following serving high speed downlink shared channel cell change
CN1472973A (zh) * 2002-04-09 2004-02-04 日本电气株式会社 用于高速下行链路分组接入的改进的信令方案
WO2004075569A2 (en) * 2003-02-19 2004-09-02 Fujitsu Limited Packet scheduling

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"System Level Performance of MC-HSDPA with Enhanced Receivers and Multiple Receiver Antennas - Full Buffer", 3RD GENERATION PARTNERSHIP PROJECT (3GPP, vol. RAN WG1, 3 May 2005 (2005-05-03), pages 1 - 10
"Universal Mobile Telecommunications System (UMTS); FDD enhanced uplink; Overall description; Stage 2 (3GPP TS 25.309 version 6.3.0 Release 6); ETSI TS 125 309", ETSI STANDARDS, vol. 3-R2, no. V6.3.0
3RD GENERATION PARTNERSHIP PROJECT (3GPP, vol. 25.308, no. V6.3.0, 1 December 2004 (2004-12-01), pages 1 - 28
See also references of EP1901494A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041824A3 (en) * 2006-10-02 2009-09-03 Lg Electronics Inc. Methods for retransmitting data in the multi-carrier system
US7873007B2 (en) 2006-10-02 2011-01-18 Lg Electronics Inc. Method for retransmitting data in the multi-carrier system
US8107394B2 (en) 2006-10-02 2012-01-31 Lg Electronics Inc. Method for retransmitting data in the multi-carrier system
US8325669B2 (en) 2006-10-02 2012-12-04 Lg Electronics Inc. Method for retransmitting data in the multi-carrier system
EP2045946A3 (en) * 2007-10-02 2013-03-06 Infineon Technologies AG Retransmission in data communication systems
WO2009070092A1 (en) * 2007-11-30 2009-06-04 Telefonaktiebolaget L M Ericsson (Publ) Improved uplink scheduling in a cellular system.
CN101874424B (zh) * 2007-11-30 2013-08-28 艾利森电话股份有限公司 蜂窝系统中改进的上行链路调度
US8638773B2 (en) 2009-01-29 2014-01-28 Qualcomm Incorporated RLC for multi-carrier LTE systems

Also Published As

Publication number Publication date
EP1901494B1 (en) 2012-03-07
US9019900B2 (en) 2015-04-28
CN1893340A (zh) 2007-01-10
CN100574178C (zh) 2009-12-23
KR100951514B1 (ko) 2010-04-07
KR20080025414A (ko) 2008-03-20
EP1901494A1 (en) 2008-03-19
US20090141678A1 (en) 2009-06-04
EP1901494A4 (en) 2011-01-05
JP2008547333A (ja) 2008-12-25

Similar Documents

Publication Publication Date Title
WO2007003134A1 (en) A device system and method for implementing the multi-carrier high speed downlink packet access service
US10547432B2 (en) Method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks simultaneously with multiple H-ARQ processes
KR101630909B1 (ko) 강화된 업링크를 지원하는 매체 접속 제어 계층 아키텍처
US8719671B2 (en) Method of process configuration for multiple HARQ processes
JP5284215B2 (ja) トランスポートブロックセットのセグメント化
KR101559267B1 (ko) MAC-ehs 프로토콜 데이터 유닛들을 생성하고 프로세싱하기 위한 방법 및 장치
WO2007056940A1 (fr) Procede de mise en oeuvre pour harq dans des cellules a points de frequences multiples
US20080165805A1 (en) Node b based segmentation/concatenation
EP1673895A1 (en) Medium access control priority-based scheduling for data units in a data flow
JP2006500856A (ja) 複数のharqプロセスのためのデータ送信方法およびシステム
US20060114936A1 (en) Enhanced processing methods for wireless base stations
WO2010066171A1 (zh) 调度信息上报方法、装置及系统
WO2009009990A1 (fr) Procédé pour émettre et recevoir des données, dispositif de côté réseau, dispositif de côté abonné et système
KR101432101B1 (ko) 실시간 서비스를 위한 수신 패킷 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008518602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 126/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006761347

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087002699

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006761347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11994775

Country of ref document: US