WO2007000608A2 - Biomedical materials - Google Patents
Biomedical materials Download PDFInfo
- Publication number
- WO2007000608A2 WO2007000608A2 PCT/GB2006/002411 GB2006002411W WO2007000608A2 WO 2007000608 A2 WO2007000608 A2 WO 2007000608A2 GB 2006002411 W GB2006002411 W GB 2006002411W WO 2007000608 A2 WO2007000608 A2 WO 2007000608A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process according
- calcium
- trivalent cation
- silicon
- biomedical material
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 50
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 46
- 150000001768 cations Chemical class 0.000 claims abstract description 41
- 239000003519 biomedical and dental material Substances 0.000 claims abstract description 34
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 32
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 239000010703 silicon Substances 0.000 claims abstract description 20
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 18
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 17
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 68
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 64
- 239000012071 phase Substances 0.000 claims description 49
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 45
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 37
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 27
- 239000011575 calcium Substances 0.000 claims description 21
- 239000000292 calcium oxide Substances 0.000 claims description 21
- 229910052727 yttrium Inorganic materials 0.000 claims description 21
- 239000002244 precipitate Substances 0.000 claims description 20
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 18
- -1 monetite Chemical compound 0.000 claims description 18
- 229910019142 PO4 Inorganic materials 0.000 claims description 17
- 210000000988 bone and bone Anatomy 0.000 claims description 17
- 229910052909 inorganic silicate Inorganic materials 0.000 claims description 17
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 17
- 229910052586 apatite Inorganic materials 0.000 claims description 16
- 238000003786 synthesis reaction Methods 0.000 claims description 16
- 238000002441 X-ray diffraction Methods 0.000 claims description 15
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 14
- 239000000920 calcium hydroxide Substances 0.000 claims description 14
- 229910000391 tricalcium phosphate Inorganic materials 0.000 claims description 14
- 235000019731 tricalcium phosphate Nutrition 0.000 claims description 14
- 229940078499 tricalcium phosphate Drugs 0.000 claims description 14
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 12
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 10
- 239000002210 silicon-based material Substances 0.000 claims description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 239000000316 bone substitute Substances 0.000 claims description 5
- 159000000007 calcium salts Chemical class 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 239000004411 aluminium Substances 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 4
- 229910001424 calcium ion Inorganic materials 0.000 claims description 4
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 4
- 239000007943 implant Substances 0.000 claims description 4
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 4
- 150000002602 lanthanoids Chemical class 0.000 claims description 4
- 229910052706 scandium Inorganic materials 0.000 claims description 4
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 claims description 2
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 claims description 2
- 239000004254 Ammonium phosphate Substances 0.000 claims description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- 229910021529 ammonia Inorganic materials 0.000 claims description 2
- 239000000908 ammonium hydroxide Substances 0.000 claims description 2
- 229910000148 ammonium phosphate Inorganic materials 0.000 claims description 2
- 235000019289 ammonium phosphates Nutrition 0.000 claims description 2
- 239000008346 aqueous phase Substances 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- JJIQGEZLLWXYKV-UHFFFAOYSA-N calcium;dinitrate;hydrate Chemical compound O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O JJIQGEZLLWXYKV-UHFFFAOYSA-N 0.000 claims description 2
- 239000004568 cement Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 229940085991 phosphate ion Drugs 0.000 claims description 2
- JXJTWJYTKGINRZ-UHFFFAOYSA-J silicon(4+);tetraacetate Chemical compound [Si+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O JXJTWJYTKGINRZ-UHFFFAOYSA-J 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims description 2
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 claims 1
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 claims 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims 1
- 229940043256 calcium pyrophosphate Drugs 0.000 claims 1
- 239000000378 calcium silicate Substances 0.000 claims 1
- 229910052918 calcium silicate Inorganic materials 0.000 claims 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 claims 1
- 229910000392 octacalcium phosphate Inorganic materials 0.000 claims 1
- YIGWVOWKHUSYER-UHFFFAOYSA-F tetracalcium;hydrogen phosphate;diphosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YIGWVOWKHUSYER-UHFFFAOYSA-F 0.000 claims 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 claims 1
- 239000000243 solution Substances 0.000 description 50
- 239000000203 mixture Substances 0.000 description 47
- 238000003756 stirring Methods 0.000 description 35
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 31
- 239000000725 suspension Substances 0.000 description 27
- 239000008367 deionised water Substances 0.000 description 23
- 230000002051 biphasic effect Effects 0.000 description 22
- 238000006467 substitution reaction Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 238000001556 precipitation Methods 0.000 description 20
- 239000000843 powder Substances 0.000 description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 230000002950 deficient Effects 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 8
- 239000012455 biphasic mixture Substances 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000036571 hydration Effects 0.000 description 6
- 238000006703 hydration reaction Methods 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000005245 sintering Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 102000011045 Chloride Channels Human genes 0.000 description 1
- 108010062745 Chloride Channels Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000278 osteoconductive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000003836 solid-state method Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003746 yttrium Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/28—Materials for coating prostheses
- A61L27/30—Inorganic materials
- A61L27/32—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/42—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
- A61L27/425—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/32—Phosphates of magnesium, calcium, strontium, or barium
- C01B25/322—Preparation by neutralisation of orthophosphoric acid
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
- C04B2235/3436—Alkaline earth metal silicates, e.g. barium silicate
- C04B2235/3454—Calcium silicates, e.g. wollastonite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/447—Phosphates or phosphites, e.g. orthophosphate or hypophosphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
Definitions
- the present invention relates to biomedical materials and, in particular, to substituted calcium phosphate (eg apatite and hydroxyapatite) materials for use as synthetic bone.
- substituted calcium phosphate eg apatite and hydroxyapatite
- hydroxyapatite The biocompatibility of hydroxyapatite, coupled with the similarities between the crystal structure of hydroxyapatite and the mineral content of bone, has led to great interest in hydroxyapatite ' as a material for the augmentation of osseous defects.
- the apatite group of minerals is based on calcium phosphate, with stoichiometric hydroxyapatite having a molar ratio of Ca/P of 1.67. Hydroxyapatite has the chemical formula Ca ⁇ o (PO 4 ) 6 (OH) 2-
- Silicate-substituted hydroxyapatite compositions provide attractive alternatives to stoichiometric hydroxyapatite as a bone replacement material. Silicon has been shown to enhance the rate and quality of bone healing when combined with calcium phosphate bone grafts, resulting in faster bone bonding between implant and host.
- PCT/GB97 /02325 describes a silicate-substituted hydroxyapatite material.
- TCP tricalcium phosphate
- the substitution limit for silicate substitution into the ' hydroxyapatite lattice is approximately 5.3 wt% (corresponding to 1.6 wt% silicon).
- the present invention aims to address at least some of the problems associated with the prior art and/or to provide novel biomedical materials based on various calcium phosphate materials. Accordingly, the present invention provides a synthetic calcium phosphate-based biomedical material comprising silicon and a trivalent cation.
- the biomedical material according to the present invention is based on a calcium phosphate material such as, for example, hydroxyapatite or apatite.
- the biomedical material according to the present invention preferably comprises a compound having the general chemical formula: ,*
- M is a trivalent cation, 0 ⁇ x ⁇ 1.3 and 0 ⁇ y ⁇ 1.3.
- 0 ⁇ x ⁇ 1.1 more preferably, 0.5 ⁇ x ⁇ 1.1.
- 0 ⁇ y ⁇ 1.1 more preferably 0.5 ⁇ y ⁇ 1.1. It is also preferable that x ⁇ y.
- the trivalent cation is preferably selected from one or more of yttrium, scandium, aluminium and the Lanthanide elements.
- the trivalent cation is or comprises yttrium.
- the trivalent cation is believed to substitute for the calcium ion in the hydroxyapatite lattice.
- the silicate ion is believed to substitute for the phosphate ion in the hydroxyapatite lattice.
- silicate-substituted as used herein also encompasses silicon-substituted.
- silicon-substituted as used herein also encompasses silicate-substituted.
- the phase purity of the material is preferably at least 95%, more preferably at least 97%, still more preferably at least 99%. In this case the material is substantially free of any secondary phases. It will be appreciated that unavoidable impurities may, however, be present.
- the phase purity of the biomedical material can be measured by conventional X-ray diffraction techniques.
- the material may further comprise one or more secondary phases such as, for example, tricalcium phosphate (eg ⁇ -TCP and/or ⁇ -TCP) .
- secondary phases such as, for example, tricalcium phosphate (eg ⁇ -TCP and/or ⁇ -TCP) .
- the present invention also provides for biphasic and multiphase materials .
- the secondary phases may be present in an amount of up to 60 wt.%, more typically up to 40 wt.%, still more typically up to 20 wt.%.
- the biomedical material according to the present invention may be used as a synthetic bone material, a bone implant, -a bone graft, a bone substitute, a bone scaffold, a filler, a coating or a cement.
- the biomedical material may be provided in a porous or non-porous form.
- the biomedical material may be provided in the form of a composite material, for example in conjunction with a biocompatible polymer.
- the present invention also provides a biomedical material comprising a synthetic trivalent cation-silicate co- substituted calcium phosphate-based material.
- a synthetic trivalent cation-silicate co- substituted calcium phosphate-based material examples include trivalent cation-silicate co-substituted hydroxyapatite and apatite materials.
- the trivalent cation is preferably selected from one or more of yttrium, scandium, aluminium and the Lanthanide elements. More preferably, the trivalent cation is or comprises yttrium.
- the biomedical material according to the present invention may be prepared by an aqueous precipitation method or a solid-state method such as, for example, a hydrothermal method.
- the aqueous precipitation technique is, however, preferred.
- the present invention also provides a process for the synthesis of a calcium phosphate-based biomedical material comprising silicon and a trivalent cation, the process comprising: providing calcium or a calcium-containing compound, a trivalent cation-containing compound, a phosphorus- containing compound and a silicon-containing compound; and forming a precipitate by reacting the compounds in an aqueous phase at an alkali pH.
- the process may be used to synthesise hydroxyapatite and apaptite materials comprising silicon and a trivalent cation.
- the process according to the present invention is preferably an aqueous precipitation process.
- the calcium-containing compound comprises a calcium salt.
- the calcium salt may, for example, be selected from one or more of calcium hydroxide, calcium chloride, calcium nitrate and/or calcium nitrate hydrate.
- the trivalent cation-containing compound comprises a compound of yttrium.
- the yttrium-containing compound may, for example, be selected from one or both of yttrium chloride and/or yttrium nitrate, preferably Y (NO 3 ) 3 .XH 2 O.
- the yttrium is preferably present in the biomedical material (i.e. the final product) in an amount of ?up to 13 weight percent, more preferably up to 12 weight percent. This is typical if the material is an essentially phase pure material as discussed above. On the other hand, if the material comprises one or more secondary phases, then the amount of yttrium in the material may exceed 13 weight percent and may be present in an amount of up to 20 weight percent .
- the silicon-containing compound comprises a silicate. More preferably, the silicate is selected from one or both of tetraethyl orthosilicate (TEOS) and/or " silicon acetate.
- TEOS tetraethyl orthosilicate
- silicon acetate tetraethyl orthosilicate
- the silicate is preferably present in the material (i.e. the final product) in an amount of up to 13 weight percent (which correlates to 4 weight percent as silicon) , more preferably up to 12 weight percent (which correlates to 3.66 weight percent silicon) . Again, this is typical if the material is an essentially phase pure material as discussed above. On the other hand, if the material comprises one or more secondary phases, then the amount of silicate in the material may exceed 13 weight percent and may be present in an amount of up to 20 weight percent.
- the phosphorus-containing compound is selected from one or both of a phosphate salt and/ ⁇ r a phosphoric acid. More preferably, the phosphorus-containing compound is selected from one or both of ammonium phosphate and/or phosphoric acid.
- the silicon-containing compound and the trivalent cation-containing compound are ⁇ -preferably supplied in substantially equimolar quantities with respect to the amount of silicon and the quantity of the trivalent cation.
- the silicon-containing compound is supplied in a greater molar quantity than the trivalent cation compound, with respect to the quantity of silicon and the quantity of the trivalent cation.
- the process according to the second embodiment of the present invention is preferably carried out at an alkaline pH.
- the pH is from 8 to 13. More preferably, the pH is from 10 to 12.
- an alkali is preferably added to the solution.
- the alkali may be, for example, ammonium hydroxide or concentrated ammonia.
- the process according to the present invention preferably comprises first forming under ambient conditions (although this step can be performed at a temperature up to about 100 0 C) an aqueous suspension comprising calcium or the calcium-containing compound (e.g. Ca (OH) 2) and the trivalent cation-containing compound (e.g. Y(NOs) 3 -XH 2 O). Next, an aqueous solution of the phosphorus-containing compound (e.g. H 3 PO 4 ) is slowly added to the suspension with stirring. Finally, an aqueous solution of the silicon-containing compound (e.g.
- Si(OC 2 Hs) 4 TEOS
- the aqueous solution of the phosphorus- containing compound can be mixed with the aqueous solution of -the silicon-containing compound, and the combination then added slowly with stirring the suspension
- the pH is monitored and maintained at an alkali pH / preferably from 11 to 13, using, for example, concentrated ammonia solution.
- the total mixture is then left to age and precipitate, which typically takes up to 12 to 24 hours.
- the precipitate may be dried, heated and/or sintered. Preferably, it is first dried by heating it to a temperature of up to 100 0 C. This may then be followed by heating a temperature in the range of from 800 0 C to 1500 0 C, more preferably from 1000 0 C to
- the dried precipitate is preferably ground into a powder prior to the sintering step.
- the aforementioned process may be used to prepare an essentially phase pure material as herein described.
- a number of steps may be used independently or in combination.
- the pH of the precipitation may be lowered to from 11-13 to 8-10. This has been found to promote the precipitation of a yttria/silicate co- substituted cation-deficient apatite composition, which forms a biphasic yttria/silicate co-substituted composition on heating.
- reaction mixture may be adjusted so that the relative ' amount of cations added, either calcium salt or yttrium salt or a combination of the two, is lowered, to promote the precipitation of a yttria/silicate co-substituted cation-deficient apatite composition. Again, this will form a biphasic yttria/silicate co-substituted composition on heating.
- the reaction mixture may be adjusted so that the relative amount of anions added, either phosphate salt or silicate salt or a combination of the two, is lowered, to promote the precipitation of a yttria/silicate co-substituted cation-deficient apatite composition, which will form a biphasic yttria/silicate co- substituted composition on heating.
- the pH may be lowered in combination with the alteration of the reaction mixture composition, to produce a yttria/silicate co- substituted cation-deficient apatite composition, which will form a biphasic yttria/silicate co-substituted composition on heating. It will be appreciated that yttria has been quoted by way of example.
- the present invention also provided a method of stabilizing a silicon-substituted hydroxyapatite material, which method comprises co-substituting a trivalent cation into the lattice.
- the trivalent cation is selected from one or more of yttrium, scandium, aluminium and the Lanthanide elements.
- the trivalent cation is yttrium. >
- the present invention provides a co-substitution method, whereby yttrium (or other trivalent cations suitable for substitution for the calcium ions) is co-substituted with the silicate ions.
- yttrium or other trivalent cations suitable for substitution for the calcium ions
- the first essentially negates the loss of hydroxyl (OH) groups from the hydroxyapatite lattice to balance charge, as the equimolar substitution of yttrium and silicate ions for calcium and phosphate ions balances charge:
- the co-substituted method according to the present invention may be used to increase the limit of silicate substitution into the hydroxyapatite lattice, without resulting in phase decomposition after sintering at typical temperatures (approximately 1200 0 C or more) , to a maximum of approximately 12 wt . % silicate ions (or 3.66 wt.% silicon) . After this limit has been reached, secondary phases are produced.
- Figure 1 shows X-ray diffraction data corresponding to Example 1
- Figure 2 shows X-ray diffraction data corresponding to Example 2 ;
- Figure 3 shows X-ray diffraction data corresponding to Example 4 ;
- Figure 4 shows X-ray diffraction data corresponding to Example 5.
- Figure 5 shows X-ray diffraction data corresponding to Example 6.
- Figure 6 shows X-ray diffraction data corresponding to Example 7. .
- H 3 PO 4 (85% assay) was diluted with approx. 100ml deionised water. This solution was poured into a dropping funnel and added drop-wise to the stirring Ca(0H) 2 /YNH suspension over a period of approx. 30 minutes. After complete addition of the H 3 PO 4 solution, 2.1278g Si (OC 2 H 5 ) 4 (TEOS) was diluted with approx-. 100ml deionised water and this solution was poured into a dropping funnel and added drop-wise to stirring Ca (OH) 2 /YNH/H 3 P ⁇ 4 mixture over a" period of approx. 30 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 and TEOS solutions and was maintained at pH 12 by the addition of concentrated ammonia solution; in total, approx 37.5ml was added. After complete addition of the TEOS solution, the total mixture was left to stir for a further 2 hours before being left to age and precipitate overnight (approximately 16 hours) . The precipitate was then filtered, dried at 80 0 C for 24 hours, and ground to form a fine powder. Approximately 3g of the dried powder was placed in a platinum crucible and sintered in a furnace at 1200 0 C for 2 hours, using heating and cooling rates of 2.5 and 10°/min, respectively. The sintered powder was then analysed using X-ray diffraction to confirm the phase purity.
- a Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02° and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite. All the diffraction peaks for the sintered Y 3+ /Si0 4 4 ⁇ co-substituted hydroxyapatite matched the peaks of the ICDD standard, with no additional peaks observed, indicating ⁇ that the composition produced by this method was a single-phase material with a hydroxyapatite-like structure (see Figure
- CaCO 3 was first de-carbonated overnight (16 hours) in a furnace at 900 0 C. The resulting CaO was then removed from the furnace and placed in a dessicator to cool. 5.3601g CaO was added to a beaker containing approx. 100ml deionised water in an ice bath. After complete addition of the CaO, the beaker was removed from the ice bath and placed on a stirrer. The suspension was left to stir for approx. 10 minutes; the CaO will undergo hydration to form Ca(OH) 2 . Meanwhile, 1.9162g Y (NO 3 ) 3 .6H 2 O (YNH) was added to a beaker containing approx. 100ml deionised water and was mixed until the YNH had completely dissolved. The YNH solution was then slowly poured into the Ca(OH) 2 suspension and this suspension was left to stir for approx. 30 minutes.
- YNH Y (NO 3 ) 3 .6H 2 O
- H 3 PO 4 (85% assay) was diluted with approx. 100ml deionised water and this solution was poured into a dropping funnel.
- 2.1281g Si (OC 2 H 5 ) 4 (TEOS) was diluted with approx. 100ml deionised water and this solution was poured into the dropping funnel containing the H 3 PO 4 solution, and this H 3 PO 4 /TEOS solution was added drop-wise to the stirring Ca(OH) 2 /YNH suspension over a period of approx. 60 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 /TEOS solution and was maintained at pH 12 by the addition of concentrated ammonia solution; in total, approx. 40ml was added.
- a Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02°and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite. All the diffraction peaks for the sintered Y 3+ /Si0 4 4 ⁇ co-substituted hydroxyapatite matched the peaks of the ICDD standard, with no additional peaks observed, indicating that the composition produced by this method was a 'single-phase material with a hydroxyapatite-like structure (see Figure 2) .
- the synthesis in this example was exactly as for the synthesis method described in Example 1, except that the H 3 PO 4 and TEOS solutions (approx. 100ml each) were mixed together and added simultaneously in a drop-wise manner to the stirring Ca(0H) 2 /YNH suspension over a period of approx. 60 minutes. Apart from this difference, the precipitation and subsequent processing steps were identical to those described in Example 1. The X-ray diffraction pattern of the sintered samples produced by this method were identical to that observed for Example 1.
- CaCO 3 was first de-carbonated overnight (16 hours) in a furnace at approx. 900 0 C. The resulting CaO was then removed from the furnace and placed in a dessicator to cool. 5.2735gCaO was added to a beaker containing approx. 100ml deionised water in an ice bath. After complete addition of the CaO, the beaker was removed from the ice bath and placed on a stirrer. The suspension was left to stir for approx. 10 minutes; the CaO will undergo ' hydration to form Ca(OH) 2 - Meanwhile, 2.2993g Y (NO 3 ) 3 .6H 2 O (YNH) was added to a beaker containing approx. 100ml deionised water and was mixed until the YNH had completely dissolved. The YNH solution was then slowly poured into the Ca(OH) 2 suspension and this suspension was left to stir for approx. 30 minutes.
- YNH Y (NO 3 ) 3 .6H 2 O
- H 3 PO 4 (85% assay) was diluted with approx. 100ml deionised water and this solution was poured into a dropping funnel.
- 1.2764g Si (OC 2 H 5 ) 4 (TEOS) was diluted with approx. 100ml deionised water and this solution was poured into the dropping funnel containing the H 3 PO 4 solution, and this H 3 PO 4 /TEOS solution was added drop-wise to the stirring Ca(OH) 2 /YNH suspension over a period of approx. 60 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 /TEOS solution and was maintained at pH . 10 by the addition of concentrated ammonia solution; in total, approx. 10ml was added.
- the total mixture ' was left to stir for a further 2 hours before being left to age and precipitate overnight (approximately 16 hours) .
- the precipitate was then filtered, dried at 8O 0 C for 24 hours, and ground to form a fine powder.
- Approximately 3g of the dried powder was placed in a platinum crucible and sintered in a furnace at 1200 0 C for 2 hours, using heating and cooling rates of 2.5 and 10°/min, respectively.
- the sintered powder was then analysed using X-ray diffraction to confirm the phase purity.
- a Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02°and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite and (#09- 0348) standard pattern for alpha-tricalcium phosphate.
- CaCO3 was first de-carbonated overnight (16 hours) in a furnace at 900 0 C. The resulting CaO was then removed from the furnace and placed in a dessicator to cool. 5.446IgCaO was added to a beaker containing approx. 100ml deionised water in an ice bath. After complete addition of the CaO, the beaker was removed from the ice bath and placed on a stirrer. The suspension was left to stir for approx. 10 minutes; the CaO will undergo hydration to form Ca(OH) 2 . Meanwhile, 1.1508g Y (NO 3 J 3 - 6H 2 O (YNH) was added to a beaker containing approx. 100ml deionised water and was mixed until the YNH had completely dissolved. The YNH solution was then slowly poured into the Ca (OH) 2 suspension and this suspension was left to stir for approx. 30 minutes.
- YNH NO 3 J 3 - 6H 2 O
- H 3 PO 4 (85% assay) was diluted with approx. 100ml deionised water and this solution was poured into a dropping funnel.
- 1.2817g Si(OC 2 Hs) 4 (TEOS) was diluted with approx. 100ml deionised water and this solution was poured into the dropping funnel containing the H 3 PO 4 solution, and this H 3 PO 4 /TEOS solution was added drop-wise to the stirring Ca(OH) 2 /YNH suspension over a period of approx. 60 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 /TEOS solution and was maintained at pH 10 by the addition of concentrated ammonia solution; in total, approx. 10ml was added.
- the total mixture was left to stir for a further 2 hours before being left to age and precipitate overnight (approximately 16 hours) .
- the precipitate was then filtered, dried at 8O 0 C for 24 hours, and ground to form a fine powder.” Approximately 3g of the dried powder was placed in a platinum crucible and sintered in a furnace at 1200 0 C for 2 hours, using heating and cooling rates of 2.5 and 10°/min, respectively.
- the sintered powder was then analysed using X-ray diffraction to confirm the phase purity.
- a Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02°and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite and (#09- 0348) standard pattern for alpha-tricalcium phosphate.
- yttria/silicate co-substituted biphasic composition rather than a single phase yttria/silicate co- substituted hydroxyapatite composition (described in Example 1), but at pH 12, a deficient amount of Ca(OH) 2 and YNH was added, which promoted the precipitation of a yttria/silicate co-substituted cation-deficient apatite composition. This will form a biphasic yttria/silicate co-substituted composition on heating.
- CaCO 3 was first de-carbonated overnight (16 hours) in a furnace at 900 0 C. The resulting CaO was then removed from the furnace and placed in a dessicator to cool. 4.9054gCaO was added to a beaker containing approx. 100ml deionised •water in an ice bath. After complete addition of the CaO, the beaker was removed from the ice bath and placed on a stirrer. The suspension was left to stir 'for approx. 10 minutes; the CaO will undergo hydration to form Ca(OH) 2 - Meanwhile, 4.9807g Y(NO 3 ) 3 .6H 2 O (YNH) was added to a beaker containing approx. 100ml deionised water and was mixed until the YNH had completely dissolved. The YNH solution was then slowly poured into the Ca(OH) 2 suspension and this suspension was left to stir for approx. 30 minutes.
- YNH Y(NO 3 ) 3 .6H 2 O
- H 3 PO 4 (85% assay) was diluted with approx. 100ml deionised water and this solution was poured into a dropping funnel.
- 2.7679g Si (OC 2 H 5 ) 4 (TEOS) was diluted with approx. 100ml deionised water and this solution was poured into the dropping funnel containing the H 3 PO 4 solution, and this H 3 PO 4 /TEOS solution was added drop-wise to the stirring Ca(0H) 2 /YNH suspension over a period of approx. 60 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 ZTEOS solution and was maintained at pH 12 by the addition of concentrated ammonia solution; "in total, approx. 40ml was added.
- the total mixture was left to stir for a further 2 hours before being left to age and precipitate overnight (approximately 16 hours).
- the precipitate was then filtered, dried at 8O 0 C for 24 hours, and ground to form a fine powder.
- Approximately 3g of the dried powder was placed in a platinum crucible and sintered in a furnace at 1200 0 C for 2 hours, using heating and cooling rates of 2.5 and 10°/min, respectively.
- the sintered powder was then analysed using X-ray diffraction to confirm the phase purity.
- a Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02°and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite and (#09- 0348) standard pattern for alpha-tricalcium phosphate. All the diffraction peaks for the sintered Y 3 VSiO 4 4- co- substituted hydroxyapatite matched the peaks of the ICDD standard, matching both the hydroxyapatite phase and the alpha-tricalcium phosphate phase, indicating that the composition produced by this method was a biphasic material (see Figure 5). Comparing the intensities of the most intense peaks of the hydroxyapatite and the alpha-tricalcium phosphate phases, the amount of hydroxyapatite is approximated at 90%, and the amount of tricalcium phosphate as 10%.
- CaCC> 3 was first de-carbonated overnight (16 hours) in a furnace at 900 0 C. The resulting CaO was then removed from the furnace and placed in a dessicator to cool. 5.3299gCaO was added to a beaker containing approx. ,.10OmI deionised water in an ice bath. After complete addition of the CaO, the beaker was removed from the ice bath and placed on a stirrer. The suspension was left to stir for approx. 10 minutes; the CaO will undergo hydration to form Ca(OH) 2 .
- YNH 1.917Og Y (NO 3 ) 3 .6H 2 O
- H 3 PO 4 (85% assay) was diluted with approx. 100ml ⁇ deionised water and this solution was poured into a dropping funnel.
- 2.1259g Si(OC 2 Hs) 4 (TEOS) was diluted with approx. 100ml deionised water and this solution was poured into the dropping funnel containing the H 3 PO 4 solution, and this H 3 PO 4 /TEOS solution was added drop-wise to the stirring Ca(0H) 2 /YNH suspension over a period of approx. 60 minutes.
- the pH of the stirring solution was monitored throughout the addition of the H 3 PO 4 /TEOS solution and was maintained at pH 12 by the addition of concentrated ammonia solution; in total, approx. 40ml was added.
- the total mixture was left to stir for a further 2 hours before being left to age and precipitate overnight (approximately 16 hours) .
- the precipitate was then filtered, dried at 8O 0 C for 24 hours, and ground to form a fine powder.
- Approximately 3g of the dried powder was placed in a platinum crucible and sintered in a furnace at 1200 0 C for ' 2 hours, using heating and cooling rates of 2.5 and 10 Q /min, respectively.
- the sintered powder was then analysed using X-ray diffraction to confirm the phase purity.
- X-ray diffraction was then analysed using X-ray diffraction to confirm the phase purity.
- ,- A Bruker D8 diffractometer was used to collect data from 10 to 60° 2 ⁇ with a step size of 0.02°and a count time of 1.5secs/step.
- the diffraction pattern obtained was compared with the ICDD (#09-0432) standard pattern for hydroxyapatite and (#09-
- the present invention enables greater levels of silicate ions (or silicon) to be substituted into the calcium phosphate (eg hydroxyapatite or apatite) lattice without any significant phase decomposition at typical sintering temperatures, for example ⁇ 1200 0 C.
- the current substitution limit of 5.3 wt% silicate (or 1.6 wt% silicon) may be increased, which results in a synthetic biomedical material that more closely matches the chemical composition of bone mineral.
- the present invention also enable the production of biphasic and multiphase materials with even higher silicon contents.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dermatology (AREA)
- Organic Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Transplantation (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Composite Materials (AREA)
- Surgery (AREA)
- Materials For Medical Uses (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES06755680T ES2572136T3 (en) | 2005-06-29 | 2006-06-29 | Process to manufacture a biomedical material based on calcium phosphate |
JP2008518967A JP5128472B2 (en) | 2005-06-29 | 2006-06-29 | Medical materials |
EP06755680.3A EP1907337B1 (en) | 2005-06-29 | 2006-06-29 | Process for making a calcium phosphate-based biomedical material |
AU2006263624A AU2006263624B2 (en) | 2005-06-29 | 2006-06-29 | Biomedical materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/168,420 US7695740B2 (en) | 2005-06-29 | 2005-06-29 | Synthetic calcium phosphate comprising silicon and trivalent cation |
US11/168,420 | 2005-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007000608A2 true WO2007000608A2 (en) | 2007-01-04 |
WO2007000608A3 WO2007000608A3 (en) | 2007-03-22 |
Family
ID=35448194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2006/002411 WO2007000608A2 (en) | 2005-06-29 | 2006-06-29 | Biomedical materials |
Country Status (6)
Country | Link |
---|---|
US (1) | US7695740B2 (en) |
EP (1) | EP1907337B1 (en) |
JP (1) | JP5128472B2 (en) |
AU (1) | AU2006263624B2 (en) |
ES (1) | ES2572136T3 (en) |
WO (1) | WO2007000608A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010523250A (en) * | 2007-04-11 | 2010-07-15 | ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・アバディーン | Biomedical materials |
WO2010092001A1 (en) * | 2009-02-10 | 2010-08-19 | Azurebio, S. L. | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds |
CN106512086A (en) * | 2016-11-11 | 2017-03-22 | 江西理工大学 | Yttrium-doped calcium phosphate bone cement and preparation method thereof |
JP2017148553A (en) * | 2008-01-09 | 2017-08-31 | ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・アバディーン | Synthesis of bioceramic composition |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2442000A (en) * | 2006-06-07 | 2008-03-26 | Apatech Ltd | Biomedical materials containing gadolinium |
KR20100039979A (en) * | 2008-10-09 | 2010-04-19 | 주식회사 메타바이오메드 | POROUS COMPOSITE COMPRISING SILICON-SUBSTITUTED HYDROXYAPATITE AND β-TRICALCIUM PHOSPHATE, AND PROCESS FOR PREPARING THE SAME |
US20100330194A1 (en) * | 2009-06-24 | 2010-12-30 | Brancato Donald H | Silicon Substituted Phosphates |
JP6035623B2 (en) * | 2010-05-31 | 2016-11-30 | 学校法人千葉工業大学 | Control of solubility and sinterability of biomaterial ceramics made of tricalcium phosphate by the amount of trivalent metal ions dissolved |
US9297090B2 (en) * | 2010-07-16 | 2016-03-29 | Aap Implantate Ag | PEO coating on Mg screws |
WO2013184943A1 (en) * | 2012-06-07 | 2013-12-12 | Novabone Products, Llc | Silica-coated calcium salt compositions |
CN103418030A (en) * | 2013-07-23 | 2013-12-04 | 河南工业大学 | Osteoid structure biological ceramic composite material with adjustable coating thickness |
CN106458585B (en) * | 2014-03-03 | 2021-04-23 | 百维科技有限责任公司 | Spherical porous hydroxyapatite adsorbent and preparation method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2316940A (en) * | 1996-08-30 | 1998-03-11 | Queen Mary & Westfield College | Silicon-substituted hydroxyapatite |
-
2005
- 2005-06-29 US US11/168,420 patent/US7695740B2/en active Active
-
2006
- 2006-06-29 AU AU2006263624A patent/AU2006263624B2/en active Active
- 2006-06-29 WO PCT/GB2006/002411 patent/WO2007000608A2/en active Application Filing
- 2006-06-29 EP EP06755680.3A patent/EP1907337B1/en active Active
- 2006-06-29 ES ES06755680T patent/ES2572136T3/en active Active
- 2006-06-29 JP JP2008518967A patent/JP5128472B2/en active Active
Non-Patent Citations (8)
Title |
---|
ARCOS D ET AL: "Crystal-chemical characteristics of silicon-neodymium substituted hydroxyapatites studied by combined X-ray and neutron powder diffraction" CHEMISTRY OF MATERIALS AMERICAN CHEM. SOC USA, vol. 17, no. 1, 11 January 2005 (2005-01-11), pages 57-64, XP002360025 ISSN: 0897-4756 * |
ARCOS D ET AL: "Silicon incorporation in hydroxylapatite obtained by controlled crystallization" CHEM. MATER.; CHEMISTRY OF MATERIALS JUN 1 2004, vol. 16, no. 11, 1 June 2004 (2004-06-01), pages 2300-2308, XP002360026 * |
EL OUENZERFI R ET AL: "Investigation of the CaO-La2O3-SiO2-P2O5 quaternary diagram. Synthesis, existence domain, and characterization of apatitic phosphosilicates" SOLID STATE IONICS, NORTH HOLLAND PUB. COMPANY. AMSTERDAM, NL, vol. 156, no. 1-2, January 2003 (2003-01), pages 209-222, XP004396180 ISSN: 0167-2738 * |
EL OUENZERFI R ET AL: "Luminescent properties of rare-earth (Eu<3+>, Eu<2+> and Ce<3+>) doped apatitic oxyphosphosilicates" JOURNAL OF LUMINESCENCE, AMSTERDAM, NL, vol. 102-103, May 2003 (2003-05), pages 426-433, XP004416566 ISSN: 0022-2313 * |
IMBACH J ET AL: "SYNTHESIS AND NMR CHARACTERIZATION (1H AND 31P MAS) OF THE FLUORINE-FREE HYDROXYLAPATITE-BRITHOLITE-(Y) SERIES" AMERICAN MINERALOGIST, WASHINGTON, DC, US, US, vol. 87, no. 7, 2002, pages 947-957, XP008057475 ISSN: 0003-004X * |
ITO J: "SILICATE APATITES AND OXYAPATITES" AMERICAN MINERALOGIST, WASHINGTON, DC, US, US, vol. 53, no. 516, May 1968 (1968-05), pages 890-907, XP008057476 ISSN: 0003-004X * |
VALLET-REGI MARIA ET AL: "Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants" J. MATER. CHEM.; JOURNAL OF MATERIALS CHEMISTRY APR 21 2005, vol. 15, no. 15, 21 April 2005 (2005-04-21), pages 1509-1516, XP002360027 * |
ZASLAVSKAYA, L. V. ET AL: "Synthesis of the modified bioactive calcium hydroxyapatite" SCIENCE FOR MATERIALS IN THE FRONTIER OF CENTURIES: ADVANTAGES AND CHALLENGES, INTERNATIONAL CONFERENCE, KYIV, UKRAINE, NOV. 4-8, 2002 , VOLUME 1, 281-282. EDITOR(S): SKOROKHOD, VALERY V. PUBLISHER: FRANTSEVICH INSTITUTE FOR PROBLEMS OF MATERIALS SC, 2002, XP008057472 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010523250A (en) * | 2007-04-11 | 2010-07-15 | ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・アバディーン | Biomedical materials |
JP2017148553A (en) * | 2008-01-09 | 2017-08-31 | ザ・ユニバーシティ・コート・オブ・ザ・ユニバーシティ・オブ・アバディーン | Synthesis of bioceramic composition |
WO2010092001A1 (en) * | 2009-02-10 | 2010-08-19 | Azurebio, S. L. | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds |
CN102316911A (en) * | 2009-02-10 | 2012-01-11 | 阿祖瑞博有限公司 | Bone-regeneration material based on the combination of monetite and other biologically actived calcium and silicon compound |
US8506985B2 (en) | 2009-02-10 | 2013-08-13 | Azurebio, S.L. | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds |
CN102316911B (en) * | 2009-02-10 | 2014-03-05 | 阿祖瑞博有限公司 | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds |
AU2010213019B2 (en) * | 2009-02-10 | 2014-11-06 | Azurebio, S.L. | Bone regeneration materials based on combinations of monetite and other bioactive calcium and silicon compounds |
CN106512086A (en) * | 2016-11-11 | 2017-03-22 | 江西理工大学 | Yttrium-doped calcium phosphate bone cement and preparation method thereof |
CN106512086B (en) * | 2016-11-11 | 2019-09-17 | 江西理工大学 | A kind of doped yttrium calcium phosphate bone cement and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20070003634A1 (en) | 2007-01-04 |
ES2572136T3 (en) | 2016-05-30 |
JP2008544792A (en) | 2008-12-11 |
JP5128472B2 (en) | 2013-01-23 |
US7695740B2 (en) | 2010-04-13 |
EP1907337A2 (en) | 2008-04-09 |
AU2006263624A1 (en) | 2007-01-04 |
EP1907337B1 (en) | 2016-05-04 |
WO2007000608A3 (en) | 2007-03-22 |
AU2006263624B2 (en) | 2012-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7695740B2 (en) | Synthetic calcium phosphate comprising silicon and trivalent cation | |
US10967075B2 (en) | Biomedical materials | |
KR100573293B1 (en) | Method for making apatite ceramics, in particular for biological use | |
JP6435542B2 (en) | Synthesis of bioceramic compositions | |
Kannan et al. | Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites | |
GB2395713A (en) | A synthetic bone material | |
PL214929B1 (en) | Method of obtaining the synthetic bioceramic implant material on the basis of carbonate hydroxyapatites | |
KR100481042B1 (en) | Si,Mg-containing hydroxyapatite, its preparation and application | |
WO2000068144A1 (en) | Method for the preparation of carbonated hydroxyapatite compositions | |
Malysheva et al. | Biocompatibility of apatite-containing implant materials | |
Elliott | Formation of Fluoridated Hydroxyapatite by Competitive Attack of OH-and F-ions onto. ALPHA.-or. BETA.-Tricalcium Bis (Orthophosphate) | |
Nor et al. | Synthesis of Tricalcium Phosphate at Different pH Condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008518967 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006263624 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006755680 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006263624 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006263624 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006755680 Country of ref document: EP |