WO2007000067A1 - Procede et systeme d'acquisition d'informations d'azimut a l'aide de signaux envoyes par satellite - Google Patents

Procede et systeme d'acquisition d'informations d'azimut a l'aide de signaux envoyes par satellite Download PDF

Info

Publication number
WO2007000067A1
WO2007000067A1 PCT/CH2006/000334 CH2006000334W WO2007000067A1 WO 2007000067 A1 WO2007000067 A1 WO 2007000067A1 CH 2006000334 W CH2006000334 W CH 2006000334W WO 2007000067 A1 WO2007000067 A1 WO 2007000067A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
camera
total station
data
satellites
Prior art date
Application number
PCT/CH2006/000334
Other languages
English (en)
Inventor
Timo Kahlmann
Hilmar Ingensand
Original Assignee
Eidgenössische Technische Hochschule Zürich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidgenössische Technische Hochschule Zürich filed Critical Eidgenössische Technische Hochschule Zürich
Publication of WO2007000067A1 publication Critical patent/WO2007000067A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites
    • G01C1/04Theodolites combined with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/58Rotating or oscillating beam systems using continuous analysis of received signal for determining direction in the plane of rotation or oscillation or for determining deviation from a predetermined direction in such a plane

Definitions

  • the invention relates to a method and a system for acquiring azimuth information using signals provided by satellites .
  • Satellite positioning systems e.g. GPS for Global Positioning System, GLONASS, GALILEO, etc.
  • GLONASS Global Positioning System
  • GALILEO Global Positioning System
  • Another important parameter for the user is the information about the direction (i.e. angle direction) he or an object is facing.
  • WO 02/082119 discloses the use of two or more separate antennas provided in a distance one from another, e.g. at two different points on a vehicle.
  • DE 102 13 502 is also able to provide azimuth information based on GPS measurements .
  • the system uses two patch antennas arranged one close to another in such a manner that spatial coverage of each antenna overlap partially. Therefore common area will be formed and according to the position of the satellites, the direction can be determined.
  • DE 102 14 071 discloses a method for receiving azimuth information, using a device equipped with one plain GPS-antenna, which has a hemispherical shaped club that covers a part of the range .
  • the antenna stands upright to the ground. For that reason, half of the hemispherical club is directed to ground and therefore unusable.
  • the azimuth information is calculated based on satellite information scanned with the available half of the hemispherical club of the antenna.
  • the mentioned prior art has the drawback that quite a number of GPS satellites have to be available to be able to calculate accurate azimuth information.
  • Prior art does not provide for such a system of small device applications as 3D cameras and objects which need to be positioned in a fixed position without much movement throughout a measurement stage . Furthermore it is required that such a measurement system can be integrated in a quasi handheld device.
  • the invention uses positioning information from satellites to measure a direction by modulating their intensity.
  • a three dimensional measuring camera with further measuring methods or measuring instrument, will be claimed.
  • the advantages of each of the measuring methods will be combined.
  • the total station provides, beside its improvements of the data measured by the camera, also a calibration of the camera.
  • Non-permanent target points will be projected by, for example, the telescope of the total station, and those target points can be allocated to those points measured by the camera and the total station.
  • Various methods can be used for determine the direction of the measuring system such as a moveable satellite positioning system antenna or gating out parts of the received satellite signal and/or modulation of the remaining signal .
  • Fig. 1 shows schematically a total station combined with a three dimensional measuring camera
  • Fig. 2 shows schematically a three dimensional measuring camera combined with an electronic compass and/or IMU, a satellite positioning system (receiver and antenna) and an inclinometer,
  • Fig. 3 shows schematically a three dimensional measuring camera combined with an electronic compass and/or IMU, a satellite positioning system (receiver and antenna and with a shield)
  • Fig. 4 is a detail view of Fig. 2 and shows the combination of a satellite positioning system with an electronic compass and/or IMU
  • Fig. 5 is a detail view of Fig. 3 and shows the arrangement of the satellite positioning system and the shield, and
  • Fig. 6 is a view from above of Fig. 3 and shows the arrangement of the satellite positioning system and the shield,
  • Fig. 7 shows the relation of a point in the field to the coordinate system of a three dimensional camera
  • Fig. 8 shows a flowchart of the referencing of a three dimensional camera
  • Fig. 9 shows a flowchart of the calibration of a three dimensional camera.
  • measuring camera refers to a three dimensional measuring camera, that produces accurate three- dimensional pictures.
  • Geographical referencing refers to a method in which information about a geographical position and its direction is going to be linked with a dataset of the earth image (e.g. map, geographical information system or local coordinate system) .
  • a dataset of the earth image e.g. map, geographical information system or local coordinate system
  • measuring unit is used for the whole unit, which comprises at least a combination of a three dimensional measuring camera with further position defining and/or direction defining measuring methods and measuring instruments. Due to the measuring unit geographical referencing became possible.
  • Global positioning system refers to any system based on a plurality of satellites to obtain precise location information.
  • An existing specimen of such a global positioning system is the well known NAVSTAR-GPS-system.
  • a system called GALILEO will follow.
  • Fig 1 shows schematically a measuring camera 1 combined with a total station 2.
  • the measuring camera 1 is onto or within the optical system of the total station 2.
  • the measuring camera can be independent from the total station or the measuring camera may be located near the upper part of the theodolite, which is a part of the total station 2. Combination of the measuring camera with any other optical surveying system is also possible.
  • Total station 2 is mounted on a tripod, pole, handhold or mounted otherwise, e.g. roof of a car 20. This indicates that it is contemplated that the device according to the invention can be used in still standing, inert environments. It is the aim of the method to provide a solution to the acquisition of data relating to a direction or orientation of the device at a precise point within a short time. But also kinematic acquisition is possible.
  • the measuring camera can be calibrated with the aid of the total station and by means of data processing.
  • the data processing determines the differences between the coordinates calculated by means of the total station measurements and the coordinates related to the three dimensional camera. Therefore the functional relation between these two datasets
  • the referencing of the three dimensional camera data is shown in Fig. 9. If the total station is oriented and positioned in a certain coordinate system (e.g. total station coordinate system or a georeferenced coordinate system) the coordinates related to the three dimensional camera can be transformed by means of a precedent determination of the transforming parameters directly into total station related coordinates.
  • a certain coordinate system e.g. total station coordinate system or a georeferenced coordinate system
  • Fig. 2 shows a combination of a measuring camera 1, e.g. as mentioned before, with a satellite positioning system 4, comprising a satellite positioning receiver and an antenna, and mounted together with an electronic compass 9 and/or an IMU. Between the tripod, pole, handhold or mounted otherwise, e.g. roof of a car 20 and the camera 1 is provided an inclinometer 10, instead of the inclinometer in the total station.
  • the satellite positioning system 4 and the electronic compass 9 and/or the IMU are both connected to the measuring camera 1.
  • the antenna detects the signal, which is broadcasted by positioning satellites, whereas the satellite positioning receiver uses the dataset provided by the antenna to determine the geographical location of the measuring unit .
  • Said antenna 4 is mounted in a movable manner, allowing it to move, e.g. swaying, pivoting etc. Due to the resulting satellite signal variation and due to the fact that the reception club of the antenna can have an inhomogeneous structure, which effects add when the antenna 4 is in motion, the angular spatial orientation of the antenna and therefore the spatial orientation of the measuring unit becomes determinable .
  • Fig. 4 shows the combination of a satellite positioning system 4, as mentioned before, and an electronic compass 9 and/or an IMU, which is mounted at the lower part of the satellite positioning system.
  • Figs. 3 and 5 show a combination of the measuring camera 1, mentioned before, with a satellite positioning system 4 and with a shield 5.
  • the antenna detects the signal, which is broadcasted by positioning satellites, whereas the satellite positioning system uses the dataset provided by the antenna to determine the geographical location of the measuring unit .
  • the measuring camera 1 is attached to the measuring unit in the same manner as described above.
  • the satellite signal has to be modulated, e.g. amplitude modulated.
  • the use of a shield 5, which is made out of a material that has the properties to shield such satellite signals, is an appropriate method to (partially) interrupt said signal.
  • the shield 5 can be mounted movable with motor 7 about the antenna 4 or on a fixed position.
  • the position of the shield is determined by encoder 6, to provide information about the actual position of the shield.
  • Fig. 5 shows a possible configuration of the antenna 4 and the shield 5 by which the shield 5 is attached at the lower part of the antenna 4.
  • Said shield 5 is able to rotate around the central axis 11 of the antenna, e.g. with a constant angular velocity.
  • Said shield can cover an angular azimuth area of e.g. 10 to 90 degrees, here approximately 30 degrees.
  • an inclinometer 10 can also be used to provide information about the inclination of the measuring unit.
  • Fig. 6 shows a schematically plan view on the device according to Fig. 5.
  • the shield 5 comprises a complete angular coverage between two great circles of the half-sphere of the cover, i.e. the side edges of the shield come together in one point at the top of the sphere of the cover, i.e. the zenith.
  • the cover of the antenna can comprise a plurality of different shielded angular stripes, e.g. stripes of between 10 and 50 degrees with different signal reductions between e.g. 0 and 80 percent, e.g. 25, 50 and 75 percent.
  • the pattern of these signal reductions directly allow to calculate the direction of the device.
  • a rotating cover is preferably disposed inside an outer protective cover 8.
  • Fig. 7 shows schematically the functionality of a three dimensional camera.
  • a three dimensional camera as it is known by someone skilled in the art, comprises at least optical means, an emitter and a semiconductor device with the ability to capture radiation which is mapped onto it by the optical means .
  • the emitted modulated radiation is partially reflected from objects in the field of view back to the camera and detected and/or demodulated by semiconductor device.
  • the distance towards point in the field of view corresponding to the pixels, coordinates of the environment in the field of view can be determined. These coordinates are related to the camera coordinate system.
  • Such a processing can be found in Kahlmann T., and Ingensand H. in "Calibration and improvements of the high- resolution range-imaging camera SwissRanger" in Conference on Videometrics VIII, part of the IS&T/SPIE Symposium on Electronic Imaging 2005, 16-20 January 2005, San Jose (USA) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention se rapporte à un procédé et un système d'acquisition d'informations d'azimut d'un dispositif utilisant des signaux émis par satellite, comprenant une antenne (4) destinée à des systèmes mondiaux de localisation ayant au moins un diagramme d'antenne hémisphérique couvrant au moins une partie du ciel au-dessus de l'antenne (4) et qui est installée en association avec le dispositif. Des moyens de modulation génèrent une modulation dans le temps, d'au moins un signal de satellite recevable pour une zone d'angle azimutal prédéterminé. Le procédé et le système d'acquisition d'informations d'azimut à l'aide de signaux envoyés par satellite comprennent également une unité de contrôle dotée d'un moyen de calcul, destinée à calculer l'orientation du dispositif via l'évaluation des signaux de satellite modulés.
PCT/CH2006/000334 2005-06-27 2006-06-20 Procede et systeme d'acquisition d'informations d'azimut a l'aide de signaux envoyes par satellite WO2007000067A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69377705P 2005-06-27 2005-06-27
US60/693,777 2005-06-27

Publications (1)

Publication Number Publication Date
WO2007000067A1 true WO2007000067A1 (fr) 2007-01-04

Family

ID=36910800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2006/000334 WO2007000067A1 (fr) 2005-06-27 2006-06-20 Procede et systeme d'acquisition d'informations d'azimut a l'aide de signaux envoyes par satellite

Country Status (1)

Country Link
WO (1) WO2007000067A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463703A (en) * 2008-09-22 2010-03-24 Geotate Bv Estimating the direction in which a camera is pointing as a photograph is taken
WO2011147968A1 (fr) 2010-05-28 2011-12-01 Nunhems B.V. Plantes dotées d'une taille de fruit accrue
GB2490416A (en) * 2011-04-26 2012-10-31 Korea Electronics Telecomm GPS antenna with jamming signal shielding
WO2012165961A1 (fr) 2011-05-31 2012-12-06 Keygene N.V. Plantes résistantes aux nuisibles
WO2013058654A2 (fr) 2011-10-19 2013-04-25 Keygene N.V. Procédés d'obtention de cinnamolide et/ou de drimendiol
EP2602587A1 (fr) * 2011-12-06 2013-06-12 Hexagon Technology Center GmbH Procédé et dispositif pour déterminer les coordonnées 3D d'un objet
WO2013095125A1 (fr) 2011-12-16 2013-06-27 Keygene N.V. Procédé de production d'une plante ayant une résistance accrue aux maladies vis-à-vis des nématodes
WO2014142647A1 (fr) 2013-03-14 2014-09-18 Wageningen Universiteit Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique
CN104215971A (zh) * 2014-08-15 2014-12-17 广州市中海达测绘仪器有限公司 Gnss手持终端及其对中整平方法和数据采集方法
CN104422432A (zh) * 2013-08-28 2015-03-18 上海昊集信息科技有限公司 一种快捷式移动数据终端及其定位方法
RU2571300C2 (ru) * 2011-05-20 2015-12-20 Сагем Дефенс Секьюрите Способ дистанционного определения абсолютного азимута целевой точки
WO2017039452A1 (fr) 2015-09-04 2017-03-09 Keygene N.V. Gène de diplosporie
JP2019117588A (ja) * 2017-12-27 2019-07-18 ブラザー工業株式会社 電子機器
CN110389314A (zh) * 2019-07-31 2019-10-29 杭州中科微电子有限公司 一种适于静态应用的单天线定向方法、装置及应用
WO2020239984A1 (fr) 2019-05-29 2020-12-03 Keygene N.V. Gène pour parthénogenèse

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644358A (en) * 1982-11-13 1987-02-17 Nihon Musen Kabushiki Kaisha Stem orientation measurement apparatus
US5077557A (en) * 1988-07-06 1991-12-31 Wild Leitz Ag Surveying instrument with receiver for satellite position-measuring system and method of operation
WO1992008105A1 (fr) * 1990-11-02 1992-05-14 Geotronics Ab Procede et dispositif de mesure de position
US5233357A (en) * 1988-07-06 1993-08-03 Wild Leitz Ag Surveying system including an electro-optic total station and a portable receiving apparatus comprising a satellite position-measuring system
US5821900A (en) * 1996-05-27 1998-10-13 Nikon Corporation GPS survey instrument
US5940026A (en) * 1997-07-21 1999-08-17 Rockwell Science Center, Inc. Azimuth determination for GPS/INS systems via GPS null steering antenna
US6452543B1 (en) * 2001-05-24 2002-09-17 Aerospace Corporation GPS patch antenna attitude reference method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644358A (en) * 1982-11-13 1987-02-17 Nihon Musen Kabushiki Kaisha Stem orientation measurement apparatus
US5077557A (en) * 1988-07-06 1991-12-31 Wild Leitz Ag Surveying instrument with receiver for satellite position-measuring system and method of operation
US5233357A (en) * 1988-07-06 1993-08-03 Wild Leitz Ag Surveying system including an electro-optic total station and a portable receiving apparatus comprising a satellite position-measuring system
WO1992008105A1 (fr) * 1990-11-02 1992-05-14 Geotronics Ab Procede et dispositif de mesure de position
US5821900A (en) * 1996-05-27 1998-10-13 Nikon Corporation GPS survey instrument
US5940026A (en) * 1997-07-21 1999-08-17 Rockwell Science Center, Inc. Azimuth determination for GPS/INS systems via GPS null steering antenna
US6452543B1 (en) * 2001-05-24 2002-09-17 Aerospace Corporation GPS patch antenna attitude reference method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463703A (en) * 2008-09-22 2010-03-24 Geotate Bv Estimating the direction in which a camera is pointing as a photograph is taken
WO2011147968A1 (fr) 2010-05-28 2011-12-01 Nunhems B.V. Plantes dotées d'une taille de fruit accrue
GB2490416A (en) * 2011-04-26 2012-10-31 Korea Electronics Telecomm GPS antenna with jamming signal shielding
RU2571300C2 (ru) * 2011-05-20 2015-12-20 Сагем Дефенс Секьюрите Способ дистанционного определения абсолютного азимута целевой точки
WO2012165961A1 (fr) 2011-05-31 2012-12-06 Keygene N.V. Plantes résistantes aux nuisibles
WO2013058654A2 (fr) 2011-10-19 2013-04-25 Keygene N.V. Procédés d'obtention de cinnamolide et/ou de drimendiol
US20140320603A1 (en) * 2011-12-06 2014-10-30 Hexagon Technology Center Gmbh Method and device for determining 3d coordinates of an object
EP2602587A1 (fr) * 2011-12-06 2013-06-12 Hexagon Technology Center GmbH Procédé et dispositif pour déterminer les coordonnées 3D d'un objet
CN104024797A (zh) * 2011-12-06 2014-09-03 赫克斯冈技术中心 用于确定对象的3d坐标的方法和装置
US9995567B2 (en) 2011-12-06 2018-06-12 Hexagon Technology Center Gmbh Method and device for determining 3D coordinates of an object
WO2013083706A1 (fr) * 2011-12-06 2013-06-13 Hexagon Technology Center Gmbh Procédé et dispositif de détermination de coordonnées 3d d'un objet
WO2013095125A1 (fr) 2011-12-16 2013-06-27 Keygene N.V. Procédé de production d'une plante ayant une résistance accrue aux maladies vis-à-vis des nématodes
WO2014142647A1 (fr) 2013-03-14 2014-09-18 Wageningen Universiteit Souches fongiques ayant une production améliorée d'acide citrique et d'acide itaconique
CN104422432A (zh) * 2013-08-28 2015-03-18 上海昊集信息科技有限公司 一种快捷式移动数据终端及其定位方法
CN104215971A (zh) * 2014-08-15 2014-12-17 广州市中海达测绘仪器有限公司 Gnss手持终端及其对中整平方法和数据采集方法
WO2017039452A1 (fr) 2015-09-04 2017-03-09 Keygene N.V. Gène de diplosporie
JP2019117588A (ja) * 2017-12-27 2019-07-18 ブラザー工業株式会社 電子機器
WO2020239984A1 (fr) 2019-05-29 2020-12-03 Keygene N.V. Gène pour parthénogenèse
CN110389314A (zh) * 2019-07-31 2019-10-29 杭州中科微电子有限公司 一种适于静态应用的单天线定向方法、装置及应用
CN110389314B (zh) * 2019-07-31 2021-07-30 杭州中科微电子有限公司 一种适于静态应用的单天线定向方法、装置及应用

Similar Documents

Publication Publication Date Title
WO2007000067A1 (fr) Procede et systeme d'acquisition d'informations d'azimut a l'aide de signaux envoyes par satellite
US5379045A (en) SATPS mapping with angle orientation calibrator
US8351686B2 (en) Methods and systems for determining angles and locations of points
GREJNER‐BRZEZINSKA Direct exterior orientation of airborne imagery with GPS/INS system: Performance analysis
US6052083A (en) Method and apparatus for position identification
US7541974B2 (en) Managed traverse system and method to acquire accurate survey data in absence of precise GPS data
US20050057745A1 (en) Measurement methods and apparatus
US5581259A (en) Life for old maps
US8891066B2 (en) Method for geo-referencing of optical remote sensing images
CN101010563A (zh) 组合激光系统和全球导航卫星系统
US20110050903A1 (en) Method for determining position and orientation of vehicle trailers
US20140022539A1 (en) Use of a sky polarization sensor for absolute orientation determination in position determining systems
US7468695B1 (en) GPS attitude determination system and method using baseline extension
JP2007506109A (ja) 携帯型測定装置の空間位置の決定方法とシステム
US11656076B2 (en) Method of calibrating a total station using a GNSS device
CN110737009A (zh) 用于地理空间定位的方法及其便携式定位设备
US20240019587A1 (en) Total station with gnss device
US20210080257A1 (en) Survey pole with indicia for automatic tracking
KR101144200B1 (ko) 일반도화기에서 사용되는 영상도화이미지의 데어터 수집시스템
CN209841031U (zh) 一种gnss与相机结合的便携摄影测量装置
EP1662228A1 (fr) Balayage d'objets tridimensionnels
Chan et al. Range scale-factor calibration of the velodyne VLP-16 lidar system for position tracking applications
US20210199784A1 (en) Calibrating a total station
Rick et al. Total station
JPH08145668A (ja) 走査型レーザ測量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06741659

Country of ref document: EP

Kind code of ref document: A1