WO2007003026A1 - A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion - Google Patents

A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion Download PDF

Info

Publication number
WO2007003026A1
WO2007003026A1 PCT/CA2005/001022 CA2005001022W WO2007003026A1 WO 2007003026 A1 WO2007003026 A1 WO 2007003026A1 CA 2005001022 W CA2005001022 W CA 2005001022W WO 2007003026 A1 WO2007003026 A1 WO 2007003026A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
slurry
oligosaccharides
amylases
dried
Prior art date
Application number
PCT/CA2005/001022
Other languages
French (fr)
Inventor
Zhensheng Zhong
Jianhua Zhu
Xiaolin Li
Xiaoyan Xu
Xiaomei Mu
Original Assignee
Advance Will Technology Ltd.
1172592 Alberta Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Will Technology Ltd., 1172592 Alberta Ltd. filed Critical Advance Will Technology Ltd.
Priority to PCT/CA2005/001022 priority Critical patent/WO2007003026A1/en
Publication of WO2007003026A1 publication Critical patent/WO2007003026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to a method to control the distribution of the starch sugar's molecular weight in oligosaccharides production.
  • the distribution of the starch sugar's molecular weight is controlled by Ultra-low DE value during the enzymatic reaction.
  • Starch sugars mainly containing G3 to G5 are widely applied in pharmaceutical, healthcare and food industry areas.
  • G3 and G5 refer to the glucose units.
  • G3 refers to sugar that is composed of three Glucose units linked together as one component.
  • Chinese Patent 96196047.7 introduced a method to depress the bacteria in the starch sugar compound.
  • Starch sugars mainly containing G3 to G5 can be obtained by organic chemistry synthesis from monosaccharide and disaccharide, or by degradation of natural starch, glycolipide and glycopeptide. Other processes are also known.
  • Chinese patent 99117102.0 provides an enzymatic degradation process to make oligosaccharide. The oligosaccharide was obtained from the degradation of polysaccharide in plants.
  • Chinese Patent 01109692.6 introduced a method to make oligosaccharide with Bifido Factor from root nodule.
  • the enzymatic hydrolysis method is the main process. It is based on starch as raw material for the industrial production of starch sugars mainly containing G3 to G5.
  • the process is comprised of two steps. The first step is to get the maltose syrup through starch hydrolysis with ⁇ -amylases.
  • the second step is to get the target product through transglucosylation with the co-reaction of ⁇ -amylases and ⁇ -glucosidase, and then the routine filtration, decolouration, desalting and concentration process procedures are applied to get the final product.
  • the processing procedure is as follows:
  • the content of G3 to G5 in the final product from the process described above is about 50% to 60%.
  • the other main compounds are glucose and maltose which make up about 50% of the final product.
  • the health benefits in the product are contributed by G3 to G5.
  • One of the main health benefits is the proliferation of beneficial microbiota bifidobacteria species in the gastrointestinal tract of humans, and the other main health benefit is the anti-dental caries function. As a result, the health benefits and commercial value of the product are significantly reduced.
  • a method to control the distribution of the starch sugar's molecular weight by controlling of Ultra-low DE value during the reaction comprises blending starch with water to get starch slurry, and then mixing with the 0.01%- 0.03% of CaCl 2 based on dried starch.
  • the next step involves adjusting the pH of the starch slurry.
  • a further step involves adding 0.03% - 0.08% of heat-resisting ⁇ -amylases based on dried starch to the starch slurry described above.
  • a further step involves controlling the production under optimal reaction conditions.
  • the present invention consists of a method to control the distribution of the starch sugar's molecular weight in oligosaccharides production.
  • the method involves blending 1 part starch with 2 - 4 parts water to get starch slurry, and then mixing the starch slurry with 0.01% - 0.03% OfCaCl 2 based on dried starch, and stirring to become a homogeneous mixture.
  • a further step involves adjusting the pH of the starch slurry to 5 -7.
  • Another step involves adding 0.03%-0.08% of high temperature ⁇ -amylases based on dried starch to the starch slurry, and stirring the starch slurry to become a homogeneous mixture.
  • Another step involves liquefying the starch slurry through a jet liquefier under the temperature of 100 0 C - 130°C, and controlling the DE value at 8 - 12.
  • Another step involves holding the liquefied starchy liquid in a Laminar-flow tank for 20 to 60 minutes.
  • a further step involves completing the liquefaction process and terminating the activity of enzyme once the on-line analysis of iodine-colour reaction reaches the required value.
  • the required value can be determined by the colour of reaction of resultant in enzymatic hydrolysis of starch with iodine chemical. If the colour is blue, that means there is starch present and one must continue the enzymatic hydrolysis process. Once the colour in the on-line analysis reaches the point from blue to brown, then the activity of the enzyme must be terminated.
  • the chemical used for adjusting the pH is Na2CO3.
  • an improved and controlled Ultra-low DE technology during the jet liquefaction process which combines the normal two-steps starch- liquefaction process into a one step starch-liquefaction process by suitably adjusting the amount of ⁇ -amylases.
  • the holding time in the Laminar-flow tank is controlled within 20 to 60 minutes.
  • the present invention provides the following benefits; the content of glucose in product is reduced to about 10% which is 50% - 65% less than with the existing processes, and the content of G3 to G5 before purification and other further treatment is increased to 70% which is 15% higher than the with the existing processes.
  • the invented unique Ultra-low DE control technology can control the hydrolysis degree of starch so that the monosaccharide content from the enzymolysis of the starch can be controlled to minimal degree.
  • the starch chain is properly hydrolyzed to polysaccharides with suitable molecular weights by controlling the amount of ⁇ -amylases during the jet liquefaction process, and then the polysaccharides are further hydrolyzed to oligosaccharides with suitable molecular weights by controlling the holding time of the enzymolysis in Laminar-flow tank.
  • This liquefaction process can precisely control the DE value and the point to terminate the enzyme activity during the starch hydrolysis and amount of glucose from starch hydrolysis can be controlled to minimal degree.
  • This method is an improved innovation for the manufacturing process of G3, GA and G5 oligosaccharides.
  • This unique innovative technology can be made commercially available for industrial production of oligosaccharides with minimal addition of equipment to the original process procedure.
  • the enzyme activity was terminated when the iodine-colour reaction reached the required value.
  • the downstream process was undertaken by following the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product.
  • the components in the product were as follows: Glucose 11.9%, G3 to G5 70.1%, maltose 18.0%, isomaltose 20.5%, maltotriose 4.0%, panose 25.2%, isomaltose G3 9.2%, isomaltose G4 and over G4 11.2%.
  • the downstream process was undertaken following the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product.
  • the components in product were as follows: Glucose 12.2%, G3 to G5 70.9%, maltose 16.9%, isomaltose 20.8%, maltotriose 3.8%, panose 24.8%, isomaltose G3 9.6%, isomaltose G4 and over G4 11.9%.
  • the downstream process followed the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product.
  • the components in product were as follows: Glucose 11.4%, G3 to G5 69.4%, maltose 19.2%, isomaltose 19.7%, maltotriose 3.8%, panose 24.8%, isomaltose G3 9.6%, isomaltose G4 and over G4 11.5%.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

An improved method for the production of oligosaccharides with desired molecular weights through enzymatic hydrolysis of starch, comprising blending starch with water to obtain a starch slurry, mixing the slurry with 0.01 % - 0.03% CaCI2 based on dried starch, adjusting the pH to 5-7, adding 0.03 - 0.08% of heat-resistant α-amylases based on dried starch, and hydrolysing the starch to produce the desired oligosaccharides, wherein the improvement consists in controlling ultra-low DE value during the enzymatic hydrolysis step. The controlled ultra-low DE value is obtained by adjusting the amount of α-amylases during jet liquefaction at a temperature of between 100 to 130°C, and holding the liquefied starch in a laminar-flow tank for 20 to 60 minutes. The amount of desired oligosaccharides having 3 to 5 glucose units in the resulting product is thus increased to 70 % before purification, while the content of glucose is reduced to about 10%.

Description

TITLE OF THE INVENTION;
A Method to Control the Distribution of the Starch Sugar's Molecular Weight in Oligosaccharides Production
FIELD OF THE INVENTION
The present invention relates to a method to control the distribution of the starch sugar's molecular weight in oligosaccharides production. The distribution of the starch sugar's molecular weight is controlled by Ultra-low DE value during the enzymatic reaction.
BACKGROUND OF THE INVENTION
Starch sugars mainly containing G3 to G5 are widely applied in pharmaceutical, healthcare and food industry areas. G3 and G5 refer to the glucose units. By way of example, G3 refers to sugar that is composed of three Glucose units linked together as one component. Chinese Patent 96196047.7 introduced a method to depress the bacteria in the starch sugar compound. Starch sugars mainly containing G3 to G5 can be obtained by organic chemistry synthesis from monosaccharide and disaccharide, or by degradation of natural starch, glycolipide and glycopeptide. Other processes are also known. By way of example, Chinese patent 99117102.0 provides an enzymatic degradation process to make oligosaccharide. The oligosaccharide was obtained from the degradation of polysaccharide in plants. Chinese Patent 01109692.6 introduced a method to make oligosaccharide with Bifido Factor from root nodule.
Currently, the enzymatic hydrolysis method is the main process. It is based on starch as raw material for the industrial production of starch sugars mainly containing G3 to G5. The process is comprised of two steps. The first step is to get the maltose syrup through starch hydrolysis with α-amylases. The second step is to get the target product through transglucosylation with the co-reaction of α-amylases and α-glucosidase, and then the routine filtration, decolouration, desalting and concentration process procedures are applied to get the final product.
The processing procedure is as follows:
Starch + water α-amylases cc-amylases and α-glucosidase
Starch Slurry — » Liquefaction — > Saccharifϊcation
— » Decolouration & Filtration — > Ion Exchange — > Vacuum concentration
— > Spray-drier — » Product.
The content of G3 to G5 in the final product from the process described above is about 50% to 60%. The other main compounds are glucose and maltose which make up about 50% of the final product. The health benefits in the product are contributed by G3 to G5. A lot of glucose and maltose exist in the final product which can disturb the main two health benefits of the product. One of the main health benefits is the proliferation of beneficial microbiota bifidobacteria species in the gastrointestinal tract of humans, and the other main health benefit is the anti-dental caries function. As a result, the health benefits and commercial value of the product are significantly reduced.
SUMMARY OF THE INVENTION
What is required is a method to control the distribution of the starch sugar's molecular weight in oligosaccharides production to enhance the health benefits of the resulting product.
According to the present invention there is provided a method to control the distribution of the starch sugar's molecular weight by controlling of Ultra-low DE value during the reaction. The method comprises blending starch with water to get starch slurry, and then mixing with the 0.01%- 0.03% of CaCl2 based on dried starch. The next step involves adjusting the pH of the starch slurry. A further step involves adding 0.03% - 0.08% of heat-resisting α-amylases based on dried starch to the starch slurry described above. A further step involves controlling the production under optimal reaction conditions.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention consists of a method to control the distribution of the starch sugar's molecular weight in oligosaccharides production. The method involves blending 1 part starch with 2 - 4 parts water to get starch slurry, and then mixing the starch slurry with 0.01% - 0.03% OfCaCl2 based on dried starch, and stirring to become a homogeneous mixture. A further step involves adjusting the pH of the starch slurry to 5 -7. Another step involves adding 0.03%-0.08% of high temperature α-amylases based on dried starch to the starch slurry, and stirring the starch slurry to become a homogeneous mixture. Another step involves liquefying the starch slurry through a jet liquefier under the temperature of 1000C - 130°C, and controlling the DE value at 8 - 12. Another step involves holding the liquefied starchy liquid in a Laminar-flow tank for 20 to 60 minutes. A further step involves completing the liquefaction process and terminating the activity of enzyme once the on-line analysis of iodine-colour reaction reaches the required value. The required value can be determined by the colour of reaction of resultant in enzymatic hydrolysis of starch with iodine chemical. If the colour is blue, that means there is starch present and one must continue the enzymatic hydrolysis process. Once the colour in the on-line analysis reaches the point from blue to brown, then the activity of the enzyme must be terminated. With the method described above, the chemical used for adjusting the pH is Na2CO3.
In the present invention, an improved and controlled Ultra-low DE technology during the jet liquefaction process is used, which combines the normal two-steps starch- liquefaction process into a one step starch-liquefaction process by suitably adjusting the amount of α-amylases. The holding time in the Laminar-flow tank is controlled within 20 to 60 minutes. Compared with the existing processes, the present invention provides the following benefits; the content of glucose in product is reduced to about 10% which is 50% - 65% less than with the existing processes, and the content of G3 to G5 before purification and other further treatment is increased to 70% which is 15% higher than the with the existing processes.
The invented unique Ultra-low DE control technology can control the hydrolysis degree of starch so that the monosaccharide content from the enzymolysis of the starch can be controlled to minimal degree. The starch chain is properly hydrolyzed to polysaccharides with suitable molecular weights by controlling the amount of α-amylases during the jet liquefaction process, and then the polysaccharides are further hydrolyzed to oligosaccharides with suitable molecular weights by controlling the holding time of the enzymolysis in Laminar-flow tank. This liquefaction process can precisely control the DE value and the point to terminate the enzyme activity during the starch hydrolysis and amount of glucose from starch hydrolysis can be controlled to minimal degree.
This method is an improved innovation for the manufacturing process of G3, GA and G5 oligosaccharides. This unique innovative technology can be made commercially available for industrial production of oligosaccharides with minimal addition of equipment to the original process procedure. Throughout this specification, unless the context requires otherwise, the word
"comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
hi order that the present invention may be more clearly understood three preferred application examples are described with reference to the accompanying process.
DESCRIPTION OF EXAMPLES Application Example 1:
Based on weight percentage (WAV), 1 part dried starch was blended with 3 parts water to get starch slurry, and then the slurry was mixed with 0.012% of CaCl2 based on dried starch. The pH of the slurry was adjusted to 5.5 by Na2CO3. The 0.04 (W/W) of heat- resisting α-amylases based on dried starch was added to above starch slurry, and mixture was agitated into a homogeneous slurry. The liquefaction process was carried out through , jet liquefactier under the temperature of 1000C at DE value 9. The liquefied starch liquid was held in Laminar-flow tank for 30 minutes. The enzyme activity was terminated when the iodine-colour reaction reached the required value. The downstream process was undertaken by following the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product. The components in the product were as follows: Glucose 11.9%, G3 to G5 70.1%, maltose 18.0%, isomaltose 20.5%, maltotriose 4.0%, panose 25.2%, isomaltose G3 9.2%, isomaltose G4 and over G4 11.2%.
Application Example 2 :
Based on weight percentage (WAV), 1 part dried starch was blended with 2 parts water to get starch slurry, and then the slurry was mixed with 0.02% of CaCl2 based on dried starch. The pH of the slurry was adjusted to 6 by Na2CO3. Then 0.05 (WAV) of heat- resisting α-amylases based on dried starch was added to above starch slurry, and mixture was agitated into a homogeneous slurry. The liquefaction process was carried out through jet liquefactier under the temperature of 1300C at DE value 10. The liquefied starch liquid was held in Laminar-flow tank for 40 minutes. The enzyme activity was terminated when the iodine-colour reaction reached the required value. The downstream process was undertaken following the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product. The components in product were as follows: Glucose 12.2%, G3 to G5 70.9%, maltose 16.9%, isomaltose 20.8%, maltotriose 3.8%, panose 24.8%, isomaltose G3 9.6%, isomaltose G4 and over G4 11.9%.
Application Example 3:
Based on weight percentage (WAV), 1 part dried starch was blended with 3 parts water to get starch slurry, and then the slurry was mixed with 0.015% of CaCl2 based on dried starch. The pH of the slurry was adjusted to 6.5 by Na2CO3. Then 0.07 (WAV) of heat- resisting α-amylases based on dried starch was added to the starch slurry, and the mixture was agitated into a homogeneous slurry. The liquefaction process was carried out through jet liquefactier under the temperature of 130°C at DE value 12. The liquefied starch liquid was held in Laminar-flow tank for 60 minutes. The enzyme activity was terminated when the iodine-colour reaction reached the required value. The downstream process followed the general processes of saccharification, decolouration, filtration, desalting, concentration resulting in the final product. The components in product were as follows: Glucose 11.4%, G3 to G5 69.4%, maltose 19.2%, isomaltose 19.7%, maltotriose 3.8%, panose 24.8%, isomaltose G3 9.6%, isomaltose G4 and over G4 11.5%.
hi this patent document, the word "comprising" is used in its non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded. A reference to an element by the indefinite article "a" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there be one and only one of the elements.
It will be apparent to one skilled in the art that modifications may be made to the illustrated embodiment without departing from the spirit and scope of the invention as hereinafter defined in the Claims.

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method to control the distribution of the starch sugar's molecular weight in oligosaccharides production, the method comprising:
(a). Based on weight percentage, blending 1 part starch with 2 to 4 parts water to get a starch slurry, and then mixing with the 0.01%- 0.03% of CaCl2 based on dried starch, and stirring to become a homogeneous mixture;
(b). Adjusting the pH of the starch slurry to 5-7;
(c). Based on weight percentage, adding 0.03%-O.08% of heat-resisting α-amylases based on dried starch to above starch slurry, and stirring the slurry to become a homogeneous mixture;
(d). Liquefying above starch slurry through a jet liquefier at a temperature of between I00°C and 1300C, controlling the DE value at 8 - 12; holding the liquefied starchy liquid in Laminar-flow tank for 20 to 60 minutes; and completing the liquefaction process and terminating the activity of enzyme once the on-line analysis of iodine-colour reaction reaches a required value.
2. The method according to claim 1, wherein the chemical used to adjust the pH is Na2CO3
3. The method according to claim 1, wherein the required value refers to a colour of reaction of resultant in enzymatic hydrolysis of starch with iodine chemical.
PCT/CA2005/001022 2005-06-30 2005-06-30 A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion WO2007003026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CA2005/001022 WO2007003026A1 (en) 2005-06-30 2005-06-30 A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2005/001022 WO2007003026A1 (en) 2005-06-30 2005-06-30 A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion

Publications (1)

Publication Number Publication Date
WO2007003026A1 true WO2007003026A1 (en) 2007-01-11

Family

ID=37604053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2005/001022 WO2007003026A1 (en) 2005-06-30 2005-06-30 A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion

Country Status (1)

Country Link
WO (1) WO2007003026A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1208586A (en) * 1983-11-08 1986-07-29 Alpha L. Morehouse Low d.e. starch hydrolyzates
CA2109368A1 (en) * 1992-10-28 1994-04-29 Phillip J. Brumm A process for the non-ramdom cleavage of starch and the low d. e. starchconversion products produced therby
CN1557839A (en) * 2004-01-15 2004-12-29 �Ϻ���ͨ��ѧ Method for controlling molecular weight distribution of starch sugar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1208586A (en) * 1983-11-08 1986-07-29 Alpha L. Morehouse Low d.e. starch hydrolyzates
CA2109368A1 (en) * 1992-10-28 1994-04-29 Phillip J. Brumm A process for the non-ramdom cleavage of starch and the low d. e. starchconversion products produced therby
CN1557839A (en) * 2004-01-15 2004-12-29 �Ϻ���ͨ��ѧ Method for controlling molecular weight distribution of starch sugar
CA2475817A1 (en) * 2004-01-15 2005-07-15 Bioneutra Inc. A method to control the distribution of the starch sugar`s molecular weight in oligosaccharides production
US20050181487A1 (en) * 2004-01-15 2005-08-18 Zhensheng Zhong Method to control the distribution of the starch sugar's molecular weight in oligosaccharides production

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GOVINDASAMY S. ET AL.: "The single screw extruder as a bioreactor for sago starch hydrolysis", FOOD CHEMISTRY, vol. 60, no. 1, 1997, pages 1 - 11, XP003004353 *
MARCHAL L.M. ET AL.: "Effect of temperature on the saccharide composition obtained after alpha-amylolysis of starch", BIOTECHNOLOGY AND BIOENGINEERING, vol. 63, no. 3, 5 May 1999 (1999-05-05), pages 344 - 355, XP003004352 *
MARCHAL L.M. ET AL.: "The effect of process conditions on the alpha-amylolytic hydrolysis of amylopectin potato starch: an experimental design approach", BIOTECHNOLOGY AND BIOENGINEERING, vol. 62, no. 3, 5 February 1999 (1999-02-05), pages 348 - 357, XP008074588 *
ROUSSEL L. ET AL.: "Sequential heat gelatinization and enzymatic hydrolysis of corn starch in an extrusion reactor. Optimization for a maximum dextrose equivalent", LEBENSMITTEL-WISSENSCHAFT UND - TECHNOLOGIE, vol. 24, no. 5, 1991, pages 449 - 458, XP008074609 *

Similar Documents

Publication Publication Date Title
US7582453B2 (en) Method to control the distribution of the starch sugar's molecular weight in oligosaccharides production
JP5828589B2 (en) Industrial production method of branched glucan having cyclic structure
CN101258248A (en) Methods of making syrups
EP2671456A1 (en) Novel use of maltotriosyl transferase
JP7106460B2 (en) α-Glucan
Zeuner et al. Enzymatic transfucosylation for synthesis of human milk oligosaccharides
JP7183174B2 (en) branched α-glucan
US6803459B2 (en) Branched starches and branched starch hydrolyzates
JP7249712B2 (en) Composite enzyme and method for producing resistant dextrin
JP7082066B2 (en) High molecular weight glucan with slow digestion rate
WO2007003026A1 (en) A method to control the distribution of the starch sugar’s molecular weight in oligosaccharides promotion
CN110004128A (en) Compounded saccharifying enzyme preparation and amylolytic method
CN109777795B (en) Compound amylase preparation, application of compound amylase preparation in starch liquefaction and starch liquefaction method
CN106755197A (en) A kind of method that utilization linear maltooligosacchaeides generation enzyme prepares straight chain MALTOHAXAOASE
CN112111542A (en) Preparation method of high-purity isomaltooligosaccharide co-produced resistant dextrin
WO2019128258A1 (en) Method for preparing slowly-digested sugar
CN110343729A (en) A kind of preparation method of low DE value glucose syrup
JP2024502807A (en) Dextrin with improved cloudiness and method for producing the same
EP3848470A1 (en) A process for producing alternan-oligosaccharide
Yu et al. Innovative application of a novel and thermostable inulin fructotransferase from Arthrobacter sp. ISL-85 to fructan inulin in burdock root to improve nutrition
KR20170040634A (en) Method for production of maltose with novel enzyme
KR20230089914A (en) Branched dextrin with improved turbidity
JP2004254646A (en) Method for producing mannan oligosaccharide
WO2020069396A1 (en) Dietary fiber production using a glycosyl-transferase
CN113493812A (en) Preparation process of oligomeric maltose syrup with high maltotetraose content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05761897

Country of ref document: EP

Kind code of ref document: A1